WO2016125482A1 - Composition having fluorescent bodies dispersed therein, fluorescent molded body obtained using said composition, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device - Google Patents

Composition having fluorescent bodies dispersed therein, fluorescent molded body obtained using said composition, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device Download PDF

Info

Publication number
WO2016125482A1
WO2016125482A1 PCT/JP2016/000504 JP2016000504W WO2016125482A1 WO 2016125482 A1 WO2016125482 A1 WO 2016125482A1 JP 2016000504 W JP2016000504 W JP 2016000504W WO 2016125482 A1 WO2016125482 A1 WO 2016125482A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
film
phosphor
dispersion composition
reaction
Prior art date
Application number
PCT/JP2016/000504
Other languages
French (fr)
Japanese (ja)
Inventor
誠 加茂
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016125482A1 publication Critical patent/WO2016125482A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements

Definitions

  • the present invention relates to a phosphor dispersion composition used for forming a fluorescent molded body such as a wavelength conversion film that emits fluorescence when irradiated with excitation light, and a fluorescent molded body and a wavelength conversion film obtained using the same.
  • the present invention also relates to a wavelength conversion member having a wavelength conversion film, a backlight unit including the wavelength conversion member, and a liquid crystal display device.
  • the liquid crystal display device is composed of at least a backlight and a liquid crystal cell, and usually further includes members such as a backlight side polarizing plate and a viewing side polarizing plate.
  • a wavelength conversion film (wavelength conversion layer) containing quantum dots (also referred to as Quantum Dot, QD, or quantum dots) as a light emitting material on a wavelength conversion member of a backlight unit. Attention has been focused on a configuration provided with (Patent Document 1, Patent Document 2, etc.).
  • the wavelength conversion member is a member that converts the wavelength of light incident from the planar light source and emits it as white light.
  • the wavelength conversion film containing the quantum dots as the light emitting material two or three of different light emission characteristics are used.
  • White light can be realized by using fluorescence in which a seed quantum dot is excited by light incident from a planar light source and emits light.
  • Fluorescence due to quantum dots has high brightness and a small half-value width, so that LCDs using quantum dots are excellent in color reproducibility.
  • the color gamut is expanded from 72% to 100% of the current TV standard (FHD, NTSC (National Television System Committee)) ratio.
  • a wavelength conversion film (wavelength conversion film) containing quantum dots as a light emitting material is an aspect in which quantum dots are dispersed substantially uniformly in an organic matrix (polymer matrix).
  • the polymer matrix of the wavelength conversion film is formed by applying a coating solution in which the polymer matrix is dissolved in a solvent to the substrate, then casting to remove the solvent from the coating film, and pouring the molten polymer matrix onto the substrate. After forming a film with a melt film-forming method to form a film by lowering the temperature, a binder precursor such as a monomer is applied on the substrate, and then the coating film is heated or irradiated with light without causing volatilization of the solvent or the like. It is generally performed by any one of a thermosetting film forming method and a photocuring film forming method.
  • thermosetting film-forming method can uniformly cure even a thick film of several tens to several hundreds of ⁇ m.
  • a thermosetting polymer matrix formed by crosslinking to form a three-dimensional network structure is tough. Nevertheless, there is an advantage that a good quality sheet or film can be obtained with small warpage and unevenness of curing.
  • Patent Document 2 a composition for forming a wavelength conversion layer in which quantum dots formed by coordination of a polyfunctional amine compound on a surface are dispersed in a binder precursor containing an epoxide by a thermosetting film forming method. To form a wavelength conversion layer.
  • Patent Document 2 discloses that a polyfunctional amine compound that is a ligand of a quantum dot is excessively added to the composition for forming a wavelength conversion layer, and a thermosetting reaction between the polyfunctional amine compound and an epoxide is performed. The formation of a polymer matrix having a three-dimensional network structure is described.
  • Patent Document 3 describes that a crosslinked polymer or a thermosetting epoxy material is used as a polymer matrix formed by a thermosetting film forming method.
  • the polymer matrix obtained by the thermosetting reaction of the polyfunctional amine compound and epoxide described in Patent Document 2 has a three-dimensional network structure of the polymer matrix formed of the polyfunctional amine compound.
  • Polyfunctional amine compounds have the advantage of high nucleophilicity and excellent reaction activity with epoxy compounds, isocyanates, etc., and have the advantage of being easy to cure even at low temperatures. It is known that a polymer matrix in which a three-dimensional network structure of a polymer matrix is formed by an amine compound has a high possibility of yellowing over time.
  • the wavelength conversion film is formed by dispersing phosphors in a polymer matrix, and emits white light using fluorescence emitted by excitation of the phosphors by excitation light incident on the layer. Yellowing of the polymer matrix of the film may cause changes in the intensity and color of the emitted light.
  • a crosslinked polymer or a thermosetting epoxy material is exemplified as a polymer matrix.
  • a suitable polymer matrix material is not a crosslinked polymer or a thermosetting epoxy material, but a linear polymer matrix. There is no description of the specific composition of the polymer matrix using the cross-linked polymer or the thermosetting epoxy material or the examples.
  • the above yellowing due to aging can cause not only the polymer matrix as the wavelength conversion film but also the polymer molded body using the fluorescence of the phosphor to cause deterioration of its performance.
  • the present invention has been made in view of the above circumstances, and is a phosphor dispersion capable of producing a thermoformed film and capable of producing a fluorescent molded body having small warpage and curing unevenness and excellent in light resistance and long-term reliability.
  • the object is to provide a composition.
  • the present invention also provides a fluorescent molded body, a wavelength conversion film, a wavelength conversion member provided with the same, a back surface having a small warpage and unevenness in curing, excellent light resistance, and excellent long-term reliability of emitted light intensity and color,
  • An object of the present invention is to provide a light unit and a liquid crystal display device.
  • the present inventor is a phosphor dispersion composition in which a phosphor is dispersed in a binder precursor that is thermally cured without volatilization of a solvent or the like, and a thermosetting property that forms a three-dimensional network structure of the binder by a thermosetting reaction. It has been found that the above object can be achieved by suppressing the contents of polyfunctional primary amines and polyfunctional secondary amines as compounds low or by not using these amines as thermosetting compounds.
  • the phosphor dispersion composition of the present invention is A phosphor dispersion composition for forming a phosphor molded body comprising at least one phosphor dispersed and contained in a binder having a three-dimensional network structure, Comprising at least one phosphor and a binder precursor that forms a binder by a thermosetting reaction;
  • the binder precursor includes at least one thermosetting compound that forms a three-dimensional network structure by a thermosetting reaction;
  • the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  • the total content of the polyfunctional primary amine and the polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less with respect to the total mass of the phosphor dispersion composition” means that thermosetting It is assumed that the total content of the polyfunctional primary amine and the polyfunctional secondary amine as the active compound is 0% by mass with respect to the total mass of the phosphor dispersion composition.
  • “having a three-dimensional network structure” means having at least a three-dimensional network structure constituted only by covalent bonds, but in a three-dimensional network structure constituted only by covalent bonds.
  • a more complicated three-dimensional network structure may be formed with non-covalent bonds such as hydrogen bonds and ionic bonds. Whether or not it has a three-dimensional network structure composed only of covalent bonds is detected by not dissolving the binder in any solvent (provided that it does not involve decomposition of the chemical structure) and not causing melting. can do.
  • a preferred embodiment of the phosphor dispersion composition of the present invention includes an embodiment in which the thermosetting compound contains a polyvalent isocyanate and a polyol.
  • the polyvalent isocyanate is preferably a cyclic aliphatic (alicyclic) isocyanate and / or a chain aliphatic isocyanate.
  • the binder precursor includes a reaction accelerator that accelerates the thermosetting reaction between the polyvalent isocyanate and the polyol.
  • the thermosetting compound contains an epoxide and a carboxylic acid anhydride
  • the binder precursor has a thermosetting reaction between the epoxide and the carboxylic acid anhydride.
  • stimulates is mentioned.
  • thermosetting reaction of the phosphor dispersion composition of the present invention is a thermopolymerization reaction
  • the thermosetting compound contains an epoxide
  • the binder precursor is a thermopolymerization initiator for the thermopolymerization reaction.
  • the aspect containing is mentioned.
  • the fluorescent molded body of the present invention is formed by thermosetting the phosphor dispersion composition of the present invention.
  • the wavelength conversion film of the present invention is formed by applying the phosphor dispersion composition of the present invention on a base material to form a coating film of the phosphor dispersion composition and thermally curing the coating film. .
  • the wavelength conversion member of the present invention includes the wavelength conversion film of the present invention.
  • the backlight unit of the present invention is A planar light source that emits primary light;
  • the wavelength conversion member of the present invention provided on a planar light source;
  • a retroreflective member disposed opposite to the planar light source across the wavelength conversion member;
  • a backlight unit including a wavelength conversion member and a reflector disposed opposite to a surface light source,
  • the wavelength conversion member emits fluorescence using at least a part of the primary light emitted from the planar light source as excitation light, and emits at least light including secondary light composed of fluorescence.
  • the liquid crystal display device of the present invention comprises the backlight unit of the present invention described above, And a liquid crystal unit disposed opposite to the retroreflective member side of the backlight unit.
  • the phosphor-dispersed composition of the present invention is used for forming a fluorescent molded body in which a phosphor that emits fluorescence when irradiated with excitation light is dispersed in a binder, and is formed by a thermosetting reaction.
  • the binder precursor contains at least one thermosetting compound that forms a three-dimensional network structure by a thermosetting reaction, and contains a total of polyfunctional primary amines and polyfunctional secondary amines as thermosetting compounds. The amount is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  • the fluorescent molded body, the wavelength conversion film, and the wavelength conversion member provided with the same which have small warpage and unevenness in curing, excellent light resistance, and excellent long-term reliability of emitted light intensity and color, A backlight unit and a liquid crystal display device can be provided.
  • the phosphor dispersion composition of the present invention comprises: A phosphor dispersion composition for forming a phosphor molded body comprising at least one phosphor dispersed and contained in a binder having a three-dimensional network structure, Comprising at least one phosphor and a binder precursor that forms a binder by a thermosetting reaction;
  • the binder precursor includes at least one thermosetting compound that forms a three-dimensional network structure by a thermosetting reaction;
  • the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  • the binder precursor includes at least one thermosetting compound that forms a three-dimensional network structure of the polymer by a thermosetting reaction, and includes a polyfunctional primary amine as the thermosetting compound and The total content of the polyfunctional secondary amine is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  • thermosetting compound is not particularly limited as long as the total content of the polyfunctional primary amine and the polyfunctional secondary amine is within the above range, but an embodiment including a combination of a polyvalent isocyanate and a polyol, epoxide and carvone
  • an embodiment including a combination with an acid anhydride and an embodiment in which the thermosetting reaction is a thermal polymerization reaction, the thermosetting compound includes an epoxide, and the binder precursor includes a thermal polymerization initiator of the thermal polymerization reaction are included. .
  • ⁇ Combination of polyvalent isocyanate and polyol> When a binder precursor containing a combination of a polyvalent isocyanate and a polyol as a thermosetting compound is used, a urethane bond is formed by a reaction between an isocyanate group and a hydroxyl group of the polyol, and a urethane polymer is generated as a binder. At this time, if there are more polyfunctional primary amines and polyfunctional secondary amines than 0.1% by mass with respect to the total mass of the phosphor dispersion composition, the amine generation reaction by the de-CO reaction of the isocyanate group is promoted.
  • the amine group concentration in the wavelength conversion film increases beyond the original addition amount of the polyfunctional primary amine and polyfunctional secondary amine. Therefore, when using a binder precursor containing a combination of a polyvalent isocyanate and a polyol as a thermosetting compound, the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is the phosphor dispersion. It is 0.1 mass% or less with respect to the composition total mass.
  • the polyvalent isocyanate mentioned above may be used individually by 1 type, and may mix and use 2 or more types.
  • an appropriate monofunctional isocyanate such as alkyl monoisocyanate, cycloalkyl monoisocyanate, aromatic monoisocyanate and derivatives thereof are added. May be.
  • cycloaliphatic (alicyclic) isocyanates and chain aliphatic isocyanates are preferable, and those in which the isocyanate group is bonded to primary carbon are particularly preferable.
  • the polyvalent isocyanate or a mixture thereof is preferably liquid in the range of about 20 ° C to 60 ° C.
  • polyol compound having a bifunctional or higher functional alcoholic hydroxyl group
  • examples of the polyol (compound having a bifunctional or higher functional alcoholic hydroxyl group) suitable for the phosphor dispersion composition of the present invention include aliphatic polyols and alicyclic rings from the viewpoint of preventing yellowing under long-term light irradiation. Group polyols are more preferred.
  • Such polyols include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol, polytetramethylene glycol, glycerin, trimethylolpropane, and pentaerythritol.
  • Di-, tri-, or tetra-alcohol compounds such as glycerin, trimethylolpropane, pentaerythritol modified with polyethylene glycol, polypropylene glycol modified, polytetramethylene glycol modified, Known as various polyester polyols derived by esterification reaction with dicarboxylic acid, Examples also include linear alkylene terminal diols such as hexanediol, heptanediol, octanediol, decanediol, and dodecanediol.
  • the above polyols may be used alone or in combination of two or more. Further, from the viewpoint of imparting coating suitability to the composition, the liquid is preferably in the range of about 20 ° C to 60 ° C. In addition, from the viewpoint of adjusting the viscosity of the binder precursor and adjusting the physical properties of the obtained urethane polymer, monoalcohols such as alkyl monoalcohols, cycloalkyl monoalcohols, monofunctional phenols, and derivatives thereof are appropriately added. May be.
  • the binder precursor containing the combination of the polyvalent isocyanate and polyol described above as a thermosetting compound has a 1: 1 ratio of isocyanate groups and hydroxyl groups, so the mixing ratio is equivalent ratio of each functional group.
  • the ratio is 1: 1
  • the reaction is considered to be completed without excess or deficiency, but the equivalent ratio may be adjusted in order to appropriately adjust various physical properties of the obtained urethane polymer.
  • the equivalent ratio of the isocyanate equivalent of the polyvalent isocyanate and the hydroxyl equivalent of the polyol is preferably in the range of 1: 0.8 to 1: 1.2, and preferably 1: 0.9 to 1: 1. A range of 1 is more preferable.
  • the binder precursor includes a reaction accelerator that promotes a thermosetting reaction between the polyvalent isocyanate and the polyol.
  • a reaction accelerator By adding a reaction accelerator, the reaction between the isocyanate and the hydroxyl group is accelerated, and a good urethane polymer can be produced even at a low temperature.
  • Preferred reaction accelerators include tetraalkylammonium salts, cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN) and their salts, 1,4-diazabicyclo [2.2.2].
  • Cyclic amines such as octane (DABCO), pyridines, nitrogen-containing heteroaromatic compounds and salts thereof such as imidazoles, alkyltin compounds and salts thereof, alkylzinc compounds and salts thereof, zirconium compounds, titanium compounds, alkylaluminums And boric acids are preferably used. Since the reaction accelerator acts catalytically and is not consumed in the reaction, the effect can be sufficiently exerted even in a trace amount.
  • the specific addition amount is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 3% by mass with respect to the total mass of the binder precursor.
  • an ammonium salt or a cyclic amine is used as a reaction accelerator
  • a trace amount of primary and secondary amines may be contained as impurities. Therefore, when these compounds are used as reaction accelerators, it is preferable to use them after purification so that the amount of impurities is as small as possible.
  • the amount of impurities contained in the reaction accelerator is quantitatively determined with respect to the total mass of the composition. It is preferable to adjust so that it may become 0.1 mass% or less, and it is more preferable to adjust to 0.05 mass% or less.
  • the isocyanate and the amine of the impurity react quickly and convert to a urea bond, the primary amine and the secondary amine disappear, under long-term light irradiation. Yellowing can be prevented in advance, and the urethane polymer production process and the physical properties thereof due to the reaction between the polyvalent isocyanate and the polyol that should occur can be prevented from being significantly affected.
  • thermosetting compound a mode in which a reaction accelerator that accelerates a thermosetting reaction between an epoxide and a carboxylic acid anhydride is simultaneously included in the binder precursor And In this combination, heating at 100 ° C. may be necessary to promote the reaction. At this time, if more than 0.1% by mass of polyfunctional primary amine and polyfunctional secondary amine are present, they are activated by heat. Since rapid coloring due to amine may be observed, the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0 with respect to the total mass of the phosphor dispersion composition. .1% by mass or less.
  • an epoxide and a carboxylic acid anhydride undergo an ester condensation reaction to form a polyester polymer.
  • epoxide is used excessively, chain polymerization of epoxides may occur in parallel, and a mixture of epoxide polymer and polyester polymer may be formed.
  • the epoxide in the present invention refers to general cyclic ether compounds (epoxy compounds, oxirane compounds, etc.) capable of ring-opening polymerization reaction of epoxy groups. These can be obtained by synthesis using epichlorohydrin as a starting material, or can be obtained by oxidizing the carbon-carbon double bond of an unsaturated hydrocarbon. Specific examples include compounds containing a glycidyl group or a cyclohexene oxide group.
  • bisphenol A type epoxy resin derived from bisphenol A and epichlorohydrin bisphenol F type epoxy resin derived from bisphenol F and epichlorohydrin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A A novolac type epoxy resin, a bisphenol F novolac type epoxy resin, an alicyclic epoxy resin, a diphenyl ether type epoxy resin, and a hydroquinone type epoxy resin.
  • the epoxide does not contain an aromatic ring.
  • an epoxide composed of a saturated hydrocarbon-only skeleton or an epoxide containing an aromatic An epoxide obtained by hydrogenating the aromatic ring to form a cyclic alkyl is preferable.
  • glycidyl ethers such as diglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis (2,3-epoxypropoxyperfluoroisopropyl) cyclohexane, sorbitol polyglycidyl ether, trimethylolpropane polyglycidyl.
  • Glycidyl esters such as tetrahydrophthalic acid, hexahydrophthalic acid, methylated hexahydrophthalic acid, hexahydroterephthalic acid, hexahydropyromellitic acid glycidyl ester, succinic acid, alkenyl succinic acid , Glycidyl ester compounds of aliphatic dicarboxylic acids such as nadic acid, methyl nadic acid, maleated fatty acid, dodecenyl succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, eicosane dicarboxylic acid, and modified polyethylene oxides thereof , Modified polypropylene oxide and the like.
  • cyclohexene oxide or cyclopentene oxide-containing compounds are preferable.
  • Specific examples include 4,4-bis (2,3-epoxypropoxyperfluoroisopropyl) diphenyl ether, 3, 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloxirane, 1,2,5,6-diepoxy-4,7-methanoperhydroindene, 2- (3,4-epoxy Cyclohexyl) -3,4-epoxy-1,3-dioxane-5-spirocyclohexane, 1,2-ethylenedioxy-bis (3,4-epoxycyclohexylmethane), 4,5-epoxy-2.
  • Carboxylic anhydrides include tetrahydrophthalic anhydride, methylated tetrahydrophthalic anhydride, hexahydrotrimellitic anhydride, hexahydropyromellitic anhydride, hexahydrophthalic anhydride, methylated hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, Aliphatic polycarboxylic acid anhydrides such as methylbutenyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, succinic anhydride, methylcyclohexenedicarboxylic anhydride, maleic anhydride, linolenic anhydride, linoleic anhydride, Examples thereof include aliphatic polycarboxylic acid anhydrides such as eleostearic acid anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydr
  • alicyclic polycarboxylic acid anhydrides are preferred. This is because the greater the distortion of the cyclic structure formed by the carboxylic acid anhydride, the better the reactivity, and the reaction between the carboxylic acid anhydride and the epoxide proceeds at a lower temperature and in a shorter time.
  • reaction between epoxide and carboxylic acid anhydride has a high activation energy and requires a high temperature for the progress of the reaction, it is necessary to add a reaction accelerator to lower the activation energy. Therefore, a reaction accelerator is added in the present invention.
  • a reaction accelerator is added in the present invention.
  • the reaction between the epoxide and the carboxylic acid anhydride can be completed within a range of suitable treatment temperature and treatment time, and coloring and impurity generation due to thermal deterioration of the components are suppressed, and the effects of the present invention are more preferred. It can be demonstrated.
  • Preferred reaction accelerators include organic complex salts of various metals that can be used as a curing catalyst for epoxy compounds, metal salts, enamines, ammonium salts, diazabicycloundecene (DBU), diazabicyclononene (DBN), and the like.
  • Cyclic amidines and salts thereof, cyclic amines such as 1,4-diazabicyclo [2.2.2] octane (DABCO), pyridines, nitrogen-containing heteroaromatic compounds of imidazoles and their salts, tertiary amino acids Phenols, borates, imidazolium salts, phosphorus compounds and the like can be used.
  • those known as latent catalysts are preferred.
  • the specific addition amount is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably 1 to 5% by mass with respect to the total mass of the binder precursor.
  • reaction accelerators When ammonium salts, amidines, and cyclic amines are used as reaction accelerators, trace amounts of primary and secondary amines may be included as impurities. Therefore, when these compounds are used as reaction accelerators, it is preferable to use them after purification so that the amount of impurities is as small as possible.
  • the amount of impurities contained in the reaction accelerator is quantified and 0% of the total amount of the composition. It is preferable to adjust so that it may become 1 mass% or less, and it is more preferable to adjust to 0.05 mass% or less.
  • a polyfunctional primary amine or polyfunctional secondary amine compound is intentionally added to assist the reaction accelerator. It may be an agent.
  • the binder precursor containing the above-mentioned combination of epoxide and carboxylic acid anhydride as a thermosetting compound has a one-to-one quantitative ratio of the epoxide and carboxylic acid anhydride group.
  • the equivalent ratio of groups is 1: 1, the reaction is considered to be completed without excess or deficiency, but the equivalent ratio can be adjusted in order to appropriately adjust various physical properties of the resulting binder.
  • the equivalent ratio of the functional group equivalent of the epoxide and the functional group equivalent of the acid anhydride is preferably 1: 0.8 to 1: 1.1, more preferably 1: 0.9 to 1: 1.
  • thermosetting compound containing the combination of an epoxide and a carboxylic acid anhydride
  • the cyclic ether compound which can perform the ring-opening polymerization reaction of an oxetanyl group A binder precursor containing a combination of oxetane compounds) as a thermosetting compound can also be suitably used as described above.
  • thermosetting reaction when the thermosetting reaction is a thermopolymerization reaction, the thermosetting compound contains an epoxide, and the binder precursor contains a thermopolymerization initiator for the thermopolymerization reaction.
  • the epoxide to be used the epoxides already described are preferably used.
  • cycloaliphatic epoxides are more preferable because they are excellent in reaction rate and excellent in oxygen barrier property and water vapor barrier property of the resulting binder.
  • the polymerization reaction becomes ionic polymerization, and the inside of the film is biased to acidic or basic.
  • the polyfunctional primary that is more than 0.1% by mass with respect to the total mass of the phosphor dispersion composition.
  • the thermal polymerization initiator is a cationic polymerization initiator, a large amount of initiator is required to suppress the polymerization reaction. It becomes.
  • the thermal polymerization initiator is an anionic polymerization initiator, hydrogen atoms on the polyfunctional primary amine and polyfunctional secondary amine are likely to be pulled out, which may cause coloring to be accelerated. Therefore, the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  • thermal polymerization initiators iodonium salts, sulfonium salts, onium salt compounds such as phosphonium salts, boron trifluoride, Complex salts of Lewis acid compounds such as zinc halides, tin halides, aluminum halides and iron halides with tertiary amines and nitrogen-containing heteroaromatics, Illustrative are the imidazoles, cyclic amidines, and salts thereof with organic acids described above.
  • Polymerization may be cationic polymerization (example of thermal polymerization initiator: onium salt compounds) or anionic polymerization (example of thermal polymerization initiator: imidazoles).
  • thermal polymerization initiators contain at least a part of their components, or substances with high nucleophilicity in impurities and decomposition products, they are adsorbed on the surface of the phosphor, reducing the reaction rate of epoxides, At the same time, the luminous efficiency of the phosphor contained in the phosphor dispersion composition may be affected. Therefore, it is preferable that the thermal polymerization initiator has a low content of highly nucleophilic components, particularly primary amines and secondary amines.
  • primary amines and secondary amines are prepared with respect to the total mass of the prepared composition by preventing or removing impurities in advance or suppressing the addition amount of the thermal polymerization initiator to a small amount.
  • the content is preferably 2% by mass or less, and more preferably 1% by mass or less.
  • the thermal polymerization initiator preferably has a small number of aromatic rings. A thermal polymerization initiator having no aromatic ring (eg, cyclic amidines and salts thereof) is particularly preferred.
  • the specific addition amount is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably 1 to 5% by mass with respect to the total mass of the binder precursor.
  • thermosetting compound which contains the combination of an epoxide and a thermal-polymerization initiator as a thermosetting compound
  • [Phosphor] Various known phosphors can be used in the phosphor dispersion composition of the present invention. For example, rare earth doped garnet, silicate, aluminate, phosphate, ceramic phosphor, sulfide phosphor, nitride phosphor and other inorganic phosphors, and organic fluorescent dyes and organic fluorescent pigments Organic fluorescent materials. Further, a phosphor obtained by doping a semiconductor fine particle with a rare earth, and a semiconductor nanoparticle (quantum dot, quantum rod) are also preferably used.
  • Inorganic phosphors and quantum dots are preferred as the phosphors contained in the phosphor dispersion composition of the present invention in that they have good durability that can withstand long-term light irradiation.
  • the intensity half-value width of the emission spectrum is preferably narrow from the viewpoint of providing a light source with excellent color reproducibility.
  • Quantum dots are particularly preferred phosphors.
  • the phosphor is added in a dispersed manner to the binder precursor, and when the binder precursor is converted into the binder by reaction, the dispersed state is maintained to realize a state in which the phosphor is dispersed in the binder.
  • the phosphor prepared as fine particles is added to either the binder precursor or its constituent materials and dispersed by an appropriate method to obtain the phosphor dispersion composition of the present invention.
  • the phosphor dispersion composition of the present invention may be prepared by preparing a dispersion in which phosphor fine particles are dispersed in a solvent, adding the dispersion to the binder precursor, and then reducing or removing the solvent in the dispersion as appropriate. You may get things.
  • Phosphors can be used alone, but in order to obtain a desired fluorescence spectrum, a plurality of phosphors having different wavelengths may be used in combination, or a combination of phosphors having different material configurations (for example, A combination of a rare earth-doped garnet and quantum dots may be used.
  • the phosphor content in the phosphor dispersion composition of the present invention is adjusted so that a desired fluorescence intensity is obtained with respect to the total mass of the phosphor dispersion composition.
  • the range of 0.01 to 30% by mass is preferable, 0.05 to 20% by mass is more preferable, and 0.1 to 10% by mass is still more preferable.
  • quantum dots for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles and the composition and size.
  • the inventors in addition to the above yellowing problem, in the phosphor molded body obtained using a phosphor dispersion composition containing a conventional primary amine or secondary amine, It has been found that the emission efficiency of fluorescence may decrease from the beginning. Regarding this phenomenon, the inventors presume the following mechanism.
  • Quantum dots are generally used together with an electron donating ligand for the purpose of adjusting light emission characteristics and imparting dispersibility (preventing aggregation).
  • electron donating ligands include substituted phosphine oxides such as trioctylphosphine oxide (TOPO), substituted phosphinic acids such as octylphosphinic acid, substituted phosphonic acids such as octylphosphonic acid, primary amines, 2
  • TOPO trioctylphosphine oxide
  • substituted phosphinic acids such as octylphosphinic acid
  • substituted phosphonic acids such as octylphosphonic acid
  • primary amines 2
  • monodentate ligands such as secondary amines.
  • primary amines or secondary amines are used as the thermosetting compounds contained in the binder precursor, these must be polyfunctional amines in order to constitute three-dimensional crosslinking, and these compounds are inevitable.
  • the coordinating ability is higher than that of the monodentate ligand.
  • the present inventor has obtained a quantum dot dispersion composition containing a binder precursor containing a polyfunctional primary amine or a thermosetting compound of a polyfunctional secondary amine. It is thought that the secondary amine unintentionally caused ligand exchange with the ligand originally coordinated to the quantum dot, thereby impairing the original light emission performance of the quantum dot.
  • the phosphor dispersion composition of the present invention contains 0.1% by mass or less of polyfunctional primary amine or polyfunctional secondary amine as the thermosetting compound of the binder precursor with respect to the total mass. Since it is configured to include, the electron donating property is low, and the influence of ligand exchange and ligand exchange originally coordinated to the quantum dot can be suppressed to a small extent. Therefore, even when quantum dots are used as the phosphor, the influence of the ligand exchange can be suppressed to be small, and the original light emission performance of the quantum dots can be expressed.
  • the phosphor dispersion composition of the present invention is a fluorescent molded body capable of expressing the original light emission performance of the quantum dots in addition to the effect of solving the above-mentioned problems of the present invention,
  • the wavelength conversion layer and the wavelength converter can be obtained.
  • acid dissociation constant (pKa) can be used as an index. That is, it is one preferred mode to use a binder precursor having an acid dissociation constant lower than that of the quantum dot ligand.
  • Various functional additives can be added to the phosphor dispersion composition of the present invention as necessary. For example, improve adhesion to base materials such as viscosity modifiers (thixotropic agents), specific gravity modifiers, reactive diluents, solvents, leveling agents, antifoaming agents, etc. For obtaining a desired fluorescence emission spectrum such as an adhesion improver, a surface energy adjusting agent, an antioxidant for preventing deterioration under long-term light irradiation, a radical scavenger, a moisture getter agent, an oxygen getter agent, etc.
  • viscosity modifiers thixotropic agents
  • specific gravity modifiers reactive diluents
  • solvents solvents
  • leveling agents antifoaming agents, etc.
  • antifoaming agents etc.
  • a desired fluorescence emission spectrum such as an adhesion improver, a surface energy adjusting agent, an antioxidant for preventing deterioration under long-term light irradiation,
  • UV absorbers for assisting the dispersion of phosphors, micellar agents, viscosity modifiers, etc., mechanical properties when forming molded articles such as films, surface
  • dispersion aids for assisting the dispersion of phosphors, micellar agents, viscosity modifiers, etc., mechanical properties when forming molded articles such as films, surface
  • plasticizers for adjusting properties, brittleness improving agents, antistatic agents, antifouling agents, fillers, etc., refractive index adjusting agents for adjusting optical properties of molded articles, light scattering agents, and the like.
  • the phosphor dispersion composition of the present invention can be obtained by mixing the aforementioned materials.
  • the reaction starts little by just mixing, and the reaction heat is further accelerated by the reaction heat generated at that time, and the reaction may proceed unintentionally. Therefore, it is preferable that the time from mixing these combinations to applying heat to advance the reaction is short. Or it is preferable to suppress the progress of the unintended reaction by cooling.
  • a preferred embodiment of the method for preparing the phosphor dispersion composition includes a method in which the above combinations are individually prepared and mixed immediately before the film forming step (coating step).
  • a polyvalent isocyanate liquid and a polyol liquid are prepared and mixed immediately before use.
  • the phosphor and other additives added by the above-described method may be mixed in advance in either one or both of a polyvalent isocyanate liquid and a polyol liquid.
  • the reaction accelerator is active on an isocyanate group, so it is preferable to mix only on the polyol liquid side.
  • Mixing may be carried out using a mixing tank or by stirring and mixing, or may be carried out in a liquid feed line using a static mixer.
  • the steps from preparation to mixing are preferably performed in an environment in which moisture and oxygen are sufficiently removed using an airtight tank.
  • an airtight automatic liquid preparation device (trade name: Posilatio) available from Liquid Control (USA).
  • an epoxide and a carboxylic acid anhydride prepare an epoxide solution and a carboxylic acid anhydride solution, respectively.
  • the reaction accelerator is active with respect to the epoxide, and it is desirable to mix only on the carboxylic anhydride liquid side.
  • a thermal polymerization initiator if the thermal polymerization initiator is in a liquid state, a liquid diluted with a reactive diluent or the like and an epoxide liquid may be separately prepared as necessary.
  • a sub-epoxide solution that is dissolved in a small amount of epoxide and sufficiently cooled, and a main epoxide solution may be prepared separately.
  • the binder precursor after mixing is sufficiently cooled. At this time, it is necessary to set the cooling temperature with sufficient care so that the phosphor dispersed by cooling and various added functional additives do not aggregate or precipitate.
  • the phosphor dispersion composition of the present invention can be converted into a binder by thermosetting the binder precursor to obtain a fluorescent molded body.
  • a fluorescent molded body By forming the shape of the fluorescent molded body into sheets, films, rods, strips, dice, lenses, and other various shapes, and combining with base materials and other functional layers, various wavelength conversion members Can be used. Further, it may be formed and used so as to form a dot-like or lattice-like pattern on the substrate, or may be formed by filling the cavity.
  • the phosphor dispersion composition of the present invention is used for forming a fluorescent molded body in which a phosphor that emits fluorescence when irradiated with excitation light is dispersed in a binder, by a thermosetting reaction
  • the binder precursor formed by the thermosetting reaction contains at least one thermosetting compound that forms a three-dimensional network structure by the thermosetting reaction, and is a polyfunctional primary amine or polyfunctional as a thermosetting compound.
  • the total content of secondary amine is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  • the fluorescent molded article having the advantages of thermosetting film formation that can be formed into a film, having excellent light resistance, and excellent long-term reliability. Therefore, the fluorescent molded body formed by heat-curing the phosphor dispersion composition of the present invention has small warpage and curing unevenness, excellent light resistance, and long-term reliability of emitted light intensity and color. Are better.
  • a sheet-like or film-like fluorescent molded body formed by thermosetting the phosphor dispersion composition of the present invention is suitable as a wavelength conversion layer provided in a wavelength conversion member constituting a backlight of a liquid crystal display device. It is.
  • FIG. 1 is a schematic cross-sectional view of a backlight unit including the wavelength conversion member of the present embodiment
  • FIG. 2 is a schematic cross-sectional view of the wavelength conversion member of the present embodiment.
  • the scale of each part is appropriately changed and shown for easy visual recognition.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the backlight unit 2 includes a light source 1A that emits primary light (blue light L B ) and a light guide plate 1B that guides and emits the primary light emitted from the light source 1A.
  • the wavelength conversion member 1 ⁇ / b> D includes a wavelength conversion layer 30 including quantum dots that are excited by excitation light to emit fluorescence, and substrates 11 and 21 provided on both surfaces of the wavelength conversion layer 30.
  • the barrier layers 12 and 22 having the organic barrier layers 12a and 22a and the inorganic barrier layers 12b and 22b are formed on the base materials 11 and 21 on the surface of the base materials 11 and 21 on the wavelength conversion layer 30 side. It is formed in contact.
  • the base material 11 is equipped with the uneven
  • the unevenness imparting layer (matte layer) 13 also has a function as a light diffusion layer.
  • L B , L G , and L R emitted from the wavelength conversion member 1D are incident on the retroreflective member 2B, and each incident light is transmitted between the retroreflective member 2B and the reflector 2A. The reflection is repeated and passes through the wavelength conversion member 1D many times.
  • a sufficient amount of excitation light blue light L B
  • a necessary amount of fluorescence L G , L R
  • the white light LW is embodied and emitted from the retroreflective member 2B.
  • the wavelength conversion layer (wavelength conversion film) 30 is a barrier film 10 including the barrier layer 12 on the surface of the substrate 11 (or a barrier film including the barrier layer 22 on the surface of the substrate 21).
  • the phosphor dispersion composition of the present invention is applied to form a coating film of the phosphor dispersion composition, and the coating film is thermally cured, and blue light is formed in the organic matrix 30P. are excited by L B fluorescence (red light) quantum dots (phosphor) which emits L R 30A and is excited by the blue light L B fluorescence (green light) quantum dots (phosphor) which emits L G 30B Is distributed.
  • the quantum dots 30A and 30B are greatly illustrated for easy visual recognition, but in actuality, for example, the diameter of the quantum dots is about 2 to 7 nm with respect to the thickness of the wavelength conversion layer 30 of 50 to 100 ⁇ m. It is.
  • a quantum dot having a narrow half-value width of the emission spectrum is preferable as a phosphor.
  • the quantum dots can contain different two or more quantum dot emission characteristics, in the present embodiment, the quantum dots 30A for emitting quantum dots is excited by the blue light L B fluorescence (red light) L R When a quantum dot 30B that emits when excited by the blue light L B fluorescence (green light) L G. Moreover, the quantum dots 30A are excited by ultraviolet light LUV that emits fluorescence (red light) L R, and the quantum dots 30B that emits fluorescence (green light) L G is excited by ultraviolet light LUV, by ultraviolet light LUV is excited can also comprise a fluorescent quantum dots 30C that emits (blue light) L B (not shown).
  • the known quantum dots include a quantum dot 30A having an emission center wavelength in a wavelength band ranging from 600 nm to 680 nm, a quantum dot 30B having an emission center wavelength in a wavelength band ranging from 520 nm to 560 nm, and from 400 nm to 500 nm.
  • a quantum dot 30C (emitting blue light) having an emission center wavelength in a wavelength band is known.
  • quantum dots in addition to the above description, for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but the quantum dots are not limited thereto.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • Quantum dots may be added to the phosphor dispersion composition in the form of particles, or may be added in the form of a dispersion dispersed in a solvent.
  • the addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles.
  • the solvent used here is not particularly limited.
  • the quantum dots can be added in an amount of, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the phosphor dispersion composition.
  • the content of the quantum dots is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass with respect to the total mass of the curable compound contained in the polymerizable composition.
  • the wavelength conversion layer 30 is formed by thermosetting the phosphor dispersion composition of the present invention, the warpage and curing unevenness are small, the light resistance is excellent, the long-term reliability of the intensity and color of emitted light. Excellent in properties.
  • the wavelength conversion layer 30 is preferably strong. That is, it is preferable not to cause permanent deformation due to breakage or cracking or elongation even in tension or bending. In order to evaluate these characteristics of the wavelength conversion layer already laminated on the base material, etc., after unnecessary components such as the base material are physically removed by cutting or polishing, etc., to make only the wavelength conversion layer. You can test it. In addition, when the phosphor dispersion composition itself or its raw material can be obtained, it can be peeled off after forming a film on a peelable and removable support, and only the wavelength conversion layer can be obtained and tested and measured. it can.
  • the tensile strength of the wavelength conversion layer is preferably in the range of 20 to 7000 MPa, more preferably in the range of 30 to 2000 MPa in the measurement method based on JIS K-7113. Within this range, the wavelength conversion layer is not distorted even when shear stress is applied, and both flexibility and flexibility required for winding and processing can be achieved. Further, the breaking elongation is preferably in the range of 5% to 200%, more preferably 10% to 100%. When the elongation at break is within this range, it is not broken by a bending test described later, or tensile stress generated by the tension during transportation or wet heat expansion of the substrate, and it does not stretch excessively and cause permanent deformation.
  • a shopper folding test is performed based on JIS P-8114: 2003, and it is preferable to withstand 10 times or more until breakdown, and more preferably 50 times or more.
  • Martens hardness (when measured on quartz glass) is preferably in the range of 70 to 300 MPa, more preferably in the range of 100 to 200 MPa. Within this range, dents in the wavelength conversion layer due to contact with other members or during manufacturing are unlikely to occur, and damage to the base material due to moderate cushioning of the wavelength conversion layer can be suppressed.
  • the barrier films 10 and 20 that sandwich the wavelength conversion layer 30 are films having a function of suppressing the transmission of moisture and / or oxygen.
  • the barrier layers 12 and 22 are respectively formed on the base materials 11 and 21. It has the composition provided. In such an embodiment, due to the presence of the base material, the strength of the wavelength conversion member 1D is improved, and film formation can be easily performed.
  • the barrier films 10 and 20 in which the barrier layers 12 and 22 are supported by the base materials 11 and 21 are provided on both main surfaces of the wavelength conversion layer 30 so that the barrier layers 12 and 22 are adjacent to each other.
  • the barrier layers 12 and 22 may not be supported by the base materials 11 and 21, and if the base materials 11 and 21 have sufficient barrier properties, The barrier layer may be formed only from the materials 11 and 21.
  • barrier films 10 and 20 are preferably provided on both sides of the wavelength conversion layer 30 as in the present embodiment, but may be provided only on one side.
  • the barrier film preferably has a total light transmittance of 80% or more in the visible light region, and more preferably 90% or more.
  • the visible light region refers to a wavelength region of 380 to 780 nm, and the total light transmittance indicates an average value of light transmittance over the visible light region.
  • the oxygen permeability of the barrier films 10 and 20 is preferably 1.00 cm 3 / (m 2 ⁇ day ⁇ atm) or less. Oxygen permeability of the barrier film 10 and 20, more preferably, 0.10cm 3 / (m 2 ⁇ day ⁇ atm) or less, more preferably is 0.01cm 3 / (m 2 ⁇ day ⁇ atm) or less .
  • the oxygen permeability is measured using an oxygen gas permeability measuring device (manufactured by MOCON, OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%. It is a measured value.
  • the unit of oxygen permeability is [cm 3 / (m 2 ⁇ day ⁇ atm)].
  • the oxygen permeability of 1.0 cm 3 / (m 2 ⁇ day ⁇ atm) corresponds to an oxygen permeability of 1.14 ⁇ 10 ⁇ 1 fm / (s ⁇ Pa) in the SI unit system.
  • the barrier films 10 and 20 have a function of blocking moisture (water vapor) in addition to a gas barrier function of blocking oxygen.
  • the moisture permeability (water vapor transmission rate) of the barrier films 10 and 20 is 0.10 g / (m 2 ⁇ day ⁇ atm) or less.
  • the moisture permeability of the barrier films 10 and 20 is preferably 0.01 g / (m 2 ⁇ day ⁇ atm) or less.
  • the moisture permeability of the barrier layer is described in G. NISATO, PCPBOUTEN, PJSLIKKERVEER et al., SID Conference Record of the International Display Research Conference, pages 1435-1438, at a measurement temperature of 40 ° C. and a relative humidity of 90% RH.
  • the unit of moisture permeability is [g / (m 2 ⁇ day ⁇ atm)].
  • a moisture permeability of 0.1 g / (m 2 ⁇ day ⁇ atm) corresponds to a moisture permeability of 1.14 ⁇ 10 ⁇ 11 g / (m 2 ⁇ s ⁇ Pa) in the SI unit system.
  • the average film thickness of the substrates 11 and 21 is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 400 ⁇ m, and more preferably 30 ⁇ m to 300 ⁇ m from the viewpoint of impact resistance of the wavelength conversion member. It is preferable. In an aspect in which retroreflection of light is increased, such as when the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30 is reduced, or when the thickness of the wavelength conversion layer 30 is reduced, absorption of light having a wavelength of 450 nm is performed. Since the rate is preferably lower, the average film thickness of the base materials 11 and 21 is preferably 40 ⁇ m or less, and more preferably 25 ⁇ m or less from the viewpoint of suppressing a decrease in luminance.
  • the retroreflective member of the backlight unit is used to maintain the display color of the LCD. It is necessary to increase the number of times the excitation light passes through the wavelength conversion layer by providing means for increasing retroreflection of light, such as providing a plurality of prism sheets in 2B. Therefore, the substrate is preferably a transparent substrate that is transparent to visible light. Here, being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more.
  • the light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere type light transmittance measuring device. It can be calculated by subtracting the rate.
  • paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040 to 0055 of JP-A-2005-096108 can be referred to.
  • the base materials 11 and 21 preferably have an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less. More preferably, it is 500 nm or less, and further preferably 200 nm or less.
  • Re (589) of the base material is in the above range because foreign matters and defects can be found more easily during inspection using a polarizing plate.
  • Re (589) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of 589 nm incident in the normal direction of the film.
  • the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
  • the base materials 11 and 21 are preferably base materials having a barrier property against oxygen and moisture.
  • Preferred examples of the substrate include thin glass, polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
  • the base materials 11 and 21 are preferably provided with barrier layers 12 and 22 including at least one inorganic barrier layer 12b and 22b formed in contact with the surface on the wavelength conversion layer 30 side.
  • the barrier layers 12 and 22 may include at least one organic barrier layer 12a and 22a between the base materials 11 and 21 and the inorganic barrier layers 12b and 22b.
  • the organic barrier layers 12 a and 22 a may be provided between the inorganic barrier layers 12 b and 22 b and the wavelength conversion layer 30. Constructing the barrier layer from a plurality of layers is preferable from the viewpoint of improving the weather resistance since the barrier property can be further enhanced.
  • the organic barrier layer is also preferably provided between the inorganic barrier layers 12 b and 22 b and the wavelength conversion layer 30. In this case, the organic barrier layer may be referred to as a barrier coating layer (overcoat layer).
  • the barrier layers 12 and 22 are formed by forming a film on the surface of the base material 11 or 21 as a support. Therefore, the barrier films 10 and 20 are comprised by the base materials 11 and 21 and the barrier layers 12 and 22 provided on it. When providing the barrier layers 12 and 22, it is preferable that the base material has high heat resistance.
  • the layer in the barrier films 10 and 20 adjacent to the wavelength conversion layer 30 may be an inorganic barrier layer or an organic barrier layer, and is not particularly limited.
  • the barrier layers 12 and 22 are preferably composed of a plurality of layers, since the barrier property can be further enhanced. Therefore, the barrier layers 12 and 22 are preferable from the viewpoint of improving the weather resistance.
  • the light transmission of the wavelength conversion member increases as the number of layers increases. Since the rate tends to decrease, it is preferable to design in consideration of good light transmittance and barrier properties.
  • the “inorganic layer” is a layer mainly composed of an inorganic material, and is preferably a layer formed only from an inorganic material.
  • the inorganic barrier layers 12b and 22b suitable for the barrier layers 12 and 22 are not particularly limited, and various inorganic compounds such as metals, inorganic oxides, nitrides, and oxynitrides can be used.
  • As an element constituting the inorganic material silicon, aluminum, magnesium, titanium, tin, indium and cerium are preferable, and one or more of these may be included.
  • the inorganic compound examples include silicon oxide, silicon oxynitride, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, silicon nitride, aluminum nitride, and titanium nitride.
  • a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
  • an inorganic barrier layer containing silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, or aluminum oxide is particularly preferable. Since the inorganic barrier layer made of these materials has good adhesion with the organic barrier layer, even when the inorganic barrier layer has pinholes, the organic barrier layer can effectively fill the pinholes, The barrier property can be further increased. Further, silicon nitride is most preferable from the viewpoint of suppressing light absorption in the barrier layer.
  • the method for forming the inorganic barrier layer is not particularly limited, and for example, various film forming methods capable of evaporating or scattering the film forming material and depositing on the deposition surface can be used.
  • Examples of the method for forming the inorganic barrier layer include: a vacuum vapor deposition method in which an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and vapor-deposited; Oxidation reaction vapor deposition method that oxidizes and deposits by introducing; sputtering method in which inorganic material is used as target raw material, argon gas and oxygen gas are introduced and sputtered by sputtering; generated in inorganic material by plasma gun
  • chemical vapor deposition methods Physical Vapor Deposition method, PVD method
  • ion plating which is heated by a plasma beam, and vapor deposition is performed
  • plasma chemistry using an organic silicon compound as a raw material Vapor phase growth (Chemical Vapor Deposition) method And the like.
  • the thickness of the inorganic barrier layer may be 1 nm to 500 nm, preferably 5 nm to 300 nm, and more preferably 10 nm to 150 nm.
  • the film thickness of the inorganic barrier layer is within the above-described range, it is possible to suppress absorption of light in the inorganic barrier layer while realizing good barrier properties, and to provide a wavelength conversion member with higher light transmittance. This is because it can be provided.
  • the organic layer is a layer mainly composed of an organic material, and preferably refers to a layer in which the organic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more.
  • JP, 2007-290369, A paragraphs 0020-0042 and JP, 2005-096108, A paragraphs 0074-0105 can be referred to as an organic barrier layer.
  • the organic barrier layer preferably contains a cardo polymer. Thereby, the adhesion between the organic barrier layer and the adjacent layer, in particular, the adhesion with the inorganic barrier layer is improved, and a further excellent barrier property can be realized.
  • the film thickness of the organic barrier layer is preferably in the range of 0.05 ⁇ m to 10 ⁇ m, and more preferably in the range of 0.5 to 10 ⁇ m.
  • the film thickness of the organic barrier layer is preferably in the range of 0.5 to 10 ⁇ m, and more preferably in the range of 1 to 5 ⁇ m.
  • it is preferably in the range of 0.05 ⁇ m to 5 ⁇ m, and more preferably in the range of 0.05 ⁇ m to 1 ⁇ m. This is because when the film thickness of the organic barrier layer formed by the wet coating method or the dry coating method is within the above-described range, the adhesion with the inorganic layer can be further improved.
  • the wavelength conversion layer, the inorganic barrier layer, the organic barrier layer, and the base material may be laminated in this order, between the inorganic barrier layer and the organic barrier layer, and between the two organic barrier layers.
  • a base material may be disposed and laminated between two inorganic barrier layers.
  • the barrier films 10 and 20 include an unevenness imparting layer (mat layer) 13 that imparts an uneven structure on a surface opposite to the surface on the wavelength conversion layer 30 side. It is preferable that the barrier film has a matte layer because the blocking property and slipping property of the barrier film can be improved.
  • the mat layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
  • the mat layer is preferably provided on the surface of the barrier film opposite to the wavelength conversion layer, but may be provided on both surfaces.
  • the wavelength conversion member 1D can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside.
  • the light scattering function may be provided inside the wavelength conversion layer 30, or a layer having a light scattering function may be separately provided as the light scattering layer.
  • a light scattering layer may be provided on the surface of the substrate opposite to the wavelength conversion layer, or a light scattering function may be imparted to the unevenness providing layer to provide an unevenness providing layer having a light scattering function.
  • the wavelength conversion layer 30 can be formed by applying the prepared phosphor dispersion composition of the present invention to the surface of the barrier films 10 and 20 and then curing it by heating.
  • Known coating methods include curtain coating, dip coating, spin coating, print coating, spray coating, slot coating, roll coating, slide coating, blade coating, gravure coating, and wire bar method. The coating method is mentioned.
  • Curing conditions can be appropriately set according to the type of curable compound to be used and the composition of the polymerizable composition.
  • a drying treatment may be performed to remove the solvent before curing.
  • FIG. 3 is a schematic configuration diagram of an example of a manufacturing apparatus for the wavelength conversion member 1D
  • FIG. 4 is a partially enlarged view of the manufacturing apparatus shown in FIG.
  • the manufacturing apparatus shown in FIG. 3 laminates the barrier film 20 on the coating part 120 that coats the coating liquid such as the phosphor dispersion composition on the barrier film 10 and the coating film 30M formed by the coating part 120.
  • the coating unit 30 includes a laminating unit 130 and a curing unit 160 that cures the coating film 30M.
  • the coating unit 120 is configured to form the coating film 30M by an extrusion coating method using a die coater 124.
  • the manufacturing process of the wavelength conversion member using the manufacturing apparatus shown in FIGS. 3 and 4 applies the phosphor dispersion composition to the surface of the first barrier film 10 (hereinafter referred to as “first film”) that is continuously conveyed. Then, the step of forming the coating film 30M and the second barrier film 20 (hereinafter also referred to as “second film”) continuously conveyed are laminated (overlaid) on the coating film 30M.
  • the first film 10 and the second film 20 It includes at least a step of winding one of the second films 20 around the backup roller 126 and heating it while continuously conveying it to polymerize and cure the coating film to form a wavelength conversion layer (cured layer).
  • a barrier film having a barrier property against oxygen and moisture is used for both the first film 10 and the second film 20.
  • the first film 10 is continuously conveyed from the unillustrated transmitter to the coating unit 120.
  • the first film 10 is delivered from the delivery device at a conveyance speed of 1 to 50 m / min. However, it is not limited to this conveyance speed.
  • a tension of 20 to 150 N / m, preferably 30 to 100 N / m is applied to the first film 10.
  • a phosphor dispersion composition (hereinafter also referred to as “application liquid”) is applied to the surface of the first film 10 that is continuously conveyed, and a coating film 30M (see FIG. 4) is formed.
  • a die coater 124 and a backup roller 126 disposed to face the die coater 124 are installed.
  • the surface opposite to the surface on which the coating film 30M of the first film 10 is formed is wound around the backup roller 126, and the coating liquid is applied from the discharge port of the die coater 124 onto the surface of the first film 10 that is continuously conveyed.
  • the coating film 30M is formed.
  • the coating film 30 ⁇ / b> M refers to a phosphor dispersion composition before curing applied on the first film 10.
  • the die coater 124 to which the extrusion coating method is applied is shown as the coating apparatus, but the present invention is not limited to this.
  • a coating apparatus to which various methods such as a curtain coating method, an extrusion coating method, a rod coating method, or a roll coating method are applied can be used.
  • the first film 10 that has passed through the coating unit 120 and has the coating film 30M formed thereon is continuously conveyed to the laminating unit 130.
  • the second film 20 continuously conveyed is laminated on the coating film 30 ⁇ / b> M, and the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20.
  • a laminating roller 132 and a heating chamber 134 surrounding the laminating roller 132 are installed in the laminating unit 130.
  • the heating chamber 134 is provided with an opening 136 for allowing the first film 10 to pass therethrough and an opening 138 for allowing the second film 20 to pass therethrough.
  • a backup roller 162 is disposed at a position facing the laminating roller 132.
  • the first film 10 on which the coating film 30M is formed is wound around the backup roller 162 on the surface opposite to the surface on which the coating film 30M is formed, and is continuously conveyed to the laminating position P.
  • Lamination position P means the position where the contact between the second film 20 and the coating film 30M starts.
  • the first film 10 is preferably wound around the backup roller 162 before reaching the laminating position P. This is because even if wrinkles occur in the first film 10, the wrinkles are corrected and removed by the backup roller 162 before reaching the laminate position P.
  • the position (contact position) where the first film 10 is wound around the backup roller 162 and the distance L1 to the lamination position P are preferably long, for example, 30 mm or more is preferable, and the upper limit is usually It is determined by the diameter of the backup roller 162 and the pass line.
  • the second film 20 is laminated by the backup roller 162 and the laminating roller 132 used in the curing unit 160. That is, the backup roller 162 used in the curing unit 160 is also used as a roller used in the laminating unit 130.
  • the present invention is not limited to the above form, and a laminating roller may be installed in the laminating unit 130 in addition to the backup roller 162 so that the backup roller 162 is not used.
  • the backup roller 162 used in the curing unit 160 in the laminating unit 130, the number of rollers can be reduced.
  • the backup roller 162 can also be used as a heat roller for the first film 10.
  • the second film 20 sent from a sending machine (not shown) is wound around the laminating roller 132 and continuously conveyed between the laminating roller 132 and the backup roller 162.
  • the second film 20 is laminated on the coating film 30M formed on the first film 10 at the laminating position P. Thereby, the coating film 30 ⁇ / b> M is sandwiched between the first film 10 and the second film 20.
  • Lamination refers to laminating the second film 20 on the coating film 30M.
  • the distance L2 between the laminating roller 132 and the backup roller 162 is a value of the total thickness of the first film 10, the wavelength conversion layer (cured layer) 30 obtained by polymerizing and curing the coating film 30M, and the second film 20.
  • the above is preferable.
  • L2 is below the length which added 5 mm to the total thickness of the 1st film 10, the coating film 30M, and the 2nd film 20.
  • FIG. By making the distance L2 equal to or less than the total thickness plus 5 mm, it is possible to prevent bubbles from entering between the second film 20 and the coating film 30M.
  • the distance L2 between the laminating roller 132 and the backup roller 162 is the shortest distance between the outer circumferential surface of the laminating roller 132 and the outer circumferential surface of the backup roller 162.
  • Rotational accuracy of the laminating roller 132 and the backup roller 162 is 0.05 mm or less, preferably 0.01 mm or less in radial runout. The smaller the radial runout, the smaller the thickness distribution of the coating film 30M.
  • the difference between the temperature of the backup roller 162 of the curing unit 160 and the temperature of the first film 10 is preferably 30 ° C. or less, more preferably 15 ° C. or less, and most preferably the same.
  • the heating chamber 134 In order to reduce the difference from the temperature of the backup roller 162, when the heating chamber 134 is provided, it is preferable to heat the first film 10 and the second film 20 in the heating chamber 134.
  • hot air is supplied to the heating chamber 134 by a hot air generator (not shown), and the first film 10 and the second film 20 can be heated.
  • the first film 10 may be heated by the backup roller 162 by being wound around the temperature-adjusted backup roller 162.
  • the second film 20 can be heated with the laminating roller 132 by using the laminating roller 132 as a heat roller.
  • the heating chamber 134 and the heat roller are not essential, and can be provided as necessary.
  • the first film 10 and the second film 20 are continuously conveyed to the curing unit 160 in a state where the coating film 30M is sandwiched between the first film 10 and the second film 20.
  • curing in the curing unit 160 is performed by heating.
  • the heating can be performed by heating the backup roller 162 or by an external heating device 164 provided in the curing unit 160.
  • the backup roller 162 is preferably set to a temperature range of 40 to 150 ° C., for example, and more preferably 60 to 120 ° C.
  • a temperature controller By attaching a temperature controller to the main body of the backup roller 162, the temperature of the backup roller 162 can be adjusted.
  • the temperature related to the roller refers to the surface temperature of the roller.
  • heat ray irradiation or hot air blowing may be performed by a heating device 164 provided at a position facing the backup roller 162. At this time, the distance L3 between the lamination position P and the heating device 164 can be set to 30 mm or more, for example.
  • the first film 10 is wound around the backup roller 162 and heated while being continuously conveyed.
  • the wavelength conversion layer (cured layer) 30 can be formed by curing the film 30M.
  • the first film 10 side is wound around the backup roller 162 and continuously conveyed, but the second film 20 may be wound around the backup roller 162 and continuously conveyed.
  • Wrapping around the backup roller 162 means a state in which either the first film 10 or the second film 20 is in contact with the surface of the backup roller 162 at a certain wrap angle. Accordingly, the first film 10 and the second film 20 move in synchronization with the rotation of the backup roller 162 while being continuously conveyed.
  • the backup roller 162 includes a cylindrical main body and rotating shafts disposed at both ends of the main body.
  • the main body of the backup roller 162 has a diameter of ⁇ 200 to 1000 mm, for example. There is no restriction on the diameter ⁇ of the backup roller 162. In consideration of curl deformation of the laminated film, equipment cost, and rotational accuracy, the diameter is preferably 300 to 500 mm.
  • the coating film 30M becomes the cured layer 30 by heat curing, and the wavelength conversion member 1D including the first film 10, the cured layer 30, and the second film 20 is manufactured.
  • the wavelength conversion member 1D is peeled off from the backup roller 162 by the peeling roller 180.
  • the wavelength conversion member 1D is continuously conveyed to a winder (not shown), and then the wavelength conversion member 1D is wound into a roll by the winder.
  • the coating film 30M may not necessarily be completely polymerized and cured at the stage of peeling from the backup roller 162, but at least a part of the coating film 30M is preferably polymerized and cured in order to facilitate subsequent conveyance.
  • a post-heating means (not shown) is further provided for heating to complete the polymerization and curing.
  • a post-heating means (not shown) is further provided for heating to complete the polymerization and curing.
  • a cured layer having a distorted shape reflecting weak vibration due to conveyance, distortion of the film due to conveyance tension, distortion of the substrate due to reaction heat, etc. Therefore, it is preferable to adjust the conditions so that polymerization hardening proceeds at least for 1 minute or more.
  • the curing step is preferably from 1 minute to 60 minutes, more preferably from 2 minutes to 30 minutes, in view of shape flatness and production efficiency.
  • the manufacturing method of the wavelength conversion layer of this invention is a single side
  • the wavelength conversion member of this aspect can be manufactured by using a base material not provided with a barrier layer as the above-described second film.
  • the coating film 30M is after the drying process performed as needed.
  • a wavelength conversion layer (cured layer) by curing and forming a coating layer on the wavelength conversion layer as necessary
  • a second film made of a base material not provided with a barrier layer is bonded to the adhesive. It is also possible to form the wavelength conversion member 1D by laminating on the wavelength conversion layer via (and the coating layer).
  • the coating layer is one or more other layers such as an inorganic layer, and can be formed by a known method.
  • the thickness of the wavelength conversion layer is preferably in the range of 1 to 300 ⁇ m, more preferably in the range of 10 to 200 ⁇ m, and still more preferably in the range of 20 to 100 ⁇ m.
  • a thickness of 1 ⁇ m or more is preferable because a high wavelength conversion effect can be obtained. Further, it is preferable that the thickness is 300 ⁇ m or less because the backlight unit can be thinned when incorporated in the backlight unit.
  • the backlight unit 2 shown in FIG. 1 includes a light source 1A that emits primary light (blue light L B ), and a light guide plate 1B that guides and emits primary light emitted from the light source 1A.
  • a backlight unit that is a multi-wavelength light source.
  • blue light having an emission center wavelength in a wavelength band of 430 nm or more and 480 nm or less, a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 500 nm or more and less than 600 nm, Emits green light having an emission intensity peak with a value width of 100 nm or less, and red light having an emission center wavelength in a wavelength band of 600 nm to 680 nm and having an emission intensity peak with a half-value width of 100 nm or less. It is preferable.
  • the wavelength band of blue light emitted from the backlight unit 2 is preferably 430 nm or more and 480 nm or less, and more preferably 440 nm or more and 460 nm or less.
  • the wavelength band of the green light emitted from the backlight unit 2 is preferably 520 nm or more and 560 nm or less, and more preferably 520 nm or more and 545 nm or less.
  • the wavelength band of red light emitted from the backlight unit is preferably 600 nm or more and 680 nm or less, and more preferably 610 nm or more and 640 nm or less.
  • the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of each emission intensity of blue light is 25 nm or less.
  • the backlight unit 2 includes at least the planar light source 1C together with the wavelength conversion member 1D.
  • the light source 1A include those that emit blue light having an emission center wavelength in a wavelength band of 430 nm to 480 nm, and those that emit ultraviolet light.
  • a light emitting diode, a laser light source, or the like can be used as the light source 1A.
  • the planar light source 1 ⁇ / b> C may be a planar light source including a light source 1 ⁇ / b> A and a light guide plate 1 ⁇ / b> B that guides and emits primary light emitted from the light source 1 ⁇ / b> A. It may be a planar light source that is arranged in a plane parallel to the wavelength conversion member 1D and includes a diffusion plate 1E instead of the light guide plate 1B.
  • the former planar light source is generally called an edge light system, and the latter planar light source is generally called a direct type.
  • a case where a planar light source is used as the light source has been described as an example. However, a light source other than the planar light source can be used as the light source.
  • the reflecting plate 2A is not particularly limited, and known ones can be used, and are described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, etc. Incorporated into the present invention.
  • the retroreflective member 2B may include a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M Limited), a light guide, or the like.
  • the configuration of the retroreflective member 2B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
  • the backlight unit 2 described above can be applied to a liquid crystal display device.
  • the liquid crystal display device 4 includes the backlight unit 2 of the above embodiment and the liquid crystal cell unit 3 disposed to face the retroreflective member side of the backlight unit.
  • the liquid crystal cell unit 3 has a configuration in which the liquid crystal cell 31 is sandwiched between polarizing plates 32 and 33, and the polarizing plates 32 and 33 respectively have both main surfaces of the polarizers 322 and 332.
  • the polarizing plate protective films 321 and 323, 331 and 333 are protected.
  • liquid crystal cell 31 there are no particular limitations on the liquid crystal cell 31, the polarizing plates 32 and 33, and the components thereof that constitute the liquid crystal display device 4, and those produced by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
  • the driving mode of the liquid crystal cell 31 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). ) And other modes can be used.
  • the liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto.
  • the configuration shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-262161 is given as an example.
  • the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
  • the liquid crystal display device 4 further includes an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer.
  • an adhesive layer such as an adhesive to an adhesive layer.
  • a surface layer such as an undercoat layer may be disposed.
  • the backlight side polarizing plate 32 may have a retardation film as the polarizing plate protective film 323 on the liquid crystal cell 31 side.
  • a retardation film a known cellulose acylate film or the like can be used.
  • the backlight unit 2 and the liquid crystal display device 4 include the above-described wavelength conversion member with little optical loss according to the present invention. Therefore, the backlight unit and the liquid crystal display device having the same effects as those of the wavelength conversion member of the present invention, a high-brightness backlight unit and a liquid crystal display device in which the separation of the interface of the wavelength conversion layer including the quantum dots hardly occurs and the light emission intensity hardly decreases.
  • Barrier film As the barrier film G, an ultra-thin glass OA-10G (thickness 50 ⁇ m) manufactured by Nippon Sheet Glass was prepared. (Barrier film PET1) A barrier layer was formed on one side of a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 38 ⁇ m) by the following procedure. Cosmo Shine A4300 had a mat layer on both sides.
  • Trimethylolpropane triacrylate (TMPTA, manufactured by Daicel-Cytec) and a photopolymerization initiator (Lamberti, trade name: ESACURE (registered trademark) KTO46) are prepared so that the mass ratio is 95: 5. These were weighed and dissolved in methyl ethyl ketone to obtain a coating solution having a solid concentration of 15%. This coating solution was applied onto the PET film with a roll toe roll using a die coater, and passed through a drying zone at 50 ° C. for 3 minutes. Thereafter, ultraviolet rays were irradiated in a nitrogen atmosphere (accumulated dose: about 600 mJ / cm 2 ), cured by UV curing, and wound up. The thickness of the first organic layer formed on the substrate was 1 ⁇ m.
  • an inorganic layer (silicon nitride layer) was formed on the surface of the organic layer using a chemical vapor deposition apparatus (CVD apparatus) of a roll toe roll.
  • Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases.
  • a high frequency power supply having a frequency of 13.56 MHz was used as the power supply.
  • the film forming pressure was 40 Pa, and the reached film thickness was 50 nm.
  • barrier film PET1 in which the inorganic layer was laminated on the surface of the organic layer was prepared.
  • phosphor dispersion composition (Preparation of phosphor dispersion composition 1 used in Example 1 and Example 10) The following dispersion was prepared in a dry nitrogen atmosphere, and toluene was removed by evaporation using an evaporator to prepare phosphor-dispersed isocyanate liquid 11.
  • the quantum dot dispersion liquid 1 having an emission maximum wavelength of 535 nm is prepared by preparing CZ520-100 manufactured by NN-Labs Co. to a quantum dot concentration of 1% by mass
  • the quantum dot dispersion liquid 2 having an emission maximum wavelength of 630 nm is NN-Labs CZ620-100 was prepared to a quantum dot concentration of 1% by mass.
  • quantum dots are all quantum dots using CdSe as a core, ZnS as a shell, and octadecylamine as a ligand, and are dispersed in toluene at a concentration of 3% by mass.
  • the following polyol liquid 12 was prepared in a dry nitrogen atmosphere, and the phosphor dispersion composition 1 of the present invention was obtained by mixing the isocyanate liquid 11 and the polyol liquid 12 in a specified quantitative ratio. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
  • the phosphor dispersion of the present invention is the same as the phosphor dispersion composition 1 described above except that the phosphor dispersion isocyanate liquid 11 described above is used as the isocyanate liquid and the following polyol liquid 22 is prepared as the polyol liquid. Composition 2 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
  • phosphor dispersion composition 8 used in Example 8
  • the following dispersion was prepared in a dry nitrogen atmosphere, and the aggregates of the phosphor fine particles were crushed with an ultrasonic disperser to prepare the following phosphor-dispersed carboxylic anhydride liquid 81.
  • 21 parts by mass of the obtained phosphor-dispersed carboxylic acid solution was mixed and stirred with 71 parts by mass of polypropylene glycol diglycidyl ether (Epolite 400P (trade name), manufactured by Kyoeisha Chemical Co., Ltd.) under a dry nitrogen atmosphere.
  • Composition 8 was prepared.
  • phosphor dispersion composition 9 (Preparation of phosphor dispersion composition 9 used in Example 9) The following phosphor dispersion liquid was prepared under a dry nitrogen atmosphere, and aggregates of phosphor fine particles were crushed with an ultrasonic disperser to prepare phosphor dispersion composition 9. At this time, since the polymerization reaction gradually proceeds even at room temperature, the phosphor dispersion composition 9 was sealed in a tank under a dry nitrogen atmosphere until immediately before the coating step described later, and cooled to 4 ° C. and stored.
  • phosphor dispersion composition 10 used in Comparative Example 1
  • the following phosphor dispersion liquid was prepared in a dry nitrogen atmosphere, and toluene was distilled off by an evaporator to prepare phosphor dispersion epoxy curing agent liquid 101.
  • the phosphor dispersion of the comparative example was prepared by mixing the phosphor-dispersed epoxy curing agent liquid 71 and the two-part curable epoxy main agent part 1 (epoxide, E-30CL manufactured by Loctite) so that the mixing mass ratio was 25:75. Composition 10 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
  • phosphor dispersion composition 11 used in Comparative Example 2
  • the following phosphor dispersion liquid was prepared in a dry nitrogen atmosphere, and aggregates of phosphor fine particles were crushed with an ultrasonic disperser to prepare a phosphor-dispersed epoxy curing agent liquid 111.
  • Fluorescent substance dispersion epoxy curing agent liquid 81 and two-part curable epoxy main part 1 are mixed so that the mixing mass ratio is 25:75, and the phosphor dispersion of the comparative example Composition 11 was obtained.
  • these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
  • the phosphor dispersion of the present invention is the same as the preparation of the phosphor dispersion composition 1 except that the phosphor dispersion isocyanate liquid 11 described above is used as the isocyanate liquid and the following polyol liquid 122 is prepared as the polyol liquid. Composition 12 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
  • phosphor dispersion composition 14 (Preparation of phosphor dispersion composition 14 used in Comparative Example 5) The following phosphor dispersion was prepared in a dry nitrogen atmosphere, and toluene was removed by evaporation using an evaporator, followed by filtration through a polypropylene filter having a pore size of 0.2 ⁇ m to prepare phosphor dispersion composition 14. At this time, since the polymerization reaction gradually proceeds even at room temperature due to mixing, the phosphor dispersion composition 14 was sealed in a tank in a dry nitrogen atmosphere until immediately before the coating step described later, and cooled to 4 ° C. and stored.
  • the first barrier film G Prepares the first barrier film G, apply the phosphor dispersion composition 1 on one surface with a die coater while continuously conveying it at a tension of 1 m / min and 60 N / m, and form a coating film having a thickness of 50 ⁇ m. Formed.
  • the first barrier film G on which the coating film is formed is wound around a backup roller, the second barrier film G is laminated on the coating film, and the coating film is coated with the first and second barrier films G.
  • the sample was heated at 80 ° C. for 30 seconds by contact-type heating on the backup roller, and then passed through a heating zone at 80 ° C. for 5 minutes. In the heating zone, the phosphor dispersion composition 1 was cured to form the wavelength conversion layer 1 containing the phosphor.
  • Example 2 A wavelength conversion layer 2 containing a phosphor was formed in the same manner as in Example 1 except that the phosphor dispersion composition 2 was used as the phosphor dispersion composition.
  • Example 3 A wavelength conversion layer 3 containing a phosphor was prepared in the same manner as in Example 1 except that the phosphor dispersion composition 3 was used as the phosphor dispersion composition, and the temperature and passage time of the heating zone were 120 ° C. and 10 minutes. Formed.
  • Example 4 A wavelength conversion layer 4 containing a phosphor was prepared in the same manner as in Example 1 except that the phosphor dispersion composition 4 was used as the phosphor dispersion composition, and the temperature and passage time of the heating zone were 100 ° C. and 10 minutes. Formed.
  • Example 5 A wavelength conversion layer 5 containing a phosphor was formed in the same manner as in Example 3 except that the phosphor dispersion composition 5 was used as the phosphor dispersion composition and the temperature of the heating zone was set to 80 ° C.
  • Example 6 A wavelength conversion layer 6 containing a phosphor was formed in the same manner as in Example 5 except that the phosphor dispersion composition 6 was used as the phosphor dispersion composition.
  • Example 7 A wavelength conversion layer 7 containing a phosphor was formed in the same manner as in Example 1 except that the phosphor-dispersed isocyanate liquid 71 and the polyol liquid 72 were used instead of the phosphor-dispersed isocyanate liquid 11 and the polyol liquid 12.
  • Example 8 A wavelength conversion layer 8 containing a phosphor was formed in the same manner as in Example 3 except that the phosphor dispersion composition 8 was used as the phosphor dispersion composition.
  • Example 9 A wavelength conversion layer 9 containing a phosphor was formed in the same manner as in Example 5 except that the phosphor dispersion composition 9 was used as the phosphor dispersion composition.
  • Example 10 A wavelength conversion layer 10 containing a phosphor was formed in the same manner as in Example 1 except that PET1 was used in place of the barrier film G as the first and second barrier films.
  • Example 11 A wavelength conversion layer 11 containing a phosphor was formed in the same manner as in Example 1 except that PET1 was used in place of the barrier film G as the first and second barrier films.
  • Example 1 A wavelength conversion layer 12 containing a phosphor was formed by performing the same process as in Example 1 except that the phosphor dispersion composition 10 was used as the phosphor dispersion composition.
  • Example 2 A wavelength conversion layer 13 containing a phosphor was formed by performing the same process as in Example 1 except that the phosphor dispersion composition 11 was used as the phosphor dispersion composition.
  • Example 3 A wavelength conversion layer 14 containing a phosphor was formed by performing the same process as in Example 1 except that the phosphor dispersion composition 12 was used as the phosphor dispersion composition.
  • Example 4 A wavelength conversion layer 15 containing a phosphor was formed by performing the same process as in Example 3 except that the phosphor dispersion composition 13 was used as the phosphor dispersion composition.
  • Example 5 A wavelength conversion layer 16 containing a phosphor was formed by performing the same process as in Example 5 except that the phosphor dispersion composition 14 was used as the phosphor dispersion composition.
  • the wavelength conversion member of the example had good initial luminance, and the decrease in luminance after the light resistance test was suppressed.
  • the substrate is an ultra-thin plate glass or the barrier film PET1 in which a barrier layer is provided on a PET film
  • the wavelength conversion members of the examples have good results in the initial luminance and the luminance decrease after the light resistance test. Was showing.
  • the luminance conversion after the light resistance test was remarkable in the wavelength conversion member of the comparative example.
  • the wavelength conversion member of the comparative example after the light resistance test is colored light yellow, and it is considered that the blue light used for excitation of the phosphor is partially absorbed by this coloring and the luminance is lowered. Since the thin glass sheet of the substrate is extremely robust against light, the coloring and the accompanying decrease in luminance are attributed to the composition of the wavelength conversion layer.
  • the initial luminance was lower than in the other examples.
  • the amine compound used as a curing agent affects the ligand that protects the quantum dots, which are phosphors, and changes the electronic state of the quantum dots to reduce the luminous efficiency.
  • the wavelength conversion materials of Examples 1 to 3 using quantum dots as the phosphor maintain a suitable initial luminance, and the phosphor dispersion composition of the present invention is also suitable in terms of luminous efficiency under normal conditions. Was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)

Abstract

[Problem] To provide a composition that has fluorescent bodies dispersed therein, can form a thermally curable film, and can be used to manufacture a fluorescent molded body exhibiting little warpage or curing unevenness and excellent light fastness and long-term reliability. And to provide a fluorescent molded body which exhibits little warpage or curing unevenness and which has excellent light fastness and long term reliability in terms of the tone and intensity of emitted light, a wavelength conversion film, a wavelength conversion member comprising the same, a backlight unit, and a liquid crystal display device. [Solution] This composition having fluorescent bodies dispersed therein forms a fluorescent molded body and comprises at least one type of fluorescent body dispersed in a binder having a three-dimensional mesh structure. The composition comprises fluorescent bodies, and a binder precursor that forms a binder upon a thermal curing reaction. The binder precursor contains at least one thermally curable compound that forms a three-dimensional mesh structure upon a thermal curing reaction, and the combined total content of the polyfunctional primary amine and the polyfunctional secondary amine that serve as thermally curable compounds is at most 0.1 mass% relative to the total mass of the composition having fluorescent bodies dispersed therein.

Description

蛍光体分散組成物及びそれを用いて得られた蛍光成形体、波長変換膜、波長変換部材、バックライトユニット、液晶表示装置Phosphor dispersion composition and fluorescent molded body, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device obtained by using the same
 本発明は、励起光照射により蛍光を発する波長変換膜等の蛍光成形体の形成に用いられる蛍光体分散組成物、及び、それを用いて得られた蛍光成形体、波長変換膜に関する。本発明はまた、波長変換膜を有する波長変換部材及びそれを備えたバックライトユニット、液晶表示装置に関する。 The present invention relates to a phosphor dispersion composition used for forming a fluorescent molded body such as a wavelength conversion film that emits fluorescence when irradiated with excitation light, and a fluorescent molded body and a wavelength conversion film obtained using the same. The present invention also relates to a wavelength conversion member having a wavelength conversion film, a backlight unit including the wavelength conversion member, and a liquid crystal display device.
 液晶表示装置(以下、LCDとも言う)などのフラットパネルディスプレイは、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。液晶表示装置は、少なくともバックライトと液晶セルとから構成され、通常、更に、バックライト側偏光板、視認側偏光板などの部材が含まれる。 Flat panel displays such as liquid crystal display devices (hereinafter also referred to as LCDs) consume less power and are increasingly used as space-saving image display devices year by year. The liquid crystal display device is composed of at least a backlight and a liquid crystal cell, and usually further includes members such as a backlight side polarizing plate and a viewing side polarizing plate.
 近年、LCDの色再現性の向上を目的として、バックライトユニットの波長変換部材に、量子ドット(Quantum Dot、QD、量子点とも呼ばれる。)を発光材料として含んだ波長変換膜(波長変換層)を備えた構成が注目されている(特許文献1、特許文献2等)。波長変換部材は、面状光源から入射された光の波長を変換して白色光として出射させる部材であり、上記量子ドットを発光材料として含んだ波長変換膜では、発光特性の異なる2種または3種の量子ドットが面状光源から入射された光により励起されて発光する蛍光を利用して白色光を具現化することができる。 In recent years, for the purpose of improving the color reproducibility of LCDs, a wavelength conversion film (wavelength conversion layer) containing quantum dots (also referred to as Quantum Dot, QD, or quantum dots) as a light emitting material on a wavelength conversion member of a backlight unit. Attention has been focused on a configuration provided with (Patent Document 1, Patent Document 2, etc.). The wavelength conversion member is a member that converts the wavelength of light incident from the planar light source and emits it as white light. In the wavelength conversion film containing the quantum dots as the light emitting material, two or three of different light emission characteristics are used. White light can be realized by using fluorescence in which a seed quantum dot is excited by light incident from a planar light source and emits light.
 量子ドットによる蛍光は高輝度であり、しかも半値幅が小さいため、量子ドットを用いたLCDは色再現性に優れる。このような量子ドットを用いた3波長光源化技術の進行により、色再現域は、現行のTV規格(FHD、NTSC(National Television System Committee))比72%から100%へと拡大している。 Fluorescence due to quantum dots has high brightness and a small half-value width, so that LCDs using quantum dots are excellent in color reproducibility. With the progress of the three-wavelength light source technology using such quantum dots, the color gamut is expanded from 72% to 100% of the current TV standard (FHD, NTSC (National Television System Committee)) ratio.
 特許文献1~3に記載されているように、量子ドットを発光材料として含む波長変換膜(波長変換膜)は、有機マトリクス(ポリマーマトリクス)中に量子ドットが略一様に分散されてなる態様が一般的である。波長変換膜のポリマーマトリクスの形成は、ポリマーマトリクスを溶剤に溶解させた塗布液を基材上に塗布した後、塗膜から溶剤を除去するキャスト法、溶融させたポリマーマトリクスを基材上に流し込んで製膜した後降温させることにより製膜する溶融製膜法、モノマー等のバインダー前駆体を基材上に塗布した後、塗膜を加熱、あるいは、光照射により、溶剤等の揮発を経ずに硬化させる熱硬化製膜法、及び、光硬化製膜法のいずれかの方法により行うことが一般的である。 As described in Patent Documents 1 to 3, a wavelength conversion film (wavelength conversion film) containing quantum dots as a light emitting material is an aspect in which quantum dots are dispersed substantially uniformly in an organic matrix (polymer matrix). Is common. The polymer matrix of the wavelength conversion film is formed by applying a coating solution in which the polymer matrix is dissolved in a solvent to the substrate, then casting to remove the solvent from the coating film, and pouring the molten polymer matrix onto the substrate. After forming a film with a melt film-forming method to form a film by lowering the temperature, a binder precursor such as a monomer is applied on the substrate, and then the coating film is heated or irradiated with light without causing volatilization of the solvent or the like. It is generally performed by any one of a thermosetting film forming method and a photocuring film forming method.
 熱硬化製膜法は、数十μm~数百μmの厚膜でも硬化を均一に進めることができ、特に、架橋して3次元網目構造が形成されてなる熱硬化型ポリマーマトリクスは、強靭でありながら反りや硬化むらが小さく良質なシートや膜を得ることができるという利点を有している。特許文献2には、エポキシドを含むバインダー前駆体中に、多官能アミン化合物が表面に配位してなる量子ドットを分散した波長変換層形成用組成物を熱硬化製膜法により製膜することにより波長変換層を形成することが記載されている。 The thermosetting film-forming method can uniformly cure even a thick film of several tens to several hundreds of μm. In particular, a thermosetting polymer matrix formed by crosslinking to form a three-dimensional network structure is tough. Nevertheless, there is an advantage that a good quality sheet or film can be obtained with small warpage and unevenness of curing. In Patent Document 2, a composition for forming a wavelength conversion layer in which quantum dots formed by coordination of a polyfunctional amine compound on a surface are dispersed in a binder precursor containing an epoxide by a thermosetting film forming method. To form a wavelength conversion layer.
 また、特許文献2には、波長変換層形成用組成物中に、量子ドットの配位子である多官能アミン化合物を過剰に添加しておき、多官能アミン化合物とエポキシドとの熱硬化反応により3次元網目構造を有するポリマーマトリクスを形成することが記載されている。 Patent Document 2 discloses that a polyfunctional amine compound that is a ligand of a quantum dot is excessively added to the composition for forming a wavelength conversion layer, and a thermosetting reaction between the polyfunctional amine compound and an epoxide is performed. The formation of a polymer matrix having a three-dimensional network structure is described.
 特許文献3には、熱硬化製膜法により形成されるポリマーマトリクスとして、架橋ポリマーや熱硬化エポキシ材料が用いられる旨の記載がある。 Patent Document 3 describes that a crosslinked polymer or a thermosetting epoxy material is used as a polymer matrix formed by a thermosetting film forming method.
米国特許出願公開第2012/0113672号明細書US Patent Application Publication No. 2012/0113672 特表2013-544018号公報Special table 2013-544018 gazette 特表2014-531762号公報Special table 2014-531762 gazette
 特許文献2に記載の多官能アミン化合物とエポキシドとの熱硬化反応により得られるポリマーマトリクスは、多官能アミン化合物によりポリマーマトリクスの3次元網目構造が形成されてなる。多官能アミン化合物は、求核性が高くエポキシ化合物やイソシアネート等との反応活性に優れ、低温でも硬化が進みやすいという利点を有する一方で、一般に長期間の光照射によって反応を起こして黄変することが知られており、アミン化合物によりポリマーマトリクスの3次元網目構造が形成されてなるポリマーマトリクスも経時による黄変の可能性が高い。波長変換膜は、ポリマーマトリクス中に蛍光体が分散されてなり、層内に入射した励起光により蛍光体が励起されて発せられる蛍光を利用して白色光を出射するものであるため、波長変換膜のポリマーマトリクスの黄変は、出射光の強度や色味の変化を招く虞がある。 The polymer matrix obtained by the thermosetting reaction of the polyfunctional amine compound and epoxide described in Patent Document 2 has a three-dimensional network structure of the polymer matrix formed of the polyfunctional amine compound. Polyfunctional amine compounds have the advantage of high nucleophilicity and excellent reaction activity with epoxy compounds, isocyanates, etc., and have the advantage of being easy to cure even at low temperatures. It is known that a polymer matrix in which a three-dimensional network structure of a polymer matrix is formed by an amine compound has a high possibility of yellowing over time. The wavelength conversion film is formed by dispersing phosphors in a polymer matrix, and emits white light using fluorescence emitted by excitation of the phosphors by excitation light incident on the layer. Yellowing of the polymer matrix of the film may cause changes in the intensity and color of the emitted light.
 特許文献3には、上記したように、架橋ポリマーや熱硬化エポキシ材料がポリマーマトリクスとして例示されているが、適切なポリマーマトリクス材料としては、架橋ポリマーや熱硬化エポキシ材料ではなく、線状ポリマーマトリクスが挙げられており、架橋ポリマーや熱硬化エポキシ材料を用いたポリマーマトリクスの具体的な組成や実施例の記載はない。 In Patent Document 3, as described above, a crosslinked polymer or a thermosetting epoxy material is exemplified as a polymer matrix. However, a suitable polymer matrix material is not a crosslinked polymer or a thermosetting epoxy material, but a linear polymer matrix. There is no description of the specific composition of the polymer matrix using the cross-linked polymer or the thermosetting epoxy material or the examples.
 また、上記経時による黄変は、波長変換膜としてのポリマーマトリクスのみならず、蛍光体の蛍光を利用するポリマー成形体に共通して、その性能劣化を引き起こす原因となりうるものである。 Further, the above yellowing due to aging can cause not only the polymer matrix as the wavelength conversion film but also the polymer molded body using the fluorescence of the phosphor to cause deterioration of its performance.
 本発明は上記事情に鑑みてなされたものであり、熱硬化製膜が可能であり、且つ、反りや硬化むらが小さく、耐光性及び長期信頼性に優れる蛍光成形体を製造可能な蛍光体分散組成物を提供することを目的とするものである。
 本発明はまた、反りや硬化むらが小さく、且つ、耐光性に優れ、出射光の強度及び色味の長期信頼性に優れる蛍光成形体、波長変換膜、及びそれを備えた波長変換部材、バックライトユニット、液晶表示装置を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and is a phosphor dispersion capable of producing a thermoformed film and capable of producing a fluorescent molded body having small warpage and curing unevenness and excellent in light resistance and long-term reliability. The object is to provide a composition.
The present invention also provides a fluorescent molded body, a wavelength conversion film, a wavelength conversion member provided with the same, a back surface having a small warpage and unevenness in curing, excellent light resistance, and excellent long-term reliability of emitted light intensity and color, An object of the present invention is to provide a light unit and a liquid crystal display device.
 本発明者は、溶剤等の揮発を経ずに熱硬化するバインダー前駆体中に蛍光体を分散してなる蛍光体分散組成物において、熱硬化反応によりバインダーの三次元網目構造となる熱硬化性化合物としての多官能1級アミン、多官能2級アミンの含有量を低く抑制するか、熱硬化性化合物としてこれらのアミンを使用しないことで、上記の目的を達成しうることを見出した。 The present inventor is a phosphor dispersion composition in which a phosphor is dispersed in a binder precursor that is thermally cured without volatilization of a solvent or the like, and a thermosetting property that forms a three-dimensional network structure of the binder by a thermosetting reaction. It has been found that the above object can be achieved by suppressing the contents of polyfunctional primary amines and polyfunctional secondary amines as compounds low or by not using these amines as thermosetting compounds.
 すなわち、本発明の蛍光体分散組成物は、
 三次元網目構造を有するバインダー中に少なくとも1種の蛍光体が分散されて含まれてなる蛍光成形体を形成する蛍光体分散組成物であって、
 少なくとも1種の蛍光体と、熱硬化反応によりバインダ-を形成するバインダー前駆体とを含んでなり、
 バインダー前駆体が、熱硬化反応により三次元網目構造を形成する少なくとも1種の熱硬化性化合物を含み、
 熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量が蛍光体分散組成物の全質量に対し0.1質量%以下としている。
That is, the phosphor dispersion composition of the present invention is
A phosphor dispersion composition for forming a phosphor molded body comprising at least one phosphor dispersed and contained in a binder having a three-dimensional network structure,
Comprising at least one phosphor and a binder precursor that forms a binder by a thermosetting reaction;
The binder precursor includes at least one thermosetting compound that forms a three-dimensional network structure by a thermosetting reaction;
The total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
 ここで、「熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量が蛍光体分散組成物の全質量に対し0.1質量%以下である」とは、熱硬化性化合物として多官能1級アミン及び多官能2級アミンの合計含有量が蛍光体分散組成物の全質量に対し、0質量%であることを含むものとする。
 また、本明細書において、「三次元網目構造を有する」とは、共有結合のみによって構成された三次元網目構造を少なくとも有することを意味するが、共有結合のみによって構成された三次元網目構造に加えてさらに水素結合やイオン結合のような非共有結合を伴ってより複雑な三次元網目構造を形成していてもよいものとする。共有結合のみによって構成された三次元網目構造を有するかどうかは、バインダーがいかなる溶媒にも溶解しないこと(但し、化学構造の分解を伴わない場合に限る)、且つ、融解を起こさないことによって検知することができる。
Here, “the total content of the polyfunctional primary amine and the polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less with respect to the total mass of the phosphor dispersion composition” means that thermosetting It is assumed that the total content of the polyfunctional primary amine and the polyfunctional secondary amine as the active compound is 0% by mass with respect to the total mass of the phosphor dispersion composition.
Further, in the present specification, “having a three-dimensional network structure” means having at least a three-dimensional network structure constituted only by covalent bonds, but in a three-dimensional network structure constituted only by covalent bonds. In addition, a more complicated three-dimensional network structure may be formed with non-covalent bonds such as hydrogen bonds and ionic bonds. Whether or not it has a three-dimensional network structure composed only of covalent bonds is detected by not dissolving the binder in any solvent (provided that it does not involve decomposition of the chemical structure) and not causing melting. can do.
 本発明の蛍光体分散組成物の好ましい態様としては、熱硬化性化合物が、多価イソシアネートとポリオールを含む態様が挙げられる。かかる構成において、多価イソシアネートは、環状脂肪族(脂環族)イソシアネート及び/または鎖状脂肪族イソシアネートであることが好ましい。また、かかる構成において、バインダー前駆体に、多価イソシアネートとポリオールとの熱硬化反応を促進する反応促進剤を含むことがより好ましい。 A preferred embodiment of the phosphor dispersion composition of the present invention includes an embodiment in which the thermosetting compound contains a polyvalent isocyanate and a polyol. In such a configuration, the polyvalent isocyanate is preferably a cyclic aliphatic (alicyclic) isocyanate and / or a chain aliphatic isocyanate. In such a configuration, it is more preferable that the binder precursor includes a reaction accelerator that accelerates the thermosetting reaction between the polyvalent isocyanate and the polyol.
 また、本発明の蛍光体分散組成物の、その他の好ましい態様としては、熱硬化性化合物が、エポキシドとカルボン酸無水物を含み、バインダー前駆体に、エポキシドとカルボン酸無水物との熱硬化反応を促進する反応促進剤を含む態様が挙げられる。 As another preferred embodiment of the phosphor dispersion composition of the present invention, the thermosetting compound contains an epoxide and a carboxylic acid anhydride, and the binder precursor has a thermosetting reaction between the epoxide and the carboxylic acid anhydride. The aspect containing the reaction promoter which accelerates | stimulates is mentioned.
 また、本発明の蛍光体分散組成物の、熱硬化反応が熱重合反応である場合の好ましい態様としては、熱硬化性化合物が、エポキシドを含み、バインダー前駆体に熱重合反応の熱重合開始剤を含む態様が挙げられる。 Moreover, as a preferable aspect when the thermosetting reaction of the phosphor dispersion composition of the present invention is a thermopolymerization reaction, the thermosetting compound contains an epoxide, and the binder precursor is a thermopolymerization initiator for the thermopolymerization reaction. The aspect containing is mentioned.
 本発明の蛍光成形体は、上記本発明の蛍光体分散組成物を熱硬化させて形成されたものである。 The fluorescent molded body of the present invention is formed by thermosetting the phosphor dispersion composition of the present invention.
 本発明の波長変換膜は、基材上に、上記本発明の蛍光体分散組成物を塗布して蛍光体分散組成物の塗膜を形成し、塗膜を熱硬化させることによって形成されてなる。
 本発明の波長変換部材は、上記本発明の波長変換膜を備えてなる。
The wavelength conversion film of the present invention is formed by applying the phosphor dispersion composition of the present invention on a base material to form a coating film of the phosphor dispersion composition and thermally curing the coating film. .
The wavelength conversion member of the present invention includes the wavelength conversion film of the present invention.
 本発明のバックライトユニットは、
 一次光を出射する面状光源と、
 面状光源上に備えられてなる上記本発明の波長変換部材と、
 波長変換部材を挟んで面状光源と対向配置される再帰反射性部材と、
 面状光源を挟んで波長変換部材と対向配置される反射板とを備えたバックライトユニットであって、
 波長変換部材は、面状光源から出射された一次光の少なくとも一部を励起光として、蛍光を発光し、蛍光からなる二次光を含む光を少なくとも出射するものである。
The backlight unit of the present invention is
A planar light source that emits primary light;
The wavelength conversion member of the present invention provided on a planar light source;
A retroreflective member disposed opposite to the planar light source across the wavelength conversion member;
A backlight unit including a wavelength conversion member and a reflector disposed opposite to a surface light source,
The wavelength conversion member emits fluorescence using at least a part of the primary light emitted from the planar light source as excitation light, and emits at least light including secondary light composed of fluorescence.
 本発明の液晶表示装置は、上記本発明のバックライトユニットと、
バックライトユニットの再帰反射性部材側に対向配置された液晶ユニットとを備えてなる。
The liquid crystal display device of the present invention comprises the backlight unit of the present invention described above,
And a liquid crystal unit disposed opposite to the retroreflective member side of the backlight unit.
 本発明の蛍光体分散組成物は、励起光照射により蛍光を発する蛍光体がバインダー中に分散されてなる蛍光成形体の、熱硬化反応による形成に用いられるものであり、熱硬化反応により形成されるバインダ-の前駆体に、熱硬化反応により三次元網目構造を形成する少なくとも1種の熱硬化性化合物を含み、熱硬化性化合物としての多官能1級アミン、多官能2級アミンの合計含有量が蛍光体分散組成物全質量に対し0.1質量%以下としている。かかる構成によれば、長時間の光照射で生じるアミン化合物の反応による黄変を未然に防ぐことができるため、数十μm~数百μmの厚膜であっても反りや硬化むらが小さい膜を製膜できるという熱硬化製膜の利点を有し、且つ、耐光性に優れ、長期信頼性に優れる蛍光成形体を製造することができる。本発明によれば、反りや硬化むらが小さく、且つ、耐光性に優れ、出射光の強度及び色味の長期信頼性に優れる蛍光成形体、波長変換膜、及びそれを備えた波長変換部材、バックライトユニット、液晶表示装置を提供することができる。 The phosphor-dispersed composition of the present invention is used for forming a fluorescent molded body in which a phosphor that emits fluorescence when irradiated with excitation light is dispersed in a binder, and is formed by a thermosetting reaction. The binder precursor contains at least one thermosetting compound that forms a three-dimensional network structure by a thermosetting reaction, and contains a total of polyfunctional primary amines and polyfunctional secondary amines as thermosetting compounds. The amount is 0.1% by mass or less based on the total mass of the phosphor dispersion composition. According to such a configuration, yellowing due to the reaction of the amine compound caused by long-time light irradiation can be prevented in advance, so that even a thick film of several tens μm to several hundred μm has little warping and uneven curing. It is possible to produce a fluorescent molded article having the advantages of thermosetting film formation that can be formed into a film, having excellent light resistance, and excellent long-term reliability. According to the present invention, the fluorescent molded body, the wavelength conversion film, and the wavelength conversion member provided with the same, which have small warpage and unevenness in curing, excellent light resistance, and excellent long-term reliability of emitted light intensity and color, A backlight unit and a liquid crystal display device can be provided.
本発明にかかる一実施形態のバックライトユニットの概略構成断面図である。It is a schematic structure sectional view of the backlight unit of one embodiment concerning the present invention. 本発明にかかる一実施形態の波長変換部材の概略構成断面図である。It is a schematic structure sectional view of the wavelength conversion member of one embodiment concerning the present invention. 本発明にかかる一実施形態の波長変換部材製造装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the wavelength conversion member manufacturing apparatus of one Embodiment concerning this invention. 図3に示す製造装置の部分拡大図である。It is the elements on larger scale of the manufacturing apparatus shown in FIG. 本発明にかかる一実施形態のバックライトユニットを備えた液晶表示装置の概略構成断面図である。It is a schematic structure sectional view of a liquid crystal display provided with the back light unit of one embodiment concerning the present invention.
 「蛍光体分散組成物及び蛍光成形体」
 本発明の蛍光体分散組成物は、
 三次元網目構造を有するバインダー中に少なくとも1種の蛍光体が分散されて含まれてなる蛍光成形体を形成する蛍光体分散組成物であって、
 少なくとも1種の蛍光体と、熱硬化反応によりバインダ-を形成するバインダー前駆体とを含んでなり、
 バインダー前駆体が、熱硬化反応により三次元網目構造を形成する少なくとも1種の熱硬化性化合物を含み、
 熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量が蛍光体分散組成物の全質量に対し0.1質量%以下としている。
"Phosphor dispersion composition and fluorescent molded body"
The phosphor dispersion composition of the present invention comprises:
A phosphor dispersion composition for forming a phosphor molded body comprising at least one phosphor dispersed and contained in a binder having a three-dimensional network structure,
Comprising at least one phosphor and a binder precursor that forms a binder by a thermosetting reaction;
The binder precursor includes at least one thermosetting compound that forms a three-dimensional network structure by a thermosetting reaction;
The total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
 [バインダー前駆体]
 上記したように、本発明において、バインダー前駆体は、熱硬化反応によりポリマーの三次元網目構造を形成する少なくとも1種の熱硬化性化合物を含み、熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量が蛍光体分散組成物の全質量に対し0.1質量%以下である。
 熱硬化性化合物としては、多官能1級アミン及び多官能2級アミンの合計含有量が上記範囲内であれば、特に制限されないが、多価イソシアネートとポリオールとの組み合わせを含む態様、エポキシドとカルボン酸無水物との組み合わせを含む態様、及び、熱硬化反応が熱重合反応であり、熱硬化性化合物が、エポキシドを含み、バインダー前駆体に熱重合反応の熱重合開始剤を含む態様が挙げられる。
[Binder precursor]
As described above, in the present invention, the binder precursor includes at least one thermosetting compound that forms a three-dimensional network structure of the polymer by a thermosetting reaction, and includes a polyfunctional primary amine as the thermosetting compound and The total content of the polyfunctional secondary amine is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
The thermosetting compound is not particularly limited as long as the total content of the polyfunctional primary amine and the polyfunctional secondary amine is within the above range, but an embodiment including a combination of a polyvalent isocyanate and a polyol, epoxide and carvone An embodiment including a combination with an acid anhydride and an embodiment in which the thermosetting reaction is a thermal polymerization reaction, the thermosetting compound includes an epoxide, and the binder precursor includes a thermal polymerization initiator of the thermal polymerization reaction are included. .
 <多価イソシアネートとポリオールとの組み合わせ>
 多価イソシアネートとポリオールとの組み合わせを熱硬化性化合物として含むバインダー前駆体を用いた場合、イソシアネート基とポリオールの水酸基との反応によりウレタン結合が形成され、バインダーとしてウレタンポリマーが生成される。このとき、蛍光体分散組成物の全質量に対して0.1質量%より多い多官能1級アミン、多官能2級アミンが存在すると、イソシアネート基の脱CO反応によるアミン生成反応が促進されてウレタン結合形成反応と競合することになり、波長変換膜中のアミン基濃度が多官能1級アミン、多官能2級アミンの本来の添加量以上に増加する。従って、多価イソシアネートとポリオールとの組み合わせを熱硬化性化合物として含むバインダー前駆体を用いる場合、熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量は、蛍光体分散組成物全質量に対して0.1質量%以下とする。
<Combination of polyvalent isocyanate and polyol>
When a binder precursor containing a combination of a polyvalent isocyanate and a polyol as a thermosetting compound is used, a urethane bond is formed by a reaction between an isocyanate group and a hydroxyl group of the polyol, and a urethane polymer is generated as a binder. At this time, if there are more polyfunctional primary amines and polyfunctional secondary amines than 0.1% by mass with respect to the total mass of the phosphor dispersion composition, the amine generation reaction by the de-CO reaction of the isocyanate group is promoted. Competing with the urethane bond forming reaction, the amine group concentration in the wavelength conversion film increases beyond the original addition amount of the polyfunctional primary amine and polyfunctional secondary amine. Therefore, when using a binder precursor containing a combination of a polyvalent isocyanate and a polyol as a thermosetting compound, the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is the phosphor dispersion. It is 0.1 mass% or less with respect to the composition total mass.
 本発明の蛍光体分散組成物に好適な多価イソシアネート(2官能以上のイソシアネート)としては、フェニレン-1,3-ジイソシアネート、フェニレン-1,4-ジイソシアネート、1-メトキシフェニレン-2,4-ジイソシアネート、1-メチルフェニレン-2,4-ジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ビフェニレン-4,4-ジイソシアネート、3,3-ジメトキシビフェニレン-4,4-ジイソシアネート、3,3-ジメチルビフェニレン-4,4-ジイソシアネート、ジフェニルメタン-2,4-ジイソシアネート、ジフェニルメタン-4,4-ジイソシアネート、3,3-ジメトキシジフェニルメタン-4,4-ジイソシアネート、3,3-ジメチルジフェニルメタン-4,4-ジイソシアネート、ナフチレン-1,5-ジイソシアネート、シクロブチレン-1,3-ジイソシアネート、シクロペンチレン-1,3-ジイソシアネート、シクロヘキシレン-1,3-ジイソシアネート、シクロヘキシレン-1,4-ジイソシアネート、1-メチルシクロヘキシレン-2,4-ジイソシアネート、1-メチルシクロヘキシレン-2,6-ジイソシアネート、1-イソシアネート-3,3,5-トリメチル-5-イソシアネートメチルシクロヘキサン、シクロヘキサン-1,3-ビス(メチルイソシアネート)、シクロヘキサン-1,4-ビス(メチルイソシアネート)、イソホロンジイソシアネート、ジシクロヘキシルメタン-2,4-ジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、エチレンジイソシアネート、テトラメチレン-1,4-ジイソシアネート、ヘキサメチレン-1,6-ジイソシアネート、ドデカメチレン-1,12-ジイソシアネート、またはこれらの有機ジイソシアネートの化学量論的過剰量と2官能性活性水素含有化合物との反応により得られる両末端イソシアネートプレポリマー等を挙げることができる。 Examples of the polyvalent isocyanate (bifunctional or higher functional isocyanate) suitable for the phosphor dispersion composition of the present invention include phenylene-1,3-diisocyanate, phenylene-1,4-diisocyanate, and 1-methoxyphenylene-2,4-diisocyanate. 1-methylphenylene-2,4-diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, biphenylene-4,4- Diisocyanate, 3,3-dimethoxybiphenylene-4,4-diisocyanate, 3,3-dimethylbiphenylene-4,4-diisocyanate, diphenylmethane-2,4-diisocyanate, diphenylmethane-4,4-diisocyanate, 3,3-dimethoxy Phenylmethane-4,4-diisocyanate, 3,3-dimethyldiphenylmethane-4,4-diisocyanate, naphthylene-1,5-diisocyanate, cyclobutylene-1,3-diisocyanate, cyclopentylene-1,3-diisocyanate, cyclohex Silene-1,3-diisocyanate, cyclohexylene-1,4-diisocyanate, 1-methylcyclohexylene-2,4-diisocyanate, 1-methylcyclohexylene-2,6-diisocyanate, 1-isocyanate-3,3,5 -Trimethyl-5-isocyanate methylcyclohexane, cyclohexane-1,3-bis (methylisocyanate), cyclohexane-1,4-bis (methylisocyanate), isophorone diisocyanate, dicyclohexylmethane 2,4-diisocyanate, dicyclohexylmethane-4,4-diisocyanate, ethylene diisocyanate, tetramethylene-1,4-diisocyanate, hexamethylene-1,6-diisocyanate, dodecamethylene-1,12-diisocyanate, or organic diisocyanates thereof And a bifunctional isocyanate prepolymer obtained by the reaction of a bifunctional active hydrogen-containing compound.
 また、場合により上記ジイソシアネートとともに、例えばフェニル-1,3,5-トリイソシアネート、ジフェニルメタン-2,4,4-トリイソシアネート、ジフェニルメタン-2,5,4-トリイソシアネート、トリフェニルメタン-2,4,4”-トリイソシアネート、トリフェニルメタン-4,4,4”-トリイソシアネート、ジフェニルメタン-2,4,2,4-テトライソシアネート、ジフェニルメタン-2,5,2,5-テトライソシアネート、シクロヘキサン-1,3,5-トリイソシアネート、シクロヘキサン-1,3,5-トリス(メチルイソシアネート)、3,5-ジメチルシクロヘキサン-1,3,5-トリス(メチルイソシアネート)、1,3,5-トリメチルシクロヘキサン-1,3,5-トリス(メチルイソシアネート)、ジシクロヘキシルメタン-2,4,2-トリイソシアネート、ジシクロヘキシルメタン-2,4,4-トリイソシアネート等の3官能以上の有機ポリイソシアネートや、これらの3官能以上の有機ポリイソシアネートの化学量論的過剰量と2官能以上の多官能性活性水素含有化合物との反応により得られる末端イソシアネートプレポリマー等を併用してもよい。以上に挙げた多価イソシアネートは1種単独で用いてもよいし、2種類以上を混合して用いてもよい。また、バインダー前駆体の粘度調整や、得られるウレタンポリマーの物性調整の観点から、適宜単官能性のイソシアネート、例えば、アルキルモノイソシアネートやシクロアルキルモノイソシアネート、芳香族モノイソシアネート及びそれらの誘導体等を加えてもよい。 Optionally, together with the diisocyanate, for example, phenyl-1,3,5-triisocyanate, diphenylmethane-2,4,4-triisocyanate, diphenylmethane-2,5,4-triisocyanate, triphenylmethane-2,4, 4 "-triisocyanate, triphenylmethane-4,4,4" -triisocyanate, diphenylmethane-2,4,2,4-tetraisocyanate, diphenylmethane-2,5,2,5-tetraisocyanate, cyclohexane-1, 3,5-triisocyanate, cyclohexane-1,3,5-tris (methyl isocyanate), 3,5-dimethylcyclohexane-1,3,5-tris (methyl isocyanate), 1,3,5-trimethylcyclohexane-1 , 3,5-Tris (methyli Cyanate), dicyclohexylmethane-2,4,2-triisocyanate, dicyclohexylmethane-2,4,4-triisocyanate and other trifunctional organic polyisocyanates, and these trifunctional and higher organic polyisocyanates You may use together the terminal isocyanate prepolymer etc. which are obtained by reaction with a chemical excess amount and the polyfunctional active hydrogen containing compound more than bifunctional. The polyvalent isocyanate mentioned above may be used individually by 1 type, and may mix and use 2 or more types. In addition, from the viewpoint of adjusting the viscosity of the binder precursor and adjusting the physical properties of the resulting urethane polymer, an appropriate monofunctional isocyanate such as alkyl monoisocyanate, cycloalkyl monoisocyanate, aromatic monoisocyanate and derivatives thereof are added. May be.
 長期間の光照射下での黄変防止の観点からは、環状脂肪族(脂環族)イソシアネート類及び鎖状脂肪族イソシアネート類が好ましく、イソシアネート基が1級炭素に結合しているものが特に好ましい。また、組成物に塗布適性を付与する観点から、上記多価イソシアネートあるいはそれらの混合物は20℃から60℃程度の範囲において液体であることが好ましい。 From the viewpoint of preventing yellowing under light irradiation for a long period of time, cycloaliphatic (alicyclic) isocyanates and chain aliphatic isocyanates are preferable, and those in which the isocyanate group is bonded to primary carbon are particularly preferable. preferable. Moreover, from the viewpoint of imparting coating suitability to the composition, the polyvalent isocyanate or a mixture thereof is preferably liquid in the range of about 20 ° C to 60 ° C.
 本発明の蛍光体分散組成物に好適なポリオール(2官能以上のアルコール性水酸基を有する化合物)としては、長期間の光照射下での黄変防止の観点からは、脂肪族ポリオール類及び脂環族ポリオール類がより好ましい。かかるポリオールとしては、エチレングリコール,ジエチレングリコール,ポリエチレングリコール,プロピレングリコール,ジプロピレングリコール,ポリプロピレングリコール,1,4-ブタンジオール,ポリテトラメチレングリコール,グリセリン,トリメチロールプロパン,及び,ペンタエリスリトールが挙げられる。
 また、グリセリン,トリメチロールプロパン,ペンタエリスリトールのポリエチレングリコール変性物,ポリプロピレングリコール変性物,ポリテトラメチレングリコール変性物などのジ,トリ,またはテトラアルコール化合物や、
 ジカルボン酸とのエステル化反応によって誘導される各種ポリエステルポリオールとして公知なもの、
 ヘキサンジオール、ヘプタンジオール、オクタンジオール、デカンジオール、ドデカンジオールなど直鎖アルキレンの末端ジオール類、なども挙げられる。
Examples of the polyol (compound having a bifunctional or higher functional alcoholic hydroxyl group) suitable for the phosphor dispersion composition of the present invention include aliphatic polyols and alicyclic rings from the viewpoint of preventing yellowing under long-term light irradiation. Group polyols are more preferred. Such polyols include ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, 1,4-butanediol, polytetramethylene glycol, glycerin, trimethylolpropane, and pentaerythritol.
Di-, tri-, or tetra-alcohol compounds such as glycerin, trimethylolpropane, pentaerythritol modified with polyethylene glycol, polypropylene glycol modified, polytetramethylene glycol modified,
Known as various polyester polyols derived by esterification reaction with dicarboxylic acid,
Examples also include linear alkylene terminal diols such as hexanediol, heptanediol, octanediol, decanediol, and dodecanediol.
 上記ポリオールは1種単独で用いてもよいし、2種類以上を混合して用いてもよい。また、組成物に塗布適性を付与する観点から、好ましくは20℃から60℃程度の範囲において液体であることが好ましい。また、バインダー前駆体の粘度調整や、得られるウレタンポリマーの物性調整の観点から、適宜モノアルコール類、例えば、アルキルモノアルコール類やシクロアルキルモノアルコール類、単官能フェノール類及びそれらの誘導体等を加えてもよい。 The above polyols may be used alone or in combination of two or more. Further, from the viewpoint of imparting coating suitability to the composition, the liquid is preferably in the range of about 20 ° C to 60 ° C. In addition, from the viewpoint of adjusting the viscosity of the binder precursor and adjusting the physical properties of the obtained urethane polymer, monoalcohols such as alkyl monoalcohols, cycloalkyl monoalcohols, monofunctional phenols, and derivatives thereof are appropriately added. May be.
 上述した多価イソシアネートとポリオールとの組み合わせを熱硬化性化合物として含むバインダー前駆体は、イソシアネート基と水酸基との反応が1対1の量比で起こることからその混合比は各官能基の当量比が1対1である場合に互いに過不足なく反応が完了すると考えられるが、得られるウレタンポリマーの各種物性を適宜調節するために、その当量比を調節してもよい。好ましくは、多価イソシアネートのイソシアネート当量と、ポリオールの水酸基当量との当量比が、1:0.8~1:1.2の範囲であることが好ましく、1:0.9~1:1.1の範囲であることがより好ましい。 The binder precursor containing the combination of the polyvalent isocyanate and polyol described above as a thermosetting compound has a 1: 1 ratio of isocyanate groups and hydroxyl groups, so the mixing ratio is equivalent ratio of each functional group. When the ratio is 1: 1, the reaction is considered to be completed without excess or deficiency, but the equivalent ratio may be adjusted in order to appropriately adjust various physical properties of the obtained urethane polymer. Preferably, the equivalent ratio of the isocyanate equivalent of the polyvalent isocyanate and the hydroxyl equivalent of the polyol is preferably in the range of 1: 0.8 to 1: 1.2, and preferably 1: 0.9 to 1: 1. A range of 1 is more preferable.
 イソシアネート基を余剰に含む構成とした蛍光体分散組成物とすることにより、形成された成形体に含まれるイソシアネート基が、成形体内に浸入した水分と反応して水分を捕捉する機能(ゲッター機能)を有する蛍光成形体を形成することができる。また、水酸基を余剰に含む構成とした蛍光体分散組成物とすることにより、形成された成形体のポリマーマトリクス(バインダー)の凝集力を高めてバリア性の高い蛍光成形体を形成することができる。 A function of capturing the moisture by reacting with the moisture that has entered the molded body by the isocyanate group contained in the molded body by making the phosphor dispersion composition having an excess of isocyanate groups (getter function) It is possible to form a fluorescent molded body having In addition, by forming a phosphor dispersion composition having an excess of hydroxyl groups, it is possible to increase the cohesive force of the polymer matrix (binder) of the formed molded body to form a fluorescent molded body having a high barrier property. .
 また、多価イソシアネートとポリオールとの組み合わせを熱硬化性化合物として含む態様において、バインダー前駆体に多価イソシアネートとポリオールとの熱硬化反応を促進する反応促進剤を含むことがより好ましい。反応促進剤を加えることにより、イソシアネートと水酸基の反応が加速され、低温でも良好なウレタンポリマーを生成することが可能になる。好ましく用いられる反応促進剤として、テトラアルキルアンモニウム塩類、ジアザビシクロウンデセン(DBU)やジアザビシクロノネン(DBN)等の環状アミジン類及びその塩、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等の環状アミン類、ピリジン類、イミダゾール類の窒素原子含有複素芳香族化合物及びその塩類、アルキル錫化合物及びその塩類、アルキル亜鉛化合物及びその塩類、ジルコニウム化合物、チタニウム化合物類、アルキルアルミニウム類、ホウ酸類が好適に用いられる。反応促進剤は触媒的に作用し反応で消費されることがないため、微量でも充分その効果を発揮することができる。具体的な添加量としては、バインダー前駆体全質量に対して0.1~10質量%が好ましく、0.5~5質量%がより好ましく、1~3質量%が更に好ましい。 Further, in an embodiment in which a combination of a polyvalent isocyanate and a polyol is included as a thermosetting compound, it is more preferable that the binder precursor includes a reaction accelerator that promotes a thermosetting reaction between the polyvalent isocyanate and the polyol. By adding a reaction accelerator, the reaction between the isocyanate and the hydroxyl group is accelerated, and a good urethane polymer can be produced even at a low temperature. Preferred reaction accelerators include tetraalkylammonium salts, cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN) and their salts, 1,4-diazabicyclo [2.2.2]. Cyclic amines such as octane (DABCO), pyridines, nitrogen-containing heteroaromatic compounds and salts thereof such as imidazoles, alkyltin compounds and salts thereof, alkylzinc compounds and salts thereof, zirconium compounds, titanium compounds, alkylaluminums And boric acids are preferably used. Since the reaction accelerator acts catalytically and is not consumed in the reaction, the effect can be sufficiently exerted even in a trace amount. The specific addition amount is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, and still more preferably 1 to 3% by mass with respect to the total mass of the binder precursor.
 アンモウニウム塩、環状アミン類を反応促進剤として用いる場合は、不純物として微量の1級、2級アミン類が含まれうる。従って、これらの化合物を反応促進剤として用いる場合は、不純物量が極力少なくなるように精製して用いることが好ましく、反応促進剤に含まれる不純物量を定量の上、組成物全質量に対して0.1質量%以下になるよう調整することが好ましく、0.05質量%以下になるようにすることがより好ましい。この含量以下であれば、バインダー前駆体を反応させる際にイソシアネートと不純物のアミン類が速やかに反応してウレア結合に転化して1級アミン、2級アミンが消失し、長期間の光照射下での黄変を未然に防ぐことができ、且つ、本来起こるべき多価イソシアネートとポリオールとの反応によるウレタンポリマー生成過程及びその物性に顕著な影響を及ぼさないようにすることができる。 When an ammonium salt or a cyclic amine is used as a reaction accelerator, a trace amount of primary and secondary amines may be contained as impurities. Therefore, when these compounds are used as reaction accelerators, it is preferable to use them after purification so that the amount of impurities is as small as possible. The amount of impurities contained in the reaction accelerator is quantitatively determined with respect to the total mass of the composition. It is preferable to adjust so that it may become 0.1 mass% or less, and it is more preferable to adjust to 0.05 mass% or less. If it is below this content, when reacting the binder precursor, the isocyanate and the amine of the impurity react quickly and convert to a urea bond, the primary amine and the secondary amine disappear, under long-term light irradiation. Yellowing can be prevented in advance, and the urethane polymer production process and the physical properties thereof due to the reaction between the polyvalent isocyanate and the polyol that should occur can be prevented from being significantly affected.
 <エポキシドとカルボン酸無水物との組み合わせ>
 エポキシドとカルボン酸無水物との組み合わせを熱硬化性化合物として含むバインダー前駆体を用いる場合は、バインダー前駆体に、エポキシドとカルボン酸無水物との熱硬化反応を促進する反応促進剤を同時に含む態様とする。この組合せにおいては、反応促進のため100℃の加熱が必要な場合があり、このとき、0.1質量%より多い多官能1級アミン、多官能2級アミンが存在すると、熱による活性化によりアミンを起因とした急速な着色が見られる場合があるため、熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量は、蛍光体分散組成物全質量に対して0.1質量%以下とする。
<Combination of epoxide and carboxylic anhydride>
In the case of using a binder precursor containing a combination of an epoxide and a carboxylic acid anhydride as a thermosetting compound, a mode in which a reaction accelerator that accelerates a thermosetting reaction between an epoxide and a carboxylic acid anhydride is simultaneously included in the binder precursor And In this combination, heating at 100 ° C. may be necessary to promote the reaction. At this time, if more than 0.1% by mass of polyfunctional primary amine and polyfunctional secondary amine are present, they are activated by heat. Since rapid coloring due to amine may be observed, the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0 with respect to the total mass of the phosphor dispersion composition. .1% by mass or less.
 エポキシドとカルボン酸無水物と反応促進剤の組み合わせを本発明のバインダー前駆体として用いた場合、エポキシドとカルボン酸無水物とが逐次縮重合反応を行うことによりエステル結合を生じ、ポリエステルポリマーを生成する。エポキシドを過剰に用いた場合はエポキシド同士の連鎖重合が並列で生起することもあり、エポキシド重合物とポリエステルポリマーとの混合物となることもある。 When a combination of an epoxide, a carboxylic acid anhydride, and a reaction accelerator is used as the binder precursor of the present invention, an epoxide and a carboxylic acid anhydride undergo an ester condensation reaction to form a polyester polymer. . When epoxide is used excessively, chain polymerization of epoxides may occur in parallel, and a mixture of epoxide polymer and polyester polymer may be formed.
 本発明におけるエポキシドとは、エポキシ基の開環重合反応が可能な環状エーテル化合物一般(エポキシ化合物やオキシラン化合物等)を指す。これらはエピクロルヒドリンを出発原料とした合成によって得ることができ、また、不飽和炭化水素の炭素間二重結合を酸化することによっても得ることができる。具体的には、グリシジル基やシクロヘキセンオキシド基を含む化合物類が例示される。例えば、ビスフェノールAとエピクロルヒドリンから誘導されるビスフェノールA型エポキシ樹脂、ビスフェノールFとエピクロルヒドリンから誘導されるビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂である。長期間の光照射下における黄変をより効率的に抑制するため、エポキシドには芳香環を含まないことが好ましく、例えば、飽和炭化水素のみの骨格で構成されたエポキシドや、芳香族を含むエポキシドの芳香環を水素添加して環状アルキルとしたエポキシドが好ましい。 The epoxide in the present invention refers to general cyclic ether compounds (epoxy compounds, oxirane compounds, etc.) capable of ring-opening polymerization reaction of epoxy groups. These can be obtained by synthesis using epichlorohydrin as a starting material, or can be obtained by oxidizing the carbon-carbon double bond of an unsaturated hydrocarbon. Specific examples include compounds containing a glycidyl group or a cyclohexene oxide group. For example, bisphenol A type epoxy resin derived from bisphenol A and epichlorohydrin, bisphenol F type epoxy resin derived from bisphenol F and epichlorohydrin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A A novolac type epoxy resin, a bisphenol F novolac type epoxy resin, an alicyclic epoxy resin, a diphenyl ether type epoxy resin, and a hydroquinone type epoxy resin. In order to more effectively suppress yellowing under long-term light irradiation, it is preferable that the epoxide does not contain an aromatic ring. For example, an epoxide composed of a saturated hydrocarbon-only skeleton or an epoxide containing an aromatic An epoxide obtained by hydrogenating the aromatic ring to form a cyclic alkyl is preferable.
 具体例としては、グリシジルエーテル類として、ジグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、p-tert-ブチルフェニルグリシジルエーテル、ジブロモフェニルグリシジルエーテル、ジブロモネオペンチルグリコールジグリシジルエーテル、1,2,7,8-ジエポキシオクタン、1,6-ジメチロールパーフルオロヘキサンジグリシジルエーテル、及び、これらの化合物のポリエチレンオキサイド変性物、ポリプロピレンオキサイド変性物、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラヒドロフランジグリシジルエーテル、ポリエチレングリコールトリオールトリグリシジルエーテル、ポリプロピレングリコールトリオールトリグリシジルエーテルなどが挙げられる。 Specific examples include glycidyl ethers such as diglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis (2,3-epoxypropoxyperfluoroisopropyl) cyclohexane, sorbitol polyglycidyl ether, trimethylolpropane polyglycidyl. Ether, resorcin diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, phenyl glycidyl ether, p-tert-butylphenyl glycidyl ether, dibromophenyl glycidyl ether, dibromoneopentyl glycol diglycidyl ether, 1 , 2,7,8-diepoxyoctane, 1,6-dimethylol perfluorohexane diglycidyl Ethers and polyethylene oxide modified products of these compounds, polypropylene oxide modified products, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polytetrahydrofuran diglycidyl ether, polyethylene glycol triol triglycidyl ether, polypropylene glycol triol triglycidyl ether, etc. Is mentioned.
 グリシジルエステル類として、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチル化ヘキサヒドロフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロピロメリット酸などの芳香族ジカルボン酸水素添加物のグリシジルエステル、コハク酸、アルケニルコハク酸、ナジック酸、メチルナジック酸、マレイン化脂肪酸、ドデセニルコハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、エイコサンジカルボン酸などの脂肪族ジカルボン酸類のグリシジルエステル化合物、及びこれらのポリエチレンオキサイド変性物、ポリプロピレンオキサイド変性物などが挙げられる。 Glycidyl esters such as tetrahydrophthalic acid, hexahydrophthalic acid, methylated hexahydrophthalic acid, hexahydroterephthalic acid, hexahydropyromellitic acid glycidyl ester, succinic acid, alkenyl succinic acid , Glycidyl ester compounds of aliphatic dicarboxylic acids such as nadic acid, methyl nadic acid, maleated fatty acid, dodecenyl succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, eicosane dicarboxylic acid, and modified polyethylene oxides thereof , Modified polypropylene oxide and the like.
 不飽和炭化水素の酸化により合成されるアルキルオキサイド類として、シクロヘキセンオキサイドまたはシクロペンテンオキサイド含有化合物が好ましく、具体例としては、4,4-ビス(2,3-エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルオキシラン、1,2,5,6-ジエポキシ-4,7-メタノペルヒドロインデン、2-(3,4-エポキシシクロヘキシル)-3,4-エポキシ-1,3-ジオキサン-5-スピロシクロヘキサン、1,2-エチレンジオキシ-ビス(3,4-エポキシシクロヘキシルメタン)、4,5-エポキシ-2.-メチルシクロヘキシルメチル-4,5-エポキシ-2-メチルシクロヘキサンカルボキシレート、エチレングリコール-ビス(3,4-エポキシシクロヘキサンカルボキシレート)、ビス-(3,4-エポキシシクロヘキシルメチル)アジペート、ジ-2,3-エポキシシクロペンチルエーテルや、以下に示す化合物等が挙げられる。これらの化合物は、1種単独で用いてもよく、2種以上を併用してもよい。 As the alkyl oxides synthesized by oxidation of unsaturated hydrocarbons, cyclohexene oxide or cyclopentene oxide-containing compounds are preferable. Specific examples include 4,4-bis (2,3-epoxypropoxyperfluoroisopropyl) diphenyl ether, 3, 4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloxirane, 1,2,5,6-diepoxy-4,7-methanoperhydroindene, 2- (3,4-epoxy Cyclohexyl) -3,4-epoxy-1,3-dioxane-5-spirocyclohexane, 1,2-ethylenedioxy-bis (3,4-epoxycyclohexylmethane), 4,5-epoxy-2. -Methylcyclohexylmethyl-4,5-epoxy-2-methylcyclohexanecarboxylate, ethylene glycol-bis (3,4-epoxycyclohexanecarboxylate), bis- (3,4-epoxycyclohexylmethyl) adipate, di-2, Examples thereof include 3-epoxycyclopentyl ether and the following compounds. These compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 カルボン酸無水物としては、テトラヒドロ無水フタル酸、メチル化テトラヒドロ無水フタル酸、ヘキサヒドロ無水トリメリット酸、ヘキサヒドロ無水ピロメリット酸、ヘキサヒドロ無水フタル酸、メチル化ヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、無水コハク酸、メチルシクロヘキセンジカルボン酸無水物などの脂環族ポリカルボン酸無水物類、マレイン酸無水物、リノレン酸無水物、リノール酸無水物、エレオステアリン酸無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ドデカンジカルボン酸無水物、エイコサンジカルボン酸無水物などの脂肪族ポリカルボン酸無水物類などが挙げられる。反応性の観点からは、脂環族ポリカルボン酸無水物が好ましい。これは、カルボン酸無水物が形成する環状構造の歪みが大きいほど反応性がよく、より低温及び、あるいは、より短時間で、カルボン酸無水物とエポキシドとの反応が進行するためである。 Carboxylic anhydrides include tetrahydrophthalic anhydride, methylated tetrahydrophthalic anhydride, hexahydrotrimellitic anhydride, hexahydropyromellitic anhydride, hexahydrophthalic anhydride, methylated hexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, Aliphatic polycarboxylic acid anhydrides such as methylbutenyltetrahydrophthalic anhydride, dodecenyl succinic anhydride, succinic anhydride, methylcyclohexenedicarboxylic anhydride, maleic anhydride, linolenic anhydride, linoleic anhydride, Examples thereof include aliphatic polycarboxylic acid anhydrides such as eleostearic acid anhydride, polyadipic acid anhydride, polyazeline acid anhydride, polysebacic acid anhydride, dodecane dicarboxylic acid anhydride, and eicosane dicarboxylic acid anhydride. From the viewpoint of reactivity, alicyclic polycarboxylic acid anhydrides are preferred. This is because the greater the distortion of the cyclic structure formed by the carboxylic acid anhydride, the better the reactivity, and the reaction between the carboxylic acid anhydride and the epoxide proceeds at a lower temperature and in a shorter time.
 エポキシドとカルボン酸無水物との反応は、反応の活性化エネルギーが高く反応進行に高温を必要とするため、反応促進剤を加えて活性化エネルギーを下げる必要がある。ゆえに、本発明では反応促進剤を加える。これにより、好適な処理温度及び処理時間の範囲でエポキシドとカルボン酸無水物との反応を完結させることができ、成分の熱劣化による着色や不純物の生成を抑制し、本発明の効果をより好ましく発揮することができる。 Since the reaction between epoxide and carboxylic acid anhydride has a high activation energy and requires a high temperature for the progress of the reaction, it is necessary to add a reaction accelerator to lower the activation energy. Therefore, a reaction accelerator is added in the present invention. As a result, the reaction between the epoxide and the carboxylic acid anhydride can be completed within a range of suitable treatment temperature and treatment time, and coloring and impurity generation due to thermal deterioration of the components are suppressed, and the effects of the present invention are more preferred. It can be demonstrated.
 好ましい反応促進剤としては、エポキシ化合物の硬化触媒として利用可能な各種の金属の有機錯塩類、金属塩類、エナミン類、アンモニウム塩類、ジアザビシクロウンデセン(DBU)やジアザビシクロノネン(DBN)などの環状アミジン類及びその塩、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)などの環状アミン類、ピリジン類、イミダゾール類の窒素原子含有複素芳香族化合物及びその塩類、3級アミノフェノール類、ボレート類、イミダゾリウム塩、リン化合物類などが利用可能である。特に、潜在性触媒として公知であるものが好ましい。詳細は「新エポキシ樹脂」(垣内 弘編著、昭晃堂)に記載がある。反応促進剤は触媒的に作用し反応で消費されることがないため、微量でも充分その効果を発揮することができる。具体的な添加量としては、バインダー前駆体全質量に対して0.1~10質量%が好ましく、0.5~8質量%がより好ましく、1~5質量%が更に好ましい。 Preferred reaction accelerators include organic complex salts of various metals that can be used as a curing catalyst for epoxy compounds, metal salts, enamines, ammonium salts, diazabicycloundecene (DBU), diazabicyclononene (DBN), and the like. Cyclic amidines and salts thereof, cyclic amines such as 1,4-diazabicyclo [2.2.2] octane (DABCO), pyridines, nitrogen-containing heteroaromatic compounds of imidazoles and their salts, tertiary amino acids Phenols, borates, imidazolium salts, phosphorus compounds and the like can be used. In particular, those known as latent catalysts are preferred. Details are described in “New Epoxy Resin” (edited by Akihiro Kakiuchi, Shosendo). Since the reaction accelerator acts catalytically and is not consumed in the reaction, the effect can be sufficiently exerted even in a trace amount. The specific addition amount is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably 1 to 5% by mass with respect to the total mass of the binder precursor.
 アンモニウム塩、アミジン類、環状アミン類を反応促進剤として用いる場合は、不純物として微量の1級、2級アミン類が含まれうる。従って、これらの化合物を反応促進剤として用いる場合は、不純物量が極力少なくなるように精製して用いることが好ましく、反応促進剤に含まれる不純物量を定量の上、組成物全量に対して0.1質量%以下になるよう調整することが好ましく、0.05質量%以下になるようにすることがより好ましい。この含量以下であれば、バインダー前駆体を反応させる際にエポキシドと不純物のアミン類が速やかに反応してウレア結合に転化して1級アミン、2級アミンが消失し、長期間の光照射下での黄変を未然に防ぐことができ、かつ、本来起こるべきエポキシドとカルボン酸無水物との反応によるバインダー生成過程及びその物性に顕著な影響を及ぼさないようにすることができる。また、反応初期の反応活性化を目的として、0.1質量%以下の添加量の範囲においては意図的に多官能1級アミン、多官能2級アミン化合物を添加して、反応促進剤の補助剤としてもよい。 When ammonium salts, amidines, and cyclic amines are used as reaction accelerators, trace amounts of primary and secondary amines may be included as impurities. Therefore, when these compounds are used as reaction accelerators, it is preferable to use them after purification so that the amount of impurities is as small as possible. The amount of impurities contained in the reaction accelerator is quantified and 0% of the total amount of the composition. It is preferable to adjust so that it may become 1 mass% or less, and it is more preferable to adjust to 0.05 mass% or less. If it is less than this content, when reacting the binder precursor, the epoxide and impurity amines react rapidly to convert to urea bonds, and the primary amine and secondary amine disappear, under prolonged light irradiation. Yellowing can be prevented in advance, and it is possible to prevent the binder formation process and the physical properties of the binder from forming due to the reaction between the epoxide and the carboxylic acid anhydride, which should originally occur. In addition, for the purpose of activating the reaction at the initial stage of the reaction, in the range of addition amount of 0.1% by mass or less, a polyfunctional primary amine or polyfunctional secondary amine compound is intentionally added to assist the reaction accelerator. It may be an agent.
 上述したエポキシドとカルボン酸無水物との組み合わせを熱硬化性化合物として含むバインダー前駆体は、エポキシドとカルボン酸無水物基との反応が1対1の量比で起こることからその混合比は各官能基の当量比が1対1である場合に互いに過不足なく反応が完了すると考えられるが、得られるバインダーの各種物性を適宜調節するために、その当量比を調節することができる。好ましくは、エポキシドの官能基当量と、酸無水物の官能基当量との当量比が、1:0.8~1:1.1が好ましく、1:0.9~1:1がより好ましい。 The binder precursor containing the above-mentioned combination of epoxide and carboxylic acid anhydride as a thermosetting compound has a one-to-one quantitative ratio of the epoxide and carboxylic acid anhydride group. When the equivalent ratio of groups is 1: 1, the reaction is considered to be completed without excess or deficiency, but the equivalent ratio can be adjusted in order to appropriately adjust various physical properties of the resulting binder. Preferably, the equivalent ratio of the functional group equivalent of the epoxide and the functional group equivalent of the acid anhydride is preferably 1: 0.8 to 1: 1.1, more preferably 1: 0.9 to 1: 1.
 また、上記では、エポキシドとカルボン酸無水物との組み合わせを熱硬化性化合物として含むバインダー前駆体を用いる場合について説明したが、エポキシドに代えてオキセタニル基の開環重合反応が可能な環状エーテル化合物(オキセタン化合物)とした組み合わせを熱硬化性化合物として含むバインダー前駆体も、上記と同様に好適に使用することができる。 Moreover, although the above demonstrated the case where the binder precursor containing the combination of an epoxide and a carboxylic acid anhydride was used as a thermosetting compound, it replaced with the epoxide, and the cyclic ether compound which can perform the ring-opening polymerization reaction of an oxetanyl group ( A binder precursor containing a combination of oxetane compounds) as a thermosetting compound can also be suitably used as described above.
 <エポキシドと熱重合開始剤との組み合わせ>
 本発明の蛍光体分散組成物の、熱硬化反応が熱重合反応である場合の好ましい態様としては、熱硬化性化合物がエポキシドを含み、バインダー前駆体に熱重合反応の熱重合開始剤を含む態様が挙げられる。
 使用するエポキシドとしては、既に述べたエポキシド類が好適に用いられる。特に、環状脂肪族エポキシド類が、反応速度に優れ、得られるバインダーの酸素バリア性及び水蒸気バリア性に優れるため、より好ましい。
 この組合せにおいては、重合反応がイオン重合となり膜中が酸性または塩基性に偏ることになるが、この場合に、蛍光体分散組成物全質量に対して0.1質量%より多い多官能1級アミン、多官能2級アミンが存在すると、熱重合開始剤がカチオン重合開始剤の場合は重合反応を抑制するため多量の開始剤を必要とする結果、内部のイオン濃度が上昇して着色の原因となる。また、熱重合開始剤がアニオン重合開始剤である場合、多官能1級アミン、多官能2級アミン上の水素原子の引き抜きが起こりやすくなって着色が加速される原因となりうる。ゆえに、熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量は、蛍光体分散組成物全質量に対して0.1質量%以下とする。
<Combination of epoxide and thermal polymerization initiator>
In a preferred embodiment of the phosphor dispersion composition of the present invention, when the thermosetting reaction is a thermopolymerization reaction, the thermosetting compound contains an epoxide, and the binder precursor contains a thermopolymerization initiator for the thermopolymerization reaction. Is mentioned.
As the epoxide to be used, the epoxides already described are preferably used. In particular, cycloaliphatic epoxides are more preferable because they are excellent in reaction rate and excellent in oxygen barrier property and water vapor barrier property of the resulting binder.
In this combination, the polymerization reaction becomes ionic polymerization, and the inside of the film is biased to acidic or basic. In this case, the polyfunctional primary that is more than 0.1% by mass with respect to the total mass of the phosphor dispersion composition. If an amine or a polyfunctional secondary amine is present, if the thermal polymerization initiator is a cationic polymerization initiator, a large amount of initiator is required to suppress the polymerization reaction. It becomes. Further, when the thermal polymerization initiator is an anionic polymerization initiator, hydrogen atoms on the polyfunctional primary amine and polyfunctional secondary amine are likely to be pulled out, which may cause coloring to be accelerated. Therefore, the total content of the polyfunctional primary amine and polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
 熱重合開始剤としては、ヨードニウム塩、スルホニウム塩、ホスホニウム塩等のオニウム塩化合物類、三フッ化ホウ素や、
 ハロゲン化亜鉛,ハロゲン化錫,ハロゲン化アルミニウム,ハロゲン化鉄などのルイス酸化合物と3級アミン類や窒素原子含有複素芳香族類との錯塩類、
 上述したイミダゾール類、環状アミジン類、及びそれらと有機酸との塩などが例示される。
As thermal polymerization initiators, iodonium salts, sulfonium salts, onium salt compounds such as phosphonium salts, boron trifluoride,
Complex salts of Lewis acid compounds such as zinc halides, tin halides, aluminum halides and iron halides with tertiary amines and nitrogen-containing heteroaromatics,
Illustrative are the imidazoles, cyclic amidines, and salts thereof with organic acids described above.
 重合形式は、カチオン重合(熱重合開始剤例:オニウム塩化合物類)であってもよいし、アニオン重合(熱重合開始剤例:イミダゾール類)であってもよい。これらの熱重合開始剤は、その成分の少なくとも一部、または、不純物や分解物に求核性の高い物質が含まれると、蛍光体の表面に吸着してしまいエポキシドの反応速度を弱めたり、同時に蛍光体分散組成物に含まれる蛍光体の発光効率に影響を及ぼすことがある。従って、熱重合開始剤には、求核性の高い成分、特に、1級アミン及び2級アミン類の含有量が少なくなるようにすることが好ましい。 Polymerization may be cationic polymerization (example of thermal polymerization initiator: onium salt compounds) or anionic polymerization (example of thermal polymerization initiator: imidazoles). When these thermal polymerization initiators contain at least a part of their components, or substances with high nucleophilicity in impurities and decomposition products, they are adsorbed on the surface of the phosphor, reducing the reaction rate of epoxides, At the same time, the luminous efficiency of the phosphor contained in the phosphor dispersion composition may be affected. Therefore, it is preferable that the thermal polymerization initiator has a low content of highly nucleophilic components, particularly primary amines and secondary amines.
 また、長期間の光照射下での黄変を防ぐ観点からも、1級アミン及び2級アミン類の含有量が少なくなるよう設計することが好ましい。具体的には、予め不純物の混入を防ぐ、あるいは、除去を行う、もしくは、熱重合開始剤の添加量を少なく抑えることによって、調製済みの組成物全質量に対し、1級アミン及び2級アミン類が2質量%以下とすることが好ましく、1質量%以下とすることがより好ましい。更に、熱重合開始剤は芳香環の数が少ないことが好ましい。芳香環を持たない熱重合開始剤(例:環状アミジン類及びその塩類)が特に好ましい。 Also, from the viewpoint of preventing yellowing under long-term light irradiation, it is preferable to design so that the content of primary amines and secondary amines is reduced. Specifically, primary amines and secondary amines are prepared with respect to the total mass of the prepared composition by preventing or removing impurities in advance or suppressing the addition amount of the thermal polymerization initiator to a small amount. The content is preferably 2% by mass or less, and more preferably 1% by mass or less. Furthermore, the thermal polymerization initiator preferably has a small number of aromatic rings. A thermal polymerization initiator having no aromatic ring (eg, cyclic amidines and salts thereof) is particularly preferred.
 熱重合開始剤は触媒的に作用し反応で消費されることがないため、微量でも充分その効果を発揮することができる。具体的な添加量としては、バインダー前駆体全質量に対して0.1~10質量%が好ましく、0.5~8質量%がより好ましく、1~5質量%が更に好ましい。 Since the thermal polymerization initiator acts catalytically and is not consumed by the reaction, the effect can be sufficiently exhibited even in a trace amount. The specific addition amount is preferably 0.1 to 10% by mass, more preferably 0.5 to 8% by mass, and still more preferably 1 to 5% by mass with respect to the total mass of the binder precursor.
 また、上記では、エポキシドと熱重合開始剤との組み合わせを熱硬化性化合物として含むバインダー前駆体を用いる場合について説明したが、エポキシドに代えてオキセタニル基の開環重合反応が可能な環状エーテル化合物(オキセタン化合物)とした組み合わせを熱硬化性化合物として含むバインダー前駆体も、上記と同様に好適に使用することができる。 Moreover, although the above demonstrated the case where the binder precursor which contains the combination of an epoxide and a thermal-polymerization initiator as a thermosetting compound was used, it replaced with the epoxide, and the cyclic ether compound in which the ring-opening polymerization reaction of an oxetanyl group ( A binder precursor containing a combination of oxetane compounds) as a thermosetting compound can also be suitably used as described above.
 [蛍光体]
 本発明の蛍光体分散組成物には、公知の各種蛍光体を用いることができる。例えば、希土類ドーピングガーネット、ケイ酸塩、アルミン酸塩、リン酸塩、セラミックス蛍光体、硫化物蛍光体、窒化物蛍光体等の無機蛍光体、および、有機蛍光染料および有機蛍光顔料を始めとする有機蛍光物質などである。また、半導体微粒子に希土類をドープした蛍光体、及び、半導体のナノ微粒子(量子ドット、量子ロッド)も好適に用いられる。
[Phosphor]
Various known phosphors can be used in the phosphor dispersion composition of the present invention. For example, rare earth doped garnet, silicate, aluminate, phosphate, ceramic phosphor, sulfide phosphor, nitride phosphor and other inorganic phosphors, and organic fluorescent dyes and organic fluorescent pigments Organic fluorescent materials. Further, a phosphor obtained by doping a semiconductor fine particle with a rare earth, and a semiconductor nanoparticle (quantum dot, quantum rod) are also preferably used.
 長期間の光照射に耐えうる良好な耐久性を有する点で、本発明の蛍光体分散組成物に含まれる蛍光体としては、無機蛍光体及び量子ドットが好ましい。特に、表示装置用の光源に用いる波長変換膜等に本発明の組成物を利用する場合、色再現性に優れた光源を提供する観点から、発光スペクトルの強度半値幅は狭いことが好ましいことから、量子ドットは特に好ましい蛍光体である。 Inorganic phosphors and quantum dots are preferred as the phosphors contained in the phosphor dispersion composition of the present invention in that they have good durability that can withstand long-term light irradiation. In particular, when the composition of the present invention is used for a wavelength conversion film or the like used for a light source for a display device, the intensity half-value width of the emission spectrum is preferably narrow from the viewpoint of providing a light source with excellent color reproducibility. Quantum dots are particularly preferred phosphors.
 蛍光体は、バインダー前駆体に分散して添加され、バインダー前駆体が反応によりバインダーへと転化する際に、分散された状態が保持されることでバインダー中に蛍光体が分散された状態を実現する。
 蛍光体をバインダー前駆体へ添加する際は、微粒子として調製したこれら蛍光体をバインダー前駆体もしくはその構成素材のいずれかに加えて適切な方法で分散して本発明の蛍光体分散組成物を得てもよいし、溶剤中に蛍光体微粒子が分散された分散液を調製し、バインダー前駆体にこの分散液を加えた後に分散液の溶剤を適宜減量または除去して本発明の蛍光体分散組成物を得てもよい。
The phosphor is added in a dispersed manner to the binder precursor, and when the binder precursor is converted into the binder by reaction, the dispersed state is maintained to realize a state in which the phosphor is dispersed in the binder. To do.
When adding the phosphor to the binder precursor, the phosphor prepared as fine particles is added to either the binder precursor or its constituent materials and dispersed by an appropriate method to obtain the phosphor dispersion composition of the present invention. Alternatively, the phosphor dispersion composition of the present invention may be prepared by preparing a dispersion in which phosphor fine particles are dispersed in a solvent, adding the dispersion to the binder precursor, and then reducing or removing the solvent in the dispersion as appropriate. You may get things.
 蛍光体は1種単独で用いることもできるが、所望の蛍光スペクトルが得られるように、異なる波長のものを複数混ぜて使用してもよいし、異なる素材構成の蛍光体同士の組み合わせ(例えば、希土類ドーピングガーネットと量子ドットとの組み合わせ)として用いてもよい。 Phosphors can be used alone, but in order to obtain a desired fluorescence spectrum, a plurality of phosphors having different wavelengths may be used in combination, or a combination of phosphors having different material configurations (for example, A combination of a rare earth-doped garnet and quantum dots may be used.
 本発明の蛍光体分散組成物における蛍光体の含有量は、蛍光体分散組成物の全質量に対して、所望の蛍光強度が得られるように調整されるが、例えば蛍光体分散組成物の全質量に対して0.01~30質量%の範囲が好ましく、0.05~20質量%がより好ましく、0.1~10質量%が更に好ましい。 The phosphor content in the phosphor dispersion composition of the present invention is adjusted so that a desired fluorescence intensity is obtained with respect to the total mass of the phosphor dispersion composition. The range of 0.01 to 30% by mass is preferable, 0.05 to 20% by mass is more preferable, and 0.1 to 10% by mass is still more preferable.
 量子ドットについては、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズ、ならびに、組成及びサイズ、により調整することができる。 Regarding quantum dots, for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but are not limited to those described here. As the quantum dots, commercially available products can be used without any limitation. The emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles and the composition and size.
 量子ドットを蛍光体として用いた場合、発明者らは、従来の1級アミンまたは2級アミンを含む蛍光体分散組成物を用いて得られた蛍光成形体では、上記黄変の問題に加え、蛍光の発光効率が初期から低下する場合があることを見出した。この現象について、発明者らは以下のメカニズムを推測している。 In the case where the quantum dot is used as a phosphor, the inventors, in addition to the above yellowing problem, in the phosphor molded body obtained using a phosphor dispersion composition containing a conventional primary amine or secondary amine, It has been found that the emission efficiency of fluorescence may decrease from the beginning. Regarding this phenomenon, the inventors presume the following mechanism.
 量子ドットは、発光特性の調整および分散性の付与(凝集の防止)を目的として、電子供与性の配位子とともに用いられるのが一般的である。これらの電子供与性の配位子として、例えばトリオクチルホスフィンオキサイド(TOPO)等の置換ホスフィンオキサイド類、オクチルホスフィン酸等の置換ホスフィン酸類、オクチルホスホン酸等の置換ホスホン酸類、1級アミン類、2級アミン類などの単座配位子を用いることが知られている。しかし、バインダー前駆体に含まれる熱硬化性化合物として1級アミンまたは2級アミンを使用する場合、これらは3次元架橋を構成するために多官能のアミンである必要があり、こうした化合物は必然的に複座配位子としての作用を有するため、単座配位子よりも配位能が高くなる。本発明者は、上記の作用の結果、多官能1級アミンまたは多官能2級アミンの熱硬化性化合物を含むバインダー前駆体を含む量子ドット分散組成物は、これら多官能1級アミンや多官能2級アミンが、意図せず量子ドットに元々配位している配位子と配位子交換を起こし、量子ドット本来の発光性能を損なったものと考えている。 Quantum dots are generally used together with an electron donating ligand for the purpose of adjusting light emission characteristics and imparting dispersibility (preventing aggregation). Examples of these electron donating ligands include substituted phosphine oxides such as trioctylphosphine oxide (TOPO), substituted phosphinic acids such as octylphosphinic acid, substituted phosphonic acids such as octylphosphonic acid, primary amines, 2 It is known to use monodentate ligands such as secondary amines. However, when primary amines or secondary amines are used as the thermosetting compounds contained in the binder precursor, these must be polyfunctional amines in order to constitute three-dimensional crosslinking, and these compounds are inevitable. Therefore, the coordinating ability is higher than that of the monodentate ligand. As a result of the above-mentioned action, the present inventor has obtained a quantum dot dispersion composition containing a binder precursor containing a polyfunctional primary amine or a thermosetting compound of a polyfunctional secondary amine. It is thought that the secondary amine unintentionally caused ligand exchange with the ligand originally coordinated to the quantum dot, thereby impairing the original light emission performance of the quantum dot.
 本発明の蛍光体分散組成物は、既に述べてきたように、バインダー前駆体の熱硬化性化合物として多官能1級アミンまたは多官能2級アミンを全質量に対して0.1質量%以下で含む構成としていることから、電子供与性が低く、量子ドットに元々配位している配位子と配位子交換による影響を小さく抑制できる。従って、蛍光体として量子ドットを用いた場合においても、上記配位子交換による影響を小さく抑制でき、量子ドット本来の発光性能を発現可能なものとなる。以上より、蛍光体として量子ドットを用いた場合は、本発明の蛍光体分散組成物は、上記本発明の課題を解決する効果に加え、量子ドット本来の発光性能を発現可能な蛍光成形体、波長変換層、波長変換体を得られるという効果を奏する。配位能の尺度としては、酸解離定数(pKa)を指標とすることができる。すなわち、量子ドットの配位子より低い酸解離定数を有するバインダー前駆体を用いることが好ましいひとつの様態である。 As already described, the phosphor dispersion composition of the present invention contains 0.1% by mass or less of polyfunctional primary amine or polyfunctional secondary amine as the thermosetting compound of the binder precursor with respect to the total mass. Since it is configured to include, the electron donating property is low, and the influence of ligand exchange and ligand exchange originally coordinated to the quantum dot can be suppressed to a small extent. Therefore, even when quantum dots are used as the phosphor, the influence of the ligand exchange can be suppressed to be small, and the original light emission performance of the quantum dots can be expressed. From the above, when quantum dots are used as the phosphor, the phosphor dispersion composition of the present invention is a fluorescent molded body capable of expressing the original light emission performance of the quantum dots in addition to the effect of solving the above-mentioned problems of the present invention, The wavelength conversion layer and the wavelength converter can be obtained. As a measure of coordination ability, acid dissociation constant (pKa) can be used as an index. That is, it is one preferred mode to use a binder precursor having an acid dissociation constant lower than that of the quantum dot ligand.
 [その他の添加剤]
 本発明の蛍光体分散組成物には、必要に応じ各種の機能性添加剤を加えることができる。例えば、基材等への塗布適性を付与するための粘度調整剤(チキソトロピー付与剤)、比重調整剤、反応性希釈剤、溶剤、レベリング剤、消泡剤等、基材との密着を改良するための密着改良剤、表面エネルギー調整剤、長期間の光照射下での劣化を防止するための酸化防止剤、ラジカルスカベンジャー、水分ゲッター剤、酸素ゲッター剤等、所望の蛍光発光スペクトルを得るためのUV吸収剤、可視光吸収剤、IR吸収剤等、蛍光体の分散を補助するための分散助剤、ミセル化剤、粘度調製剤等、フィルム等の成形体を形成する際の力学特性、表面特性を調節するための可塑剤、脆性改良剤、帯電防止剤、防汚剤、フィラー等、成形体の光学特性を調節するための屈折率調整剤、光散乱剤等などである。
[Other additives]
Various functional additives can be added to the phosphor dispersion composition of the present invention as necessary. For example, improve adhesion to base materials such as viscosity modifiers (thixotropic agents), specific gravity modifiers, reactive diluents, solvents, leveling agents, antifoaming agents, etc. For obtaining a desired fluorescence emission spectrum such as an adhesion improver, a surface energy adjusting agent, an antioxidant for preventing deterioration under long-term light irradiation, a radical scavenger, a moisture getter agent, an oxygen getter agent, etc. UV absorbers, visible light absorbers, IR absorbers, etc., dispersion aids for assisting the dispersion of phosphors, micellar agents, viscosity modifiers, etc., mechanical properties when forming molded articles such as films, surface These include plasticizers for adjusting properties, brittleness improving agents, antistatic agents, antifouling agents, fillers, etc., refractive index adjusting agents for adjusting optical properties of molded articles, light scattering agents, and the like.
 <蛍光体分散組成物の調製方法>
 本発明の蛍光体分散組成物は、上述の素材を混合することにより得ることができる。ただし、イソシアネート基と水酸基、エポキシドとカルボン酸無水物基、及び、熱重合開始剤とエポキシド、等のように、上記熱硬化性化合物及びその熱硬化反応に寄与する反応促進剤や熱重合開始剤は、混合しただけで微量ずつ反応が始まり、その際に生じる反応熱によって更に反応が加速し意図せずに反応が進行する虞がある。ゆえに、これらの組み合わせを混合してから熱を印加し反応を進行させるまでの時間は短いほうが好ましい。あるいは、冷却により意図しない反応の進行を抑えておくことが好ましい。
<Method for Preparing Phosphor Dispersion Composition>
The phosphor dispersion composition of the present invention can be obtained by mixing the aforementioned materials. However, such as an isocyanate group and a hydroxyl group, an epoxide and a carboxylic anhydride group, and a thermal polymerization initiator and an epoxide, the thermosetting compound and a reaction accelerator and a thermal polymerization initiator that contribute to the thermosetting reaction. The reaction starts little by just mixing, and the reaction heat is further accelerated by the reaction heat generated at that time, and the reaction may proceed unintentionally. Therefore, it is preferable that the time from mixing these combinations to applying heat to advance the reaction is short. Or it is preferable to suppress the progress of the unintended reaction by cooling.
 蛍光体分散組成物の調製方法の好適な態様としては、上述の組み合わせを個別に調製し、製膜工程(塗布工程)の直前に混合する方法が挙げられる。例えば、多価イソシアネートとポリオールとの組み合わせにおいては、多価イソシアネート液と、ポリオール液とをそれぞれ調製し、使用の直前に混合する。上述の方法によって添加される蛍光体及びその他の添加剤は、多価イソシアネート液かポリオール液かのいずれか一方、または、両方に予め混合しておけばよい。反応促進剤を用いる場合は、反応促進剤はイソシアネート基に活性なため、ポリオール液側にのみ混合しておくことが好ましい。混合は、ミキシングタンクを用いても攪拌混合してもよいし、スタティックミキサーを用いて送液ライン内で行ってもよい。 A preferred embodiment of the method for preparing the phosphor dispersion composition includes a method in which the above combinations are individually prepared and mixed immediately before the film forming step (coating step). For example, in the combination of a polyvalent isocyanate and a polyol, a polyvalent isocyanate liquid and a polyol liquid are prepared and mixed immediately before use. The phosphor and other additives added by the above-described method may be mixed in advance in either one or both of a polyvalent isocyanate liquid and a polyol liquid. When a reaction accelerator is used, the reaction accelerator is active on an isocyanate group, so it is preferable to mix only on the polyol liquid side. Mixing may be carried out using a mixing tank or by stirring and mixing, or may be carried out in a liquid feed line using a static mixer.
 また、水分及び酸素は、本発明で好適に用いられるバインダー前駆体の反応を阻害する虞や、硬化後の膜中でバインダー及び蛍光体の劣化を誘起する虞があるため、蛍光体分散組成物中から除去しておくことが好ましい。ゆえに、調製から混合に至るまでの工程は気密タンクを用いて水分及び酸素を充分に除去した環境下で行うことが好ましい。例えばこのような工程は、リキッド・コントロール社(米国)から入手可能な気密型自動調液装置(商品名:ポシラティオ(POSIRATIO))を用いることにより実現が可能である。系中には不活性ガス、例えば乾燥した窒素ガスをフローさせ、適宜、溶存酸素及び溶存水分を除去することで、系中から酸素及び水分を除去することができる。 In addition, since the moisture and oxygen may inhibit the reaction of the binder precursor preferably used in the present invention and may cause deterioration of the binder and the phosphor in the cured film, the phosphor dispersion composition It is preferable to remove from the inside. Therefore, the steps from preparation to mixing are preferably performed in an environment in which moisture and oxygen are sufficiently removed using an airtight tank. For example, such a process can be realized by using an airtight automatic liquid preparation device (trade name: Posilatio) available from Liquid Control (USA). By flowing an inert gas, for example, a dry nitrogen gas, into the system and appropriately removing dissolved oxygen and dissolved moisture, oxygen and moisture can be removed from the system.
 同様に、エポキシドとカルボン酸無水物とを用いる場合は、エポキシド液とカルボン酸無水物液とをそれぞれ調製する。この際、反応促進剤はエポキシドに対して活性であり、カルボン酸無水物液側にのみ混合しておくことが望ましい。また、エポキシドと熱重合開始剤とを用いる場合は、熱重合開始剤が液状であれば必要に応じ反応性希釈剤等に希釈した液とエポキシド液とを個別に調製してもよいし、熱重合開始剤が固体状の場合は微量のエポキシドに溶解して充分に冷却した副エポキシド液と、主エポキシド液とを個別に調製してもよい。 Similarly, when using an epoxide and a carboxylic acid anhydride, prepare an epoxide solution and a carboxylic acid anhydride solution, respectively. At this time, the reaction accelerator is active with respect to the epoxide, and it is desirable to mix only on the carboxylic anhydride liquid side. In addition, when using an epoxide and a thermal polymerization initiator, if the thermal polymerization initiator is in a liquid state, a liquid diluted with a reactive diluent or the like and an epoxide liquid may be separately prepared as necessary. When the polymerization initiator is in a solid state, a sub-epoxide solution that is dissolved in a small amount of epoxide and sufficiently cooled, and a main epoxide solution may be prepared separately.
 また、混合した後のバインダー前駆体を、充分に冷却しておくことも好ましい一態様である。この際は冷却により分散した蛍光体や、添加した各種機能性添加剤が凝集または析出しないように充分注意して冷却温度を設定する必要がある。 Also, it is a preferable aspect that the binder precursor after mixing is sufficiently cooled. At this time, it is necessary to set the cooling temperature with sufficient care so that the phosphor dispersed by cooling and various added functional additives do not aggregate or precipitate.
 [蛍光成形体]
 本発明の蛍光体分散組成物は、バインダー前駆体を熱硬化させることによりバインダーに転化して蛍光成形体を得ることができる。蛍光成形体の形状をシート状、フィルム状、ロッド状、帯状、ダイス状、レンズ状、その他種々の形状に成形し、更に基材や他の機能層と組み合わせることで、種々の波長変換部材として利用することができる。また、基材上にドット状や格子状のパターンを形成するように成形して用いてもよいし、キャビティ内に充填して成形してもよい。
[Fluorescent molded body]
The phosphor dispersion composition of the present invention can be converted into a binder by thermosetting the binder precursor to obtain a fluorescent molded body. By forming the shape of the fluorescent molded body into sheets, films, rods, strips, dice, lenses, and other various shapes, and combining with base materials and other functional layers, various wavelength conversion members Can be used. Further, it may be formed and used so as to form a dot-like or lattice-like pattern on the substrate, or may be formed by filling the cavity.
 以上述べたように、本発明の蛍光体分散組成物は、励起光照射により蛍光を発する蛍光体がバインダー中に分散されてなる蛍光成形体の、熱硬化反応による形成に用いられるものであり、熱硬化反応により形成されるバインダ-の前駆体に、熱硬化反応により三次元網目構造を形成する少なくとも1種の熱硬化性化合物を含み、熱硬化性化合物としての多官能1級アミン、多官能2級アミンの合計含有量が蛍光体分散組成物全質量に対し0.1質量%以下としている。かかる構成によれば、長時間の光照射で生じるアミン化合物の反応による黄変を未然に防ぐことができるため、数十μm~数百μmの厚膜であっても反りや硬化むらが小さい膜を製膜できるという熱硬化製膜の利点を有し、且つ、耐光性に優れ、長期信頼性に優れる蛍光成形体を製造することができる。
 従って、本発明の蛍光体分散組成物を熱硬化させて形成されてなる蛍光成形体は、反りや硬化むらが小さく、且つ、耐光性に優れ、出射光の強度及び色味の長期信頼性に優れている。
As described above, the phosphor dispersion composition of the present invention is used for forming a fluorescent molded body in which a phosphor that emits fluorescence when irradiated with excitation light is dispersed in a binder, by a thermosetting reaction, The binder precursor formed by the thermosetting reaction contains at least one thermosetting compound that forms a three-dimensional network structure by the thermosetting reaction, and is a polyfunctional primary amine or polyfunctional as a thermosetting compound. The total content of secondary amine is 0.1% by mass or less based on the total mass of the phosphor dispersion composition. According to such a configuration, yellowing due to the reaction of the amine compound caused by long-time light irradiation can be prevented in advance, so that even a thick film of several tens μm to several hundred μm has little warping and uneven curing. It is possible to produce a fluorescent molded article having the advantages of thermosetting film formation that can be formed into a film, having excellent light resistance, and excellent long-term reliability.
Therefore, the fluorescent molded body formed by heat-curing the phosphor dispersion composition of the present invention has small warpage and curing unevenness, excellent light resistance, and long-term reliability of emitted light intensity and color. Are better.
 「波長変換部材及びバックライトユニット」
 上記本発明の蛍光体分散組成物を熱硬化させて形成されたシート状、フィルム状の蛍光成形体は、液晶表示装置のバックライトを構成する波長変換部材に備えられてなる波長変換層として好適である。
"Wavelength conversion member and backlight unit"
A sheet-like or film-like fluorescent molded body formed by thermosetting the phosphor dispersion composition of the present invention is suitable as a wavelength conversion layer provided in a wavelength conversion member constituting a backlight of a liquid crystal display device. It is.
 図面を参照して、本発明にかかる一実施形態の波長変換部材及びそれを備えたバックライトユニットについて説明する。図1は、本実施形態の波長変換部材を備えたバックライトユニットの概略構成断面図であり、図2は、本実施形態の波長変換部材の概略構成断面図である。本明細書の図面において、視認しやすくするために各部の縮尺を適宜変更して示してある。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 With reference to the drawings, a wavelength conversion member according to an embodiment of the present invention and a backlight unit including the same will be described. FIG. 1 is a schematic cross-sectional view of a backlight unit including the wavelength conversion member of the present embodiment, and FIG. 2 is a schematic cross-sectional view of the wavelength conversion member of the present embodiment. In the drawings of this specification, the scale of each part is appropriately changed and shown for easy visual recognition. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 図1に示されるように、バックライトユニット2は、一次光(青色光L)を出射する光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源1Cと、面状光源1C上に備えられてなる波長変換部材1Dと、波長変換部材1Dを挟んで面状光源1Cと対向配置される再帰反射性部材2Bと、
 面状光源1Cを挟んで波長変換部材1Dと対向配置される反射板2Aとを備えており、波長変換部材1Dは、面状光源1Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(L,L)及び波長変換部材1Dを透過した一次光Lを出射するものである。
As shown in FIG. 1, the backlight unit 2 includes a light source 1A that emits primary light (blue light L B ) and a light guide plate 1B that guides and emits the primary light emitted from the light source 1A. A planar light source 1C, a wavelength conversion member 1D provided on the planar light source 1C, a retroreflective member 2B disposed opposite to the planar light source 1C across the wavelength conversion member 1D,
Across the surface light source 1C and a reflecting plate 2A disposed opposite and the wavelength converting member 1D, the wavelength conversion member 1D, at least a portion of the primary light L B emitted from the surface light source 1C excitation light as it emits fluorescence, in which emits this fluorescence consists secondary light (L G, L R) and the primary light L B having passed through the wavelength conversion member 1D.
 図2に示されるように、波長変換部材1Dは、励起光により励起されて蛍光を発光する量子ドットを含む波長変換層30と、波長変換層30の両面に備えられている基板11,21とを有しており、基材11と21の波長変換層30側の面には、有機バリア層12a,22aと無機バリア層12b,22bとを有するバリア層12,22が基材11と21に接して形成されている。また、基材11は、波長変換層30側の面と反対側の面に、凹凸構造を付与する凹凸付与層13を備えている。本実施形態において、凹凸付与層(マット層)13は、光拡散層としての機能も有している。 As shown in FIG. 2, the wavelength conversion member 1 </ b> D includes a wavelength conversion layer 30 including quantum dots that are excited by excitation light to emit fluorescence, and substrates 11 and 21 provided on both surfaces of the wavelength conversion layer 30. The barrier layers 12 and 22 having the organic barrier layers 12a and 22a and the inorganic barrier layers 12b and 22b are formed on the base materials 11 and 21 on the surface of the base materials 11 and 21 on the wavelength conversion layer 30 side. It is formed in contact. Moreover, the base material 11 is equipped with the uneven | corrugated provision layer 13 which provides an uneven | corrugated structure in the surface on the opposite side to the surface at the wavelength conversion layer 30 side. In the present embodiment, the unevenness imparting layer (matte layer) 13 also has a function as a light diffusion layer.
 図1において、波長変換部材1Dから出射されたL,L,Lは、再帰反射性部材2Bに入射し、入射した各光は、再帰反射性部材2Bと反射板2Aとの間で反射を繰り返し、何度も波長変換部材1Dを通過する。その結果、波長変換部材1Dでは充分な量の励起光(青色光L)が波長変換層30内の量子ドット30A、30Bによって吸収され、必要な量の蛍光(L,L)が発光し、再帰反射性部材2Bから白色光Lが具現化されて出射される。
 以下、波長変換部材1Dの各構成要素について説明する。
In FIG. 1, L B , L G , and L R emitted from the wavelength conversion member 1D are incident on the retroreflective member 2B, and each incident light is transmitted between the retroreflective member 2B and the reflector 2A. The reflection is repeated and passes through the wavelength conversion member 1D many times. As a result, in the wavelength conversion member 1D, a sufficient amount of excitation light (blue light L B ) is absorbed by the quantum dots 30A and 30B in the wavelength conversion layer 30, and a necessary amount of fluorescence (L G , L R ) is emitted. The white light LW is embodied and emitted from the retroreflective member 2B.
Hereinafter, each component of the wavelength conversion member 1D will be described.
 [波長変換層(波長変換膜)]
 本実施形態において、波長変換層(波長変換膜)30は、基材11の表面にバリア層12を備えてなるバリアフィルム10(または、基材21の表面にバリア層22を備えてなるバリアフィルム20)上に、上記本発明の蛍光体分散組成物を塗布して蛍光体分散組成物の塗膜を形成し、塗膜を熱硬化させることによって形成されてなり、有機マトリックス30P中に青色光Lにより励起されて蛍光(赤色光)Lを発光する量子ドット(蛍光体)30Aと、青色光Lにより励起されて蛍光(緑色光)Lを発光する量子ドット(蛍光体)30Bが分散されてなる。なお、図2において量子ドット30A,30Bは、視認しやすくするために大きく記載してあるが、実際は、例えば、波長変換層30の厚み50~100μmに対し、量子ドットの直径は2~7nm程度である。
[Wavelength conversion layer (wavelength conversion film)]
In the present embodiment, the wavelength conversion layer (wavelength conversion film) 30 is a barrier film 10 including the barrier layer 12 on the surface of the substrate 11 (or a barrier film including the barrier layer 22 on the surface of the substrate 21). 20) The phosphor dispersion composition of the present invention is applied to form a coating film of the phosphor dispersion composition, and the coating film is thermally cured, and blue light is formed in the organic matrix 30P. are excited by L B fluorescence (red light) quantum dots (phosphor) which emits L R 30A and is excited by the blue light L B fluorescence (green light) quantum dots (phosphor) which emits L G 30B Is distributed. In FIG. 2, the quantum dots 30A and 30B are greatly illustrated for easy visual recognition, but in actuality, for example, the diameter of the quantum dots is about 2 to 7 nm with respect to the thickness of the wavelength conversion layer 30 of 50 to 100 μm. It is.
 既に述べたように、表示装置用の光源に用いる波長変換膜では、色再現性に優れた光源を提供する観点から、発光スペクトルの強度半値幅は狭い量子ドットが、含まれる蛍光体として好ましい。 As already described, in the wavelength conversion film used for the light source for the display device, from the viewpoint of providing a light source excellent in color reproducibility, a quantum dot having a narrow half-value width of the emission spectrum is preferable as a phosphor.
 量子ドットとしては発光特性の異なる二種以上の量子ドットを含むことができ、本実施形態において、量子ドットは、青色光Lにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、青色光Lにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bである。また、紫外光LUVにより励起されて蛍光(赤色光)Lを発光する量子ドット30Aと、紫外光LUVにより励起されて蛍光(緑色光)Lを発光する量子ドット30Bと、紫外光LUVにより励起されて蛍光(青色光)Lを発光する量子ドット30C(図示せず)を含むこともできる。 The quantum dots can contain different two or more quantum dot emission characteristics, in the present embodiment, the quantum dots 30A for emitting quantum dots is excited by the blue light L B fluorescence (red light) L R When a quantum dot 30B that emits when excited by the blue light L B fluorescence (green light) L G. Moreover, the quantum dots 30A are excited by ultraviolet light LUV that emits fluorescence (red light) L R, and the quantum dots 30B that emits fluorescence (green light) L G is excited by ultraviolet light LUV, by ultraviolet light LUV is excited can also comprise a fluorescent quantum dots 30C that emits (blue light) L B (not shown).
 公知の量子ドットには、600nm以上680nm以下の範囲の波長帯域に発光中心波長を有する量子ドット30A、520nm以上560nm以下の範囲の波長帯域に発光中心波長を有する量子ドット30B、400nm以上500nm以下の波長帯域に発光中心波長を有する量子ドット30C(青色光を発光)が知られている。 The known quantum dots include a quantum dot 30A having an emission center wavelength in a wavelength band ranging from 600 nm to 680 nm, a quantum dot 30B having an emission center wavelength in a wavelength band ranging from 520 nm to 560 nm, and from 400 nm to 500 nm. A quantum dot 30C (emitting blue light) having an emission center wavelength in a wavelength band is known.
 量子ドットについては、上記の記載に加えて、例えば特開2012-169271号公報段落0060~0066を参照することができるが、ここに記載のものに限定されるものではない。量子ドットとしては、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調整することができる。 Regarding quantum dots, in addition to the above description, for example, JP 2012-169271 A paragraphs 0060 to 0066 can be referred to, but the quantum dots are not limited thereto. As the quantum dots, commercially available products can be used without any limitation. The emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
 量子ドットは、上記蛍光体分散組成物に粒子の状態で添加してもよく、溶媒に分散した分散液の状態で添加してもよい。分散液の状態で添加することが量子ドットの粒子の凝集を抑制する観点から好ましい。ここで使用される溶媒は、特に限定されるものではない。量子ドットは、蛍光体分散組成物の全量100質量部に対して、例えば0.01~10質量部程度添加することができる。 Quantum dots may be added to the phosphor dispersion composition in the form of particles, or may be added in the form of a dispersion dispersed in a solvent. The addition in the state of a dispersion is preferable from the viewpoint of suppressing the aggregation of the quantum dot particles. The solvent used here is not particularly limited. The quantum dots can be added in an amount of, for example, about 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the phosphor dispersion composition.
 蛍光体分散組成物において、量子ドットの含有量は、重合性組成物に含まれる硬化性化合物の全質量に対し0.01~10質量%が好ましく、0.05~5質量%がより好ましい。 In the phosphor dispersion composition, the content of the quantum dots is preferably 0.01 to 10% by mass, and more preferably 0.05 to 5% by mass with respect to the total mass of the curable compound contained in the polymerizable composition.
 波長変換層30は、上記本発明の蛍光体分散組成物を熱硬化して形成されてなるので、反りや硬化むらが小さく、且つ、耐光性に優れ、出射光の強度及び色味の長期信頼性に優れている。 Since the wavelength conversion layer 30 is formed by thermosetting the phosphor dispersion composition of the present invention, the warpage and curing unevenness are small, the light resistance is excellent, the long-term reliability of the intensity and color of emitted light. Excellent in properties.
 シート状またはフィルム状の形態において、波長変換層30は強靭であることが好ましい。すなわち、引張りや折り曲げにおいても破断、クラック等の破壊や伸びによる永久変形を起こさないことが好ましい。既に基材等に積層されている波長変換層についてこれらの特性を評価するには、基材等の不必要な構成部材を切削もしくは研磨等で物理的に除去して波長変換層のみとした後、試験すればよい。また、蛍光体分散組成物自体もしくはその原料を入手できる場合は、剥離除去可能な支持体上に膜を形成したのち剥ぎ取って、波長変換層のみを得てこれらを試験して測定することができる。 In the form of a sheet or film, the wavelength conversion layer 30 is preferably strong. That is, it is preferable not to cause permanent deformation due to breakage or cracking or elongation even in tension or bending. In order to evaluate these characteristics of the wavelength conversion layer already laminated on the base material, etc., after unnecessary components such as the base material are physically removed by cutting or polishing, etc., to make only the wavelength conversion layer. You can test it. In addition, when the phosphor dispersion composition itself or its raw material can be obtained, it can be peeled off after forming a film on a peelable and removable support, and only the wavelength conversion layer can be obtained and tested and measured. it can.
 波長変換層の引張り強度としては、JIS K-7113に準拠した測定法において、20~7000MPaの範囲が好ましく、30~2000MPaの範囲がより好ましい。この範囲であると、ずり応力が印加されても波長変換層が歪まず、また、巻き取りや加工に必要な柔軟性とが両立されうる。また、破断伸度は5%~200%の範囲が好ましく、10%~100%がより好ましい。破断伸度がこの範囲であると、後述する折り曲げ試験や、搬送時の張力や基材の湿熱膨張によって生じる引張り応力で破壊されることがなく、過度に伸びて永久変形を起こすこともない。 The tensile strength of the wavelength conversion layer is preferably in the range of 20 to 7000 MPa, more preferably in the range of 30 to 2000 MPa in the measurement method based on JIS K-7113. Within this range, the wavelength conversion layer is not distorted even when shear stress is applied, and both flexibility and flexibility required for winding and processing can be achieved. Further, the breaking elongation is preferably in the range of 5% to 200%, more preferably 10% to 100%. When the elongation at break is within this range, it is not broken by a bending test described later, or tensile stress generated by the tension during transportation or wet heat expansion of the substrate, and it does not stretch excessively and cause permanent deformation.
 折り曲げ耐性としては、ショッパー耐折試験においてJIS P―8114:2003に基づき試験を行い、破壊まで10回以上耐えることが好ましく、50回以上耐えることがより好ましい。 As bending resistance, a shopper folding test is performed based on JIS P-8114: 2003, and it is preferable to withstand 10 times or more until breakdown, and more preferably 50 times or more.
 マルテンス硬度(石英ガラス上に置いて測定した場合)は、70~300MPaの範囲が好ましく、100~200MPaの範囲が好ましい。この範囲であると、他部材との接触や製造中の接触による波長変換層の凹みが生じにくく、かつ、波長変換層が適度にクッションになることによって基材が損傷することも抑えられる。 Martens hardness (when measured on quartz glass) is preferably in the range of 70 to 300 MPa, more preferably in the range of 100 to 200 MPa. Within this range, dents in the wavelength conversion layer due to contact with other members or during manufacturing are unlikely to occur, and damage to the base material due to moderate cushioning of the wavelength conversion layer can be suppressed.
 [バリアフィルム]
 波長変換層30を挟持するバリアフィルム10,20は、水分及び/又は酸素の透過を抑制する機能を有するフィルムであり、本実施形態では、基材11,21上にバリア層12,22をそれぞれ備えた構成を有している。かかる態様では、基材の存在により、波長変換部材1Dの強度が向上され、且つ、容易に製膜を実施することができる。
 なお、本実施形態ではバリア層12,22が基材11,21により支持されてなるバリアフィルム10,20が、波長変換層30の両主面にバリア層12,22が隣接して備えられている波長変換部材について示してあるが、バリア層12,22は基材11,21に支持されていなくてもよく、また、基材11,21がバリア性を充分有している場合は、基材11,21のみでバリア層を形成してもよい。
[Barrier film]
The barrier films 10 and 20 that sandwich the wavelength conversion layer 30 are films having a function of suppressing the transmission of moisture and / or oxygen. In this embodiment, the barrier layers 12 and 22 are respectively formed on the base materials 11 and 21. It has the composition provided. In such an embodiment, due to the presence of the base material, the strength of the wavelength conversion member 1D is improved, and film formation can be easily performed.
In this embodiment, the barrier films 10 and 20 in which the barrier layers 12 and 22 are supported by the base materials 11 and 21 are provided on both main surfaces of the wavelength conversion layer 30 so that the barrier layers 12 and 22 are adjacent to each other. However, the barrier layers 12 and 22 may not be supported by the base materials 11 and 21, and if the base materials 11 and 21 have sufficient barrier properties, The barrier layer may be formed only from the materials 11 and 21.
 また、バリアフィルム10,20は、本実施形態のように、波長変換層30の両面に備えられた態様が好ましいが、片面にだけ備えられた態様であってもよい。 Further, the barrier films 10 and 20 are preferably provided on both sides of the wavelength conversion layer 30 as in the present embodiment, but may be provided only on one side.
 バリアフィルムは、可視光領域における全光線透過率が80%以上であることが好ましく、90%以上であることがより好ましい。可視光領域とは、380~780nmの波長領域をいうものとし、全光線透過率とは、可視光領域にわたる光透過率の平均値を示す。 The barrier film preferably has a total light transmittance of 80% or more in the visible light region, and more preferably 90% or more. The visible light region refers to a wavelength region of 380 to 780 nm, and the total light transmittance indicates an average value of light transmittance over the visible light region.
 バリアフィルム10,20の酸素透過率は1.00cm/(m・day・atm)以下であることが好ましい。バリアフィルム10,20の酸素透過率は、より好ましくは、0.10cm/(m・day・atm)以下、更に好ましくは、0.01cm/(m・day・atm)以下である。なお、本明細書において、酸素透過率は、測定温度23℃、相対湿度90%の条件下で、酸素ガス透過率測定装置(MOCON社製、OX-TRAN 2/20:商品名)を用いて測定した値である。また、本明細書において、酸素透過率の単位は、[cm/(m・day・atm)]を使用している。酸素透過率1.0cm/(m・day・atm)は、SI単位系では酸素透過率1.14×10-1fm/(s・Pa)に相当する。 The oxygen permeability of the barrier films 10 and 20 is preferably 1.00 cm 3 / (m 2 · day · atm) or less. Oxygen permeability of the barrier film 10 and 20, more preferably, 0.10cm 3 / (m 2 · day · atm) or less, more preferably is 0.01cm 3 / (m 2 · day · atm) or less . In this specification, the oxygen permeability is measured using an oxygen gas permeability measuring device (manufactured by MOCON, OX-TRAN 2/20: trade name) under the conditions of a measurement temperature of 23 ° C. and a relative humidity of 90%. It is a measured value. In this specification, the unit of oxygen permeability is [cm 3 / (m 2 · day · atm)]. The oxygen permeability of 1.0 cm 3 / (m 2 · day · atm) corresponds to an oxygen permeability of 1.14 × 10 −1 fm / (s · Pa) in the SI unit system.
 バリアフィルム10,20は、酸素を遮断するガスバリア機能に加え、水分(水蒸気)を遮断する機能を有している。波長変換部材1Dにおいて、バリアフィルム10,20の透湿度(水蒸気透過率)は0.10g/(m・day・atm)以下である。バリアフィルム10,20の透湿度は、好ましくは、0.01g/(m・day・atm)以下である。本明細書において、バリア層の透湿度は、測定温度40℃、相対湿度90%RHの条件下で、G.NISATO、P.C.P.BOUTEN、P.J.SLIKKERVEERらSID Conference Record of the International Display Research Conference 1435-1438頁に記載の方法(カルシウム法)を用いて測定した値である。本明細書において、透湿度の単位は、[g/(m・day・atm)]を使用している。透湿度0.1g/(m・day・atm)は、SI単位系では透湿度1.14×10-11g/(m・s・Pa)に相当する。 The barrier films 10 and 20 have a function of blocking moisture (water vapor) in addition to a gas barrier function of blocking oxygen. In the wavelength conversion member 1D, the moisture permeability (water vapor transmission rate) of the barrier films 10 and 20 is 0.10 g / (m 2 · day · atm) or less. The moisture permeability of the barrier films 10 and 20 is preferably 0.01 g / (m 2 · day · atm) or less. In this specification, the moisture permeability of the barrier layer is described in G. NISATO, PCPBOUTEN, PJSLIKKERVEER et al., SID Conference Record of the International Display Research Conference, pages 1435-1438, at a measurement temperature of 40 ° C. and a relative humidity of 90% RH. It is the value measured using the method (calcium method). In this specification, the unit of moisture permeability is [g / (m 2 · day · atm)]. A moisture permeability of 0.1 g / (m 2 · day · atm) corresponds to a moisture permeability of 1.14 × 10 −11 g / (m 2 · s · Pa) in the SI unit system.
 <基材>
 基材11,21の平均膜厚は、波長変換部材の耐衝撃性等の観点から、10μm以上500μm以下であることが好ましく、20μm以上400μm以下であることがより好ましく、30μm以上300μm以下であることが好ましい。波長変換層30に含まれる量子ドット30A,30Bの濃度を低減した場合や、波長変換層30の厚みを低減した場合のように、光の再帰反射を増加させる態様では、波長450nmの光の吸収率がより低いことが好ましいため、輝度低下を抑制する観点から、基材11,21の平均膜厚は、40μm以下であることが好ましく、25μm以下であることが更に好ましい。
<Base material>
The average film thickness of the substrates 11 and 21 is preferably 10 μm to 500 μm, more preferably 20 μm to 400 μm, and more preferably 30 μm to 300 μm from the viewpoint of impact resistance of the wavelength conversion member. It is preferable. In an aspect in which retroreflection of light is increased, such as when the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30 is reduced, or when the thickness of the wavelength conversion layer 30 is reduced, absorption of light having a wavelength of 450 nm is performed. Since the rate is preferably lower, the average film thickness of the base materials 11 and 21 is preferably 40 μm or less, and more preferably 25 μm or less from the viewpoint of suppressing a decrease in luminance.
 波長変換層30に含まれる量子ドット30A,30Bの濃度をより低減させる、あるいは波長変換層30の厚みをより低減させるには、LCDの表示色を維持するためにバックライトユニットの再帰反射性部材2Bに、プリズムシートを複数枚設ける等、光の再帰反射を増加させる手段を設けて更に励起光が波長変換層を通過する回数を増加させる必要がある。従って、基材は可視光に対して透明である透明基材であることが好ましい。ここで可視光に対して透明とは、可視光領域における光線透過率が、80%以上、好ましくは85%以上であることをいう。透明の尺度として用いられる光線透過率は、JIS-K7105に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率及び散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。基材については、特開2007-290369号公報段落0046~0052、特開2005-096108号公報段落0040~0055を参照できる。 In order to further reduce the concentration of the quantum dots 30A and 30B included in the wavelength conversion layer 30, or to further reduce the thickness of the wavelength conversion layer 30, the retroreflective member of the backlight unit is used to maintain the display color of the LCD. It is necessary to increase the number of times the excitation light passes through the wavelength conversion layer by providing means for increasing retroreflection of light, such as providing a plurality of prism sheets in 2B. Therefore, the substrate is preferably a transparent substrate that is transparent to visible light. Here, being transparent to visible light means that the light transmittance in the visible light region is 80% or more, preferably 85% or more. The light transmittance used as a measure of transparency is measured by measuring the total light transmittance and the amount of scattered light using the method described in JIS-K7105, that is, using an integrating sphere type light transmittance measuring device. It can be calculated by subtracting the rate. Regarding the base material, paragraphs 0046 to 0052 of JP-A-2007-290369 and paragraphs 0040 to 0055 of JP-A-2005-096108 can be referred to.
 また、基材11,21は、波長589nmにおける面内リターデーションRe(589)が1000nm以下であることが好ましい。500nm以下であることがより好ましく、200nm以下であることが更に好ましい。
 波長変換部材1Dを作製した後、異物や欠陥の有無を検査する際、2枚の偏光板を消光位に配置し、その間に波長変換部材を差し込んで観察することで、異物や欠陥を見つけやすい。基材のRe(589)が上記範囲であると、偏光板を用いた検査の際に、異物や欠陥をより見つけやすくなるため、好ましい。
 ここで、Re(589)はKOBRA 21ADH、又はWR(王子計測機器(株)製)において、波長589nmの光をフィルム法線方向に入射させて測定される。測定波長λnmの選択にあたっては、波長選択フィルタをマニュアルで交換するか、又は測定値をプログラム等で変換して測定することができる。
The base materials 11 and 21 preferably have an in-plane retardation Re (589) at a wavelength of 589 nm of 1000 nm or less. More preferably, it is 500 nm or less, and further preferably 200 nm or less.
After the wavelength conversion member 1D is manufactured, when inspecting for the presence of foreign matter or defects, two polarizing plates are placed in the extinction position, and the wavelength conversion member is inserted between them for observation, making it easy to find foreign matters and defects. . It is preferable that the Re (589) of the base material is in the above range because foreign matters and defects can be found more easily during inspection using a polarizing plate.
Here, Re (589) is measured with KOBRA 21ADH or WR (manufactured by Oji Scientific Instruments Co., Ltd.) by making light having a wavelength of 589 nm incident in the normal direction of the film. In selecting the measurement wavelength λnm, the wavelength selection filter can be exchanged manually, or the measurement value can be converted by a program or the like.
 基材11,21としては、酸素及び水分に対するバリア性を有する基材が好ましい。かかる基材としては、薄手ガラス、ポリエチレンテレフタレートフィルム、環状オレフィン構造を有するポリマーからなるフィルム、及びポリスチレンフィルム等が、好ましい例として挙げられる。 The base materials 11 and 21 are preferably base materials having a barrier property against oxygen and moisture. Preferred examples of the substrate include thin glass, polyethylene terephthalate film, a film made of a polymer having a cyclic olefin structure, and a polystyrene film.
 <バリア層>
 基材11,21は、波長変換層30側の面に接して形成されてなる少なくとも1層の無機バリア層12b,22bを含むバリア層12,22を備えてなることが好ましい。
 バリア層12,22は、図2に示されるように、基材11,21と無機バリア層12b,22bとの間に少なくとも1層の有機バリア層12a,22aを備えていてもよい。有機バリア層12a,22aは、無機バリア層12b,22bと波長変換層30との間に設けられていてもよい。バリア層を複数の層から構成することは、より一層バリア性を高めることができるため、耐候性向上の観点から好ましい。有機バリア層は、無機バリア層12b,22bと波長変換層30との間に設けられていることも好ましい。この場合、有機バリア層は、バリア被覆層(オーバーコート層)と称することもある。
<Barrier layer>
The base materials 11 and 21 are preferably provided with barrier layers 12 and 22 including at least one inorganic barrier layer 12b and 22b formed in contact with the surface on the wavelength conversion layer 30 side.
As shown in FIG. 2, the barrier layers 12 and 22 may include at least one organic barrier layer 12a and 22a between the base materials 11 and 21 and the inorganic barrier layers 12b and 22b. The organic barrier layers 12 a and 22 a may be provided between the inorganic barrier layers 12 b and 22 b and the wavelength conversion layer 30. Constructing the barrier layer from a plurality of layers is preferable from the viewpoint of improving the weather resistance since the barrier property can be further enhanced. The organic barrier layer is also preferably provided between the inorganic barrier layers 12 b and 22 b and the wavelength conversion layer 30. In this case, the organic barrier layer may be referred to as a barrier coating layer (overcoat layer).
 バリア層12,22は、基材11,21を支持体としてその表面に成膜されることにより形成される。従って、基材11,21と、その上に設けられたバリア層12,22とでバリアフィルム10,20を構成している。バリア層12,22を設ける場合は、基材は高い耐熱性を有していることが好ましい。波長変換部材1Dにおいて、波長変換層30に隣接している、バリアフィルム10,20中の層は、無機バリア層でも有機バリア層でもよく、特に限定されない。 The barrier layers 12 and 22 are formed by forming a film on the surface of the base material 11 or 21 as a support. Therefore, the barrier films 10 and 20 are comprised by the base materials 11 and 21 and the barrier layers 12 and 22 provided on it. When providing the barrier layers 12 and 22, it is preferable that the base material has high heat resistance. In the wavelength conversion member 1D, the layer in the barrier films 10 and 20 adjacent to the wavelength conversion layer 30 may be an inorganic barrier layer or an organic barrier layer, and is not particularly limited.
 バリア層12,22は、複数の層により構成されてなる方がより一層バリア性を高めることができるため、耐候性向上の観点からは好ましいが、層数が増えるほど、波長変換部材の光透過率は低下する傾向があるため、良好な光透過率とバリア性とを考慮して設計されることが好ましい。 The barrier layers 12 and 22 are preferably composed of a plurality of layers, since the barrier property can be further enhanced. Therefore, the barrier layers 12 and 22 are preferable from the viewpoint of improving the weather resistance. However, the light transmission of the wavelength conversion member increases as the number of layers increases. Since the rate tends to decrease, it is preferable to design in consideration of good light transmittance and barrier properties.
 (無機バリア層)
 「無機層」とは、無機材料を主成分とする層であり、好ましくは無機材料のみから形成される層である。
 バリア層12,22に好適な無機バリア層12b,22bとしては、特に限定されず、金属、無機酸化物、窒化物、酸化窒化物等の各種無機化合物を用いることができる。無機材料を構成する元素としては、ケイ素、アルミニウム、マグネシウム、チタン、スズ、インジウム及びセリウムが好ましく、これらを一種又は二種以上含んでいてもよい。無機化合物の具体例としては、酸化ケイ素、酸化窒化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化スズ、酸化インジウム合金、窒化ケイ素、窒化アルミニウム、窒化チタンを挙げることができる。また、無機バリア層として、金属膜、例えば、アルミニウム膜、銀膜、錫膜、クロム膜、ニッケル膜、チタン膜を設けてもよい。
(Inorganic barrier layer)
The “inorganic layer” is a layer mainly composed of an inorganic material, and is preferably a layer formed only from an inorganic material.
The inorganic barrier layers 12b and 22b suitable for the barrier layers 12 and 22 are not particularly limited, and various inorganic compounds such as metals, inorganic oxides, nitrides, and oxynitrides can be used. As an element constituting the inorganic material, silicon, aluminum, magnesium, titanium, tin, indium and cerium are preferable, and one or more of these may be included. Specific examples of the inorganic compound include silicon oxide, silicon oxynitride, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, indium oxide alloy, silicon nitride, aluminum nitride, and titanium nitride. As the inorganic barrier layer, a metal film such as an aluminum film, a silver film, a tin film, a chromium film, a nickel film, or a titanium film may be provided.
 上記の材料の中でも、ケイ素酸化物、ケイ素窒化物、ケイ素酸化窒化物、ケイ素炭化物、又はアルミニウム酸化物を含む無機バリア層が特に好ましい。これらの材料からなる無機バリア層は、有機バリア層との密着性が良好であることから、無機バリア層にピンホールがある場合でも、有機バリア層がピンホールを効果的に埋めることができ、バリア性をより一層高くすることができる。
 また、バリア層における光の吸収を抑制する観点からは、窒化ケイ素がもっとも好ましい。
Among the above materials, an inorganic barrier layer containing silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, or aluminum oxide is particularly preferable. Since the inorganic barrier layer made of these materials has good adhesion with the organic barrier layer, even when the inorganic barrier layer has pinholes, the organic barrier layer can effectively fill the pinholes, The barrier property can be further increased.
Further, silicon nitride is most preferable from the viewpoint of suppressing light absorption in the barrier layer.
 無機バリア層の形成方法としては、特に限定されず、例えば成膜材料を蒸発ないし飛散させ被蒸着面に堆積させることができる各種成膜方法を用いることができる。 The method for forming the inorganic barrier layer is not particularly limited, and for example, various film forming methods capable of evaporating or scattering the film forming material and depositing on the deposition surface can be used.
 無機バリア層の形成方法の例としては、無機酸化物、無機窒化物、無機酸化窒化物、金属等の無機材料を、加熱して蒸着させる真空蒸着法;無機材料を原料として用い、酸素ガスを導入することにより酸化させて蒸着させる酸化反応蒸着法;無機材料をターゲット原料として用い、アルゴンガス、酸素ガスを導入して、スパッタリングすることにより蒸着させるスパッタリング法;無機材料にプラズマガンで発生させたプラズマビームにより加熱させて蒸着させるイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、酸化ケイ素の蒸着膜を成膜させる場合は、有機ケイ素化合物を原料とするプラズマ化学気相成長(Chemical Vapor Deposition)法等が挙げられる。 Examples of the method for forming the inorganic barrier layer include: a vacuum vapor deposition method in which an inorganic material such as an inorganic oxide, an inorganic nitride, an inorganic oxynitride, or a metal is heated and vapor-deposited; Oxidation reaction vapor deposition method that oxidizes and deposits by introducing; sputtering method in which inorganic material is used as target raw material, argon gas and oxygen gas are introduced and sputtered by sputtering; generated in inorganic material by plasma gun When chemical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as ion plating, which is heated by a plasma beam, and vapor deposition is performed, plasma chemistry using an organic silicon compound as a raw material Vapor phase growth (Chemical Vapor Deposition) method And the like.
 無機バリア層の厚さは、1nm~500nmであればよく、5nm~300nmであることが好ましく、特に10nm~150nmであることがより好ましい。無機バリア層の膜厚が、上述した範囲内であることにより、良好なバリア性を実現しつつ、無機バリア層における光の吸収を抑制することができ、光透過率がより高い波長変換部材を提供することができるからである。 The thickness of the inorganic barrier layer may be 1 nm to 500 nm, preferably 5 nm to 300 nm, and more preferably 10 nm to 150 nm. When the film thickness of the inorganic barrier layer is within the above-described range, it is possible to suppress absorption of light in the inorganic barrier layer while realizing good barrier properties, and to provide a wavelength conversion member with higher light transmittance. This is because it can be provided.
 (有機バリア層)
 有機層とは、有機材料を主成分とする層であって、好ましくは有機材料が50質量%以上、更には80質量%以上、特に90質量%以上を占める層を言うものとする。有機バリア層としては、特開2007-290369号公報段落0020~0042、特開2005-096108号公報段落0074~0105を参照できる。なお有機バリア層は、カルドポリマーを含むことが好ましい。これにより、有機バリア層と隣接する層との密着性、特に、無機バリア層とも密着性が良好になり、より一層優れたバリア性を実現することができるからである。カルドポリマーの詳細については、上述の特開2005-096108号公報段落0085~0095を参照できる。有機バリア層の膜厚は、0.05μm~10μmの範囲内であることが好ましく、中でも0.5~10μmの範囲内であることが好ましい。有機バリア層がウェットコーティング法により形成される場合には、有機バリア層の膜厚は、0.5~10μmの範囲内、中でも1μm~5μmの範囲内であることが好ましい。また、ドライコーティング法により形成される場合には、0.05μm~5μmの範囲内、中でも0.05μm~1μmの範囲内であることが好ましい。ウェットコーティング法又はドライコーティング法により形成される有機バリア層の膜厚が上述した範囲内であることにより、無機層との密着性をより良好なものとすることができるからである。
(Organic barrier layer)
The organic layer is a layer mainly composed of an organic material, and preferably refers to a layer in which the organic material occupies 50% by mass or more, more preferably 80% by mass or more, and particularly 90% by mass or more. JP, 2007-290369, A paragraphs 0020-0042 and JP, 2005-096108, A paragraphs 0074-0105 can be referred to as an organic barrier layer. The organic barrier layer preferably contains a cardo polymer. Thereby, the adhesion between the organic barrier layer and the adjacent layer, in particular, the adhesion with the inorganic barrier layer is improved, and a further excellent barrier property can be realized. For details of the cardo polymer, reference can be made to paragraphs 0085 to 0095 of JP-A-2005-096108 described above. The film thickness of the organic barrier layer is preferably in the range of 0.05 μm to 10 μm, and more preferably in the range of 0.5 to 10 μm. When the organic barrier layer is formed by a wet coating method, the film thickness of the organic barrier layer is preferably in the range of 0.5 to 10 μm, and more preferably in the range of 1 to 5 μm. Further, when formed by a dry coating method, it is preferably in the range of 0.05 μm to 5 μm, and more preferably in the range of 0.05 μm to 1 μm. This is because when the film thickness of the organic barrier layer formed by the wet coating method or the dry coating method is within the above-described range, the adhesion with the inorganic layer can be further improved.
 無機バリア層、有機バリア層のその他詳細については、上述の特開2007-290369号公報、特開2005-096108号公報、更にUS2012/0113672A1の記載を参照できる。 For other details of the inorganic barrier layer and the organic barrier layer, reference can be made to the descriptions in the above-mentioned Japanese Patent Application Laid-Open Nos. 2007-290369 and 2005-096108, and further in US2012 / 0113672A1.
(バリアフィルムの設計変更)
 波長変換部材1Dにおいて、波長変換層、無機バリア層、有機バリア層、基材は、この順に積層されていてもよく、無機バリア層と有機バリア層との間、二層の有機バリア層の間、又は二層の無機バリア層の間に、基材を配して積層されていてもよい。
(Barrier film design change)
In the wavelength conversion member 1D, the wavelength conversion layer, the inorganic barrier layer, the organic barrier layer, and the base material may be laminated in this order, between the inorganic barrier layer and the organic barrier layer, and between the two organic barrier layers. Alternatively, a base material may be disposed and laminated between two inorganic barrier layers.
 <凹凸付与層(マット層)>
 バリアフィルム10,20は、波長変換層30側の面と反対側の面に、凹凸構造を付与する凹凸付与層(マット層)13を備えていることが好ましい。バリアフィルムがマット層を有していると、バリアフィルムのブロッキング性、滑り性を改良することができるため、好ましい。マット層は粒子を含有する層であることが好ましい。粒子としては、シリカ、アルミナ、酸化金属等の無機粒子、あるいは架橋高分子粒子等の有機粒子等が挙げられる。また、マット層は、バリアフィルムの波長変換層とは反対側の表面に設けられることが好ましいが、両面に設けられていてもよい。
<Roughness imparting layer (matte layer)>
It is preferable that the barrier films 10 and 20 include an unevenness imparting layer (mat layer) 13 that imparts an uneven structure on a surface opposite to the surface on the wavelength conversion layer 30 side. It is preferable that the barrier film has a matte layer because the blocking property and slipping property of the barrier film can be improved. The mat layer is preferably a layer containing particles. Examples of the particles include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles. The mat layer is preferably provided on the surface of the barrier film opposite to the wavelength conversion layer, but may be provided on both surfaces.
 <光散乱層>
 波長変換部材1Dは、量子ドットの蛍光を効率よく外部に取り出すために光散乱機能を有することができる。光散乱機能は、波長変換層30内部に設けてもよいし、光散乱層として光散乱機能を有する層を別途設けてもよい。
 また、基材の波長変換層とは反対側の面に光散乱層を設けてもよいし、上記凹凸付与層に光散乱機能を付与して、光散乱機能を有する凹凸付与層としてもよい。
<Light scattering layer>
The wavelength conversion member 1D can have a light scattering function in order to efficiently extract the fluorescence of the quantum dots to the outside. The light scattering function may be provided inside the wavelength conversion layer 30, or a layer having a light scattering function may be separately provided as the light scattering layer.
In addition, a light scattering layer may be provided on the surface of the substrate opposite to the wavelength conversion layer, or a light scattering function may be imparted to the unevenness providing layer to provide an unevenness providing layer having a light scattering function.
 [波長変換層の製造方法]
 以下に、波長変換層30の両面に、基材11,21上にバリア層12,22を備えてなるバリアフィルム10,20を備えた態様の上記波長変換部材1Dを、光硬化により製造する場合を例に、本発明の波長変換部材の製造方法について、図3,図4を参照して説明する。ただし、本発明は、下記態様に限定されるものではない。
[Production method of wavelength conversion layer]
In the case where the wavelength conversion member 1D having the barrier films 10 and 20 including the barrier layers 12 and 22 on the base materials 11 and 21 on both surfaces of the wavelength conversion layer 30 is manufactured by photocuring. As an example, a method for manufacturing a wavelength conversion member of the present invention will be described with reference to FIGS. However, the present invention is not limited to the following embodiments.
 本実施形態において、波長変換層30は、調製した上記本発明の蛍光体分散組成物をバリアフィルム10,20の表面に塗布した後に加熱により硬化させ、形成することができる。塗布方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の塗布方法が挙げられる。 In this embodiment, the wavelength conversion layer 30 can be formed by applying the prepared phosphor dispersion composition of the present invention to the surface of the barrier films 10 and 20 and then curing it by heating. Known coating methods include curtain coating, dip coating, spin coating, print coating, spray coating, slot coating, roll coating, slide coating, blade coating, gravure coating, and wire bar method. The coating method is mentioned.
 硬化条件は、使用する硬化性化合物の種類や重合性組成物の組成に応じて、適宜設定することができる。また、蛍光体分散組成物が溶媒を含む組成物である場合には、硬化を行う前に、溶媒除去のために乾燥処理を施してもよい。 Curing conditions can be appropriately set according to the type of curable compound to be used and the composition of the polymerizable composition. In addition, when the phosphor dispersion composition is a composition containing a solvent, a drying treatment may be performed to remove the solvent before curing.
 図3は、波長変換部材1Dの製造装置の一例の概略構成図であり、図4は、図3に示す製造装置の部分拡大図である。図3に示される製造装置は、蛍光体分散組成物等の塗布液をバリアフィルム10上に塗布する塗布部120と、塗布部120にて形成された塗膜30M上にバリアフィルム20をラミネートするラミネート部130と、塗膜30Mを硬化させる硬化部160とを有しており、塗布部120では、ダイコーター124によるエクストル-ジョンコーティング法により塗膜30Mが形成される構成としている。 FIG. 3 is a schematic configuration diagram of an example of a manufacturing apparatus for the wavelength conversion member 1D, and FIG. 4 is a partially enlarged view of the manufacturing apparatus shown in FIG. The manufacturing apparatus shown in FIG. 3 laminates the barrier film 20 on the coating part 120 that coats the coating liquid such as the phosphor dispersion composition on the barrier film 10 and the coating film 30M formed by the coating part 120. The coating unit 30 includes a laminating unit 130 and a curing unit 160 that cures the coating film 30M. The coating unit 120 is configured to form the coating film 30M by an extrusion coating method using a die coater 124.
 図3、4に示す製造装置を用いる波長変換部材の製造工程は、連続搬送される第一のバリアフィルム10(以下、「第一のフィルム」という。)の表面に蛍光体分散組成物を塗布し塗膜30Mを形成する工程と、塗膜30Mの上に、連続搬送される第二のバリアフィルム20(以下、「第二のフィルム」ともいう。)をラミネートし(重ねあわせ)、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持する工程と、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持した状態で、第一のフィルム10、及び第二のフィルム20の何れかをバックアップローラ126に巻きかけて、連続搬送しながら加熱し、塗膜を重合硬化させて波長変換層(硬化層)を形成する工程とを少なくとも含む。本実施形態では、第一のフィルム10、第二のフィルム20の双方に、酸素や水分に対するバリア性を有するバリアフィルムを用いている。かかる態様とすることにより、波長変換層の両面がバリアフィルムにより保護された波長変換部材1Dを得ることができる。 The manufacturing process of the wavelength conversion member using the manufacturing apparatus shown in FIGS. 3 and 4 applies the phosphor dispersion composition to the surface of the first barrier film 10 (hereinafter referred to as “first film”) that is continuously conveyed. Then, the step of forming the coating film 30M and the second barrier film 20 (hereinafter also referred to as “second film”) continuously conveyed are laminated (overlaid) on the coating film 30M. In the state where the coating film 30M is sandwiched between the film 10 and the second film 20, and the coating film 30M is sandwiched between the first film 10 and the second film 20, the first film 10 and the second film 20 It includes at least a step of winding one of the second films 20 around the backup roller 126 and heating it while continuously conveying it to polymerize and cure the coating film to form a wavelength conversion layer (cured layer). In this embodiment, a barrier film having a barrier property against oxygen and moisture is used for both the first film 10 and the second film 20. By setting it as this aspect, wavelength conversion member 1D by which both surfaces of the wavelength conversion layer were protected by the barrier film can be obtained.
 より詳しくは、まず、図示しない送出機から第一のフィルム10が塗布部120へと連続搬送される。送出機から、例えば、第一のフィルム10が1~50m/分の搬送速度で送出される。但し、この搬送速度に限定されない。送出される際、例えば、第一のフィルム10には、20~150N/mの張力、好ましくは30~100N/mの張力が加えられる。 More specifically, first, the first film 10 is continuously conveyed from the unillustrated transmitter to the coating unit 120. For example, the first film 10 is delivered from the delivery device at a conveyance speed of 1 to 50 m / min. However, it is not limited to this conveyance speed. When delivered, for example, a tension of 20 to 150 N / m, preferably 30 to 100 N / m, is applied to the first film 10.
 塗布部120では、連続搬送される第一のフィルム10の表面に蛍光体分散組成物(以下、「塗布液」とも記載する。)が塗布され、塗膜30M(図4参照)が形成される。塗布部120では、例えば、ダイコーター124と、ダイコーター124に対向配置されたバックアップローラ126とが設置されている。第一のフィルム10の塗膜30Mの形成される表面と反対の表面をバックアップローラ126に巻きかけて、連続搬送される第一のフィルム10の表面にダイコーター124の吐出口から塗布液が塗布され、塗膜30Mが形成される。ここで塗膜30Mとは、第一のフィルム10上に塗布された硬化前の蛍光体分散組成物をいう。 In the application unit 120, a phosphor dispersion composition (hereinafter also referred to as “application liquid”) is applied to the surface of the first film 10 that is continuously conveyed, and a coating film 30M (see FIG. 4) is formed. . In the application unit 120, for example, a die coater 124 and a backup roller 126 disposed to face the die coater 124 are installed. The surface opposite to the surface on which the coating film 30M of the first film 10 is formed is wound around the backup roller 126, and the coating liquid is applied from the discharge port of the die coater 124 onto the surface of the first film 10 that is continuously conveyed. Thus, the coating film 30M is formed. Here, the coating film 30 </ b> M refers to a phosphor dispersion composition before curing applied on the first film 10.
 本実施形態では、塗布装置としてエクストルージョンコーティング法を適用したダイコーター124を示したが、これに限定されない。例えば、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法又はロールコーティング法等、種々の方法を適用した塗布装置を用いることができる。 In this embodiment, the die coater 124 to which the extrusion coating method is applied is shown as the coating apparatus, but the present invention is not limited to this. For example, a coating apparatus to which various methods such as a curtain coating method, an extrusion coating method, a rod coating method, or a roll coating method are applied can be used.
 塗布部120を通過し、その上に塗膜30Mが形成された第一のフィルム10は、ラミネート部130に連続搬送される。ラミネート部130では、塗膜30Mの上に、連続搬送される第二のフィルム20がラミネートされ、第一のフィルム10と第二のフィルム20とで塗膜30Mが挟持される。 The first film 10 that has passed through the coating unit 120 and has the coating film 30M formed thereon is continuously conveyed to the laminating unit 130. In the laminating unit 130, the second film 20 continuously conveyed is laminated on the coating film 30 </ b> M, and the coating film 30 </ b> M is sandwiched between the first film 10 and the second film 20.
 ラミネート部130には、ラミネートローラ132と、ラミネートローラ132を囲う加熱チャンバー134とが設置されている。加熱チャンバー134には第一のフィルム10を通過させるための開口部136、及び第二のフィルム20を通過させるための開口部138が設けられている。 In the laminating unit 130, a laminating roller 132 and a heating chamber 134 surrounding the laminating roller 132 are installed. The heating chamber 134 is provided with an opening 136 for allowing the first film 10 to pass therethrough and an opening 138 for allowing the second film 20 to pass therethrough.
 ラミネートローラ132に対向する位置には、バックアップローラ162が配置されている。塗膜30Mの形成された第一のフィルム10は、塗膜30Mの形成面と反対の表面がバックアップローラ162に巻きかけられ、ラミネート位置Pへと連続搬送される。ラミネート位置Pは第二のフィルム20と塗膜30Mとの接触が開始する位置を意味する。第一のフィルム10はラミネート位置Pに到達する前にバックアップローラ162に巻きかけられることが好ましい。仮に第一のフィルム10にシワが発生した場合でも、バックアップローラ162によりシワがラミネート位置Pに達するまでに矯正され、除去できるからである。従って、第一のフィルム10がバックアップローラ162に巻きかけられた位置(接触位置)と、ラミネート位置Pまでの距離L1は長いことが好ましく、例えば、30mm以上が好ましく、その上限値は、通常、バックアップローラ162の直径とパスラインとにより決定される。 A backup roller 162 is disposed at a position facing the laminating roller 132. The first film 10 on which the coating film 30M is formed is wound around the backup roller 162 on the surface opposite to the surface on which the coating film 30M is formed, and is continuously conveyed to the laminating position P. Lamination position P means the position where the contact between the second film 20 and the coating film 30M starts. The first film 10 is preferably wound around the backup roller 162 before reaching the laminating position P. This is because even if wrinkles occur in the first film 10, the wrinkles are corrected and removed by the backup roller 162 before reaching the laminate position P. Therefore, the position (contact position) where the first film 10 is wound around the backup roller 162 and the distance L1 to the lamination position P are preferably long, for example, 30 mm or more is preferable, and the upper limit is usually It is determined by the diameter of the backup roller 162 and the pass line.
 本実施の好ましい一形態では硬化部160で使用されるバックアップローラ162とラミネートローラ132とにより第二のフィルム20のラミネートが行われる。即ち、硬化部160で使用されるバックアップローラ162が、ラミネート部130で使用するローラとして兼用される。ただし、上記形態に限定されるものではなく、ラミネート部130に、バックアップローラ162と別に、ラミネート用のローラを設置し、バックアップローラ162を兼用しないようにすることもできる。 In a preferred embodiment of the present embodiment, the second film 20 is laminated by the backup roller 162 and the laminating roller 132 used in the curing unit 160. That is, the backup roller 162 used in the curing unit 160 is also used as a roller used in the laminating unit 130. However, the present invention is not limited to the above form, and a laminating roller may be installed in the laminating unit 130 in addition to the backup roller 162 so that the backup roller 162 is not used.
 硬化部160で使用されるバックアップローラ162をラミネート部130で使用することで、ローラの数を減らすことができる。また、バックアップローラ162は、第一のフィルム10に対するヒートローラとしても使用できる。 By using the backup roller 162 used in the curing unit 160 in the laminating unit 130, the number of rollers can be reduced. The backup roller 162 can also be used as a heat roller for the first film 10.
 図示しない送出機から送出された第二のフィルム20は、ラミネートローラ132に巻きかけられ、ラミネートローラ132とバックアップローラ162との間に連続搬送される。第二のフィルム20は、ラミネート位置Pで、第一のフィルム10に形成された塗膜30Mの上にラミネートされる。これにより、第一のフィルム10と第二のフィルム20とにより塗膜30Mが挟持される。ラミネートとは、第二のフィルム20を塗膜30Mの上に重ねあわせ、積層することをいう。 The second film 20 sent from a sending machine (not shown) is wound around the laminating roller 132 and continuously conveyed between the laminating roller 132 and the backup roller 162. The second film 20 is laminated on the coating film 30M formed on the first film 10 at the laminating position P. Thereby, the coating film 30 </ b> M is sandwiched between the first film 10 and the second film 20. Lamination refers to laminating the second film 20 on the coating film 30M.
 ラミネートローラ132とバックアップローラ162との距離L2は、第一のフィルム10と、塗膜30Mを重合硬化させた波長変換層(硬化層)30と、第二のフィルム20と、の合計厚みの値以上であることが好ましい。また、L2は第一のフィルム10と塗膜30Mと第二のフィルム20との合計厚みに5mmを加えた長さ以下であることが好ましい。距離L2を合計厚みに5mmを加えた長さ以下にすることより、第二のフィルム20と塗膜30Mとの間に泡が侵入することを防止することができる。ここでラミネートローラ132とバックアップローラ162との距離L2とは、ラミネートローラ132の外周面とバックアップローラ162の外周面との最短距離をいう。 The distance L2 between the laminating roller 132 and the backup roller 162 is a value of the total thickness of the first film 10, the wavelength conversion layer (cured layer) 30 obtained by polymerizing and curing the coating film 30M, and the second film 20. The above is preferable. Moreover, it is preferable that L2 is below the length which added 5 mm to the total thickness of the 1st film 10, the coating film 30M, and the 2nd film 20. FIG. By making the distance L2 equal to or less than the total thickness plus 5 mm, it is possible to prevent bubbles from entering between the second film 20 and the coating film 30M. Here, the distance L2 between the laminating roller 132 and the backup roller 162 is the shortest distance between the outer circumferential surface of the laminating roller 132 and the outer circumferential surface of the backup roller 162.
 ラミネートローラ132とバックアップローラ162の回転精度は、ラジアル振れで0.05mm以下、好ましくは0.01mm以下である。ラジアル振れが小さいほど、塗膜30Mの厚み分布を小さくすることができる。 Rotational accuracy of the laminating roller 132 and the backup roller 162 is 0.05 mm or less, preferably 0.01 mm or less in radial runout. The smaller the radial runout, the smaller the thickness distribution of the coating film 30M.
 また、第一のフィルム10と第二のフィルム20とで塗膜30Mを挟持した後の熱変形を抑制するため、硬化部160のバックアップローラ162の温度と第一のフィルム10の温度との差、及びバックアップローラ162の温度と第二のフィルム20の温度との差は30℃以下であることが好ましく、より好ましくは15℃以下、最も好ましくは同じである。 Further, in order to suppress thermal deformation after the coating film 30M is sandwiched between the first film 10 and the second film 20, the difference between the temperature of the backup roller 162 of the curing unit 160 and the temperature of the first film 10 The difference between the temperature of the backup roller 162 and the temperature of the second film 20 is preferably 30 ° C. or less, more preferably 15 ° C. or less, and most preferably the same.
 バックアップローラ162の温度との差を小さくするため、加熱チャンバー134が設けられている場合には、第一のフィルム10、及び第二のフィルム20を加熱チャンバー134内で加熱することが好ましい。例えば、加熱チャンバー134には、図示しない熱風発生装置により熱風が供給され、第一のフィルム10、及び第二のフィルム20を加熱することができる。 In order to reduce the difference from the temperature of the backup roller 162, when the heating chamber 134 is provided, it is preferable to heat the first film 10 and the second film 20 in the heating chamber 134. For example, hot air is supplied to the heating chamber 134 by a hot air generator (not shown), and the first film 10 and the second film 20 can be heated.
 第一のフィルム10が、温度調整されたバックアップローラ162に巻きかけられることにより、バックアップローラ162によって第一のフィルム10を加熱してもよい。 The first film 10 may be heated by the backup roller 162 by being wound around the temperature-adjusted backup roller 162.
 一方、第二のフィルム20については、ラミネートローラ132をヒートローラとすることにより、第二のフィルム20をラミネートローラ132で加熱することができる。ただし、加熱チャンバー134、及びヒートローラは必須ではなく、必要に応じて設けることができる。 On the other hand, the second film 20 can be heated with the laminating roller 132 by using the laminating roller 132 as a heat roller. However, the heating chamber 134 and the heat roller are not essential, and can be provided as necessary.
 次に、第一のフィルム10と第二のフィルム20とにより塗膜30Mが挟持された状態で、硬化部160に連続搬送される。図面に示す態様では、硬化部160における硬化は加熱により行われる。 Next, the first film 10 and the second film 20 are continuously conveyed to the curing unit 160 in a state where the coating film 30M is sandwiched between the first film 10 and the second film 20. In the embodiment shown in the drawing, curing in the curing unit 160 is performed by heating.
 加熱は、バックアップローラ162を加熱すること、硬化部160に設けた外部加熱装置164により行うことができる。バックアップローラ162は、例えば、40~150℃の温度範囲に設定することが好ましく、60~120℃であることがより好ましい。バックアップローラ162の本体に温度調節器を取り付けることにより、バックアップローラ162の温度を調整することができる。ここでローラに関する温度とは、ローラの表面温度をいうものとする。
 また、バックアップローラ162の加熱に加えて、バックアップローラ162に対向する位置に設けられた加熱装置164により、熱線照射、あるいは温風吹きつけ等を実施してもよい。このとき、ラミネート位置Pと加熱装置164との距離L3は、例えば30mm以上とすることができる。
The heating can be performed by heating the backup roller 162 or by an external heating device 164 provided in the curing unit 160. The backup roller 162 is preferably set to a temperature range of 40 to 150 ° C., for example, and more preferably 60 to 120 ° C. By attaching a temperature controller to the main body of the backup roller 162, the temperature of the backup roller 162 can be adjusted. Here, the temperature related to the roller refers to the surface temperature of the roller.
In addition to heating the backup roller 162, heat ray irradiation or hot air blowing may be performed by a heating device 164 provided at a position facing the backup roller 162. At this time, the distance L3 between the lamination position P and the heating device 164 can be set to 30 mm or more, for example.
 硬化部160では、第一のフィルム10と第二のフィルム20とにより塗膜30Mを挟持した状態で、第一のフィルム10をバックアップローラ162に巻きかけて、連続搬送しながら加熱を行い、塗膜30Mを硬化させて波長変換層(硬化層)30を形成することができる。 In the curing unit 160, in a state where the coating film 30M is sandwiched between the first film 10 and the second film 20, the first film 10 is wound around the backup roller 162 and heated while being continuously conveyed. The wavelength conversion layer (cured layer) 30 can be formed by curing the film 30M.
 本実施の形態では、第一のフィルム10側をバックアップローラ162に巻きかけて、連続搬送したが、第二のフィルム20をバックアップローラ162に巻きかけて、連続搬送させることもできる。 In the present embodiment, the first film 10 side is wound around the backup roller 162 and continuously conveyed, but the second film 20 may be wound around the backup roller 162 and continuously conveyed.
 バックアップローラ162に巻きかけるとは、第一のフィルム10及び第二のフィルム20の何れかが、あるラップ角でバックアップローラ162の表面に接触している状態をいう。従って、連続搬送される間、第一のフィルム10及び第二のフィルム20はバックアップローラ162の回転と同期して移動する。 Wrapping around the backup roller 162 means a state in which either the first film 10 or the second film 20 is in contact with the surface of the backup roller 162 at a certain wrap angle. Accordingly, the first film 10 and the second film 20 move in synchronization with the rotation of the backup roller 162 while being continuously conveyed.
 バックアップローラ162は、円柱状の形状の本体と、本体の両端部に配置された回転軸とを備えている。バックアップローラ162の本体は、例えば、φ200~1000mmの直径を有している。バックアップローラ162の直径φについて制限はない。積層フィルムのカール変形と、設備コストと、回転精度とを考慮すると直径φ300~500mmであることが好ましい。 The backup roller 162 includes a cylindrical main body and rotating shafts disposed at both ends of the main body. The main body of the backup roller 162 has a diameter of φ200 to 1000 mm, for example. There is no restriction on the diameter φ of the backup roller 162. In consideration of curl deformation of the laminated film, equipment cost, and rotational accuracy, the diameter is preferably 300 to 500 mm.
 熱硬化により塗膜30Mは硬化層30となり、第一のフィルム10と硬化層30と第二のフィルム20とを含む波長変換部材1Dが製造される。波長変換部材1Dは、剥離ローラ180によりバックアップローラ162から剥離される。波長変換部材1Dは、図示しない巻き取り機に連続搬送され、次いで巻き取り機により波長変換部材1Dはロール状に巻き取られる。バックアップローラ162からの剥離の段階で塗膜30Mは必ずしも重合硬化が完結していなくてもよいが、その後の搬送を容易にするため、少なくとも一部が重合硬化していることが好ましい。バックアップローラ162からの剥離の段階で塗膜30Mの重合硬化が完結していない場合、図示しない後加熱手段をさらに設けて加熱を行ない、重合硬化を完結させることができる。重合硬化が10秒未満で完結するほど急速に重合硬化する条件においては、搬送による微弱な振動や搬送テンションによるフィルムの歪み、反応熱による基材の歪み等が反映された形状が歪んだ硬化層となるため、少なくとも1分以上をかけて重合硬化が進むよう条件を調整することが好ましい。硬化工程は、形状の平坦性と製造上の効率とを鑑みて1分以上60分以内が好ましく、2分以上30分以内がより好ましい。 The coating film 30M becomes the cured layer 30 by heat curing, and the wavelength conversion member 1D including the first film 10, the cured layer 30, and the second film 20 is manufactured. The wavelength conversion member 1D is peeled off from the backup roller 162 by the peeling roller 180. The wavelength conversion member 1D is continuously conveyed to a winder (not shown), and then the wavelength conversion member 1D is wound into a roll by the winder. The coating film 30M may not necessarily be completely polymerized and cured at the stage of peeling from the backup roller 162, but at least a part of the coating film 30M is preferably polymerized and cured in order to facilitate subsequent conveyance. When the polymerization and curing of the coating film 30M is not completed at the stage of peeling from the backup roller 162, a post-heating means (not shown) is further provided for heating to complete the polymerization and curing. Under conditions where polymerization and curing are completed rapidly as polymerization curing is completed in less than 10 seconds, a cured layer having a distorted shape reflecting weak vibration due to conveyance, distortion of the film due to conveyance tension, distortion of the substrate due to reaction heat, etc. Therefore, it is preferable to adjust the conditions so that polymerization hardening proceeds at least for 1 minute or more. The curing step is preferably from 1 minute to 60 minutes, more preferably from 2 minutes to 30 minutes, in view of shape flatness and production efficiency.
 以上、本発明の波長変換部材の製造方法について、バリア層を波長変換層の両面に備えた態様について説明したが、本発明の波長変換層の製造方法は、バリア層を波長変換層30の片面にのみ備えた態様にも適用することができる。かかる態様の波長変換部材は、上記した第二のフィルムとして、バリア層を備えていない基材を用いることにより、製造することができる。 As mentioned above, although the aspect which provided the barrier layer on both surfaces of the wavelength conversion layer was demonstrated about the manufacturing method of the wavelength conversion member of this invention, the manufacturing method of the wavelength conversion layer of this invention is a single side | surface of the wavelength conversion layer 30. It is applicable also to the aspect provided only for. The wavelength conversion member of this aspect can be manufactured by using a base material not provided with a barrier layer as the above-described second film.
 また、上記波長変換部材の製造方法では、第一のフィルム10上に塗膜30Mを形成した後、塗膜30Mを硬化させる前に第二のフィルム20をラミネートし、塗膜30Mを第一のフィルム10と第二のフィルム20とで挟持した状態で塗膜30Mを硬化した。これに対し、バリア層を波長変換層30の片面にのみ備えた態様では、第一のフィルム10上に塗膜30Mを形成した後、塗膜30Mを、必要に応じて行われる乾燥処理の後、硬化を施すことにより波長変換層(硬化層)形成し、必要に応じて波長変換層上に被覆層を形成した後に、バリア層を備えていない基材からなる第二のフィルムを、接着材(及び被覆層)を介して波長変換層上に積層して波長変換部材1Dを形成することもできる。被覆層は、無機層等の一層以上の他の層であり、公知の方法により形成することができる。 Moreover, in the manufacturing method of the said wavelength conversion member, after forming the coating film 30M on the 1st film 10, before hardening the coating film 30M, the 2nd film 20 is laminated, and the coating film 30M is made into the 1st film The coating film 30M was cured while being sandwiched between the film 10 and the second film 20. On the other hand, in the aspect which provided the barrier layer only on the single side | surface of the wavelength conversion layer 30, after forming the coating film 30M on the 1st film 10, the coating film 30M is after the drying process performed as needed. Then, after forming a wavelength conversion layer (cured layer) by curing and forming a coating layer on the wavelength conversion layer as necessary, a second film made of a base material not provided with a barrier layer is bonded to the adhesive. It is also possible to form the wavelength conversion member 1D by laminating on the wavelength conversion layer via (and the coating layer). The coating layer is one or more other layers such as an inorganic layer, and can be formed by a known method.
 波長変換層の厚みは、好ましくは1~300μmの範囲であり、より好ましくは10~200μmの範囲であり、さらに好ましくは20~100μmの範囲である。厚みが1μm以上であると、高い波長変換効果が得られるため、好ましい。また、厚みが300μm以下であると、バックライトユニットに組み込んだ場合に、バックライトユニットを薄くすることができるため、好ましい。 The thickness of the wavelength conversion layer is preferably in the range of 1 to 300 μm, more preferably in the range of 10 to 200 μm, and still more preferably in the range of 20 to 100 μm. A thickness of 1 μm or more is preferable because a high wavelength conversion effect can be obtained. Further, it is preferable that the thickness is 300 μm or less because the backlight unit can be thinned when incorporated in the backlight unit.
「バックライトユニット」
 既に述べたように、図1に示されるバックライトユニット2は、一次光(青色光L)を出射する光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源1Cと、面状光源1C上に備えられてなる波長変換部材1Dと、波長変換部材1Dを挟んで面状光源1Cと対向配置される再帰反射性部材2Bと、面状光源1Cを挟んで波長変換部材1Dと対向配置される反射板2Aとを備えており、波長変換部材1Dは、面状光源1Cから出射された一次光Lの少なくとも一部を励起光として、蛍光を発光し、この蛍光からなる二次光(L,L)及び励起光とならなかった一次光Lを出射するものである。
"Backlight unit"
As described above, the backlight unit 2 shown in FIG. 1 includes a light source 1A that emits primary light (blue light L B ), and a light guide plate 1B that guides and emits primary light emitted from the light source 1A. A planar light source 1C, a wavelength conversion member 1D provided on the planar light source 1C, a retroreflective member 2B disposed to face the planar light source 1C across the wavelength conversion member 1D, and a planar light source across 1C and a reflecting plate 2A disposed opposite and the wavelength converting member 1D, the wavelength conversion member 1D, at least a portion of the primary light L B emitted from the surface light source 1C as excitation light, fluorescent emits, it is to emit the fluorescent consists secondary light (L G, L R) and the primary light L B, which was not the excitation light.
 高輝度且つ高い色再現性の実現の観点からは、バックライトユニットとして、多波長光源化されたものを用いることが好ましい。例えば、430nm以上480nm以下の波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する青色光と、500nm以上600nm未満の波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する緑色光と、600nm以上680nm以下の波長帯域に発光中心波長を有し、半値幅が100nm以下である発光強度のピークを有する赤色光とを発光することが好ましい。 From the viewpoint of realizing high luminance and high color reproducibility, it is preferable to use a backlight unit that is a multi-wavelength light source. For example, blue light having an emission center wavelength in a wavelength band of 430 nm or more and 480 nm or less, a peak of emission intensity having a half width of 100 nm or less, and an emission center wavelength in a wavelength band of 500 nm or more and less than 600 nm, Emits green light having an emission intensity peak with a value width of 100 nm or less, and red light having an emission center wavelength in a wavelength band of 600 nm to 680 nm and having an emission intensity peak with a half-value width of 100 nm or less. It is preferable.
 より一層の輝度及び色再現性の向上の観点から、バックライトユニット2が発光する青色光の波長帯域は、430nm以上480nm以下であることが好ましく、440nm以上460nm以下であることがより好ましい。
 同様の観点から、バックライトユニット2が発光する緑色光の波長帯域は、520nm以上560nm以下であることが好ましく、520nm以上545nm以下であることがより好ましい。
 また、同様の観点から、バックライトユニットが発光する赤色光の波長帯域は、600nm以上680nm以下であることが好ましく、610nm以上640nm以下であることがより好ましい。
From the viewpoint of further improving luminance and color reproducibility, the wavelength band of blue light emitted from the backlight unit 2 is preferably 430 nm or more and 480 nm or less, and more preferably 440 nm or more and 460 nm or less.
From the same viewpoint, the wavelength band of the green light emitted from the backlight unit 2 is preferably 520 nm or more and 560 nm or less, and more preferably 520 nm or more and 545 nm or less.
From the same viewpoint, the wavelength band of red light emitted from the backlight unit is preferably 600 nm or more and 680 nm or less, and more preferably 610 nm or more and 640 nm or less.
 また同様の観点から、バックライトユニットが発光する青色光、緑色光及び赤色光の各発光強度の半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることが更に好ましく、30nm以下であることが一層好ましい。これらの中でも、青色光の各発光強度の半値幅が25nm以下であることが、特に好ましい。 From the same viewpoint, the half-value widths of the emission intensity of blue light, green light, and red light emitted from the backlight unit are all preferably 80 nm or less, more preferably 50 nm or less, and 40 nm or less. More preferably, it is more preferably 30 nm or less. Among these, it is particularly preferable that the half-value width of each emission intensity of blue light is 25 nm or less.
 バックライトユニット2は、少なくとも、上記波長変換部材1Dとともに、面状光源1Cを含む。光源1Aとしては、430nm以上480nm以下の波長帯域に発光中心波長を有する青色光を発光するもの、又は、紫外光を発光するものが挙げられる。光源1Aとしては、発光ダイオードやレーザー光源等を使用することができる。 The backlight unit 2 includes at least the planar light source 1C together with the wavelength conversion member 1D. Examples of the light source 1A include those that emit blue light having an emission center wavelength in a wavelength band of 430 nm to 480 nm, and those that emit ultraviolet light. As the light source 1A, a light emitting diode, a laser light source, or the like can be used.
 面状光源1Cは、図1に示すように、光源1Aと光源1Aから出射された一次光を導光させて出射させる導光板1Bとからなる面状光源であってもよいし、光源1Aが波長変換部材1Dと平行な平面状に並べて配置され、導光板1Bに替えて拡散板1Eを備えた面状光源であってもよい。前者の面状光源は一般にエッジライト方式、後者の面状光源は一般に直下型方式と呼ばれている。
 なお、本実施形態では、光源として面状光源を用いた場合を例に説明したが、光源としては面状光源以外の光源も使用することができる。
As illustrated in FIG. 1, the planar light source 1 </ b> C may be a planar light source including a light source 1 </ b> A and a light guide plate 1 </ b> B that guides and emits primary light emitted from the light source 1 </ b> A. It may be a planar light source that is arranged in a plane parallel to the wavelength conversion member 1D and includes a diffusion plate 1E instead of the light guide plate 1B. The former planar light source is generally called an edge light system, and the latter planar light source is generally called a direct type.
In the present embodiment, a case where a planar light source is used as the light source has been described as an example. However, a light source other than the planar light source can be used as the light source.
(バックライトユニットの構成)
 バックライトユニットの構成としては、図1では、導光板や反射板などを構成部材とするエッジライト方式について説明したが、直下型方式であっても構わない。導光板としては、公知のものを何ら制限なく使用することができる。
(Configuration of backlight unit)
As the configuration of the backlight unit, the edge light method using a light guide plate, a reflection plate, or the like as a constituent member has been described in FIG. 1, but a direct type may be used. Any known light guide plate can be used without any limitation.
 また、反射板2Aとしては、特に制限は無く、公知のものを用いることができ、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。 Further, the reflecting plate 2A is not particularly limited, and known ones can be used, and are described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, etc. Incorporated into the present invention.
 再帰反射性部材2Bは、公知の拡散板や拡散シート、プリズムシート(例えば、住友スリーエム社製BEFシリーズなど)、導光器等から構成されていてもよい。再帰反射性部材2Bの構成については、特許3416302号、特許3363565号、特許4091978号、特許3448626号などに記載されており、これらの公報の内容は本発明に組み込まれる。 The retroreflective member 2B may include a known diffusion plate, diffusion sheet, prism sheet (for example, BEF series manufactured by Sumitomo 3M Limited), a light guide, or the like. The configuration of the retroreflective member 2B is described in Japanese Patent No. 3416302, Japanese Patent No. 3363565, Japanese Patent No. 4091978, Japanese Patent No. 3448626, and the contents of these publications are incorporated in the present invention.
「液晶表示装置」
 上述のバックライトユニット2は液晶表示装置に応用することができる。図5に示されるように、液晶表示装置4は上記実施形態のバックライトユニット2とバックライトユニットの再帰反射性部材側に対向配置された液晶セルユニット3とを備えてなる。
"Liquid Crystal Display"
The backlight unit 2 described above can be applied to a liquid crystal display device. As shown in FIG. 5, the liquid crystal display device 4 includes the backlight unit 2 of the above embodiment and the liquid crystal cell unit 3 disposed to face the retroreflective member side of the backlight unit.
 液晶セルユニット3は、図5に示されるように、液晶セル31を偏光板32と33とで挟持した構成としており、偏光板32,33は、それぞれ、偏光子322、332の両主面を偏光板保護フィルム321と323、331と333で保護された構成としている。 As shown in FIG. 5, the liquid crystal cell unit 3 has a configuration in which the liquid crystal cell 31 is sandwiched between polarizing plates 32 and 33, and the polarizing plates 32 and 33 respectively have both main surfaces of the polarizers 322 and 332. The polarizing plate protective films 321 and 323, 331 and 333 are protected.
 液晶表示装置4を構成する液晶セル31、偏光板32、33及びその構成要素については特に限定はなく、公知の方法で作製されるものや市販品を、何ら制限なく用いることができる。また、各層の間に、接着層等の公知の中間層を設けることも、もちろん可能である。 There are no particular limitations on the liquid crystal cell 31, the polarizing plates 32 and 33, and the components thereof that constitute the liquid crystal display device 4, and those produced by known methods and commercially available products can be used without any limitation. It is of course possible to provide a known intermediate layer such as an adhesive layer between the layers.
 液晶セル31の駆動モードについては特に制限はなく、ツイステットネマチック(TN)、スーパーツイステットネマチック(STN)、バーティカルアライメント(VA)、インプレインスイッチング(IPS)、オプティカリーコンペンセイテットベンドセル(OCB)等の種々のモードを利用することができる。液晶セルは、VAモード、OCBモード、IPSモード、又はTNモードであることが好ましいが、これらに限定されるものではない。VAモードの液晶表示装置の構成としては、特開2008-262161号公報の図2に示す構成が一例として挙げられる。ただし、液晶表示装置の具体的構成には特に制限はなく、公知の構成を採用することができる。 The driving mode of the liquid crystal cell 31 is not particularly limited, and is twisted nematic (TN), super twisted nematic (STN), vertical alignment (VA), in-plane switching (IPS), optically compensated bend cell (OCB). ) And other modes can be used. The liquid crystal cell is preferably VA mode, OCB mode, IPS mode, or TN mode, but is not limited thereto. As an example of the configuration of the VA mode liquid crystal display device, the configuration shown in FIG. 2 of Japanese Patent Application Laid-Open No. 2008-262161 is given as an example. However, the specific configuration of the liquid crystal display device is not particularly limited, and a known configuration can be adopted.
 液晶表示装置4には、更に必要に応じて光学補償を行う光学補償部材、接着層などの付随する機能層を有する。また、カラーフィルター基板、薄層トランジスタ基板、レンズフィルム、拡散シート、ハードコート層、反射防止層、低反射層、アンチグレア層等とともに(又はそれに替えて)、前方散乱層、プライマー層、帯電防止層、下塗り層等の表面層が配置されていてもよい。 The liquid crystal display device 4 further includes an associated functional layer such as an optical compensation member that performs optical compensation as necessary, and an adhesive layer. In addition to (or instead of) color filter substrates, thin layer transistor substrates, lens films, diffusion sheets, hard coat layers, antireflection layers, low reflection layers, antiglare layers, etc., forward scattering layers, primer layers, antistatic layers Further, a surface layer such as an undercoat layer may be disposed.
 バックライト側偏光板32は、液晶セル31側の偏光板保護フィルム323として、位相差フィルムを有していてもよい。このような位相差フィルムとしては、公知のセルロースアシレートフィルム等を用いることができる。 The backlight side polarizing plate 32 may have a retardation film as the polarizing plate protective film 323 on the liquid crystal cell 31 side. As such a retardation film, a known cellulose acylate film or the like can be used.
 バックライトユニット2及び液晶表示装置4は、上記本発明の光ロスの少ない波長変換部材を備えてなる。従って、上記本発明の波長変換部材と同様の効果を奏し、量子ドットを含む波長変換層界面の剥離が生じにくく、発光強度が低下しにくい、高輝度なバックライトユニット及び液晶表示装置となる。 The backlight unit 2 and the liquid crystal display device 4 include the above-described wavelength conversion member with little optical loss according to the present invention. Therefore, the backlight unit and the liquid crystal display device having the same effects as those of the wavelength conversion member of the present invention, a high-brightness backlight unit and a liquid crystal display device in which the separation of the interface of the wavelength conversion layer including the quantum dots hardly occurs and the light emission intensity hardly decreases.
 以下に実施例に基づき本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described more specifically based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
 1.バリアフィルム
 (バリアフィルムG)
 バリアフィルムGとして、日本板硝子製の超薄板ガラスOA-10G(厚み50μm)を用意した。
 (バリアフィルムPET1)
 ポリエチレンテレフタレートフィルム(PETフィルム、東洋紡社製、商品名:コスモシャイン(登録商標)A4300、厚さ38μm)の片面側に以下の手順でバリア層を形成した。尚、コスモシャインA4300は、両面にマット層を有していた。
 トリメチロールプロパントリアクリラート(TMPTA、ダイセル・サイテック社製)および光重合開始剤(ランベルティ社製、商品名:ESACURE(登録商標) KTO46)を用意し、質量比率として95:5となるように秤量し、これらをメチルエチルケトンに溶解させ、固形分濃度15%の塗布液とした。この塗布液を、ダイコーターを用いてロールトウロールにて上記PETフィルム上に塗布し、50℃の乾燥ゾーンを3分間通過させた。その後、窒素雰囲気下で紫外線を照射(積算照射量約600mJ/cm)し、UV硬化にて硬化させ、巻き取った。基材上に形成された第一有機層の厚さは、1μmであった。
1. Barrier film (Barrier film G)
As the barrier film G, an ultra-thin glass OA-10G (thickness 50 μm) manufactured by Nippon Sheet Glass was prepared.
(Barrier film PET1)
A barrier layer was formed on one side of a polyethylene terephthalate film (PET film, manufactured by Toyobo Co., Ltd., trade name: Cosmo Shine (registered trademark) A4300, thickness 38 μm) by the following procedure. Cosmo Shine A4300 had a mat layer on both sides.
Trimethylolpropane triacrylate (TMPTA, manufactured by Daicel-Cytec) and a photopolymerization initiator (Lamberti, trade name: ESACURE (registered trademark) KTO46) are prepared so that the mass ratio is 95: 5. These were weighed and dissolved in methyl ethyl ketone to obtain a coating solution having a solid concentration of 15%. This coating solution was applied onto the PET film with a roll toe roll using a die coater, and passed through a drying zone at 50 ° C. for 3 minutes. Thereafter, ultraviolet rays were irradiated in a nitrogen atmosphere (accumulated dose: about 600 mJ / cm 2 ), cured by UV curing, and wound up. The thickness of the first organic layer formed on the substrate was 1 μm.
 次に、ロールトウロールの化学蒸着装置(CVD装置)を用いて、上記有機層の表面に無機層(窒化ケイ素層)を形成した。原料ガスとして、シランガス(流量160sccm)、アンモニアガス(流量370sccm)、水素ガス(流量590sccm)、および窒素ガス(流量240sccm)を用いた。電源として、周波数13.56MHzの高周波電源を用いた。製膜圧力は40Pa、到達膜厚は50nmであった。このようにして有機層の表面に無機層が積層されたバリアフィルムPET1を用意した。 Next, an inorganic layer (silicon nitride layer) was formed on the surface of the organic layer using a chemical vapor deposition apparatus (CVD apparatus) of a roll toe roll. Silane gas (flow rate 160 sccm), ammonia gas (flow rate 370 sccm), hydrogen gas (flow rate 590 sccm), and nitrogen gas (flow rate 240 sccm) were used as source gases. A high frequency power supply having a frequency of 13.56 MHz was used as the power supply. The film forming pressure was 40 Pa, and the reached film thickness was 50 nm. Thus, barrier film PET1 in which the inorganic layer was laminated on the surface of the organic layer was prepared.
 2.蛍光体分散組成物の調製
(実施例1及び実施例10に使用する蛍光体分散組成物1の調製)
 乾燥窒素雰囲気下、下記の分散液を調製し、エバポレーターによりトルエンを留去して除き、蛍光体分散イソシアネート液11を調製した。下記において、発光極大波長535nmの量子ドット分散液1は、NN-ラボズ社製CZ520-100を量子ドット濃度1質量%に調製したものとし、また、発光極大波長630nmの量子ドット分散液2は、NN-ラボズ社製CZ620-100を量子ドット濃度1質量%に調製したものとした。これらの量子ドット(市販品)は、いずれもコアとしてCdSe、シェルとしてZnS、及び配位子としてオクタデシルアミンを用いた量子ドットであり、トルエンに3質量%の濃度で分散されている。次に、乾燥窒素雰囲気下で下記のポリオール液12を調製し、イソシアネート液11とポリオール液12とを規定の量比で混合することにより本発明の蛍光体分散組成物1を得た。この際、混合によりこの2成分は速やかに反応を開始するため、後述する塗布工程の直前までこれら2液を別々のタンクに乾燥窒素雰囲気下貯蔵した。
2. Preparation of phosphor dispersion composition (Preparation of phosphor dispersion composition 1 used in Example 1 and Example 10)
The following dispersion was prepared in a dry nitrogen atmosphere, and toluene was removed by evaporation using an evaporator to prepare phosphor-dispersed isocyanate liquid 11. In the following, the quantum dot dispersion liquid 1 having an emission maximum wavelength of 535 nm is prepared by preparing CZ520-100 manufactured by NN-Labs Co. to a quantum dot concentration of 1% by mass, and the quantum dot dispersion liquid 2 having an emission maximum wavelength of 630 nm is NN-Labs CZ620-100 was prepared to a quantum dot concentration of 1% by mass. These quantum dots (commercially available products) are all quantum dots using CdSe as a core, ZnS as a shell, and octadecylamine as a ligand, and are dispersed in toluene at a concentration of 3% by mass. Next, the following polyol liquid 12 was prepared in a dry nitrogen atmosphere, and the phosphor dispersion composition 1 of the present invention was obtained by mixing the isocyanate liquid 11 and the polyol liquid 12 in a specified quantitative ratio. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
(実施例2に使用する蛍光体分散組成物2の調製)
 イソシアネート液としては上述の蛍光体分散イソシアネート液11を用い、ポリオール液として下記のポリオール液22を調製した以外は、上述した蛍光体分散組成物1の調製と同様にして、本発明の蛍光体分散組成物2を得た。この際、混合によりこの2成分は速やかに反応を開始するため、後述する塗布工程の直前までこれら2液を別々のタンクに乾燥窒素雰囲気下貯蔵した。
(Preparation of phosphor dispersion composition 2 used in Example 2)
The phosphor dispersion of the present invention is the same as the phosphor dispersion composition 1 described above except that the phosphor dispersion isocyanate liquid 11 described above is used as the isocyanate liquid and the following polyol liquid 22 is prepared as the polyol liquid. Composition 2 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
(実施例3に使用する蛍光体分散組成物3の調製)
 乾燥窒素雰囲気下、下記の分散液を調製し、エバポレーターでトルエンを留去して除き、下記の蛍光体分散カルボン酸無水物液31を調製し、得られた蛍光体分散カルボン酸液の21質量部を、乾燥窒素雰囲気下ポリプロピレングリコールジグリシジルエーテル(共栄社化学(株)製、エポライト400P(商品名))71質量部と混合攪拌し、孔径0.2μmのポリプロピレン製フィルタでろ過して、蛍光体分散組成物3を調製した。
(Preparation of phosphor dispersion composition 3 used in Example 3)
Under a dry nitrogen atmosphere, the following dispersion is prepared, and toluene is removed by evaporation using an evaporator to prepare the following phosphor-dispersed carboxylic acid anhydride solution 31, and 21 mass of the obtained phosphor-dispersed carboxylic acid solution. Part was mixed and stirred with 71 parts by mass of polypropylene glycol diglycidyl ether (Epolite 400P (trade name) manufactured by Kyoeisha Chemical Co., Ltd.) under a dry nitrogen atmosphere, and filtered through a polypropylene filter having a pore size of 0.2 μm to obtain a phosphor. Dispersion composition 3 was prepared.
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
(実施例4に使用する蛍光体分散組成物4の調製)
 乾燥窒素雰囲気下、下記の分散液を調製し、エバポレーターでトルエンを留去して除き、下記の蛍光体分散カルボン酸無水物液41を調製し、得られた蛍光体分散カルボン酸液の21質量部を、乾燥窒素雰囲気下ポリプロピレングリコールジグリシジルエーテル(共栄社化学(株)製、エポライト400P(商品名))71質量部と混合攪拌し、孔径0.2μmのポリプロピレン製フィルタでろ過して、蛍光体分散組成物4を調製した。
(Preparation of phosphor dispersion composition 4 used in Example 4)
In a dry nitrogen atmosphere, the following dispersion is prepared, and toluene is removed by evaporation using an evaporator to prepare the following phosphor-dispersed carboxylic acid anhydride liquid 41. 21 mass of the obtained phosphor-dispersed carboxylic acid liquid Part was mixed and stirred with 71 parts by mass of polypropylene glycol diglycidyl ether (Epolite 400P (trade name) manufactured by Kyoeisha Chemical Co., Ltd.) under a dry nitrogen atmosphere, and filtered through a polypropylene filter having a pore size of 0.2 μm to obtain a phosphor. Dispersion composition 4 was prepared.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
(実施例5及び実施例11に使用する蛍光体分散組成物5の調製)
 乾燥窒素雰囲気下、下記の蛍光体分散液を調製し、エバポレーターでトルエンを留去して除き、孔径0.2μmのポリプロピレン製フィルタでろ過して、蛍光体分散組成物5を調製した。この際、混合により、室温でも徐々に重合反応が進行するため、蛍光体分散組成物5は後述する塗布工程の直前まで乾燥窒素雰囲気下タンクに封入し、4℃に冷却して貯蔵した。
(Preparation of phosphor dispersion composition 5 used in Example 5 and Example 11)
The following phosphor dispersion was prepared in a dry nitrogen atmosphere, and toluene was removed by evaporation using an evaporator, followed by filtration through a polypropylene filter having a pore size of 0.2 μm to prepare phosphor dispersion composition 5. At this time, since the polymerization reaction gradually proceeds even at room temperature due to mixing, the phosphor dispersion composition 5 was sealed in a tank in a dry nitrogen atmosphere until immediately before the coating step described later, and cooled to 4 ° C. and stored.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
(実施例6に使用する蛍光体分散組成物6の調製)
 乾燥窒素雰囲気下、下記の蛍光体分散液を調製し、エバポレーターでトルエンを留去して除き、孔径0.2μmのポリプロピレン製フィルタでろ過して、蛍光体分散組成物6を調製した。この際、混合により、室温でも徐々に重合反応が進行するため、蛍光体分散組成物6は後述する塗布工程の直前まで乾燥窒素雰囲気下タンクに封入し、4℃に冷却して貯蔵した。
(Preparation of phosphor dispersion composition 6 used in Example 6)
The following phosphor dispersion was prepared in a dry nitrogen atmosphere, and toluene was removed by evaporation using an evaporator, followed by filtration through a polypropylene filter having a pore size of 0.2 μm to prepare phosphor dispersion composition 6. At this time, since the polymerization reaction gradually proceeds even at room temperature due to mixing, the phosphor dispersion composition 6 was sealed in a tank in a dry nitrogen atmosphere until immediately before the coating step described later, and cooled to 4 ° C. and stored.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
(実施例7に使用する蛍光体分散組成物7の調製)
 乾燥窒素雰囲気下、下記の分散液を調整し、超音波分散機で蛍光体微粒子の凝集物を解砕して、蛍光体分散イソシアネート液71を調製した。次いで、乾燥窒素雰囲気下で下記のポリオール液72を調製し、イソシアネート液71とポリオール液72とを規定の量比で混合することにより本発明の蛍光体分散組成物7を得た。この際、混合により、この2成分は速やかに反応を開始するため、後述する塗布工程の直前までこれら2液を別々のタンクに乾燥窒素雰囲気下貯蔵した。
(Preparation of phosphor dispersion composition 7 used in Example 7)
The following dispersion was prepared in a dry nitrogen atmosphere, and the aggregates of phosphor fine particles were crushed with an ultrasonic disperser to prepare phosphor-dispersed isocyanate liquid 71. Next, the following polyol liquid 72 was prepared under a dry nitrogen atmosphere, and the phosphor dispersion composition 7 of the present invention was obtained by mixing the isocyanate liquid 71 and the polyol liquid 72 in a specified quantitative ratio. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
(実施例8に使用する蛍光体分散組成物8の作製)
 乾燥窒素雰囲気下、下記の分散液を調製し、超音波分散機で蛍光体微粒子の凝集物を解砕して、下記の蛍光体分散カルボン酸無水物液81を調整した。得られた蛍光体分散カルボン酸液の21質量部を、乾燥窒素雰囲気下ポリプロピレングリコールジグリシジルエーテル(共栄社化学(株)製、エポライト400P(商品名))71質量部と混合攪拌し、蛍光体分散組成物8を調製した。
(Preparation of phosphor dispersion composition 8 used in Example 8)
The following dispersion was prepared in a dry nitrogen atmosphere, and the aggregates of the phosphor fine particles were crushed with an ultrasonic disperser to prepare the following phosphor-dispersed carboxylic anhydride liquid 81. 21 parts by mass of the obtained phosphor-dispersed carboxylic acid solution was mixed and stirred with 71 parts by mass of polypropylene glycol diglycidyl ether (Epolite 400P (trade name), manufactured by Kyoeisha Chemical Co., Ltd.) under a dry nitrogen atmosphere. Composition 8 was prepared.
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
(実施例9に使用する蛍光体分散組成物9の作製)
 乾燥窒素雰囲気下、下記の蛍光体分散液を調製し、超音波分散機で蛍光体微粒子の凝集物を解砕して、蛍光体分散組成物9を調製した。この際、室温でも徐々に重合反応が進行するため、蛍光体分散組成物9は後述する塗布工程の直前まで乾燥窒素雰囲気下タンクに封入し、4℃に冷却して貯蔵した。
(Preparation of phosphor dispersion composition 9 used in Example 9)
The following phosphor dispersion liquid was prepared under a dry nitrogen atmosphere, and aggregates of phosphor fine particles were crushed with an ultrasonic disperser to prepare phosphor dispersion composition 9. At this time, since the polymerization reaction gradually proceeds even at room temperature, the phosphor dispersion composition 9 was sealed in a tank under a dry nitrogen atmosphere until immediately before the coating step described later, and cooled to 4 ° C. and stored.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
(比較例1に使用する蛍光体分散組成物10の調製)
 乾燥窒素雰囲気下、下記の蛍光体分散液を調製し、エバポレーターでトルエンを留去して除き、蛍光体分散エポキシ硬化剤液101を調製した。蛍光体分散エポキシ硬化剤液71と、2液硬化型エポキシ主剤パート1(エポキシド、ロックタイト社製 E―30CL)とを混合質量比を25:75となるように混合して比較例の蛍光体分散組成物10を得た。この際、混合により、この2成分は速やかに反応を開始するため、後述する塗布工程の直前までこれら2液を別々のタンクに乾燥窒素雰囲気下貯蔵した。
(Preparation of phosphor dispersion composition 10 used in Comparative Example 1)
The following phosphor dispersion liquid was prepared in a dry nitrogen atmosphere, and toluene was distilled off by an evaporator to prepare phosphor dispersion epoxy curing agent liquid 101. The phosphor dispersion of the comparative example was prepared by mixing the phosphor-dispersed epoxy curing agent liquid 71 and the two-part curable epoxy main agent part 1 (epoxide, E-30CL manufactured by Loctite) so that the mixing mass ratio was 25:75. Composition 10 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
 (比較例2に使用する蛍光体分散組成物11の調製)
 乾燥窒素雰囲気下、下記の蛍光体分散液を調製し、超音波分散機で蛍光体微粒子の凝集物を解砕して、蛍光体分散エポキシ硬化剤液111を調製した。蛍光体分散エポキシ硬化剤液81と、2液硬化型エポキシ主剤パート1(エポキシド、ロックタイト社製 E―30CL)とを混合質量比を25:75となるように混合して比較例の蛍光体分散組成物11を得た。この際、混合により、この2成分は速やかに反応を開始するため、後述する塗布工程の直前までこれら2液を別々のタンクに乾燥窒素雰囲気下貯蔵した。
(Preparation of phosphor dispersion composition 11 used in Comparative Example 2)
The following phosphor dispersion liquid was prepared in a dry nitrogen atmosphere, and aggregates of phosphor fine particles were crushed with an ultrasonic disperser to prepare a phosphor-dispersed epoxy curing agent liquid 111. Fluorescent substance dispersion epoxy curing agent liquid 81 and two-part curable epoxy main part 1 (epoxide, manufactured by Loctite Co., Ltd., E-30CL) are mixed so that the mixing mass ratio is 25:75, and the phosphor dispersion of the comparative example Composition 11 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
(比較例3に使用する蛍光体分散組成物12の調製)
 イソシアネート液としては上述の蛍光体分散イソシアネート液11を用い、ポリオール液として下記のポリオール液122を調製した以外は、上述した蛍光体分散組成物1の調製と同様にして、本発明の蛍光体分散組成物12を得た。この際、混合によりこの2成分は速やかに反応を開始するため、後述する塗布工程の直前までこれら2液を別々のタンクに乾燥窒素雰囲気下貯蔵した。
(Preparation of phosphor dispersion composition 12 used in Comparative Example 3)
The phosphor dispersion of the present invention is the same as the preparation of the phosphor dispersion composition 1 except that the phosphor dispersion isocyanate liquid 11 described above is used as the isocyanate liquid and the following polyol liquid 122 is prepared as the polyol liquid. Composition 12 was obtained. At this time, since these two components started to react quickly by mixing, these two liquids were stored in separate tanks in a dry nitrogen atmosphere until immediately before the coating step described later.
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
(比較例4に使用する蛍光体分散組成物13の調製)
 乾燥窒素雰囲気下、下記の分散液を調製し、エバポレーターでトルエンを留去して除き、下記の蛍光体分散カルボン酸無水物液131を調製し、得られた蛍光体分散カルボン酸液の21質量部を、乾燥窒素雰囲気下ポリプロピレングリコールジグリシジルエーテル(共栄社化学(株)製、エポライト400P(商品名))71質量部と混合攪拌し、孔径0.2μmのポリプロピレン製フィルタでろ過して、蛍光体分散組成物13を調製した。
(Preparation of phosphor dispersion composition 13 used in Comparative Example 4)
Under a dry nitrogen atmosphere, the following dispersion was prepared, and toluene was distilled off by an evaporator to prepare the following phosphor-dispersed carboxylic acid anhydride solution 131. 21 mass of the obtained phosphor-dispersed carboxylic acid solution Part was mixed and stirred with 71 parts by mass of polypropylene glycol diglycidyl ether (Epolite 400P (trade name) manufactured by Kyoeisha Chemical Co., Ltd.) under a dry nitrogen atmosphere, and filtered through a polypropylene filter having a pore size of 0.2 μm to obtain a phosphor. Dispersion composition 13 was prepared.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
(比較例5に使用する蛍光体分散組成物14の調製)
 乾燥窒素雰囲気下、下記の蛍光体分散液を調製し、エバポレーターでトルエンを留去して除き、孔径0.2μmのポリプロピレン製フィルタでろ過して、蛍光体分散組成物14を調製した。この際、混合により、室温でも徐々に重合反応が進行するため、蛍光体分散組成物14は後述する塗布工程の直前まで乾燥窒素雰囲気下タンクに封入し、4℃に冷却して貯蔵した。
(Preparation of phosphor dispersion composition 14 used in Comparative Example 5)
The following phosphor dispersion was prepared in a dry nitrogen atmosphere, and toluene was removed by evaporation using an evaporator, followed by filtration through a polypropylene filter having a pore size of 0.2 μm to prepare phosphor dispersion composition 14. At this time, since the polymerization reaction gradually proceeds even at room temperature due to mixing, the phosphor dispersion composition 14 was sealed in a tank in a dry nitrogen atmosphere until immediately before the coating step described later, and cooled to 4 ° C. and stored.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
 3.波長変換部材の作製
(実施例1)
 蛍光体分散イソシアネート液11を貯蔵したタンクとポリオール液12を貯蔵したタンクとを密閉型自動定量送液装置(リキッド・コントロール社製、ポシラティオ)に接続し、蛍光体分散イソシアネート液11とポリオール液12とが質量比で35:65となるようインラインミキサーで混合しながらダイコーターに供給した。この方法により、ダイコーター吐出口からは均一に混合された蛍光体分散組成物1が供給された。
3. Production of wavelength conversion member (Example 1)
The tank in which the phosphor-dispersed isocyanate liquid 11 is stored and the tank in which the polyol liquid 12 is stored are connected to a sealed automatic quantitative liquid feeding device (manufactured by Liquid Control, Posilatio), and the phosphor-dispersed isocyanate liquid 11 and the polyol liquid 12 are connected. Were fed to the die coater while being mixed by an in-line mixer so that the mass ratio was 35:65. By this method, the uniformly dispersed phosphor dispersion composition 1 was supplied from the die coater discharge port.
 第一のバリアフィルムGを用意し、1m/分、60N/mの張力で連続搬送しながら、ダイコーターで蛍光体分散組成物1を一表面上に塗布し、50μmの厚さの塗膜を形成した。次いで、塗膜の形成された第一のバリアフィルムGをバックアップローラに巻きかけ、塗膜の上に第二のバリアフィルムGをラミネートし、第一、および第二のバリアフィルムGで塗膜を挟持した状態で連続搬送しながら、バックアップローラ上で接触式加熱により80℃30秒加温したあと、さらに80℃の加熱ゾーンを5分間通過させた。加熱ゾーン中で蛍光体分散組成物1は硬化し、蛍光体を含有する波長変換層1を形成した。 Prepare the first barrier film G, apply the phosphor dispersion composition 1 on one surface with a die coater while continuously conveying it at a tension of 1 m / min and 60 N / m, and form a coating film having a thickness of 50 μm. Formed. Next, the first barrier film G on which the coating film is formed is wound around a backup roller, the second barrier film G is laminated on the coating film, and the coating film is coated with the first and second barrier films G. While continuously transporting in the sandwiched state, the sample was heated at 80 ° C. for 30 seconds by contact-type heating on the backup roller, and then passed through a heating zone at 80 ° C. for 5 minutes. In the heating zone, the phosphor dispersion composition 1 was cured to form the wavelength conversion layer 1 containing the phosphor.
(実施例2)
 蛍光体分散組成物として蛍光体分散組成物2を用いた以外は実施例1と同様にして、蛍光体を含有する波長変換層2を形成した。
(Example 2)
A wavelength conversion layer 2 containing a phosphor was formed in the same manner as in Example 1 except that the phosphor dispersion composition 2 was used as the phosphor dispersion composition.
(実施例3)
 蛍光体分散組成物として蛍光体分散組成物3を用い、加熱ゾーンの温度と通過時間を120℃、10分間とした以外は実施例1と同様にして、蛍光体を含有する波長変換層3を形成した。
(Example 3)
A wavelength conversion layer 3 containing a phosphor was prepared in the same manner as in Example 1 except that the phosphor dispersion composition 3 was used as the phosphor dispersion composition, and the temperature and passage time of the heating zone were 120 ° C. and 10 minutes. Formed.
(実施例4)
 蛍光体分散組成物として蛍光体分散組成物4を用い、加熱ゾーンの温度と通過時間を100℃、10分間とした以外は実施例1と同様にして、蛍光体を含有する波長変換層4を形成した。
Example 4
A wavelength conversion layer 4 containing a phosphor was prepared in the same manner as in Example 1 except that the phosphor dispersion composition 4 was used as the phosphor dispersion composition, and the temperature and passage time of the heating zone were 100 ° C. and 10 minutes. Formed.
(実施例5)
 蛍光体分散組成物として蛍光体分散組成物5を用い、加熱ゾーンの温度を80℃とした以外は実施例3と同様にして、蛍光体を含有する波長変換層5を形成した。
(Example 5)
A wavelength conversion layer 5 containing a phosphor was formed in the same manner as in Example 3 except that the phosphor dispersion composition 5 was used as the phosphor dispersion composition and the temperature of the heating zone was set to 80 ° C.
(実施例6)
 蛍光体分散組成物として蛍光体分散組成物6を用いた以外は実施例5と同様にして、蛍光体を含有する波長変換層6を形成した。
(Example 6)
A wavelength conversion layer 6 containing a phosphor was formed in the same manner as in Example 5 except that the phosphor dispersion composition 6 was used as the phosphor dispersion composition.
(実施例7)
 蛍光体分散イソシアネート液11とポリオール液12に代えて、蛍光体分散イソシアネート液71とポリオール液72を使用した以外は実施例1と同様にして、蛍光体を含有する波長変換層7を形成した。
(Example 7)
A wavelength conversion layer 7 containing a phosphor was formed in the same manner as in Example 1 except that the phosphor-dispersed isocyanate liquid 71 and the polyol liquid 72 were used instead of the phosphor-dispersed isocyanate liquid 11 and the polyol liquid 12.
(実施例8)
 蛍光体分散組成物として蛍光体分散組成物8を用いた以外は実施例3と同様にして、蛍光体を含有する波長変換層8を形成した。
(Example 8)
A wavelength conversion layer 8 containing a phosphor was formed in the same manner as in Example 3 except that the phosphor dispersion composition 8 was used as the phosphor dispersion composition.
(実施例9)
 蛍光体分散組成物として蛍光体分散組成物9を用いた以外は実施例5と同様にして、蛍光体を含有する波長変換層9を形成した。
Example 9
A wavelength conversion layer 9 containing a phosphor was formed in the same manner as in Example 5 except that the phosphor dispersion composition 9 was used as the phosphor dispersion composition.
(実施例10)
 第一および第二のバリアフィルムとして、バリアフィルムGに代えてPET1を用いた以外は実施例1と同様にして蛍光体を含有する波長変換層10を形成した。
(Example 10)
A wavelength conversion layer 10 containing a phosphor was formed in the same manner as in Example 1 except that PET1 was used in place of the barrier film G as the first and second barrier films.
(実施例11)
 第一および第二のバリアフィルムとして、バリアフィルムGに代えてPET1を用いた以外は実施例1と同様にして蛍光体を含有する波長変換層11を形成した。
(Example 11)
A wavelength conversion layer 11 containing a phosphor was formed in the same manner as in Example 1 except that PET1 was used in place of the barrier film G as the first and second barrier films.
(比較例1)
 蛍光体分散組成物として蛍光体分散組成物10を用いた以外は実施例1と同様の工程を行って、蛍光体を含有する波長変換層12を形成した。
(Comparative Example 1)
A wavelength conversion layer 12 containing a phosphor was formed by performing the same process as in Example 1 except that the phosphor dispersion composition 10 was used as the phosphor dispersion composition.
(比較例2)
 蛍光体分散組成物として蛍光体分散組成物11を用いた以外は実施例1と同様の工程を行って、蛍光体を含有する波長変換層13を形成した。
(Comparative Example 2)
A wavelength conversion layer 13 containing a phosphor was formed by performing the same process as in Example 1 except that the phosphor dispersion composition 11 was used as the phosphor dispersion composition.
(比較例3)
 蛍光体分散組成物として蛍光体分散組成物12を用いた以外は実施例1と同様の工程を行って、蛍光体を含有する波長変換層14を形成した。
(Comparative Example 3)
A wavelength conversion layer 14 containing a phosphor was formed by performing the same process as in Example 1 except that the phosphor dispersion composition 12 was used as the phosphor dispersion composition.
(比較例4)
 蛍光体分散組成物として蛍光体分散組成物13を用いた以外は実施例3と同様の工程を行って、蛍光体を含有する波長変換層15を形成した。
(Comparative Example 4)
A wavelength conversion layer 15 containing a phosphor was formed by performing the same process as in Example 3 except that the phosphor dispersion composition 13 was used as the phosphor dispersion composition.
(比較例5)
 蛍光体分散組成物として蛍光体分散組成物14を用いた以外は実施例5と同様の工程を行って、蛍光体を含有する波長変換層16を形成した。
(Comparative Example 5)
A wavelength conversion layer 16 containing a phosphor was formed by performing the same process as in Example 5 except that the phosphor dispersion composition 14 was used as the phosphor dispersion composition.
 4.評価
 本発明の蛍光体分散組成物の効果を確認するために、上記のようにして実施例及び比較例の波長変換部材について、耐光性及び長期信頼性の評価を行った。耐光性と長期信頼性の指標として、経時輝度変化、及び経時色味変化を確認した。
4). Evaluation In order to confirm the effect of the phosphor dispersion composition of the present invention, the light resistance and long-term reliability of the wavelength conversion members of Examples and Comparative Examples were evaluated as described above. As indicators of light resistance and long-term reliability, changes in luminance with time and color changes with time were confirmed.
 (初期輝度の評価)
 市販のタブレット端末(Amazon社製、Kindle(登録商標) Fire HDX 7”)を分解し、バックライトユニットからQDEF(3M社製量子ドットフィルム)を取り出し、QDEFに代えて矩形に切り出した上記実施例及び比較例の波長変換部材を組み込んだ。このようにして液晶表示装置を作製した。作製した液晶表示装置を点灯させ、全面が白表示になるようにし、導光板の面に対して垂直方向740mmの位置に設置した輝度計(SR3、TOPCON社製)にて測定した。測定結果を表1に示す。
(Evaluation of initial luminance)
The above example in which a commercially available tablet terminal (manufactured by Amazon, Kindle (registered trademark) Fire HDX 7 ") was disassembled, QDEF (quantum dot film made by 3M) was taken out from the backlight unit, and cut into a rectangle instead of QDEF In this way, a liquid crystal display device was produced, and the produced liquid crystal display device was turned on so that the entire surface was displayed in white, and the direction perpendicular to the surface of the light guide plate was 740 mm. Is measured with a luminance meter (SR3, manufactured by TOPCON Co., Ltd.) installed at position 1. Table 1 shows the measurement results.
 (耐光性試験後の輝度の評価)
 矩形に切り出した実施例、比較例の波長変換部材を、メタルハライドランプ(約290nm以下カット)(商品名:アイスーパーUVテスター、岩崎電気製)で照度90mW/cm、温度25℃、湿度60%の条件で1000時間光照射することにより耐光性試験を行った。かかる耐光性試験後に上述の輝度の評価と同様の評価を行って経時輝度変化を確認した。測定結果を表1に示す。
(Evaluation of luminance after light resistance test)
The wavelength conversion members of Examples and Comparative Examples cut out into rectangles were irradiated with a metal halide lamp (cut about 290 nm or less) (trade name: iSuper UV Tester, manufactured by Iwasaki Electric Co., Ltd.), illuminance 90 mW / cm 2 , temperature 25 ° C., humidity 60%. The light resistance test was conducted by irradiating light for 1000 hours under the conditions of After the light resistance test, the same luminance evaluation as described above was performed to confirm the luminance change with time. The measurement results are shown in Table 1.
 (目視外観評価)
 実施例、比較例の波長変換部材について、耐光性試験前の初期外観と、耐光性試験後の外観とを高演色白色光源下、白色背景上で目視比較することにより、実施例および比較例の波長変換部材の色味の評価を行った。その結果を表1に示す。
(Visual appearance evaluation)
For the wavelength conversion members of Examples and Comparative Examples, the initial appearance before the light resistance test and the appearance after the light resistance test were visually compared on a white background under a high color rendering white light source. The color of the wavelength conversion member was evaluated. The results are shown in Table 1.
 表1に示されるように、実施例の波長変換部材は、初期輝度が良好で、且つ、耐光性試験後の輝度低下が抑制されていた。基材を超薄板ガラスとした場合も、PETフィルムにバリア層を設けたバリアフィルムPET1とした場合も、実施例の波長変換部材は初期輝度、および耐光性試験後の輝度低下が良好な結果を示していた。 As shown in Table 1, the wavelength conversion member of the example had good initial luminance, and the decrease in luminance after the light resistance test was suppressed. Whether the substrate is an ultra-thin plate glass or the barrier film PET1 in which a barrier layer is provided on a PET film, the wavelength conversion members of the examples have good results in the initial luminance and the luminance decrease after the light resistance test. Was showing.
 一方、比較例の波長変換部材は耐光性試験後の輝度低下が顕著であった。目視評価において耐光性試験後の比較例の波長変換部材は薄黄色に着色しており、この着色で蛍光体の励起に用いる青光が一部吸収されて輝度が低下したと考えられる。基材の薄板ガラスは光に対して極めて堅牢であるから、この着色およびそれに伴う輝度の低下は、波長変換層の組成に起因するものである。 On the other hand, the luminance conversion after the light resistance test was remarkable in the wavelength conversion member of the comparative example. In the visual evaluation, the wavelength conversion member of the comparative example after the light resistance test is colored light yellow, and it is considered that the blue light used for excitation of the phosphor is partially absorbed by this coloring and the luminance is lowered. Since the thin glass sheet of the substrate is extremely robust against light, the coloring and the accompanying decrease in luminance are attributed to the composition of the wavelength conversion layer.
 また、比較例1では、他の実施例に対して初期輝度が低かった。これは、硬化剤として用いるアミン化合物が、蛍光体である量子ドットを保護する配位子に影響して量子ドットの電子状態が変化し発光効率を低下させているものと推定している。同じく量子ドットを蛍光体として用いた実施例1~3の波長変換材料は好適な初期輝度を維持しており、通常条件下の発光効率においても本発明の蛍光体分散組成物が好適であることが確認された。 Further, in Comparative Example 1, the initial luminance was lower than in the other examples. This is presumed that the amine compound used as a curing agent affects the ligand that protects the quantum dots, which are phosphors, and changes the electronic state of the quantum dots to reduce the luminous efficiency. Similarly, the wavelength conversion materials of Examples 1 to 3 using quantum dots as the phosphor maintain a suitable initial luminance, and the phosphor dispersion composition of the present invention is also suitable in terms of luminous efficiency under normal conditions. Was confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1C 面状光源
 1D 波長変換部材
 2 バックライトユニット
 2A 反射板
 2B 再帰反射性部材
 3 液晶セルユニット
 4 液晶表示装置
 10,20 バリアフィルム
 11,21 基材
 12,22 バリア層
 13 凹凸付与層(マット層、光拡散層)
 30 波長変換膜
 30A,30B 量子ドット
 30P 有機マトリックス
 L 励起光(一次光、青色光)
 L 赤色光(二次光、蛍光)
 L 緑色光(二次光、蛍光)
DESCRIPTION OF SYMBOLS 1C Planar light source 1D Wavelength conversion member 2 Backlight unit 2A Reflector 2B Retroreflective member 3 Liquid crystal cell unit 4 Liquid crystal display device 10,20 Barrier film 11,21 Base material 12,22 Barrier layer 13 Concavity and convexity providing layer (mat layer) , Light diffusion layer)
30 Wavelength conversion film 30A, 30B quantum dots 30P organic matrix L B excitation light (primary light, blue light)
LR red light (secondary light, fluorescence)
L G the green light (secondary light, fluorescence)

Claims (11)

  1.  三次元網目構造を有するバインダー中に少なくとも1種の蛍光体が分散されて含まれてなる蛍光成形体を形成する蛍光体分散組成物であって、
     前記蛍光体と、熱硬化反応により前記バインダ-を形成するバインダー前駆体とを含んでなり、
     該バインダー前駆体が、前記熱硬化反応により前記三次元網目構造を形成する少なくとも1種の熱硬化性化合物を含み、
     該熱硬化性化合物としての多官能1級アミン及び多官能2級アミンの合計含有量が前記蛍光体分散組成物の全質量に対し0.1質量%以下である蛍光体分散組成物。
    A phosphor dispersion composition for forming a phosphor molded body comprising at least one phosphor dispersed and contained in a binder having a three-dimensional network structure,
    Comprising the phosphor and a binder precursor that forms the binder by a thermosetting reaction,
    The binder precursor includes at least one thermosetting compound that forms the three-dimensional network structure by the thermosetting reaction,
    A phosphor dispersion composition in which the total content of the polyfunctional primary amine and the polyfunctional secondary amine as the thermosetting compound is 0.1% by mass or less based on the total mass of the phosphor dispersion composition.
  2.  前記熱硬化性化合物が、多価イソシアネートとポリオールを含む請求項1記載の蛍光体分散組成物。 The phosphor dispersion composition according to claim 1, wherein the thermosetting compound contains a polyvalent isocyanate and a polyol.
  3.  前記多価イソシアネートが、環状脂肪族イソシアネート及び/または鎖状脂肪族イソシアネートである請求項2記載の蛍光体分散組成物。 The phosphor dispersion composition according to claim 2, wherein the polyvalent isocyanate is a cyclic aliphatic isocyanate and / or a chain aliphatic isocyanate.
  4.  前記バインダー前駆体が、前記多価イソシアネートと前記ポリオールとの前記熱硬化反応を促進する反応促進剤を含む請求項2または3記載の蛍光体分散組成物。 The phosphor dispersion composition according to claim 2 or 3, wherein the binder precursor includes a reaction accelerator that accelerates the thermosetting reaction between the polyvalent isocyanate and the polyol.
  5.  前記熱硬化性化合物が、エポキシドとカルボン酸無水物を含み、前記バインダー前駆体が、前記エポキシドと前記カルボン酸無水物との前記熱硬化反応を促進する反応促進剤を含む請求項1記載の蛍光体分散組成物。 The fluorescence according to claim 1, wherein the thermosetting compound includes an epoxide and a carboxylic acid anhydride, and the binder precursor includes a reaction accelerator that accelerates the thermosetting reaction between the epoxide and the carboxylic acid anhydride. Body dispersion composition.
  6.  前記熱硬化反応が熱重合反応であり、前記熱硬化性化合物が、エポキシドを含み、前記バインダー前駆体が前記熱重合反応の熱重合開始剤を含む請求項1記載の蛍光体分散組成物。 The phosphor dispersion composition according to claim 1, wherein the thermosetting reaction is a thermopolymerization reaction, the thermosetting compound contains an epoxide, and the binder precursor contains a thermopolymerization initiator of the thermopolymerization reaction.
  7.  請求項1~6いずれか1項記載の蛍光体分散組成物を硬化した蛍光成形体。 A fluorescent molded body obtained by curing the phosphor dispersion composition according to any one of claims 1 to 6.
  8.  請求項1~6いずれか1項記載の蛍光体分散組成物の塗膜を硬化した波長変換膜。 A wavelength conversion film obtained by curing a coating film of the phosphor dispersion composition according to any one of claims 1 to 6.
  9.  請求項8記載の波長変換膜を備えてなる波長変換部材。 A wavelength conversion member comprising the wavelength conversion film according to claim 8.
  10.  一次光を出射する面状光源と、
     該面状光源上に備えられてなる請求項9記載の波長変換部材と、
     該波長変換部材を挟んで前記面状光源と対向配置される再帰反射性部材と、
     前記面状光源を挟んで前記波長変換部材と対向配置される反射板とを備えたバックライトユニットであって、
     前記波長変換部材は、前記面状光源から出射された前記一次光の少なくとも一部を励起光として、前記蛍光を発光し、該蛍光からなる二次光を含む光を少なくとも出射するものであるバックライトユニット。
    A planar light source that emits primary light;
    The wavelength conversion member according to claim 9 provided on the planar light source;
    A retroreflective member disposed opposite to the planar light source with the wavelength conversion member interposed therebetween;
    A backlight unit comprising a reflection plate disposed opposite to the wavelength conversion member across the planar light source,
    The wavelength converting member emits the fluorescence using at least a part of the primary light emitted from the planar light source as excitation light, and emits at least light including secondary light composed of the fluorescence. Light unit.
  11.  請求項10に記載のバックライトユニットと、
    該バックライトユニットの前記再帰反射性部材側に対向配置された液晶ユニットとを備えてなる液晶表示装置。
    The backlight unit according to claim 10;
    A liquid crystal display device comprising: a liquid crystal unit disposed opposite to the retroreflective member side of the backlight unit.
PCT/JP2016/000504 2015-02-02 2016-02-01 Composition having fluorescent bodies dispersed therein, fluorescent molded body obtained using said composition, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device WO2016125482A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015018858A JP6506037B2 (en) 2015-02-02 2015-02-02 Phosphor-Dispersed Composition, Fluorescent Molded Product Obtained Using the Same, Wavelength Conversion Film, Wavelength Conversion Member, Backlight Unit, Liquid Crystal Display Device
JP2015-018858 2015-02-02

Publications (1)

Publication Number Publication Date
WO2016125482A1 true WO2016125482A1 (en) 2016-08-11

Family

ID=56563836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000504 WO2016125482A1 (en) 2015-02-02 2016-02-01 Composition having fluorescent bodies dispersed therein, fluorescent molded body obtained using said composition, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP6506037B2 (en)
WO (1) WO2016125482A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031102A1 (en) * 2017-08-07 2019-02-14 パナソニックIpマネジメント株式会社 Wavelength converting member, light emitting device, and illumination device
JPWO2019017423A1 (en) * 2017-07-21 2020-07-09 Dic株式会社 Ink composition, method for producing the same, light conversion layer, and color filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102038228B1 (en) * 2018-07-31 2019-10-29 도레이첨단소재 주식회사 Color change sheet and backlight unit including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2008268837A (en) * 2006-09-27 2008-11-06 Fujifilm Corp Image reading device
JP2009229500A (en) * 2008-03-19 2009-10-08 Konica Minolta Medical & Graphic Inc Method for preparing organic solvent dispersion of photosensitive silver halide emulsion, silver salt heat developable photosensitive material and image forming method for silver salt heat developable photosensitive material
JP2010014666A (en) * 2008-07-07 2010-01-21 Fujifilm Corp Radiological image conversion panel
JP2010112733A (en) * 2008-11-04 2010-05-20 Fujifilm Corp Radiological image detector
JP2010209194A (en) * 2009-03-10 2010-09-24 Toshiba Corp Red light-emitting fluorescent substance and light-emitting device using the same
JP2013021339A (en) * 2004-04-27 2013-01-31 Panasonic Corp Light-emitting device
JP2013095914A (en) * 2011-11-07 2013-05-20 Shin-Etsu Chemical Co Ltd Wavelength conversion sheet filled with large amount of phosphor, method of producing light emitting semiconductor device using the sheet, and light emitting semiconductor device
JP2014208615A (en) * 2013-03-26 2014-11-06 Jnc株式会社 Alkoxy silyl group-containing silsesquioxane and composition thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059982A1 (en) * 2001-01-24 2002-08-01 Nichia Corporation Light emitting diode, optical semiconductor elemet and epoxy resin composition suitable for optical semiconductor element and production methods therefor
JP2013021339A (en) * 2004-04-27 2013-01-31 Panasonic Corp Light-emitting device
JP2008268837A (en) * 2006-09-27 2008-11-06 Fujifilm Corp Image reading device
JP2009229500A (en) * 2008-03-19 2009-10-08 Konica Minolta Medical & Graphic Inc Method for preparing organic solvent dispersion of photosensitive silver halide emulsion, silver salt heat developable photosensitive material and image forming method for silver salt heat developable photosensitive material
JP2010014666A (en) * 2008-07-07 2010-01-21 Fujifilm Corp Radiological image conversion panel
JP2010112733A (en) * 2008-11-04 2010-05-20 Fujifilm Corp Radiological image detector
JP2010209194A (en) * 2009-03-10 2010-09-24 Toshiba Corp Red light-emitting fluorescent substance and light-emitting device using the same
JP2013095914A (en) * 2011-11-07 2013-05-20 Shin-Etsu Chemical Co Ltd Wavelength conversion sheet filled with large amount of phosphor, method of producing light emitting semiconductor device using the sheet, and light emitting semiconductor device
JP2014208615A (en) * 2013-03-26 2014-11-06 Jnc株式会社 Alkoxy silyl group-containing silsesquioxane and composition thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019017423A1 (en) * 2017-07-21 2020-07-09 Dic株式会社 Ink composition, method for producing the same, light conversion layer, and color filter
JP7124827B2 (en) 2017-07-21 2022-08-24 Dic株式会社 Ink composition, method for producing same, light conversion layer, and color filter
WO2019031102A1 (en) * 2017-08-07 2019-02-14 パナソニックIpマネジメント株式会社 Wavelength converting member, light emitting device, and illumination device

Also Published As

Publication number Publication date
JP2016141741A (en) 2016-08-08
JP6506037B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
US9958727B2 (en) Wavelength conversion member, backlight unit including wavelength conversion member, liquid crystal display device, and method of manufacturing wavelength conversion member
US10619092B2 (en) Wavelength conversion film
US10513655B2 (en) Wavelength conversion member, backlight unit including wavelength conversion member, liquid crystal display device, and method of manufacturing wavelength conversion member
KR101935295B1 (en) Method for manufacturing quantum-dot-containing laminate, quantum-dot-containing laminate, backlight unit, liquid crystal display device, and quantum-dot-containing composition
WO2016092805A1 (en) Wavelength conversion member, backlight unit, liquid crystal display device, and production method for wavelength conversion member
JP6363526B2 (en) Wavelength conversion member, backlight unit including the same, liquid crystal display device, and method for manufacturing wavelength conversion member
CN105467671B (en) Laminated film, backlight unit, liquid crystal display device, and method for manufacturing laminated film
KR102223409B1 (en) Backlight unit and liquid crystal display device
TW201621428A (en) Backlight unit, liquid crystal display device and wavelength conversion member
KR20150133138A (en) Polymerizable composition containing quantum dot, wavelength conversion member, backlight unit, liquid crystal display device and method for manufacturing wavelength conversion member
US9651826B2 (en) Wavelength conversion member, backlight unit, and liquid crystal display device
WO2016125482A1 (en) Composition having fluorescent bodies dispersed therein, fluorescent molded body obtained using said composition, wavelength conversion film, wavelength conversion member, backlight unit, and liquid crystal display device
JP6224016B2 (en) Composition for wavelength conversion layer, wavelength conversion member, backlight unit, and liquid crystal display device
JP6353908B2 (en) Method for producing optical member and curable resin composition used therefor
CN111819262B (en) Curable adhesive composition, adhesive sheet using the same, laminate containing the adhesive sheet, and method for producing the laminate
JP6499406B2 (en) Method for producing optical member and curable resin composition used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746314

Country of ref document: EP

Kind code of ref document: A1