WO2016123858A1 - 一种测试微环光开关驱动电路性能的装置 - Google Patents
一种测试微环光开关驱动电路性能的装置 Download PDFInfo
- Publication number
- WO2016123858A1 WO2016123858A1 PCT/CN2015/075874 CN2015075874W WO2016123858A1 WO 2016123858 A1 WO2016123858 A1 WO 2016123858A1 CN 2015075874 W CN2015075874 W CN 2015075874W WO 2016123858 A1 WO2016123858 A1 WO 2016123858A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- micro
- optical switch
- ring optical
- driving
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
Definitions
- the invention belongs to the technical field of optical fiber communication, and particularly relates to a device for testing the performance of a micro-ring optical switch driving circuit.
- Photonic integrated chip has many advantages such as small size, low power consumption and high reliability.
- Photonic integrated chip based on microring resonator is a promising photonic integrated device, which is one of the basic components of large-scale photonic integrated circuits in the future. It will play an increasingly important role in optical information processing, light source generation and optical information buffering. Important role.
- a microring resonator When using a microring resonator to implement some functional chip devices, such as tunable wave filtering, dynamic switching, optical modulation, etc., a suitable driving circuit is required to complete the corresponding function. The performance of the driver circuit will inevitably affect the implementation of the chip function. Therefore, how to test the performance of the drive circuit more reliably becomes a very important issue.
- the test method of the performance of the driving circuit is to separate the driving circuit from the optical path, and separately test the noise, stability and the like of the driving circuit.
- This method is performed on the pure electric domain and is relatively simple.
- the characteristics of the driver circuit measured by the method are often quite different from the actual application effects, especially in the case of a microring resonator, which is more difficult to intuitively Judgment is a defect in the performance of the driver circuit, or the influence of the micro-ring switch itself.
- the fixed-resistance value is often used in the electric field test method of the performance of the driving circuit, and the operating characteristics of the micro-ring optical switch are easily affected by the temperature change, and the impedance characteristic thereof also changes, which is one of the reasons for the difference between the two.
- the object of the present invention is to provide a micro-ring optical switch driving circuit performance testing device for the deficiencies of the pure electric field testing method for the performance of the existing micro-ring optical switch driving circuit.
- the invention effectively solves the defect that the micro-ring optical switch driving circuit is separately measured in the pure electric domain, and can be better and practical by combining the driving circuit and the optical chip transmission system unit as an integral part of the whole testing device.
- Application combination effectively test the performance of the drive circuit noise, stability and voltage accuracy, and correctly evaluate the drive
- the actual application effect of the circuit, and the device can be applied to the situation in which the temperature of the micro-ring optical switch is constantly changing, thereby greatly reducing the requirements of the test environment and improving the test accuracy.
- a device for testing the performance of a micro-ring optical switch driving circuit comprising a computer test platform unit, a dual driving/selecting unit and an optical chip transmission system unit; wherein the computer testing platform unit is composed of a data processing module and a control signal generating module
- the control signal generation module is the control center of the entire device, and controls the 2 ⁇ 1 switch module, the drive circuit to be tested, the reference current/voltage source table, the data processing module, and the tunable laser to implement corresponding functions; the data processing module transmits the optical chip
- the output signal of the system unit is processed to obtain the parameters of the performance of the drive circuit to be tested.
- the dual driving/selecting unit is composed of a driving circuit module to be tested, a reference current/voltage source table module and a 2 ⁇ 1 selection switch module; the reference current/voltage source table module and the driving circuit to be tested respectively generate driving signals, 2
- the ⁇ 1 selection switch alternately selects one of the two drive signals to drive the micro-ring optical switch.
- the optical chip transmission system unit is composed of a micro ring optical switch module, a tunable laser module and a photoelectric A/D converter module, and the tunable laser selects a corresponding wavelength as a test light source according to the spectral characteristics of the micro ring optical switch, and the photoelectric A/D
- the converter converts the optical signal output by the micro-ring optical switch into an electrical signal and transmits it to the data processing module.
- control signal generating module in the computer test platform unit is used to control the reference current/voltage source table and the driving circuit to be tested to start working, and set the switching time of the 2 ⁇ 1 switching module.
- the driving signals generated by the two driving signal sources are alternately switched by the 2 ⁇ 1 selection switch, and one of the signals is selected to drive the micro-ring optical switch to start working, and the optical signal generated by the micro-ring optical switch is converted into an electrical signal transmission by the photoelectric A/D conversion module.
- Data processing and analysis are performed on the data processing signal processing module, and the performance characteristic parameters of the driving circuit are obtained by analyzing and comparing the spectral characteristics of the micro-ring optical switch output.
- the invention discloses a device for testing the performance of a micro-ring optical switch driving circuit, which has the advantages that the testing device is different from the traditional pure electric domain driving circuit test, but the driving circuit is placed in the application optical path for testing, through the detection and Processing the output spectrum of the micro-ring optical switch to obtain the performance parameters of the driving circuit to be tested.
- a 2 ⁇ 1 selection switch module is designed in the whole device. This design avoids the error caused by using the reference current/voltage source meter and the drive circuit to be tested at different time points due to changes in ambient temperature.
- the data processing module can effectively analyze and process the optical chip transmission system unit. Thereby obtaining performance parameters of the driving circuit.
- FIG. 1 is a block diagram showing an implementation of an apparatus for testing the performance of a micro-ring optical switch driving circuit of the present invention
- FIG. 2 is a structural diagram of a 4 ⁇ 4 micro-ring optical switch chip according to an embodiment of the present invention
- FIG. 3 is an output line diagram of a port of a micro-ring optical switch chip according to an embodiment of the present invention.
- FIG. 4 is a diagram showing typical test results of a micro-ring optical switch chip in an embodiment of the present invention.
- FIG. 2 is a structure constituting the microring optical switch chip.
- a PIN is integrated at a microring to compensate for process errors, determine initial operating conditions, and implement switching functions.
- FIG. 3 is an output spectrum of a micro-ring_MZI optical switch chip at a certain port when its initial state is not determined, and the position of the micro-ring resonance peak is not at the same wavelength. At this time, a driving circuit is required to adjust the micro-ring switch, and the machining error is compensated by the applied voltage.
- the microring resonance peak is not required to be perfectly aligned because the object of the test is the performance of the driver circuit. If there is a defect in the performance of the driving circuit, it can also be reflected to the upper and lower or left and right changes of the resonant peak, and the noise of the driving circuit will also keep the output spectrum of the microring constantly shaking. Therefore, the present invention uses the driving circuit in combination with the micro-ring optical switch chip, and evaluates the performance of the driving circuit in the application optical path system, which is more practical.
- the driving circuit to be tested is placed in the dual driving/selecting unit of the device of the present invention; the reference current/voltage source table and the driving circuit to be tested are simultaneously used as the signal source for driving the micro-ring optical switch, respectively Control signal generation module and 2 ⁇ 1 selection switch module connection; control in computer test platform unit
- the signal generating module is used as a total control center for setting the output voltage of the driving circuit to be tested and the reference current/voltage source meter, and issuing an instruction to start working, and their output voltage is simultaneously transmitted to the 2 ⁇ 1 selection switch module at the back end;
- the ⁇ 1 selection switch module can realize the switching action quickly, and its switching time can be set by the control signal generation module; after the 2 ⁇ 1 switch receives the reference current/voltage source table and the driving voltage generated by the driving circuit to be tested, it will be The two driving voltages alternately select outputs, respectively driving the micro-ring optical switch for a period of time.
- the driving time set is 5 seconds, that is, the driving signal source is selected every 5
- the optical chip transmission system unit is composed of a microring-based MZI optical switch chip, a tunable laser, and a photoelectric A/D converter.
- the tunable laser scans and outputs monochromatic light in the range of 1540 ⁇ 1560nm under the control of the control signal generating module, and transmits it to the computer test platform unit through the photoelectric A/D converter after being transmitted by the micro-ring optical switch.
- the module obtains the output spectral information of the micro-ring optical switch chip; after that, the wavelength of the probe light is fixed at an appropriate position at the falling edge or the rising edge of a certain resonance peak. In this embodiment, the wavelength of the probe light is 1.549 um.
- the probe light is received by the subsequent photoelectric A/D converter after passing through the micro-ring optical switch chip, and the photoelectric A/D converter converts the optical signal into an electrical signal and sends it to the data processing module for digital signal processing.
- the data processing module takes the reference current/voltage source table with stable performance and good performance as the standard, and obtains the parameters such as jitter and offset of the driving circuit by calculating the parameters such as mean square error and average value.
- Figure 4 is a signal plot of the output of the opto-electronic A/D converter in the apparatus of the present invention. It can be seen from Fig. 4 that the output characteristics of the micro-ring optical switch are significantly different under the driving of two different driving signal sources.
- the output jitter of the driving circuit to be tested is larger, and the output signal reference lines of the two are not on the same line, indicating the average output voltage value of the driving circuit to be tested and the set driving. There is a certain gap in the voltage value.
- the average voltage value of the output will change with time, indicating that the output voltage of the drive circuit to be tested is not stable enough.
- the quantization processing of the performance of the driving circuit to be tested is specifically completed by the data processing module.
- the noise performance of the driving circuit to be tested is 10 mV
- the error between the actual output voltage value and the set voltage value is 8 mV
- the fluctuation range of the average value of the output voltage of the circuit to be tested is 5 to 10 mV.
- the driving circuit of the micro-ring optical switch chip can be directly tested in the application optical path, and the performance of the driving circuit to be tested is superimposed on the transmission spectrum of the micro-ring optical switch chip in the optical chip transmission system, and then the data is
- the processing module demodulates the performance of the micro-ring optical switch drive circuit.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
一种测试微环光开关驱动电路性能的装置,包括计算机测试平台单元、双路驱动/选择单元以及光芯片传输系统单元,在计算机测试平台单元中的控制信号发生模块的控制下,双路驱动/选择单元交替地输出电信号来驱动光芯片传输系统单元中的微环光开关,光芯片传输系统单元输出的信号由计算机测试平台单元中的数据处理模块接收,并根据微环光开关的光谱特性获取双路驱动/选择单元中待测驱动电路的性能参数。该装置可直接在光路中测试微环光开关驱动电路的噪声、稳定性和电压精度等,该装置也可用于微环光开关温度不断变化的情形,从而大大降低了测试环境的要求。
Description
本发明属于光纤通信技术领域,具体涉及一种测试微环光开关驱动电路性能的装置。
随着社会的快速发展,人们对信息传输、处理和储存的速度及规模要求越来越高。光子集成芯片体积小、功耗低、可靠性高等多方面的优势。基于微环谐振器的光子集成芯片是一种极具潜力的光子集成器件,是未来大规模光子集成回路的基础性元件之一,在光信息处理,光源产生和光信息缓存领域将发挥越来越重要的作用。在利用微环谐振器实现一些功能芯片器件时,例如可调波滤、动态开关、光调制等,均需要合适的驱动电路才能完成相应的功能。驱动电路的性能好坏必然影响芯片功能的实现。因此,如何更加可靠地测试驱动电路的性能就成为一个非常重要的问题。
目前,驱动电路性能的测试方法是将驱动电路从光路中剥离出来,单独测试驱动电路的噪声、稳定性等性能,这种方法是在纯电域上进行的,比较简单。然而,实际工程中,每当将驱动电路用于芯片传输系统时,该方法测量出的驱动电路特性与实际应用效果往往有较大的差异,特别是对于微环谐振器情形,更加难以直观地判断是驱动电路性能上的缺陷,还是微环光开关本身因素的影响。此外,驱动电路性能的电域测试方法中往往采用固定电阻值,而微环光开关的工作特性容易受温度变化的影响,其阻抗特性也会发生改变,也是两者出现差异的原因之一。
发明内容
本发明的目的在于针对现有微环光开关驱动电路性能的纯电域测试方法的不足,提供一种微环光开关驱动电路性能测试装置。本发明有效地解决了在纯电域对微环光开关驱动电路进行单独测量的缺陷,通过将驱动电路与光芯片传输系统单元组合在一起作为整个测试装置的组成部分,能够更好地与实际应用相结合,有效测试驱动电路的噪声、稳定性和电压精度等性能,正确评估驱动
电路实际运用效果,并且该装置能够应用于微环光开关温度不断变化的情形,从而大大降低了测试环境的要求,提高测试精度。
为实现上述目的,本发明的技术方案为:
一种测试微环光开关驱动电路性能的装置,包括计算机测试平台单元、双路驱动/选择单元以及光芯片传输系统单元;其中,所述计算机测试平台单元由数据处理模块和控制信号发生模块组成,控制信号发生模块是整个装置的控制中心,控制2×1开关模块、待测驱动电路、参考电流/电压源表、数据处理模块和可调激光器实现相应的功能;数据处理模块对光芯片传输系统单元的输出信号进行处理,得出待测驱动电路性能的参数。
所述双路驱动/选择单元由待测驱动电路模块、参考电流/电压源表模块和2×1选择开关模块构成;参考电流/电压源表模块和待测驱动电路分别独自产生驱动信号,2×1选择开关从这两路驱动信号中交替选择一路驱动信号来驱动微环光开关。
所述光芯片传输系统单元由微环光开关模块、可调激光器模块和光电A/D转换器模块组成,可调激光器根据微环光开关的光谱特性选择相应波长作为测试光源,光电A/D转换器将微环光开关输出的光信号转换为电信号并传输给数据处理模块。
在本发明中,计算机测试平台单元中控制信号发生模块用于控制参考电流/电压源表和待测驱动电路开始工作,并设置2×1开关模块的开关时间。由两个驱动信号源产生的驱动信号经2×1选择开关交替切换,选择一路信号驱动微环光开关开始工作,微环光开关产生的光信号通过光电A/D转换模块转换为电信号传递给数据处理信号处理模块进行数据处理和分析,通过分析比较微环光开关输出的谱线特性,得出驱动电路的性能特性参数。
本发明公开一种测试微环光开关驱动电路性能的装置,其优点在于:该测试装置不同于传统纯电域的驱动电路测试,而是将驱动电路放在应用光路中进行测试,通过检测和处理微环光开关的输出光谱得出待测驱动电路的性能参数。另外,在整个装置中设计了一个2×1选择开关模块,这个设计避免了由于环境温度变化引起的不同时间点上分别使用参考电流/电压源表和待测驱动电路所带来的误差。而数据处理模块能够有效地对光芯片传输系统单元进行分析和处理,
从而获取驱动电路的性能参数。
图1是本发明测试微环光开关驱动电路性能的装置的实施框架图;
图2是本发明实施例中4×4微环光开关芯片的结构图;
图3是本发明实施例中微环光开关芯片某一端口的输出谱线图;
图4是本发明实施例中微环光开关芯片典型测试结果图。
为了更好的说明这种装置的工作原理,下面结合附图和具体实施例对本发明进行进一步详细说明。
利用微环制作光开关芯片是微环谐振器的重要应用之一,这种集成光开关相比于传统光开关,体积更小,功耗更低。本实施例中,使用由微环和MZI构成的4×4光开关芯片,该芯片一共由12个微环和6个MZI构成,图2是构成微环光开关芯片的一种结构,在每一个微环处都集成有一个PIN,用于补偿工艺误差、确定初始工作状态以及实现开关功能。
微环开关芯片的开关功能实现需要驱动电路的驱动。在实际芯片加工中,微环的半径和波导尺寸往往会因为各种因素产生误差,会导致微环光开关芯片中的每一个环都有微小的差别,从而导致光开关芯片的输出光谱有多个谐振峰存在。图3是微环_MZI光开关芯片在没有确定其初始状态时,某一端口处的输出光谱,微环谐振峰的位置不在同一波长处。这时就需要驱动电路来对微环开关进行调节,通过外加电压补偿其加工误差。
在本发明中,并不要求微环谐振峰完全对准,因为测试的对象是驱动电路性能。若驱动电路性能上存在缺陷,同样能够反映到谐振峰的上下或者左右的变化上,驱动电路噪声也会使微环的输出光谱不停抖动。因此,本发明将驱动电路与微环光开关芯片配合使用,在应用光路系统中对驱动电路的性能进行评价,更具实用性。
在本实施例中,将待测驱动电路放在本发明装置的双路驱动/选择单元中;让参考电流/电压源表和待测驱动电路同时作为驱动微环光开关的信号源,分别与控制信号发生模块及2×1选择开关模块连接;计算机测试平台单元中的控制
信号发生模块作为总的控制中心,用于设置待测驱动电路和参考电流/电压源表的输出电压,发出开始工作的指令,它们的输出电压同时传给后端的2×1选择开关模块;2×1选择开关模块能够快速地实现开关动作,其开关时间可以由控制信号发生模块进行设定;2×1开关接收到参考电流/电压源表和待测驱动电路产生的驱动电压后,将对两个驱动电压交替地选择输出,分别驱动微环光开关一段时间,在本实施例中设置的驱动时间为5秒即每隔5秒选择一次驱动信号源。
光芯片传输系统单元由基于微环的MZI光开关芯片、可调激光器和光电A/D转换器构成。可调激光器在控制信号发生模块地控制下,在1540~1560nm范围内扫描输出单色光,经微环光开关传输后,再经光电A/D转换器送入计算机测试平台单元中的数据处理模块,获得微环光开关芯片的输出光谱信息;之后,将探测光波长固定在某一谐振峰的下降沿或上升沿处的适当位置,本实施例中探测光波长为1.549um。探测光经微环光开关芯片后由后面的光电A/D转换器接收,光电A/D转换器将光信号转换为电信号,送入数据处理模块进行数字信号处理。数据处理模块以性能稳定且较好的参考电流/电压源表作为标准,通过计算各自的均方差、平均值等参数得出驱动电路的抖动、偏移等参数。图4是本发明装置中光电A/D转换器输出的信号曲线。由图4中可以看出,在两种不同驱动信号源的驱动下,微环光开关的输出特性有着明显的差别。与参考电流/电压源表相比,待测驱动电路的输出抖动更大些,通过两者的输出信号基准线也不在同一直线上,表明待测驱动电路的输出平均电压值与设定的驱动电压值有一定的差距。另外,观察待测驱动电路驱动下输出的信号特征,它所输出的平均电压值会随着时间的变化,说明待测驱动电路的输出电压不够稳定。待测驱动电路性能的量化处理具体由数据处理模块完成。本实施例中,待测驱动电路的噪声性能为10mV,实际输出电压值与设置电压值的误差为8mV,待测电路的输出电压平均值的波动范围为5~10mV。
通过本发明装置,可在应用光路中直接对微环光开关芯片的驱动电路进行测试,待测驱动电路的性能会叠加到光芯片传输系统中微环光开关芯片的传输光谱上,然后由数据处理模块解调出微环光开关驱动电路的性能。
Claims (1)
- 一种测试微环光开关驱动电路性能的装置,其特征在于,包括计算机测试平台单元、双路驱动/选择单元以及光芯片传输系统单元;其中,所述计算机测试平台单元由数据处理模块和控制信号发生模块组成,所述双路驱动/选择单元由待测驱动电路模块、参考电流/电压源表模块和2×1选择开关模块组成,所述光芯片传输系统单元由微环光开关模块、可调激光器模块和光电A/D转换器模块组成;所述控制信号发生模块是整个装置的控制中心,连接控制2×1开关模块、待测驱动电路模块、参考电流/电压源表模块、数据处理模块和可调激光器模块实现相应的功能;参考电流/电压源表模块和待测驱动电路模块分别独自产生驱动信号,输入2×1选择开关模块,2×1选择开关模块输出从这两路驱动信号中交替选择一路驱动信号来驱动微环光开关;可调激光器模块作为测试光源,光电A/D转换器模块将微环光开关模块输出的光信号转换为电信号并传输给数据处理模块;数据处理模块对光电A/D转换器模块输出信号进行处理,得出待测驱动电路性能的参数。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510060750.2A CN104597394B (zh) | 2015-02-05 | 2015-02-05 | 一种微环芯片驱动电路性能测试装置 |
CN201510060750.2 | 2015-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016123858A1 true WO2016123858A1 (zh) | 2016-08-11 |
Family
ID=53123303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/075874 WO2016123858A1 (zh) | 2015-02-05 | 2015-04-03 | 一种测试微环光开关驱动电路性能的装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104597394B (zh) |
WO (1) | WO2016123858A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105182105B (zh) * | 2015-07-27 | 2018-10-16 | 电子科技大学 | 一种微环芯片电控特性的自动测试装置 |
CN105049114B (zh) * | 2015-07-27 | 2017-10-17 | 电子科技大学 | 一种测试光交换芯片模块性能的方法 |
CN111413907A (zh) * | 2020-04-13 | 2020-07-14 | 联合微电子中心有限责任公司 | 一种光芯片集成控制系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101430849A (zh) * | 2007-11-09 | 2009-05-13 | 奇景光电股份有限公司 | 显示器驱动电路的测试装置 |
CN101762772A (zh) * | 2010-01-04 | 2010-06-30 | 上海贝岭股份有限公司 | 一种用于led驱动电路的故障检测装置及其检测方法 |
CN102680830A (zh) * | 2012-05-22 | 2012-09-19 | 福州大学 | 压电驱动器的标定装置 |
CN103955147A (zh) * | 2014-04-24 | 2014-07-30 | 电子科技大学 | 一种微环光开关的控制装置 |
-
2015
- 2015-02-05 CN CN201510060750.2A patent/CN104597394B/zh not_active Expired - Fee Related
- 2015-04-03 WO PCT/CN2015/075874 patent/WO2016123858A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101430849A (zh) * | 2007-11-09 | 2009-05-13 | 奇景光电股份有限公司 | 显示器驱动电路的测试装置 |
CN101762772A (zh) * | 2010-01-04 | 2010-06-30 | 上海贝岭股份有限公司 | 一种用于led驱动电路的故障检测装置及其检测方法 |
CN102680830A (zh) * | 2012-05-22 | 2012-09-19 | 福州大学 | 压电驱动器的标定装置 |
CN103955147A (zh) * | 2014-04-24 | 2014-07-30 | 电子科技大学 | 一种微环光开关的控制装置 |
Non-Patent Citations (1)
Title |
---|
LI, BO ET AL.: "The Architecture Design of Test Circuits of the TFT-LCD Driver IC Used for Mobile Phone", MICROELECTRONICS & COMPUTER, vol. 23, no. 12, 31 December 2006 (2006-12-31), pages 125 - 128, ISSN: 1000-7180 * |
Also Published As
Publication number | Publication date |
---|---|
CN104597394B (zh) | 2017-01-11 |
CN104597394A (zh) | 2015-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017016054A1 (zh) | 一种自动测试微环芯片电控特性的装置 | |
WO2016123858A1 (zh) | 一种测试微环光开关驱动电路性能的装置 | |
JP2010261716A (ja) | 電磁界計測装置 | |
CN110470378B (zh) | 一种正交相位保持的三波长解调式光纤声传感系统和方法 | |
CN102520264A (zh) | 基于拉锥光纤-平板波导耦合结构的电场传感器及测量系统 | |
CN105699294A (zh) | 一种可实现多种气体浓度测量的微纳光学传感器系统 | |
CN109286124A (zh) | 激光线宽压缩方法及系统 | |
CN105576495A (zh) | 基于楔角电光晶体的剩余幅度调制稳定装置 | |
CN111277325A (zh) | 一种基于偏振调制器的测量范围可调的瞬时频率测量方法和系统 | |
WO2019019666A1 (zh) | 一种光纤光栅传感解调系统 | |
CN103730828B (zh) | 基于双电光相位调制晶体的剩余幅度调制主动控制系统 | |
CN107356412B (zh) | 一种基于稀土掺杂光纤折射率的测量系统的测量方法 | |
CN104297598B (zh) | 一种vcsel的多参数测试装置及方法 | |
WO2017016053A1 (zh) | 一种光交换芯片性能测试方法 | |
US20040036857A1 (en) | WDM measurement system | |
CN105717344B (zh) | 一种相位调制器半波电压测量系统及测量方法 | |
CN111162835A (zh) | 光时域反射仪 | |
CN206378144U (zh) | 干涉型光纤传感器输出波长快速解调系统 | |
CN106840452B (zh) | 一种微波光子温度传感系统的测温方法 | |
CN106850065B (zh) | 一种微波光子温度传感系统 | |
CN115420950A (zh) | 基于光纤外差的光电探测器绝对频响测量装置及测量方法 | |
CN205406953U (zh) | 一种基于楔角电光晶体的剩余幅度调制稳定装置 | |
CN109194411A (zh) | 一种测量硅光相干接收机光电响应度的装置和方法 | |
CN105007124B (zh) | 基于双电吸收调制激光器实现单边带调制的系统 | |
CN110365403B (zh) | 一种太赫兹宽带调制信号测量装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15880813 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15880813 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15880813 Country of ref document: EP Kind code of ref document: A1 |