WO2016121936A1 - Amorphous hydrocarbon film, and sliding member and sliding system provided with said film - Google Patents

Amorphous hydrocarbon film, and sliding member and sliding system provided with said film Download PDF

Info

Publication number
WO2016121936A1
WO2016121936A1 PCT/JP2016/052679 JP2016052679W WO2016121936A1 WO 2016121936 A1 WO2016121936 A1 WO 2016121936A1 JP 2016052679 W JP2016052679 W JP 2016052679W WO 2016121936 A1 WO2016121936 A1 WO 2016121936A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
friction
film
peak
alcohol
Prior art date
Application number
PCT/JP2016/052679
Other languages
French (fr)
Japanese (ja)
Inventor
孝久 加藤
正隆 野坂
遠山 護
篤 村瀬
恭子 中井
雅裕 鈴木
Original Assignee
株式会社ジェイテクト
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016008236A external-priority patent/JP6796297B2/en
Priority claimed from JP2016008237A external-priority patent/JP6736018B2/en
Application filed by 株式会社ジェイテクト, 国立大学法人東京大学 filed Critical 株式会社ジェイテクト
Priority to DE112016000541.5T priority Critical patent/DE112016000541T5/en
Priority to US15/547,754 priority patent/US10329509B2/en
Priority to CN201680008136.4A priority patent/CN107208263B/en
Publication of WO2016121936A1 publication Critical patent/WO2016121936A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to an amorphous hydrocarbon film having lubricity, and a sliding member and a sliding system including the same.
  • a solid lubricating film on the sliding surface of the sliding member.
  • a solid lubricating film for example, a DLC (Diamond ⁇ Like Carbon) film is known, and the following Patent Document 1 includes an oxygen-containing organic compound or an aliphatic amine compound on the sliding surface including the DLC film.
  • Patent Document 1 includes an oxygen-containing organic compound or an aliphatic amine compound on the sliding surface including the DLC film.
  • Patent Document 2 describes a low friction lubrication assembly including a first member having a first sliding surface and a second member having a second sliding surface.
  • the first sliding surface has a chemical affinity with the OH group.
  • the second sliding surface has an OH terminal sliding surface.
  • Patent Document 1 and Patent Document 2 In the low friction sliding mechanism described in Patent Document 1 and the low friction lubrication assembly described in Patent Document 2, the friction coefficient of the sliding portion is reduced.
  • sliding is performed in a state where the liquid lubricant is supplied onto the sliding surface (fluid lubrication). That is, Patent Document 1 and Patent Document 2 cannot provide a reduction in friction under conditions in which a lubricant such as a liquid lubricant is not separately used (dry lubrication).
  • an object of the present invention is to provide an amorphous hydrocarbon film that realizes a low friction coefficient.
  • the first aspect of the present invention is obtained by an aliphatic hydrocarbon group having a peak in the region of 2900 cm ⁇ 1 to 3000 cm ⁇ 1 in the infrared absorption spectrum and time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • Aromatic component (C 7 H 7 + ) having a peak at mass 91.1 in the positive ion spectrum, and a condensed ring having a peak at mass 115.2 in the positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry
  • an amorphous hydrocarbon film (5) containing at least one of system components (C 9 H 7 + ).
  • a second aspect of the present invention further comprises a carbonyl group which exhibits peaks in the region of 1650 cm -1 ⁇ 1800 cm -1 in an infrared absorption spectrum, it is amorphous hydrocarbon film according to the first aspect .
  • a third aspect of the present invention is the amorphous hydrocarbon film according to the first or second aspect, including both the aromatic component and the condensed ring system component.
  • a fourth aspect of the present invention is the amorphous hydrocarbon film according to any one of the first to third aspects, wherein the average thickness is 2 nm to 1000 nm.
  • a fifth aspect of the present invention is a sliding member (2) having a sliding surface (6) including a first coating (5) and formed using at least one of a metal and a ceramic, The first coating provides a sliding member including the amorphous hydrocarbon film (5) according to any one of the first to fourth aspects.
  • a sixth aspect of the present invention is the sliding member according to the fifth aspect, wherein the sliding member is formed using ZrO 2 .
  • a sliding member (2) according to the fifth or sixth aspect wherein the sliding member (2) is in sliding contact with the sliding surface of the sliding member and comprises an amorphous carbon-based film.
  • the second coating is the outermost surface, containing a hydroxyl group exhibiting a peak in the region of 3000 cm -1 ⁇ 4000 cm -1 in an infrared absorption spectrum, according to the seventh aspect of the It is a sliding system.
  • numbers in parentheses indicate corresponding components in the embodiments described later, but this does not mean that the present invention should be limited to those embodiments. Absent.
  • an aliphatic hydrocarbon group having a peak in the region of 2900 cm ⁇ 1 to 3000 cm ⁇ 1 in the infrared absorption spectrum and a mass of 91.1 in the positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry.
  • an aromatic hydrocarbon component having at least one of a condensed ring component having a peak at a mass of 115.2 in a positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry
  • the film exhibits a low coefficient of friction. That is, it is possible to provide an amorphous hydrocarbon film that achieves a low coefficient of friction.
  • the friction coefficient of the sliding surface can be reduced. Furthermore, the friction coefficient of the sliding surface can be reduced. As a result, the frictional force generated between the sliding surface and the sliding surface can be reduced without using a separate lubricant. Can be greatly reduced (friction torque can be reduced). Accordingly, the sliding system can be reduced in size and weight, and the reliability of the sliding system can be improved.
  • FIG. 1 is an enlarged cross-sectional view showing a main part of a sliding system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a configuration of a film manufacturing apparatus used for manufacturing a low friction coating included in the sliding member.
  • 3A and 3B are cross-sectional views showing a sliding operation between the sliding member and the sliding member.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the first friction tester.
  • 5A and 5B are diagrams for explaining plate test pieces used in the first and second friction tests.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of the second friction tester.
  • 7A and 7B are graphs showing a load and a friction coefficient in the first friction test.
  • FIG. 8A and 8B are graphs showing the applied load and the friction coefficient in the second friction test.
  • FIG. 9 is a diagram for explaining the upper layer of the plate test piece to be measured in the third and fourth friction tests.
  • 10A and 10B are diagrams for explaining test conditions of the third and fourth friction tests.
  • FIG. 11 is a graph showing the relationship between the applied load and the measured value of the friction coefficient in the third friction test.
  • FIG. 12 is a graph showing the relationship between the applied load and the measured value of the friction coefficient in the fourth friction test.
  • 13A and 13B are views showing the surface state of the outer surface (sliding region) of the pin test piece after the first friction test.
  • 14A and 14B are views showing the surface state of the outer surface (sliding region) of the pin test piece after the second friction test.
  • FIG. 15 is an image of an optical micrograph showing the outer surface (the sliding region) of the pin test piece after the third friction test.
  • FIG. 16 is an image of an optical micrograph showing the outer surface (the sliding region) of the pin test piece after the fourth friction test.
  • FIG. 17 is a graph showing infrared absorption spectra of the first and second sliding products by a microscopic transmission method.
  • FIG. 18 is a graph showing infrared absorption spectra of the third and fourth sliding products by a microscopic transmission method.
  • FIG. 19 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the first sliding product.
  • FIG. 20 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the second sliding product.
  • FIG. 21 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the third sliding product.
  • FIG. 22 is a graph showing the secondary ion relative intensity ratio of C 2 H 5 + based on Zr + of the second sliding product.
  • FIG. 23 is a graph showing the secondary ion relative intensity ratio of C 9 H 7 + based on Zr + of the second sliding product.
  • FIG. 24 is a graph showing the secondary ion relative intensity ratio of C 7 H 7 + based on Zr + of the second sliding product.
  • FIG. 25 is a graph showing a negative ion spectrum of the first sliding product obtained by TOF-SIMS.
  • FIG. 26 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the second sliding product.
  • FIG. 27 is a graph showing the secondary ion relative intensity ratio of C 7 H 5 O 2 ⁇ based on the total negative ion intensity of the first and second sliding products.
  • FIG. 28 is a graph showing an infrared absorption spectrum of the PLC film after the second friction test by a microscopic total reflection absorption (microscopic ATR) method (No. 1).
  • FIG. 29 is a graph showing an infrared absorption spectrum of the PLC film after the second friction test by a microscopic ATR method (part 2).
  • FIG. 30 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the first friction test.
  • FIG. 31 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the first friction test.
  • FIG. 32 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the second friction test.
  • FIG. 33 is a graph showing the positive ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the second friction test.
  • FIG. 34 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the first friction test.
  • FIG. 35 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the first friction test.
  • FIG. 36 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the second friction test.
  • FIG. 37 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the second friction test.
  • FIG. 1 is an enlarged cross-sectional view showing a main part of a sliding system 1 according to an embodiment of the present invention.
  • the sliding system 1 includes a sliding member 2 and a sliding member 3 that is a counterpart material for the sliding member 2.
  • the sliding member 2 is provided to be slidable relative to the sliding member 3.
  • the sliding member 2 and the sliding member 3 may be ones that slide (move) only the sliding member 2 while the sliding member 3 is stationary, or the sliding member 2 is stationary. In this state, only the sliding member 3 may be slid (moved), or both the sliding member 2 and the sliding member 3 are moved to move the sliding member 3 to the sliding member 3.
  • the sliding member 2 may be relatively slid.
  • the sliding member 2 includes a first substrate 4 having a surface (the lower surface in FIG. 1) and a low friction coating (amorphous hydrocarbon-based film, which covers at least a part of the surface of the first substrate 4. 1st coating) 5.
  • the first substrate 4 is formed using oxide ceramics (ceramics) or metal.
  • the oxide ceramic includes, for example, ZrO 2 (more specifically, yttrium stabilized zirconia (YSZ)). ZrO 2 may be heat-treated or may not be heat-treated.
  • the metal includes, for example, at least one of palladium (Pd) or SUJ2 (high carbon chromium bearing steel). These oxide ceramics and metals have a catalytic property to dissociate and adsorb hydrogen molecules in a hydrogen atmosphere environment to generate active hydrogen (H + ).
  • the low friction coating 5 is an amorphous hydrocarbon film.
  • the low friction coating 5 includes an aliphatic hydrocarbon group (for example, an alkyl group), a carbonyl group (—C ( ⁇ O) —), an aromatic component (C 7 H 7 + ), and a condensed ring system component (C 9 H 7 + ).
  • the aliphatic hydrocarbon group a peak in the region of 2900 cm -1 ⁇ 3000 cm -1 in an infrared absorption spectrum (microscopic transmission method).
  • Carbonyl group a peak in the region of 1650 cm -1 ⁇ 1800 cm -1 in an infrared absorption spectrum (microscopic transmission method).
  • the aromatic component (C 7 H 7 + ) shows a peak at a mass of 91.1 in a positive ion spectrum obtained by TOF-SIMS (time-of-flight secondary ion mass spectrometry).
  • the condensed ring system component (C 9 H 7 + ) shows a peak at a mass of 115.2 in the positive ion spectrum obtained by TOF-SIMS.
  • the low friction coating 5 functions as a sliding surface 6 that is in sliding contact with the sliding surface 7 of the sliding member 3.
  • the film thickness (average thickness) of the low friction coating 5 is 2 nm to 1000 nm. More preferably, it is 2 nm to 500 nm.
  • the sliding member 3 includes a second substrate 8 having a surface (upper surface in FIG. 1), and a PLC (Polymer-Like Carbon) film 9 covering at least a part of the surface of the second substrate 8. Including.
  • the 2nd base material 8 is formed using steel materials, such as tool steel, carbon steel, stainless steel, chromium molybdenum steel, high carbon chromium bearing steel, for example.
  • the PLC film 9 is an amorphous carbon film and includes a short-chain polyacetylene molecule as a main component.
  • the PLC film 9 is a film formed by an ionization vapor deposition method while applying a low bias voltage or a high bias voltage in an atmosphere environment of a hydrocarbon gas (for example, toluene (C 7 H 8 )).
  • the Young's modulus of the PLC film 9 is 200 GPa to 250 GPa.
  • the outermost surface of the PLC film 9 shows a peak in the region of 3000 cm -1 ⁇ 4000 cm -1 in an infrared absorption spectrum (microscopic transmission method).
  • the PLC film 9 functions as a sliding surface 7 that is in sliding contact with the sliding surface 6 of the sliding member 2.
  • the sliding surface 6 and the sliding surface 7 may be a flat plane as shown in FIG. 1, or may be a spherical surface or other curved surface.
  • a lubricant such as a liquid lubricant is not supplied to the sliding interface between the sliding surface 6 and the sliding surface 7 (that is, between the low friction coating 5 and the PLC film 9). That is, the sliding system 1 is slid under a non-lubricated condition.
  • the sliding system 1 include bearings, seals, flywheels, scissors, plunger pumps, artificial joints, and the like.
  • the bearing include a roller bearing including a ball bearing and a tapered roller bearing, a bearing with a separator, and a sliding bearing.
  • the sliding surface 7 on which the PLC film 9 is disposed includes the inner surface of the cage, and the sliding surface 6 is made of oxide ceramics (ZrO 2 or the like) or metal
  • the outer surface of a ball made of (SUJ2, palladium, etc.) may be included.
  • the PLC film 9 Includes a guided surface of the cage, and the sliding surface 6 is made of oxide ceramics (such as ZrO 2 ) or metal (SUJ2, palladium, etc.) that guides the cage.
  • An annular guide surface may be included.
  • the sliding surface 7 on which the PLC film 9 is disposed may include the end surface of the collar, and the sliding surface 6 may include the outer peripheral surface of the roller. Further, the sliding surface 7 on which the PLC film 9 is disposed includes the outer peripheral surface of the roller, and the sliding surface 6 has an end surface of a collar made of oxide ceramics (ZrO 2 or the like) or metal (SUJ2, palladium or the like). May be included.
  • the sliding surface 7 on which the PLC film 9 is disposed includes a separator, and the sliding surface 6 is made of oxide ceramics (ZrO 2 or the like) or metal (SUJ2). , Palladium, etc.) may be included.
  • the sliding surface 7 on which the PLC film 9 is disposed includes the inner peripheral surface of the sliding bearing, and the sliding surface 6 is an oxide ceramic (ZrO 2 or the like). Or an outer peripheral surface of a shaft made of metal (SUJ2, palladium, etc.).
  • the sliding surface 7 on which the PLC film 9 is disposed includes the outer peripheral surface of the shaft, and the sliding surface 6 is made of oxide ceramics (such as ZrO 2 ) or metal ( SUJ2, palladium, etc.) may be included.
  • the sliding surface 7 on which the PLC film 9 is disposed includes the blade surface of one blade, and the sliding surface 6 is made of oxide ceramics (ZrO 2 or the like)
  • the blade surface of the other blade made of metal (SUJ2, palladium, etc.) may be included.
  • the sliding surface 7 on which the PLC film 9 is disposed includes the outer surface of the piston (plunger), and the sliding surface 6 is formed of oxide ceramics (ZrO 2 or the like).
  • metal (SUJ2, palladium, etc.) fixed swash plate may be included.
  • the sliding surface 7 on which the PLC film 9 is disposed includes a contact surface on the receiving side, and the sliding surface 6 includes oxide ceramics (ZrO 2 or the like)
  • a bone-side contact surface made of metal (SUJ2, palladium, etc.) may be included.
  • the sliding surface 6 is provided on one member and the sliding surface 7 is provided on the other member, but the sliding surface 6 is provided on the other member and the sliding surface 7 is provided on one side. You may provide in this member.
  • FIG. 2 is a diagram schematically showing the configuration of the film manufacturing apparatus 11 used for manufacturing the low friction coating 5 included in the sliding member 2.
  • the film manufacturing apparatus 11 includes a box-shaped chamber 12 having an internal space.
  • the sliding member 2 and the sliding member 3 are accommodated in the internal space 10 of the chamber 12.
  • the film manufacturing apparatus 11 further includes a holding table 13 provided in the internal space 10 of the chamber 12.
  • the holding table 13 is a holding table for holding the sliding member 3, and is fixedly disposed in the internal space 10 of the chamber 12.
  • the sliding member 3 carried into the internal space 10 of the chamber 12 is placed on the holding table 13 and held on the holding table 13.
  • the sliding member 2 is placed on the sliding member 3.
  • the film manufacturing apparatus 11 drives (moves) the sliding member 2 in order to slide the sliding surface 6 of the sliding member 2 relative to the sliding surface 7 of the sliding member 3. 14 and a load applying mechanism 15 that applies a pressing load to the sliding member 3 of the sliding member 2 with respect to the sliding member 2.
  • the drive mechanism 14 is a mechanism including a motor, for example.
  • the film manufacturing apparatus 11 also includes a control device 16 that controls the operation of the apparatus provided in the film manufacturing apparatus 11 and the opening and closing of valves.
  • the drive mechanism 14 includes, for example, a linear motion device using a combination of a motor and a ball screw.
  • the load applying mechanism 15 includes, for example, a weight.
  • FIG. 2 shows a configuration in which the exhaust duct 17 is provided at the bottom of the chamber 12, it may be provided at a position other than the bottom in the chamber 12.
  • the drive mechanism 14 and the load applying mechanism 15 are described as being provided. However, the load is applied between the sliding member 2 and the sliding member 3 and the sliding member 2 and the sliding target are provided. As long as the member 3 is configured to slide, the drive mechanism 14 and the load applying mechanism 15 do not need to be provided.
  • a processing gas introduction pipe 19 is provided through the wall (for example, the side wall 18) of the chamber 12.
  • the processing gas introduction pipe 19 is supplied with hydrogen gas pipe 20 to which hydrogen gas (H 2 ) is supplied from a hydrogen gas supply source and alcohol as an example of a hydrocarbon-based substance from an alcohol container 37.
  • the alcohol pipe 22, a water pipe 23 to which water is supplied from a water container 38, and a nitrogen gas pipe 33 to which nitrogen gas (N 2 ) is supplied from a nitrogen gas supply source are connected.
  • a hydrogen gas valve 24 for opening and closing the hydrogen gas pipe 20 and a hydrogen gas flow rate adjusting valve 25 for changing the opening degree of the hydrogen gas pipe 20 are interposed in the hydrogen gas pipe 20.
  • the alcohol pipe 22 is provided with an alcohol valve 28 for opening and closing the alcohol pipe 22 and an alcohol flow rate adjusting valve 29 for changing the opening degree of the alcohol pipe 22.
  • the water pipe 23 is provided with a water valve 30 for opening and closing the water pipe 23 and a water flow rate adjusting valve 31 for changing the opening degree of the water pipe 23.
  • a nitrogen gas valve 34 for opening and closing the nitrogen gas pipe 33 and a nitrogen gas flow rate adjusting valve 35 for changing the opening degree of the nitrogen gas pipe 33 are interposed in the nitrogen gas pipe 33.
  • the alcohol includes liquid alcohol, gaseous alcohol vaporized from the liquid alcohol, and carrier gas.
  • the temperature of the alcohol container 37 is set to 20 ° C. ⁇ 5 ° C.
  • the water includes liquid water and gaseous water vapor evaporated from the liquid water.
  • the temperature of the water container 38 is set to 20 ° C. ⁇ 5 ° C.
  • gaseous water vapor supplied from the water container 38 and carrier gas supplied from the outside flow are set to 20 ° C. ⁇ 5 ° C.
  • the alcohol supplied to the processing gas introduction pipe 19 is methanol (methanol. CH 3 OH), ethanol (ethanol. C 2 H 5 OH), 1-propanol (propan-1-ol. CH 3 CH 2 CH 2 OH). And at least one of 2-propanol (propan-2-ol. CH 3 CH (OH) CH 3 ).
  • the hydrogen gas valve 24 is opened in a state where the opening degree of the hydrogen gas pipe 20 is set to be large, a large flow rate of hydrogen from the hydrogen gas pipe 20 is supplied to the processing gas introduction pipe 19.
  • the nitrogen gas valve 34 when the nitrogen gas valve 34 is opened in a state where the opening degree of the nitrogen gas pipe 33 is set to be large, a large flow of nitrogen from the nitrogen gas pipe 33 is supplied to the processing gas introduction pipe 19.
  • a small amount of alcohol gas and nitrogen gas (N 2 ) which is a carrier gas supplied from the outside and / or a small amount of water vapor and the outside are supplied from the outside.
  • Nitrogen gas (N 2 ) which is a carrier gas, is supplied into the processing gas introduction pipe 19 and sufficiently mixed (stirred) with a large flow of nitrogen gas (N 2 ) in the process of flowing through the processing gas introduction pipe 19 Is done.
  • special nitrogen gas gas containing nitrogen and alcohol (hydroxyl group-containing compound) and / or water (hydroxyl group-containing compound)
  • Alcohol and / or water is vaporized in the generated special nitrogen gas.
  • the generated special nitrogen gas is introduced into the internal space 10 of the chamber 12. Thereby, the atmosphere of the internal space 10 becomes a special nitrogen gas atmosphere.
  • the special nitrogen gas atmosphere does not contain oxygen.
  • 3A and 3B are cross-sectional views showing the sliding operation between the sliding member 2 and the sliding member 3.
  • a manufacturing example in which the low friction coating 5 is formed on the sliding surface 6 of the sliding member 2 using the film manufacturing apparatus 11 will be described with reference to FIG. 3A and 3B will be referred to as appropriate.
  • the sliding member 2 and the sliding member 3 are carried into the internal space 10 of the chamber 12.
  • the loaded sliding member 3 is placed on the holding table 13 with the sliding surface 7 facing upward, and is held by the holding table 13.
  • the loaded sliding member 2 is placed on the sliding member 3 with the sliding surface 6 facing downward.
  • the low friction coating 5 is not formed on the sliding surface 6 of the sliding member 2 at the time of loading. That is, the sliding surface 6 is made of oxide ceramics or metal.
  • the control device 16 opens the hydrogen gas valve 24 and / or the nitrogen gas valve 34, and the alcohol valve 28 and / or the water valve 30. Then, the processing gas is supplied from the inlet 32 of the processing gas introduction pipe 19 to the internal space 10 of the chamber 12 (supply process). For example, it is assumed that the processing gas contains special hydrogen gas, and in this special hydrogen gas, a trace amount of gaseous alcohol and a trace amount of water vapor are respectively added to the hydrogen gas.
  • This special hydrogen gas in addition to hydrogen gas, is a liquid with respect to the sum of the flow rate of the carrier gas containing gaseous alcohol in the alcohol vessel 37 and the flow rate of the carrier gas containing gaseous water in the water vessel 38.
  • the alcohol container 37 contains gaseous alcohol and gaseous water vapor in a volume ratio [alcohol / (alcohol + water)] of the flow rate of the carrier gas containing gaseous alcohol, for example, 4 to 44%.
  • the processing gas supplied into the chamber 12 spreads over the entire interior space 10 of the chamber 12. Thereby, the atmosphere (Air) in the internal space 10 of the chamber 12 is replaced with an atmosphere containing the processing gas. Note that the processing gas does not contain oxygen.
  • the control device 16 continues to supply the processing gas while the drive device 16 14, while applying a pressing load from the sliding surface 6 (sliding member 2) to the sliding surface 7 (sliding member 3), as shown in FIG. 7 starts sliding (sliding process) of the sliding surface 6 with respect to 7.
  • the Hertz contact stress generated between the sliding surface 6 and the sliding surface 7 during sliding is 1.0 GPa or more. More preferably, the Hertz contact stress is 1.3 GPa to 2.4 GPa.
  • the alcohol valve 28 and the water valve 30 are closed, and the supply of alcohol and water to the internal space 10 is stopped.
  • the sliding surface 6 slides with respect to the sliding surface 7 as a result of the catalytic action of the sliding surface 6 (ZrO 2 or the like).
  • the low friction coating 5 is formed.
  • the low friction coating 5 exhibits a significantly low coefficient of friction of the order of 10 ⁇ 4 (less than 0.001).
  • Friction-Fade-Out state (hereinafter referred to as “FFO”) having a friction coefficient of the order of 10 ⁇ 4 can be realized.
  • FFO Friction-Fade-Out state
  • the low friction coating 5 is a transparent film having the same hardness as the PLC film 9 and showing interference fringes. Blisters (bubbles) are generated on the surface and inside of the low friction coating 5.
  • the inventors of the present application consider the following mechanism regarding the formation of such a low friction coating 5 (expression of FFO). That is, as the sliding surface 6 slides (friction), the outermost surface of the PLC film 9 becomes wear powder due to friction and is transferred to the sliding surface 6. That is, a transfer film transferred from the PLC film 9 is formed on the sliding surface 6. As the sliding progresses, the PLC film 9 and the transfer film come to rub.
  • the metal (SUJ2, palladium, etc.) or oxide ceramics (ZrO 2 ) constituting the sliding surface 6 has a catalytic property capable of generating active hydrogen by dissociating and adsorbing hydrogen molecules. Therefore, as a result of sliding the PLC film 9 on the sliding surface 6, active hydrogen comes to exist at the sliding interface due to the catalytic action of the sliding surface 6. Alcohol contained in the atmosphere of the internal space 10 is hydrocracked by the acid catalyst action of active hydrogen on the sliding surface 6, and volatile gas is formed in the transfer film. And it is thought that the gas molecule layer of volatile gas is formed in the friction surface (sliding interface) of a transfer film.
  • this gas molecule layer is on the order of several molecules, and it is considered that FFO is expressed by gas lubrication at the monomolecular level of this volatile gas layer. That is, the low friction film 5 is formed based on the transfer film including the volatile gas layer.
  • the supply of alcohol and water is stopped when a predetermined time has elapsed from the start of sliding of the sliding surface 6.
  • moisture (water) can be removed from the atmosphere of the internal space 10.
  • moisture (water) that can be a catalyst poison that weakens the catalytic action of oxide ceramics (ZrO 2 ) or metal (SUJ, palladium)
  • stabilization of these catalytic actions can be achieved.
  • control device 16 When a predetermined period has elapsed from the start of sliding of the sliding surface 6, the control device 16 closes the opened valves (hydrogen gas valve 24, alcohol valve 28, water valve 30, nitrogen gas valve 34, etc.) and introduces processing gas. The introduction of the processing gas from the pipe 19 is stopped. Thereafter, the control device 16 carries out the sliding member 2 and the sliding member 3 from the internal space 10 of the chamber 12.
  • valves hydrogen gas valve 24, alcohol valve 28, water valve 30, nitrogen gas valve 34, etc.
  • the flow rate of the carrier gas containing gaseous methanol in the alcohol container 37 and the carrier gas containing gaseous water vapor in the water container 38 with respect to gaseous methanol and gaseous water contained in the processing gas is preferably 6% to 15%.
  • the flow rate of the carrier gas containing gaseous ethanol in the alcohol container 37 and the carrier gas containing gaseous water vapor in the water container 38 with respect to gaseous ethanol and gaseous water contained in the processing gas is preferable.
  • the carrier containing gaseous ethanol in the alcohol container 37 with respect to the sum of the flow rate of the carrier gas containing gaseous ethanol in the alcohol container 37 and the flow rate of the carrier gas containing gaseous water vapor in the water container 38.
  • FFO can be expressed over a long period in a stable state.
  • FIG. 4 is a schematic cross-sectional view showing the configuration of the first friction tester 41.
  • FIG. 5A is an enlarged cross-sectional view showing the surface of the plate test piece 42 to be measured in the first and second friction tests.
  • FIG. 5B is a diagram showing the physical properties of the two-layer film 43 formed on the surface of the plate test piece 42 and the film production technique used in the first and second friction tests.
  • a pin-on-plate type reciprocating sliding friction tester shown in FIG. 4 was used as the first friction tester 41.
  • a ZrO 2 (YSZ) sphere having a diameter of 4.8 mm which has been heat-treated in the atmosphere at 200 ° C. for 24 hours or treated in a hydrogen reducing atmosphere at 400 ° C. for 3 hours, is used.
  • the load applied to the pin test piece 44 can be changed by placing the weight 71 above the pin test piece 44 to be tested and changing the weight of the weight 71.
  • the first friction tester 41 includes, for example, a cylindrical chamber 45, and a pin test piece 44 is accommodated in the chamber 45.
  • the chamber 45 includes a bottomed cylindrical acrylic chamber body 46 and an acrylic lid 47 that closes the upper surface of the chamber body 46.
  • the lid 47 is formed with an elongated opening 48 that is long in the sliding direction of the pin test piece 44, and the pin test piece 44 is disposed in the opening 48.
  • a holding table 49 for holding the plate test piece 42 is disposed at the bottom of the chamber 45.
  • a gas introduction pipe 51 is provided through the peripheral wall 50 of the chamber body 46.
  • a first line 52 to which hydrogen gas is supplied and a second line 53 to which hydrogen gas containing gaseous alcohol and gaseous water vapor is supplied are connected to the gas introduction pipe 51.
  • the first line 52 includes a first valve 54 for opening and closing the first line 52, a first flow rate adjusting valve 55 for adjusting the flow rate of hydrogen gas in the first line 52, A first flow meter 56 for detecting the flow rate of hydrogen gas in one line 52 is interposed.
  • the second line 53 includes a second valve 57 for opening and closing the second line 53, a second flow rate adjusting valve 58 for adjusting the flow rate of hydrogen gas in the second line 53, A second flow meter 59 for detecting the flow rate of hydrogen gas in the second line 53 and an alcohol / water container 60 in which alcohol and water are stored are interposed.
  • the temperature of the alcohol / water container 60 is set to 20 ° C. ⁇ 5 ° C.
  • the alcohol and water include a liquid alcohol, a liquid water solution, a gaseous alcohol vaporized from the solution, and a gaseous water vapor.
  • hydrogen gas flows through the second line 53 and hydrogen gas is supplied to the alcohol / water container 60.
  • gaseous alcohol and gaseous water vapor are carried to the hydrogen gas and reach the gas introduction pipe 51.
  • first valve 54 together with the opening of the second valve 57, hydrogen gas containing gaseous alcohol and gaseous water vapor is supplied into the chamber 45 through the gas introduction pipe 51.
  • the atmosphere in the chamber 45 is provided so as to be controllable.
  • the double layer film 43 is a hard carbon film having a double layer structure.
  • the lower layer side of the bilayer film 43 is a Si-DLC film 62.
  • An upper layer side of the two-layer film 43 is a PLC (Polymer-Like-Carbon) film 63.
  • the Si-DLC film 62 is obtained by performing an ionization vapor deposition method (PVD method) using a mixture of toluene and trimethylsilane (Si (CH 3 ) 4 ) at a gas flow ratio of 2: 3 as a raw material gas. Is formed.
  • the PLC film 63 is formed by performing ionized vapor deposition while using only toluene as a source gas.
  • the bias voltage at the time of PLC film formation was ⁇ 0.4 kV (low bias voltage).
  • the processing pressure (deposition pressure, Pa) at the time of film formation of the Si-DLC film 62 and the PLC film 63, the bias voltage (Bias voltage, kV) at the time of film formation, the processing temperature (Heater temperature, K) at the time of film formation, Film thickness (nm), micro indentation hardness (GPa), Young's modulus (GPa), G-band peak position of Raman spectrum (G-peak position, cm -1 ), Raman spectrum Peak width at half maximum (FWHM (G), cm -1 ), peak intensity ratio of Raman spectrum D band to G band (I (D) / I (G)), estimated hydrogen content (at. %) Are shown in FIG. 5B, respectively.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of the second friction tester 141.
  • Parts common to the first friction tester 41 in the second friction tester 141 are denoted by the same reference numerals as those in FIG. That is, the configuration of the chamber 45 of the second friction tester 141 and the configuration of the pin test piece 44 and the like are the same as those of the first friction tester 41 unless otherwise specified.
  • the difference between the second friction tester 141 and the first friction tester 41 is mainly in its air supply system.
  • the third line 101 includes a third valve 105 for opening and closing the third line 101, a third flow rate adjusting valve 106 for adjusting the flow rate of nitrogen gas in the third line 101, A third flow meter 107 for detecting the flow rate of nitrogen gas in the third line 101 is interposed.
  • the fourth line 102 includes a fourth valve 108 for opening and closing the fourth line 102, a fourth flow rate adjusting valve 109 for adjusting the flow rate of hydrogen gas in the fourth line 102,
  • a fourth valve 108 for opening and closing the fourth line 102
  • a fourth flow rate adjusting valve 109 for adjusting the flow rate of hydrogen gas in the fourth line 102
  • An alcohol / water container 111 is interposed.
  • the temperature of the alcohol / water container 111 is set to 20 ° C. ⁇ 5 ° C.
  • the alcohol and water include a liquid alcohol, a liquid water solution, a gaseous alcohol vaporized from the solution, and a gaseous water vapor.
  • liquid ethanol and liquid water are mixed at a volume ratio of 3:10.
  • Such a processing gas may hereinafter be referred to as “hydrogen gas containing ethanol generated from an ethanol volume concentration 23% aqueous solution (23% @)”.
  • the alcohol / water container 111 may be mixed with liquid ethanol and liquid water in a volume ratio of 1: 4.
  • a processing gas may be hereinafter referred to as “hydrogen gas containing ethanol generated from an ethanol volume 20% aqueous solution (20% @)”.
  • the fifth line 103 includes a fifth valve 112 for opening and closing the fifth line 103, a fifth flow rate adjusting valve 113 for adjusting the flow rate of hydrogen gas in the fifth line 103, 5, a fifth flow meter 114 for detecting the flow rate of hydrogen gas in the line 103, and an alcohol container 115 containing only liquid alcohol (ethanol) and containing gaseous alcohol are interposed. . Since the alcohol container 115 does not contain water except for water that cannot be removed from ethanol, the processing gas flowing through the fifth line 103 contains gaseous ethanol, but hardly contains water. Such a processing gas may be hereinafter referred to as “hydrogen gas containing ethanol generated from a 100% ethanol volume concentration liquid (100% @)”.
  • the opening and closing of the third valve 105 By switching the opening and closing of the third valve 105, the supply and stoppage of nitrogen as the main flow can be switched. Further, by opening at least one of the fourth and fifth valves 108 and 112, the component ratio of alcohol and water contained in the atmosphere in the chamber 45 can be controlled. In addition to the opening of these valves 108 and 112, by adjusting the opening degree of the flow rate adjusting valves 109 and 113, the component ratio of alcohol and water contained in the atmosphere in the chamber 45 can be controlled more finely.
  • the first and second friction tests will be described. After the plate test piece 42 is set in the first friction tester 41 with the formation surface of the double-layer film 43 as a test surface, the friction speed is 8.0 mm / s, the friction stroke is 4.0 mm, and the supply gas to the chamber 45 Under the test conditions of a flow rate of about 2.0 to 2.5 (liters / minute) and no lubrication, the magnitude of the load applied to the surface of the plate test piece 42 through the pin test piece 44 is 19.6 N to 58.8 N. In the above range, the following first friction test and second friction test (maximum 28200 high load tests) were conducted while increasing stepwise in units of 1.96 N, and the occurrence of FFO was examined.
  • the bottomed container 72 is fixed to the bottom of the chamber 45 via a tape 73 (for example, a double-sided tape) in which an acrylic ester is applied as an adhesive to the adhesive surface. Therefore, the atmosphere in the chamber 45 contains ethanol obtained by hydrolysis of the acrylate ester.
  • a tape 73 for example, a double-sided tape
  • the atmosphere in the chamber 45 contains ethanol obtained by hydrolysis of the acrylate ester.
  • FIG. 7A is a graph showing the load applied in the first friction test
  • FIG. 7B is a graph showing the measured value of the friction coefficient in the first friction test.
  • the value of the friction coefficient is relatively high (0.01 to 0.03) under the condition of a load of 19.6N to 25.5N.
  • FFO ultra low friction state
  • the coefficient of friction at the time of FFO expression was less than 3 ⁇ 10 ⁇ 4 .
  • FFO was expressed relatively stably under a load of 58.8N.
  • FIG. 8A is a graph showing the load applied in the second friction test
  • FIG. 8B is a graph showing the measured value of the friction coefficient in the second friction test.
  • FFO was expressed under a load load of 47.1 N or more. The friction coefficient at this time is about 0.0002.
  • the second friction test there was a tendency that the FFO phenomenon was stably developed as compared with the first friction test. Further, in the second friction test, the friction coefficient tended to gradually decrease as the load was increased, which was slightly different from that in the first friction test.
  • FIG. 9 is a view for explaining the upper layer of the plate test piece 42 to be measured in the third and fourth friction tests.
  • FIG. 10 is a diagram for explaining the test conditions of the third and fourth friction tests.
  • the plate test piece 42 to be measured in the third and fourth friction tests includes a two-layer film 43 made of a hard carbon film having a two-layer structure (see FIG. 5A) on the surface layer side.
  • the Si-DLC film constituting the lower layer of the two-layer film 43 has the same configuration as the Si-DLC film 62 (see FIG. 5A).
  • a PLC (Polymer-Like-Carbon) film 163 constituting the upper layer (Surface layer) is partially different from the PLC film 63 (see FIG. 5A).
  • the main difference between the method for forming the PLC film 163 and the method for forming the PLC film 63 is that a high bias voltage ( ⁇ 4.0 kV) is employed as the bias voltage (Bias voltage) in the ionization deposition method (PVD method). is there.
  • the PLC film 163 provided by such a method is a PLC film (high bias film formation PLC) containing a relatively large amount of graphite component as compared with the PLC film 63.
  • hydrogen is also added to the film (hydrogen-added high bias film formation PLC).
  • the test conditions of a friction speed of 8.0 mm / s, a friction stroke of 4.0 mm, and no lubrication were obtained.
  • the third friction test and the third friction test were performed while gradually increasing the load applied to the surface of the plate test piece 42 through the pin test piece 44 from 19.6 N to 63.7 N in increments of 1.96 N. 4 friction tests (up to 28200 high load tests) were conducted to examine the FFO expression.
  • FIG. 10 is a diagram for explaining the test conditions of the third and fourth friction tests.
  • Nitrogen gas was supplied at a large flow rate (5.0 slm) as a flow.
  • the temperature in the chamber 45 was set to 20 ° C. ⁇ 5 ° C.
  • the ethanol concentration and moisture concentration in the atmosphere in the chamber 45 are controlled to be lower than the familiar environment (Run-in environment).
  • a method of controlling the ethanol concentration and the water concentration low is effective. Specifically, as a sub-flow in the chamber 45, hydrogen gas (23% @) containing ethanol generated from an aqueous solution with 23% ethanol volume concentration is supplied at a small flow rate, and ethanol generated from a 100% ethanol volume concentration liquid is supplied. Containing hydrogen gas (100% @) was supplied at a minute flow rate.
  • the supply flow rate of hydrogen gas (23% @) containing ethanol generated from an aqueous solution having a volumetric ethanol concentration of 23% was set to 40 sccm at the start of supply and then reduced to 20 sccm.
  • the supply flow rate of hydrogen gas containing ethanol (100% @) generated from a 100% ethanol volume concentration liquid was set to 5 sccm at the start of supply and then reduced to 1 sccm.
  • hydrogen gas (20% @) containing ethanol generated from an aqueous ethanol solution having a volume concentration of 20% is flowed at a medium flow rate (180 sccm) as a subflow in the chamber 45. ).
  • hydrogen gas (20% @) containing ethanol generated from a 20% aqueous solution of ethanol volume concentration was supplied as a subflow into the chamber 45 at a small flow rate.
  • the supply flow rate of hydrogen gas (20% @) containing ethanol generated from an aqueous ethanol solution having a volumetric ethanol concentration of 20% was set to 40 sccm at the start of supply and then reduced to 30 sccm.
  • FIG. 11 is a graph showing the relationship between the load (Load) and the measured value of the friction coefficient (Friction coefficient) in the third friction test.
  • the load was increased stepwise to 63.7N, and after the load reached 63.7N, the load was kept at 63.7N.
  • the supply flow rate of hydrogen gas containing ethanol (23% @) generated from an aqueous solution with 23% ethanol volume concentration was reduced from 60 sccm to 40 sccm (sliding frequency of about 4700 times)
  • the friction coefficient suddenly decreased and FFO appeared. .
  • the friction coefficient is 1 ⁇ 10 ⁇ 4 or less.
  • Stable FFO was expressed.
  • the value of the friction coefficient of 1 ⁇ 10 ⁇ 4 or less is the noise level (1 mN) of the friction force measurement system.
  • the expression of FFO was maintained up to a predetermined time of about 9600 sliding times, and the expression time of FFO was about 49 minutes.
  • the supply flow rate of the hydrogen gas containing ethanol (23% @) generated from the 23% ethanol volume concentration aqueous solution is set to 30 sccm when the number of sliding times is 5300, and the number of sliding times is 9300 times. At each point of time, it was reduced to 20 sccm.
  • FIG. 12 is a graph showing the relationship between the load (Load) and the measured value of the coefficient of friction (Friction coefficient) in the fourth friction test.
  • the load was increased stepwise to 63.7N, and after the load reached 63.7N, the load was kept at 63.7N.
  • the supply flow rate of hydrogen gas containing ethanol (20% @) generated from an aqueous solution with 20% ethanol volume concentration was reduced from 60 sccm to 40 sccm (sliding frequency of about 5200 times)
  • the friction coefficient suddenly decreased and FFO appeared. .
  • the friction coefficient decreased after the time when the supply flow rate of the hydrogen gas (20% @) containing ethanol generated from the 20% ethanol volume concentration aqueous solution was reduced to 30 sccm (sliding frequency: about 5700 times). After the FFO expression was continued for about 10 minutes, the friction test was terminated. There were several momentary increases in the coefficient of friction during FFO development.
  • the coefficient of friction during FFO development was determined by the supply of ethanol-containing hydrogen gas (20% @) generated from an aqueous ethanol solution with a volume concentration of 20%. After the time when the flow rate was lowered to 30 sccm (sliding frequency: about 5700 times), the flow rate was stable at 2 ⁇ 10 ⁇ 4 .
  • ⁇ Measurement of surface condition> The surface condition of the outer surface of the pin test piece 44 after completion of the first to fourth friction tests was measured using a white light interference type shape measuring machine (zygo, New View 5022).
  • FIG. 13 is a view showing the surface state of the outer surface (sliding region) of the pin test piece 44 after the first friction test.
  • FIG. 14 is a diagram showing the surface state of the outer surface (the sliding region) of the pin test piece 44 after the second friction test.
  • 13A and 14A are optical micrograph images of the outer surface of the pin test piece 44, and FIG. 13B shows the surface of the outer surface of the pin test piece 44 when cut along line XIIIB-XIIIB in FIG. 13A.
  • FIG. 14B shows the distribution of the height, and FIG. 14B shows the distribution of the surface height of the outer surface of the pin specimen 44 when cut along the cutting plane line XIVB-XIVB in FIG. 14A.
  • FIG. 13A and 14A are optical micrograph images of the outer surface of the pin test piece 44
  • FIG. 13B shows the surface of the outer surface of the pin test piece 44 when cut along line XIIIB-XIIIB in FIG. 13A.
  • FIG. 14B shows the distribution of the height
  • FIG. 15 is an image of an optical micrograph showing the outer surface (sliding region) of the pin test piece 44 after the third friction test
  • FIG. 16 is an illustration of the pin test piece after the fourth friction test. It is an image figure of the optical micrograph which shows an outer surface (the sliding area
  • a transparent film-like product is attached (formed) to the circular sliding area (corresponding to the Hertz contact surface) of the outer surface of the pin test piece 44. Yes.
  • the thickness of the product formed after the first friction test is several nm to about 150 nm, and the thickness of the product formed after the second friction test is about 10 nm to about 500 nm. These products can be scraped off from the surface with a spatula or the like, that is, they can be said to be softer than a hard carbon film such as DLC.
  • first sliding product A product (hereinafter referred to as “first sliding product”) on the outer surface (sliding region) of the pin test piece 44 after the first friction test, and a pin test piece 44 after the second friction test.
  • second sliding product On the outer surface (sliding region) of the pin (hereinafter referred to as “second sliding product”) and on the outer surface (sliding region) of the pin specimen 44 after the third friction test.
  • third sliding product Infrared spectroscopic analysis was performed on the product (hereinafter referred to as “third sliding product”).
  • Time-of-flight secondary ion mass (TOF-SIMS) analysis was also performed on the first to third sliding products.
  • TOF-SIMS 5 manufactured by Ion-Tof 300 ⁇ m square rasters were accumulated 30 times at 256 ⁇ 256 pixels using Bi + (30 keV, 1.4 pA) as primary ions.
  • FIG. 17 is a graph showing infrared absorption spectra of the first and second sliding products by a microscopic transmission method. In FIG. 17, the infrared absorption spectrum of the first sliding product is shown in the upper part of the figure, and the infrared absorption spectrum of the second sliding product is shown in the lower part of the figure. In addition, the first sliding product has a small amount of collected product, and therefore there is a portion where the spectrum is unclear.
  • the peak is observed in the region in the vicinity of 2900 cm -1 - 3000 cm -1.
  • This peak is a bond peak of “C—H” and is presumed to be derived from an aliphatic hydrocarbon group such as a methylene group (—CH 3 ) or a methyl group (—CH 2 —).
  • a baseline trend is believed to originate from the carbonaceous material. From the results of Raman analysis conducted separately, it is assumed that this carbonaceous material is derived from an amorphous carbon-based material (amorphous carbon).
  • a peak is observed in the region near 1720 cm ⁇ 1 .
  • This peak is a bond peak of “—C ( ⁇ O) —” and is presumed to originate from a carbonyl group.
  • the presence of a peak is recognized in the region near 1720 cm ⁇ 1 . It is considered that the peak of the first sliding product is unclear due to the small amount of the first sliding product collected.
  • FIG. 18 is a graph showing infrared absorption spectra of the third and fourth sliding products by a microscopic transmission method.
  • the infrared absorption spectrum of the third sliding product is shown in the upper part of the figure, and the infrared absorption spectrum of the fourth sliding product is shown in the lower part of the figure.
  • the peak is observed in the region in the vicinity of 2900cm -1 ⁇ 3000cm -1.
  • This peak is a bond peak of “C—H” and is presumed to be derived from an aliphatic hydrocarbon group such as a methylene group (—CH 3 ) or a methyl group (—CH 2 —).
  • an aliphatic hydrocarbon group such as a methylene group (—CH 3 ) or a methyl group (—CH 2 —).
  • both the third and fourth sliding products tend to fall to the right with increasing wavelength.
  • Such a baseline tendency is considered to be derived from a carbonaceous material (specifically, an amorphous carbon-based material (amorphous carbon)).
  • a peak is recognized in the region near 1720 cm ⁇ 1 in both the third and fourth sliding products.
  • This peak is presumed to be a bond peak of “—C ( ⁇ O) —” which is considered to be derived from a carbonyl group.
  • the peak in the region near 1720 cm ⁇ 1 in FIG. 18 is not as clear as in the case of the second sliding product shown in FIG.
  • a peak is recognized in the region near 1600 cm ⁇ 1 .
  • This peak is considered to be either a peak derived from a benzene ring or a peak derived from water. Note that the peak in the vicinity of 1600 cm ⁇ 1 in FIG. 18 is not as clear as in the case of the second sliding product shown in FIG.
  • the main component of the friction atmosphere is a reducing hydrogen atmosphere (first Slidable formation having at least one of an aliphatic hydrocarbon group and a carbonyl group even in an inert nitrogen atmosphere (third friction test or fourth friction test). An object was formed on the pin test piece 44, and it was confirmed that FFO was expressed in this sliding product.
  • FIG. 19 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the first sliding product.
  • FIG. 20 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the second sliding product.
  • FIG. 21 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the third sliding product.
  • FIG. 22 is a graph showing the secondary ion relative intensity ratio of C 2 H 5 + based on Zr + of the second sliding product.
  • FIG. 23 is a graph showing the secondary ion relative intensity ratio of C 9 H 7 + based on Zr + of the second sliding product.
  • FIG. 24 is a graph showing the secondary ion relative intensity ratio of C 7 H 7 + based on Zr + of the second sliding product.
  • the main component of the friction atmosphere is a reducing hydrogen atmosphere (first And the second friction test) and an inert nitrogen atmosphere (the third friction test and the fourth friction test) peak in mass 91.1 in the positive ion spectrum obtained by TOF-SIMS.
  • a sliding product containing a condensed ring system component having a peak at a mass of 115.2 in the positive ion spectrum obtained by TOF-SIMS is formed, and FFO is expressed in this sliding product. I was able to confirm that.
  • each ion and the material of the pin test piece 44 are used for the first and second sliding products.
  • the relative intensity ratio with Zr + ions derived from (ZnO 2 ) was examined. 22 to 24, the first and second sliding products, which are products of the sliding region on the outer surface of the pin test piece 44, are the products of the non-sliding region on the outer surface of the pin test piece 44. It shows in comparison with.
  • FIG. 25 is a graph showing a negative ion spectrum of the first sliding product obtained by TOF-SIMS.
  • FIG. 26 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the second sliding product.
  • FIG. 27 is a graph showing the secondary ion relative intensity ratio of C 7 H 5 O 2 ⁇ based on the total negative ion intensity of the first and second sliding products.
  • C 7 H 5 O 2 ⁇ is also detected from the surface of the PLC film 63, and the PLC film 63 is considered to be a component due to transfer / degeneration.
  • TOF-SIMS analysis was also performed on the surface of the PLC film 63 after the first and second friction tests.
  • TOF-SIMS 5 manufactured by Ion-Tof 300 ⁇ m square rasters were accumulated 30 times at 256 ⁇ 256 pixels using Bi + (30 keV, 1.4 pA) as primary ions.
  • the infrared absorption spectrum of the second sliding product is compared with the infrared absorption spectrum of the surface of the PLC film 63 before and after the second friction test.
  • 28 and 29 are graphs showing infrared absorption spectra of the PLC film 63 before and after the second friction test by the microscopic ATR method.
  • the infrared absorption spectrum of the PLC film 63 after the second friction test is shown in the lower part of the figure, and the infrared of the PLC film 63 before the second friction test is shown in the middle part of the figure.
  • An absorption spectrum is shown, and an infrared absorption spectrum of the surface of Si-DLC is shown in the upper part of the figure for reference.
  • the second sliding product is not a simple transfer of the PLC film 63, and is newly generated by a tribochemical reaction based on the transferred substances and the atmospheric gas. It is inferred that this is a compound produced in
  • the surface of the PLC film 63 after the second friction test focusing on the region in the vicinity of 3800 cm -1 ⁇ 3000 cm -1, the presence of a peak derived from the free O-H group (hydroxyl group), and O-H groups
  • the presence of a peak derived from is recognized.
  • the presence of free O—H groups on the outermost surface of the friction that cause molecules to move is thought to cause a decrease in shearing force when sliding against the surface of the other side of the friction, which is considered to be a cause of FFO expression. It is done.
  • Free OH groups are not detected from the surface of Si-DLC shown as a reference in FIGS. 28 and 29, and it can be said that they are not present in common in the hard carbon film.
  • FIG. 30 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the first friction test.
  • FIG. 31 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the first friction test.
  • FIG. 32 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the second friction test.
  • FIG. 33 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the second friction test.
  • FIG. 34 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the first friction test.
  • FIG. 35 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the first friction test.
  • FIG. 36 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the second friction test.
  • FIG. 37 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the second friction test.
  • the aromatic component (C 6 H 5 + , C 7 H 7 + ), the condensed ring system component (C 9 H 7 + , C 10 H 8 + ) are formed on the surface of the PLC film 63.
  • the low friction coating 5 is an aliphatic hydrocarbon group which exhibits peaks in the region of 2900 cm -1 ⁇ 3000 cm -1 in an infrared absorption spectrum, 1650 cm -1 ⁇ 1800 cm in the infrared absorption spectrum -1 , a carbonyl group having a peak in the region, an aromatic component (C 7 H 7 + ) having a peak at a mass of 91.1 in a positive ion spectrum obtained by TOF-SIMS, and a positive ion obtained by TOF-SIMS And a condensed ring system component (C 9 H 7 + ) having a peak at a mass of 115.2 in the ion spectrum.
  • the low friction coating 5 having such physical properties exhibits a remarkably low coefficient of friction of the order of 10 ⁇ 4 (less than 0.001). That is, it is possible to provide the low friction coating 5 that realizes a remarkably low coefficient of friction.
  • the friction coefficient of the sliding surface 6 can be reduced without using a lubricant separately. Further, the friction coefficient of the sliding surface 6 can be remarkably reduced. As a result, the frictional force generated between the sliding surface 6 and the sliding surface 7 can be reduced without using any lubricant. Thereby, the friction loss accompanying sliding of the sliding system 1 can be significantly reduced (friction torque can be greatly reduced). Therefore, the sliding system 1 can be reduced in size and weight, and the reliability of the sliding system 1 can be improved.
  • the low friction coating 5 has been described as including a carbonyl group.
  • the low friction coating may be configured so as not to include a carbonyl group.
  • the low friction coating 5 has been described as a configuration including both the aromatic component (C 7 H 7 + ) and the condensed ring system component (C 9 H 7 + ).
  • 5 may be a structure containing at least one of an aromatic component (C 7 H 7 + ) and a condensed ring system component (C 9 H 7 + ).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

According to the present invention, a low-friction coating 5 includes: an aliphatic hydrocarbon group that exhibits a peak in a region of 2900-3000 cm-1 in an infrared absorption spectrum; a carbonyl group that exhibits a peak in a region of 1650-1800 cm-1 in an infrared absorption spectrum; an aromatic component (C7H7 +) that exhibits a peak at mass 91.1 in a positive ion spectrum obtained by TOF-SIMS; and a fused ring component (C9H7 +) that exhibits a peak at mass 115.2 in a positive ion spectrum obtained by TOF-SIMS.

Description

非晶質炭化水素系膜、ならびにそれを備えた摺動部材および摺動システムAmorphous hydrocarbon film, sliding member and sliding system provided with the same
 本発明は、潤滑性を有する非晶質炭化水素系膜、ならびにそれを備えた摺動部材および摺動システムに関する。 The present invention relates to an amorphous hydrocarbon film having lubricity, and a sliding member and a sliding system including the same.
 摺動システムの摩擦低減を図るために、摺動部材の摺動面に固体潤滑膜を配置することが提案されている。このような固体潤滑膜として、たとえばDLC(Diamond Like Carbon)膜が知られており、下記特許文献1には、DLC膜を含む摺動面に、含酸素有機化合物や脂肪族アミン系化合物を含む低摩擦剤組成物を供給する低摩擦摺動機構が記載されている。 In order to reduce the friction of the sliding system, it has been proposed to arrange a solid lubricating film on the sliding surface of the sliding member. As such a solid lubricating film, for example, a DLC (Diamond 膜 Like Carbon) film is known, and the following Patent Document 1 includes an oxygen-containing organic compound or an aliphatic amine compound on the sliding surface including the DLC film. A low friction sliding mechanism for supplying a low friction agent composition is described.
 また、下記特許文献2には、第1の摺動表面を有する第1の部材と、第2の摺動表面を有する第2の部材とを含む低摩擦潤滑アセンブリが記載されている。第1の摺動表面は、O-H基との化学親和力を有している。第2の摺動表面は、O-H末端摺動表面を有している。第1および第2の摺動表面の間に含酸素化合物(液体潤滑剤)が供給されることにより、第1および第2の摺動表面の間に水素を末端とするトライボフィルムが形成される。 Also, Patent Document 2 below describes a low friction lubrication assembly including a first member having a first sliding surface and a second member having a second sliding surface. The first sliding surface has a chemical affinity with the OH group. The second sliding surface has an OH terminal sliding surface. By supplying an oxygen-containing compound (liquid lubricant) between the first and second sliding surfaces, a tribofilm terminated with hydrogen is formed between the first and second sliding surfaces. .
日本国特開2005-98495号公報Japanese Unexamined Patent Publication No. 2005-98495 日本国特開2012-92351号公報Japanese Unexamined Patent Publication No. 2012-92351
 特許文献1に記載の低摩擦摺動機構および特許文献2に記載の低摩擦潤滑アセンブリでは、それぞれ、摺動部の摩擦係数の低減が図られている。
 しかしながら、特許文献1および特許文献2では、摺動表面上に液体潤滑剤が供給された状態(流体潤滑)で摺動が行われている。すなわち、特許文献1および特許文献2は、液体潤滑剤等の潤滑剤を別途使用しない(ドライ潤滑)条件での低摩擦化を提供できていない。
In the low friction sliding mechanism described in Patent Document 1 and the low friction lubrication assembly described in Patent Document 2, the friction coefficient of the sliding portion is reduced.
However, in Patent Document 1 and Patent Document 2, sliding is performed in a state where the liquid lubricant is supplied onto the sliding surface (fluid lubrication). That is, Patent Document 1 and Patent Document 2 cannot provide a reduction in friction under conditions in which a lubricant such as a liquid lubricant is not separately used (dry lubrication).
 摺動面(摺動部)の摩擦係数を、潤滑剤を別途用いることなく低減させることが求められている。さらに、摺動システムの更なる高効率化のために、摺動面の摩擦係数をさらに低減させることも望まれている。
 そこで、本発明の目的は、低い摩擦係数を実現する非晶質炭化水素系膜を提供することである。
It is required to reduce the friction coefficient of the sliding surface (sliding portion) without using a lubricant separately. Furthermore, in order to further increase the efficiency of the sliding system, it is desired to further reduce the friction coefficient of the sliding surface.
Accordingly, an object of the present invention is to provide an amorphous hydrocarbon film that realizes a low friction coefficient.
 また、本発明の他の目的は、潤滑剤を別途用いることなく、摺動面の摩擦係数の低減を図ることができる摺動部材を提供することである。
 本発明のさらに他の目的は、潤滑剤を別途用いることなく、摺動面と被摺動面との間に発生する摩擦力の低減を図ることができ、これにより、摩擦損失を大幅に低減できる摺動システムを提供することである。
Another object of the present invention is to provide a sliding member capable of reducing the friction coefficient of the sliding surface without using a lubricant separately.
Still another object of the present invention is to reduce the frictional force generated between the sliding surface and the sliding surface without using a separate lubricant, thereby greatly reducing the friction loss. It is to provide a sliding system that can.
 本発明の第1の態様は、赤外吸収スペクトルにおいて2900cm-1~3000cm-1の領域にピークを示す脂肪族炭化水素基と、飛行時間二次イオン質量分析法(TOF-SIMS)により得られる正イオンスペクトルにおいて質量91.1にピークを示す芳香族系成分(C77 +)、および飛行時間二次イオン質量分析法により得られる正イオンスペクトルにおいて質量115.2にピークを示す縮合環系成分(C97 +)のうち少なくとも一方とを含む、非晶質炭化水素系膜(5)を提供する。 The first aspect of the present invention is obtained by an aliphatic hydrocarbon group having a peak in the region of 2900 cm −1 to 3000 cm −1 in the infrared absorption spectrum and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Aromatic component (C 7 H 7 + ) having a peak at mass 91.1 in the positive ion spectrum, and a condensed ring having a peak at mass 115.2 in the positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry Provided is an amorphous hydrocarbon film (5) containing at least one of system components (C 9 H 7 + ).
 本発明の第2の態様は、赤外吸収スペクトルにおいて1650cm-1~1800cm-1の領域にピークを示すカルボニル基をさらに含む、上記第1の態様に記載の非晶質炭化水素系膜である。
 本発明の第3の態様は、前記芳香族系成分および前記縮合環系成分の双方を含む、上記第1または第2の態様に記載の非晶質炭化水素系膜である。
A second aspect of the present invention further comprises a carbonyl group which exhibits peaks in the region of 1650 cm -1 ~ 1800 cm -1 in an infrared absorption spectrum, it is amorphous hydrocarbon film according to the first aspect .
A third aspect of the present invention is the amorphous hydrocarbon film according to the first or second aspect, including both the aromatic component and the condensed ring system component.
 本発明の第4の態様は、平均厚さが2nm~1000nmである、上記第1~第3の態様のいずれかに記載の非晶質炭化水素系膜である。
 本発明の第5の態様は、第1の被膜(5)を含む摺動面(6)を有し、金属およびセラミックスの少なくとも一方を用いて形成された摺動部材(2)であって、前記第1の被膜は、上記第1~第4の態様のいずれかに記載の非晶質炭化水素系膜(5)を含む、摺動部材を提供する。
A fourth aspect of the present invention is the amorphous hydrocarbon film according to any one of the first to third aspects, wherein the average thickness is 2 nm to 1000 nm.
A fifth aspect of the present invention is a sliding member (2) having a sliding surface (6) including a first coating (5) and formed using at least one of a metal and a ceramic, The first coating provides a sliding member including the amorphous hydrocarbon film (5) according to any one of the first to fourth aspects.
 本発明の第6の態様は、前記摺動部材は、ZrO2を用いて形成されている、上記第5の態様に記載の摺動部材である。
 本発明の第7の態様は、上記第5または第6の態様に記載の摺動部材(2)と、前記摺動部材の前記摺動面に摺接し、非晶質炭素系膜からなる第2の被膜(9)を含む被摺動面(7)を有する被摺動部材(3)とを含み、前記第2の被膜のヤング率は、200GPa~250GPaである、摺動システム(1)である。
A sixth aspect of the present invention is the sliding member according to the fifth aspect, wherein the sliding member is formed using ZrO 2 .
According to a seventh aspect of the present invention, there is provided a sliding member (2) according to the fifth or sixth aspect, wherein the sliding member (2) is in sliding contact with the sliding surface of the sliding member and comprises an amorphous carbon-based film. A sliding member (3) having a sliding surface (7) including two coatings (9), and the Young's modulus of the second coating is 200 GPa to 250 GPa. It is.
 本発明の第8の態様は、前記第2の被膜は、最表面に、赤外吸収スペクトルにおいて3000cm-1~4000cm-1の領域にピークを示す水酸基を含む、上記第7の態様に記載の摺動システムである。
 なお、この項において、括弧内の数字等は、後述する実施形態における対応構成要素等を表すが、このことは、むろん、本発明がそれらの実施形態に限定されるべきことを意味するものではない。
An eighth aspect of the present invention, the second coating is the outermost surface, containing a hydroxyl group exhibiting a peak in the region of 3000 cm -1 ~ 4000 cm -1 in an infrared absorption spectrum, according to the seventh aspect of the It is a sliding system.
In this section, numbers in parentheses indicate corresponding components in the embodiments described later, but this does not mean that the present invention should be limited to those embodiments. Absent.
 本発明によれば、赤外吸収スペクトルにおいて2900cm-1~3000cm-1の領域にピークを示す脂肪族炭化水素基と、飛行時間二次イオン質量分析法により得られる正イオンスペクトルにおいて質量91.1にピークを示す芳香族系成分、および飛行時間二次イオン質量分析法により得られる正イオンスペクトルにおいて質量115.2にピークを示す縮合環系成分のうち少なくとも一方とを含む非晶質炭化水素系膜は低い摩擦係数を示す。すなわち、低い摩擦係数を実現する非晶質炭化水素系膜を提供できる。 According to the present invention, an aliphatic hydrocarbon group having a peak in the region of 2900 cm −1 to 3000 cm −1 in the infrared absorption spectrum and a mass of 91.1 in the positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry. And an aromatic hydrocarbon component having at least one of a condensed ring component having a peak at a mass of 115.2 in a positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry The film exhibits a low coefficient of friction. That is, it is possible to provide an amorphous hydrocarbon film that achieves a low coefficient of friction.
 また、金属およびセラミックスの少なくとも一方を用いて形成された摺動部材の摺動面に、当該非晶質炭化水素系膜を含む第1の被膜を設けることにより、潤滑剤を別途用いることなく、摺動面の摩擦係数の低減を図ることができる。
 さらに、摺動面の摩擦係数を低減できる結果、潤滑剤を別途用いることなく、摺動面と被摺動面との間に発生する摩擦力の低減を図ることができ、これにより、摩擦損失を大幅に低減することができる(摩擦トルクを低減できる)。これにより、摺動システムの小型化および軽量化を図ることができると共に、摺動システムの信頼性の向上を図ることができる。
In addition, by providing the first film including the amorphous hydrocarbon film on the sliding surface of the sliding member formed using at least one of metal and ceramics, without using a lubricant separately, The friction coefficient of the sliding surface can be reduced.
Furthermore, the friction coefficient of the sliding surface can be reduced. As a result, the frictional force generated between the sliding surface and the sliding surface can be reduced without using a separate lubricant. Can be greatly reduced (friction torque can be reduced). Accordingly, the sliding system can be reduced in size and weight, and the reliability of the sliding system can be improved.
図1は、本発明の一実施形態に係る摺動システムの要部を拡大して示す断面図である。FIG. 1 is an enlarged cross-sectional view showing a main part of a sliding system according to an embodiment of the present invention. 図2は、摺動部材に含まれる低摩擦被膜の製造に用いられる膜製造装置の構成を模式的に示す図である。FIG. 2 is a diagram schematically showing a configuration of a film manufacturing apparatus used for manufacturing a low friction coating included in the sliding member. 図3A及び3Bは、摺動部材と被摺動部材との摺動動作を示す断面図である。3A and 3B are cross-sectional views showing a sliding operation between the sliding member and the sliding member. 図4は、第1の摩擦試験機の構成を示す模式的な断面図である。FIG. 4 is a schematic cross-sectional view showing the configuration of the first friction tester. 図5A及び5Bは、第1および第2の摩擦試験に用いられるプレート試験片について説明するための図である。5A and 5B are diagrams for explaining plate test pieces used in the first and second friction tests. 図6は、第2の摩擦試験機の構成を示す模式的な断面図である。FIG. 6 is a schematic cross-sectional view showing the configuration of the second friction tester. 図7A及び7Bは、第1の摩擦試験における負荷荷重および摩擦係数を示すグラフである。7A and 7B are graphs showing a load and a friction coefficient in the first friction test. 図8A及び8Bは、第2の摩擦試験における負荷荷重および摩擦係数を示すグラフである。8A and 8B are graphs showing the applied load and the friction coefficient in the second friction test. 図9は、第3および第4の摩擦試験の計測対象のプレート試験片の上層について説明するための図である。FIG. 9 is a diagram for explaining the upper layer of the plate test piece to be measured in the third and fourth friction tests. 図10A及び10Bは、第3および第4の摩擦試験の試験条件を説明するための図である。10A and 10B are diagrams for explaining test conditions of the third and fourth friction tests. 図11は、第3の摩擦試験における、負荷荷重と、摩擦係数の計測値との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the applied load and the measured value of the friction coefficient in the third friction test. 図12は、第4の摩擦試験における、負荷荷重と、摩擦係数の計測値との関係を示すグラフである。FIG. 12 is a graph showing the relationship between the applied load and the measured value of the friction coefficient in the fourth friction test. 図13A及び13Bは、第1の摩擦試験後におけるピン試験片の外表面(の摺動領域)の表面状態を示す図である。13A and 13B are views showing the surface state of the outer surface (sliding region) of the pin test piece after the first friction test. 図14A及び14Bは、第2の摩擦試験後におけるピン試験片の外表面(の摺動領域)の表面状態を示す図である。14A and 14B are views showing the surface state of the outer surface (sliding region) of the pin test piece after the second friction test. 図15は、第3の摩擦試験後におけるピン試験片の外表面(の摺動領域)を示す光学顕微鏡写真の画像図である。FIG. 15 is an image of an optical micrograph showing the outer surface (the sliding region) of the pin test piece after the third friction test. 図16は、第4の摩擦試験後におけるピン試験片の外表面(の摺動領域)を示す光学顕微鏡写真の画像図である。FIG. 16 is an image of an optical micrograph showing the outer surface (the sliding region) of the pin test piece after the fourth friction test. 図17は、第1および第2の摺動生成物の、顕微透過法による赤外吸収スペクトルを示すグラフである。FIG. 17 is a graph showing infrared absorption spectra of the first and second sliding products by a microscopic transmission method. 図18は、第3および第4の摺動生成物の、顕微透過法による赤外吸収スペクトルを示すグラフである。FIG. 18 is a graph showing infrared absorption spectra of the third and fourth sliding products by a microscopic transmission method. 図19は、第1の摺動生成物の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 19 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the first sliding product. 図20は、第2の摺動生成物の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 20 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the second sliding product. 図21は、第3の摺動生成物の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 21 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the third sliding product. 図22は、第2の摺動生成物の、Zr+を基準としたときのC25 +の二次イオン相対強度比を示すグラフである。FIG. 22 is a graph showing the secondary ion relative intensity ratio of C 2 H 5 + based on Zr + of the second sliding product. 図23は、第2の摺動生成物の、Zr+を基準としたときのC97 +の二次イオン相対強度比を示すグラフである。FIG. 23 is a graph showing the secondary ion relative intensity ratio of C 9 H 7 + based on Zr + of the second sliding product. 図24は、第2の摺動生成物の、Zr+を基準としたときのC77 +の二次イオン相対強度比を示すグラフである。FIG. 24 is a graph showing the secondary ion relative intensity ratio of C 7 H 7 + based on Zr + of the second sliding product. 図25は、第1の摺動生成物の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。FIG. 25 is a graph showing a negative ion spectrum of the first sliding product obtained by TOF-SIMS. 図26は、第2の摺動生成物の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。FIG. 26 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the second sliding product. 図27は、第1および第2の摺動生成物の、負イオン総強度を基準としたときのC752 -の二次イオン相対強度比を示すグラフである。FIG. 27 is a graph showing the secondary ion relative intensity ratio of C 7 H 5 O 2 − based on the total negative ion intensity of the first and second sliding products. 図28は、第2の摩擦試験後におけるPLC膜の、顕微全反射吸収(顕微ATR)法による赤外吸収スペクトルを示すグラフである(その1)。FIG. 28 is a graph showing an infrared absorption spectrum of the PLC film after the second friction test by a microscopic total reflection absorption (microscopic ATR) method (No. 1). 図29は、第2の摩擦試験後におけるPLC膜の、顕微ATR法による赤外吸収スペクトルを示すグラフである(その2)。FIG. 29 is a graph showing an infrared absorption spectrum of the PLC film after the second friction test by a microscopic ATR method (part 2). 図30は、第1の摩擦試験後におけるPLC膜(の摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 30 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the first friction test. 図31は、第1の摩擦試験後におけるPLC膜(の非摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 31 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the first friction test. 図32は、第2の摩擦試験後におけるPLC膜(の摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 32 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the second friction test. 図33は、第2の摩擦試験後におけるPLC膜(の非摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。FIG. 33 is a graph showing the positive ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the second friction test. 図34は、第1の摩擦試験後におけるPLC膜(の摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。FIG. 34 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the first friction test. 図35は、第1の摩擦試験後におけるPLC膜(の非摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。FIG. 35 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the first friction test. 図36は、第2の摩擦試験後におけるPLC膜(の摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。FIG. 36 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (its sliding region) after the second friction test. 図37は、第2の摩擦試験後におけるPLC膜(の非摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。FIG. 37 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film (non-sliding region thereof) after the second friction test.
 以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
 図1は、本発明の一実施形態に係る摺動システム1の要部を拡大して示す断面図である。摺動システム1は、摺動部材2と、摺動部材2にとって相手材である被摺動部材3を含む。摺動部材2は、被摺動部材3に対し、相対摺動可能に設けられている。摺動部材2および被摺動部材3は、被摺動部材3が静止している状態で摺動部材2だけを摺動(移動)させるものであってもよいし、摺動部材2が静止している状態で被摺動部材3だけを摺動(移動)させるものであってもよいし、摺動部材2および被摺動部材3の双方を移動させることにより、被摺動部材3に対し摺動部材2を相対摺動させるものであってもよい。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is an enlarged cross-sectional view showing a main part of a sliding system 1 according to an embodiment of the present invention. The sliding system 1 includes a sliding member 2 and a sliding member 3 that is a counterpart material for the sliding member 2. The sliding member 2 is provided to be slidable relative to the sliding member 3. The sliding member 2 and the sliding member 3 may be ones that slide (move) only the sliding member 2 while the sliding member 3 is stationary, or the sliding member 2 is stationary. In this state, only the sliding member 3 may be slid (moved), or both the sliding member 2 and the sliding member 3 are moved to move the sliding member 3 to the sliding member 3. Alternatively, the sliding member 2 may be relatively slid.
 摺動部材2は、表面(図1の下面)を有する第1の基材4と、第1の基材4の表面の少なくとも一部を被覆する低摩擦被膜(非晶質炭化水素系膜、第1の被膜)5とを含む。第1の基材4は、酸化物セラミックス(セラミックス)または金属を用いて形成されている。酸化物セラミックスは、たとえばZrO2(より具体的には、イットリウム安定化ジルコニア(YSZ))を含む。ZrO2は、加熱処理されていてもよいし、加熱処理されていなくてもよい。金属は、たとえば、パラジウム(Pd)またはSUJ2(高炭素クロム軸受鋼鋼材)の少なくとも一つを含む。これら酸化物セラミックスおよび金属は、水素雰囲気環境下で水素分子を解離吸着し、活性水素(H+)を発生する触媒性を有している。 The sliding member 2 includes a first substrate 4 having a surface (the lower surface in FIG. 1) and a low friction coating (amorphous hydrocarbon-based film, which covers at least a part of the surface of the first substrate 4. 1st coating) 5. The first substrate 4 is formed using oxide ceramics (ceramics) or metal. The oxide ceramic includes, for example, ZrO 2 (more specifically, yttrium stabilized zirconia (YSZ)). ZrO 2 may be heat-treated or may not be heat-treated. The metal includes, for example, at least one of palladium (Pd) or SUJ2 (high carbon chromium bearing steel). These oxide ceramics and metals have a catalytic property to dissociate and adsorb hydrogen molecules in a hydrogen atmosphere environment to generate active hydrogen (H + ).
 低摩擦被膜5は、非晶質炭化水素系膜である。低摩擦被膜5は、脂肪族炭化水素基(たとえばアルキル基)と、カルボニル基(-C(=O)-)と、芳香族系成分(C77 +)と、縮合環系成分(C97 +)とを含む。この脂肪族炭化水素基は、赤外吸収スペクトル(顕微透過法)において2900cm-1~3000cm-1の領域にピークを示す。カルボニル基は、赤外吸収スペクトル(顕微透過法)において1650cm-1~1800cm-1の領域にピークを示す。芳香族系成分(C77 +)は、TOF-SIMS(飛行時間二次イオン質量分析法)により得られる正イオンスペクトルにおいて質量91.1にピークを示す。縮合環系成分(C97 +)は、TOF-SIMSにより得られる正イオンスペクトルにおいて質量115.2にピークを示す。低摩擦被膜5は、被摺動部材3の被摺動面7に摺接する摺動面6として機能する。 The low friction coating 5 is an amorphous hydrocarbon film. The low friction coating 5 includes an aliphatic hydrocarbon group (for example, an alkyl group), a carbonyl group (—C (═O) —), an aromatic component (C 7 H 7 + ), and a condensed ring system component (C 9 H 7 + ). The aliphatic hydrocarbon group, a peak in the region of 2900 cm -1 ~ 3000 cm -1 in an infrared absorption spectrum (microscopic transmission method). Carbonyl group, a peak in the region of 1650 cm -1 ~ 1800 cm -1 in an infrared absorption spectrum (microscopic transmission method). The aromatic component (C 7 H 7 + ) shows a peak at a mass of 91.1 in a positive ion spectrum obtained by TOF-SIMS (time-of-flight secondary ion mass spectrometry). The condensed ring system component (C 9 H 7 + ) shows a peak at a mass of 115.2 in the positive ion spectrum obtained by TOF-SIMS. The low friction coating 5 functions as a sliding surface 6 that is in sliding contact with the sliding surface 7 of the sliding member 3.
 低摩擦被膜5の膜厚(平均厚さ)は、2nm~1000nmである。より好ましくは、2nm~500nmである。
 被摺動部材3は、表面(図1の上面)を有する第2の基材8と、第2の基材8の表面の少なくとも一部を被覆するPLC(Polymer-Like Carbon)膜9とを含む。第2の基材8は、たとえば、工具鋼、炭素鋼、ステンレス鋼、クロムモリブデン鋼、高炭素クロム軸受鋼などの鋼材を用いて形成されている。
The film thickness (average thickness) of the low friction coating 5 is 2 nm to 1000 nm. More preferably, it is 2 nm to 500 nm.
The sliding member 3 includes a second substrate 8 having a surface (upper surface in FIG. 1), and a PLC (Polymer-Like Carbon) film 9 covering at least a part of the surface of the second substrate 8. Including. The 2nd base material 8 is formed using steel materials, such as tool steel, carbon steel, stainless steel, chromium molybdenum steel, high carbon chromium bearing steel, for example.
 PLC膜9は、非晶質炭素系膜であり、短鎖ポリアセチレン系分子を主成分として含む。PLC膜9は、炭化水素系ガス(たとえばトルエン(toluene、C78))の雰囲気環境下で、低バイアス電圧または高バイアス電圧を印加しながら、イオン化蒸着法により形成された被膜である。PLC膜9のヤング率は、200GPa~250GPaである。PLC膜9の最表面は、赤外吸収スペクトル(顕微透過法)において3000cm-1~4000cm-1の領域にピークを示している。高バイアス電圧を印加しながら非晶質炭素系膜を作製する場合、当該非晶質炭素系膜には、水素および酸素の少なくとも一方が添加されていてもよい。PLC膜9は、摺動部材2の摺動面6に摺接する被摺動面7として機能する。摺動面6および被摺動面7は、図1に示すような平坦平面であってもよいし、球面やその他の曲面であってもよい。 The PLC film 9 is an amorphous carbon film and includes a short-chain polyacetylene molecule as a main component. The PLC film 9 is a film formed by an ionization vapor deposition method while applying a low bias voltage or a high bias voltage in an atmosphere environment of a hydrocarbon gas (for example, toluene (C 7 H 8 )). The Young's modulus of the PLC film 9 is 200 GPa to 250 GPa. The outermost surface of the PLC film 9 shows a peak in the region of 3000 cm -1 ~ 4000 cm -1 in an infrared absorption spectrum (microscopic transmission method). When an amorphous carbon-based film is manufactured while applying a high bias voltage, at least one of hydrogen and oxygen may be added to the amorphous carbon-based film. The PLC film 9 functions as a sliding surface 7 that is in sliding contact with the sliding surface 6 of the sliding member 2. The sliding surface 6 and the sliding surface 7 may be a flat plane as shown in FIG. 1, or may be a spherical surface or other curved surface.
 摺動面6および被摺動面7の摺動界面(すなわち、低摩擦被膜5とPLC膜9との間)には、液体潤滑剤等の潤滑剤は供給されていない。すなわち、摺動システム1は、無潤滑条件下で摺動動作が行われる。
 摺動システム1として、軸受、シール、フライホイール、はさみ、プランジャポンプ、人工関節等を例示できる。また、軸受として、玉軸受、円錐ころ軸受をはじめとするころ軸受、セパレータ付軸受、すべり軸受等を例示できる。
A lubricant such as a liquid lubricant is not supplied to the sliding interface between the sliding surface 6 and the sliding surface 7 (that is, between the low friction coating 5 and the PLC film 9). That is, the sliding system 1 is slid under a non-lubricated condition.
Examples of the sliding system 1 include bearings, seals, flywheels, scissors, plunger pumps, artificial joints, and the like. Examples of the bearing include a roller bearing including a ball bearing and a tapered roller bearing, a bearing with a separator, and a sliding bearing.
 摺動システム1として玉軸受を採用する場合には、PLC膜9が配置される被摺動面7が保持器の内面を含み、摺動面6は、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製のボールの外表面を含んでいてもよい。また、保持器の外径を外輪の内周で案内する外輪案内方式の玉軸受や、保持器の内径を内輪の外周で案内する内輪案内方式の玉軸受を採用する場合には、PLC膜9が配置される被摺動面7が保持器の被案内面を含み、摺動面6は、保持器を案内する、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製の内外輪の案内面を含んでいてもよい。 When a ball bearing is adopted as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes the inner surface of the cage, and the sliding surface 6 is made of oxide ceramics (ZrO 2 or the like) or metal The outer surface of a ball made of (SUJ2, palladium, etc.) may be included. When an outer ring guide type ball bearing that guides the outer diameter of the cage on the inner circumference of the outer ring or an inner ring guide type ball bearing that guides the inner diameter of the cage on the outer circumference of the inner ring is used, the PLC film 9 Includes a guided surface of the cage, and the sliding surface 6 is made of oxide ceramics (such as ZrO 2 ) or metal (SUJ2, palladium, etc.) that guides the cage. An annular guide surface may be included.
 摺動システム1として円錐ころ軸受を採用する場合には、PLC膜9が配置される被摺動面7がつばの端面を含み、摺動面6がころの外周面を含んでいてもよい。また、PLC膜9が配置される被摺動面7がころの外周面を含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製のつばの端面を含んでいてもよい。
 摺動システム1としてセパレータ付軸受を採用する場合には、PLC膜9が配置される被摺動面7がセパレータを含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製のボールの外表面を含んでいてもよい。
When a tapered roller bearing is employed as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed may include the end surface of the collar, and the sliding surface 6 may include the outer peripheral surface of the roller. Further, the sliding surface 7 on which the PLC film 9 is disposed includes the outer peripheral surface of the roller, and the sliding surface 6 has an end surface of a collar made of oxide ceramics (ZrO 2 or the like) or metal (SUJ2, palladium or the like). May be included.
When a bearing with a separator is adopted as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes a separator, and the sliding surface 6 is made of oxide ceramics (ZrO 2 or the like) or metal (SUJ2). , Palladium, etc.) may be included.
 摺動システム1としてすべり軸受を採用する場合には、PLC膜9が配置される被摺動面7がすべり軸受の内周面を含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製の軸の外周面を含んでいてもよい。
 摺動システム1としてシールを採用する場合には、PLC膜9が配置される被摺動面7が軸の外周面を含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製のシールのシール面を含んでいてもよい。
When a sliding bearing is employed as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes the inner peripheral surface of the sliding bearing, and the sliding surface 6 is an oxide ceramic (ZrO 2 or the like). Or an outer peripheral surface of a shaft made of metal (SUJ2, palladium, etc.).
When a seal is employed as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes the outer peripheral surface of the shaft, and the sliding surface 6 is made of oxide ceramics (such as ZrO 2 ) or metal ( SUJ2, palladium, etc.) may be included.
 摺動システム1としてはさみを採用する場合には、PLC膜9が配置される被摺動面7は一方の刃の刃面を含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製の他方の刃の刃面を含んでいてもよい。
 摺動システム1としてプランジャポンプを採用する場合には、PLC膜9が配置される被摺動面7がピストン(プランジャ)の外表面を含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製の固定斜板を含んでいてもよい。
When scissors are used as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes the blade surface of one blade, and the sliding surface 6 is made of oxide ceramics (ZrO 2 or the like) The blade surface of the other blade made of metal (SUJ2, palladium, etc.) may be included.
When a plunger pump is employed as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes the outer surface of the piston (plunger), and the sliding surface 6 is formed of oxide ceramics (ZrO 2 or the like). ) Or metal (SUJ2, palladium, etc.) fixed swash plate may be included.
 摺動システム1として人工関節を採用する場合には、PLC膜9が配置される被摺動面7が受け側の接触面を含み、摺動面6が、酸化物セラミックス(ZrO2等)や金属(SUJ2、パラジウム等)製の骨側の接触面を含んでいてもよい。
 以上の摺動システム1については、摺動面6を一方の部材にかつ被摺動面7を他方の部材に設けたが、摺動面6を他方の部材にかつ被摺動面7を一方の部材に設けてもよい。
When an artificial joint is employed as the sliding system 1, the sliding surface 7 on which the PLC film 9 is disposed includes a contact surface on the receiving side, and the sliding surface 6 includes oxide ceramics (ZrO 2 or the like) A bone-side contact surface made of metal (SUJ2, palladium, etc.) may be included.
In the above sliding system 1, the sliding surface 6 is provided on one member and the sliding surface 7 is provided on the other member, but the sliding surface 6 is provided on the other member and the sliding surface 7 is provided on one side. You may provide in this member.
 図2は、摺動部材2に含まれる低摩擦被膜5の製造に用いられる膜製造装置11の構成を模式的に示す図である。膜製造装置11は、内部空間を有する箱形のチャンバ12を備えている。チャンバ12の内部空間10に、摺動部材2と被摺動部材3とが収容される。膜製造装置11は、チャンバ12の内部空間10に設けられた保持台13をさらに含む。図2では、保持台13は被摺動部材3を保持するための保持台であり、チャンバ12の内部空間10に固定的に配置されている。チャンバ12の内部空間10に搬入された被摺動部材3は、保持台13上に載置され、保持台13に保持される。被摺動部材3の上に摺動部材2が載置される。 FIG. 2 is a diagram schematically showing the configuration of the film manufacturing apparatus 11 used for manufacturing the low friction coating 5 included in the sliding member 2. The film manufacturing apparatus 11 includes a box-shaped chamber 12 having an internal space. The sliding member 2 and the sliding member 3 are accommodated in the internal space 10 of the chamber 12. The film manufacturing apparatus 11 further includes a holding table 13 provided in the internal space 10 of the chamber 12. In FIG. 2, the holding table 13 is a holding table for holding the sliding member 3, and is fixedly disposed in the internal space 10 of the chamber 12. The sliding member 3 carried into the internal space 10 of the chamber 12 is placed on the holding table 13 and held on the holding table 13. The sliding member 2 is placed on the sliding member 3.
 膜製造装置11は、摺動部材2の摺動面6を被摺動部材3の被摺動面7に対し相対的に摺動させるために、摺動部材2を駆動(移動)させる駆動機構14と、摺動部材2に対し、摺動部材2の被摺動部材3への押付け荷重を付与する荷重付与機構15とを含む。駆動機構14は、たとえば、モータを含む機構である。また、膜製造装置11は、膜製造装置11に備えられた装置の動作やバルブの開閉を制御する制御装置16を含む。駆動機構14は、例えばモータとボールねじの組み合わせによる直動装置等がある。荷重付与機構15は、例えば錘等がある。 The film manufacturing apparatus 11 drives (moves) the sliding member 2 in order to slide the sliding surface 6 of the sliding member 2 relative to the sliding surface 7 of the sliding member 3. 14 and a load applying mechanism 15 that applies a pressing load to the sliding member 3 of the sliding member 2 with respect to the sliding member 2. The drive mechanism 14 is a mechanism including a motor, for example. The film manufacturing apparatus 11 also includes a control device 16 that controls the operation of the apparatus provided in the film manufacturing apparatus 11 and the opening and closing of valves. The drive mechanism 14 includes, for example, a linear motion device using a combination of a motor and a ball screw. The load applying mechanism 15 includes, for example, a weight.
 チャンバ12の底部には、チャンバ12の内部空間10の気体を導出するための排気ダクト17が設けられている。図2では、排気ダクト17がチャンバ12の底部に設けられた構成を示すが、チャンバ12において底部以外の位置に設けられたものであってもよい。
 図2では、駆動機構14や荷重付与機構15を設けるとして説明したが、摺動部材2と被摺動部材3との間で荷重が付与されている状態で、摺動部材2と被摺動部材3とが摺動するように構成されていれば、駆動機構14や荷重付与機構15を設ける必要はない。
At the bottom of the chamber 12, an exhaust duct 17 for leading the gas in the internal space 10 of the chamber 12 is provided. Although FIG. 2 shows a configuration in which the exhaust duct 17 is provided at the bottom of the chamber 12, it may be provided at a position other than the bottom in the chamber 12.
In FIG. 2, the drive mechanism 14 and the load applying mechanism 15 are described as being provided. However, the load is applied between the sliding member 2 and the sliding member 3 and the sliding member 2 and the sliding target are provided. As long as the member 3 is configured to slide, the drive mechanism 14 and the load applying mechanism 15 do not need to be provided.
 また、チャンバ12の壁(たとえば側壁18)を貫通して、処理ガス導入配管19が設けられている。処理ガス導入配管19には、水素ガス供給源から水素ガス(H2)が供給される水素ガス配管20と、アルコール容器37から、炭化水素系物質の一例としてのアルコール(alcohol)が供給されるアルコール配管22と、水容器38から水が供給される水配管23と、窒素ガス供給源から窒素ガス(N2)が供給される窒素ガス配管33とが接続されている。水素ガス配管20には、水素ガス配管20を開閉するための水素ガスバルブ24と、水素ガス配管20の開度を変更するための水素ガス流量調整バルブ25とが介装されている。アルコール配管22には、アルコール配管22を開閉するためのアルコールバルブ28と、アルコール配管22の開度を変更するためのアルコール流量調整バルブ29とが介装されている。水配管23には、水配管23を開閉するための水バルブ30と、水配管23の開度を変更するための水流量調整バルブ31とが介装されている。窒素ガス配管33には、窒素ガス配管33を開閉するための窒素ガスバルブ34と、窒素ガス配管33の開度を変更するための窒素ガス流量調整バルブ35とが介装されている。アルコール容器37において、アルコールは液体のアルコールと液体のアルコールから気化した気体のアルコールとキャリアガスとが存在する。アルコール容器37の温度は20℃±5℃に設定されている。アルコール配管22には、アルコール容器37から供給される気体のアルコールと外部から供給されるキャリアガスとが流れる。水容器38において、水は液体の水と液体の水から気化した気体の水蒸気とが存在する。水容器38の温度は20℃±5℃に設定されている。水配管23には、水容器38から供給される気体の水蒸気と外部から供給されるキャリアガスとが流れる。 Further, a processing gas introduction pipe 19 is provided through the wall (for example, the side wall 18) of the chamber 12. The processing gas introduction pipe 19 is supplied with hydrogen gas pipe 20 to which hydrogen gas (H 2 ) is supplied from a hydrogen gas supply source and alcohol as an example of a hydrocarbon-based substance from an alcohol container 37. The alcohol pipe 22, a water pipe 23 to which water is supplied from a water container 38, and a nitrogen gas pipe 33 to which nitrogen gas (N 2 ) is supplied from a nitrogen gas supply source are connected. A hydrogen gas valve 24 for opening and closing the hydrogen gas pipe 20 and a hydrogen gas flow rate adjusting valve 25 for changing the opening degree of the hydrogen gas pipe 20 are interposed in the hydrogen gas pipe 20. The alcohol pipe 22 is provided with an alcohol valve 28 for opening and closing the alcohol pipe 22 and an alcohol flow rate adjusting valve 29 for changing the opening degree of the alcohol pipe 22. The water pipe 23 is provided with a water valve 30 for opening and closing the water pipe 23 and a water flow rate adjusting valve 31 for changing the opening degree of the water pipe 23. A nitrogen gas valve 34 for opening and closing the nitrogen gas pipe 33 and a nitrogen gas flow rate adjusting valve 35 for changing the opening degree of the nitrogen gas pipe 33 are interposed in the nitrogen gas pipe 33. In the alcohol container 37, the alcohol includes liquid alcohol, gaseous alcohol vaporized from the liquid alcohol, and carrier gas. The temperature of the alcohol container 37 is set to 20 ° C. ± 5 ° C. A gas alcohol supplied from the alcohol container 37 and a carrier gas supplied from the outside flow through the alcohol pipe 22. In the water container 38, the water includes liquid water and gaseous water vapor evaporated from the liquid water. The temperature of the water container 38 is set to 20 ° C. ± 5 ° C. In the water pipe 23, gaseous water vapor supplied from the water container 38 and carrier gas supplied from the outside flow.
 処理ガス導入配管19に供給されるアルコールは、メタノール(methanol。CH3OH)、エタノール(ethanol。C25OH)、1-プロパノール(propan-1-ol。CH3CH2CH2OH)および2-プロパノール(propan-2-ol。CH3CH(OH)CH3)の少なくとも一つを含む。
 水素ガス配管20の開度が大きく設定された状態で水素ガスバルブ24が開かれると、水素ガス配管20からの大流量の水素が処理ガス導入配管19に供給される。このとき、アルコールバルブ28および/または水バルブ30が開かれることにより、小流量のアルコールガスと外部から供給されるキャリアガスである水素ガス(H2)および/または小流量の水蒸気と外部から供給されるキャリアガスである水素ガス(H2)が、処理ガス導入配管19内へと供給され、処理ガス導入配管19を流れる過程で大流量の水素ガス(H2)と十分に混合(攪拌)される。この混合によって、特殊水素ガス(水素ならびにアルコール(水酸基含有化合物)および/または水(水酸基含有化合物)を含むガス)が生成される。生成された特殊水素ガス中でアルコールおよび/または水は気化されている。生成された特殊水素ガスは、処理ガス導入配管19の先端に形成された導入口32からチャンバ12の内部空間10に導入される。これにより、内部空間10の雰囲気が特殊水素ガス雰囲気となる。なお、特殊水素ガス雰囲気は酸素を含んでいない。
The alcohol supplied to the processing gas introduction pipe 19 is methanol (methanol. CH 3 OH), ethanol (ethanol. C 2 H 5 OH), 1-propanol (propan-1-ol. CH 3 CH 2 CH 2 OH). And at least one of 2-propanol (propan-2-ol. CH 3 CH (OH) CH 3 ).
When the hydrogen gas valve 24 is opened in a state where the opening degree of the hydrogen gas pipe 20 is set to be large, a large flow rate of hydrogen from the hydrogen gas pipe 20 is supplied to the processing gas introduction pipe 19. At this time, when the alcohol valve 28 and / or the water valve 30 are opened, a small amount of alcohol gas and hydrogen gas (H 2 ), which is a carrier gas supplied from the outside, and / or a small amount of water vapor and the outside are supplied from the outside. Hydrogen gas (H 2 ), which is a carrier gas, is supplied into the processing gas introduction pipe 19 and sufficiently mixed (stirred) with a large flow of hydrogen gas (H 2 ) in the process of flowing through the processing gas introduction pipe 19. Is done. By this mixing, special hydrogen gas (a gas containing hydrogen and alcohol (hydroxyl group-containing compound) and / or water (hydroxyl group-containing compound)) is generated. Alcohol and / or water are vaporized in the produced special hydrogen gas. The generated special hydrogen gas is introduced into the internal space 10 of the chamber 12 from the introduction port 32 formed at the tip of the processing gas introduction pipe 19. Thereby, the atmosphere of the internal space 10 becomes a special hydrogen gas atmosphere. The special hydrogen gas atmosphere does not contain oxygen.
 また、窒素ガス配管33の開度が大きく設定された状態で窒素ガスバルブ34が開かれると、窒素ガス配管33からの大流量の窒素が処理ガス導入配管19に供給される。このとき、アルコールバルブ28および/または水バルブ30が開かれることにより、小流量のアルコールガスと外部から供給されるキャリアガスである窒素ガス(N2)および/または小流量の水蒸気と外部から供給されるキャリアガスである窒素ガス(N2)が、処理ガス導入配管19内へと供給され、処理ガス導入配管19を流れる過程で大流量の窒素ガス(N2)と十分に混合(攪拌)される。この混合によって、特殊窒素ガス(窒素ならびにアルコール(水酸基含有化合物)および/または水(水酸基含有化合物)を含むガス)が生成される。生成された特殊窒素ガス中でアルコールおよび/または水は気化されている。生成された特殊窒素ガスは、チャンバ12の内部空間10に導入される。これにより、内部空間10の雰囲気が特殊窒素ガス雰囲気となる。なお、特殊窒素ガス雰囲気は酸素を含んでいない。 Further, when the nitrogen gas valve 34 is opened in a state where the opening degree of the nitrogen gas pipe 33 is set to be large, a large flow of nitrogen from the nitrogen gas pipe 33 is supplied to the processing gas introduction pipe 19. At this time, when the alcohol valve 28 and / or the water valve 30 are opened, a small amount of alcohol gas and nitrogen gas (N 2 ) which is a carrier gas supplied from the outside and / or a small amount of water vapor and the outside are supplied from the outside. Nitrogen gas (N 2 ), which is a carrier gas, is supplied into the processing gas introduction pipe 19 and sufficiently mixed (stirred) with a large flow of nitrogen gas (N 2 ) in the process of flowing through the processing gas introduction pipe 19 Is done. By this mixing, special nitrogen gas (gas containing nitrogen and alcohol (hydroxyl group-containing compound) and / or water (hydroxyl group-containing compound)) is generated. Alcohol and / or water is vaporized in the generated special nitrogen gas. The generated special nitrogen gas is introduced into the internal space 10 of the chamber 12. Thereby, the atmosphere of the internal space 10 becomes a special nitrogen gas atmosphere. The special nitrogen gas atmosphere does not contain oxygen.
 また、水素ガスバルブ24および窒素ガスバルブ34が開かれた状態で、アルコールバルブ28および/または水バルブ30が開かれることにより、特殊窒素・水素ガス(窒素および水素、ならびにアルコール(水酸基含有化合物)および/または水(水酸基含有化合物)を含むガス)が生成される。生成された特殊窒素・水素ガスは、チャンバ12の内部空間10に導入される。これにより、内部空間10の雰囲気が特殊窒素・水素ガス雰囲気となる。なお、特殊窒素・水素ガス雰囲気は酸素を含んでいない。 Further, by opening the alcohol valve 28 and / or the water valve 30 in a state where the hydrogen gas valve 24 and the nitrogen gas valve 34 are opened, special nitrogen / hydrogen gas (nitrogen and hydrogen, alcohol (hydroxyl-containing compound) and / or Alternatively, water (a gas containing a hydroxyl group-containing compound) is generated. The generated special nitrogen / hydrogen gas is introduced into the internal space 10 of the chamber 12. Thereby, the atmosphere of the internal space 10 becomes a special nitrogen / hydrogen gas atmosphere. The special nitrogen / hydrogen gas atmosphere does not contain oxygen.
 図3Aおよび図3Bは、摺動部材2と被摺動部材3との摺動動作を示す断面図である。以下、膜製造装置11を用いて摺動部材2の摺動面6に低摩擦被膜5を形成する製造例について、図2を参照しつつ説明する。図3Aおよび図3Bについては適宜参照する。
 膜製造装置11を用いて低摩擦被膜5を製造(形成)するときには、チャンバ12の内部空間10に、摺動部材2および被摺動部材3が搬入される。搬入された被摺動部材3は、被摺動面7が上に向けられた状態で保持台13上に載置され、保持台13に保持される。また、搬入された摺動部材2は、摺動面6が下に向けられた状態で、被摺動部材3上に載置される。なお、搬入された時点で、摺動部材2の摺動面6に低摩擦被膜5は形成されていない。すなわち、摺動面6は、酸化物セラミックスまたは金属によって形成されている。
3A and 3B are cross-sectional views showing the sliding operation between the sliding member 2 and the sliding member 3. Hereinafter, a manufacturing example in which the low friction coating 5 is formed on the sliding surface 6 of the sliding member 2 using the film manufacturing apparatus 11 will be described with reference to FIG. 3A and 3B will be referred to as appropriate.
When the low friction coating 5 is manufactured (formed) using the film manufacturing apparatus 11, the sliding member 2 and the sliding member 3 are carried into the internal space 10 of the chamber 12. The loaded sliding member 3 is placed on the holding table 13 with the sliding surface 7 facing upward, and is held by the holding table 13. The loaded sliding member 2 is placed on the sliding member 3 with the sliding surface 6 facing downward. Note that the low friction coating 5 is not formed on the sliding surface 6 of the sliding member 2 at the time of loading. That is, the sliding surface 6 is made of oxide ceramics or metal.
 摺動部材2および被摺動部材3がチャンバ12の内部空間10に搬入された後、制御装置16は、水素ガスバルブ24および/または窒素ガスバルブ34、ならびにアルコールバルブ28および/または水バルブ30を開いて、処理ガス導入配管19の導入口32からチャンバ12の内部空間10に、処理ガスを供給する(供給工程)。たとえば処理ガスは特殊水素ガスを含み、この特殊水素ガスでは、水素ガスに、微量の気体のアルコールおよび微量の気体の水蒸気がそれぞれ添加されているとする。この特殊水素ガスは、水素ガスに加えて、アルコール容器37で気体のアルコールを含んだキャリアガスの流量と、水容器38で気体の水を含んだキャリアガスの流量とを合計した値に対する液体のアルコール容器37で気体のアルコールを含んだキャリアガスの流量の体積比[アルコール/(アルコール+水)]でたとえば4~44%である気体のアルコールと気体の水蒸気とを含む。 After the sliding member 2 and the sliding member 3 are carried into the internal space 10 of the chamber 12, the control device 16 opens the hydrogen gas valve 24 and / or the nitrogen gas valve 34, and the alcohol valve 28 and / or the water valve 30. Then, the processing gas is supplied from the inlet 32 of the processing gas introduction pipe 19 to the internal space 10 of the chamber 12 (supply process). For example, it is assumed that the processing gas contains special hydrogen gas, and in this special hydrogen gas, a trace amount of gaseous alcohol and a trace amount of water vapor are respectively added to the hydrogen gas. This special hydrogen gas, in addition to hydrogen gas, is a liquid with respect to the sum of the flow rate of the carrier gas containing gaseous alcohol in the alcohol vessel 37 and the flow rate of the carrier gas containing gaseous water in the water vessel 38. The alcohol container 37 contains gaseous alcohol and gaseous water vapor in a volume ratio [alcohol / (alcohol + water)] of the flow rate of the carrier gas containing gaseous alcohol, for example, 4 to 44%.
 チャンバ12内に供給された処理ガスは、チャンバ12の内部空間10の全域に行き渡る。これにより、チャンバ12の内部空間10の雰囲気(Air)が、処理ガスを含む雰囲気に置換される。なお、処理ガスには、酸素は含まれていない。
 チャンバ12の内部空間10が処理ガスの雰囲気によって満たされた後(内部空間10が処理ガスの雰囲気とされている状態で)、当該処理ガスの供給を継続しながら、制御装置16は、駆動機構14を制御して、図3Aに示すように、被摺動面7(被摺動部材3)に対し摺動面6(摺動部材2)からの押付け荷重を付与しながら、被摺動面7に対する摺動面6の摺動(摺動工程)を開始する。押付け荷重の付与に伴い、摺動時において摺動面6と被摺動面7との間に生じるヘルツ接触応力は、1.0GPa以上である。より好ましくは、当該ヘルツ接触応力は、1.3GPa~2.4GPaである。
The processing gas supplied into the chamber 12 spreads over the entire interior space 10 of the chamber 12. Thereby, the atmosphere (Air) in the internal space 10 of the chamber 12 is replaced with an atmosphere containing the processing gas. Note that the processing gas does not contain oxygen.
After the inner space 10 of the chamber 12 is filled with the atmosphere of the processing gas (in a state where the inner space 10 is the atmosphere of the processing gas), the control device 16 continues to supply the processing gas while the drive device 16 14, while applying a pressing load from the sliding surface 6 (sliding member 2) to the sliding surface 7 (sliding member 3), as shown in FIG. 7 starts sliding (sliding process) of the sliding surface 6 with respect to 7. With the application of the pressing load, the Hertz contact stress generated between the sliding surface 6 and the sliding surface 7 during sliding is 1.0 GPa or more. More preferably, the Hertz contact stress is 1.3 GPa to 2.4 GPa.
 摺動面6の摺動の開始から、予め定める期間(たとえば30分)が経過すると、アルコールバルブ28および水バルブ30を閉じて、内部空間10に対するアルコールおよび水の供給を停止する。
 被摺動面7に対する摺動面6の摺動に伴い、摺動面6(ZrO2等)の触媒作用によって、被摺動面7に対する摺動面6の摺動の結果、摺動面6に低摩擦被膜5が形成される。低摩擦被膜5は、10-4オーダ(0.001未満)の著しく低い摩擦係数を示す。摺動部材2の摺動面6に低摩擦被膜5を設けることにより、摩擦係数が10-4オーダを示すFriction-Fade-Out状態(以下、「FFO」という。)を発現させることができる。換言すると、被摺動面7に対する摺動面6の摺動の結果、摩擦係数が摩擦とともに漸減し、FFOを発現させることができる。
When a predetermined period (for example, 30 minutes) elapses from the start of sliding of the sliding surface 6, the alcohol valve 28 and the water valve 30 are closed, and the supply of alcohol and water to the internal space 10 is stopped.
As the sliding surface 6 slides with respect to the sliding surface 7, the sliding surface 6 slides with respect to the sliding surface 7 as a result of the catalytic action of the sliding surface 6 (ZrO 2 or the like). Thus, the low friction coating 5 is formed. The low friction coating 5 exhibits a significantly low coefficient of friction of the order of 10 −4 (less than 0.001). By providing the low friction coating 5 on the sliding surface 6 of the sliding member 2, a Friction-Fade-Out state (hereinafter referred to as “FFO”) having a friction coefficient of the order of 10 −4 can be realized. In other words, as a result of the sliding of the sliding surface 6 with respect to the sliding surface 7, the friction coefficient gradually decreases with friction, and FFO can be expressed.
 低摩擦被膜5は、PLC膜9と同等の硬さを有し、干渉縞を示す透明膜である。低摩擦被膜5の表面および内部には、ブリスタ(気泡)が発生している。
 このような低摩擦被膜5の形成(FFOの発現)のメカニズムについて、本願発明者らは次のように考えている。
 すなわち、摺動面6の摺動(摩擦)に伴い、PLC膜9の最表面が摩擦により摩耗粉となって、摺動面6に移着する。すなわち、PLC膜9から移着した移着膜が摺動面6に形成される。摺動の進行に伴って、PLC膜9と移着膜とが摩擦するようになる。
The low friction coating 5 is a transparent film having the same hardness as the PLC film 9 and showing interference fringes. Blisters (bubbles) are generated on the surface and inside of the low friction coating 5.
The inventors of the present application consider the following mechanism regarding the formation of such a low friction coating 5 (expression of FFO).
That is, as the sliding surface 6 slides (friction), the outermost surface of the PLC film 9 becomes wear powder due to friction and is transferred to the sliding surface 6. That is, a transfer film transferred from the PLC film 9 is formed on the sliding surface 6. As the sliding progresses, the PLC film 9 and the transfer film come to rub.
 摺動面6を構成する金属(SUJ2、パラジウム等)または酸化物セラミックス(ZrO2)は、水素分子を解離吸着して活性水素を発生できる触媒性を有している。そのため、摺動面6でPLC膜9を摺動する結果、摺動面6の触媒作用により、摺動界面に活性水素が存在するようになる。
 内部空間10の雰囲気に含まれるアルコールが、摺動面6の活性水素の酸触媒作用により水素化分解され、前記の移着膜に揮発性ガスが形成される。そして、移着膜の摩擦面(摺動界面)に揮発性ガスのガス分子層が形成されると考えられる。このガス分子層厚さは数分子レベルであり、この揮発性ガス層の単分子レベルのガス潤滑により、FFOが発現するものと考えられる。すなわち、揮発性ガス層を含む移着膜を基に、低摩擦被膜5が形成される。
The metal (SUJ2, palladium, etc.) or oxide ceramics (ZrO 2 ) constituting the sliding surface 6 has a catalytic property capable of generating active hydrogen by dissociating and adsorbing hydrogen molecules. Therefore, as a result of sliding the PLC film 9 on the sliding surface 6, active hydrogen comes to exist at the sliding interface due to the catalytic action of the sliding surface 6.
Alcohol contained in the atmosphere of the internal space 10 is hydrocracked by the acid catalyst action of active hydrogen on the sliding surface 6, and volatile gas is formed in the transfer film. And it is thought that the gas molecule layer of volatile gas is formed in the friction surface (sliding interface) of a transfer film. The thickness of this gas molecule layer is on the order of several molecules, and it is considered that FFO is expressed by gas lubrication at the monomolecular level of this volatile gas layer. That is, the low friction film 5 is formed based on the transfer film including the volatile gas layer.
 また、この実施形態では、摺動面6の摺動開始から所定時間経過すると、アルコールおよび水の供給が停止される。これにより、内部空間10の雰囲気から、水分(水)を除くことができる。酸化物セラミックス(ZrO2)または金属(SUJ、パラジウム)の触媒作用を弱める触媒毒となり得る水分(水)を除くことにより、これらの触媒作用の安定化を達成できる。 In this embodiment, the supply of alcohol and water is stopped when a predetermined time has elapsed from the start of sliding of the sliding surface 6. Thereby, moisture (water) can be removed from the atmosphere of the internal space 10. By removing moisture (water) that can be a catalyst poison that weakens the catalytic action of oxide ceramics (ZrO 2 ) or metal (SUJ, palladium), stabilization of these catalytic actions can be achieved.
 摺動面6の摺動開始から予め定める期間が経過すると、制御装置16は、開いているバルブ(水素ガスバルブ24、アルコールバルブ28、水バルブ30、窒素ガスバルブ34等)を閉じて、処理ガス導入配管19からの処理ガスの導入を停止させる。その後、制御装置16は、摺動部材2および被摺動部材3を、チャンバ12の内部空間10から搬出させる。 When a predetermined period has elapsed from the start of sliding of the sliding surface 6, the control device 16 closes the opened valves (hydrogen gas valve 24, alcohol valve 28, water valve 30, nitrogen gas valve 34, etc.) and introduces processing gas. The introduction of the processing gas from the pipe 19 is stopped. Thereafter, the control device 16 carries out the sliding member 2 and the sliding member 3 from the internal space 10 of the chamber 12.
 アルコールとしてメタノールを採用する場合、処理ガスに含まれる気体のメタノールおよび気体の水に関し、アルコール容器37で気体のメタノールを含んだキャリアガスの流量と、水容器38で気体の水蒸気を含んだキャリアガスの流量と、の合計に対するアルコール容器37で気体のメタノールを含んだキャリアガスの流量の比が、6%~15%であることが好ましい。また、アルコール容器37で気体のメタノールを含んだキャリアガスの流量と、水容器38で気体の水蒸気を含んだキャリアガスの流量と、の合計に対するアルコール容器37で気体のメタノールを含んだキャリアガスの流量の比がそれ以外の値(この値は100%を含む場合もある)であっても、FFOは発現可能である。 When methanol is employed as the alcohol, the flow rate of the carrier gas containing gaseous methanol in the alcohol container 37 and the carrier gas containing gaseous water vapor in the water container 38 with respect to gaseous methanol and gaseous water contained in the processing gas. The ratio of the flow rate of the carrier gas containing gaseous methanol in the alcohol container 37 is preferably 6% to 15%. Also, the carrier gas containing gaseous methanol in the alcohol container 37 with respect to the sum of the flow rate of the carrier gas containing gaseous methanol in the alcohol container 37 and the flow rate of the carrier gas containing gaseous water vapor in the water container 38. Even if the ratio of flow rates is other values (this value may include 100%), FFO can be expressed.
 アルコールとしてエタノールを採用する場合、処理ガスに含まれる気体のエタノールおよび気体の水に関し、アルコール容器37で気体のエタノールを含んだキャリアガスの流量と、水容器38で気体の水蒸気を含んだキャリアガスの流量と、の合計に対するアルコール容器37で気体のエタノールを含んだキャリアガスの流量の比が、6%~30%であることが好ましい。また、アルコール容器37で気体のエタノールを含んだキャリアガスの流量と、水容器38で気体の水蒸気を含んだキャリアガスの流量と、の合計に対するアルコール容器37で気体のエタノールを含んだキャリアガスの流量の比がそれ以外の値(この値は100%を含む場合もある)であっても、FFOは発現可能である。しかしながら、とくに、アルコール容器37で気体のエタノールを含んだキャリアガスの流量と、水容器38で気体の水蒸気を含んだキャリアガスの流量と、の合計に対するアルコール容器37で気体のエタノールを含んだキャリアガスの流量の比が15%~25%である場合、FFOを、安定した状態で長期間に亘って発現させることができる。 When ethanol is used as the alcohol, the flow rate of the carrier gas containing gaseous ethanol in the alcohol container 37 and the carrier gas containing gaseous water vapor in the water container 38 with respect to gaseous ethanol and gaseous water contained in the processing gas. The ratio of the flow rate of the carrier gas containing gaseous ethanol in the alcohol container 37 to the total of the flow rate of 6% to 30% is preferable. Also, the carrier gas containing gaseous ethanol in the alcohol container 37 with respect to the sum of the flow rate of the carrier gas containing gaseous ethanol in the alcohol container 37 and the flow rate of the carrier gas containing gaseous water vapor in the water container 38. Even if the ratio of flow rates is other values (this value may include 100%), FFO can be expressed. However, in particular, the carrier containing gaseous ethanol in the alcohol container 37 with respect to the sum of the flow rate of the carrier gas containing gaseous ethanol in the alcohol container 37 and the flow rate of the carrier gas containing gaseous water vapor in the water container 38. When the ratio of the gas flow rates is 15% to 25%, FFO can be expressed over a long period in a stable state.
 次に、第1~第4の摩擦試験について説明する。
 図4は、第1の摩擦試験機41の構成を示す模式的な断面図である。図5Aは、第1および第2の摩擦試験の計測対象のプレート試験片42の表面を拡大して示す断面図である。図5Bは、第1および第2の摩擦試験に用いられる、プレート試験片42の表面に形成された二層膜43の物性および膜作製手法を示す図である。
Next, the first to fourth friction tests will be described.
FIG. 4 is a schematic cross-sectional view showing the configuration of the first friction tester 41. FIG. 5A is an enlarged cross-sectional view showing the surface of the plate test piece 42 to be measured in the first and second friction tests. FIG. 5B is a diagram showing the physical properties of the two-layer film 43 formed on the surface of the plate test piece 42 and the film production technique used in the first and second friction tests.
 第1の摩擦試験機41として、図4に示すピンオンプレート(Pin-On-Plate)型往復すべり摩擦試験機を用いた。試験対象のピン試験片44には、200℃24時間、大気中加熱処理した、もしくは水素還元雰囲気で400℃3時間処理した、直径4.8mmのZrO2(YSZ)球が用いられている。試験対象のピン試験片44の上方に錘71を載せ、かつ当該錘71の重さを変えることにより、ピン試験片44に付与される荷重を変えることができるようになっている。 As the first friction tester 41, a pin-on-plate type reciprocating sliding friction tester shown in FIG. 4 was used. For the pin test piece 44 to be tested, a ZrO 2 (YSZ) sphere having a diameter of 4.8 mm, which has been heat-treated in the atmosphere at 200 ° C. for 24 hours or treated in a hydrogen reducing atmosphere at 400 ° C. for 3 hours, is used. The load applied to the pin test piece 44 can be changed by placing the weight 71 above the pin test piece 44 to be tested and changing the weight of the weight 71.
 第1の摩擦試験機41はたとえば円筒状のチャンバ45を備えており、チャンバ45内にピン試験片44が収容されている。チャンバ45は、有底円筒状のアクリル製のチャンバ本体46と、チャンバ本体46の上面を閉じるアクリル製の蓋47とを含む。蓋47には、ピン試験片44のスライド方向に長い長尺の開口48が形成されており、開口48にピン試験片44が配置されている。チャンバ45の底部には、プレート試験片42を保持するための保持台49が配置されている。チャンバ本体46の周壁50を貫通して、ガス導入配管51が設けられている。ガス導入配管51には、水素ガスが供給される第1のライン52と、気体のアルコールおよび気体の水蒸気を含有する水素ガスが供給される第2のライン53とが接続されている。第1のライン52には、第1のライン52を開閉するための第1のバルブ54と、第1のライン52における水素ガスの流量を調整するための第1の流量調整バルブ55と、第1のライン52における水素ガスの流量を検出するための第1の流量計56とが介装されている。第2のライン53には、第2のライン53を開閉するための第2のバルブ57と、第2のライン53における水素ガスの流量を調整するための第2の流量調整バルブ58と、第2のライン53における水素ガスの流量を検出するための第2の流量計59と、アルコールおよび水が溜められたアルコール/水容器60とが介装されている。アルコール/水容器60の温度は20℃±5℃に設定されている。アルコール/水容器60において、アルコールと水とは液体のアルコールと液体の水の溶液とこの溶液から気化した気体のアルコールと気体の水蒸気とが存在する。第2のバルブ57を開くことにより、第2のライン53を水素ガスが流れ、アルコール/水容器60に水素ガスが供給される。アルコールおよび水が溜められたアルコール/水容器60内を、水素ガスが流通することにより、気体のアルコールおよび気体の水蒸気が水素ガスに運ばれてガス導入配管51に至る。そして、第2のバルブ57の開成と共に第1のバルブ54を開くことにより、気体のアルコールおよび気体の水蒸気を含む水素ガスが、ガス導入配管51を通して、チャンバ45内に供給される。チャンバ45では、チャンバ45内の雰囲気が制御可能に設けられている。 The first friction tester 41 includes, for example, a cylindrical chamber 45, and a pin test piece 44 is accommodated in the chamber 45. The chamber 45 includes a bottomed cylindrical acrylic chamber body 46 and an acrylic lid 47 that closes the upper surface of the chamber body 46. The lid 47 is formed with an elongated opening 48 that is long in the sliding direction of the pin test piece 44, and the pin test piece 44 is disposed in the opening 48. A holding table 49 for holding the plate test piece 42 is disposed at the bottom of the chamber 45. A gas introduction pipe 51 is provided through the peripheral wall 50 of the chamber body 46. A first line 52 to which hydrogen gas is supplied and a second line 53 to which hydrogen gas containing gaseous alcohol and gaseous water vapor is supplied are connected to the gas introduction pipe 51. The first line 52 includes a first valve 54 for opening and closing the first line 52, a first flow rate adjusting valve 55 for adjusting the flow rate of hydrogen gas in the first line 52, A first flow meter 56 for detecting the flow rate of hydrogen gas in one line 52 is interposed. The second line 53 includes a second valve 57 for opening and closing the second line 53, a second flow rate adjusting valve 58 for adjusting the flow rate of hydrogen gas in the second line 53, A second flow meter 59 for detecting the flow rate of hydrogen gas in the second line 53 and an alcohol / water container 60 in which alcohol and water are stored are interposed. The temperature of the alcohol / water container 60 is set to 20 ° C. ± 5 ° C. In the alcohol / water container 60, the alcohol and water include a liquid alcohol, a liquid water solution, a gaseous alcohol vaporized from the solution, and a gaseous water vapor. By opening the second valve 57, hydrogen gas flows through the second line 53 and hydrogen gas is supplied to the alcohol / water container 60. As hydrogen gas flows through the alcohol / water container 60 in which alcohol and water are stored, gaseous alcohol and gaseous water vapor are carried to the hydrogen gas and reach the gas introduction pipe 51. Then, by opening the first valve 54 together with the opening of the second valve 57, hydrogen gas containing gaseous alcohol and gaseous water vapor is supplied into the chamber 45 through the gas introduction pipe 51. In the chamber 45, the atmosphere in the chamber 45 is provided so as to be controllable.
 プレート試験片42には、図5Aに示すように、表面に二層膜43が形成されたシリコン基板61を用いた。二層膜43は、二層構造の硬質炭素系膜である。二層膜43の下層側はSi-DLC膜62である。二層膜43の上層側はPLC(Polymer-Like-Carbon)膜63である。Si-DLC膜62は、トルエンおよびトリメチルシラン(Si(CH34)をガス流量比2:3の割合で混合したものを原料ガスに用いながら、イオン化蒸着法(PVD法)を行うことにより形成されている。PLC膜63は、原料ガスとしてトルエンのみを用いながら、イオン化蒸着法を行うことにより形成されている。PLC成膜時におけるバイアス電圧を、-0.4kV(低バイアス電圧)とした。 As the plate test piece 42, as shown in FIG. 5A, a silicon substrate 61 having a double-layer film 43 formed on the surface thereof was used. The double layer film 43 is a hard carbon film having a double layer structure. The lower layer side of the bilayer film 43 is a Si-DLC film 62. An upper layer side of the two-layer film 43 is a PLC (Polymer-Like-Carbon) film 63. The Si-DLC film 62 is obtained by performing an ionization vapor deposition method (PVD method) using a mixture of toluene and trimethylsilane (Si (CH 3 ) 4 ) at a gas flow ratio of 2: 3 as a raw material gas. Is formed. The PLC film 63 is formed by performing ionized vapor deposition while using only toluene as a source gas. The bias voltage at the time of PLC film formation was −0.4 kV (low bias voltage).
 Si-DLC膜62およびPLC膜63の、成膜時の処理圧(Deposition pressure,Pa)、成膜時のバイアス電圧(Bias voltage,kV)、成膜時の処理温度(Heater temperature,K)、膜厚(Film thickness,nm)、微小押込み硬さ(Indentation hardness,GPa)、ヤング率(Young's modulus,GPa)、ラマンスペクトルのGバンドのピーク位置(G-peak position,cm-1)、ラマンスペクトルのGバンドのピーク半値幅(FWHM(G) ,cm-1)、ラマンスペクトルのDバンドとGバンドとのピーク強度比(I(D)/ I(G))、推定含有水素量(at.%)を、それぞれ図5Bに示す。 The processing pressure (deposition pressure, Pa) at the time of film formation of the Si-DLC film 62 and the PLC film 63, the bias voltage (Bias voltage, kV) at the time of film formation, the processing temperature (Heater temperature, K) at the time of film formation, Film thickness (nm), micro indentation hardness (GPa), Young's modulus (GPa), G-band peak position of Raman spectrum (G-peak position, cm -1 ), Raman spectrum Peak width at half maximum (FWHM (G), cm -1 ), peak intensity ratio of Raman spectrum D band to G band (I (D) / I (G)), estimated hydrogen content (at. %) Are shown in FIG. 5B, respectively.
 図6は、第2の摩擦試験機141の構成を示す模式的な断面図である。第2の摩擦試験機141が第1の摩擦試験機41と共通する部分には、図4の場合と同一の参照符号を付し説明を省略する。すなわち、第2の摩擦試験機141のチャンバ45の構成、およびピン試験片44等の構成は、特段説明がない限り第1の摩擦試験機41と同等である。第2の摩擦試験機141が第1の摩擦試験機41と相違する点は、主としてその給気系にある。 FIG. 6 is a schematic cross-sectional view showing the configuration of the second friction tester 141. Parts common to the first friction tester 41 in the second friction tester 141 are denoted by the same reference numerals as those in FIG. That is, the configuration of the chamber 45 of the second friction tester 141 and the configuration of the pin test piece 44 and the like are the same as those of the first friction tester 41 unless otherwise specified. The difference between the second friction tester 141 and the first friction tester 41 is mainly in its air supply system.
 給気系のガス導入配管51には、窒素ガスが供給される第3のライン101と、気体のアルコールおよび気体の水蒸気を含有するキャリアガスとしての水素ガスが供給される第4のライン102と、気体のアルコールを含有する気体の水蒸気を含有しないキャリアガスとしての水素ガスが供給される第5のライン103とを含む。
 第3のライン101には、第3のライン101を開閉するための第3のバルブ105と、第3のライン101における窒素ガスの流量を調整するための第3の流量調整バルブ106と、第3のライン101における窒素ガスの流量を検出するための第3の流量計107とが介装されている。
A third line 101 to which nitrogen gas is supplied, and a fourth line 102 to which hydrogen gas as a carrier gas containing gaseous alcohol and gaseous water vapor is supplied to the gas introduction pipe 51 of the supply system And a fifth line 103 supplied with hydrogen gas as a carrier gas that does not contain gaseous water vapor that contains gaseous alcohol.
The third line 101 includes a third valve 105 for opening and closing the third line 101, a third flow rate adjusting valve 106 for adjusting the flow rate of nitrogen gas in the third line 101, A third flow meter 107 for detecting the flow rate of nitrogen gas in the third line 101 is interposed.
 第4のライン102には、第4のライン102を開閉するための第4のバルブ108と、第4のライン102における水素ガスの流量を調整するための第4の流量調整バルブ109と、第4のライン102における水素ガスの流量を検出するための第4の流量計110と、液体のアルコール(エタノール)および液体の水(蒸留水)が溜められた、気体のアルコールと気体の水蒸気の存在するアルコール/水容器111とが介装されている。アルコール/水容器111の温度は20℃±5℃に設定されている。アルコール/水容器111において、アルコールと水とは液体のアルコールと液体の水の溶液とこの溶液から気化した気体のアルコールと気体の水蒸気とが存在する。アルコール/水容器111には、液体のエタノールと液体の水が3:10の体積比で混合されている。第4のライン102を流れる処理ガスに含まれる「エタノール+水」は混合する前の液体のエタノール単体の体積=3と、混合する前の液体の水単体の体積=10と、の体積比で混合されている溶液から気化した気体のエタノールと気体の水蒸気とを含む。このような処理ガスを、以降、「エタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)」と呼ぶ場合がある。また、アルコール/水容器111には、液体のエタノールと液体の水が1:4の体積比で混合されている場合もある。第4のライン102を流れる処理ガスに含まれる「エタノール+水」は混合する前の液体のエタノール単体の体積=1と、混合する前の液体の水単体の体積=4と、の体積比で混合されている溶液から気化した気体のエタノールと気体の水蒸気とを含む。このような処理ガスを、以降、「エタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)」と呼ぶ場合がある。 The fourth line 102 includes a fourth valve 108 for opening and closing the fourth line 102, a fourth flow rate adjusting valve 109 for adjusting the flow rate of hydrogen gas in the fourth line 102, The presence of gaseous alcohol and gaseous water vapor in which a fourth flow meter 110 for detecting the flow rate of hydrogen gas in line 4 and liquid alcohol (ethanol) and liquid water (distilled water) are stored An alcohol / water container 111 is interposed. The temperature of the alcohol / water container 111 is set to 20 ° C. ± 5 ° C. In the alcohol / water container 111, the alcohol and water include a liquid alcohol, a liquid water solution, a gaseous alcohol vaporized from the solution, and a gaseous water vapor. In the alcohol / water container 111, liquid ethanol and liquid water are mixed at a volume ratio of 3:10. “Ethanol + water” contained in the processing gas flowing through the fourth line 102 is a volume ratio of the volume of liquid ethanol alone before mixing = 3 and the volume of liquid water alone before mixing = 10. It contains gaseous ethanol vaporized from the solution being mixed and gaseous water vapor. Such a processing gas may hereinafter be referred to as “hydrogen gas containing ethanol generated from an ethanol volume concentration 23% aqueous solution (23% @)”. The alcohol / water container 111 may be mixed with liquid ethanol and liquid water in a volume ratio of 1: 4. “Ethanol + water” contained in the processing gas flowing through the fourth line 102 is a volume ratio of the volume of liquid ethanol alone before mixing = 1 to the volume of liquid water alone before mixing = 4. It contains gaseous ethanol vaporized from the solution being mixed and gaseous water vapor. Such a processing gas may be hereinafter referred to as “hydrogen gas containing ethanol generated from an ethanol volume 20% aqueous solution (20% @)”.
 第5のライン103には、第5のライン103を開閉するための第5のバルブ112と、第5のライン103における水素ガスの流量を調整するための第5の流量調整バルブ113と、第5のライン103における水素ガスの流量を検出するための第5の流量計114と、液体のアルコール(エタノール)のみが溜められた、気体のアルコールの存在するアルコール容器115とが介装されている。アルコール容器115には、エタノールから除去できない水分を除き、水が含まれないため、第5のライン103を流れる処理ガスには気体のエタノールが含まれる一方水はほぼ含まれない。このような処理ガスを、以降、「エタノール体積濃度100%液から発生するエタノールを含有する水素ガス(100%@)」と呼ぶ場合がある。 The fifth line 103 includes a fifth valve 112 for opening and closing the fifth line 103, a fifth flow rate adjusting valve 113 for adjusting the flow rate of hydrogen gas in the fifth line 103, 5, a fifth flow meter 114 for detecting the flow rate of hydrogen gas in the line 103, and an alcohol container 115 containing only liquid alcohol (ethanol) and containing gaseous alcohol are interposed. . Since the alcohol container 115 does not contain water except for water that cannot be removed from ethanol, the processing gas flowing through the fifth line 103 contains gaseous ethanol, but hardly contains water. Such a processing gas may be hereinafter referred to as “hydrogen gas containing ethanol generated from a 100% ethanol volume concentration liquid (100% @)”.
 第3のバルブ105の開閉を切り換えることにより、メインフローとしての窒素の供給と供給停止とを切り換えることができる。また、第4および第5のバルブ108,112のうち少なくとも一つのバルブを開くことにより、チャンバ45内の雰囲気に含まれるアルコールと水との成分比を制御できる。これらのバルブ108,112の開成に加え、流量調整バルブ109,113の開度を調整することにより、チャンバ45内の雰囲気に含まれるアルコールと水との成分比をさらに細かく制御できる。 By switching the opening and closing of the third valve 105, the supply and stoppage of nitrogen as the main flow can be switched. Further, by opening at least one of the fourth and fifth valves 108 and 112, the component ratio of alcohol and water contained in the atmosphere in the chamber 45 can be controlled. In addition to the opening of these valves 108 and 112, by adjusting the opening degree of the flow rate adjusting valves 109 and 113, the component ratio of alcohol and water contained in the atmosphere in the chamber 45 can be controlled more finely.
 第1および第2の摩擦試験について説明する。
 プレート試験片42を、二層膜43の形成面を試験面として第1の摩擦試験機41にセットした後、摩擦速度8.0 mm/s、摩擦ストローク4.0mm、チャンバ45への供給ガス流量約2.0~2.5(リットル/分)、無潤滑という試験条件の下、ピン試験片44を介してプレート試験片42の表面に与える荷重の大きさを19.6N ~58.8Nの範囲で、1.96N単位で段階的に上昇させながら、以下の第1の摩擦試験および第2の摩擦試験(最大28200回の高荷重試験)を行い、FFOの発現状況を調べた。
<第1の摩擦試験>
 第1の摩擦試験では、第2のライン53からの水素ガス(アルコールおよび水を含有する水素ガス)の供給は停止されている。すなわち、チャンバ45への供給ガスとして水素ガスのみを使用した。そして、チャンバ45内の温度を20℃±5℃に設定し、チャンバ45内の湿度を0.1~0.3%RHで制御した。図4に破線で示すように、ポリエチレンテレフタラート(PET)製の有底容器72がチャンバ45の底部に配置されており、その有底容器72に、水を含んだウエスが収容されている。有底容器72は、アクリル酸エステルが粘着剤として接着面に塗布されたテープ73(たとえば両面テープ)を介して、チャンバ45の底部に固定されている。そのため、チャンバ45内の雰囲気には、アクリル酸エステルの加水分解により得られるエタノールが含まれるようになる。
<第2の摩擦試験>
 チャンバ45内の温度を20℃±5℃に設定した。チャンバ45への供給ガスとして、アルコールおよび水を含む水素ガスを使用した。アルコールの混合割合は、混合する前の液体のアルコールの体積と、混合する前の液体の水の体積と、を合計した体積に対する混合する前の液体のアルコールの体積%濃度が、6.3~1.7%である。
The first and second friction tests will be described.
After the plate test piece 42 is set in the first friction tester 41 with the formation surface of the double-layer film 43 as a test surface, the friction speed is 8.0 mm / s, the friction stroke is 4.0 mm, and the supply gas to the chamber 45 Under the test conditions of a flow rate of about 2.0 to 2.5 (liters / minute) and no lubrication, the magnitude of the load applied to the surface of the plate test piece 42 through the pin test piece 44 is 19.6 N to 58.8 N. In the above range, the following first friction test and second friction test (maximum 28200 high load tests) were conducted while increasing stepwise in units of 1.96 N, and the occurrence of FFO was examined.
<First friction test>
In the first friction test, the supply of hydrogen gas (hydrogen gas containing alcohol and water) from the second line 53 is stopped. That is, only hydrogen gas was used as the supply gas to the chamber 45. The temperature in the chamber 45 was set to 20 ° C. ± 5 ° C., and the humidity in the chamber 45 was controlled at 0.1 to 0.3% RH. As shown by a broken line in FIG. 4, a bottomed container 72 made of polyethylene terephthalate (PET) is disposed at the bottom of the chamber 45, and a waste containing water is accommodated in the bottomed container 72. The bottomed container 72 is fixed to the bottom of the chamber 45 via a tape 73 (for example, a double-sided tape) in which an acrylic ester is applied as an adhesive to the adhesive surface. Therefore, the atmosphere in the chamber 45 contains ethanol obtained by hydrolysis of the acrylate ester.
<Second friction test>
The temperature in the chamber 45 was set to 20 ° C. ± 5 ° C. Hydrogen gas containing alcohol and water was used as a supply gas to the chamber 45. The mixing ratio of the alcohol is such that the volume% concentration of the liquid alcohol before mixing with respect to the total volume of the volume of liquid alcohol before mixing and the volume of liquid water before mixing is 6.3 to 1.7%.
 図7Aは、第1の摩擦試験における負荷荷重を示すグラフであり、図7Bは、第1の摩擦試験における摩擦係数の計測値を示すグラフである。
 第1の摩擦試験では、負荷荷重19.6N~25.5Nの条件において、摩擦係数の値は比較的高い(0.01~0.03)。負荷荷重27.4Nになると、摩擦係数が10-4オーダになるFFO(超低摩擦状態)が発現した。FFO発現時の摩擦係数は、3×10-4を下回る値を示した。しかしながら、その後、荷重を増加させてもFFOの発現状態は安定せず、摩擦係数の上昇と下降とが繰り返された。負荷荷重58.8Nの条件で、FFOが比較的安定的に発現した。
FIG. 7A is a graph showing the load applied in the first friction test, and FIG. 7B is a graph showing the measured value of the friction coefficient in the first friction test.
In the first friction test, the value of the friction coefficient is relatively high (0.01 to 0.03) under the condition of a load of 19.6N to 25.5N. When the load was 27.4N, FFO (ultra low friction state) with a friction coefficient on the order of 10 −4 was developed. The coefficient of friction at the time of FFO expression was less than 3 × 10 −4 . However, after that, even if the load was increased, the FFO expression state was not stabilized, and the friction coefficient was repeatedly increased and decreased. FFO was expressed relatively stably under a load of 58.8N.
 液体潤滑剤が存在しない状態で、このような10-4未満のFFOが発現するのは特異的な現象と考えられる。
 図8Aは、第2の摩擦試験における負荷荷重を示すグラフであり、図8Bは、第2の摩擦試験における摩擦係数の計測値を示すグラフである。
 第2の摩擦試験では、負荷荷重47.1N以上の条件においてFFOが発現した。このときの摩擦係数は、0.0002程度である。第2の摩擦試験では、第1の摩擦試験と比較して安定的にFFO現象が発現する傾向が見られた。また、第2の摩擦試験では、第1の摩擦試験の場合とは若干異なり、負荷荷重の増加に伴って摩擦係数が徐々に下降する傾向が見られた。
Such a FFO of less than 10 −4 is considered to be a specific phenomenon in the absence of a liquid lubricant.
FIG. 8A is a graph showing the load applied in the second friction test, and FIG. 8B is a graph showing the measured value of the friction coefficient in the second friction test.
In the second friction test, FFO was expressed under a load load of 47.1 N or more. The friction coefficient at this time is about 0.0002. In the second friction test, there was a tendency that the FFO phenomenon was stably developed as compared with the first friction test. Further, in the second friction test, the friction coefficient tended to gradually decrease as the load was increased, which was slightly different from that in the first friction test.
 次に、第3および第4の摩擦試験について説明する。図9は、第3および第4の摩擦試験の計測対象のプレート試験片42の上層について説明するための図である。図10は、第3および第4の摩擦試験の試験条件を説明するための図である。
 第3および第4の摩擦試験の計測対象のプレート試験片42は、二層構造の硬質炭素系膜(図5A参照)からなる二層膜43を表層側に含む。第3および第4の摩擦試験では、二層膜43のうち下層を構成するSi-DLC膜は、Si-DLC膜62(図5A参照)と同等の構成であるが、二層膜43のうち上層(Surface layer)を構成するPLC(Polymer-Like-Carbon)膜163は、その作製手法がPLC膜63(図5A参照)と一部異なっている。
Next, the third and fourth friction tests will be described. FIG. 9 is a view for explaining the upper layer of the plate test piece 42 to be measured in the third and fourth friction tests. FIG. 10 is a diagram for explaining the test conditions of the third and fourth friction tests.
The plate test piece 42 to be measured in the third and fourth friction tests includes a two-layer film 43 made of a hard carbon film having a two-layer structure (see FIG. 5A) on the surface layer side. In the third and fourth friction tests, the Si-DLC film constituting the lower layer of the two-layer film 43 has the same configuration as the Si-DLC film 62 (see FIG. 5A). A PLC (Polymer-Like-Carbon) film 163 constituting the upper layer (Surface layer) is partially different from the PLC film 63 (see FIG. 5A).
 PLC膜163の作成手法がPLC膜63の作成手法と主として相違する点は、イオン化蒸着法(PVD法)におけるバイアス電圧(Bias voltage)として、高バイアス電圧(-4.0kV)を採用した点にある。このような手法で設けられたPLC膜163は、PLC膜63と比較してグラファイト成分を比較的多量に含むPLC膜(高バイアス成膜PLC)である。この実施形態では、膜に水素も添加されている(水素添加高バイアス成膜PLC)。 The main difference between the method for forming the PLC film 163 and the method for forming the PLC film 63 is that a high bias voltage (−4.0 kV) is employed as the bias voltage (Bias voltage) in the ionization deposition method (PVD method). is there. The PLC film 163 provided by such a method is a PLC film (high bias film formation PLC) containing a relatively large amount of graphite component as compared with the PLC film 63. In this embodiment, hydrogen is also added to the film (hydrogen-added high bias film formation PLC).
 プレート試験片42を、二層膜43の形成面を試験面として第2の摩擦試験機141にセットした後、摩擦速度8.0 mm/s、摩擦ストローク4.0mm、無潤滑という試験条件の下、ピン試験片44を介してプレート試験片42の表面に与える荷重の大きさを19.6N~63.7Nまで、1.96N単位で段階的に上昇させながら、第3の摩擦試験および第4の摩擦試験(最大28200回の高荷重試験)を行い、FFOの発現状況を調べた。 After setting the plate test piece 42 to the second friction tester 141 with the formation surface of the double-layer film 43 as a test surface, the test conditions of a friction speed of 8.0 mm / s, a friction stroke of 4.0 mm, and no lubrication were obtained. The third friction test and the third friction test were performed while gradually increasing the load applied to the surface of the plate test piece 42 through the pin test piece 44 from 19.6 N to 63.7 N in increments of 1.96 N. 4 friction tests (up to 28200 high load tests) were conducted to examine the FFO expression.
 図10は、第3および第4の摩擦試験の試験条件を説明するための図である。
 第3および第4の摩擦試験において、試験開始からFFOが発現するまでのなじみ環境(Run-in environment)およびFFOの発現後のFFO環境(FFO environment)の別を問わず、チャンバ45内にメインフローとして窒素ガスを大流量(5.0slm)で供給した。チャンバ45内の温度を20℃±5℃に設定した。
FIG. 10 is a diagram for explaining the test conditions of the third and fourth friction tests.
In the third and fourth friction tests, regardless of whether the familiar environment (Run-in environment) from the start of the test until the FFO develops or the FFO environment (FFO environment) after the FFO is developed, Nitrogen gas was supplied at a large flow rate (5.0 slm) as a flow. The temperature in the chamber 45 was set to 20 ° C. ± 5 ° C.
 第3の摩擦試験のなじみ環境(Run-in environment)において、チャンバ45内にサブフローとして、エタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)を中流量(180sccm)で供給し、かつエタノール体積濃度100%液から発生するエタノールを含有する水素ガス(100%@)を微小流量(5sccm)で供給した。 In the familiar environment (Run-in environment) of the third friction test, hydrogen gas (23% @) containing ethanol generated from an aqueous solution having a volumetric ethanol concentration of 23% is used as a subflow in the chamber 45 at a medium flow rate (180 sccm). Hydrogen gas (100% @) containing ethanol generated from a 100% ethanol volume concentration liquid was supplied at a minute flow rate (5 sccm).
 また、第3の摩擦試験のFFOを発現するFFO環境(FFO environment)において、なじみ環境(Run-in environment)よりもチャンバ45内の雰囲気中のエタノール濃度と水分濃度が低い状態に制御する。FFOを発現させるには、エタノール濃度と水分濃度を低く制御する方法が効果的である。具体的には、チャンバ45内にサブフローとして、エタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)を小流量で供給し、かつエタノール体積濃度100%液から発生するエタノールを含有する水素ガス(100%@)を微小流量で供給した。具体的には、エタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)の供給流量は、供給開始時には40sccmとしその後20sccmまで低減させた。また、エタノール体積濃度100%液から発生するエタノールを含有する水素ガス(100%@)の供給流量は、供給開始時には5sccmとしその後1sccmまで低減させた。 Also, in the FFO environment (FFO environment) that expresses the FFO of the third friction test, the ethanol concentration and moisture concentration in the atmosphere in the chamber 45 are controlled to be lower than the familiar environment (Run-in environment). In order to express FFO, a method of controlling the ethanol concentration and the water concentration low is effective. Specifically, as a sub-flow in the chamber 45, hydrogen gas (23% @) containing ethanol generated from an aqueous solution with 23% ethanol volume concentration is supplied at a small flow rate, and ethanol generated from a 100% ethanol volume concentration liquid is supplied. Containing hydrogen gas (100% @) was supplied at a minute flow rate. Specifically, the supply flow rate of hydrogen gas (23% @) containing ethanol generated from an aqueous solution having a volumetric ethanol concentration of 23% was set to 40 sccm at the start of supply and then reduced to 20 sccm. In addition, the supply flow rate of hydrogen gas containing ethanol (100% @) generated from a 100% ethanol volume concentration liquid was set to 5 sccm at the start of supply and then reduced to 1 sccm.
 また、第4の摩擦試験のなじみ環境(Run-in environment)において、チャンバ45内にサブフローとして、エタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)を中流量(180sccm)で供給した。
 また、第4の摩擦試験のFFO環境(FFO environment)において、チャンバ45内にサブフローとして、エタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)を小流量で供給した。具体的には、エタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)の供給流量は、供給開始時には40sccmとしその後30sccmまで低減させた。
Further, in a familiar environment (Run-in environment) of the fourth friction test, hydrogen gas (20% @) containing ethanol generated from an aqueous ethanol solution having a volume concentration of 20% is flowed at a medium flow rate (180 sccm) as a subflow in the chamber 45. ).
Further, in the FFO environment (FFO environment) of the fourth friction test, hydrogen gas (20% @) containing ethanol generated from a 20% aqueous solution of ethanol volume concentration was supplied as a subflow into the chamber 45 at a small flow rate. Specifically, the supply flow rate of hydrogen gas (20% @) containing ethanol generated from an aqueous ethanol solution having a volumetric ethanol concentration of 20% was set to 40 sccm at the start of supply and then reduced to 30 sccm.
 図11は、第3の摩擦試験における、負荷荷重(Load)と、摩擦係数(Friction coefficient)の計測値との関係を示すグラフである。
 第3の摩擦試験では、図11に示すように、荷重を63.7Nまで段階的に上昇させ、荷重が63.7Nに達した後は、63.7Nのまま保った。エタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)の供給流量を60sccmから40sccmに低減した時点(摺動回数約4700回)以降において摩擦係数が急減しFFOが発現した。さらにエタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)の供給流量を30sccmに低減した時点(摺動回数約5300回)以降において摩擦係数が1×10-4以下の安定したFFOが発現した。1×10-4以下の摩擦係数の値は摩擦力測定系のノイズレベル(1mN)である。その後、FFOの発現は摺動回数約9600回の所定の時点まで維持され、FFOの発現時間は約49分間であった。なお、第3の摩擦試験では、エタノール体積濃度23%水溶液から発生するエタノールを含有する水素ガス(23%@)の供給流量を、摺動回数5300回の時点で30sccmに、摺動回数9300回の時点で20sccmにそれぞれ低減させた。
FIG. 11 is a graph showing the relationship between the load (Load) and the measured value of the friction coefficient (Friction coefficient) in the third friction test.
In the third friction test, as shown in FIG. 11, the load was increased stepwise to 63.7N, and after the load reached 63.7N, the load was kept at 63.7N. After the point of time when the supply flow rate of hydrogen gas containing ethanol (23% @) generated from an aqueous solution with 23% ethanol volume concentration was reduced from 60 sccm to 40 sccm (sliding frequency of about 4700 times), the friction coefficient suddenly decreased and FFO appeared. . Furthermore, after the time when the supply flow rate of hydrogen gas containing ethanol (23% @) generated from an aqueous solution with a 23% ethanol volume concentration is reduced to 30 sccm (sliding frequency of about 5300 times), the friction coefficient is 1 × 10 −4 or less. Stable FFO was expressed. The value of the friction coefficient of 1 × 10 −4 or less is the noise level (1 mN) of the friction force measurement system. Thereafter, the expression of FFO was maintained up to a predetermined time of about 9600 sliding times, and the expression time of FFO was about 49 minutes. In the third friction test, the supply flow rate of the hydrogen gas containing ethanol (23% @) generated from the 23% ethanol volume concentration aqueous solution is set to 30 sccm when the number of sliding times is 5300, and the number of sliding times is 9300 times. At each point of time, it was reduced to 20 sccm.
 図12は、第4の摩擦試験における、負荷荷重(Load)と、摩擦係数(Friction coefficient)の計測値との関係を示すグラフである。
 第4の摩擦試験では、図12に示すように、荷重を63.7Nまで段階的に上昇させ、荷重が63.7Nに達した後は、63.7Nのまま保った。エタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)の供給流量を60sccmから40sccmに低減した時点(摺動回数約5200回)以降において摩擦係数が急減しFFOが発現した。さらにエタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)の供給流量を30sccmに低下した時点(摺動回数約5700回)以降において摩擦係数が低下した。FFOの発現を約10分間継続した後、この摩擦試験を終了した。FFO発現中に摩擦係数の瞬間的な上昇は何回か見られたが、FFO発現中の摩擦係数は、エタノール体積濃度20%水溶液から発生するエタノールを含有する水素ガス(20%@)の供給流量を30sccmに低下した時点(摺動回数約5700回)以降において、概ね2×10-4で安定していた。
<表面状態の計測>
 第1~第4の摩擦試験の終了後のピン試験片44の外表面の表面状態を、それぞれ白色光干渉式形状測定機(zygo社、NewView5022)を用いて計測した。
FIG. 12 is a graph showing the relationship between the load (Load) and the measured value of the coefficient of friction (Friction coefficient) in the fourth friction test.
In the fourth friction test, as shown in FIG. 12, the load was increased stepwise to 63.7N, and after the load reached 63.7N, the load was kept at 63.7N. After the time when the supply flow rate of hydrogen gas containing ethanol (20% @) generated from an aqueous solution with 20% ethanol volume concentration was reduced from 60 sccm to 40 sccm (sliding frequency of about 5200 times), the friction coefficient suddenly decreased and FFO appeared. . Further, the friction coefficient decreased after the time when the supply flow rate of the hydrogen gas (20% @) containing ethanol generated from the 20% ethanol volume concentration aqueous solution was reduced to 30 sccm (sliding frequency: about 5700 times). After the FFO expression was continued for about 10 minutes, the friction test was terminated. There were several momentary increases in the coefficient of friction during FFO development. The coefficient of friction during FFO development was determined by the supply of ethanol-containing hydrogen gas (20% @) generated from an aqueous ethanol solution with a volume concentration of 20%. After the time when the flow rate was lowered to 30 sccm (sliding frequency: about 5700 times), the flow rate was stable at 2 × 10 −4 .
<Measurement of surface condition>
The surface condition of the outer surface of the pin test piece 44 after completion of the first to fourth friction tests was measured using a white light interference type shape measuring machine (zygo, New View 5022).
 図13は、第1の摩擦試験後におけるピン試験片44の外表面(の摺動領域)の表面状態を示す図である。図14は、第2の摩擦試験後におけるピン試験片44の外表面(の摺動領域)の表面状態を示す図である。図13Aおよび図14Aは、ピン試験片44の外表面の光学顕微鏡写真の画像図であり、図13Bは、図13AのXIIIB-XIIIB線で切断したときの、ピン試験片44の外表面の表面高さの分布を示し、図14Bは、図14Aの切断面線XIVB-XIVB線で切断したときの、ピン試験片44の外表面の表面高さの分布を示す。図15は、第3の摩擦試験後におけるピン試験片44の外表面(の摺動領域)を示す光学顕微鏡写真の画像図であり、図16は、第4の摩擦試験後におけるピン試験片の外表面(の摺動領域)を示す光学顕微鏡写真の画像図である。 FIG. 13 is a view showing the surface state of the outer surface (sliding region) of the pin test piece 44 after the first friction test. FIG. 14 is a diagram showing the surface state of the outer surface (the sliding region) of the pin test piece 44 after the second friction test. 13A and 14A are optical micrograph images of the outer surface of the pin test piece 44, and FIG. 13B shows the surface of the outer surface of the pin test piece 44 when cut along line XIIIB-XIIIB in FIG. 13A. FIG. 14B shows the distribution of the height, and FIG. 14B shows the distribution of the surface height of the outer surface of the pin specimen 44 when cut along the cutting plane line XIVB-XIVB in FIG. 14A. FIG. 15 is an image of an optical micrograph showing the outer surface (sliding region) of the pin test piece 44 after the third friction test, and FIG. 16 is an illustration of the pin test piece after the fourth friction test. It is an image figure of the optical micrograph which shows an outer surface (the sliding area | region).
 第1および第2の摩擦試験後において、ピン試験片44の外表面の円形の摺動領域(ヘルツ接触面に相当)には、透明の膜状の生成物が付着して(形成されて)いる。第1の摩擦試験後に形成される生成物の厚みは、数nm~約150nmであり、第2の摩擦試験後に形成される生成物の厚みは、約10nm~約500nmである。これらの生成物は、スパチュラ等によって表面から掻き落とすことが可能であり、すなわち、DLCのような硬質炭素系膜に比べて軟かいといえる。 After the first and second friction tests, a transparent film-like product is attached (formed) to the circular sliding area (corresponding to the Hertz contact surface) of the outer surface of the pin test piece 44. Yes. The thickness of the product formed after the first friction test is several nm to about 150 nm, and the thickness of the product formed after the second friction test is about 10 nm to about 500 nm. These products can be scraped off from the surface with a spatula or the like, that is, they can be said to be softer than a hard carbon film such as DLC.
 ピン試験片44とPLC膜63との摺動状態では、ピン試験片44の外表面にこのような膜状の生成物が形成されており、当該生成物がPLC膜63と摺動することによりFFOが発現したと考えられる。すなわち、この生成物の存在により、FFOの発現が可能になったと考えられる。
<第1~第4の摺動生成物の分析>
 第1の摩擦試験後におけるピン試験片44の外表面(の摺動領域)における生成物(以下、「第1の摺動生成物」という。)、第2の摩擦試験後におけるピン試験片44の外表面(の摺動領域)における生成物(以下、「第2の摺動生成物」という。)、および第3の摩擦試験後におけるピン試験片44の外表面(の摺動領域)における生成物(以下、「第3の摺動生成物」という。)に対し赤外分光分析を実施した。ピン試験片44の外表面(の摺動領域)から金属プローブでダイヤモンド基板上に採取した生成物を、顕微透過法を用いて、測定領域約20μm角で分析した。
In the sliding state between the pin test piece 44 and the PLC film 63, such a film-like product is formed on the outer surface of the pin test piece 44, and the product slides on the PLC film 63. It is thought that FFO was expressed. That is, it is considered that FFO can be expressed by the presence of this product.
<Analysis of the first to fourth sliding products>
A product (hereinafter referred to as “first sliding product”) on the outer surface (sliding region) of the pin test piece 44 after the first friction test, and a pin test piece 44 after the second friction test. On the outer surface (sliding region) of the pin (hereinafter referred to as “second sliding product”) and on the outer surface (sliding region) of the pin specimen 44 after the third friction test. Infrared spectroscopic analysis was performed on the product (hereinafter referred to as “third sliding product”). The product collected on the diamond substrate with a metal probe from the outer surface (sliding region) of the pin test piece 44 was analyzed in a measuring region of about 20 μm square using the microscopic transmission method.
 また、第1~第3の摺動生成物に対し、飛行時間型二次イオン質量(TOF-SIMS)分析も実施した。Ion-Tof社製TOF-SIMS 5にて、一次イオンにBi(30keV、1.4 pA)を用いて、300μm角ラスターを256×256pixelsで30回積算した。
 図17は、第1および第2の摺動生成物の、顕微透過法による赤外吸収スペクトルを示すグラフである。図17では、図の上部分に、第1の摺動生成物の赤外吸収スペクトルを示し、図の下段部分に、第2の摺動生成物の赤外吸収スペクトルを示す。また、第1の摺動生成物は、当該生成物の採取量が少なく、そのため、スペクトルが不明瞭な部分もある。
Time-of-flight secondary ion mass (TOF-SIMS) analysis was also performed on the first to third sliding products. Using TOF-SIMS 5 manufactured by Ion-Tof, 300 μm square rasters were accumulated 30 times at 256 × 256 pixels using Bi + (30 keV, 1.4 pA) as primary ions.
FIG. 17 is a graph showing infrared absorption spectra of the first and second sliding products by a microscopic transmission method. In FIG. 17, the infrared absorption spectrum of the first sliding product is shown in the upper part of the figure, and the infrared absorption spectrum of the second sliding product is shown in the lower part of the figure. In addition, the first sliding product has a small amount of collected product, and therefore there is a portion where the spectrum is unclear.
 図17および図18によれば、第1~第4の摺動生成物のいずれにおいて、2900cm-1~3000cm-1付近の領域にピークが認められる。このピークは「C-H」の結合ピークであり、メチレン基(-CH3)やメチル基(-CH2-)等の脂肪族炭化水素基に由来するものと推察される。
 800cm-1から2500cm-1の領域までのベースラインに着目すると、第1および第2の摺動生成物の双方とも、波長の増大に伴って右肩下がりとなる傾向が生じている。このようなベースラインの傾向は、炭素状物質に由来すると考えられる。別途実施したラマン分析の結果により、この炭素状物質は非晶質炭素系物質(アモルファスカーボン)に由来すると推察される。
According to FIGS. 17 and 18, in any of the first to fourth sliding product, the peak is observed in the region in the vicinity of 2900 cm -1 - 3000 cm -1. This peak is a bond peak of “C—H” and is presumed to be derived from an aliphatic hydrocarbon group such as a methylene group (—CH 3 ) or a methyl group (—CH 2 —).
When focusing on the baseline from the region of 800 cm −1 to 2500 cm −1 , both the first and second sliding products tend to fall to the right with increasing wavelength. Such a baseline trend is believed to originate from the carbonaceous material. From the results of Raman analysis conducted separately, it is assumed that this carbonaceous material is derived from an amorphous carbon-based material (amorphous carbon).
 第2の摺動生成物において、1720cm-1付近の領域にピークが認められる。このピークは、「-C(=O)-」の結合ピークであり、カルボニル基に由来するものと推察される。第1の摺動生成物でも、1720cm-1付近の領域にピークの存在が認められる。第1の摺動生成物のピークが不明瞭なのは、第1の摺動生成物の採取量が少ないことに起因していると考えられる。 In the second sliding product, a peak is observed in the region near 1720 cm −1 . This peak is a bond peak of “—C (═O) —” and is presumed to originate from a carbonyl group. Even in the first sliding product, the presence of a peak is recognized in the region near 1720 cm −1 . It is considered that the peak of the first sliding product is unclear due to the small amount of the first sliding product collected.
 また、第1および第2の摺動生成物の双方において、1600cm-1付近の領域にピークが認められる。このピークは、ベンゼン環に由来するピーク、あるいは低級カルボン酸塩に由来するピークのいずれかであると考えられる。
 図18は、第3および第4の摺動生成物の、顕微透過法による赤外吸収スペクトルを示すグラフである。図18では、図の上部分に、第3の摺動生成物の赤外吸収スペクトルを示し、図の下段部分に、第4の摺動生成物の赤外吸収スペクトルを示す。
In both the first and second sliding products, a peak is recognized in the region near 1600 cm −1 . This peak is considered to be either a peak derived from a benzene ring or a peak derived from a lower carboxylate.
FIG. 18 is a graph showing infrared absorption spectra of the third and fourth sliding products by a microscopic transmission method. In FIG. 18, the infrared absorption spectrum of the third sliding product is shown in the upper part of the figure, and the infrared absorption spectrum of the fourth sliding product is shown in the lower part of the figure.
 第3および第4の摺動生成物では、第1および第2の摺動生成物の場合と同様、2900cm-1~3000cm-1付近の領域にピークが認められる。このピークは「C-H」の結合ピークであり、メチレン基(-CH3)やメチル基(-CH2-)等の脂肪族炭化水素基に由来するものと推察される。
 また、800cm-1から2500cm-1の領域までのベースラインに着目すると、第3および第4の摺動生成物の双方とも、波長の増大に伴って右肩下がりとなる傾向が生じているが、このようなベースラインの傾向は、炭素状物質(具体的には、非晶質炭素系物質(アモルファスカーボン))に由来すると考えられる。
In the third and fourth sliding products, as in the first and second sliding products, the peak is observed in the region in the vicinity of 2900cm -1 ~ 3000cm -1. This peak is a bond peak of “C—H” and is presumed to be derived from an aliphatic hydrocarbon group such as a methylene group (—CH 3 ) or a methyl group (—CH 2 —).
Further, when focusing on the baseline from the region of 800 cm −1 to 2500 cm −1 , both the third and fourth sliding products tend to fall to the right with increasing wavelength. Such a baseline tendency is considered to be derived from a carbonaceous material (specifically, an amorphous carbon-based material (amorphous carbon)).
 図18では、第3および第4の摺動生成物の双方において、1720cm-1付近の領域にピークが認められる。このピークは、カルボニル基に由来するものと考えられる「-C(=O)-」の結合ピークであると推察される。なお、図18における、1720cm-1付近の領域のピークは、図17に示す第2の摺動生成物の場合ほど明瞭ではない。
 また、第3および第4の摺動生成物の双方において、1600cm-1付近の領域にピークが認められる。このピークは、ベンゼン環に由来するピーク、あるいは水由来のピークのいずれかであると考えられる。なお、図18における、1600cm-1付近の領域のピークは、図17に示す第2の摺動生成物の場合ほど明瞭ではない。
In FIG. 18, a peak is recognized in the region near 1720 cm −1 in both the third and fourth sliding products. This peak is presumed to be a bond peak of “—C (═O) —” which is considered to be derived from a carbonyl group. Note that the peak in the region near 1720 cm −1 in FIG. 18 is not as clear as in the case of the second sliding product shown in FIG.
In both the third and fourth sliding products, a peak is recognized in the region near 1600 cm −1 . This peak is considered to be either a peak derived from a benzene ring or a peak derived from water. Note that the peak in the vicinity of 1600 cm −1 in FIG. 18 is not as clear as in the case of the second sliding product shown in FIG.
 つまり、互いに異なる条件下で作製したPLC膜63およびPLC膜163のいずれをプレート試験片42の上層に用いた場合であっても、また、摩擦雰囲気の主成分が還元性の水素雰囲気(第1の摩擦試験や第2の摩擦試験)や不活性の窒素雰囲気(第3の摩擦試験や第4の摩擦試験)であっても、脂肪族炭化水素基およびカルボニル基の少なくとも一方を有する摺動生成物がピン試験片44に形成され、この摺動生成物においてFFOが発現することを確認できた。 That is, even when any of the PLC film 63 and the PLC film 163 manufactured under different conditions is used as the upper layer of the plate test piece 42, the main component of the friction atmosphere is a reducing hydrogen atmosphere (first Slidable formation having at least one of an aliphatic hydrocarbon group and a carbonyl group even in an inert nitrogen atmosphere (third friction test or fourth friction test). An object was formed on the pin test piece 44, and it was confirmed that FFO was expressed in this sliding product.
 図19は、第1の摺動生成物の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。図20は、第2の摺動生成物の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。図21は、第3の摺動生成物の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。図22は、第2の摺動生成物の、Zr+を基準としたときのC25 +の二次イオン相対強度比を示すグラフである。図23は、第2の摺動生成物の、Zr+を基準としたときのC97 +の二次イオン相対強度比を示すグラフである。図24は、第2の摺動生成物の、Zr+を基準としたときのC77 +の二次イオン相対強度比を示すグラフである。 FIG. 19 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the first sliding product. FIG. 20 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the second sliding product. FIG. 21 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the third sliding product. FIG. 22 is a graph showing the secondary ion relative intensity ratio of C 2 H 5 + based on Zr + of the second sliding product. FIG. 23 is a graph showing the secondary ion relative intensity ratio of C 9 H 7 + based on Zr + of the second sliding product. FIG. 24 is a graph showing the secondary ion relative intensity ratio of C 7 H 7 + based on Zr + of the second sliding product.
 第1および第2の摺動生成物の正イオンスペクトルにおいて、図19および図20に示すように、C23 +、C25 +(Mass:29.06)、C37 +、C47 +、C77 +(Mass:91.13)、C97 +(Mass:115.15)などのイオンが多く検出されている。これらのうち、C77 +は、芳香族系成分に由来するものと考えられ、また、C97 +は縮合環系成分に由来するものと考えられる。 In the positive ion spectra of the first and second sliding products, as shown in FIGS. 19 and 20, C 2 H 3 + , C 2 H 5 + (Mass: 29.06), C 3 H 7 + , C 4 H 7 + , C 7 H 7 + (Mass: 91.13), C 9 H 7 + (Mass: 115.15) and many other ions are detected. Among these, C 7 H 7 + is considered to be derived from an aromatic component, and C 9 H 7 + is considered to be derived from a condensed ring system component.
 また、第3の摺動生成物の正イオンスペクトルにおいて、図21に示すように、C23 +、C25 +(Mass:29.06)、C37 +、C47 +、C77 +(Mass:91.13)、C97 +(Mass:115.15)などのイオンが多く検出されている。これらのうち、C77 +は、芳香族系成分に由来するものと考えられ、また、C97 +は縮合環系成分に由来するものと考えられる。 Further, in the positive ion spectrum of the third sliding product, as shown in FIG. 21, C 2 H 3 + , C 2 H 5 + (Mass: 29.06), C 3 H 7 + , C 4 H Many ions such as 7 + , C 7 H 7 + (Mass: 91.13), C 9 H 7 + (Mass: 115.15) are detected. Among these, C 7 H 7 + is considered to be derived from an aromatic component, and C 9 H 7 + is considered to be derived from a condensed ring system component.
 つまり、互いに異なる条件下で作製したPLC膜63およびPLC膜163のいずれをプレート試験片42の上層に用いた場合であっても、また、摩擦雰囲気の主成分が還元性の水素雰囲気(第1の摩擦試験や第2の摩擦試験)や不活性の窒素雰囲気(第3の摩擦試験や第4の摩擦試験)であっても、TOF-SIMSにより得られる正イオンスペクトルにおいて質量91.1にピークを示す芳香族系成分、およびTOF-SIMSにより得られる正イオンスペクトルにおいて質量115.2にピークを示す縮合環系成分を含む摺動生成物が形成され、この摺動生成物においてFFOが発現することを確認できた。 That is, even when any of the PLC film 63 and the PLC film 163 manufactured under different conditions is used as the upper layer of the plate test piece 42, the main component of the friction atmosphere is a reducing hydrogen atmosphere (first And the second friction test) and an inert nitrogen atmosphere (the third friction test and the fourth friction test) peak in mass 91.1 in the positive ion spectrum obtained by TOF-SIMS. And a sliding product containing a condensed ring system component having a peak at a mass of 115.2 in the positive ion spectrum obtained by TOF-SIMS is formed, and FFO is expressed in this sliding product. I was able to confirm that.
 また、C25 +、C97 +およびC77 +を定量的に解析するために、第1および第2の摺動生成物について、各イオンと、ピン試験片44の材質(ZnO2)に由来するZr+イオンとの相対強度比を調べた。図22~図24では、ピン試験片44の外表面の摺動領域の生成物である第1および第2の摺動生成物を、ピン試験片44の外表面の非摺動領域の生成物と比較して示している。 Further, in order to quantitatively analyze C 2 H 5 + , C 9 H 7 + and C 7 H 7 + , each ion and the material of the pin test piece 44 are used for the first and second sliding products. The relative intensity ratio with Zr + ions derived from (ZnO 2 ) was examined. 22 to 24, the first and second sliding products, which are products of the sliding region on the outer surface of the pin test piece 44, are the products of the non-sliding region on the outer surface of the pin test piece 44. It shows in comparison with.
 図22~図24から、C25 +、C97 +およびC77 +のいずれも、ピン試験片44の外表面の非摺動領域よりも摺動領域に多く生成されていることが判る。
 図25は、第1の摺動生成物の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。図26は、第2の摺動生成物の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。図27は、第1および第2の摺動生成物の、負イオン総強度を基準としたときのC752 -の二次イオン相対強度比を示すグラフである。
From FIG. 22 to FIG. 24, all of C 2 H 5 + , C 9 H 7 + and C 7 H 7 + are generated in the sliding region more than the non-sliding region on the outer surface of the pin specimen 44. I know that.
FIG. 25 is a graph showing a negative ion spectrum of the first sliding product obtained by TOF-SIMS. FIG. 26 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the second sliding product. FIG. 27 is a graph showing the secondary ion relative intensity ratio of C 7 H 5 O 2 − based on the total negative ion intensity of the first and second sliding products.
 第1および第2の摺動生成物の負イオンスペクトルにおいて、図25および図26に示すように、ベンゼン環を有する安息香酸イオンのC752 -(Mass:121.12)が多く検出されている。また、図27から、ピン試験片44の外表面の非摺動領域よりも摺動領域に、安息香酸イオンが多く生成されていることが判る。
 また、図17を参照して前述したように、第1および第2の摺動生成物の双方において、1600cm-1付近の領域にピークが認められていた。図25~図27の結果を併せて参照することにより、このピークは、低級カルボン酸塩に由来するピークではなく、ベンゼン環に由来するピークであることが判る。
In the negative ion spectra of the first and second sliding products, as shown in FIG. 25 and FIG. 26, there are many C 7 H 5 O 2 (Mass: 121.12) of benzoate ions having a benzene ring. Has been detected. Further, it can be seen from FIG. 27 that more benzoate ions are generated in the sliding region than in the non-sliding region on the outer surface of the pin test piece 44.
Further, as described above with reference to FIG. 17, a peak was recognized in the region near 1600 cm −1 in both the first and second sliding products. By referring to the results of FIGS. 25 to 27 together, it can be seen that this peak is not a peak derived from a lower carboxylate but a peak derived from a benzene ring.
 なお、後述するように、C752 -は、PLC膜63の表面からも検出されており、PLC膜63が移着/変質に起因する成分であると考えられる。
<PLC膜63の表面の分析>
 第2の摩擦試験の前後におけるPLC膜63の表面を、ゲルマニウムプリズムを用いる顕微全反射吸収(顕微ATR)法により分析した。
As will be described later, C 7 H 5 O 2 is also detected from the surface of the PLC film 63, and the PLC film 63 is considered to be a component due to transfer / degeneration.
<Analysis of the surface of the PLC film 63>
The surface of the PLC film 63 before and after the second friction test was analyzed by a micro total reflection absorption (micro ATR) method using a germanium prism.
 また、第1および第2の摩擦試験後におけるPLC膜63の表面に対し、TOF-SIMS分析も実施した。Ion-Tof社製TOF-SIMS 5にて、一次イオンにBi(30keV、1.4 pA)を用いて、300μm角ラスターを256×256pixelsで30回積算した。
 第2の摺動生成物の赤外吸収スペクトルと、第2の摩擦試験の前後におけるPLC膜63の表面の赤外吸収スペクトルとを比較する。図28および図29は、第2の摩擦試験の前後におけるPLC膜63の、顕微ATR法による赤外吸収スペクトルを示すグラフである。図28および図29では、図の下段部分に、第2の摩擦試験後におけるPLC膜63の赤外吸収スペクトルを示し、図の中段部分に、第2の摩擦試験前におけるPLC膜63の赤外吸収スペクトルを示し、図の上段部分に、参考として、Si-DLCの表面の赤外吸収スペクトルを示す。
Further, TOF-SIMS analysis was also performed on the surface of the PLC film 63 after the first and second friction tests. Using TOF-SIMS 5 manufactured by Ion-Tof, 300 μm square rasters were accumulated 30 times at 256 × 256 pixels using Bi + (30 keV, 1.4 pA) as primary ions.
The infrared absorption spectrum of the second sliding product is compared with the infrared absorption spectrum of the surface of the PLC film 63 before and after the second friction test. 28 and 29 are graphs showing infrared absorption spectra of the PLC film 63 before and after the second friction test by the microscopic ATR method. 28 and 29, the infrared absorption spectrum of the PLC film 63 after the second friction test is shown in the lower part of the figure, and the infrared of the PLC film 63 before the second friction test is shown in the middle part of the figure. An absorption spectrum is shown, and an infrared absorption spectrum of the surface of Si-DLC is shown in the upper part of the figure for reference.
 図29によれば、第2の摩擦試験後におけるPLC膜63の表面の赤外吸収スペクトルにて、1650cm-1~1800cm-1の領域には、第2の摺動生成物の1720cm-1付近に認められたカルボニル基に由来するピーク(図17参照。カルボニル基に由来するピークと考えられる)および1600cm-1付近のピーク(図17参照。ベンゼン環に由来するピークと考えられる)は見られなかった。また、図29に示す摩擦試験前のPLC膜63の表面のスペクトルにも、1720cm-1付近のピークおよび1600cm-1付近のピークはみられなかった。図17に示した第2の摺動生成物において見られた1650cm-1~1800cm-1の領域に現れるカルボニル基に由来するピークおよび1600cm-1付近のピークが、第2の摩擦試験の前後のいずれのPLC膜63からも検出されていないので、第2の摺動生成物は、PLC膜63の単なる移着によるものではなく、移着物や雰囲気ガスなどを元に、さらにトライボ化学反応によって新たに生成された化合物であると推察される。 According to FIG. 29, in an infrared absorption spectrum of the surface of the PLC film 63 after the second friction test, in the region of 1650 cm -1 ~ 1800 cm -1, around 1720 cm -1 of the second sliding product The peak derived from the carbonyl group (see FIG. 17, considered to be a peak derived from the carbonyl group) and the peak near 1600 cm −1 (see FIG. 17, considered to be the peak derived from the benzene ring) were observed. There wasn't. Further, also the spectrum of the surface of the PLC film 63 before the friction test shown in FIG. 29, the peak of the peak and 1600cm around -1 near 1720 cm -1 was observed. Peak peak and 1600cm around -1 from a second carbonyl group appearing in the region of 1650 cm -1 ~ 1800 cm -1 seen in the sliding product shown in FIG. 17, the front and rear of the second friction test Since it is not detected from any of the PLC films 63, the second sliding product is not a simple transfer of the PLC film 63, and is newly generated by a tribochemical reaction based on the transferred substances and the atmospheric gas. It is inferred that this is a compound produced in
 また、第2の摩擦試験後におけるPLC膜63の表面において、3800cm-1~3000cm-1付近の領域に着目すると、遊離O-H基(水酸基)に由来するピークの存在、およびO-H基に由来するピークの存在が認められる。分子が動き易い遊離O-H基が摩擦最表面に存在することは、摺動相手表面との摺動でせん断力が小さくなることも考えられ、FFO発現の一因となっていることが考えられる。遊離O-H基は、図28および図29に参考として示したSi-DLCの表面からは検出されておらず、硬質炭素系膜に共通して存在するものではないといえる。 Further, the surface of the PLC film 63 after the second friction test, focusing on the region in the vicinity of 3800 cm -1 ~ 3000 cm -1, the presence of a peak derived from the free O-H group (hydroxyl group), and O-H groups The presence of a peak derived from is recognized. The presence of free O—H groups on the outermost surface of the friction that cause molecules to move is thought to cause a decrease in shearing force when sliding against the surface of the other side of the friction, which is considered to be a cause of FFO expression. It is done. Free OH groups are not detected from the surface of Si-DLC shown as a reference in FIGS. 28 and 29, and it can be said that they are not present in common in the hard carbon film.
 図30は、第1の摩擦試験後におけるPLC膜63(の摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。図31は、第1の摩擦試験後におけるPLC膜63(の非摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。図32は、第2の摩擦試験後におけるPLC膜63(の摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。図33は、第2の摩擦試験後におけるPLC膜63(の非摺動領域)の、TOF-SIMSにより得られる正イオンスペクトルを示すグラフである。 FIG. 30 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the first friction test. FIG. 31 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the first friction test. FIG. 32 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the second friction test. FIG. 33 is a graph showing a positive ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the second friction test.
 図34は、第1の摩擦試験後におけるPLC膜63(の摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。図35は、第1の摩擦試験後におけるPLC膜63(の非摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。図36は、第2の摩擦試験後におけるPLC膜63(の摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。図37は、第2の摩擦試験後におけるPLC膜63(の非摺動領域)の、TOF-SIMSにより得られる負イオンスペクトルを示すグラフである。 FIG. 34 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the first friction test. FIG. 35 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the first friction test. FIG. 36 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (sliding region thereof) after the second friction test. FIG. 37 is a graph showing a negative ion spectrum obtained by TOF-SIMS of the PLC film 63 (non-sliding region thereof) after the second friction test.
 図30~図37に示すスペクトルから、PLC膜63の表面に、芳香族成分(C65 +、C77 +)、縮合環系成分(C97 +、C108 +、C128 +、C139 +)、炭素系成分(C9-、C10-)、酸化硫黄系成分(SO2 -、SO3 -、HSO4 -)、シリカイオン(Si25-、Si37-)、安息香酸イオン(C752 -)の存在が認められる。芳香族成分、縮合環系成分および炭素系成分は、PLC膜63に由来するものと考えられる。 From the spectra shown in FIGS. 30 to 37, the aromatic component (C 6 H 5 + , C 7 H 7 + ), the condensed ring system component (C 9 H 7 + , C 10 H 8 + ) are formed on the surface of the PLC film 63. , C 12 H 8 + , C 13 H 9 + ), carbon-based components (C 9 H , C 10 H ), sulfur oxide-based components (SO 2 , SO 3 , HSO 4 ), silica ions ( The presence of Si 2 O 5 H , Si 3 O 7 H ) and benzoate ions (C 7 H 5 O 2 ) is observed. It is considered that the aromatic component, the condensed ring system component, and the carbon component are derived from the PLC film 63.
 芳香族成分、縮合系成分、安息香酸イオンおよび酸化硫黄系成分は、PLC膜63表面において非摺動領域よりも摺動領域で、多い傾向が認められた。一方、PLC膜63表面の摺動領域と非摺動領域との間で明確な差異は認められなかった。
 以上によりこの実施形態によれば、低摩擦被膜5は、赤外吸収スペクトルにおいて2900cm-1~3000cm-1の領域にピークを示す脂肪族炭化水素基と、赤外吸収スペクトルにおいて1650cm-1~1800cm-1の領域にピークを示すカルボニル基と、TOF-SIMSにより得られる正イオンスペクトルにおいて質量91.1にピークを示す芳香族系成分(C77 +)と、TOF-SIMSにより得られる正イオンスペクトルにおいて質量115.2にピークを示す縮合環系成分(C97 +)とを含む。このような物性を有する低摩擦被膜5は、10-4オーダ(0.001未満)の著しく低い摩擦係数を示す。すなわち、著しく低い摩擦係数を実現する低摩擦被膜5を提供できる。
It was recognized that the aromatic component, the condensation component, the benzoate ion, and the sulfur oxide component tend to be more in the sliding region than in the non-sliding region on the surface of the PLC film 63. On the other hand, no clear difference was observed between the sliding area on the surface of the PLC film 63 and the non-sliding area.
According to this embodiment the above, the low friction coating 5 is an aliphatic hydrocarbon group which exhibits peaks in the region of 2900 cm -1 ~ 3000 cm -1 in an infrared absorption spectrum, 1650 cm -1 ~ 1800 cm in the infrared absorption spectrum -1 , a carbonyl group having a peak in the region, an aromatic component (C 7 H 7 + ) having a peak at a mass of 91.1 in a positive ion spectrum obtained by TOF-SIMS, and a positive ion obtained by TOF-SIMS And a condensed ring system component (C 9 H 7 + ) having a peak at a mass of 115.2 in the ion spectrum. The low friction coating 5 having such physical properties exhibits a remarkably low coefficient of friction of the order of 10 −4 (less than 0.001). That is, it is possible to provide the low friction coating 5 that realizes a remarkably low coefficient of friction.
 また、潤滑剤を別途用いることなく、摺動面6の摩擦係数の低減を図ることができる。
 さらに、摺動面6の摩擦係数を著しく低減できる結果、潤滑剤を別途用いることなく、摺動面6と被摺動面7との間に発生する摩擦力の低減を図ることができる。これにより、摺動システム1の摺動に伴う摩擦損失を大幅に低減することができ(摩擦トルクを大幅に低減することができ)る。したがって、摺動システム1の小型化および軽量化を図ることができると共に、摺動システム1の信頼性の向上を図ることができる。
Further, the friction coefficient of the sliding surface 6 can be reduced without using a lubricant separately.
Further, the friction coefficient of the sliding surface 6 can be remarkably reduced. As a result, the frictional force generated between the sliding surface 6 and the sliding surface 7 can be reduced without using any lubricant. Thereby, the friction loss accompanying sliding of the sliding system 1 can be significantly reduced (friction torque can be greatly reduced). Therefore, the sliding system 1 can be reduced in size and weight, and the reliability of the sliding system 1 can be improved.
 以上、この発明の一実施形態について説明したが、この発明は他の形態で実施することもできる。
 たとえば、前述の実施形態では、低摩擦被膜5を、カルボニル基を含む構成として説明したが、低摩擦被膜がカルボニル基を含まない構成であってもよい。
 また、前述の実施形態において、低摩擦被膜5を、芳香族系成分(C77 +)および縮合環系成分(C97 +)の双方を含む構成として説明したが、低摩擦被膜5は、芳香族系成分(C77 +)および縮合環系成分(C97 +)の少なくとも一方を含む構成であればよい。
As mentioned above, although one Embodiment of this invention was described, this invention can also be implemented with another form.
For example, in the above-described embodiment, the low friction coating 5 has been described as including a carbonyl group. However, the low friction coating may be configured so as not to include a carbonyl group.
In the above-described embodiment, the low friction coating 5 has been described as a configuration including both the aromatic component (C 7 H 7 + ) and the condensed ring system component (C 9 H 7 + ). 5 may be a structure containing at least one of an aromatic component (C 7 H 7 + ) and a condensed ring system component (C 9 H 7 + ).
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。 Other various design changes can be made within the scope of the matters described in the claims.
 本出願は、2015年1月29日出願の日本特許出願(特願2015-015850)、2015年1月29日出願の日本特許出願(特願2015-015851)、2016年1月19日出願の日本特許出願(特願2016-008236)、及び2016年1月19日出願の日本特許出願(特願2016-008237)に基づくものであり、その内容はここに参照として取り込まれる。 This application is a Japanese patent application filed on January 29, 2015 (Japanese Patent Application No. 2015-015850), a Japanese patent application filed on January 29, 2015 (Japanese Patent Application No. 2015-015551), and an application filed on January 19, 2016. This is based on a Japanese patent application (Japanese Patent Application No. 2016-008236) and a Japanese patent application filed on January 19, 2016 (Japanese Patent Application No. 2016-008237), the contents of which are incorporated herein by reference.
1…摺動システム、2…摺動部材、3…被摺動部材、5…低摩擦被膜(非晶質炭化水素系膜、第1の被膜)、6…摺動面、7…被摺動面 DESCRIPTION OF SYMBOLS 1 ... Sliding system, 2 ... Sliding member, 3 ... Sliding member, 5 ... Low friction coating (amorphous hydrocarbon type film, 1st coating), 6 ... Sliding surface, 7 ... Sliding surface

Claims (8)

  1.  赤外吸収スペクトルにおいて2900cm-1~3000cm-1の領域にピークを示す脂肪族炭化水素基と、
     飛行時間二次イオン質量分析法により得られる正イオンスペクトルにおいて質量91.1にピークを示す芳香族系成分、および飛行時間二次イオン質量分析法により得られる正イオンスペクトルにおいて質量115.2にピークを示す縮合環系成分のうち少なくとも一方とを含む、非晶質炭化水素系膜。
    An aliphatic hydrocarbon group having a peak in the region of 2900 cm −1 to 3000 cm −1 in the infrared absorption spectrum;
    Aromatic components that show a peak at mass 91.1 in the positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry, and a peak at mass 115.2 in the positive ion spectrum obtained by time-of-flight secondary ion mass spectrometry An amorphous hydrocarbon film comprising at least one of the condensed ring system components having
  2.  赤外吸収スペクトルにおいて1650cm-1~1800cm-1の領域にピークを示すカルボニル基をさらに含む、請求項1に記載の非晶質炭化水素系膜。 In the infrared absorption spectrum further comprising a carbonyl group which exhibits peaks in the region of 1650cm -1 ~ 1800cm -1, amorphous hydrocarbon film according to claim 1.
  3.  前記芳香族系成分および前記縮合環系成分の双方を含む、請求項1または2に記載の非晶質炭化水素系膜。 The amorphous hydrocarbon film according to claim 1 or 2, comprising both the aromatic component and the condensed ring component.
  4.  平均厚さが2nm~1000nmである、請求項1~3のいずれか一項に記載の非晶質炭化水素系膜。 The amorphous hydrocarbon film according to any one of claims 1 to 3, wherein the average thickness is 2 nm to 1000 nm.
  5.  第1の被膜を含む摺動面を有し、金属およびセラミックスの少なくとも一方を用いて形成された摺動部材であって、
     前記第1の被膜は、請求項1~4のいずれか一項に記載の非晶質炭化水素系膜を含む、摺動部材。 
    A sliding member having a sliding surface including a first coating, formed using at least one of metal and ceramics,
    The sliding member, wherein the first coating includes the amorphous hydrocarbon film according to any one of claims 1 to 4.
  6.  前記摺動部材は、ZrO2を用いて形成されている、請求項5に記載の摺動部材。 The sliding member according to claim 5, wherein the sliding member is formed using ZrO 2 .
  7.  請求項5または6に記載の摺動部材と、
     前記摺動部材の前記摺動面に摺接し、非晶質炭素系膜からなる第2の被膜を含む被摺動面を有する被摺動部材とを含み、
     前記第2の被膜のヤング率は、200GPa~250GPaである、摺動システム。
    The sliding member according to claim 5 or 6,
    A sliding member having a sliding surface that is in sliding contact with the sliding surface of the sliding member and includes a second coating made of an amorphous carbon-based film,
    The sliding system, wherein the second coating has a Young's modulus of 200 GPa to 250 GPa.
  8.  前記第2の被膜は、最表面に、赤外吸収スペクトルにおいて3000cm-1~4000cm-1の領域にピークを示す水酸基を含む、請求項7に記載の摺動システム。 The second coat is the outermost surface, containing a hydroxyl group exhibiting a peak in the region of 3000 cm -1 ~ 4000 cm -1 in an infrared absorption spectrum, the sliding system of claim 7.
PCT/JP2016/052679 2015-01-29 2016-01-29 Amorphous hydrocarbon film, and sliding member and sliding system provided with said film WO2016121936A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112016000541.5T DE112016000541T5 (en) 2015-01-29 2016-01-29 FILM BASED ON AMORPHOOD HYDROCARBON AND SLIDING ELEMENT AND SLIDING SYSTEM WITH THE FILM
US15/547,754 US10329509B2 (en) 2015-01-29 2016-01-29 Amorphous hydrocarbon based film, and sliding member and sliding system with said film
CN201680008136.4A CN107208263B (en) 2015-01-29 2016-01-29 Amorphous state hydrocarbon based membranes and sliding component and sliding system with the film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-015851 2015-01-29
JP2015015850 2015-01-29
JP2015-015850 2015-01-29
JP2015015851 2015-01-29
JP2016-008237 2016-01-19
JP2016008236A JP6796297B2 (en) 2015-01-29 2016-01-19 Sliding system
JP2016008237A JP6736018B2 (en) 2015-01-29 2016-01-19 Low friction coating manufacturing method
JP2016-008236 2016-01-19

Publications (1)

Publication Number Publication Date
WO2016121936A1 true WO2016121936A1 (en) 2016-08-04

Family

ID=56543540

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/052679 WO2016121936A1 (en) 2015-01-29 2016-01-29 Amorphous hydrocarbon film, and sliding member and sliding system provided with said film
PCT/JP2016/052680 WO2016121937A1 (en) 2015-01-29 2016-01-29 Low-friction coating production method and sliding method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052680 WO2016121937A1 (en) 2015-01-29 2016-01-29 Low-friction coating production method and sliding method

Country Status (1)

Country Link
WO (2) WO2016121936A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
JP2002097573A (en) * 2000-09-19 2002-04-02 Riken Corp Sliding member
JP2004155146A (en) * 2002-11-08 2004-06-03 Konica Minolta Holdings Inc Optical film, its manufacturing method, polarizing plate and display device using the same
JP2005145720A (en) * 2003-11-11 2005-06-09 National Institute Of Advanced Industrial & Technology Carbonaceous flaky powder, method for producing the same, and composite material of the same
JP2006291355A (en) * 2005-03-15 2006-10-26 Jtekt Corp Amorphous-carbon coated member
JP2007099947A (en) * 2005-10-05 2007-04-19 Toyota Motor Corp Sliding structure and sliding method
JP2008522020A (en) * 2004-11-25 2008-06-26 株式会社豊田中央研究所 Amorphous carbon film, method for forming the same, and high wear-resistant sliding member provided with amorphous carbon film
JP2010525163A (en) * 2007-04-16 2010-07-22 イーストマン コダック カンパニー Fine adjustment of vaporized organic materials
JP2012246545A (en) * 2011-05-30 2012-12-13 Denso Corp Sliding member and sliding system using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144378A (en) * 1998-11-05 2000-05-26 Yamaguchi Prefecture Formation of composite hard film with low coefficient of friction
JP2002097573A (en) * 2000-09-19 2002-04-02 Riken Corp Sliding member
JP2004155146A (en) * 2002-11-08 2004-06-03 Konica Minolta Holdings Inc Optical film, its manufacturing method, polarizing plate and display device using the same
JP2005145720A (en) * 2003-11-11 2005-06-09 National Institute Of Advanced Industrial & Technology Carbonaceous flaky powder, method for producing the same, and composite material of the same
JP2008522020A (en) * 2004-11-25 2008-06-26 株式会社豊田中央研究所 Amorphous carbon film, method for forming the same, and high wear-resistant sliding member provided with amorphous carbon film
JP2006291355A (en) * 2005-03-15 2006-10-26 Jtekt Corp Amorphous-carbon coated member
JP2007099947A (en) * 2005-10-05 2007-04-19 Toyota Motor Corp Sliding structure and sliding method
JP2010525163A (en) * 2007-04-16 2010-07-22 イーストマン コダック カンパニー Fine adjustment of vaporized organic materials
JP2012246545A (en) * 2011-05-30 2012-12-13 Denso Corp Sliding member and sliding system using the same

Also Published As

Publication number Publication date
WO2016121937A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
Kalin et al. The formation of tribofilms of MoS 2 nanotubes on steel and DLC-coated surfaces
Khare et al. The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide
Marino et al. Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air
Kim et al. Environmental effects on the friction of hydrogenated DLC films
Saravanan et al. Macroscale superlubricity of multilayer polyethylenimine/graphene oxide coatings in different gas environments
Kano et al. Super-low friction of ta-C coating in presence of oleic acid
Erdemir et al. Effect of tribochemistry on lubricity of DLC films in hydrogen
He et al. Surface Chemistry Dependence of Mechanochemical Reaction of Adsorbed Molecules An Experimental Study on Tribopolymerization of α-Pinene on Metal, Metal Oxide, and Carbon Surfaces
JP2005221403A (en) Evaluation method for solid surface, evaluation method for magnetic disk, magnetic disk, and manufacturing method therefor
US10329509B2 (en) Amorphous hydrocarbon based film, and sliding member and sliding system with said film
Polaki et al. Interpretation of friction and wear in DLC film: role of surface chemistry and test environment
Matta et al. Tribochemistry of tetrahedral hydrogen‐free amorphous carbon coatings in the presence of OH‐containing lubricants
JP6796297B2 (en) Sliding system
Tagawa et al. Effect of water adsorption on microtribological properties of hydrogenated diamond-like carbon films
Igartua et al. Screening of diamond-like carbon coatings in search of a prospective solid lubricant suitable for both atmosphere and high vacuum applications
Barthel et al. Origin of ultra-low friction of boric acid: Role of vapor adsorption
Tao et al. Surface modification of AFM silicon probes for adhesion and wear reduction
WO2016121936A1 (en) Amorphous hydrocarbon film, and sliding member and sliding system provided with said film
He et al. Effect of gas environment on mechanochemical reaction: a model study with tribo-polymerization of α-pinene in inert, oxidative, and reductive gases
Yagi et al. Lubricity and chemical reactivity of ionic liquid used for sliding metals under high-vacuum conditions
JP2016145417A (en) Method for manufacturing low friction film and sliding method
Zhao et al. Tribological performance of PFPE and X-1P lubricants at head–disk interface. Part II. Mechanisms
Piazzoni et al. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles
WO1998043245A1 (en) Information equipment
Yan et al. Tribological behaviors of MoS 2/SiCH film composite lubrication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743539

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15547754

Country of ref document: US

Ref document number: 112016000541

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743539

Country of ref document: EP

Kind code of ref document: A1