WO2016121880A1 - Temperature compensating element and light sensor system - Google Patents

Temperature compensating element and light sensor system Download PDF

Info

Publication number
WO2016121880A1
WO2016121880A1 PCT/JP2016/052516 JP2016052516W WO2016121880A1 WO 2016121880 A1 WO2016121880 A1 WO 2016121880A1 JP 2016052516 W JP2016052516 W JP 2016052516W WO 2016121880 A1 WO2016121880 A1 WO 2016121880A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature compensation
compensation element
stress
polarization
fiber
Prior art date
Application number
PCT/JP2016/052516
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 欣一
高橋 正雄
平田 幸久
寛之 梅崎
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016121880A1 publication Critical patent/WO2016121880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect

Definitions

  • Embodiments described herein relate generally to a temperature compensation element and an optical sensor system.
  • An optical sensor that measures a magnetic field or current using light such as a laser has temperature characteristics due to temperature dependency of a sensor fiber or the like, and an error occurs in a measurement result depending on temperature. Therefore, a method has been proposed in which a temperature compensation element is used to apply a stress corresponding to the temperature to the sensor fiber to control the temperature characteristic of the sensor fiber to cancel the temperature characteristic of the optical sensor itself.
  • the temperature compensation element has a problem that it cannot effectively apply non-uniform stress to the sensor fiber.
  • An object of the present invention is to provide a temperature compensation element and an optical sensor system that can effectively perform temperature compensation in order to solve the above-described problems.
  • the temperature compensation element includes a stress applying portion.
  • the stress applying unit applies anisotropic stress to the optical fiber according to a temperature change of an external device optically connected to the optical fiber.
  • FIG. 1 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the first embodiment.
  • 2A is a cross-sectional view of an example of a polarization maintaining fiber along line AA in FIG.
  • FIG. 2B is a cross-sectional view of another example of the polarization maintaining fiber along the line AA in FIG.
  • FIG. 3A is a cross-sectional view of an example of a temperature compensation element along line BB in FIG.
  • FIG. 3B is a cross-sectional view of another example of the temperature compensation element taken along line BB in FIG.
  • FIG. 4 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the second embodiment.
  • FIG. 1 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the second embodiment.
  • FIG. 5A is a cross-sectional view of an example of a temperature compensation element along line AA in FIG.
  • FIG. 5B is a cross-sectional view of another example of the temperature compensation element along line AA in FIG.
  • FIG. 6 is a cross-sectional view of an example of a temperature compensation element according to the third embodiment.
  • FIG. 7A is a cross-sectional view of an example of a temperature compensation element according to the fourth embodiment.
  • FIG. 7B is a cross-sectional view of another example of the temperature compensation element according to the fourth embodiment.
  • FIG. 8 is a diagram illustrating a configuration example of the temperature compensation element according to the fifth embodiment.
  • FIG. 9 is a diagram illustrating a configuration example of a Sagnac interference type optical sensor system according to the sixth embodiment.
  • FIG. 10 is a diagram illustrating an example of the temperature characteristics of the sensor unit and the temperature characteristics of the temperature compensation element according to the sixth embodiment.
  • FIG. 11 is a diagram illustrating an example of temperature characteristics of the Sa
  • FIG. 1 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the first embodiment.
  • the temperature compensation element 1 includes a polarization maintaining fiber 2, a protective layer 3 that covers the polarization maintaining fiber 2, a stress applying layer 4 that applies stress to the polarization maintaining fiber 2, and the like. .
  • the polarization maintaining fiber 2 is covered with a protective layer 3 on the outer periphery.
  • the protective layer 3 covers not only the periphery of the temperature compensation element 1 but also the entire polarization plane holding fiber 2 extending from both ends of the temperature compensation element 1.
  • the protective layer 3 has a function of protecting the polarization maintaining fiber 2 from the external environment. For example, the protective layer 3 prevents light from the outside from entering the inside of the polarization maintaining fiber 2 and prevents noise from being generated in the light passing through the polarization maintaining fiber 2. Further, the protective layer 3 prevents moisture, dust, and the like from adhering to the polarization-maintaining fiber 2 and prevents the polarization-maintaining fiber 2 from corroding.
  • the protective layer 3 is made of UV curable resin or acrylic resin, and has a thickness of about 30 to 40 ⁇ m. The material and structure of the protective layer 3 are not limited to a specific configuration.
  • the stress applying layer (stress applying portion) 4 is composed of the metal thin film layer 5 and covers a part of the polarization-maintaining fiber 2.
  • the polarization-maintaining fiber 2 is not covered with the protective layer 3 in a predetermined section in the light propagation direction.
  • the metal thin film layer 5 covers the polarization maintaining fiber 2 in a section not covered by the protective layer 3. Further, as shown in FIG. 1, the metal thin film layer 5 may also cover a portion covered with the protective layer 3 beyond the section.
  • the metal thin film layer 5 is in direct contact with the polarization-maintaining fiber 2. Thereby, the metal thin film layer 5 can apply stress to the polarization plane holding fiber 2 without interposing the protective layer 3, and can effectively apply stress to the polarization plane holding fiber 2. In addition, since most of the metal thin film layer 5 is in direct contact with the polarization-maintaining fiber 2, the metal thin-film layer 5 can apply a finer stress to the polarization-maintaining fiber 2, and can be more accurately biased. Stress can be applied to the wavefront holding fiber 2. The stress applied to the polarization plane holding fiber 2 will be described in detail later.
  • FIG. 2 shows cross-sectional views of two examples of polarization maintaining fiber 2 along line AA in FIG.
  • the polarization-maintaining fiber 2 covers the periphery of the core 11, the polarization-plane holding portions 12 a and 12 b adjacent to the core 11, and the core 11 and the polarization-plane holding portions 12 a and b at the center. It has a clad 13 and the like. Further, as described above, the polarization-maintaining fiber 2 is covered with the protective layer 3.
  • the polarization-maintaining fiber 2 is a stress-applied polarization-maintaining fiber such as a panda-type polarization-maintaining fiber (FIG. 2A) and a bow-tie polarization-maintaining fiber (FIG. 2B).
  • a panda-type polarization-maintaining fiber FIG. 2A
  • a bow-tie polarization-maintaining fiber FIG. 2B
  • the polarization plane holding section 12 has a trapezoidal cross section.
  • the polarization plane holding unit 12 of the bow tie type polarization plane holding fiber is installed such that the trapezoidal short side faces the core 11. Which form the polarization-maintaining fiber 2 takes is determined by the use and installation location of the polarization-maintaining fiber 2.
  • the core 11 (optical fiber) is a light passage section through which light such as a laser generated from a sensor or light such as a laser generated from a signal processor passes.
  • the core 11 is located at the center of the polarization-maintaining fiber 2.
  • the core 11 has two birefringence axes (in FIG. 2, a Y axis (Fast Axis) and an X axis (Slow Axis)). Since the core 11 has two birefringence axes, two linearly polarized lights can pass through the core 11 while being constrained by the respective birefringence axes.
  • the polarization plane holding unit 12 a is installed inside the polarization plane holding fiber 2 in parallel with the core 11.
  • the polarization plane holding unit 12a is installed at a predetermined distance from the core 11.
  • the polarization plane holding unit 12b is installed inside the polarization plane holding fiber 2 in parallel with the core 11 on the opposite side of the polarization plane holding unit 12a.
  • the polarization plane holding portions 12 a and b have a function of adjusting stress generated in the core 11.
  • the polarization plane holding units 12a and 12b apply stress to the core 11, and hold the polarization plane of linearly polarized light that passes through the core 11 while being constrained by the birefringence axis.
  • the clad 13 is formed in a cylindrical shape so as to fix the core 11 and the polarization plane holding portions 12a and 12b at predetermined positions.
  • the clad 13 may apply stress to the core 11 similarly to the polarization plane holding portions 12a and 12b.
  • the structure of the polarization-maintaining fiber 2 is the same in any part of the polarization-maintaining fiber 2.
  • the configuration of the polarization-maintaining fiber 2 is not limited to a specific configuration.
  • the stress applying layer 4 has a function of applying stress to a part of the polarization-maintaining fiber 2.
  • the stress applying layer 4 expands or contracts according to the temperature change of the stress applying layer 4 itself, and applies a stress to the polarization plane holding fiber 2. That is, the stress applying layer 4 applies a stress corresponding to the temperature to the polarization plane holding fiber 2.
  • stress applying layer 4 applies stress to the polarization-maintaining fiber 2
  • stress is applied to the core 11 installed in the polarization-maintaining fiber 2.
  • the core 11 is distorted, and the optical characteristics such as the extinction ratio or crosstalk of the core 11 change. As the optical characteristics of the core 11 change, the phase of propagating light passing through the core 11 changes.
  • an optical sensor that measures a magnetic field or an electric current has a temperature characteristic, and a phase change occurs in light propagating through the sensor according to a temperature change, resulting in an error in the measurement result. For example, when the phase of light generated from the optical sensor advances as the temperature rises, an error occurs in the measurement result as the phase advances.
  • the stress applying layer 4 covering a part of the polarization-maintaining fiber 2 extending from the optical sensor changes the optical characteristics of the polarization-maintaining fiber 2 so as to cancel out an error caused by the optical sensor.
  • the stress applying layer 4 applies stress to the polarization-maintaining fiber 2 so that an optical characteristic is generated such that the phase of propagating light passing through the core 11 is delayed as the temperature rises.
  • the phase change caused by the temperature change of the optical sensor and the phase change caused by the temperature change of the temperature compensation element 1 cancel each other, and the optical sensor measures the object without being affected by the ambient temperature. Can do.
  • FIG. 3 shows cross-sectional views of two examples of temperature compensating elements along line BB in FIG.
  • the metal thin film layer 5 constituting the stress applying layer 4 covers the polarization plane holding fiber 2.
  • the stress applying layer 4 is configured so that the stress applied to the polarization-maintaining fiber 2 is not uniformly generated on the outer periphery of the polarization-maintaining fiber 2 (is generated anisotropically). Since the stress applied to the polarization plane holding fiber 2 is anisotropically generated on the outer periphery, the core 11 is more effectively distorted unevenly, and the refractive index and extinction ratio of the core 11 or optical characteristics such as crosstalk are reduced. The change becomes noticeable.
  • the stress applying layer 4 is composed of a metal thin film layer 5 composed of metal or the like.
  • the metal constituting the metal thin film layer 5 is a metal having a known and stable characteristic such as a coefficient of thermal expansion such as nickel, gold, or aluminum, but is not limited to a specific type of metal.
  • the metal thin film layer 5 is formed such that a cross section perpendicular to the light propagation direction is non-circular such as an ellipse or a rectangle.
  • the stress resulting from the expansion or contraction of the metal thin film layer 5 having a non-circular cross section is generated anisotropically in the polarization-maintaining fiber 2.
  • the core 11 in the polarization-maintaining fiber 2 is effectively distorted unevenly, and the change in optical characteristics with respect to the temperature change of the core 11 becomes remarkable.
  • FIG. 3A is a cross-sectional view of an example of a temperature compensation element taken along line BB in FIG.
  • the metal thin film layer 5 has an elliptical shape extending in the y-axis direction.
  • the stress generated by the expansion is applied in the direction of crushing the polarization plane holding fiber 2.
  • the stress generated in the y-axis direction of the polarization-maintaining fiber 2 is larger than the stress generated in the x-axis direction. Therefore, the polarization-maintaining fiber 2 is crushed by a greater stress from the y-axis direction and is distorted more significantly in the y-axis direction.
  • the metal thin film layer 5 constituting the stress applying layer 4 may be formed so that the central portion of the metal thin film layer 5 and the polarization plane holding fiber 2 are displaced.
  • the metal thin film layer 5 may be circular.
  • Such stress resulting from the expansion or contraction of the metal thin film layer 5 is anisotropically generated in the polarization-maintaining fiber 2.
  • the core 11 in the polarization-maintaining fiber 2 is effectively distorted, and the change in optical characteristics with respect to the temperature change of the core 11 becomes remarkable.
  • FIG. 3B is a cross-sectional view of another example of the temperature compensation element taken along line BB in FIG.
  • the metal thin film layer 5 is formed so that the cross section perpendicular to the light propagation direction is circular, but the polarization-maintaining fiber 2 is displaced from the center of the metal thin film layer 5.
  • the metal thin film layer 5 expands due to a temperature rise, the stress applied to the core 11 of the polarization-maintaining fiber 2 from the direction opposite to the x-axis direction (from right to left in FIG. 3B) It is larger than the stress applied from the direction.
  • the core 11 of the polarization-maintaining fiber 2 is applied with a greater stress from the opposite direction to the x-axis direction and is well and significantly distorted in the x-axis direction.
  • the stress generated by the metal thin film layer 5 is anisotropically generated in the polarization-maintaining fiber 2, and changes with respect to the temperature change of the core 11. The change in optical characteristics becomes remarkable.
  • the polarization plane holding fiber 2 holds the plane of polarization by the difference between the light propagation constants of the two birefringence axes.
  • the light propagation constant of the birefringence axis changes significantly by applying a stress in the direction along the birefringence axis of the polarization-maintaining fiber 2. Therefore, the difference between the light propagation constants of both birefringence axes is effectively changed by applying a stress in a direction along one of the birefringence axes.
  • the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 change more significantly with respect to stress.
  • the stress applying layer 4 has the direction of the stress applied to the polarization-maintaining fiber 2 as one birefringence axis. It is formed to be parallel.
  • the magnitude of the stress applied to each birefringence axis is approximate, the difference in the light propagation constant of the birefringence axis does not change much, and the extinction ratio or crosstalk of the polarization-maintaining fiber 2 or the like
  • the optical characteristics of the film change slowly.
  • the magnitude of the stress generated in both birefringence axis directions approximates, The difference in the light propagation constant changes slowly.
  • the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 change gently with respect to temperature changes.
  • the stress applying layer 4 is formed so that the magnitude of the stress applied to the polarization-maintaining fiber 2 is approximated.
  • the longitudinal load stress stress generated in the light propagation direction
  • the polarization-maintaining fiber 2 extends or contracts in the light propagation direction. This also changes the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2.
  • the amount of change in optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 varies depending on the intensity and direction of the stress applied to the polarization-maintaining fiber 2.
  • the material, shape, or direction of the metal thin film layer 5 is determined so that the metal thin film layer 5 has a temperature change of an optical characteristic that cancels a temperature characteristic of a sensor that compensates the temperature, and is limited to a specific configuration. It is not a thing.
  • the metal thin film layer 5 is formed by electrolytic plating or metal vapor deposition.
  • the protective layer 3 in the section where the stress applying layer 4 of the polarization-maintaining fiber 2 is formed is removed.
  • the portions other than the section are masked.
  • the metal thin film layer 5 is formed by performing electrolytic plating or metal vapor deposition on the section where the stress applying layer 4 of the polarization-maintaining fiber 2 is formed.
  • the metal thin film layer 5 in order to form the metal thin film layer 5 so that the cross section of the metal thin film layer 5 is non-circular, or to form the metal thin film layer so that the polarization plane maintaining fiber 2 is displaced from the center of the metal thin film layer 5.
  • a process step such as adjustment of the direction and strength of the electric field, adjustment of the plating time or deposition time in the electroplating or metal deposition, or axis rotation with respect to the direction of the electric field of the polarization plane holding fiber 2 or the direction of metal deposition is performed alone or It is done in combination.
  • the thickness of the metal thin film layer 5 is also adjusted by a similar process.
  • the metal thin film layer 5 may be formed so that the cross-sectional view of the metal thin film layer 5 has a predetermined shape by processing after being formed concentrically on the stress applying layer 4 of the polarization maintaining fiber 2.
  • the metal thin film layer 5 may be formed so that a cross-sectional view of the metal thin film layer 5 has a predetermined shape by file or etching.
  • the formation method of the metal thin film layer 5 should just be a method which can process the metal thin film layer 5 to a predetermined
  • FIG. 4 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the second embodiment.
  • the second embodiment is different from the first embodiment in that the stress applying layer 4 includes a ferrule 6 and a wax material 7 in addition to the metal thin film layer 5. Therefore, about the point other than this, the same code
  • FIG. 5 shows cross-sectional views of two examples of temperature compensation elements along line AA in FIG.
  • the stress applying layer 4 includes a metal thin film layer 5, a ferrule 6 covering the outer periphery of the metal thin film layer 5, and a brazing material 7 that bonds the metal thin film layer 5 and the ferrule 6.
  • FIG. 5A is a cross-sectional view of an example of a temperature compensation element in which the metal thin film layer 5 shown in FIG.
  • FIG. 5B is a cross-sectional view of an example of a temperature compensation element in which the metal thin film layer 5 shown in FIG. 3B is covered with a ferrule 6.
  • the ferrule 6 has a function of fixing the polarization-maintaining fiber 2 when the polarization-maintaining fiber 2 is inserted into a connector or the like.
  • the ferrule 6 has a cylindrical shape, and covers the metal thin film layer 5 so that the center portion of the ferrule 6 and the center portion of the polarization-maintaining fiber 2 coincide. That is, the polarization-maintaining fiber 2 and the ferrule 6 are positioned concentrically.
  • the polarization-maintaining fiber 2 and the ferrule 6 are positioned concentrically, when the ferrule 6 is inserted into a connector or the like, the propagation axis of the light passing through the polarization-maintaining fiber 2 is the same as the connection destination fiber. Match. As a result, optical transmission loss in connector connection is reduced.
  • the ferrule 6 is a substance having a known and stable temperature characteristic such as a coefficient of thermal expansion such as, for example, an Fe-Ni invar alloy or a kovar alloy, but is not limited to a specific type of metal.
  • the ferrule 6 may be formed in a cylindrical shape by injection molding or machining. The manufacturing method of the ferrule 6 is not limited to a specific method.
  • the metal thin film layer 5 and the ferrule 6 are bonded by a wax material 7.
  • the brazing material 7 fills the space between the metal thin film layer 5 and the ferrule 6 without a gap, and fixes the ferrule 6 to the metal thin film layer 5 so that the polarization-maintaining fiber 2 and the ferrule 6 are positioned concentrically.
  • the wax material 7 is a substance having a known and stable temperature characteristic such as a coefficient of thermal expansion, such as Sn—Pb eutectic solder, an alloy of tin / silver / copper, or an alloy of tin / bismuth.
  • the present invention is not limited to these metals.
  • the temperature compensating element 1 has a structure in which different types of metals having known and stable thermal expansion coefficients are covered in multiple layers. As a result, the temperature compensation element 1 can stably apply stress to the polarization-maintaining fiber 2 according to the temperature. Further, the temperature compensation element 1 can apply stress to the polarization-maintaining fiber 2 with higher accuracy by a combination of metals. Furthermore, the temperature compensation element 1 can apply a larger stress to the polarization-maintaining fiber 2 by a combination of metals. The temperature compensation element 1 can control the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 in more detail and widely by adjusting the type, thickness, and shape of the metal.
  • the ferrule 6 is a substance having a thermal expansion coefficient smaller than that of the metal thin film layer 5.
  • the ferrule 6 does not expand or contract more than the metal thin film layer 5 even if the temperature changes. Since the metal thin film layer 5 is fixed to the ferrule 6, even when a temperature change occurs, the metal thin film layer 5 is unlikely to expand or contract in the vertical direction (light propagation direction). As a result, the stress applying layer 4 suppresses the longitudinal load stress from being applied to the polarization plane holding fiber 2.
  • the polarization maintaining fiber 2 has optical characteristics such as extinction ratio or crosstalk when a lateral load stress (stress generated perpendicular to the light propagation direction) occurs rather than a longitudinal load stress. The change is small. Therefore, the stress applying layer 4 can suppress the longitudinal load stress that greatly changes the optical characteristics. As a result, the stress applying layer 4 can control the change in the optical characteristics more finely.
  • FIG. 6 is a cross-sectional view perpendicular to the light propagation direction of the temperature compensation element according to the third embodiment. That is, FIG. 6 is a cross-sectional view of the temperature compensation element along a line corresponding to the line AA in FIG.
  • the third embodiment differs from the first embodiment in that the temperature compensation element 1 is formed of a plurality of flat plates and the like. Therefore, about the point other than this, the same code
  • the temperature compensating element 1 is provided between the flat plate 21 that holds the polarization plane holding fiber 2 from the upper side, the flat plate 22 that holds the polarization plane holding fiber 2 from the lower side, and the flat plates 21 and 22.
  • the spring 24, the washer 27 installed between the adjustment bolt 25 and the spring 24, and the washer 28 installed between the spring 24 and the flat plate 21 are included.
  • the spacer 23a, the adjusting bolt 25a, the nut 26a, the spring 24a, and the washers 27a and 28a are installed at one end (right side in the example of FIG.
  • the plane plates 21 and 22 are rectangular members having a predetermined thickness, a predetermined width, and a predetermined length. Further, the flat plates 21 and 22 have substantially the same size and shape.
  • the widths of the flat plates 21 and 22 may be any width that can sandwich the polarization-maintaining fiber 2 and wider than the diameter of the polarization-maintaining fiber 2. .
  • the width, length (that is, the size in the light propagation direction), and thickness (that is, the size in the y-axis direction in FIG. 6) of the flat plates 21 and 22 depend on the temperature compensation configuration required for the temperature compensation element 1. It is determined and is not limited to a specific configuration.
  • the flat plates 21 and 22 are metal plates having known and stable characteristics such as a coefficient of thermal expansion, but are not limited to specific materials.
  • the flat plates 21 and 22 are installed so as to sandwich the polarization-maintaining fiber 2 from above and below in parallel.
  • the flat plates 21 and 22 are installed in the region of the polarization-maintaining fiber 2 that is not covered by the protective layer 3. Thereby, the flat plates 21 and 22 can apply stress to the polarization-maintaining fiber 2 without interposing the protective layer 3.
  • the flat plates 21 and 22 may sandwich part of the region of the polarization-maintaining fiber 2 that is covered with the protective layer 3.
  • the flat plates 21 and 22 apply the stress applied by the springs 24 a and 24 b and the adjusting bolts 25 a and 25 b to the polarization-maintaining fiber 2.
  • the spacer 23a is sandwiched along the right end of the flat plates 21 and 22 in the width direction. That is, the spacer 23 a is linearly installed at the right end of the flat plates 21 and 22 from one end to the other end in the light propagation direction of the flat plates 21 and 22.
  • the spacer 23a is a metal or an elastic body, but is not limited to a specific substance or shape. The spacer 23 a prevents the polarization plane holding fiber 2 from being damaged by the pressure applied by the flat plates 21 and 22 to the polarization plane holding fiber 2.
  • the thickness of the spacer 23a (the size in the y-axis direction in FIG. 6) is slightly smaller than the diameter of the polarization-maintaining fiber 2. As a result, the flat plates 21 and 22 are less likely to apply stress to the spacer 23 a, and can effectively apply stress to the polarization-maintaining fiber 2. Further, when the polarization-maintaining fiber 2 is crushed to a predetermined width, the stress applied by the flat plates 21 and 22 is applied to the spacer 23a. As a result, it is possible to prevent the polarization-maintaining fiber 2 from being crushed and damaged from a predetermined width.
  • the spacer 23b has the same configuration.
  • the adjusting bolt 25a passes through the flat plate 21, the spacer 23a, and the flat plate 22, and protrudes downward from the flat plate 22.
  • the adjustment bolt 25a has a nut 26a attached to the protruding end.
  • Washers 27 a and 28 a are provided between the head of the adjustment bolt 25 a and the flat plate 21.
  • the spring 24a is installed between the washers 27a and 28a.
  • the adjustment bolt 25a, the washers 27a and 28a and the center of the spring 24a are passed through, and the washers 27a, 28a and the spring 24a are fixed.
  • the spring 24 is installed between the washers 27a and 28a in a contracted state, and constantly applies stress to the flat plate 21 by the repulsive force of the spring 24a.
  • the spring 24a is formed of an elastic body having a temperature characteristic in which a spring constant or an elastic coefficient changes according to a temperature change.
  • the spring 24a is, for example, a metal alloy spring, a metal alloy leaf spring, or a spring spring made of ceramic, but is not limited to a specific type of elastic body.
  • the spring 24b, the adjusting bolt 25b, and the washers 27b and 28b have the same configuration.
  • the spring 24a is contracted by the adjusting bolt 25a. Therefore, the repulsive force of the spring 24a is adjusted by tightening or loosening the adjustment bolt 25a. For example, when the adjusting bolt 25a is tightened, the spring 24a is contracted and the repulsive force of the spring 24a is increased. Conversely, when the adjustment bolt 25a is loosened, the spring 24a is extended and the repulsive force of the spring 24a is weakened. Similarly, the repulsive force of the spring 24b is adjusted by tightening or loosening the adjusting bolt 25b. Therefore, the stress applied to the polarization plane holding fiber 2 is adjusted by adjusting the adjustment bolt 25a to adjust the repulsive force of the spring 24a, and adjusting the adjustment bolt 25b to adjust the repulsive force of the spring 24b. .
  • the springs 24a and 24b are made of an elastic body having a temperature characteristic in which a spring constant or an elastic coefficient changes according to a temperature change. Therefore, when a temperature change occurs, the spring constants or elastic coefficients of the springs 24a and b change, and the repulsive force of the springs 24a and b changes. Therefore, when the temperature changes, the stress applied to the polarization plane holding fiber 2 also changes. Therefore, the stress applied to the polarization-maintaining fiber 2 can have temperature dependence.
  • the temperature compensation element 1 may sandwich the polarization plane holding fiber 2 so that the stress applied by the flat plates 21 and 22 is applied along the two birefringence axes of the core 11. In this case, the temperature compensation element 1 can change the optical characteristics such as the extinction ratio or the crosstalk of the polarization-maintaining fiber 2 more remarkably with respect to the temperature change.
  • the temperature compensation element 1 can apply stress from only one surface of the polarization-maintaining fiber 2. Thereby, the temperature compensation element 1 can apply stress in a specific direction more remarkably.
  • the temperature compensation element 1 does not have to be provided with the spring 24. That is, the flat plates 21 and 22 are directly fixed by the adjusting bolt 25 and the nut 26 with the spacer 23 interposed therebetween. In this case, the temperature compensation element 1 can apply a stress corresponding to the temperature change to the polarization plane holding fiber 2 due to the difference in thermal expansion coefficient between the flat plates 21 and 22, the spacer 23, and the adjusting bolt 25.
  • the temperature compensating element 1 does not need to be provided with the adjusting bolt 25 and the nut 26. That is, the flat plates 21 and 22 may be bonded with the spacer 23 interposed therebetween.
  • the bonding method of the flat plates 21 and 22 and the spacer 23 includes mechanical fitting bonding, bonding with an adhesive, or bonding by welding or welding, but is not limited to a specific method.
  • the temperature compensation element 1 can apply a stress corresponding to the temperature change to the polarization plane holding fiber 2 due to the difference in thermal expansion coefficient between the flat plates 21 and 22 and the spacer 23.
  • the temperature compensation element 1 may apply stress to the polarization plane holding fiber 2 covered with the protective layer 3.
  • the stress applied to the polarization-maintaining fiber 2 is applied to the polarization-maintaining fiber 2 through the protective layer 3.
  • the number of adjustment bolts and springs included in the temperature compensation element 1 according to the present embodiment is not limited to a specific number.
  • the space formed by the flat plates 21 and 22, the spacer 23a and the polarization-maintaining fiber 2 and the space formed by the flat plates 21 and 22, the spacer 23b and the polarization-maintaining fiber 2 are filled with silicon rubber or the like. It may be filled with an agent.
  • FIG. 7A is a cross-sectional view perpendicular to the light propagation direction of the temperature compensation element according to the fourth embodiment.
  • the fourth embodiment differs from the third embodiment in that the flat plate 22 according to the third embodiment is replaced with a V-groove plate 31 having a V-shaped groove. Therefore, about the point other than this, the same code
  • the temperature compensation element 1 includes a flat plate 21 that holds the polarization plane holding fiber 2 from the upper side, a V-groove plate 31 that holds the polarization plane holding fiber 2 from the lower side, the flat plate 21, and the V groove.
  • Spacer 23 provided between plates 31, flat plate 21, V groove plate 31, adjustment bolt 25 penetrating spacer 23, nut 26 attached to the tip of adjustment bolt 25 protruding from V groove plate 31, adjustment bolt
  • a spring 24 provided between the adjustment bolt 25 and the flat plate 21, a washer 27 provided between the adjustment bolt 25 and the spring 24, and a washer 28 provided between the adjustment bolt 25 and the flat plate 21.
  • the V-groove plate 31 is formed with substantially the same width and length as the flat plate 21.
  • the V-groove plate 31 is formed to a thickness capable of forming a V-shaped groove.
  • the V-groove plate 31 has a V-shaped groove at the center in the width direction (the x-axis direction in FIG. 7A).
  • the V-shaped groove provided in the V-groove plate is linearly formed from one end to the other end of the V-groove plate 31 in the light propagation direction.
  • a V-shaped groove provided in the V-groove plate is installed to accommodate the polarization-maintaining fiber 2.
  • the angle and depth of the V-shaped groove are determined by the diameter of the polarization-maintaining fiber 2 and the content of temperature compensation, but are not limited to a specific configuration.
  • the V-groove plate 31 is a metal plate having known and stable characteristics such as a coefficient of thermal expansion, but is not limited to a specific substance.
  • the method for forming the V-shaped groove may be a general excavation process or a casting process for forming the V-groove plate 31 situation, and is not limited to a specific method.
  • the temperature compensation element 1 sandwiches the polarization-maintaining fiber 2 so as to be accommodated in a V-shaped groove formed in the V-groove plate 31. This prevents the polarization-maintaining fiber 2 from shifting in the width direction between the flat plate 21 and the V-groove plate 31. Further, the plane plate 21 and the V-groove plate 31 can stably apply an anisotropic stress to the polarization plane holding fiber 2. Further, by adjusting the shape of the V-shaped groove, the angle of the stress applied to the polarization-maintaining fiber 2 is stably controlled.
  • FIG. 7B shows an example in which a groove having a V-shaped tip having a flat surface is formed in the V-groove plate.
  • FIG. 7B is a cross-sectional view perpendicular to the light propagation direction of the temperature compensation element 1.
  • FIG. 7B shows the flat plate 21, the spacer 23, and the V-groove plate 31 without the adjustment bolt 25, the spring 24, the nut 26, and the washers 27 and 28.
  • the V-shaped groove formed in the V-groove plate 31 has a flat tip. Since the plane portion is not in contact with the polarization-maintaining fiber 2, the same effect as that obtained when the polarization-maintaining fiber 2 is accommodated in the V-shaped groove can be obtained. By forming the tip of the V-shaped groove on a flat surface, the thickness of the V-groove plate 31 can be reduced.
  • the polarization plane holding fiber 2 when the angle of the V-shaped groove is 60 degrees, the polarization plane holding fiber 2 includes the flat plate 21, one surface of the V-shaped groove, and the other surface of the V-shaped groove. Stress isotropically applied at an angle of 120 degrees. Therefore, in this case, changes in optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 due to temperature changes are unlikely to occur. For this reason, when the change in the optical characteristics of the core 11 needs to be remarkable, the V-shaped groove formed in the V-groove plate 31 does not have a value of the angle of the V-shaped groove around 60 degrees. It is desirable to be formed as follows.
  • the temperature compensation element 1 may sandwich the polarization plane holding fiber 2 so that the stress applied by the flat plate 21 and the V-groove plate 31 is applied along the two birefringence axes of the core 11. In this case, the temperature compensation element 1 can change the optical characteristics such as the extinction ratio or the crosstalk of the polarization-maintaining fiber 2 more remarkably with respect to the temperature change. Further, the temperature compensation element 1 according to the present embodiment may apply stress to the polarization-maintaining fiber 2 covered with the protective layer 3. In this case, the stress applied to the polarization-maintaining fiber 2 is applied to the polarization-maintaining fiber 2 through the protective layer 3.
  • the number of adjustment bolts and springs included in the temperature compensation element 1 according to the present embodiment is not limited to a specific number.
  • the space formed by the flat plate 21, the V-groove plate 31, the spacer 23a, and the polarization-maintaining fiber 2 and the space formed by the flat plate 21, the V-groove plate 31, the spacer 23b, and the polarization-maintaining fiber 2 are as follows. It may be filled with a filler such as silicon rubber.
  • the temperature compensation element configured as described above can prevent the core from rotating or moving. As a result, the temperature compensation element can stably apply stress to the core and can stably perform temperature compensation.
  • the temperature compensation element 1 is obtained by connecting a plurality of temperature compensation elements described in the first to fourth embodiments in series.
  • FIG. 8 is a diagram schematically showing an example of the temperature compensation element 1 according to the present embodiment. As shown in FIG. 8, the temperature compensation element 1 includes temperature compensation elements 1a, 1b, and 1c.
  • Each temperature compensation element 1a, 1b, and 1c is one of the temperature compensation elements described in the first to fourth embodiments.
  • Each of the temperature compensation elements 1a, 1b, and 1c may be any of the temperature compensation elements described in the first to fourth embodiments, may be the same temperature compensation element, or may have a different structure. But you can.
  • Each temperature compensation element 1a, 1b and 1c is not limited to a specific combination.
  • the temperature compensation elements 1a, 1b, and 1c are connected to each other by fusion-bonding of polarization plane holding fibers of the temperature compensation element, connector connection, optical coupling through a lens, or the like. Note that.
  • the connection method of each temperature compensation element 1a, 1b, and 1c is not limited to a specific method.
  • the temperature compensation element 1 has three temperature compensation elements, but may have two, four or more temperature compensation elements.
  • the temperature compensation element 1 may have at least two temperature compensation elements.
  • the temperature compensation element 1 has complicated temperature characteristics by superimposing the temperature characteristics of the individual temperature compensation elements. Therefore, the temperature compensation element 1 can have a temperature characteristic that cannot be realized with one temperature compensation element.
  • FIG. 9 is a diagram schematically illustrating a configuration example of a Sagnac interference type optical sensor system (optical sensor system) according to the sixth embodiment.
  • the Sagnac interference type optical sensor according to the sixth embodiment includes any one of the temperature compensation elements according to the first to fifth embodiments.
  • the Sagnac interference type optical sensor system 10 includes a signal processing unit 40, a polarization plane holding fiber unit 60, a sensor unit 70, and the like.
  • the Sagnac interference type optical sensor system 10 measures a current passing through the electric wire 74 in the sensor unit 70.
  • the Sagnac interferometric optical sensor system 10 can measure a current of several kiloamperes passing through the electric wire 74, for example.
  • the Sagnac interference type optical sensor system 10 may be installed in a substation or the like, and may measure a current passing through a transformer or the like.
  • the place where the Sagnac interference type optical sensor system 10 is installed and the measurement target are not limited to a specific configuration.
  • the signal processing unit 40 has a function of supplying light (measurement light) such as a measurement laser to the sensor unit 70 and a function of receiving measurement light (reflected light) reflected by the sensor unit 70. Further, the signal processing unit 40 has a function of measuring a current passing through the electric wire 74 based on the reflected light received from the sensor unit 70. As shown in FIG. 9, the signal processing unit 40 includes a light source driving circuit 41, a light source 42, a fiber coupler 43, an optical filter 44, a phase modulator driving circuit 45, a phase modulator 46, a detector 47, a synchronous detection circuit 48, An arithmetic circuit 49 and a surplus coil 50 are included.
  • the light source driving circuit 41 has a function of stably supplying a current to the light source 42.
  • the light source drive circuit 41 is electrically connected to the light source 42. Further, the light source driving circuit 41 may have a function of controlling the intensity, frequency, phase, and the like of light emitted from the light source 42.
  • the light source 42 emits measurement light according to the current supplied from the light source driving circuit 41.
  • the light source 42 is optically connected to the fiber coupler 43 through an optical fiber (for example, a polarization-maintaining fiber).
  • the light source 42 supplies measurement light to the fiber coupler 43 through an optical fiber.
  • the light source 42 is an LED or the like, but is not limited to a specific configuration.
  • the fiber coupler 43 has a function of collecting two lights into one light or separating one light into two lights.
  • the fiber coupler 43 is optically connected to the light source 42, the optical filter 44, and the detector 47 through an optical fiber.
  • the fiber coupler 43 supplies the measurement light emitted from the light source 42 to the optical filter 44 and supplies the reflected light supplied from the optical filter 44 to the detector 47.
  • the optical filter 44 has a function of converting light having a specific property (for example, linearly polarized light).
  • the optical filter 44 is optically connected to the fiber coupler 43 and the phase modulator 46 through an optical fiber.
  • the optical filter 44 filters measurement light supplied from the fiber coupler 43 to the phase modulator 46 and filters reflected light supplied from the phase modulator 46 to the fiber coupler 43.
  • the optical filter 44 serves to remove noise generated in the measurement light and the reflected light.
  • the phase modulator driving circuit 45 has a function of controlling the phase modulator 46 using a control signal and controlling the phase of light passing through the phase modulator 46.
  • the phase modulator driving circuit 45 is electrically connected to the phase modulator 46 and the synchronous detection circuit 48.
  • the phase modulator driving circuit 45 can control the phase of light passing through the phase modulator 46 based on an external signal.
  • the phase modulator driving circuit 45 controls the phase of light passing through the phase modulator 46 based on the signal from the synchronous detection circuit 48.
  • the phase modulator 46 modulates the phase or frequency of light passing through the phase modulator 46 based on a control signal from the phase modulator driving circuit 45.
  • the detector 47 has a function of converting the supplied light into an electrical signal and outputting it.
  • the detector 47 is optically connected to the fiber coupler 43 by an optical fiber or the like, and is electrically connected to the synchronous detection circuit 48.
  • the detector 47 is supplied with the reflected light from the fiber coupler 43, converts the supplied reflected light into an electric signal, and supplies it to the synchronous detection circuit 48.
  • the synchronous detection circuit 48 has a function of supplying a signal for controlling the phase to the phase modulator driving circuit 45.
  • the synchronous detection circuit 48 has a function of extracting a signal having a specific phase from the electrical signal transmitted from the detector 47.
  • the synchronous detection circuit 48 is electrically connected to the detector 47 and the phase modulator drive circuit 45.
  • the synchronous detection circuit 48 controls the phase of the measurement light to a specific phase via the phase modulator driving circuit.
  • the synchronous detection circuit 48 extracts a signal having the same phase as that of the measurement light from the electrical signal transmitted from the detector 47. Thereby, the synchronous detection circuit 48 can extract an electrical signal for the reflected light having the same phase as the measurement light.
  • the synchronous detection circuit 48 supplies the extracted electrical signal to the arithmetic circuit 49.
  • the arithmetic circuit 49 calculates the current passing through the electric wire 74 based on the electric signal supplied from the synchronous detection circuit 48.
  • the arithmetic circuit 49 is electrically connected to the synchronous detection circuit 48.
  • the arithmetic circuit 49 may be a dedicated circuit, a PC, or the like.
  • the arithmetic circuit 49 transmits information indicating the calculated current to the outside.
  • the surplus coil 50 is an optical fiber that supplies the measurement light supplied through the phase modulator 46 to the polarization plane holding fiber unit 60 and supplies the reflected light supplied through the polarization plane holding fiber unit 60 to the phase modulator 46. is there.
  • the polarization-maintaining fiber unit 60 has a function of canceling the change in optical characteristics with respect to the temperature change of the sensor unit 70. As shown in FIG. 9, the polarization-maintaining fiber unit 60 includes a temperature compensation element 1, a light transmission fiber 61 that optically connects the signal processing unit 40 and the temperature compensation element 1, and the temperature compensation element 1 and the sensor unit 70. And the like.
  • the light transmission fiber 61 supplies the measurement light supplied through the signal processing unit 40 to the temperature compensation element 1 and supplies the reflected light supplied through the temperature compensation element 1 to the signal processing unit 40.
  • the light transmission fiber 62 supplies the measurement light supplied through the temperature compensation element 1 to the sensor unit 70 and supplies the reflected light supplied through the sensor unit 70 to the temperature compensation element 1.
  • the temperature compensation element 1 is installed to cancel the change in the optical characteristics with respect to the temperature change of the sensor unit 70.
  • the temperature compensation element 1 is installed in the vicinity of the sensor unit 70 so that the temperature of the temperature compensation element 1 matches the temperature of the sensor unit 70.
  • the temperature compensation element 1 causes an optical characteristic change (phase change) opposite to the optical characteristic change of the sensor unit 70 to occur in the core of the polarization-maintaining fiber unit 60. .
  • the temperature compensation element 1 is a temperature compensation element shown in any one of the first to fifth embodiments.
  • the configuration of the temperature compensation element 1 is determined according to the change in optical characteristics with respect to the temperature change of the sensor unit 70, and is not limited to a specific configuration.
  • the sensor unit 70 causes a change in characteristics due to the current flowing through the electric wire 74 with respect to the light passing therethrough.
  • the sensor unit 70 has a function of causing the measurement light and the reflected light to generate a Faraday phase difference resulting from a current passing through the electric wire 74.
  • the sensor unit 70 includes a quarter-wave plate 71, a sensor fiber 72 disposed so as to surround the electric wire 74 from the quarter-wave plate 71, and a mirror 73 provided at the tip of the sensor fiber 72.
  • the quarter-wave plate 71 has two birefringence axes and has a function of shifting the phase of light passing through each birefringence axis by ⁇ / 2.
  • the quarter-wave plate 71 is installed at the introduction port of the sensor unit 70.
  • the quarter wavelength plate 71 has a function of converting linearly polarized light into circularly polarized light and circularly polarized light into linearly polarized light.
  • the sensor fiber 72 is an optical fiber connected to the quarter wavelength plate 71.
  • the sensor fiber 72 is installed so as to surround the electric wire 74 through which a current to be measured flows.
  • the sensor fiber 72 has a function of causing the measurement light and the reflected light to generate a Faraday phase difference caused by the magnetic field of the current flowing through the electric wire 74.
  • the mirror 73 is installed at the tip of the sensor fiber 72.
  • the mirror 73 has a function of reflecting the measurement light supplied through the sensor fiber 72 and supplying the reflected light to the sensor fiber 72.
  • a current measured by the Sagnac interferometric optical sensor system 10 flows through the electric wire 74.
  • the light source drive circuit 41 supplies power to the light source 42.
  • the light source 42 supplies measurement light such as a laser to the fiber coupler 43 through an optical fiber by the electric power from the light source driving circuit 41.
  • the measurement light supplied from the light source 42 passes through the fiber coupler 43 and the optical filter 44 and is supplied to the phase modulator 46.
  • the phase modulator 46 is controlled by the phase modulator driving circuit 45 and controls the phase of the measurement light passing therethrough. That is, the synchronous detection circuit 48 sends a control signal for setting the measurement light to a predetermined phase or frequency to the phase modulator driving circuit 45.
  • the phase modulator driving circuit 45 controls the phase modulator 46 based on the received control signal. As a result, the measurement light that has passed through the phase modulator 46 has a predetermined phase or frequency.
  • the measurement light that has passed through the phase modulator 46 passes through the extra length coil 50 and the light transmission fiber 61 of the polarization plane holding fiber portion 60 and is supplied to the temperature compensation element 1.
  • characteristics such as the phase of the measurement light change depending on optical characteristics such as an extinction ratio or crosstalk of the temperature compensation element 1.
  • the measurement light that has passed through the temperature compensation element 1 passes through the light transmission fiber 62 and is supplied to the quarter wavelength plate 71 of the sensor unit 70.
  • the phase of the measuring light is adjusted by the quarter wavelength plate 71 and passes through the sensor fiber 72.
  • a Faraday phase difference is generated in the phase of the measurement light passing through the sensor fiber 72 due to the current passing through the electric wire 74.
  • the measurement light that has passed through the sensor fiber 72 is reflected by the mirror 73 and passes through the sensor fiber 72 again.
  • the measurement light (reflected light) reflected by the mirror 73 includes a sensor fiber 72, a quarter wavelength plate 71, a light transmission fiber 62, a temperature compensation element 1, a light transmission fiber 61, a surplus coil 50, a phase modulator 46, and an optical.
  • the light passes through the filter 44 and the fiber coupler 43 and is supplied to the detector 47.
  • the detector 47 converts the reflected light into an electric signal and sends it to the synchronous detection circuit 48.
  • the synchronous detection circuit 48 extracts the electrical signal generated from the reflected light from the received electrical signal. That is, the synchronous detection circuit 48 extracts a signal having the same phase or frequency of the measurement light from the received electrical signal. As a result, the synchronous detection circuit 48 can extract an electric signal generated from the reflected light without being interfered by noise.
  • the detector 47 sends the extracted electrical signal to the arithmetic circuit 49.
  • the arithmetic circuit 49 receives an electrical signal from the detector 47. When the electric signal is received from the detector 47, the arithmetic circuit 49 calculates the Faraday phase difference caused by the current passing through the electric wire 74 from the received electric signal. When the Faraday phase difference is calculated, the arithmetic circuit 49 calculates the current flowing through the electric wire 74 from the calculated Faraday phase difference. Note that the method of calculating the current flowing through the electric wire 74 based on the received electrical signal by the arithmetic circuit 49 is not limited to a specific method.
  • FIG. 10 is a diagram illustrating an example of the temperature characteristics of the sensor unit 70 and the temperature characteristics of the temperature compensation element 1 according to the sixth embodiment.
  • the x-axis is the sensor temperature and the y-axis is the ratio error.
  • the ratio error of the sensor unit 70 increases substantially linearly as the temperature of the sensor unit 70 increases. For example, when the temperature of the sensor unit 70 is ⁇ 30 ° C., the ratio error of the sensor unit 70 is about ⁇ 0.15%. When the temperature of the sensor unit 70 is 5 ° C., the ratio error of the sensor unit 70 is almost 0%. Furthermore, when the temperature of the sensor unit 70 is 30 ° C., the ratio error of the sensor unit 70 is about 0.1%.
  • the ratio error of the temperature compensation element 1 decreases almost linearly. For example, when the temperature of the sensor unit 70 is ⁇ 30 ° C., the ratio error of the temperature compensation element 1 is about 0.15%. When the temperature of the sensor unit 70 is 5 ° C., the ratio error of the temperature compensation element 1 is almost 0%. Further, when the temperature of the sensor unit 70 is 30 ° C., the ratio error of the temperature compensation element 1 is about ⁇ 0.1%.
  • the temperature compensation element 1 has a temperature characteristic opposite to the temperature characteristic of the sensor unit 70, and the temperature characteristic of the sensor unit 70 is canceled by the temperature compensation element 1.
  • FIG. 11 is a diagram illustrating an example of temperature characteristics of the Sagnac interference optical sensor system 10 according to the sixth embodiment.
  • the temperature characteristic of the Sagnac interference type optical sensor system 10 is determined by adding the temperature characteristic of the sensor unit 70 and the temperature characteristic of the temperature compensation element 1. That is, the Sagnac interference optical sensor system 10 can cancel the temperature characteristic of the sensor unit 70 using the temperature characteristic of the temperature compensation element 1.
  • the ratio error of the Sagnac interferometric optical sensor system 10 is approximately 0% regardless of the temperature of the sensor unit 70.
  • the temperature characteristic of the temperature compensation element 1 is opposite to the temperature characteristic of the sensor unit 70. Therefore, the temperature characteristic of the Sagnac interference type optical sensor system 10 changes at about 0% regardless of the temperature of the sensor unit 70.
  • the polarization-maintaining fiber unit 60 may perform temperature compensation for the signal processing unit 40.
  • the polarization-maintaining fiber unit 60 is installed so that the temperature of the temperature compensation element 1 matches the temperature of the signal processing unit 40.
  • the Sagnac interference type optical sensor system may include a temperature compensation element 1 for the signal processing unit 40 and a temperature compensation element 1 for the sensor unit 70.
  • the Sagnac interference type optical sensor system as described above can cancel the change in the optical characteristic with respect to the temperature change of the sensor unit by the temperature compensation element 1. As a result, the Sagnac interferometric optical sensor system can accurately measure current even when a temperature change occurs.
  • the Sagnac interference type optical sensor system can be configured more easily than a system that corrects the current measurement result based on the temperature of the sensor unit measured using a thermometer or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

The purpose of the present invention is to provide a temperature compensating element and a light sensor system whereby temperature compensation can be effectively performed. The temperature compensating element according to an embodiment of the present invention is provided with a stress imparting part. The stress imparting part applies an anisotropic stress to an optical fiber in accordance with a temperature change in an external device optically connected to the optical fiber.

Description

温度補償素子及び光センサシステムTemperature compensation element and optical sensor system
 本発明の実施形態は、温度補償素子及び光センサシステムに関する。 Embodiments described herein relate generally to a temperature compensation element and an optical sensor system.
 レーザなどの光を用いて磁場又は電流などを測定する光センサは、センサファイバなどの温度依存性などによる温度特性を有しており、温度によって測定結果に誤差を生じる。
そこで、温度補償素子を用いてセンサファイバに温度に応じた応力を加えセンサファイバの温度特性を制御することで光センサ自身の温度特性を相殺する方法が提案されている。
しかしながら、従来、温度補償素子は、効果的にセンサファイバに不均一な応力を印加できないという課題があった。
An optical sensor that measures a magnetic field or current using light such as a laser has temperature characteristics due to temperature dependency of a sensor fiber or the like, and an error occurs in a measurement result depending on temperature.
Therefore, a method has been proposed in which a temperature compensation element is used to apply a stress corresponding to the temperature to the sensor fiber to control the temperature characteristic of the sensor fiber to cancel the temperature characteristic of the optical sensor itself.
However, conventionally, the temperature compensation element has a problem that it cannot effectively apply non-uniform stress to the sensor fiber.
特開2010-96761号公報JP 2010-96761 A 特開2005-517961号公報JP 2005-517961 A 特開2002-529709号公報JP 2002-529709 A 特開2012-68107号公報JP 2012-68107 A
 上記の課題を解決するために効果的に温度補償を行うことができる温度補償素子及び光センサシステムを提供することを目的とする。 An object of the present invention is to provide a temperature compensation element and an optical sensor system that can effectively perform temperature compensation in order to solve the above-described problems.
 実施形態によれば、温度補償素子は、応力付与部を備える。応力付与部は、光ファイバに光学的に接続されている外部装置の温度変化に応じて、前記光ファイバに非等方的な応力を印加する。 According to the embodiment, the temperature compensation element includes a stress applying portion. The stress applying unit applies anisotropic stress to the optical fiber according to a temperature change of an external device optically connected to the optical fiber.
図1は、第1実施形態に係る温度補償素子の光伝播方向の断面図である。FIG. 1 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the first embodiment. 図2Aは、図1の線A-Aに沿った偏波面保持ファイバの例の断面図である。2A is a cross-sectional view of an example of a polarization maintaining fiber along line AA in FIG. 図2Bは、図1の線A-Aに沿った偏波面保持ファイバの他の例の断面図である。FIG. 2B is a cross-sectional view of another example of the polarization maintaining fiber along the line AA in FIG. 図3Aは、図1の線B-Bに沿った温度補償素子の例の断面図である。FIG. 3A is a cross-sectional view of an example of a temperature compensation element along line BB in FIG. 図3Bは、図1の線B-Bに沿った温度補償素子の他の例の断面図である。FIG. 3B is a cross-sectional view of another example of the temperature compensation element taken along line BB in FIG. 図4は、第2実施形態に係る温度補償素子の光伝播方向の断面図である。FIG. 4 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the second embodiment. 図5Aは、図4の線A-Aに沿った温度補償素子の例の断面図である。FIG. 5A is a cross-sectional view of an example of a temperature compensation element along line AA in FIG. 図5Bは、図4の線A-Aに沿った温度補償素子の他の例の断面図である。FIG. 5B is a cross-sectional view of another example of the temperature compensation element along line AA in FIG. 図6は、第3実施形態に係る温度補償素子の例の断面図である。FIG. 6 is a cross-sectional view of an example of a temperature compensation element according to the third embodiment. 図7Aは、第4実施形態に係る温度補償素子の例の断面図である。FIG. 7A is a cross-sectional view of an example of a temperature compensation element according to the fourth embodiment. 図7Bは、第4実施形態に係る温度補償素子の他の例の断面図である。FIG. 7B is a cross-sectional view of another example of the temperature compensation element according to the fourth embodiment. 図8は、第5実施形態に係る温度補償素子の構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of the temperature compensation element according to the fifth embodiment. 図9は、第6実施形態に係るサニャック干渉型光センサシステムの構成例を示す図である。FIG. 9 is a diagram illustrating a configuration example of a Sagnac interference type optical sensor system according to the sixth embodiment. 図10は、第6実施形態に係るセンサ部の温度特性及び温度補償素子の温度特性の例を示す図である。FIG. 10 is a diagram illustrating an example of the temperature characteristics of the sensor unit and the temperature characteristics of the temperature compensation element according to the sixth embodiment. 図11は、第6実施形態に係るサニャック干渉型光センサシステムの温度特性の例を示す図である。FIG. 11 is a diagram illustrating an example of temperature characteristics of the Sagnac interference type optical sensor system according to the sixth embodiment.
 以下、図面を参照しながら、実施形態に係る温度補償素子及び光センサシステムについて詳細に説明する。
(第1実施形態)
 第1実施形態に係る温度補償素子について説明する。図1は、第1実施形態に係る温度補償素子の光伝播方向の断面図である。図1が示すように、温度補償素子1は、偏波面保持ファイバ2、偏波面保持ファイバ2を被覆する保護層3、及び、偏波面保持ファイバ2に応力を印加する応力付与層4などを有する。
Hereinafter, a temperature compensation element and an optical sensor system according to an embodiment will be described in detail with reference to the drawings.
(First embodiment)
The temperature compensation element according to the first embodiment will be described. FIG. 1 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the first embodiment. As shown in FIG. 1, the temperature compensation element 1 includes a polarization maintaining fiber 2, a protective layer 3 that covers the polarization maintaining fiber 2, a stress applying layer 4 that applies stress to the polarization maintaining fiber 2, and the like. .
 偏波面保持ファイバ2は、その外周を保護層3で被覆されている。保護層3は、温度補償素子1の周辺のみならず、温度補償素子1の両端から延びる偏波面保持ファイバ2の全体を被覆している。保護層3は、偏波面保持ファイバ2を外部環境から保護する機能を有する。たとえば、保護層3は、外部からの光が偏波面保持ファイバ2の内部に侵入することを防止し、偏波面保持ファイバ2を通過する光にノイズが生じることを防止する。また、保護層3は、水分やごみなどが偏波面保持ファイバ2に付着することを防止し、偏波面保持ファイバ2が腐食することを防止する。保護層3は、UV硬化樹脂又はアクリル樹脂などで構成され、厚さは、30~40μm程度である。保護層3の物質及び構造などは、特定の構成に限定さえるものではない。 The polarization maintaining fiber 2 is covered with a protective layer 3 on the outer periphery. The protective layer 3 covers not only the periphery of the temperature compensation element 1 but also the entire polarization plane holding fiber 2 extending from both ends of the temperature compensation element 1. The protective layer 3 has a function of protecting the polarization maintaining fiber 2 from the external environment. For example, the protective layer 3 prevents light from the outside from entering the inside of the polarization maintaining fiber 2 and prevents noise from being generated in the light passing through the polarization maintaining fiber 2. Further, the protective layer 3 prevents moisture, dust, and the like from adhering to the polarization-maintaining fiber 2 and prevents the polarization-maintaining fiber 2 from corroding. The protective layer 3 is made of UV curable resin or acrylic resin, and has a thickness of about 30 to 40 μm. The material and structure of the protective layer 3 are not limited to a specific configuration.
 応力付与層(応力付与部)4は、金属薄膜層5によって構成され、偏波面保持ファイバ2の一部を被覆している。偏波面保持ファイバ2は、光伝播方向の所定の区間において保護層3によって被覆されていない。金属薄膜層5は、保護層3によって被覆されていない区間の偏波面保持ファイバ2を被覆している。また、図1に示すように、金属薄膜層5は、当該区間を超えて保護層3によって被覆されている部分についても被覆してもよい。 The stress applying layer (stress applying portion) 4 is composed of the metal thin film layer 5 and covers a part of the polarization-maintaining fiber 2. The polarization-maintaining fiber 2 is not covered with the protective layer 3 in a predetermined section in the light propagation direction. The metal thin film layer 5 covers the polarization maintaining fiber 2 in a section not covered by the protective layer 3. Further, as shown in FIG. 1, the metal thin film layer 5 may also cover a portion covered with the protective layer 3 beyond the section.
 金属薄膜層5の大部分は、偏波面保持ファイバ2に直接接している。これによって、金属薄膜層5は、保護層3を介在させることなく、偏波面保持ファイバ2に応力を印加することができ、偏波面保持ファイバ2に効果的に応力を印加することができる。また、金属薄膜層5の大部分が偏波面保持ファイバ2に直接接していることで、金属薄膜層5は、より微細な応力を偏波面保持ファイバ2に印加することができ、より精度よく偏波面保持ファイバ2に応力を印加することができる。偏波面保持ファイバ2に印加される応力については、後に詳述する。 Most of the metal thin film layer 5 is in direct contact with the polarization-maintaining fiber 2. Thereby, the metal thin film layer 5 can apply stress to the polarization plane holding fiber 2 without interposing the protective layer 3, and can effectively apply stress to the polarization plane holding fiber 2. In addition, since most of the metal thin film layer 5 is in direct contact with the polarization-maintaining fiber 2, the metal thin-film layer 5 can apply a finer stress to the polarization-maintaining fiber 2, and can be more accurately biased. Stress can be applied to the wavefront holding fiber 2. The stress applied to the polarization plane holding fiber 2 will be described in detail later.
 次に、偏波面保持ファイバ2について説明する。 
 図2は、図1の線A-Aに沿った偏波面保持ファイバ2の2つの例の断面図を示す。 
 図2に示すように、偏波面保持ファイバ2は、中心にコア11、コア11に隣接する偏波面保持部12a並びにb、及び、コア11及び偏波面保持部12a並びにbの周囲を覆っているクラッド13などを有する。また、前述の通り、偏波面保持ファイバ2は、保護層3に被覆されている。
Next, the polarization plane maintaining fiber 2 will be described.
FIG. 2 shows cross-sectional views of two examples of polarization maintaining fiber 2 along line AA in FIG.
As shown in FIG. 2, the polarization-maintaining fiber 2 covers the periphery of the core 11, the polarization-plane holding portions 12 a and 12 b adjacent to the core 11, and the core 11 and the polarization-plane holding portions 12 a and b at the center. It has a clad 13 and the like. Further, as described above, the polarization-maintaining fiber 2 is covered with the protective layer 3.
 偏波面保持ファイバ2は、パンダ型偏波面保持ファイバ(図2(A))及びボウタイ型偏波面保持ファイバ(図2(B))などの応力付与型偏波面保持ファイバである。図2(A)に示すように、パンダ型偏波面保持ファイバは、コア11に応力を付与する偏波面保持部12の断面が円形である。また、図2(B)に示すように、ボウタイ型偏波面保持ファイバは、偏波面保持部12の断面が台形状である。ボウタイ型偏波面保持ファイバの偏波面保持部12は、台形状の短辺がコア11に向くように設置されている。偏波面保持ファイバ2がどの形態を採るかは、偏波面保持ファイバ2の用途や設置場所などによって決定される。 The polarization-maintaining fiber 2 is a stress-applied polarization-maintaining fiber such as a panda-type polarization-maintaining fiber (FIG. 2A) and a bow-tie polarization-maintaining fiber (FIG. 2B). As shown in FIG. 2A, in the panda-type polarization plane holding fiber, the polarization plane holding section 12 that applies stress to the core 11 has a circular cross section. Further, as shown in FIG. 2B, in the bow-tie polarization plane holding fiber, the polarization plane holding section 12 has a trapezoidal cross section. The polarization plane holding unit 12 of the bow tie type polarization plane holding fiber is installed such that the trapezoidal short side faces the core 11. Which form the polarization-maintaining fiber 2 takes is determined by the use and installation location of the polarization-maintaining fiber 2.
 コア11(光ファイバ)は、センサから発生するレーザなどの光、又は、信号処理器などから発生するレーザなどの光が通過する光通過部である。コア11は、偏波面保持ファイバ2の中心部に位置する。また、コア11は、2つの複屈折軸(図2において、Y軸(Fast Axis)及びX軸(Slow Axis))を有する。コア11が2つの複屈折軸を有することによって、2つの直線偏光が、それぞれの複屈折軸に拘束されてコア11を通過することができる。 The core 11 (optical fiber) is a light passage section through which light such as a laser generated from a sensor or light such as a laser generated from a signal processor passes. The core 11 is located at the center of the polarization-maintaining fiber 2. The core 11 has two birefringence axes (in FIG. 2, a Y axis (Fast Axis) and an X axis (Slow Axis)). Since the core 11 has two birefringence axes, two linearly polarized lights can pass through the core 11 while being constrained by the respective birefringence axes.
 偏波面保持部12aは、コア11と平行して偏波面保持ファイバ2内部に設置されている。偏波面保持部12aは、コア11と所定の距離を置いて設置される。また、偏波面保持部12bは、偏波面保持部12aの反対側にコア11と平行して偏波面保持ファイバ2内部に設置されている。偏波面保持部12a及びbは、コア11に生じる応力を調整する機能を有する。たとえば、偏波面保持部12a及びbは、コア11に応力を印加し、コア11を複屈折軸に拘束されて通過する直線偏光の偏波面を保持する。 The polarization plane holding unit 12 a is installed inside the polarization plane holding fiber 2 in parallel with the core 11. The polarization plane holding unit 12a is installed at a predetermined distance from the core 11. Further, the polarization plane holding unit 12b is installed inside the polarization plane holding fiber 2 in parallel with the core 11 on the opposite side of the polarization plane holding unit 12a. The polarization plane holding portions 12 a and b have a function of adjusting stress generated in the core 11. For example, the polarization plane holding units 12a and 12b apply stress to the core 11, and hold the polarization plane of linearly polarized light that passes through the core 11 while being constrained by the birefringence axis.
 クラッド13は、コア11及び偏波面保持部12a並びにbを所定の位置に固定するように円柱状に形成される。クラッド13は、偏波面保持部12a並びに12bと同様に、コア11へ応力を印加してもよい。 
 また、偏波面保持ファイバ2の構造は、偏波面保持ファイバ2の任意の部分において同様の構造である。 
 なお、偏波面保持ファイバ2の構成は、特定の構成に限定されるものではない。
The clad 13 is formed in a cylindrical shape so as to fix the core 11 and the polarization plane holding portions 12a and 12b at predetermined positions. The clad 13 may apply stress to the core 11 similarly to the polarization plane holding portions 12a and 12b.
The structure of the polarization-maintaining fiber 2 is the same in any part of the polarization-maintaining fiber 2.
The configuration of the polarization-maintaining fiber 2 is not limited to a specific configuration.
 次に、応力付与層4について説明する。 
 応力付与層4は、偏波面保持ファイバ2の一部に応力を印加する機能を有する。応力付与層4は、応力付与層4自身の温度変化に応じて膨張又は収縮し偏波面保持ファイバ2に応力を印加する。即ち、応力付与層4は、温度に応じた応力を偏波面保持ファイバ2に印加する。応力付与層4が偏波面保持ファイバ2に応力を印加すると、偏波面保持ファイバ2内に設置されているコア11に応力が印加される。コア11に応力が印加されると、コア11が歪み、コア11の消光比又はクロストークなどの光学的特性が変化する。コア11の光学的特性が変化することによって、コア11を通過する伝播光の位相が変化する。
Next, the stress applying layer 4 will be described.
The stress applying layer 4 has a function of applying stress to a part of the polarization-maintaining fiber 2. The stress applying layer 4 expands or contracts according to the temperature change of the stress applying layer 4 itself, and applies a stress to the polarization plane holding fiber 2. That is, the stress applying layer 4 applies a stress corresponding to the temperature to the polarization plane holding fiber 2. When the stress applying layer 4 applies stress to the polarization-maintaining fiber 2, stress is applied to the core 11 installed in the polarization-maintaining fiber 2. When stress is applied to the core 11, the core 11 is distorted, and the optical characteristics such as the extinction ratio or crosstalk of the core 11 change. As the optical characteristics of the core 11 change, the phase of propagating light passing through the core 11 changes.
 一方、磁場又は電流などを測定する光センサは、温度特性を有し、温度変化に応じて、センサを伝播する光に位相変化が生じ、結果、測定結果に誤差を生じる。たとえば、温度が上昇するほど光センサから生じる光の位相が進む場合、位相が進んだ分測定結果に誤差が生じる。 On the other hand, an optical sensor that measures a magnetic field or an electric current has a temperature characteristic, and a phase change occurs in light propagating through the sensor according to a temperature change, resulting in an error in the measurement result. For example, when the phase of light generated from the optical sensor advances as the temperature rises, an error occurs in the measurement result as the phase advances.
 光センサから延びる偏波面保持ファイバ2の一部を被覆している応力付与層4は、光センサが生じる誤差を相殺するように、偏波面保持ファイバ2の光学的特性を変化させる。
たとえば、上記の例では、応力付与層4は、温度が上昇するほどコア11を通過する伝播光の位相が遅れるような光学的特性が生じるように、偏波面保持ファイバ2へ応力を印加する。これによって、光センサが温度変化によって生じる位相変化と、温度補償素子1が温度変化によって生じる位相変化とが互いに相殺し、光センサは、周辺温度に影響されることなく、対象物を測定することができる。
The stress applying layer 4 covering a part of the polarization-maintaining fiber 2 extending from the optical sensor changes the optical characteristics of the polarization-maintaining fiber 2 so as to cancel out an error caused by the optical sensor.
For example, in the above example, the stress applying layer 4 applies stress to the polarization-maintaining fiber 2 so that an optical characteristic is generated such that the phase of propagating light passing through the core 11 is delayed as the temperature rises. Thereby, the phase change caused by the temperature change of the optical sensor and the phase change caused by the temperature change of the temperature compensation element 1 cancel each other, and the optical sensor measures the object without being affected by the ambient temperature. Can do.
 図3は、図1の線B-Bに沿った温度補償素子の2つの例の断面図を示す。 
 図3に示すように、応力付与層4を構成する金属薄膜層5は、偏波面保持ファイバ2を被覆している。 
 応力付与層4は、偏波面保持ファイバ2に印加する応力が偏波面保持ファイバ2の外周に均一に生じないように(非等方的に生じるように)構成されている。偏波面保持ファイバ2に印加する応力が外周に非等方的に生じることによって、より効果的にコア11が不均一に歪み、コア11の屈折率及び消光比又はクロストークなどの光学的特性の変化が顕著になる。
FIG. 3 shows cross-sectional views of two examples of temperature compensating elements along line BB in FIG.
As shown in FIG. 3, the metal thin film layer 5 constituting the stress applying layer 4 covers the polarization plane holding fiber 2.
The stress applying layer 4 is configured so that the stress applied to the polarization-maintaining fiber 2 is not uniformly generated on the outer periphery of the polarization-maintaining fiber 2 (is generated anisotropically). Since the stress applied to the polarization plane holding fiber 2 is anisotropically generated on the outer periphery, the core 11 is more effectively distorted unevenly, and the refractive index and extinction ratio of the core 11 or optical characteristics such as crosstalk are reduced. The change becomes noticeable.
 たとえば、応力付与層4は、金属などで構成される金属薄膜層5から構成される。金属薄膜層5を構成する金属は、ニッケル、金又はアルミニウムなど、熱膨張率などの特徴が既知で安定している金属であるが、特定の種類の金属に限定されるものではない。金属薄膜層5は、光伝播方向に垂直な断面が楕円形や長方形などの非円形になるように形成される。断面が非円形である金属薄膜層5の膨張又は収縮から生じる応力は、偏波面保持ファイバ2に非等方的に生じる。これによって、偏波面保持ファイバ2内にあるコア11は効果的に不均一に歪み、コア11の温度変化に対する光学的特性の変化が顕著になる。 For example, the stress applying layer 4 is composed of a metal thin film layer 5 composed of metal or the like. The metal constituting the metal thin film layer 5 is a metal having a known and stable characteristic such as a coefficient of thermal expansion such as nickel, gold, or aluminum, but is not limited to a specific type of metal. The metal thin film layer 5 is formed such that a cross section perpendicular to the light propagation direction is non-circular such as an ellipse or a rectangle. The stress resulting from the expansion or contraction of the metal thin film layer 5 having a non-circular cross section is generated anisotropically in the polarization-maintaining fiber 2. As a result, the core 11 in the polarization-maintaining fiber 2 is effectively distorted unevenly, and the change in optical characteristics with respect to the temperature change of the core 11 becomes remarkable.
 図3(A)は、図1の線B-Bに沿った温度補償素子の例の断面図である。図3(A)に示す例において、金属薄膜層5は、y軸方向に延びる楕円形をしている。たとえば、金属薄膜層5が温度上昇によって膨張した場合、膨張によって生じる応力は、偏波面保持ファイバ2を押しつぶす方向に印加される。また、偏波面保持ファイバ2のy軸方向に生じる応力は、x軸方向に生じる応力よりも大きい。したがって、偏波面保持ファイバ2は、y軸方向からより大きな応力で押しつぶされ、y軸方向へより顕著に歪む。以上のように、図3(A)に示す例において、温度変化が生じた場合、金属薄膜層5が生じる応力は、偏波面保持ファイバ2に非等方的に生じ、コア11の温度変化に対する光学的特性の変化が顕著になる。 FIG. 3A is a cross-sectional view of an example of a temperature compensation element taken along line BB in FIG. In the example shown in FIG. 3A, the metal thin film layer 5 has an elliptical shape extending in the y-axis direction. For example, when the metal thin film layer 5 expands due to a temperature rise, the stress generated by the expansion is applied in the direction of crushing the polarization plane holding fiber 2. Further, the stress generated in the y-axis direction of the polarization-maintaining fiber 2 is larger than the stress generated in the x-axis direction. Therefore, the polarization-maintaining fiber 2 is crushed by a greater stress from the y-axis direction and is distorted more significantly in the y-axis direction. As described above, in the example shown in FIG. 3A, when a temperature change occurs, the stress generated in the metal thin film layer 5 is anisotropically generated in the polarization-maintaining fiber 2, and changes with respect to the temperature change of the core 11. The change in optical characteristics becomes remarkable.
 また、応力付与層4を構成する金属薄膜層5は、金属薄膜層5の中心部と偏波面保持ファイバ2とがずれるように形成されていてもよい。この場合、金属薄膜層5は、円形であってもよい。このような金属薄膜層5の膨張又は収縮から生じる応力は、偏波面保持ファイバ2に非等方的に生じる。これによって、偏波面保持ファイバ2内にあるコア11は効果的に歪み、コア11の温度変化に対する光学的特性の変化が顕著になる。 Further, the metal thin film layer 5 constituting the stress applying layer 4 may be formed so that the central portion of the metal thin film layer 5 and the polarization plane holding fiber 2 are displaced. In this case, the metal thin film layer 5 may be circular. Such stress resulting from the expansion or contraction of the metal thin film layer 5 is anisotropically generated in the polarization-maintaining fiber 2. As a result, the core 11 in the polarization-maintaining fiber 2 is effectively distorted, and the change in optical characteristics with respect to the temperature change of the core 11 becomes remarkable.
 図3(B)は、図1の線B-Bに沿った温度補償素子の他の例の断面図である。図3(B)に示す例において、金属薄膜層5は光伝播方向に垂直な断面が円形となるように形成されているが、偏波面保持ファイバ2は金属薄膜層5の中心部からずれている。たとえば、金属薄膜層5が温度上昇によって膨張した場合、x軸方向の反対方向(図3(B)の右から左方向)から偏波面保持ファイバ2のコア11に印加される応力は、他の方向から印加される応力よりも大きい。したがって、偏波面保持ファイバ2のコア11は、x軸方向の反対方向からより大きな応力を印加され、x軸方向へよく顕著に歪む。以上のように、図3(B)に示す例において、温度変化が生じた場合、金属薄膜層5が生じる応力は、偏波面保持ファイバ2に非等方的に生じ、コア11の温度変化に対する光学的特性の変化が顕著になる。 FIG. 3B is a cross-sectional view of another example of the temperature compensation element taken along line BB in FIG. In the example shown in FIG. 3 (B), the metal thin film layer 5 is formed so that the cross section perpendicular to the light propagation direction is circular, but the polarization-maintaining fiber 2 is displaced from the center of the metal thin film layer 5. Yes. For example, when the metal thin film layer 5 expands due to a temperature rise, the stress applied to the core 11 of the polarization-maintaining fiber 2 from the direction opposite to the x-axis direction (from right to left in FIG. 3B) It is larger than the stress applied from the direction. Accordingly, the core 11 of the polarization-maintaining fiber 2 is applied with a greater stress from the opposite direction to the x-axis direction and is well and significantly distorted in the x-axis direction. As described above, in the example shown in FIG. 3B, when a temperature change occurs, the stress generated by the metal thin film layer 5 is anisotropically generated in the polarization-maintaining fiber 2, and changes with respect to the temperature change of the core 11. The change in optical characteristics becomes remarkable.
 次に、応力を印加する方向について説明する。 
 偏波面保持ファイバ2は、上記の2つの複屈折軸の光伝播定数の差によって偏波面を保持している。また、複屈折軸の光伝播定数は、偏波面保持ファイバ2の複屈折軸に沿った方向に応力を印加することによって顕著に変化する。したがって、両複屈折軸の光伝播定数の差は、複屈折軸の一方に沿った方向に応力を印加することにより効果的に変化する。
その結果、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性は、応力に対してより顕著に変化する。偏波面保持ファイバ2の光学的特性の温度変化をより顕著に変化させる必要がある場合には、応力付与層4は、偏波面保持ファイバ2に印加される応力の方向が1つの複屈折軸と平行となるように形成される。
Next, the direction in which stress is applied will be described.
The polarization plane holding fiber 2 holds the plane of polarization by the difference between the light propagation constants of the two birefringence axes. In addition, the light propagation constant of the birefringence axis changes significantly by applying a stress in the direction along the birefringence axis of the polarization-maintaining fiber 2. Therefore, the difference between the light propagation constants of both birefringence axes is effectively changed by applying a stress in a direction along one of the birefringence axes.
As a result, the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 change more significantly with respect to stress. When it is necessary to change the temperature change of the optical characteristics of the polarization-maintaining fiber 2 more remarkably, the stress applying layer 4 has the direction of the stress applied to the polarization-maintaining fiber 2 as one birefringence axis. It is formed to be parallel.
 一方、各複屈折軸に印加される応力の大きさが近似している場合には、複屈折軸の光伝播定数の差があまり変化せず、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性は、ゆるやかに変化する。たとえば、両複屈折軸の間(即ち、両複屈折軸から45度近辺の角度)に応力が印加される場合、両複屈折軸方向に生じる応力の大きさが近似し、両複屈折軸の光伝播定数の差はゆるやかに変化する。その結果、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性は、温度変化に対して緩やかに変化する。
偏波面保持ファイバ2の光学的特性の温度変化をゆるやかに変化させる必要がある場合には、応力付与層4は、偏波面保持ファイバ2に印加される応力の大きさが近似するように形成される。
On the other hand, when the magnitude of the stress applied to each birefringence axis is approximate, the difference in the light propagation constant of the birefringence axis does not change much, and the extinction ratio or crosstalk of the polarization-maintaining fiber 2 or the like The optical characteristics of the film change slowly. For example, when stress is applied between both birefringence axes (that is, an angle around 45 degrees from both birefringence axes), the magnitude of the stress generated in both birefringence axis directions approximates, The difference in the light propagation constant changes slowly. As a result, the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 change gently with respect to temperature changes.
When it is necessary to change the temperature change of the optical characteristics of the polarization-maintaining fiber 2 gently, the stress applying layer 4 is formed so that the magnitude of the stress applied to the polarization-maintaining fiber 2 is approximated. The
 なお、金属薄膜層5が偏波面保持ファイバ2に接着されているため、温度変化によって金属薄膜層5が膨張又は収縮すると、偏波面保持ファイバ2に縦荷重応力(光伝播方向に生じる応力)も印加される。縦荷重応力を印加されると、偏波面保持ファイバ2は、光伝播方向へも伸長又は収縮する。これによっても、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性は変化する。 Since the metal thin film layer 5 is bonded to the polarization plane holding fiber 2, when the metal thin film layer 5 expands or contracts due to a temperature change, the longitudinal load stress (stress generated in the light propagation direction) is also applied to the polarization plane holding fiber 2. Applied. When longitudinal load stress is applied, the polarization-maintaining fiber 2 extends or contracts in the light propagation direction. This also changes the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2.
 以上のように、偏波面保持ファイバ2に印加する応力の強度及び方向によって、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性の変化量は異なる。金属薄膜層5の物資、形状又は方向は、金属薄膜層5が温度補償するセンサなどの温度特性を相殺するような光学的特性の温度変化を持つように決定され、特定の構成に限定されるものではない。 As described above, the amount of change in optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 varies depending on the intensity and direction of the stress applied to the polarization-maintaining fiber 2. The material, shape, or direction of the metal thin film layer 5 is determined so that the metal thin film layer 5 has a temperature change of an optical characteristic that cancels a temperature characteristic of a sensor that compensates the temperature, and is limited to a specific configuration. It is not a thing.
 次に、金属薄膜層5の形成方法について説明する。 
 金属薄膜層5は、電解メッキ又は金属蒸着によって形成される。たとえば、偏波面保持ファイバ2の応力付与層4を形成する区間の保護層3が除去される。当該区間以外の部分は、マスキングを施される。この状態で、偏波面保持ファイバ2の応力付与層4を形成する区間に電解メッキ又は金属蒸着を施こすことによって、金属薄膜層5は、形成される。
また、金属薄膜層5の断面を非円形になるように金属薄膜層5を形成するため、又は、偏波面保持ファイバ2が金属薄膜層5の中心部からずれるように金属薄膜層を形成するために、電解メッキ若しくは金属蒸着において電界の方向や強度の調整、メッキ時間又は蒸着時間の調整、又は、偏波面保持ファイバ2の電界方向若しくは金属蒸着が進む方向に対する軸回転などの処理工程が単体又は組み合わせて行われる。さらに同様な工程によって、金属薄膜層5の厚さも調整される。
Next, a method for forming the metal thin film layer 5 will be described.
The metal thin film layer 5 is formed by electrolytic plating or metal vapor deposition. For example, the protective layer 3 in the section where the stress applying layer 4 of the polarization-maintaining fiber 2 is formed is removed. The portions other than the section are masked. In this state, the metal thin film layer 5 is formed by performing electrolytic plating or metal vapor deposition on the section where the stress applying layer 4 of the polarization-maintaining fiber 2 is formed.
Further, in order to form the metal thin film layer 5 so that the cross section of the metal thin film layer 5 is non-circular, or to form the metal thin film layer so that the polarization plane maintaining fiber 2 is displaced from the center of the metal thin film layer 5. In addition, a process step such as adjustment of the direction and strength of the electric field, adjustment of the plating time or deposition time in the electroplating or metal deposition, or axis rotation with respect to the direction of the electric field of the polarization plane holding fiber 2 or the direction of metal deposition is performed alone or It is done in combination. Further, the thickness of the metal thin film layer 5 is also adjusted by a similar process.
 また、金属薄膜層5は、偏波面保持ファイバ2の応力付与層4に同心円状に形成された後、加工によって金属薄膜層5の断面図が所定の形状になるように形成されてもよい。たとえば、金属薄膜層5は、ヤスリがけ又はエッチング処理などによって金属薄膜層5の断面図が所定の形状になるように形成されてもよい。 
 なお、金属薄膜層5の形成方法は、金属薄膜層5を所定の形状に加工できる方法であればよく、特定の形成方法に限定されるものではない。
Further, the metal thin film layer 5 may be formed so that the cross-sectional view of the metal thin film layer 5 has a predetermined shape by processing after being formed concentrically on the stress applying layer 4 of the polarization maintaining fiber 2. For example, the metal thin film layer 5 may be formed so that a cross-sectional view of the metal thin film layer 5 has a predetermined shape by file or etching.
In addition, the formation method of the metal thin film layer 5 should just be a method which can process the metal thin film layer 5 to a predetermined | prescribed shape, and is not limited to a specific formation method.
 以上のように構成される温度補償素子は、コアに対して不均一な応力を印加することができる。そのため、温度補償素子は、温度変化に応じて、より顕著にコアの光学的特性を変化させることができる。
(第2実施形態)
 第2実施形態に係る温度補償素子1について説明する。図4は、第2実施形態に係る温度補償素子の光伝播方向の断面図である。 
 第2実施形態では、応力付与層4が、金属薄膜層5に加えて、フェルール6及び蝋材7から構成されている点で第1実施形態と異なる。したがって、これ以外の点については、第1実施形態と同一の符号を付して、その詳細な説明は省略する。
The temperature compensation element configured as described above can apply a non-uniform stress to the core. Therefore, the temperature compensation element can change the optical characteristics of the core more significantly according to the temperature change.
(Second Embodiment)
A temperature compensation element 1 according to the second embodiment will be described. FIG. 4 is a cross-sectional view in the light propagation direction of the temperature compensation element according to the second embodiment.
The second embodiment is different from the first embodiment in that the stress applying layer 4 includes a ferrule 6 and a wax material 7 in addition to the metal thin film layer 5. Therefore, about the point other than this, the same code | symbol as 1st Embodiment is attached | subjected and the detailed description is abbreviate | omitted.
 図5は、図4の線A-Aに沿った温度補償素子の2つの例の断面図を示す。 
 図5に示すように、応力付与層4は、金属薄膜層5、金属薄膜層5の外周を被覆しているフェルール6、及び金属薄膜層5とフェルール6とを接着している蝋材7などを有する。
FIG. 5 shows cross-sectional views of two examples of temperature compensation elements along line AA in FIG.
As shown in FIG. 5, the stress applying layer 4 includes a metal thin film layer 5, a ferrule 6 covering the outer periphery of the metal thin film layer 5, and a brazing material 7 that bonds the metal thin film layer 5 and the ferrule 6. Have
 金属薄膜層5は、第1実施形態と同様である。図5(A)は、図3(A)に示される金属薄膜層5にフェルール6を被覆した温度補償素子の例の断面図である。また、図5(B)は、図3(B)に示される金属薄膜層5にフェルール6を被覆した温度補償素子の例の断面図である。 The metal thin film layer 5 is the same as in the first embodiment. FIG. 5A is a cross-sectional view of an example of a temperature compensation element in which the metal thin film layer 5 shown in FIG. FIG. 5B is a cross-sectional view of an example of a temperature compensation element in which the metal thin film layer 5 shown in FIG. 3B is covered with a ferrule 6.
 フェルール6は、偏波面保持ファイバ2をコネクタなどに差し込んだ際に偏波面保持ファイバ2を固定する機能を有する。フェルール6は、円柱形状であって、フェルール6の中心部と偏波面保持ファイバ2の中心部が一致するように金属薄膜層5を被覆している。
即ち、偏波面保持ファイバ2とフェルール6は、同心円状に位置している。偏波面保持ファイバ2とフェルール6が同心円状に位置していることによって、フェルール6がコネクタなどに差し込まれた場合に、偏波面保持ファイバ2を通過する光の伝播軸は、接続先のファイバと一致する。その結果、コネクタ接続における光伝送損失が低減する。
The ferrule 6 has a function of fixing the polarization-maintaining fiber 2 when the polarization-maintaining fiber 2 is inserted into a connector or the like. The ferrule 6 has a cylindrical shape, and covers the metal thin film layer 5 so that the center portion of the ferrule 6 and the center portion of the polarization-maintaining fiber 2 coincide.
That is, the polarization-maintaining fiber 2 and the ferrule 6 are positioned concentrically. Since the polarization-maintaining fiber 2 and the ferrule 6 are positioned concentrically, when the ferrule 6 is inserted into a connector or the like, the propagation axis of the light passing through the polarization-maintaining fiber 2 is the same as the connection destination fiber. Match. As a result, optical transmission loss in connector connection is reduced.
 フェルール6は、たとえば、Fe-Niインバー合金又はコバール合金など、熱膨張率などの温度特性が既知で安定している物質であるが、特定の種類の金属に限定されるものではない。なお、フェルール6は、射出形成や機械加工などによって円筒形状に形成されてもよい。フェルール6の製造方法は、特定の方法に限定されるものではない。 The ferrule 6 is a substance having a known and stable temperature characteristic such as a coefficient of thermal expansion such as, for example, an Fe-Ni invar alloy or a kovar alloy, but is not limited to a specific type of metal. The ferrule 6 may be formed in a cylindrical shape by injection molding or machining. The manufacturing method of the ferrule 6 is not limited to a specific method.
 金属薄膜層5とフェルール6は、蝋材7によって接着されている。蝋材7は、金属薄膜層5とフェルール6との間を隙間なく充填し、偏波面保持ファイバ2とフェルール6とが同心円状に位置するようにフェルール6を金属薄膜層5に固定している。蝋材7は、Sn-Pb共晶ハンダ、スズ・銀・銅の合金、又はスズ・ビスマスの合金など、熱膨張率などの温度特性が既知で安定している物質であるが、特定の種類の金属に限定されるものではない。 The metal thin film layer 5 and the ferrule 6 are bonded by a wax material 7. The brazing material 7 fills the space between the metal thin film layer 5 and the ferrule 6 without a gap, and fixes the ferrule 6 to the metal thin film layer 5 so that the polarization-maintaining fiber 2 and the ferrule 6 are positioned concentrically. . The wax material 7 is a substance having a known and stable temperature characteristic such as a coefficient of thermal expansion, such as Sn—Pb eutectic solder, an alloy of tin / silver / copper, or an alloy of tin / bismuth. However, the present invention is not limited to these metals.
 温度補償素子1は、熱膨張率が既知で安定している異種の金属を多重に被覆する構造になっている。これによって、温度補償素子1は、温度に応じて、安定的に応力を偏波面保持ファイバ2に印加することができる。また、温度補償素子1は、金属の組み合わせによって、より精度よく偏波面保持ファイバ2に応力を印加することができる。さらに、温度補償素子1は、金属の組み合わせによって、より大きな応力を偏波面保持ファイバ2に印加することができる。温度補償素子1は、金属の種類、厚み及び形状を調整することによって、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性をより詳細かつ幅広く制御することができる。 The temperature compensating element 1 has a structure in which different types of metals having known and stable thermal expansion coefficients are covered in multiple layers. As a result, the temperature compensation element 1 can stably apply stress to the polarization-maintaining fiber 2 according to the temperature. Further, the temperature compensation element 1 can apply stress to the polarization-maintaining fiber 2 with higher accuracy by a combination of metals. Furthermore, the temperature compensation element 1 can apply a larger stress to the polarization-maintaining fiber 2 by a combination of metals. The temperature compensation element 1 can control the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 in more detail and widely by adjusting the type, thickness, and shape of the metal.
 たとえば、フェルール6は、熱膨張率が金属薄膜層5の熱膨張率よりも小さい物質であるものとする。この場合、温度変化が生じてもフェルール6は金属薄膜層5よりも膨張又は収縮しない。金属薄膜層5は、フェルール6に固定されているので、温度変化が生じた場合でも、金属薄膜層5は、縦方向(光伝播方向)への膨張又は収縮を生じにくい。その結果、応力付与層4によって縦荷重応力が偏波面保持ファイバ2に印加されるが抑制される。 For example, it is assumed that the ferrule 6 is a substance having a thermal expansion coefficient smaller than that of the metal thin film layer 5. In this case, the ferrule 6 does not expand or contract more than the metal thin film layer 5 even if the temperature changes. Since the metal thin film layer 5 is fixed to the ferrule 6, even when a temperature change occurs, the metal thin film layer 5 is unlikely to expand or contract in the vertical direction (light propagation direction). As a result, the stress applying layer 4 suppresses the longitudinal load stress from being applied to the polarization plane holding fiber 2.
 また、偏波面保持ファイバ2は、縦荷重応力が生じた場合よりも横荷重応力(光伝播方向と垂直に生じる応力)の方が生じた場合の方が消光比又はクロストークなどの光学的特性の変化が小さい。 
 したがって、応力付与層4は、光学的特性が大きく変化する縦荷重応力を抑制することができる。その結果、応力付与層4は、より微細に光学的特性の変化を制御することができる。
Also, the polarization maintaining fiber 2 has optical characteristics such as extinction ratio or crosstalk when a lateral load stress (stress generated perpendicular to the light propagation direction) occurs rather than a longitudinal load stress. The change is small.
Therefore, the stress applying layer 4 can suppress the longitudinal load stress that greatly changes the optical characteristics. As a result, the stress applying layer 4 can control the change in the optical characteristics more finely.
 以上のように構成される温度補償素子は、コアの光学的特定をより微細に制御することができる。また、温度補償素子は、コアにより強く応力を印加することもでき、コアの光学的特性の変化をより顕著にすることができる。
(第3実施形態)
 第3実施形態について説明する。図6は、第3実施形態に係る温度補償素子の光伝播方向に対して垂直方向の断面図である。即ち、図6は、図2の線A-Aに相当する線に沿った温度補償素子の断面図である。
The temperature compensation element configured as described above can finely control the optical identification of the core. In addition, the temperature compensation element can apply a stronger stress to the core, and the change in the optical characteristics of the core can be made more remarkable.
(Third embodiment)
A third embodiment will be described. FIG. 6 is a cross-sectional view perpendicular to the light propagation direction of the temperature compensation element according to the third embodiment. That is, FIG. 6 is a cross-sectional view of the temperature compensation element along a line corresponding to the line AA in FIG.
 第3実施形態では、温度補償素子1が複数の平面プレートなどによって形成されている点で第1実施形態と異なる。したがって、これ以外の点については、第1実施形態と同一の符号を付して、その詳細な説明は省略する。 The third embodiment differs from the first embodiment in that the temperature compensation element 1 is formed of a plurality of flat plates and the like. Therefore, about the point other than this, the same code | symbol as 1st Embodiment is attached | subjected and the detailed description is abbreviate | omitted.
 図6に示すように、温度補償素子1は、偏波面保持ファイバ2を上側から抑える平面プレート21、偏波面保持ファイバ2を下側から抑える平面プレート22、平面プレート21並びに22の間に設けられるスペーサ23、平面プレート21並びに22及びスペーサ23を貫通する調整ボルト25、平面プレート22から突出した調整ボルト25の先端に取り付けられたナット26、調整ボルト25と平面プレート21との間に設けられたスプリング24、調整ボルト25とスプリング24との間に設置されるワッシャ27、及びスプリング24と平面プレート21との間に設置されるワッシャ28などを有する。スペーサ23a、調整ボルト25a、ナット26a、スプリング24a、及びワッシャ27a並びに28aは、平面プレート21及び22の幅方向(図6のx軸方向)の一端(図6の例では、右側)に設置される。また、スペーサ23b、調整ボルト25b、ナット26b、スプリング24b、及びワッシャ27b並びに28bは、平面プレート21及び22の幅方向(図6のx軸方向)の他端(図6の例では、左側)に設置される。平面プレート21及び22の両端に設置される各部品は、同一の構成となっている。 As shown in FIG. 6, the temperature compensating element 1 is provided between the flat plate 21 that holds the polarization plane holding fiber 2 from the upper side, the flat plate 22 that holds the polarization plane holding fiber 2 from the lower side, and the flat plates 21 and 22. Spacer 23, flat plates 21 and 22, adjustment bolt 25 penetrating spacer 23, nut 26 attached to the tip of adjustment bolt 25 protruding from flat plate 22, provided between adjustment bolt 25 and flat plate 21 The spring 24, the washer 27 installed between the adjustment bolt 25 and the spring 24, and the washer 28 installed between the spring 24 and the flat plate 21 are included. The spacer 23a, the adjusting bolt 25a, the nut 26a, the spring 24a, and the washers 27a and 28a are installed at one end (right side in the example of FIG. 6) of the flat plates 21 and 22 in the width direction (x-axis direction of FIG. 6). The Further, the spacer 23b, the adjusting bolt 25b, the nut 26b, the spring 24b, and the washers 27b and 28b are the other ends in the width direction (x-axis direction in FIG. 6) of the flat plates 21 and 22 (left side in the example of FIG. 6). Installed. The components installed at both ends of the flat plates 21 and 22 have the same configuration.
 平面プレート21及び22は、所定の厚み、所定の幅及び所定の長さを持つ矩形状の部材である。また、平面プレート21及び22は、ほぼ同一の大きさ及び形状である。平面プレート21及び22の幅(即ち、図6のx軸方向の大きさ)は、偏波面保持ファイバ2を挟み込むことができる幅であればよく、偏波面保持ファイバ2の直径よりも広ければよい。平面プレート21及び22の幅、長さ(即ち、光伝播方向の大きさ)及び厚み(即ち、図6のy軸方向の大きさ)は、温度補償素子1に要求される温度補償の構成によって決定され、特定の構成に限定されるものではない。また、平面プレート21及び22は、熱膨張率などの特性が既知で安定している金属プレートなどであるが、特定の物質に限定されるものではない。 The plane plates 21 and 22 are rectangular members having a predetermined thickness, a predetermined width, and a predetermined length. Further, the flat plates 21 and 22 have substantially the same size and shape. The widths of the flat plates 21 and 22 (that is, the size in the x-axis direction in FIG. 6) may be any width that can sandwich the polarization-maintaining fiber 2 and wider than the diameter of the polarization-maintaining fiber 2. . The width, length (that is, the size in the light propagation direction), and thickness (that is, the size in the y-axis direction in FIG. 6) of the flat plates 21 and 22 depend on the temperature compensation configuration required for the temperature compensation element 1. It is determined and is not limited to a specific configuration. The flat plates 21 and 22 are metal plates having known and stable characteristics such as a coefficient of thermal expansion, but are not limited to specific materials.
 平面プレート21及び22は、平行に偏波面保持ファイバ2を上下から挟み込むように設置されている。平面プレート21及び22は、保護層3が被覆していない偏波面保持ファイバ2の領域に設置される。これによって、平面プレート21及び22は、保護層3を介在させることなく偏波面保持ファイバ2に応力を印加することができる。なお、平面プレート21及び22は、保護層3によって被覆されている偏波面保持ファイバ2の領域を一部挟み込んでもよい。 The flat plates 21 and 22 are installed so as to sandwich the polarization-maintaining fiber 2 from above and below in parallel. The flat plates 21 and 22 are installed in the region of the polarization-maintaining fiber 2 that is not covered by the protective layer 3. Thereby, the flat plates 21 and 22 can apply stress to the polarization-maintaining fiber 2 without interposing the protective layer 3. The flat plates 21 and 22 may sandwich part of the region of the polarization-maintaining fiber 2 that is covered with the protective layer 3.
 平面プレート21及び22は、スプリング24a並びに24b及び調整ボルト25a並びに24bなどから平面プレート21及び22が接近する方向にそれぞれ応力を印加される。平面プレート21及び22は、スプリング24a並びに24b及び調整ボルト25a並びに25bによって印加された応力を、偏波面保持ファイバ2に印加する。 Stress is applied to the flat plates 21 and 22 from the springs 24a and 24b and the adjusting bolts 25a and 24b in the direction in which the flat plates 21 and 22 approach each other. The flat plates 21 and 22 apply the stress applied by the springs 24 a and 24 b and the adjusting bolts 25 a and 25 b to the polarization-maintaining fiber 2.
 スペーサ23aは、平面プレート21及び22の幅方向の右端に沿って挟み込まれている。即ち、スペーサ23aは、平面プレート21及び22の光伝播方向の一端から他端にかけて平面プレート21及び22の右端に直線的に設置されている。スペーサ23aは、金属又は弾性体などであるが、特定の物質又は形状に限定されるものではない。スペーサ23aは、平面プレート21及び22が偏波面保持ファイバ2へ印加する圧力によって偏波面保持ファイバ2が破損することを防止する。 The spacer 23a is sandwiched along the right end of the flat plates 21 and 22 in the width direction. That is, the spacer 23 a is linearly installed at the right end of the flat plates 21 and 22 from one end to the other end in the light propagation direction of the flat plates 21 and 22. The spacer 23a is a metal or an elastic body, but is not limited to a specific substance or shape. The spacer 23 a prevents the polarization plane holding fiber 2 from being damaged by the pressure applied by the flat plates 21 and 22 to the polarization plane holding fiber 2.
 スペーサ23aの厚さ(図6のy軸方向の大きさ)は、偏波面保持ファイバ2の直径よりもわずかに小さい。これによって、平面プレート21及び22は、スペーサ23aに応力を印加しにくくなり、偏波面保持ファイバ2に効果的に応力を印加することができる。
また、偏波面保持ファイバ2が所定の幅に押しつぶされると、平面プレート21及び22が印加する応力は、スペーサ23aに印加される。これによって、偏波面保持ファイバ2が所定の幅よりも押しつぶされ破損することが防止される。スペーサ23bも同様の構成となっている。
The thickness of the spacer 23a (the size in the y-axis direction in FIG. 6) is slightly smaller than the diameter of the polarization-maintaining fiber 2. As a result, the flat plates 21 and 22 are less likely to apply stress to the spacer 23 a, and can effectively apply stress to the polarization-maintaining fiber 2.
Further, when the polarization-maintaining fiber 2 is crushed to a predetermined width, the stress applied by the flat plates 21 and 22 is applied to the spacer 23a. As a result, it is possible to prevent the polarization-maintaining fiber 2 from being crushed and damaged from a predetermined width. The spacer 23b has the same configuration.
 調整ボルト25aは、平面プレート21、スペーサ23a及び平面プレート22を貫通し、平面プレート22から下方へ突出している。調整ボルト25aは、突出した端部にナット26aを取り付けられている。また、ワッシャ27a及び28aは、調整ボルト25aの頭と平面プレート21との間に設けられる。スプリング24aは、ワッシャ27a及び28aの間に設置される。調整ボルト25a、ワッシャ27a並びに28a及びスプリング24aの中心部を通過し、ワッシャ27a並びに28a及びスプリング24aを固定している。スプリング24は、収縮した状態でワッシャ27a及び28aの間に設置され、スプリング24aの反発力によって平面プレート21に絶えず応力を印加している。 The adjusting bolt 25a passes through the flat plate 21, the spacer 23a, and the flat plate 22, and protrudes downward from the flat plate 22. The adjustment bolt 25a has a nut 26a attached to the protruding end. Washers 27 a and 28 a are provided between the head of the adjustment bolt 25 a and the flat plate 21. The spring 24a is installed between the washers 27a and 28a. The adjustment bolt 25a, the washers 27a and 28a and the center of the spring 24a are passed through, and the washers 27a, 28a and the spring 24a are fixed. The spring 24 is installed between the washers 27a and 28a in a contracted state, and constantly applies stress to the flat plate 21 by the repulsive force of the spring 24a.
 スプリング24aは、温度変化によってばね定数又は弾性係数が変化する温度特性を有する弾性体から構成される。スプリング24aは、たとえば、金属合金スプリングバネ、金属合金の板バネ、又は、セラミックから構成されるスプリングバネなどであるが、特定の種類の弾性体に限定されるものではない。 
 なお、スプリング24b、調整ボルト25b及びワッシャ27b並びに28bも同様の構成となっている。
The spring 24a is formed of an elastic body having a temperature characteristic in which a spring constant or an elastic coefficient changes according to a temperature change. The spring 24a is, for example, a metal alloy spring, a metal alloy leaf spring, or a spring spring made of ceramic, but is not limited to a specific type of elastic body.
The spring 24b, the adjusting bolt 25b, and the washers 27b and 28b have the same configuration.
 次に、偏波面保持ファイバ2に印加される応力について説明する。 
 スプリング24aは、調整ボルト25aによって収縮されている。したがって、調整ボルト25aを絞める又は緩めることによって、スプリング24aの反発力が調整される。
たとえば、調整ボルト25aが締まると、スプリング24aが収縮され、スプリング24aの反発力が強まる。逆に、調整ボルト25aが緩むと、スプリング24aが伸び、スプリング24aの反発力が弱まる。同様に、調整ボルト25bを絞める又は緩めることによって、スプリング24bの反発力が調整される。よって、調整ボルト25aを調節しスプリング24aの反発力を調整すること、及び調整ボルト25bを調節しスプリング24bの反発力を調整することで、偏波面保持ファイバ2に印加される応力は調整される。
Next, the stress applied to the polarization plane holding fiber 2 will be described.
The spring 24a is contracted by the adjusting bolt 25a. Therefore, the repulsive force of the spring 24a is adjusted by tightening or loosening the adjustment bolt 25a.
For example, when the adjusting bolt 25a is tightened, the spring 24a is contracted and the repulsive force of the spring 24a is increased. Conversely, when the adjustment bolt 25a is loosened, the spring 24a is extended and the repulsive force of the spring 24a is weakened. Similarly, the repulsive force of the spring 24b is adjusted by tightening or loosening the adjusting bolt 25b. Therefore, the stress applied to the polarization plane holding fiber 2 is adjusted by adjusting the adjustment bolt 25a to adjust the repulsive force of the spring 24a, and adjusting the adjustment bolt 25b to adjust the repulsive force of the spring 24b. .
 また、前述の通り、スプリング24a及びbは、温度変化によってばね定数又は弾性係数が変化する温度特性を有する弾性体から構成される。したがって、温度変化が生じると、スプリング24a及びbのばね定数又は弾性係数は変化し、スプリング24a及びbの反発力が変化する。そのため、温度変化が生じると、偏波面保持ファイバ2に印加される応力も変化する。したがって、偏波面保持ファイバ2に印加される応力は、温度依存性を有することができる。 As described above, the springs 24a and 24b are made of an elastic body having a temperature characteristic in which a spring constant or an elastic coefficient changes according to a temperature change. Therefore, when a temperature change occurs, the spring constants or elastic coefficients of the springs 24a and b change, and the repulsive force of the springs 24a and b changes. Therefore, when the temperature changes, the stress applied to the polarization plane holding fiber 2 also changes. Therefore, the stress applied to the polarization-maintaining fiber 2 can have temperature dependence.
 なお、平面プレート21及び22によって印加される応力がコア11の2つの複屈折軸に沿って印加されるように、温度補償素子1は、偏波面保持ファイバ2を挟み込んでもよい。この場合、温度補償素子1は、温度変化に対してより顕著に偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性を変化させることができる。 The temperature compensation element 1 may sandwich the polarization plane holding fiber 2 so that the stress applied by the flat plates 21 and 22 is applied along the two birefringence axes of the core 11. In this case, the temperature compensation element 1 can change the optical characteristics such as the extinction ratio or the crosstalk of the polarization-maintaining fiber 2 more remarkably with respect to the temperature change.
 以上のように、スプリング24a及びbの反発力及び偏波面保持ファイバ2の向きなどを調節することによって、偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性の温度変化に対する変化量を制御することができる。また、第1実施形態及び第2実施形態と異なり、本実施形態では、温度補償素子1は、偏波面保持ファイバ2の一面のみから応力を印加することができる。これによって、温度補償素子1は、より顕著に特定の向きに応力を印加することができる。 As described above, by adjusting the repulsive force of the springs 24a and 24b and the direction of the polarization-maintaining fiber 2, the amount of change of the optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 with respect to the temperature change can be changed. Can be controlled. Further, unlike the first and second embodiments, in the present embodiment, the temperature compensation element 1 can apply stress from only one surface of the polarization-maintaining fiber 2. Thereby, the temperature compensation element 1 can apply stress in a specific direction more remarkably.
 なお、温度補償素子1は、スプリング24を設けなくともよい。即ち、平面プレート21及び22は、スペーサ23を挟んで、調整ボルト25及びナット26で直接固定される。この場合、平面プレート21並びに22、スペーサ23、及び調整ボルト25の熱膨張率の違いによって、温度補償素子1は、温度変化に応じた応力を偏波面保持ファイバ2に印加することができる。 The temperature compensation element 1 does not have to be provided with the spring 24. That is, the flat plates 21 and 22 are directly fixed by the adjusting bolt 25 and the nut 26 with the spacer 23 interposed therebetween. In this case, the temperature compensation element 1 can apply a stress corresponding to the temperature change to the polarization plane holding fiber 2 due to the difference in thermal expansion coefficient between the flat plates 21 and 22, the spacer 23, and the adjusting bolt 25.
 また、温度補償素子1は、調整ボルト25及びナット26を設けなくともよい。即ち、平面プレート21及び22は、スペーサ23を挟んで接着されてもよい。たとえば、平面プレート21並びに22及びスペーサ23の接着方法は、機械的なはめあい接着、接着剤による接着、又は溶着若しくは溶接による接着などであるが、特定の方法に限定されるものではない。この場合、平面プレート21並びに22及びスペーサ23の熱膨張率の違いによって、温度補償素子1は、温度変化に応じた応力を偏波面保持ファイバ2に印加することができる。 Further, the temperature compensating element 1 does not need to be provided with the adjusting bolt 25 and the nut 26. That is, the flat plates 21 and 22 may be bonded with the spacer 23 interposed therebetween. For example, the bonding method of the flat plates 21 and 22 and the spacer 23 includes mechanical fitting bonding, bonding with an adhesive, or bonding by welding or welding, but is not limited to a specific method. In this case, the temperature compensation element 1 can apply a stress corresponding to the temperature change to the polarization plane holding fiber 2 due to the difference in thermal expansion coefficient between the flat plates 21 and 22 and the spacer 23.
 また、本実施形態に係る温度補償素子1は、保護層3によって被覆された偏波面保持ファイバ2に応力を印加してもよい。この場合、偏波面保持ファイバ2に印加される応力は、保護層3を介在して偏波面保持ファイバ2に印加される。 Further, the temperature compensation element 1 according to the present embodiment may apply stress to the polarization plane holding fiber 2 covered with the protective layer 3. In this case, the stress applied to the polarization-maintaining fiber 2 is applied to the polarization-maintaining fiber 2 through the protective layer 3.
 また、本実施形態に係る温度補償素子1が備える調整ボルト及びスプリングの数は、特定の個数に限定されるものではない。 
 また、平面プレート21並びに22、スペーサ23a及び偏波面保持ファイバ2で形成される空間と、平面プレート21並びに22、スペーサ23b及び偏波面保持ファイバ2で形成される空間とは、シリコンゴムなどの充填剤で満たされていてもよい。
Further, the number of adjustment bolts and springs included in the temperature compensation element 1 according to the present embodiment is not limited to a specific number.
The space formed by the flat plates 21 and 22, the spacer 23a and the polarization-maintaining fiber 2 and the space formed by the flat plates 21 and 22, the spacer 23b and the polarization-maintaining fiber 2 are filled with silicon rubber or the like. It may be filled with an agent.
 以上のように構成される温度補償素子は、一方方向からコアに応力を印加することができる。その結果、温度補償素子は、特定の方向にコアを押しつぶし、より精密にコアの光学的特性の変化を制御することができる。
(第4実施形態)
 第4実施形態について説明する。図7(A)は、第4実施形態に係る温度補償素子の光伝播方向に対して垂直方向の断面図である。 
 第4実施形態では、第3実施形態に係る平面プレート22が、V字の溝を有するV溝プレート31に置き換わっている点で第3実施形態と異なる。したがって、これ以外の点については、第3実施形態と同一の符号を付して、その詳細な説明は省略する。
The temperature compensation element configured as described above can apply stress to the core from one direction. As a result, the temperature compensation element can crush the core in a specific direction and control the change in optical characteristics of the core more precisely.
(Fourth embodiment)
A fourth embodiment will be described. FIG. 7A is a cross-sectional view perpendicular to the light propagation direction of the temperature compensation element according to the fourth embodiment.
The fourth embodiment differs from the third embodiment in that the flat plate 22 according to the third embodiment is replaced with a V-groove plate 31 having a V-shaped groove. Therefore, about the point other than this, the same code | symbol as 3rd Embodiment is attached | subjected and the detailed description is abbreviate | omitted.
 図7(A)に示すように、温度補償素子1は、偏波面保持ファイバ2を上側から抑える平面プレート21、偏波面保持ファイバ2を下側から抑えるV溝プレート31、平面プレート21並びにV溝プレート31の間に設けられるスペーサ23、平面プレート21、V溝プレート31、並びにスペーサ23を貫通する調整ボルト25、V溝プレート31から突出した調整ボルト25の先端に取り付けられたナット26、調整ボルト25と平面プレート21との間に設けられたスプリング24、調整ボルト25とスプリング24との間に設置されるワッシャ27、及び調整ボルト25と平面プレート21との間に設置されるワッシャ28などを有する。 As shown in FIG. 7A, the temperature compensation element 1 includes a flat plate 21 that holds the polarization plane holding fiber 2 from the upper side, a V-groove plate 31 that holds the polarization plane holding fiber 2 from the lower side, the flat plate 21, and the V groove. Spacer 23 provided between plates 31, flat plate 21, V groove plate 31, adjustment bolt 25 penetrating spacer 23, nut 26 attached to the tip of adjustment bolt 25 protruding from V groove plate 31, adjustment bolt A spring 24 provided between the adjustment bolt 25 and the flat plate 21, a washer 27 provided between the adjustment bolt 25 and the spring 24, and a washer 28 provided between the adjustment bolt 25 and the flat plate 21. Have.
 V溝プレート31は、平面プレート21とほぼ同一の幅及び長さで形成されている。V溝プレート31は、V字の溝を形成することが可能な厚みに形成される。V溝プレート31は、幅方向(図7(A)のx軸方向)の中心部にV字の溝を有している。V溝プレートに設けられるV字の溝は、V溝プレート31の光伝播方向の一端から他端にかけて直線的に形成されている。V溝プレートに設けられるV字の溝は、偏波面保持ファイバ2を収めるために設置される。V字の溝の角度及び深さは、偏波面保持ファイバ2の直径及び温度補償の内容などによって決定されるが、特定の構成に限定されるのもではない。 The V-groove plate 31 is formed with substantially the same width and length as the flat plate 21. The V-groove plate 31 is formed to a thickness capable of forming a V-shaped groove. The V-groove plate 31 has a V-shaped groove at the center in the width direction (the x-axis direction in FIG. 7A). The V-shaped groove provided in the V-groove plate is linearly formed from one end to the other end of the V-groove plate 31 in the light propagation direction. A V-shaped groove provided in the V-groove plate is installed to accommodate the polarization-maintaining fiber 2. The angle and depth of the V-shaped groove are determined by the diameter of the polarization-maintaining fiber 2 and the content of temperature compensation, but are not limited to a specific configuration.
 また、V溝プレート31は、熱膨張率などの特性が既知で安定している金属プレートなどであるが、特定の物質に限定されるものではない。V字の溝を形成する方法は、一般的な掘削加工又はV溝プレート31事態を形成する鋳造加工などであってもよく、特定の方法に限定されるものではない。 Further, the V-groove plate 31 is a metal plate having known and stable characteristics such as a coefficient of thermal expansion, but is not limited to a specific substance. The method for forming the V-shaped groove may be a general excavation process or a casting process for forming the V-groove plate 31 situation, and is not limited to a specific method.
 温度補償素子1は、偏波面保持ファイバ2をV溝プレート31に形成されたV字の溝に収まるように挟み込む。これによって、偏波面保持ファイバ2が平面プレート21とV溝プレート31との間で幅方向にずれることが防止される。また、平面プレート21とV溝プレート31は、偏波面保持ファイバ2に非等方的な応力を安定的に印加することができる。また、V字の溝の形状を調整することによって、偏波面保持ファイバ2に印加される応力の角度が安定的に制御される。 The temperature compensation element 1 sandwiches the polarization-maintaining fiber 2 so as to be accommodated in a V-shaped groove formed in the V-groove plate 31. This prevents the polarization-maintaining fiber 2 from shifting in the width direction between the flat plate 21 and the V-groove plate 31. Further, the plane plate 21 and the V-groove plate 31 can stably apply an anisotropic stress to the polarization plane holding fiber 2. Further, by adjusting the shape of the V-shaped groove, the angle of the stress applied to the polarization-maintaining fiber 2 is stably controlled.
 なお、V字の溝は、完全にV字の形状になっていなくともよい。たとえば、V字の先端が平面となるような構造でもよい。図7(B)は、V字の先端が平面となるような溝をV溝プレートに形成した場合の例を示す。図7(B)は、温度補償素子1の光伝播方向に対して垂直方向の断面図である。簡略化のため、図7(B)は、調整ボルト25、スプリング24、ナット26、及びワッシャ27並びに28を省略し、平面プレート21、スペーサ23及びV溝プレート31を示す。 Note that the V-shaped groove does not have to be completely V-shaped. For example, a structure in which the V-shaped tip is a flat surface may be used. FIG. 7B shows an example in which a groove having a V-shaped tip having a flat surface is formed in the V-groove plate. FIG. 7B is a cross-sectional view perpendicular to the light propagation direction of the temperature compensation element 1. For simplification, FIG. 7B shows the flat plate 21, the spacer 23, and the V-groove plate 31 without the adjustment bolt 25, the spring 24, the nut 26, and the washers 27 and 28.
 図7(B)に示すように、V溝プレート31に形成されているV字の溝は、先端が平面となっている。平面の部分は偏波面保持ファイバ2に接触していないため、V字の溝に偏波面保持ファイバ2を収めている場合と同様の効果が得られる。V字の溝の先端を平面に形成することによって、V溝プレート31の厚みを薄くすることができる。 As shown in FIG. 7B, the V-shaped groove formed in the V-groove plate 31 has a flat tip. Since the plane portion is not in contact with the polarization-maintaining fiber 2, the same effect as that obtained when the polarization-maintaining fiber 2 is accommodated in the V-shaped groove can be obtained. By forming the tip of the V-shaped groove on a flat surface, the thickness of the V-groove plate 31 can be reduced.
 また、図7(B)に示すように、V字の溝の角度が60度である場合、偏波面保持ファイバ2は、平面プレート21、V字の溝の一面及びV字の溝の他面からそれぞれ120度の角度で等方的に応力を印加される。したがって、この場合、温度変化による偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性の変化は、生じにくい。このため、コア11の光学的特性の変化が顕著である必要がある場合には、V溝プレート31に形成されるV字の溝は、V字の溝の角度が60度付近の値とならないように形成されることが望ましい。 In addition, as shown in FIG. 7B, when the angle of the V-shaped groove is 60 degrees, the polarization plane holding fiber 2 includes the flat plate 21, one surface of the V-shaped groove, and the other surface of the V-shaped groove. Stress isotropically applied at an angle of 120 degrees. Therefore, in this case, changes in optical characteristics such as the extinction ratio or crosstalk of the polarization-maintaining fiber 2 due to temperature changes are unlikely to occur. For this reason, when the change in the optical characteristics of the core 11 needs to be remarkable, the V-shaped groove formed in the V-groove plate 31 does not have a value of the angle of the V-shaped groove around 60 degrees. It is desirable to be formed as follows.
 なお、平面プレート21及びV溝プレート31によって印加される応力がコア11の2つの複屈折軸に沿って印加されるように、温度補償素子1は、偏波面保持ファイバ2を挟み込んでもよい。この場合、温度補償素子1は、温度変化に対してより顕著に偏波面保持ファイバ2の消光比又はクロストークなどの光学的特性を変化させることができる。 
 また、本実施形態に係る温度補償素子1は、保護層3によって被覆された偏波面保持ファイバ2に応力を印加してもよい。この場合、偏波面保持ファイバ2に印加される応力は、保護層3を介在して偏波面保持ファイバ2に印加される。 
 また、本実施形態に係る温度補償素子1が備える調整ボルト及びスプリングの数は、特定の個数に限定されるものではない。 
 また、平面プレート21、V溝プレート31、スペーサ23a及び偏波面保持ファイバ2で形成される空間と、平面プレート21、V溝プレート31、スペーサ23b及び偏波面保持ファイバ2で形成される空間とは、シリコンゴムなどの充填剤で満たされていてもよい。
The temperature compensation element 1 may sandwich the polarization plane holding fiber 2 so that the stress applied by the flat plate 21 and the V-groove plate 31 is applied along the two birefringence axes of the core 11. In this case, the temperature compensation element 1 can change the optical characteristics such as the extinction ratio or the crosstalk of the polarization-maintaining fiber 2 more remarkably with respect to the temperature change.
Further, the temperature compensation element 1 according to the present embodiment may apply stress to the polarization-maintaining fiber 2 covered with the protective layer 3. In this case, the stress applied to the polarization-maintaining fiber 2 is applied to the polarization-maintaining fiber 2 through the protective layer 3.
Further, the number of adjustment bolts and springs included in the temperature compensation element 1 according to the present embodiment is not limited to a specific number.
The space formed by the flat plate 21, the V-groove plate 31, the spacer 23a, and the polarization-maintaining fiber 2 and the space formed by the flat plate 21, the V-groove plate 31, the spacer 23b, and the polarization-maintaining fiber 2 are as follows. It may be filled with a filler such as silicon rubber.
 以上のように構成される温度補償素子は、コアが回転又は移動することを防止することができる。その結果、温度補償素子は、安定的にコアへ応力を印加することができ、安定的に温度補償を行うことができる。
(第5実施形態)
 第5実施形態について説明する。第5実施形態では、温度補償素子1は、第1実施形態から第4実施形態に記載の温度補償素子を複数個直列に連結したものである。図8は、本実施形態に係る温度補償素子1の例を概略的に示す図である。図8に示すように、温度補償素子1は、温度補償素子1a、1b及び1cなどを有している。
The temperature compensation element configured as described above can prevent the core from rotating or moving. As a result, the temperature compensation element can stably apply stress to the core and can stably perform temperature compensation.
(Fifth embodiment)
A fifth embodiment will be described. In the fifth embodiment, the temperature compensation element 1 is obtained by connecting a plurality of temperature compensation elements described in the first to fourth embodiments in series. FIG. 8 is a diagram schematically showing an example of the temperature compensation element 1 according to the present embodiment. As shown in FIG. 8, the temperature compensation element 1 includes temperature compensation elements 1a, 1b, and 1c.
 各温度補償素子1a、1b及び1cは、第1実施形態から第4実施形態に記載されている温度補償素子の1つである。各温度補償素子1a、1b及び1cは、第1実施形態から第4実施形態に記載されている温度補償素子のどれでもよく、同一の構成の温度補償素子でもよいし、異なる構成の温度補償素子でもよい。各温度補償素子1a、1b及び1cは、特定の組み合わせに限定されるものではない。 Each temperature compensation element 1a, 1b, and 1c is one of the temperature compensation elements described in the first to fourth embodiments. Each of the temperature compensation elements 1a, 1b, and 1c may be any of the temperature compensation elements described in the first to fourth embodiments, may be the same temperature compensation element, or may have a different structure. But you can. Each temperature compensation element 1a, 1b and 1c is not limited to a specific combination.
 また、各温度補償素子1a、1b及び1cは、それぞれ温度補償素子の偏波面保持ファイバの融着接続、コネクタ接続、又はレンズを介した光学結合などによって互いに接続される。なお。各温度補償素子1a、1b及び1cの接続方法は、特定の方法に限定されるものではない。 The temperature compensation elements 1a, 1b, and 1c are connected to each other by fusion-bonding of polarization plane holding fibers of the temperature compensation element, connector connection, optical coupling through a lens, or the like. Note that. The connection method of each temperature compensation element 1a, 1b, and 1c is not limited to a specific method.
 なお、図8においては、温度補償素子1は、3つの温度補償素子を有するが、2つ又は4つ以上の温度補償素子を有してもよい。温度補償素子1は、少なくとも2つの温度補償素子を有していればよい。 In FIG. 8, the temperature compensation element 1 has three temperature compensation elements, but may have two, four or more temperature compensation elements. The temperature compensation element 1 may have at least two temperature compensation elements.
 温度補償素子1は、個々の温度補償素子の温度特性を重ね合わせることで、複雑な温度特性を有する。したがって、温度補償素子1は、1つの温度補償素子では実現不可能な温度特性を有することができる。 The temperature compensation element 1 has complicated temperature characteristics by superimposing the temperature characteristics of the individual temperature compensation elements. Therefore, the temperature compensation element 1 can have a temperature characteristic that cannot be realized with one temperature compensation element.
 以上のように構成される温度補償素子は、温度補償素子は、より複雑な温度補償を実現することができる。その結果、温度補償素子は、1つの温度補償素子では実現が困難又は不可能な温度補償を実現することができる。
(第6実施形態)
 次に、第6実施形態について説明する。図9は、第6実施形態に係るサニャック干渉型光センサシステム(光センサシステム)の構成例を概略的に示す図である。第6実施形態に係るサニャック干渉型光センサは、第1実施形態から第5実施形態に係る温度補償素子のいずれかを備える。
The temperature compensation element configured as described above can realize more complicated temperature compensation. As a result, the temperature compensation element can realize temperature compensation that is difficult or impossible to achieve with one temperature compensation element.
(Sixth embodiment)
Next, a sixth embodiment will be described. FIG. 9 is a diagram schematically illustrating a configuration example of a Sagnac interference type optical sensor system (optical sensor system) according to the sixth embodiment. The Sagnac interference type optical sensor according to the sixth embodiment includes any one of the temperature compensation elements according to the first to fifth embodiments.
 図9が示すように、サニャック干渉型光センサシステム10は、信号処理部40、偏波面保持ファイバ部60、及び、センサ部70などを有する。サニャック干渉型光センサシステム10は、センサ部70内にある電線74を通過する電流を測定する。サニャック干渉型光センサシステム10は、たとえば、電線74を通過する数キロアンペアの電流を測定することができる。サニャック干渉型光センサシステム10は、変電所などに設置され、変圧器などを通過する電流を測定してもよい。なお、サニャック干渉型光センサシステム10が設置される場所及び測定の対象は、特定の構成に限定されるものではない。 As shown in FIG. 9, the Sagnac interference type optical sensor system 10 includes a signal processing unit 40, a polarization plane holding fiber unit 60, a sensor unit 70, and the like. The Sagnac interference type optical sensor system 10 measures a current passing through the electric wire 74 in the sensor unit 70. The Sagnac interferometric optical sensor system 10 can measure a current of several kiloamperes passing through the electric wire 74, for example. The Sagnac interference type optical sensor system 10 may be installed in a substation or the like, and may measure a current passing through a transformer or the like. In addition, the place where the Sagnac interference type optical sensor system 10 is installed and the measurement target are not limited to a specific configuration.
 信号処理部40は、センサ部70へ測定用のレーザなど光(測定光)を供給する機能、及び、センサ部70で反射した測定用の光(反射光)を受信する機能などを有する。また、信号処理部40は、センサ部70から受信した反射光に基づいて電線74を通過する電流を測定する機能を有する。 
 図9に示すように、信号処理部40は、光源駆動回路41、光源42、ファイバカプラ43、光学フィルタ44、位相変調子駆動回路45、位相変調子46、検出器47、同期検波回路48、演算回路49及び余長コイル50などを有する。
The signal processing unit 40 has a function of supplying light (measurement light) such as a measurement laser to the sensor unit 70 and a function of receiving measurement light (reflected light) reflected by the sensor unit 70. Further, the signal processing unit 40 has a function of measuring a current passing through the electric wire 74 based on the reflected light received from the sensor unit 70.
As shown in FIG. 9, the signal processing unit 40 includes a light source driving circuit 41, a light source 42, a fiber coupler 43, an optical filter 44, a phase modulator driving circuit 45, a phase modulator 46, a detector 47, a synchronous detection circuit 48, An arithmetic circuit 49 and a surplus coil 50 are included.
 光源駆動回路41は、光源42に安定的に電流を供給する機能を有する。光源駆動回路41は、光源42に電気的に接続されている。また、光源駆動回路41は、光源42が照射する光の強度、周波数及び位相などを制御する機能を有してもよい。 
 光源42は、光源駆動回路41から供給される電流に応じて測定光を照射する。光源42は、ファイバカプラ43に光ファイバ(たとえば、偏波面保持ファイバ)を通じて光学的に接続されている。光源42は、光ファイバを通じてファイバカプラ43へ測定光を供給する。光源42は、LEDなどであるが特定の構成に限定されるものではない。
The light source driving circuit 41 has a function of stably supplying a current to the light source 42. The light source drive circuit 41 is electrically connected to the light source 42. Further, the light source driving circuit 41 may have a function of controlling the intensity, frequency, phase, and the like of light emitted from the light source 42.
The light source 42 emits measurement light according to the current supplied from the light source driving circuit 41. The light source 42 is optically connected to the fiber coupler 43 through an optical fiber (for example, a polarization-maintaining fiber). The light source 42 supplies measurement light to the fiber coupler 43 through an optical fiber. The light source 42 is an LED or the like, but is not limited to a specific configuration.
 ファイバカプラ43は、2つの光を1つの光にまとめ、又は、1つの光を2つの光に分離する機能を有する。ファイバカプラ43は、光源42、光学フィルタ44及び検出器47と光ファイバを通じて光学的に接続されている。ファイバカプラ43は、光源42から照射される測定光を光学フィルタ44へ供給し、光学フィルタ44から供給される反射光を検出器47へ供給する。 The fiber coupler 43 has a function of collecting two lights into one light or separating one light into two lights. The fiber coupler 43 is optically connected to the light source 42, the optical filter 44, and the detector 47 through an optical fiber. The fiber coupler 43 supplies the measurement light emitted from the light source 42 to the optical filter 44 and supplies the reflected light supplied from the optical filter 44 to the detector 47.
 光学フィルタ44は、特定の性質を持つ光(たとえば、直線偏光)に変換する機能を有する。光学フィルタ44は、ファイバカプラ43及び位相変調子46に光ファイバを通じて光学的に接続されている。光学フィルタ44は、ファイバカプラ43から位相変調子46へ供給される測定光をフィルタし、位相変調子46からファイバカプラ43へ供給される反射光をフィルタする。光学フィルタ44は、たとえば、測定光及び反射光に生じたノイズなどを除去する役割を果たす。 The optical filter 44 has a function of converting light having a specific property (for example, linearly polarized light). The optical filter 44 is optically connected to the fiber coupler 43 and the phase modulator 46 through an optical fiber. The optical filter 44 filters measurement light supplied from the fiber coupler 43 to the phase modulator 46 and filters reflected light supplied from the phase modulator 46 to the fiber coupler 43. For example, the optical filter 44 serves to remove noise generated in the measurement light and the reflected light.
 位相変調子駆動回路45は、制御信号を用いて位相変調子46を制御し、位相変調子46を通過する光の位相を制御する機能を有する。位相変調子駆動回路45は、位相変調子46及び同期検波回路48と電気的に接続されている。また、位相変調子駆動回路45は、外部からの信号に基づいて、位相変調子46を通過する光の位相を制御することができる。本実施形態においては、位相変調子駆動回路45は、同期検波回路48からの信号に基づいて、位相変調子46を通過する光の位相を制御する。 
 位相変調子46は、位相変調子駆動回路45からの制御信号に基づき、位相変調子46を通過する光の位相又は周波数を変調する。
The phase modulator driving circuit 45 has a function of controlling the phase modulator 46 using a control signal and controlling the phase of light passing through the phase modulator 46. The phase modulator driving circuit 45 is electrically connected to the phase modulator 46 and the synchronous detection circuit 48. The phase modulator driving circuit 45 can control the phase of light passing through the phase modulator 46 based on an external signal. In the present embodiment, the phase modulator driving circuit 45 controls the phase of light passing through the phase modulator 46 based on the signal from the synchronous detection circuit 48.
The phase modulator 46 modulates the phase or frequency of light passing through the phase modulator 46 based on a control signal from the phase modulator driving circuit 45.
 検出器47は、供給される光を電気的な信号に変換して出力する機能を有する。検出器47は、光ファイバなどでファイバカプラ43と光学的に接続され、同期検波回路48と電気的に接続されている。検出器47は、ファイバカプラ43から反射光を供給され、供給された反射光を電気信号に変換し、同期検波回路48へ供給する。 The detector 47 has a function of converting the supplied light into an electrical signal and outputting it. The detector 47 is optically connected to the fiber coupler 43 by an optical fiber or the like, and is electrically connected to the synchronous detection circuit 48. The detector 47 is supplied with the reflected light from the fiber coupler 43, converts the supplied reflected light into an electric signal, and supplies it to the synchronous detection circuit 48.
 同期検波回路48は、位相変調子駆動回路45へ位相を制御するための信号を供給する機能を有する。また、同期検波回路48は、検出器47から送信される電気的な信号から特定の位相を持つ信号を抽出する機能を有する。同期検波回路48は、検出器47及び位相変調子駆動回路45と電気的に接続されている。同期検波回路48は、位相変調子駆動回路を介して測定光の位相を特定の位相に制御する。また、同期検波回路48は、測定光の位相と同位相の信号を検出器47から送信される電気信号から抽出する。これによって、同期検波回路48は、測定光と同位相である反射光に対する電気信号を抽出することができる。同期検波回路48は、抽出された電気信号を演算回路49へ供給する。 The synchronous detection circuit 48 has a function of supplying a signal for controlling the phase to the phase modulator driving circuit 45. The synchronous detection circuit 48 has a function of extracting a signal having a specific phase from the electrical signal transmitted from the detector 47. The synchronous detection circuit 48 is electrically connected to the detector 47 and the phase modulator drive circuit 45. The synchronous detection circuit 48 controls the phase of the measurement light to a specific phase via the phase modulator driving circuit. The synchronous detection circuit 48 extracts a signal having the same phase as that of the measurement light from the electrical signal transmitted from the detector 47. Thereby, the synchronous detection circuit 48 can extract an electrical signal for the reflected light having the same phase as the measurement light. The synchronous detection circuit 48 supplies the extracted electrical signal to the arithmetic circuit 49.
 演算回路49は、同期検波回路48から供給される電気信号に基づいて電線74を通過する電流を計算する。演算回路49は、同期検波回路48と電気的に接続されている。演算回路49は、専用の回路であってもよいし、PCなどであってもよい。演算回路49は、計算した電流を示す情報を外部へ送信する。 The arithmetic circuit 49 calculates the current passing through the electric wire 74 based on the electric signal supplied from the synchronous detection circuit 48. The arithmetic circuit 49 is electrically connected to the synchronous detection circuit 48. The arithmetic circuit 49 may be a dedicated circuit, a PC, or the like. The arithmetic circuit 49 transmits information indicating the calculated current to the outside.
 余長コイル50は、位相変調子46を通じて供給される測定光を偏波面保持ファイバ部60へ供給し、偏波面保持ファイバ部60を通じて供給される反射光を位相変調子46へ供給する光ファイバである。 The surplus coil 50 is an optical fiber that supplies the measurement light supplied through the phase modulator 46 to the polarization plane holding fiber unit 60 and supplies the reflected light supplied through the polarization plane holding fiber unit 60 to the phase modulator 46. is there.
 偏波面保持ファイバ部60は、センサ部70の温度変化に対する光学的特性の変化を相殺する機能を有する。図9に示すように、偏波面保持ファイバ部60は、温度補償素子1、信号処理部40と温度補償素子1とを光学的に接続する送光ファイバ61、及び温度補償素子1とセンサ部70を光学的に接続する送光ファイバ62などを有する。 The polarization-maintaining fiber unit 60 has a function of canceling the change in optical characteristics with respect to the temperature change of the sensor unit 70. As shown in FIG. 9, the polarization-maintaining fiber unit 60 includes a temperature compensation element 1, a light transmission fiber 61 that optically connects the signal processing unit 40 and the temperature compensation element 1, and the temperature compensation element 1 and the sensor unit 70. And the like.
 送光ファイバ61は、信号処理部40を通じて供給される測定光を温度補償素子1へ供給し、温度補償素子1を通じて供給される反射光を信号処理部40へ供給する。送光ファイバ62は、温度補償素子1を通じて供給される測定光をセンサ部70へ供給し、センサ部70を通じて供給される反射光を温度補償素子1へ供給する。 The light transmission fiber 61 supplies the measurement light supplied through the signal processing unit 40 to the temperature compensation element 1 and supplies the reflected light supplied through the temperature compensation element 1 to the signal processing unit 40. The light transmission fiber 62 supplies the measurement light supplied through the temperature compensation element 1 to the sensor unit 70 and supplies the reflected light supplied through the sensor unit 70 to the temperature compensation element 1.
 温度補償素子1は、センサ部70の温度変化に対する光学的特性の変化を相殺するために設置される。温度補償素子1は、温度補償素子1の温度とセンサ部70の温度とが一致するようにセンサ部70の近辺に設置される。センサ部70に温度変化が生じた場合、温度補償素子1は、センサ部70の光学的特性の変化と逆の光学的特性の変化(位相変化)を偏波面保持ファイバ部60のコアに生じさせる。 The temperature compensation element 1 is installed to cancel the change in the optical characteristics with respect to the temperature change of the sensor unit 70. The temperature compensation element 1 is installed in the vicinity of the sensor unit 70 so that the temperature of the temperature compensation element 1 matches the temperature of the sensor unit 70. When a temperature change occurs in the sensor unit 70, the temperature compensation element 1 causes an optical characteristic change (phase change) opposite to the optical characteristic change of the sensor unit 70 to occur in the core of the polarization-maintaining fiber unit 60. .
 温度補償素子1は、第1実施形態から第5実施の何れかに示されている温度補償素子である。温度補償素子1の構成は、センサ部70の温度変化に対する光学的特性の変化に応じて決定され、特定の構成に限定されるものではない。 The temperature compensation element 1 is a temperature compensation element shown in any one of the first to fifth embodiments. The configuration of the temperature compensation element 1 is determined according to the change in optical characteristics with respect to the temperature change of the sensor unit 70, and is not limited to a specific configuration.
 センサ部70は、通過する光に対して、電線74を流れる電流による特性の変化を生じさせる。たとえば、センサ部70は、電線74を通過する電流から生じるファラデー位相差を測定光及び反射光に生じさせる機能を有する。図9に示すように、センサ部70は、1/4波長板71、1/4波長板71から電線74を取り囲むように配置されたセンサファイバ72、センサファイバ72の先端に設けられた鏡73などを有する。 The sensor unit 70 causes a change in characteristics due to the current flowing through the electric wire 74 with respect to the light passing therethrough. For example, the sensor unit 70 has a function of causing the measurement light and the reflected light to generate a Faraday phase difference resulting from a current passing through the electric wire 74. As shown in FIG. 9, the sensor unit 70 includes a quarter-wave plate 71, a sensor fiber 72 disposed so as to surround the electric wire 74 from the quarter-wave plate 71, and a mirror 73 provided at the tip of the sensor fiber 72. Etc.
 1/4波長板71は、2つの複屈折軸を有し、それぞれの複屈折軸を通過する光の位相をπ/2ずらす機能を有する。1/4波長板71は、センサ部70の導入口に設置されている。1/4波長板71は、直線偏光を円偏光に、円偏光を直線偏光へ変換する機能を有する。 The quarter-wave plate 71 has two birefringence axes and has a function of shifting the phase of light passing through each birefringence axis by π / 2. The quarter-wave plate 71 is installed at the introduction port of the sensor unit 70. The quarter wavelength plate 71 has a function of converting linearly polarized light into circularly polarized light and circularly polarized light into linearly polarized light.
 センサファイバ72は、1/4波長板71に接続される光ファイバである。センサファイバ72は、測定対象である電流が流れる電線74を囲むように設置される。センサファイバ72は、電線74に流れる電流の磁界によって生じるファラデー位相差を測定光及び反射光に生じさせる機能を有する。 The sensor fiber 72 is an optical fiber connected to the quarter wavelength plate 71. The sensor fiber 72 is installed so as to surround the electric wire 74 through which a current to be measured flows. The sensor fiber 72 has a function of causing the measurement light and the reflected light to generate a Faraday phase difference caused by the magnetic field of the current flowing through the electric wire 74.
 鏡73は、センサファイバ72の先端に設置されている。鏡73は、センサファイバ72を通じて供給される測定光を反射し反射光をセンサファイバ72へ供給する機能を有する。 
 電線74は、サニャック干渉型光センサシステム10によって測定される電流が流れる。
The mirror 73 is installed at the tip of the sensor fiber 72. The mirror 73 has a function of reflecting the measurement light supplied through the sensor fiber 72 and supplying the reflected light to the sensor fiber 72.
A current measured by the Sagnac interferometric optical sensor system 10 flows through the electric wire 74.
 次に、サニャック干渉型光センサシステム10の動作例について説明する。 
 ここでは、サニャック干渉型光センサシステム10が測定する電流は、電線74を流れているものとする。
Next, an operation example of the Sagnac interference type optical sensor system 10 will be described.
Here, it is assumed that the current measured by the Sagnac interference optical sensor system 10 flows through the electric wire 74.
 光源駆動回路41は、光源42へ電力を供給する。光源42は、光源駆動回路41からの電力によってレーザなどの測定光を光ファイバを通じてファイバカプラ43へ供給する。光源42から供給された測定光は、ファイバカプラ43及び光学フィルタ44を通過し、位相変調子46へ供給される。 The light source drive circuit 41 supplies power to the light source 42. The light source 42 supplies measurement light such as a laser to the fiber coupler 43 through an optical fiber by the electric power from the light source driving circuit 41. The measurement light supplied from the light source 42 passes through the fiber coupler 43 and the optical filter 44 and is supplied to the phase modulator 46.
 位相変調子46は、位相変調子駆動回路45によって制御され、通過する測定光の位相を制御する。即ち、同期検波回路48は、測定光を所定の位相又は周波数にするための制御信号を位相変調子駆動回路45へ送る。また、位相変調子駆動回路45は、受信した制御信号に基づいて位相変調子46を制御する。その結果、位相変調子46を通過した測定光は、所定の位相又は周波数となる。 The phase modulator 46 is controlled by the phase modulator driving circuit 45 and controls the phase of the measurement light passing therethrough. That is, the synchronous detection circuit 48 sends a control signal for setting the measurement light to a predetermined phase or frequency to the phase modulator driving circuit 45. The phase modulator driving circuit 45 controls the phase modulator 46 based on the received control signal. As a result, the measurement light that has passed through the phase modulator 46 has a predetermined phase or frequency.
 位相変調子46を通過した測定光は、余長コイル50、及び、偏波面保持ファイバ部60の送光ファイバ61を通過し、温度補償素子1に供給される。温度補償素子1に供給されると、測定光の位相などの特性は、温度補償素子1の消光比又はクロストークなどの光学的特性によって変化する。 The measurement light that has passed through the phase modulator 46 passes through the extra length coil 50 and the light transmission fiber 61 of the polarization plane holding fiber portion 60 and is supplied to the temperature compensation element 1. When supplied to the temperature compensation element 1, characteristics such as the phase of the measurement light change depending on optical characteristics such as an extinction ratio or crosstalk of the temperature compensation element 1.
 温度補償素子1を通過した測定光は、送光ファイバ62を通過して、センサ部70の1/4波長板71に供給される。測定光は、1/4波長板71で位相を調整され、センサファイバ72を通過する。センサファイバ72を通過する測定光の位相には、電線74を通過する電流によってファラデー位相差が生じる。 The measurement light that has passed through the temperature compensation element 1 passes through the light transmission fiber 62 and is supplied to the quarter wavelength plate 71 of the sensor unit 70. The phase of the measuring light is adjusted by the quarter wavelength plate 71 and passes through the sensor fiber 72. A Faraday phase difference is generated in the phase of the measurement light passing through the sensor fiber 72 due to the current passing through the electric wire 74.
 センサファイバ72を通過した測定光は、鏡73で反射し再度センサファイバ72を通過する。鏡73で反射した測定光(反射光)は、センサファイバ72、1/4波長板71、送光ファイバ62、温度補償素子1、送光ファイバ61、余長コイル50、位相変調子46、光学フィルタ44及びファイバカプラ43を通過して検出器47に供給される。 The measurement light that has passed through the sensor fiber 72 is reflected by the mirror 73 and passes through the sensor fiber 72 again. The measurement light (reflected light) reflected by the mirror 73 includes a sensor fiber 72, a quarter wavelength plate 71, a light transmission fiber 62, a temperature compensation element 1, a light transmission fiber 61, a surplus coil 50, a phase modulator 46, and an optical. The light passes through the filter 44 and the fiber coupler 43 and is supplied to the detector 47.
 検出器47に反射光が供給されると、検出器47は、反射光を電気信号に変換し、同期検波回路48へ送る。 
 検出器47から電気信号を受信すると、同期検波回路48は、受信した電気信号の中から反射光から生じた電気信号を抽出する。即ち、同期検波回路48は、測定光の位相又は周波数が同一である信号を受信された電気信号から抽出する。これによって、同期検波回路48は、ノイズに干渉されることなく、反射光から生じた電気信号を抽出することができる。検出器47は、抽出された電気信号を演算回路49へ送る。
When the reflected light is supplied to the detector 47, the detector 47 converts the reflected light into an electric signal and sends it to the synchronous detection circuit 48.
When receiving the electrical signal from the detector 47, the synchronous detection circuit 48 extracts the electrical signal generated from the reflected light from the received electrical signal. That is, the synchronous detection circuit 48 extracts a signal having the same phase or frequency of the measurement light from the received electrical signal. As a result, the synchronous detection circuit 48 can extract an electric signal generated from the reflected light without being interfered by noise. The detector 47 sends the extracted electrical signal to the arithmetic circuit 49.
 演算回路49は、検出器47から電気信号を受信する。検出器47から電気信号を受信すると、演算回路49は、受信された電気信号から電線74を通過する電流によって生じたファラデー位相差を計算する。ファラデー位相差を計算すると、演算回路49は、計算されたファラデー位相差から電線74を流れる電流を計算する。なお、演算回路49が受信された電気信号に基づいて電線74を流れる電流を計算する方法は、特定の方法に限定されるものではない。 The arithmetic circuit 49 receives an electrical signal from the detector 47. When the electric signal is received from the detector 47, the arithmetic circuit 49 calculates the Faraday phase difference caused by the current passing through the electric wire 74 from the received electric signal. When the Faraday phase difference is calculated, the arithmetic circuit 49 calculates the current flowing through the electric wire 74 from the calculated Faraday phase difference. Note that the method of calculating the current flowing through the electric wire 74 based on the received electrical signal by the arithmetic circuit 49 is not limited to a specific method.
 図10は、第6実施形態に係るセンサ部70の温度特性及び温度補償素子1の温度特性の例を示す図である。 
 図10が示す図では、x軸がセンサ温度であって、y軸が比誤差である。図10が示すように、センサ部70の温度が上昇するにつれてセンサ部70の比誤差は、ほぼ直線的に上昇する。たとえば、センサ部70の温度が-30℃である場合には、センサ部70の比誤差は、-0.15%程度である。センサ部70の温度が5℃である場合には、センサ部70の比誤差は、ほぼ0%である。さらに、センサ部70の温度が30℃である場合には、センサ部70の比誤差は、0.1%程度である。
FIG. 10 is a diagram illustrating an example of the temperature characteristics of the sensor unit 70 and the temperature characteristics of the temperature compensation element 1 according to the sixth embodiment.
In the diagram shown in FIG. 10, the x-axis is the sensor temperature and the y-axis is the ratio error. As shown in FIG. 10, the ratio error of the sensor unit 70 increases substantially linearly as the temperature of the sensor unit 70 increases. For example, when the temperature of the sensor unit 70 is −30 ° C., the ratio error of the sensor unit 70 is about −0.15%. When the temperature of the sensor unit 70 is 5 ° C., the ratio error of the sensor unit 70 is almost 0%. Furthermore, when the temperature of the sensor unit 70 is 30 ° C., the ratio error of the sensor unit 70 is about 0.1%.
 逆に、センサ部70の温度が上昇するにつれて温度補償素子1の比誤差は、ほぼ直線的に低下する。たとえば、センサ部70の温度が-30℃である場合には、温度補償素子1の比誤差は、0.15%程度である。センサ部70の温度が5℃である場合には、温度補償素子1の比誤差は、ほぼ0%である。さらに、センサ部70の温度が30℃である場合には、温度補償素子1の比誤差は、-0.1%程度である。 Conversely, as the temperature of the sensor unit 70 increases, the ratio error of the temperature compensation element 1 decreases almost linearly. For example, when the temperature of the sensor unit 70 is −30 ° C., the ratio error of the temperature compensation element 1 is about 0.15%. When the temperature of the sensor unit 70 is 5 ° C., the ratio error of the temperature compensation element 1 is almost 0%. Further, when the temperature of the sensor unit 70 is 30 ° C., the ratio error of the temperature compensation element 1 is about −0.1%.
 図10が示すように、温度補償素子1は、センサ部70の温度特性と反対の温度特性を有し、温度補償素子1により、センサ部70の温度特性が相殺されることになる。 As shown in FIG. 10, the temperature compensation element 1 has a temperature characteristic opposite to the temperature characteristic of the sensor unit 70, and the temperature characteristic of the sensor unit 70 is canceled by the temperature compensation element 1.
 図11は、第6実施形態に係るサニャック干渉型光センサシステム10の温度特性の例を示す図である。 
 サニャック干渉型光センサシステム10の温度特性は、センサ部70の温度特性と温度補償素子1の温度特性との合算で決定される。即ち、サニャック干渉型光センサシステム10は、温度補償素子1の温度特性を用いて、センサ部70の温度特性を打ち消すことができる。
FIG. 11 is a diagram illustrating an example of temperature characteristics of the Sagnac interference optical sensor system 10 according to the sixth embodiment.
The temperature characteristic of the Sagnac interference type optical sensor system 10 is determined by adding the temperature characteristic of the sensor unit 70 and the temperature characteristic of the temperature compensation element 1. That is, the Sagnac interference optical sensor system 10 can cancel the temperature characteristic of the sensor unit 70 using the temperature characteristic of the temperature compensation element 1.
 図11が示すように、サニャック干渉型光センサシステム10の比誤差は、センサ部70の温度に関わらず、ほぼ0%程度である。前述の通り、温度補償素子1の温度特性は、センサ部70の温度特性と反対である。したがって、サニャック干渉型光センサシステム10の温度特性は、センサ部70の温度に関わらず、ほぼ0%程度で推移する。 As shown in FIG. 11, the ratio error of the Sagnac interferometric optical sensor system 10 is approximately 0% regardless of the temperature of the sensor unit 70. As described above, the temperature characteristic of the temperature compensation element 1 is opposite to the temperature characteristic of the sensor unit 70. Therefore, the temperature characteristic of the Sagnac interference type optical sensor system 10 changes at about 0% regardless of the temperature of the sensor unit 70.
 なお、偏波面保持ファイバ部60は、信号処理部40に対して温度補償をしてもよい。
この場合、偏波面保持ファイバ部60は、温度補償素子1の温度と信号処理部40の温度とが一致するように設置される。また、サニャック干渉型光センサシステムは、信号処理部40に対する温度補償素子1及びセンサ部70に対する温度補償素子1を備えてもよい。
The polarization-maintaining fiber unit 60 may perform temperature compensation for the signal processing unit 40.
In this case, the polarization-maintaining fiber unit 60 is installed so that the temperature of the temperature compensation element 1 matches the temperature of the signal processing unit 40. Further, the Sagnac interference type optical sensor system may include a temperature compensation element 1 for the signal processing unit 40 and a temperature compensation element 1 for the sensor unit 70.
 以上のようなサニャック干渉型光センサシステムは、センサ部の温度変化に対する光学的特性の変化を温度補償素子1によって相殺することができる。これによって、サニャック干渉型光センサシステムは、温度変化が生じた場合にも精度よく電流を測定することができる。また、サニャック干渉型光センサシステムは、温度計などを用いて測定したセンサ部の温度に基づいて電流の計測結果を補正するシステムよりも、容易に構成されることができる。 The Sagnac interference type optical sensor system as described above can cancel the change in the optical characteristic with respect to the temperature change of the sensor unit by the temperature compensation element 1. As a result, the Sagnac interferometric optical sensor system can accurately measure current even when a temperature change occurs. In addition, the Sagnac interference type optical sensor system can be configured more easily than a system that corrects the current measurement result based on the temperature of the sensor unit measured using a thermometer or the like.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1…温度補償素子、1a乃至c…温度補償素子、2…偏波面保持ファイバ、3…保護層、4…応力付与層(応力付与部)、5…金属薄膜層、6…フェルール、7…蝋材、11…コア、12…偏波面保持部、21及び22…平面プレート、23a及びb…スペーサ、24a及びb…スプリング、31…V溝プレート、40…信号処理部、60…偏波面保持ファイバ部、70…センサ部、72…ファイバセンサ、73…鏡。 DESCRIPTION OF SYMBOLS 1 ... Temperature compensation element, 1a thru | or c ... Temperature compensation element, 2 ... Polarization surface holding fiber, 3 ... Protective layer, 4 ... Stress application layer (stress application part), 5 ... Metal thin film layer, 6 ... Ferrule, 7 ... Wax Material: 11 ... Core, 12 ... Polarization plane holding section, 21 and 22 ... Planar plate, 23a and b ... Spacer, 24a and b ... Spring, 31 ... V groove plate, 40 ... Signal processing section, 60 ... Polarization plane holding fiber Part, 70 ... sensor part, 72 ... fiber sensor, 73 ... mirror.

Claims (14)

  1.  光を伝播する光ファイバに対して温度補償を行う温度補償素子であって、
     前記光ファイバに光学的に接続されている外部装置の温度変化に応じて、前記光ファイバに非等方的な応力を印加する応力付与部と、
    を備える温度補償素子。
    A temperature compensation element that performs temperature compensation on an optical fiber that propagates light,
    A stress applying unit that applies anisotropic stress to the optical fiber in accordance with a temperature change of an external device optically connected to the optical fiber;
    A temperature compensation element comprising:
  2.  前記応力付与部は、前記光ファイバを被覆する応力付与層である、
    前記請求項1に記載の温度補償素子。
    The stress applying part is a stress applying layer that covers the optical fiber.
    The temperature compensation element according to claim 1.
  3.  前記応力付与部は、前記応力付与部の熱膨張によって生じる応力を非等方的に前記光ファイバに印加する応力付与層である、
    前記請求項1又は2に記載の温度補償素子。
    The stress applying part is a stress applying layer that applies stress generated by thermal expansion of the stress applying part anisotropically to the optical fiber.
    The temperature compensation element according to claim 1 or 2.
  4.  前記応力付与部は、熱膨張率の異なる複数の物質から構成される、
    前記請求項1乃至3の何れか1項に記載の温度補償素子。
    The stress applying part is composed of a plurality of substances having different coefficients of thermal expansion.
    The temperature compensation element according to any one of claims 1 to 3.
  5.  前記応力付与部は、同心円状の複数の物質を重ねる構造を有する、
    前記請求項4に記載の温度補償素子。
    The stress applying part has a structure in which a plurality of concentric substances are stacked.
    The temperature compensation element according to claim 4.
  6.  前記応力付与部は、金属から構成される、
    前記請求項1乃至5の何れか1項に記載の温度補償素子。
    The stress applying part is made of metal.
    The temperature compensation element according to any one of claims 1 to 5.
  7.  前記応力付与部は、平行に設置される2枚の平面プレートから構成され、2枚の前記平面プレートで前記光ファイバを挟む構造を有する、
    前記請求項1に記載の温度補償素子。
    The stress applying portion is composed of two flat plates installed in parallel, and has a structure in which the optical fiber is sandwiched between the two flat plates.
    The temperature compensation element according to claim 1.
  8.  前記応力付与部は、少なくとも1枚の前記平面プレートに弾性体を設け、前記弾性体の反発力によって前記平面プレートに応力を印加する、
    前記請求項7に記載の温度補償素子。
    The stress applying unit provides an elastic body on at least one of the flat plates, and applies stress to the flat plate by a repulsive force of the elastic bodies.
    The temperature compensation element according to claim 7.
  9.  前記弾性体は、スプリングである、
    前記請求項8に記載の温度補償素子。
    The elastic body is a spring;
    The temperature compensation element according to claim 8.
  10.  前記応力付与部は、2枚の前記平面プレートの間に、スペーサを備える、前記請求項7乃至9の何れか1項に記載の温度補償素子。 The temperature compensation element according to any one of claims 7 to 9, wherein the stress applying unit includes a spacer between the two flat plates.
  11.  前記応力付与部は、少なくとも1枚の前記平面プレートの内面に、前記光ファイバを固定する溝を備える、
    前記請求項7乃至10の何れか1項に記載の温度補償素子。
    The stress applying part includes a groove for fixing the optical fiber on an inner surface of at least one of the flat plates.
    The temperature compensation element according to any one of claims 7 to 10.
  12.  前記応力付与部は、前記光ファイバの複屈折軸により強い応力を印加する、前記請求項1乃至11の何れか1項に記載の温度補償素子。 The temperature compensation element according to any one of claims 1 to 11, wherein the stress applying unit applies a strong stress to the birefringence axis of the optical fiber.
  13.  請求項1乃至12のいずれか1項に記載の温度補償素子を複数個光学的に接続した温度補償素子。 A temperature compensation element in which a plurality of temperature compensation elements according to any one of claims 1 to 12 are optically connected.
  14.  センサ部と、信号処理部と、偏波面保持ファイバ部と、を備える光センサシステムであって、
     前記偏波面保持ファイバ部は、
     前記センサ部と前記信号処理部とを光学的に接続する光ファイバと、
     前記光ファイバに光学的に接続されている外部装置の温度変化に応じて、前記光ファイバに非等方的な応力を印加する応力付与部と、
    を備える温度補償素子を備える、
    光センサシステム。
    An optical sensor system comprising a sensor unit, a signal processing unit, and a polarization plane holding fiber unit,
    The polarization-maintaining fiber part is
    An optical fiber that optically connects the sensor unit and the signal processing unit;
    A stress applying unit that applies anisotropic stress to the optical fiber in accordance with a temperature change of an external device optically connected to the optical fiber;
    Comprising a temperature compensation element comprising
    Optical sensor system.
PCT/JP2016/052516 2015-01-29 2016-01-28 Temperature compensating element and light sensor system WO2016121880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015015681A JP2016142744A (en) 2015-01-29 2015-01-29 Temperature compensation element and optical sensor system
JP2015-015681 2015-07-14

Publications (1)

Publication Number Publication Date
WO2016121880A1 true WO2016121880A1 (en) 2016-08-04

Family

ID=56543485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052516 WO2016121880A1 (en) 2015-01-29 2016-01-28 Temperature compensating element and light sensor system

Country Status (2)

Country Link
JP (1) JP2016142744A (en)
WO (1) WO2016121880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301489A1 (en) * 2016-09-29 2018-04-04 Ofs Fitel Llc, A Delaware Limited Liability Company Polarization maintaining optical fiber with non-symmetric stress applying parts
CN114518140A (en) * 2022-01-04 2022-05-20 中国航空工业集团公司北京长城计量测试技术研究所 Temperature compensation type optical fiber intelligent gasket

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191028U (en) * 1984-05-30 1985-12-18 日本電気株式会社 Fiber optic phase modulator
JPS63208809A (en) * 1987-02-25 1988-08-30 Sumitomo Electric Ind Ltd Polarization maintaining optical fiber
JPH02203235A (en) * 1989-02-02 1990-08-13 Furukawa Electric Co Ltd:The Method for detecting principal axis angle of polarization maintaining fiber
JPH0784140A (en) * 1993-09-10 1995-03-31 Sumitomo Electric Ind Ltd Clamping method for multiple optical fibers
JPH1010378A (en) * 1996-06-25 1998-01-16 Toshiba Corp Coated optical fiber, optical fiber coil and production of coated optical fiber
US20010050551A1 (en) * 2000-01-05 2001-12-13 Klaus Bohnert Fiber optic current sensor
JP2004361196A (en) * 2003-06-04 2004-12-24 Hitachi Cable Ltd Optical-fiber current sensor
JP2009258684A (en) * 2008-03-18 2009-11-05 Keio Gijuku Optical signal transmission system and method
JP2012068107A (en) * 2010-09-22 2012-04-05 Toshiba Corp Temperature-compensating element and sagnac interference-based optical current sensor utilizing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242342Y2 (en) * 1980-11-14 1987-10-30
JPS59180640U (en) * 1983-05-19 1984-12-03 古河電気工業株式会社 Optical composite cable for temperature detection
GB8328204D0 (en) * 1983-10-21 1983-11-23 British Telecomm Optical fibres
WO2003005081A1 (en) * 2001-07-02 2003-01-16 Acreo Ab Method and device for controlling the refractive index in an optical fiber
JP2013253922A (en) * 2012-06-08 2013-12-19 Toshiba Corp Photocurrent sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191028U (en) * 1984-05-30 1985-12-18 日本電気株式会社 Fiber optic phase modulator
JPS63208809A (en) * 1987-02-25 1988-08-30 Sumitomo Electric Ind Ltd Polarization maintaining optical fiber
JPH02203235A (en) * 1989-02-02 1990-08-13 Furukawa Electric Co Ltd:The Method for detecting principal axis angle of polarization maintaining fiber
JPH0784140A (en) * 1993-09-10 1995-03-31 Sumitomo Electric Ind Ltd Clamping method for multiple optical fibers
JPH1010378A (en) * 1996-06-25 1998-01-16 Toshiba Corp Coated optical fiber, optical fiber coil and production of coated optical fiber
US20010050551A1 (en) * 2000-01-05 2001-12-13 Klaus Bohnert Fiber optic current sensor
JP2004361196A (en) * 2003-06-04 2004-12-24 Hitachi Cable Ltd Optical-fiber current sensor
JP2009258684A (en) * 2008-03-18 2009-11-05 Keio Gijuku Optical signal transmission system and method
JP2012068107A (en) * 2010-09-22 2012-04-05 Toshiba Corp Temperature-compensating element and sagnac interference-based optical current sensor utilizing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301489A1 (en) * 2016-09-29 2018-04-04 Ofs Fitel Llc, A Delaware Limited Liability Company Polarization maintaining optical fiber with non-symmetric stress applying parts
CN114518140A (en) * 2022-01-04 2022-05-20 中国航空工业集团公司北京长城计量测试技术研究所 Temperature compensation type optical fiber intelligent gasket

Also Published As

Publication number Publication date
JP2016142744A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
US6937793B2 (en) Tunable chromatic dispersion compensator
US5780847A (en) Verdet constant temperature-compensated current sensor
CN102080972A (en) External cavity-type optical fiber Fabry-Perot sensor and system and method for vibration monitoring
CN105606844A (en) Accelerometer with strain compensation
JP5616471B2 (en) Semiconductor laser module and manufacturing method thereof
WO2013115995A1 (en) Active alignment of optical fiber to chip using liquid crystals
JPWO2008047859A1 (en) Optical fiber thermometer and temperature compensated optical fiber sensor
US6269202B1 (en) Highly temperature stable filter for fiberoptic applications and system for altering the wavelength or other characteristics of optical devices
JP2013029502A (en) Method and system for optical fiber sensor
JP6301963B2 (en) Strain sensor and installation method of strain sensor
WO2016121880A1 (en) Temperature compensating element and light sensor system
EP3117195B1 (en) Non-contact magnetostrictive current sensor
KR101704731B1 (en) Optical current sensors with photonic crystal fibers and a method of its prodution
US20060197012A1 (en) Shear and pressure/transverse strain fiber grating sensors
US11435415B2 (en) Magnetic sensor element and magnetic sensor device
KR20170141150A (en) a optic-fiber current sensor system
JP2016142530A (en) Temperature compensation element, polarization plane maintaining fiber and optical sensor system
EP0823638B1 (en) Optical current measurement
JP6017169B2 (en) Photocurrent detection device and method of manufacturing photocurrent detection device
JP6405946B2 (en) Optical device
KR20150130811A (en) Optical fiber connect apparatus and connect method
Anirudh et al. DC electric field measurement using FBG sensor
JP6453994B2 (en) Optical fiber sensor and measuring device using the same
Murphy Optical fibre structural monitoring
JP6769817B2 (en) Antenna characteristic measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743483

Country of ref document: EP

Kind code of ref document: A1