WO2016121872A1 - ユーザ装置及び通信制御方法 - Google Patents

ユーザ装置及び通信制御方法 Download PDF

Info

Publication number
WO2016121872A1
WO2016121872A1 PCT/JP2016/052497 JP2016052497W WO2016121872A1 WO 2016121872 A1 WO2016121872 A1 WO 2016121872A1 JP 2016052497 W JP2016052497 W JP 2016052497W WO 2016121872 A1 WO2016121872 A1 WO 2016121872A1
Authority
WO
WIPO (PCT)
Prior art keywords
lbt
timing
base station
user
transmission
Prior art date
Application number
PCT/JP2016/052497
Other languages
English (en)
French (fr)
Inventor
徹 内野
一樹 武田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP16743475.2A priority Critical patent/EP3253164A4/en
Priority to JP2016551327A priority patent/JPWO2016121872A1/ja
Priority to US15/121,173 priority patent/US20170013646A1/en
Publication of WO2016121872A1 publication Critical patent/WO2016121872A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access

Definitions

  • the present invention relates to a wireless communication system.
  • the transmitter executes Listen Before Talk (LBT) at a timing before a predetermined period before the uplink transmission timing.
  • LBT Listen Before Talk
  • the transmitter searches the entire target frequency band at a timing before a predetermined period before the uplink transmission timing, and other transmitters (eNB, LAA (Licens Assisted Access) -UE, WiFi device, etc.) Whether or not communication is performed in the frequency band is confirmed, and transmission is performed in the frequency band only when it is confirmed that communication is not performed.
  • the base station and the user apparatus perform transmission, it is assumed that transmission is performed by performing LBT.
  • the base station frequency-multiplexes user apparatuses in LAA, that is, when a plurality of user apparatuses are scheduled to perform transmission in the same subframe, uplink transmission timing differs for each user apparatus due to a propagation delay difference. . For this reason, there is a possibility that transmission of another user apparatus that performs transmission in the subframe is detected by the LBT.
  • the base station assigns the same subframe to three user apparatuses UE # 1, UE # 2, and UE # 3. These user apparatuses are assigned different timing advance (TA) values to compensate for the propagation delay difference in the cell according to the distance from the base station, and uplink transmission is performed at different uplink transmission timings.
  • TA timing advance
  • the largest TA value is designated for UE # 3 and the smallest TA value is designated for UE # 1.
  • the user equipment executes the LBT at a timing (LBT timing) a predetermined time before the designated uplink transmission timing.
  • the predetermined time is typically a common period statically specified for each user apparatus UE # 1, UE # 2, UE # 3.
  • the base station selects and frequency-multiplexes the user equipment having the same LBT timing.
  • an additional scheduling constraint is generated in the scheduler of the base station, which may reduce the system efficiency.
  • an object of the present invention is to provide a technique for realizing LBT in consideration of a propagation delay difference in a cell.
  • an aspect of the present invention provides a transmission / reception unit that performs transmission / reception via a cell with a base station using a scheduled radio resource, and a Listen Before Talk (LBT) for the frequency band of the cell.
  • a user equipment having a frequency usage status detection unit that executes at an individual LBT timing with respect to the scheduled uplink transmission timing, wherein the frequency usage status detection unit communicates with another user device in the frequency band. If not, the transmission / reception unit relates to a user apparatus that performs uplink transmission to the base station.
  • Another aspect of the present invention is a communication control method by a user apparatus, the method comprising: receiving an uplink scheduling grant indicating a radio resource scheduled for uplink transmission via a cell with a base station; When performing the Listen Before Talk (LBT) for the scheduled uplink transmission timing with respect to the scheduled uplink transmission timing at an individual LBT timing, and determining that no other user apparatus is communicating in the frequency band, And a step of performing uplink transmission to a base station.
  • LBT Listen Before Talk
  • FIG. 1 is a schematic diagram illustrating a transmission stop example due to an uplink transmission timing difference.
  • FIG. 2A is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • FIG. 2B is a block diagram illustrating a hardware configuration of a user apparatus according to an embodiment of the present invention.
  • FIG. 2C is a block diagram illustrating a hardware configuration of a base station according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating LBT timing according to an embodiment of the present invention.
  • FIG. 5 is a flowchart showing communication control processing by a user apparatus according to an embodiment of the present invention.
  • a user apparatus that executes Listen Before Talk (LBT) before uplink transmission.
  • the user equipment performs LBT for confirming whether another user equipment is using the frequency band of the cell before uplink transmission at an individual LBT timing with respect to the uplink transmission timing.
  • the LBT timing is adaptively determined so as to avoid erroneous determination of the LBT due to a transmission timing difference introduced to compensate for a propagation delay difference between scheduled user apparatuses. Thereby, it is possible to realize an LBT in consideration of a propagation delay difference between user apparatuses in a cell.
  • FIG. 2A is a schematic diagram illustrating a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 10 includes user apparatuses 100A, 100B, and 100C (hereinafter collectively referred to as user apparatus 100) and a base station 200.
  • the wireless communication system 10 is typically an LTE system or an LTE-Advanced system. In the illustrated embodiment, only one base station 200 is shown, but a number of base stations 200 are arranged to cover the service area of the wireless communication system 10.
  • User apparatus 100 performs radio communication with base station 200 using radio resources scheduled via a cell provided by base station 200.
  • the user apparatuses 100A, 100B, and 100C are generally at different distances from the base station 200, and use scheduled radio resources at appropriate timing. Therefore, the user apparatuses 100A, 100B, and 100C have transmission timings according to timing advance (TA) values specified by the base station 200. Perform uplink transmission.
  • TA timing advance
  • the user apparatus 100 may be any appropriate information processing apparatus having a wireless communication function such as a smartphone, a mobile phone, a tablet, a mobile router, and a wearable terminal as illustrated.
  • the user apparatus 100 transmits and receives radio signals to and from the base station 200, such as a CPU (Central Processing Unit) 101 such as a processor, a memory apparatus 102 such as a RAM (Random Access Memory) and flash memory, and the like.
  • Communication circuit 103, and user interface 104 such as an input / output device or a peripheral device.
  • each function and process of the user device 100 described later may be realized by the CPU 101 processing or executing data or a program stored in the memory device 102.
  • the user apparatus 100 is not limited to the hardware configuration described above, and may be configured by a circuit that realizes one or more of the processes described below.
  • the base station 200 wirelessly connects to the user apparatus 100 to transmit a downlink (DL) packet received from an upper station that is communicatively connected to a core network (not shown) to the user apparatus 100.
  • the uplink (UL) packet received from 100 is transmitted to the upper station.
  • the base station 200 typically includes an antenna 201 for transmitting and receiving radio signals to and from the user apparatus 100, and a first communication interface (for communicating with an adjacent base station 200). 202, a second communication interface (S1 interface, etc.) 203 for communicating with the core network, a processor 204 and a circuit for processing transmission / reception signals to / from the user device 100, and hardware resources such as a memory device 205 Composed.
  • Each function and process of the base station 200 to be described later may be realized by the processor 204 processing or executing data or a program stored in the memory device 205.
  • the base station 200 is not limited to the hardware configuration described above, and may have any other appropriate hardware configuration.
  • FIG. 3 is a block diagram illustrating a functional configuration of a user apparatus according to an embodiment of the present invention.
  • the user device 100 includes a transmission / reception unit 110 and a frequency usage state detection unit 120.
  • the transmission / reception unit 110 performs transmission / reception via the cell with the base station 200 using the scheduled radio resource, and when the frequency usage state detection unit 120 is not communicating with another user apparatus 100 in the frequency band of the cell. When determined, the transmission / reception unit 110 performs uplink transmission to the base station 200.
  • the transmission / reception unit 110 transmits / receives various radio channels such as an uplink / downlink control channel and an uplink / downlink data channel to / from the base station 200 using the scheduled radio resource.
  • the base station 200 compensates the propagation delay difference according to the distance from the base station 200 of each user apparatus 100 in the cell, and assigns a timing advance (TA) value for adjusting the uplink transmission timing to each user apparatus. 100 is notified. For example, when the user apparatus 100 is in the vicinity of the base station 200, the base station 200 notifies a relatively small TA value, whereas when the user apparatus 100 is at the cell edge, the base station 200 has a relatively large TA value. Notify the value.
  • the transmission / reception unit 110 performs uplink transmission at a transmission timing based on the notified TA value.
  • the frequency usage status detection unit 120 executes LBT for the frequency band of the cell at individual LBT timing with respect to the scheduled uplink transmission timing.
  • the user apparatus 100 executes the LBT at a timing before a predetermined period from the uplink transmission timing notified from the base station 200, and the predetermined period is typically static. It was a period common to each user device specified in (1).
  • the frequency usage state detection unit 120 is based on the LBT timing individually set for each user apparatus 100 or the individually set period with respect to the uplink transmission timing notified from the base station 200.
  • a Listen Before Talk (LBT) is executed for the frequency band of the cell at the LBT timing, and it is confirmed whether another user apparatus 100 is communicating in the frequency band.
  • LBT Listen Before Talk
  • the transmission / reception unit 110 communicates with the base station 200 using the scheduled radio resource in the cell.
  • the said individual LBT timing is set as a timing which avoids misdetermination of LBT resulting from the difference in the transmission timing of the user apparatus 100 scheduled by the base station 200.
  • the individual LBT timing may be an LBT timing according to a period set individually for each user apparatus 100, and the frequency usage state detection unit 120 may be based on a period set individually for the user apparatus 100.
  • the LBT may be executed at the previous LBT timing.
  • the individual LBT timing according to the present embodiment is based on a period set for each user device 100 instead of a timing according to a predetermined period statically designated for each user device 100 as in the conventional LBT. It is timing.
  • the “scheduling” used here is not limited to dynamic resource allocation by the base station 200, but may be that the base station 200 allocates radio resources to the user apparatus 100 in advance.
  • the user apparatus 100 receives resource setting information indicating the allocation from the base station 200, determines transmission timing according to the resource setting information, and determines individual LBT timing with respect to the determined transmission timing. Also good.
  • the resource setting information may indicate that radio resources are periodically allocated.
  • the frequency usage status detection unit 120 searches the entire frequency band of the cell at individual LBT timing, and the received power exceeds a predetermined threshold in at least a part of the frequency band. When this is detected, it is determined that the frequency band is being used by another user apparatus 100 (LBT: NG), and the transmission / reception unit 110 stops uplink transmission to the base station 200. On the other hand, if the received power is equal to or lower than the predetermined threshold in any of the frequency bands, the frequency usage status detection unit 120 determines that the frequency band is not used by another user apparatus 100 (LBT: OK). The transmission / reception unit 110 performs uplink transmission to the base station 200.
  • the frequency usage state detection unit 120 may execute the LBT at the LBT timing instructed from the base station 200. That is, the base station 200 is configured so that the transmission timing difference introduced based on the propagation delay difference in the cell between the user apparatuses 100 multiplexed in the same subframe does not cause an erroneous determination of the LBT.
  • the LBT timing is determined, and the determined LBT timing is notified to the user apparatus 100.
  • the frequency usage state detection unit 120 executes LBT on the frequency band of the cell at the notified LBT timing.
  • the frequency usage state detection unit 120 may be configured such that the LBT timing difference between the user apparatuses 100 instructed to all user apparatuses 100 multiplexed in the same subframe by the base station 200 falls within a predetermined range.
  • the LBT may be executed at the LBT timing. That is, as illustrated in FIG. 4, the base station 200 determines that the LBT timing difference between the user apparatuses 100 is within a predetermined range for all user apparatuses 100 multiplexed in the same subframe. An individual period is calculated so as to be the timing, and the user apparatus 100 is notified of the LBT timing or the calculated individual period.
  • the frequency usage state detection unit 120 of each user apparatus 100 executes LBT at the common LBT timing.
  • each user apparatus 100 executes LBT at an LBT timing such that the LBT timing difference between the user apparatuses 100 falls within a predetermined range, and the user apparatus 100 depends on the transmission timing difference between the scheduled user apparatuses 100. It becomes possible to avoid erroneous determination of LBT.
  • the instructed LBT timing may be an LBT timing for a specific user device 100 among the user devices 100 multiplexed in the same subframe.
  • the specific user apparatus 100 may be the user apparatus 100 (UE # 3 in the illustrated example) at the earliest transmission timing among the user apparatuses 100 multiplexed in the same subframe. That is, the base station 200 may notify all the user apparatuses 100 of the LBT timing of the user apparatus 100 having the largest TA value based on the TA value in the license band or unlicensed band cell or component carrier (CC). .
  • the frequency usage state detection unit 120 of each user apparatus 100 executes LBT at the LBT timing. Thereby, each user apparatus 100 will perform LBT at the LBT timing of the user apparatus 100 of the earliest transmission timing, and can easily derive the LBT timing that can avoid erroneous LBT determination.
  • the frequency usage state detection unit 120 may adjust the LBT timing according to the change amount notified from the base station 200 in response to the change in the timing advance value of the specific user apparatus 100. For example, when a specific user apparatus 100 moves in a cell and the TA value of the specific user apparatus 100 changes, the base station 200 determines the change amount by a MAC (Medium Access Control) CE (Control Element). The user device 100 may be notified.
  • the MAC CE may be an existing TA command MAC CE.
  • the frequency use state detection unit 120 adjusts the LBT timing according to the change amount. Thereby, each user apparatus 100 dynamically adjusts the LBT timing according to the amount of change in the TA value of the specific user apparatus 100, and executes the LBT at the LBT timing considering the movement of the specific user apparatus 100. be able to.
  • the frequency usage status detection unit 120 may autonomously determine individual LBT timings without depending on the LBT timing instruction from the base station 200. Thereby, the LBT timing instruction from the base station 200 becomes unnecessary, and radio resources for LBT timing signaling such as a downlink control channel can be saved.
  • the frequency usage state detection unit 120 may determine the LBT timing based on the maximum timing advance value of the cell received from the base station 200. In other words, when the TA maximum value is received, the frequency usage state detection unit 120 can recognize the earliest transmission timing and executes LBT at an arbitrary LBT timing before the earliest transmission timing. be able to. For example, the TA maximum value may be notified by the MAC CE of the existing TA command. Thereby, each user apparatus 100 can execute LBT before the earliest transmission timing, and it is possible to avoid erroneous determination of LBT due to a transmission timing difference between scheduled user apparatuses 100. .
  • the transmission / reception unit 110 receives the base station 200 regardless of the LBT determination result performed in the period between the maximum timing advance value of the cell received from the base station 200 and the timing advance value of the user apparatus 100.
  • Uplink transmission to may be determined. That is, the frequency usage status detection unit 120 executes LBT at the LBT timing corresponding to the TA value of the user apparatus 100, while the transmission / reception unit 110 determines the LBT in the period of (TA maximum value ⁇ TA value of own station). The result may be excluded and uplink transmission to base station 200 may be determined. For example, in FIG. 1, the frequency usage state detection unit 120 of UE # 1 may exclude the LBT determination result for UE # 3 and determine uplink transmission to base station 200.
  • FIG. 5 is a flowchart showing communication control processing by the user apparatus according to an embodiment of the present invention.
  • the communication control process may be started in response to the user apparatus 100 requesting uplink transmission after connecting to the base station 200, for example.
  • step S101 the user apparatus 100 receives an uplink scheduling grant indicating a radio resource scheduled for uplink transmission with the base station 200 via a cell.
  • the user apparatus 100 executes LBT for the frequency band of the cell at an individual LBT timing with respect to the scheduled uplink transmission timing.
  • the user apparatus 100 may execute LBT at an LBT timing before the period instructed from the uplink transmission timing based on the period instructed from the base station 200.
  • the base station 200 sets each user device 100 so that the LBT timing difference between the user devices 100 is within a predetermined range for all user devices 100 multiplexed in the same subframe.
  • the user apparatus 100 may instruct which period of time should be performed before the uplink transmission timing of the apparatus 100, and each user apparatus 100 may execute the LBT at the instructed LBT timing.
  • the user apparatus 100 may autonomously determine the individual LBT timing without depending on the LBT timing instruction from the base station. For example, the user apparatus 100 may determine the LBT timing based on the timing advance maximum value of the cell received from the base station 200.
  • step S103 when the user apparatus 100 determines that another user apparatus is not communicating in the frequency band, the user apparatus 100 performs uplink transmission to the base station 200.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 セル内の伝搬遅延差を考慮したLBTを実現するための技術が開示される。本発明の一態様は、スケジューリングされた無線リソースを用いて基地局とセルを介した送受信を実行する送受信部と、前記セルの周波数帯域についてListen Before Talk(LBT)を、スケジューリングされたアップリンク送信タイミングに対し、個別のLBTタイミングで実行する周波数利用状況検出部とを有するユーザ装置であって、前記周波数利用状況検出部が前記周波数帯域において他のユーザ装置が通信していないと判断すると、前記送受信部は、前記基地局へのアップリンク送信を実行するユーザ装置に関する。

Description

ユーザ装置及び通信制御方法
 本発明は、無線通信システムに関する。
 現状のLTE(Long Term Evolution)システムでは、通信事業者に割り当てられたライセンスバンドを用いて無線通信が行われている。スマートフォンやタブレットなどの高機能化されたユーザ装置(User Equipment:UE)の普及はユーザトラヒックを急激に増加させている。この増加するユーザトラヒックを吸収するため、更なる周波数バンドを追加する必要があるが、ライセンスバンドの帯域には限りがある。このため、ライセンスバンド以外に利用可能なアンライセンスバンドを利用して、LTEシステムの周波数帯域を拡張することが検討されている。このようなアンライセンスバンドの一例として、WiFi(登録商標)等に用いられるバンドがあげられる。
 アンライセンスバンドにおいては、当該周波数帯域で通信している他のユーザ装置や基地局(evolved NodeB:eNB)などの他のエンティティが検出された場合、当該ユーザ装置は、アンライセンスバンドにおいて通信することが禁止されている。このため、送信機は、アップリンク送信タイミングよりも所定期間前のタイミングでListen Before Talk(LBT)を実行する。LBTでは、送信機は、アップリンク送信タイミングよりも所定期間前のタイミングで対象となる周波数帯域全体をサーチし、他の送信機(eNB、LAA(Licensed Assisted Access)-UE、WiFi装置など)が当該周波数帯域において通信しているか確認し、通信していないことが確認された場合に限って、当該周波数帯域において送信を行う。他方、一部の周波数帯域でも他の送信機が使用中であれば、すなわち、他の送信機からの受信電力が閾値を超過していることが検出されると、送信機は自らの送信を中止する(LBT:NG)。
RP-131701
 アンライセンスバンドだけでなくライセンスバンドにおいても、基地局とユーザ装置とが送信を行う際にはLBTを行って送信を実行することが想定される。基地局がLAAにおいてユーザ装置を周波数多重する場合、すなわち、複数のユーザ装置が同一のサブフレームで送信を行うようスケジューリングされる場合、伝搬遅延差のため、アップリンク送信タイミングはユーザ装置毎に異なる。このため、当該サブフレームで送信を行う他のユーザ装置の送信がLBTで検出される可能性がある。
 例えば、図1に示されるように、基地局が、同一のサブフレームを3つのユーザ装置UE#1,UE#2,UE#3に割り当てたとする。これらのユーザ装置には、基地局からの距離に応じたセル内の伝搬遅延差を補償するため異なるタイミングアドバンス(TA)値が指定され、異なるアップリンク送信タイミングによりアップリンク送信が行われる。図示された例では、UE#3に最も大きなTA値が指定され、UE#1に最も小さなTA値が指定されている。従来のLBTでは、ユーザ装置は、指定されたアップリンク送信タイミングから所定時間前のタイミング(LBTタイミング)でLBTを実行する。このため、UE#3及びUE#2のLBTでは、当該周波数帯域において他のユーザ装置の送信は検出されず(LBT=OK)、UE#3及びUE#2は、当該サブフレームにおいてアップリンク送信を行うことになる。他方、UE#1のLBTでは、当該LBTタイミングより先にUE#3のアップリンク送信が行われるため、ユーザ装置UE#3が当該周波数帯域を使用していることが検出され(LBT=NG)、UE#1は、当該サブフレームにおけるアップリンク送信を中止する。なお、当該所定時間は、典型的には、各ユーザ装置UE#1,UE#2,UE#3に静的に指定された共通の期間である。
 このような問題を解決するため、ユーザ装置を周波数多重する際、LBTタイミングがほぼ同一となるユーザ装置を基地局が選択して周波数多重することが想定される。しかしながら、この場合、基地局のスケジューラに追加的なスケジューリング制約が発生するため、システム効率が低下する可能性がある。
 従って、上述した問題点を鑑み、本発明の課題は、セル内の伝搬遅延差を考慮したLBTを実現するための技術を提供することである。
 上記課題を解決するため、本発明の一態様は、スケジューリングされた無線リソースを用いて基地局とセルを介した送受信を実行する送受信部と、前記セルの周波数帯域についてListen Before Talk(LBT)を、スケジューリングされたアップリンク送信タイミングに対し、個別のLBTタイミングで実行する周波数利用状況検出部とを有するユーザ装置であって、前記周波数利用状況検出部が前記周波数帯域において他のユーザ装置が通信していないと判断すると、前記送受信部は、前記基地局へのアップリンク送信を実行するユーザ装置に関する。
 本発明の他の態様は、ユーザ装置による通信制御方法であって、基地局とのセルを介したアップリンク送信のためスケジューリングされた無線リソースを示すアップリンクスケジューリンググラントを受信するステップと、前記セルの周波数帯域についてListen Before Talk(LBT)を、スケジューリングされたアップリンク送信タイミングに対し、個別のLBTタイミングで実行するステップと、前記周波数帯域において他のユーザ装置が通信していないと判断すると、前記基地局へのアップリンク送信を実行するステップとを有する通信制御方法に関する。
 本発明によると、セル内の伝搬遅延差を考慮したLBTを実現することができる。
図1は、アップリンク送信タイミング差による送信停止例を示す概略図である。 図2Aは、本発明の一実施例による無線通信システムを示す概略図である。 図2Bは、本発明の一実施例によるユーザ装置のハードウェア構成を示すブロック図である。 図2Cは、本発明の一実施例による基地局のハードウェア構成を示すブロック図である。 図3は、本発明の一実施例によるユーザ装置の機能構成を示すブロック図である。 図4は、本発明の一実施例によるLBTタイミングを示す概略図である。 図5は、本発明の一実施例によるユーザ装置による通信制御処理を示すフロー図である。
 以下、図面に基づいて本発明の実施の形態を説明する。
 後述される実施例では、アップリンク送信前にListen Before Talk(LBT)を実行するユーザ装置が開示される。本発明を概略すると、ユーザ装置は、アップリンク送信前に他のユーザ装置が当該セルの周波数帯域を使用しているか確認するためのLBTを、アップリンク送信タイミングに対し個別のLBTタイミングで実行する。当該LBTタイミングは、スケジューリングされているユーザ装置間の伝搬遅延差を補償するため導入される送信タイミング差によって、LBTが誤判定されることを回避するよう適応的に決定される。これにより、セル内の各ユーザ装置間の伝搬遅延差を考慮したLBTを実現することが可能になる。
 図2Aを参照して、本発明の一実施例による無線通信システムを説明する。図2Aは、本発明の一実施例による無線通信システムを示す概略図である。
 図2Aに示されるように、無線通信システム10は、ユーザ装置100A,100B,100C(以降において、ユーザ装置100と総称する)及び基地局200を有する。無線通信システム10は、典型的には、LTEシステム又はLTE-Advancedシステムである。図示された実施例では、1つの基地局200しか示されていないが、無線通信システム10のサービスエリアをカバーするよう多数の基地局200が配置される。
 ユーザ装置100は、基地局200により提供されるセルを介しスケジューリングされた無線リソースを用いて基地局200と無線通信を行う。ユーザ装置100A,100B,100Cは、一般に基地局200から異なる距離にあり、スケジューリングされた無線リソースを適切なタイミングで利用するため、基地局200から指定されたタイミングアドバンス(TA)値に従う送信タイミングでアップリンク送信を実行する。
 典型的には、ユーザ装置100は、図示されるように、スマートフォン、携帯電話、タブレット、モバイルルータ、ウェアラブル端末などの無線通信機能を備えた何れか適切な情報処理装置であってもよい。図2Bに示されるように、ユーザ装置100は、プロセッサなどのCPU(Central Processing Unit)101、RAM(Random Access Memory)やフラッシュメモリなどのメモリ装置102、基地局200との間で無線信号を送受信するための通信回路103、入出力装置や周辺装置などのユーザインタフェース104などから構成される。例えば、後述されるユーザ装置100の各機能及び処理は、メモリ装置102に格納されているデータやプログラムをCPU101が処理又は実行することによって実現されてもよい。しかしながら、ユーザ装置100は、上述したハードウェア構成に限定されず、後述する処理の1以上を実現する回路などにより構成されてもよい。
 基地局200は、ユーザ装置100と無線接続することによって、コアネットワーク(図示せず)上に通信接続された上位局から受信したダウンリンク(DL)パケットをユーザ装置100に送信すると共に、ユーザ装置100から受信したアップリンク(UL)パケットを上位局に送信する。図2Cに示されるように、基地局200は、典型的には、ユーザ装置100との間で無線信号を送受信するためのアンテナ201、隣接する基地局200と通信するための第1通信インタフェース(X2インタフェースなど)202、コアネットワークと通信するための第2通信インタフェース(S1インタフェースなど)203、ユーザ装置100との送受信信号を処理するためのプロセッサ204や回路、メモリ装置205などのハードウェアリソースにより構成される。後述される基地局200の各機能及び処理は、メモリ装置205に格納されているデータやプログラムをプロセッサ204が処理又は実行することによって実現されてもよい。しかしながら、基地局200は、上述したハードウェア構成に限定されず、他の何れか適切なハードウェア構成を有してもよい。
 次に、図3~5を参照して、本発明の一実施例によるユーザ装置を説明する。図3は、本発明の一実施例によるユーザ装置の機能構成を示すブロック図である。
 図3に示されるように、ユーザ装置100は、送受信部110及び周波数利用状況検出部120を有する。
 送受信部110は、スケジューリングされた無線リソースを用いて基地局200とセルを介した送受信を実行すると共に、周波数利用状況検出部120がセルの周波数帯域において他のユーザ装置100が通信していないと判断すると、送受信部110は、基地局200へのアップリンク送信を実行する。
 具体的には、送受信部110は、スケジューリングされた無線リソースを用いて、基地局200との間でアップリンク/ダウンリンク制御チャネルやアップリンク/ダウンリンクデータチャネルなどの各種無線チャネルを送受信する。基地局200は、セル内の各ユーザ装置100の基地局200からの距離などに応じた伝搬遅延差を補償するため、アップリンク送信タイミングを調整するためのタイミングアドバンス(TA)値を各ユーザ装置100に通知する。例えば、ユーザ装置100が基地局200の近傍にある場合、基地局200は相対的に小さなTA値を通知し、他方、ユーザ装置100がセル端にある場合、基地局200は相対的に大きなTA値を通知する。送受信部110は、通知されたTA値に基づく送信タイミングでアップリンク送信を実行する。
 周波数利用状況検出部120は、セルの周波数帯域についてLBTを、スケジューリングされたアップリンク送信タイミングに対し、個別のLBTタイミングで実行する。上述したように、従来のLBTでは、ユーザ装置100は、基地局200から通知されたアップリンク送信タイミングから所定期間前のタイミングでLBTを実行し、当該所定期間は、典型的には、静的に指定された各ユーザ装置に共通の期間であった。一方、本実施例では、周波数利用状況検出部120は、基地局200から通知されたアップリンク送信タイミングに対して各ユーザ装置100に個別に設定されるLBTタイミング又は個別に設定される期間に基づくLBTタイミングで当該セルの周波数帯域に対してListen Before Talk(LBT)を実行し、当該周波数帯域において他のユーザ装置100が通信していないか確認する。当該周波数帯域において他のユーザ装置100が通信していないことを確認すると、送受信部110は、セル内のスケジューリングされた無線リソースを用いて基地局200と通信する。ここで、当該個別のLBTタイミングは、基地局200によりスケジューリングされているユーザ装置100の送信タイミングの相違に起因してLBTが誤判定されることを回避するようなタイミングとして設定される。例えば、個別のLBTタイミングは、各ユーザ装置100に対して個別に設定された期間によるLBTタイミングであってもよく、周波数利用状況検出部120は、当該ユーザ装置100に個別に設定された期間より前のLBTタイミングでLBTを実行してもよい。すなわち、本実施例による個別のLBTタイミングは、従来のLBTのように、静的に各ユーザ装置100に指定された所定の期間によるタイミングでなく、各ユーザ装置100毎に設定された期間に基づくタイミングである。なお、ここで用いられる「スケジューリング」とは、基地局200によるダイナミックなリソース割当てに限定されず、基地局200がユーザ装置100に予め無線リソースを割り当てることであってもよい。この場合、ユーザ装置100は、当該割り当てを示すリソース設定情報を基地局200から受信し、当該リソース設定情報に従って送信タイミングを決定すると共に、決定した送信タイミングに対して個別のLBTタイミングを決定してもよい。例えば、リソース設定情報は、周期的に無線リソースを割り当てることを示すものであってもよい。
 具体的には、LBTでは、周波数利用状況検出部120は、個別のLBTタイミングで当該セルの周波数帯域全体をサーチし、当該周波数帯域の少なくとも一部において受信電力が所定の閾値を超過していることを検出すると、当該周波数帯域が他のユーザ装置100により利用されていると判断し(LBT:NG)、送受信部110は、基地局200へのアップリンク送信を中止する。他方、当該周波数帯域の何れにおいても受信電力が所定の閾値以下である場合、周波数利用状況検出部120は、当該周波数帯域が他のユーザ装置100により利用されていないと判断し(LBT:OK)、送受信部110は、基地局200へのアップリンク送信を実行する。
 一実施例では、周波数利用状況検出部120は、基地局200から指示されたLBTタイミングでLBTを実行してもよい。すなわち、基地局200は、同一のサブフレームに多重されるユーザ装置100の間のセル内の伝搬遅延差に基づき導入される送信タイミング差が、LBTの誤判定を生じさせないよう各ユーザ装置100のLBTタイミングを決定し、決定したLBTタイミングをユーザ装置100に通知する。当該LBTタイミングを受信すると、周波数利用状況検出部120は、通知されたLBTタイミングでセルの周波数帯域に対してLBTを実行する。
 例えば、周波数利用状況検出部120は、基地局200によって同一のサブフレームに多重される全てのユーザ装置100に対して指示されたユーザ装置100間のLBTタイミング差が所定の範囲内に収まるようなLBTタイミングでLBTを実行してもよい。すなわち、図4に示されるように、基地局200は、同一のサブフレームに多重される全てのユーザ装置100に対して、ユーザ装置100間のLBTタイミング差が所定の範囲内に収まるようなLBTタイミングとなるよう個別の期間を算出し、当該LBTタイミング又は算出した個別の期間をユーザ装置100に通知する。当該LBTタイミングを受信すると、各ユーザ装置100の周波数利用状況検出部120は、当該共通のLBTタイミングでLBTを実行することになる。これにより、各ユーザ装置100は、ユーザ装置100間のLBTタイミング差が所定の範囲内に収まるようなLBTタイミングでLBTを実行することになり、スケジューリングされているユーザ装置100間の送信タイミング差によるLBTの誤判定を回避することが可能になる。
 一実施例では、指示されたLBTタイミングは、同一のサブフレームに多重されるユーザ装置100のうち特定のユーザ装置100に対するLBTタイミングであってもよい。例えば、当該特定のユーザ装置100は、同一のサブフレームに多重されるユーザ装置100のうち最先の送信タイミングのユーザ装置100(図示される例では、UE#3)であってもよい。すなわち、基地局200は、ライセンスバンド又はアンライセンスバンドのセル又はコンポーネントキャリア(CC)におけるTA値に基づき、TA値が最も大きいユーザ装置100のLBTタイミングを全てのユーザ装置100に通知してもよい。当該LBTタイミングを受信すると、各ユーザ装置100の周波数利用状況検出部120は、当該LBTタイミングでLBTを実行することになる。これにより、各ユーザ装置100は、最先の送信タイミングのユーザ装置100のLBTタイミングでLBTを実行することになり、LBTの誤判定を回避可能なLBTタイミングを容易に導出することができる。
 この場合、周波数利用状況検出部120は、特定のユーザ装置100のタイミングアドバンス値の変化に応答して基地局200から通知された変化量に従ってLBTタイミングを調整してもよい。例えば、特定のユーザ装置100がセル内を移動し、当該特定のユーザ装置100のTA値が変化した場合、基地局200は、当該変化量をMAC(Medium Access Control) CE(Control Element)によって各ユーザ装置100に通知してもよい。例えば、当該MAC CEは、既存のTAコマンドのMAC CEであってもよい。当該変化量を受信すると、周波数利用状況検出部120は、当該変化量に応じてLBTタイミングを調整することになる。これにより、各ユーザ装置100は、特定のユーザ装置100のTA値の変化量に従ってLBTタイミングを動的に調整することになり、特定のユーザ装置100の移動を考慮したLBTタイミングでLBTを実行することができる。
 他の実施例では、周波数利用状況検出部120は、基地局200からのLBTタイミングの指示に依らず、個別のLBTタイミングを自律的に決定してもよい。これにより、基地局200からのLBTタイミングの指示が不要となり、ダウンリンク制御チャネルなどのLBTタイミングのシグナリングのための無線リソースを節約することができる。
 一例として、周波数利用状況検出部120は、基地局200から受信したセルのタイミングアドバンス最大値に基づきLBTタイミングを決定してもよい。すなわち、当該TA最大値を受信すると、周波数利用状況検出部120は、最先の送信タイミングを認識することが可能になり、当該最先の送信タイミングより前の任意のLBTタイミングでLBTを実行することができる。例えば、当該TA最大値は、既存のTAコマンドのMAC CEにより通知されてもよい。これにより、各ユーザ装置100は、最先の送信タイミングより前にLBTを実行することができ、スケジューリングされているユーザ装置100間の送信タイミング差によるLBTの誤判定を回避することが可能になる。
 他の例では、送受信部110は、基地局200から受信したセルのタイミングアドバンス最大値と当該ユーザ装置100のタイミングアドバンス値との間の期間に行われたLBT判定結果に関わらず、基地局200へのアップリンク送信を判断してもよい。すなわち、周波数利用状況検出部120は、当該ユーザ装置100のTA値に応じたLBTタイミングでLBTを実行する一方、送受信部110は、(TA最大値-自局のTA値)の期間におけるLBT判定結果を除外して、基地局200へのアップリンク送信を判断してもよい。例えば、図1において、UE#1の周波数利用状況検出部120は、UE#3に対するLBT判定結果を除外して、基地局200へのアップリンク送信を判断してもよい。
 図5は、本発明の一実施例によるユーザ装置による通信制御処理を示すフロー図である。当該通信制御処理は、例えば、ユーザ装置100が基地局200への接続後にアップリンク送信を要求したことに応答して開始されてもよい。
 ステップS101において、ユーザ装置100は、基地局200とのセルを介したアップリンク送信のためにスケジューリングされた無線リソースを示すアップリンクスケジューリンググラントを受信する。
 ステップS102において、ユーザ装置100は、当該セルの周波数帯域についてLBTを、スケジューリングされたアップリンク送信タイミングに対して個別のLBTタイミングで実行する。一実施例では、ユーザ装置100は、基地局200から指示された期間に基づき、アップリンク送信タイミングから指示された期間の前のLBTタイミングでLBTを実行してもよい。例えば、基地局200は、同一のサブフレームに多重される全てのユーザ装置100に対して、ユーザ装置100間のLBTタイミング差が所定の範囲内に収まるようなLBTタイミングとなるように、各ユーザ装置100のアップリンク送信タイミングより何れの期間だけ前にLBTを実行すべきかを指示し、各ユーザ装置100は、指示されたLBTタイミングでLBTを実行してもよい。他の実施例では、ユーザ装置100は、基地局からのLBTタイミングの指示に依らず、個別のLBTタイミングを自律的に決定してもよい。例えば、ユーザ装置100は、基地局200から受信した当該セルのタイミングアドバンス最大値に基づきLBTタイミングを決定してもよい。
 ステップS103において、ユーザ装置100は、周波数帯域において他のユーザ装置が通信していないと判断すると、基地局200へのアップリンク送信を実行する。
 以上、本発明の実施例について詳述したが、本発明は上述した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 本出願は、2015年1月30日に出願した日本国特許出願2015-016401号の優先権の利益に基づき、これを主張するものであり、2015-016401号の全内容を本出願に援用する。
10 無線通信システム
100 ユーザ装置
110 送受信部
120 周波数利用状況検出部
200 基地局

Claims (9)

  1.  スケジューリングされた無線リソースを用いて基地局とセルを介した送受信を実行する送受信部と、
     前記セルの周波数帯域についてListen Before Talk(LBT)を、スケジューリングされたアップリンク送信タイミングに対し、個別のLBTタイミングで実行する周波数利用状況検出部と、
    を有するユーザ装置であって、
     前記周波数利用状況検出部が前記周波数帯域において他のユーザ装置が通信していないと判断すると、前記送受信部は、前記基地局へのアップリンク送信を実行するユーザ装置。
  2.  前記周波数利用状況検出部は、前記基地局から指示されたLBTタイミングで前記LBTを実行する、請求項1記載のユーザ装置。
  3.  前記周波数利用状況検出部は、前記基地局によって同一のサブフレームに多重される全てのユーザ装置に対して指示された、ユーザ装置間のLBTタイミング差が所定の範囲内に収まるようなLBTタイミングで前記LBTを実行する、請求項2記載のユーザ装置。
  4.  前記指示されたLBTタイミングは、前記同一のサブフレームに多重されるユーザ装置のうち特定のユーザ装置に対するLBTタイミングである、請求項3記載のユーザ装置。
  5.  前記周波数利用状況検出部は、前記特定のユーザ装置のタイミングアドバンス値の変化に応答して前記基地局から通知された変化量に従って前記LBTタイミングを調整する、請求項4記載のユーザ装置。
  6.  前記周波数利用状況検出部は、前記基地局からの前記LBTタイミングの指示に依らず、前記個別のLBTタイミングを自律的に決定する、請求項1記載のユーザ装置。
  7.  前記周波数利用状況検出部は、前記基地局から受信した前記セルのタイミングアドバンス最大値に基づき前記LBTタイミングを決定する、請求項6記載のユーザ装置。
  8.  前記送受信部は、前記基地局から受信した前記セルのタイミングアドバンス最大値と当該ユーザ装置のタイミングアドバンス値との間の期間に行われたLBT判定結果に関わらず、前記基地局へのアップリンク送信を判断する、請求項6記載のユーザ装置。
  9.  ユーザ装置による通信制御方法であって、
     基地局とのセルを介したアップリンク送信のためスケジューリングされた無線リソースを示すアップリンクスケジューリンググラントを受信するステップと、
     前記セルの周波数帯域についてListen Before Talk(LBT)を、スケジューリングされたアップリンク送信タイミングに対し、個別のLBTタイミングで実行するステップと、
     前記周波数帯域において他のユーザ装置が通信していないと判断すると、前記基地局へのアップリンク送信を実行するステップと、
    を有する通信制御方法。
PCT/JP2016/052497 2015-01-30 2016-01-28 ユーザ装置及び通信制御方法 WO2016121872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16743475.2A EP3253164A4 (en) 2015-01-30 2016-01-28 User device and communication control method
JP2016551327A JPWO2016121872A1 (ja) 2015-01-30 2016-01-28 ユーザ装置及び通信制御方法
US15/121,173 US20170013646A1 (en) 2015-01-30 2016-01-28 User equipment and communication control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-016401 2015-01-30
JP2015016401 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121872A1 true WO2016121872A1 (ja) 2016-08-04

Family

ID=56543477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052497 WO2016121872A1 (ja) 2015-01-30 2016-01-28 ユーザ装置及び通信制御方法

Country Status (4)

Country Link
US (1) US20170013646A1 (ja)
EP (1) EP3253164A4 (ja)
JP (1) JPWO2016121872A1 (ja)
WO (1) WO2016121872A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370591B (zh) * 2015-12-11 2021-09-17 瑞典爱立信有限公司 Lbt系统中的定时提前量

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169756A2 (ko) * 2011-06-06 2012-12-13 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 복수의 단말에 관한 신호를 다중화하는 방법 및 이를 위한 장치
US9967802B2 (en) * 2014-06-13 2018-05-08 Qualcomm Incorporated Wireless communications over unlicensed radio frequency spectrum
WO2016015318A1 (zh) * 2014-07-31 2016-02-04 华为技术有限公司 一种数据传输方法和通信设备
US20160135179A1 (en) * 2014-11-07 2016-05-12 Sharp Laboratories Of America, Inc. Systems and methods for synchronization signal

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BLACKBERRY UK LIMITED: "Protocol aspects of Licensed-Assisted Access using LTE", 3GPP TSG- RAN WG2#89, R2-150366, 30 January 2015 (2015-01-30), XP050935657 *
LG ELECTRONICS: "LBT operation details and initial evaluation results", 3GPP TSG-RAN WG1#79, RL-144900, XP050875956 *
NTT DOCOMO: "Views on issues related to LAA UL", 3GPP TSG-RAN WG1#79, RL-144970, XP050876017 *

Also Published As

Publication number Publication date
EP3253164A4 (en) 2018-02-07
US20170013646A1 (en) 2017-01-12
JPWO2016121872A1 (ja) 2017-11-09
EP3253164A1 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
US10028259B2 (en) Communication control device, communication control method, and terminal device
EP3094124B1 (en) Data processing method and device
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
EP3251262B1 (en) Secondary scheduling request
US10230503B2 (en) Methods and devices for determining or acquiring radio resources
JP6060978B2 (ja) 無線通信装置および無線通信方法
EP3675585B1 (en) Communication method and apparatus
EP3281486A1 (en) Enb controlled ue based conditional carrier selection
US11006447B2 (en) Random access for NR
CN109565385B (zh) 上行信道发送方法和装置
EP3151613B1 (en) User equipment and power allocation method
EP3157273B1 (en) Base-station device, terminal device, and communication method
WO2016180077A1 (zh) 上行功率控制方法、终端、基站及系统、计算机存储介质
WO2015173632A1 (en) Method of reducing impact of d2d in-band interference on cellular transmission
WO2020249229A1 (en) Method, apparatus, computer program product and computer program for interference reduction
WO2015166792A1 (ja) 基地局装置、端末装置、および通信方法
US10820309B2 (en) Communications in a wireless system
JP7169425B2 (ja) 上りリソース割当方法、装置、基地局及び端末
WO2016121871A1 (ja) 基地局及びユーザ装置
US10045344B2 (en) Wireless communication system and wireless communication method
WO2016121872A1 (ja) ユーザ装置及び通信制御方法
WO2015198428A1 (ja) 基地局装置、移動局装置、無線通信システム、基地局装置の通信制御方法及び移動局装置の通信制御方法
US10271344B2 (en) Data channel scheduling method, device and system
CN113647135A (zh) 用于非授权频谱中的双连接的动态阈值
CN112586069A (zh) 非调度传输的资源向调度传输的分配

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016551327

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15121173

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016743475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016743475

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE