WO2016121801A1 - Infrared-absorbent ink - Google Patents

Infrared-absorbent ink Download PDF

Info

Publication number
WO2016121801A1
WO2016121801A1 PCT/JP2016/052288 JP2016052288W WO2016121801A1 WO 2016121801 A1 WO2016121801 A1 WO 2016121801A1 JP 2016052288 W JP2016052288 W JP 2016052288W WO 2016121801 A1 WO2016121801 A1 WO 2016121801A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared absorbing
infrared
ink
solvent
mass
Prior art date
Application number
PCT/JP2016/052288
Other languages
French (fr)
Japanese (ja)
Inventor
文人 小林
渉 吉住
正太 川▲崎▼
芝岡 良昭
優徳 秋元
博昭 島根
Original Assignee
共同印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共同印刷株式会社 filed Critical 共同印刷株式会社
Priority to JP2016572093A priority Critical patent/JP6403806B2/en
Publication of WO2016121801A1 publication Critical patent/WO2016121801A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere

Definitions

  • the present invention relates to an infrared absorbing ink, a method for producing the infrared absorbing ink, and the like, and more particularly, to an infrared absorbing printing ink for preventing counterfeiting.
  • Printing ink having infrared absorptivity is configured by adding an infrared absorber to commonly used ink.
  • infrared absorbers infrared absorbing organic materials such as cyanine compounds and phthalocyanine compounds; or infrared absorbing inorganic materials such as tin-doped indium oxide (ITO) and antimony-doped tin oxide (ATO) are known.
  • ITO tin-doped indium oxide
  • ATO antimony-doped tin oxide
  • an infrared absorbing inorganic material has been used as the infrared absorbing agent in order to ensure the weather resistance of the infrared absorbing agent.
  • Patent Document 1 proposes an infrared absorbing ink containing ITO as an infrared absorbing inorganic material.
  • Patent Document 2 proposes an anti-counterfeit infrared absorbing ink containing ATO as an infrared absorbing inorganic material.
  • Patent Document 3 describes a dispersion of tungsten-cesium composite oxide fine particles or tungsten oxide fine particles as a solar radiation shielding material having visible light transmission and infrared absorption.
  • the ITO-containing infrared absorbing ink described in Patent Document 1 is less used than the ATO-containing infrared absorbing ink described in Patent Document 2 because indium is more expensive than antimony.
  • antimony is cheaper than indium and cesium, has a light white color, and is commonly used in toluene, methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), butyl acetate, and the like. Since it can be dispersed in a non-polar solvent for printing ink, it is widely used as an anti-counterfeit infrared absorbing ink having little influence on the color tone of other process inks.
  • MIBK methyl isobutyl ketone
  • MEK methyl ethyl ketone
  • tungsten-cesium composite oxide fine particles and the tungsten oxide fine particles described in Patent Document 3 are dispersed in a nonpolar organic solvent such as toluene, a rubber blanket may be dissolved by the nonpolar organic solvent. It could not be used as a general printing ink, in particular as an offset printing ink.
  • Patent Document 3 The tungsten-cesium composite oxide fine particles described in Patent Document 3 were not expected to be used in general printing ink because cesium is extremely expensive. Further, Patent Document 3 does not describe the use of tungsten-cesium composite oxide fine particles and tungsten oxide fine particles for anti-counterfeit printing ink.
  • the problem to be solved by the present invention is to have an infrared absorption and light resistance, a wavelength range that reflects visible light and a wavelength range that absorbs infrared light without dissolving a rubber blanket. It is to provide an infrared absorbing ink with a clear contrast between the two.
  • infrared absorbing material fine particles selected from tungsten oxide having a magnetic phase represented by 2.45 ⁇ z / y ⁇ 2.999; and a vehicle; Infrared absorbing ink containing the vehicle, wherein the vehicle is a first solvent selected from vegetable oils or compounds derived from vegetable oils, alcohols, ethers, esters, ketones, aromatic hydrocarbons, aliphatic A second solvent selected from the group consisting of hydrocarbons and glycol ethers and having a boiling point of 180 ° C. or lower and a resin, and the content of the second solvent is the infrared absorbing ink.
  • vehicle is a first solvent selected from vegetable oils or compounds derived from vegetable oils, alcohols, ethers, esters, ketones, aromatic hydrocarbons, aliphatic
  • a second solvent selected from the group consisting of hydrocarbons and glycol ethers and having a boiling point of 180 ° C. or lower and a resin, and the content of the second solvent is the infrared absorbing ink.
  • Infrared absorbing ink that is 2% by mass or less based on the mass of [2]
  • [12] [1] A method for obtaining a printed matter by flexographic printing, letterpress printing, offset printing, intaglio printing, gravure printing, screen printing or ink jet printing using the infrared absorbing ink according to any one of [1] to [11]. [13] [1] to [11] A printed matter comprising an anti-counterfeit printing part printed with the infrared absorbing ink according to any one of [1] to [11].
  • the infrared-absorbing material fine particles used in the present invention are inorganic pigments, and are not easily deteriorated by light rays such as ultraviolet rays. Therefore, according to the present invention, it is possible to obtain a printing ink having high light resistance and infrared absorption. it can.
  • the fine particles of the infrared absorbing material used in the present invention have a clear contrast between the wavelength region that transmits or reflects visible light and the wavelength region that absorbs infrared light.
  • Infrared absorbing ink for use can be provided. That is, according to the present invention, it is possible to obtain printed matter such as banknotes, securities, cards and the like excellent in infrared absorptivity, contrast between visible light reflectance and infrared reflectance, and design.
  • FIG. 6 is a graph showing the contrast between the ink prints of Examples 2 and 3 and the commercially available ATO-containing ink prints with respect to the reflectance at wavelengths of 352 nm to 1600 nm.
  • 3 is a graph showing the reflectance of indigo / red / yellow (CMY) process ink at wavelengths of 350 nm to 1500 nm.
  • CY indigo / red / yellow
  • the infrared absorbing ink of the present invention includes infrared absorbing material fine particles selected from composite tungsten oxide or tungsten oxide having a magnetic phase, and a vehicle.
  • the ink of the present invention can be used to prevent forgery of printed matter by utilizing the infrared absorptivity of the infrared absorbing material fine particles.
  • the infrared absorbing ink according to the present invention includes infrared absorbing material fine particles and a vehicle, wherein the vehicle is one or more first solvents selected from vegetable oils or compounds derived from vegetable oils, alcohols, ethers, esters.
  • a second solvent selected from the group consisting of a group, a ketone, an aromatic hydrocarbon, an aliphatic hydrocarbon, and a glycol ether, and having a boiling point of 180 ° C. or lower, and a resin, and The content of the solvent is 2% by mass or less with respect to the mass of the infrared absorbing ink.
  • the infrared-absorbing material fine particles are dispersed in the vehicle, preferably 10% by mass or more, 5% by mass or more of the infrared-absorbing material fine particles even after 1 hour without mixing. Sedimentation of 3% by mass or more, or 1% by mass or more does not occur. More preferably, in the ink of the present invention, the infrared absorbing material fine particles are first dispersed in the second solvent, the first solvent is added to the dispersion, and then the second solvent is added to 2% by mass or less. It is obtained by removing.
  • the infrared absorbing ink may further contain a dispersant having a fatty acid soluble in the first solvent in the structure as an auxiliary agent, and / or an auxiliary agent other than the dispersant, a colorant, and the like. Further may be included.
  • the ink of the present invention can be used as an oil-based ink or an oil-based / ultraviolet curable ink depending on the type of vehicle component.
  • Oil-based inks are inks that can be cured by oxidative polymerization of vehicle components.
  • oil-based ink contains a solvent, resin, etc. as a vehicle component.
  • UV curable ink is an ink that can be cured by photopolymerization of a vehicle component.
  • the UV ink contains a resin, a photopolymerizable monomer or oligomer, a photopolymerization initiator and the like as a vehicle component, but does not contain a volatile component such as a solvent.
  • oil-based / ultraviolet-curing combined ink (hereinafter abbreviated as “oil-based / UV combined ink”) is an ink having curing characteristics of both oil-based ink and UV ink.
  • infrared absorbing material fine particles, vehicle, auxiliary agent and colorant contained in the ink of the present invention will be described below.
  • the infrared absorbing material fine particles are at least one selected from a composite tungsten oxide represented by the following general formula (1) or a tungsten oxide having a magnetic phase represented by the following general formula (2): M x W y O z (1) ⁇ Wherein M is H, He, alkali metal element, alkaline earth metal element, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, One or more elements selected from the group consisting of Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, and x, y, and z are positive numbers, respectively.
  • M is H, He, alkali metal element, alkaline earth metal element, rare earth element, M
  • the alkali metal element is a Group 1 element of the periodic table excluding hydrogen
  • the alkaline earth metal element is a Group 2 element of the periodic table excluding Be and Mg
  • the rare earth elements are Sc, Y and lanthanoids. It is an element.
  • a method for producing the infrared-absorbing material fine particles a method for producing a composite tungsten oxide or a tungsten oxide having a magnetic phase described in JP-A-2005-187323 can be used.
  • M element is one kind of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe and Sn.
  • Cs is particularly preferable.
  • the lattice constant is 7.4062 mm or more in the a-axis.
  • the c-axis is 7.6106 mm or more and 7.6149 mm or less.
  • the composite tungsten oxide represented by the general formula (1) is treated with a silane coupling agent because it is excellent in dispersibility, near infrared absorption, and transparency in the visible light wavelength region.
  • x / y indicates the addition amount of the element M is more than 0, a sufficient amount of free electrons is generated and a near infrared absorption effect can be sufficiently obtained. As the amount of the element M added increases, the supply amount of free electrons increases and the near-infrared absorption effect also increases.
  • a value of x / y of 1 or less is preferable because generation of an impurity phase in the fine particle-containing layer can be avoided.
  • the value of x / y is preferably 0.001 or more, 0.2 or more, or 0.30 or more, and this value is preferably 0.85 or less, 0.5 or less, or 0.35 or less. .
  • the value of x / y is ideally 0.33.
  • the composite tungsten oxide or tungsten oxide according to the present invention includes a case where a part of oxygen atoms is substituted with halogen atoms.
  • the composite tungsten oxide represented by the general formula (1) has a hexagonal crystal structure or a hexagonal crystal structure
  • the transmission of the infrared-absorbing material fine particles in the visible light wavelength region is improved,
  • the absorption in the near infrared wavelength region is improved, which is preferable.
  • the cation of the element M is added to the hexagonal voids, the transmission in the visible light wavelength region is improved, and the absorption in the near infrared wavelength region is improved.
  • an element M having a large ionic radius is added, a hexagonal crystal is formed.
  • hexagonal crystals are easily formed when an element having a large ionic radius such as Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, and Fe is added.
  • an element having a large ionic radius such as Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, and Fe is added.
  • the present invention is not limited to these elements, and elements other than these elements may be present as long as the additive element M exists in the hexagonal void formed by the WO 6 unit.
  • the addition amount of the additive element M is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0.8. It is 30 or more and 0.35 or less, and is ideally 0.33. When the value of x / y is 0.33, it is considered that the additive element M is arranged in all of the hexagonal voids.
  • tetragonal or cubic tungsten bronzes also have a near infrared absorption effect. These crystal structures tend to change the absorption position in the near-infrared light wavelength region, and the absorption position tends to move to the longer wavelength side in the order of cubic ⁇ tetragonal ⁇ hexagonal. Further, it is in the order of hexagonal crystal ⁇ tetragonal crystal ⁇ cubic crystal that has little absorption in the visible light wavelength region. For this reason, it is preferable to use hexagonal tungsten bronze for applications that transmit more light in the visible light wavelength region and absorb more light in the near infrared light wavelength region.
  • the so-called “magnetic phase” having a composition ratio in which the value of z / y satisfies the relationship of 2.45 ⁇ z / y ⁇ 2.999 is: Since it is chemically stable and has good absorption characteristics in the near infrared wavelength region, it is preferable as a near infrared absorbing material.
  • the infrared-absorbing material fine particles according to the present invention absorb a large amount of light in the near-infrared light wavelength region, particularly in the vicinity of a wavelength of 1000 nm, so that there are many things whose transmission color tone changes from blue to green.
  • the dispersed particle diameter of the infrared absorbing material fine particles can be selected depending on the purpose of use. First, when applying while maintaining transparency, it is preferable to have a dispersed particle size of 2000 nm or less. If the dispersed particle diameter is 2000 nm or less, the difference between the peak of the transmittance (reflectance) in the visible light wavelength region and the bottom of the absorption in the near-infrared light wavelength region becomes large.
  • particles having a dispersed particle size smaller than 2000 nm do not completely block light due to scattering, can maintain visibility in the visible light wavelength region, and at the same time can efficiently maintain transparency.
  • the dispersed particle diameter of the infrared absorbing material fine particles is preferably 200 nm or less, and more preferably 100 nm or less. If the dispersed particle size is small, geometrical scattering or Mie scattering is reduced, so that the scattering of light in the visible light wavelength region with a wavelength of 400 nm to 780 nm is reduced. As a result, the near-infrared absorbing film becomes like a frosted glass and is clear. This is because it is possible to avoid the loss of transparency.
  • the dispersed particle diameter of the infrared absorbing material fine particles is 200 nm or less, the geometric scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained. This is because, in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter decreases. Furthermore, when the dispersed particle diameter is 100 nm or less, the scattered light is preferably very small. From the viewpoint of avoiding light scattering, a smaller dispersed particle size is preferable. On the other hand, if the dispersed particle diameter is 1 nm or more, industrial production is easy.
  • the surface of the fine particles constituting the infrared absorbing material of the present invention is coated with an oxide containing one or more selected from the group consisting of Si, Ti, Al and Zr. It is preferable from the viewpoint of improving the weather resistance.
  • the vehicle is a medium for transferring the infrared-absorbing material fine particles and / or the colorant to the printing material and fixing the infrared-absorbing material fine particles and / or the coloring agent to the printing material after printing.
  • the vehicle used in the present invention includes a solvent and a resin.
  • the vehicle may further contain known vehicle components used for printing, such as photopolymerization components.
  • the solvent, resin and photopolymerization component will be described below.
  • solvent examples include a first solvent and a second solvent, and may optionally contain mineral oil or the like.
  • the first solvent used in the present invention is insoluble in water, and is required not to dissolve a rubber blanket used in offset printing.
  • a solvent comprising at least one selected from vegetable oils and compounds derived from vegetable oils.
  • Vegetable oils include dry oils such as linseed oil, sunflower oil and tung oil, semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil and rice bran oil, and non-drying oils such as olive oil, coconut oil, palm oil and dehydrated castor oil. Used.
  • the vegetable oil-derived compound include fatty acid monoesters and ethers obtained by directly esterifying a fatty acid of a vegetable oil with a monoalcohol.
  • the above-mentioned vegetable oil and the vegetable oil-derived compound have a double bond in the fatty acid of the fat that is a constituent component. This double bond reacts with oxygen in the air, so that a polymerization reaction between the double bonds proceeds.
  • the coating film after the offset printing is solidified by bonding by a polymerization reaction between the oil molecules or a polymerization reaction between the oil molecules and the ink component for offset printing.
  • the solidification becomes faster as the number of double bonds in the fatty acid increases, but the double bond in the fatty acid is evaluated by the iodine value. That is, the solidification of the vegetable oil or the vegetable oil-derived compound is faster as the iodine value is higher.
  • the dry oil has an iodine value of 130 or more, semi-dry oil is 130 to 100, and non-dry oil is 100 or less.
  • vegetable oil is preferable and dry oils, such as linseed oil, sunflower oil, and tung oil whose iodine number is 130 or more are more preferable.
  • the viscosity of the first solvent used in the present invention is 1 mPa ⁇ s or more, 5 mPa ⁇ s or more, 10 mPa ⁇ s or more, 20 mPa ⁇ s or more, 30 mPa ⁇ s or more, 50 mPa ⁇ s or more, 80 mPa ⁇ s or more, or
  • the viscosity may be 500 mPa ⁇ s or less, 300 mPa ⁇ s or less, 200 mPa ⁇ s or less, 150 mPa ⁇ s or less, or 100 mPa ⁇ s or less.
  • viscosity refers to the viscosity measured using a vibration viscometer VM100A-L (manufactured by CBC Materials).
  • the second solvent used in the present invention is a solvent suitable for the step of pulverizing the infrared absorbing material according to the present invention into fine particles and dispersing it in the solvent.
  • the second solvent is an alcohol such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol or diacetone alcohol, an ether such as methyl ether, ethyl ether or propyl ether, an ester, acetone or methyl ethyl ketone.
  • Ketones such as diethyl ketone, cyclohexanone, ethyl isobutyl ketone, methyl isobutyl ketone, aromatic hydrocarbons such as toluene, xylene, benzene, aliphatic hydrocarbons such as normal hexane, heptane, cyclohexane, propylene glycol monomethyl ether acetate
  • aromatic hydrocarbons such as toluene, xylene, benzene, aliphatic hydrocarbons such as normal hexane, heptane, cyclohexane, propylene glycol monomethyl ether acetate
  • various organic solvents such as glycol ethers such as propylene glycol monoethyl ether, and have a boiling point of 180 ° C. or lower.
  • the second solvent is preferably a solvent that is compatible with the first solvent.
  • alcohols, aliphatic hydrocarbons, and glycol ethers are the second solvents that have low health hazards to the human body and are preferable from the viewpoint of safety or operability in the process.
  • methyl isobutyl ketone or toluene is a second solvent that is excellent in workability and is preferable from the viewpoint of improving productivity.
  • the second solvent may dissolve a rubber blanket to which the ink is transferred during offset printing
  • the offset solvent is required to have a content of a predetermined amount or less. .
  • the content is preferably 5.0% by mass or less, 2.0% by mass or less, 1.5% by mass or less, or 1.0% by mass or less.
  • the second solvent may be contained in the ink at a content of 0.1% by mass or more, 0.3% by mass or more, 0.5% by mass or more, or 1.0% by mass or more.
  • the content of the second solvent is preferably sufficiently reduced.
  • a low-boiling solvent as the second solvent, provide a difference in boiling point with the first solvent, and reduce the content of the second solvent by heating distillation or the like.
  • the boiling point of the second solvent may be 180 ° C. or lower, or 150 ° C. or lower.
  • the boiling point of the first solvent is higher than the boiling point of the second solvent, and may be higher than 150 ° C. or higher than 180 ° C.
  • the viscosity of the second solvent used in the present invention is 0.1 mPa ⁇ s or more, 0.2 mPa ⁇ s or more, 0.3 mPa ⁇ s or more, 0.5 mPa ⁇ s or more, 0.8 mPa ⁇ s or more, or It may be 1.0 mPa ⁇ s or more, and the viscosity is 10 mPa ⁇ s or less, 5.0 mPa ⁇ s or less, 3.0 mPa ⁇ s or less, 2.0 mPa ⁇ s or less, 1.5 mPa ⁇ s or less, or It may be 1.0 mPa ⁇ s or less.
  • the ink of the present invention may contain a mineral oil as a solvent in consideration of the drying property of the ink, the permeability to the printing material, and the like.
  • the mineral oil include spindle oil, machine oil, white kerosene, and non-aromatic petroleum solvent.
  • the mineral oil is preferably a non-aromatic petroleum solvent that is incompatible with water and has a boiling point of 180 ° C. or higher.
  • the boiling point of the non-aromatic petroleum solvent is preferably 200 ° C. or higher.
  • the non-aromatic petroleum solvent include n-dodecane mineral oil. Specific examples of non-aromatic petroleum solvents include No. 0 Solvent, AF Solvent No. 5, AF Solvent No. 6, AF Solvent No. 7 (all manufactured by Nippon Oil Corporation).
  • a known resin used for printing may be used.
  • a resin contained in oil-based ink or a resin contained in UV ink may be used.
  • the resin may be a natural resin or a synthetic resin.
  • the resin may be a homopolymer or a copolymer.
  • the resin is preferably solid.
  • the resin preferably has a weight average molecular weight of about 1000 to about 3,000,000.
  • natural resins include rosin, cocoon, shellac, and gilsonite.
  • natural resins contain a resin acid as a non-volatile component.
  • the resin acid include abietic acid, neoabietic acid, ballastric acid, pimaric acid, isopimaric acid, dehydroabietic acid, chelolic acid, and aloyritic acid.
  • Examples of the synthetic resin include rosin, phenol resin, modified alkyd resin, polyester resin, petroleum resin, rosin modified maleic resin and other maleic resins, cyclized rubber, and other synthetic resins.
  • Rosin is obtained by refining rosin and is roughly divided into three types: gum rosin, wood rosin and tall oil rosin. In general, rosin has a softening point of 70-80 ° C. and an acid number of 170-180. The rosin may be modified.
  • Phenolic resins are resins obtained by condensation of phenol and aldehyde, and are roughly classified into four types: novolac type resin, resol type resin, 100% phenol resin and modified phenol resin. Considering the resistance of the vehicle, 100% phenolic resin or modified phenolic resin is preferable.
  • a 100% phenol resin is a resin obtained by condensing an alkylphenol and formaldehyde in the presence of an acid or an alkali catalyst.
  • the modified phenolic resin is a resin obtained by reacting a condensate of phenol and formalin with a modifying component such as rosin, rosin ester or drying oil.
  • a modified phenolic resin using rosin as a modifying component is called a rosin-modified phenolic resin and is generally used for offset printing ink.
  • the rosin-modified phenolic resin preferably has an acid value of 5 to 40 and / or a softening point of 130 to 190 ° C.
  • the modified alkyd resin is a resin obtained by reacting a condensate of a polybasic acid and a polyhydric alcohol with a modified component such as fatty acid, rosin, drying oil or semi-drying oil.
  • Examples of the polybasic acid include phthalic anhydride and isophthalic acid.
  • Examples of the polyhydric alcohol include glycerin and pentaerythritol.
  • Examples of fatty acids include linseed oil, dehydrated castor oil, soybean oil, and the like.
  • modified alkyd resin examples include phenol-modified alkyd resin, epoxy-modified alkyd resin, urethane-modified alkyd resin, silicone-modified alkyd resin, acrylic-modified alkyd resin, vinyl-modified alkyd resin, neutralized acid alkyd resin, and the like.
  • Polyester resin is a polycondensate of polyvalent carboxylic acid and polyalcohol.
  • examples of the polyester resin include unsaturated polyester resin and polyethylene terephthalate.
  • Petroleum resin is a resin obtained by polymerizing an unsaturated olefin having 5 or more carbon atoms.
  • petroleum resins have a softening point of 80-130 ° C.
  • the rosin-modified maleic resin is a resin obtained by reacting rosin, maleic anhydride and a polyhydric alcohol.
  • the polyhydric alcohol include glycerin and pentaerythritol.
  • the rosin-modified maleic resin preferably has a softening point of 80 to 140 ° C. and / or an acid value of 15 to 200.
  • Cyclized rubber is a resin obtained by treating natural rubber with tin chloride.
  • the cyclized rubber has a softening point of 120 to 140 ° C. and is excellent in solubility in a drying oil or a solvent.
  • Examples of other synthetic resins include diallyl phthalate polymer, poly (meth) acrylic acid, poly (meth) acrylic acid ester, polyester-melamine polymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- Alkyl (meth) acrylate copolymer, styrene-maleic acid copolymer, styrene-maleic acid-alkyl (meth) acrylate copolymer, styrene-maleic acid half ester copolymer, vinylnaphthalene- (meth) acrylic acid copolymer, vinylnaphthalene-maleic acid copolymer, And salts thereof.
  • the resins listed above can be used alone or in combination of two or more.
  • the photopolymerization component used in the present invention includes a monomer, an oligomer, a photopolymerization initiator, and the like.
  • the monomer may be a compound having an ethylenically unsaturated bond conventionally used for photopolymerization. Moreover, an oligomer is obtained by oligomerizing the compound which has an ethylenically unsaturated bond.
  • Oligomers are resins that govern the basic physical properties of UV ink.
  • the monomer mainly acts as a diluent and can be used to adjust properties such as ink viscosity, curability and adhesion.
  • Examples of compounds having an ethylenically unsaturated bond include (meth) acrylic acid compounds; maleic acid compounds; urethane-based, epoxy-based, polyester-based, polyol-based, vegetable oil-based compounds and the like. Examples include compounds having a heavy bond.
  • examples of the compound having an ethylenically unsaturated bond include epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, acrylated amine, and acrylic saturation.
  • Resin and acrylic acrylate acid anhydride addition acrylate of bisphenol A type epoxy (meth) acrylate, acid anhydride addition acrylate of phenol novolac epoxy (meth) acrylate, acid addition addition of dipentaerythritol pentaacrylate or dipentaerythritol hexaacrylate
  • Acrylates having a hexyl group polyethylene glycol diacrylate, polypropylene glycol diacrylate, polyglycerol epoxy acrylates, water-soluble acrylates such as polyglycerol acrylate, and acryloyl morpholine.
  • a compound that is compatible with the resin and has a highly lipophilic ethylenically unsaturated bond is preferable, for example, a compound having an ethylenically unsaturated bond having a long-chain alkyl group having 6 to 24 carbon atoms, A compound having an ethylenically unsaturated bond modified with polybutylene glycol, a compound having an ethylenically unsaturated bond modified with vegetable oil, and the like are preferable.
  • the photopolymerization initiator is a compound that generates radicals such as active oxygen when irradiated with ultraviolet rays.
  • the ink of the present invention may contain a known photopolymerization initiator used for printing.
  • photopolymerization initiator examples include acetophenone, ⁇ -aminoacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and benzyldimethyl ketal.
  • a photopolymerization initiation assistant such as ethyl 4-dimethylaminobenzoate or isoamyl 4-dimethylaminobenzoate may be used in combination with the photopolymerization initiator.
  • the ink of the present invention may contain known auxiliary agents used in printing, such as dispersants, crosslinking agents, drying accelerators, waxes, extender pigments, and other additives.
  • the ink of the present invention preferably contains a dispersant having a fatty acid soluble in the first solvent in the structure as an auxiliary agent.
  • the dispersant for dispersing the infrared absorbing material fine particles in the vehicle is not limited as long as it is soluble in the first solvent and can disperse the infrared absorbing material fine particles.
  • a dispersant other than the dispersant having a fatty acid soluble in the first solvent in the structure for example, a compound derived from the pigment skeleton of the colorant Etc. may be used.
  • the addition amount of the dispersing agent concerning this invention is 30 weight part or more with respect to 100 weight part of infrared rays absorbing material microparticles
  • the said dispersing agent does not contain the solvent which may melt
  • Crosslinking agent A crosslinking agent or gelling agent can be added to the vehicle to crosslink or gel the resin.
  • cross-linking agent examples include isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, polymethylene polyphenyl polyisocyanate; trimethylolpropane-tris- ⁇ -N-aziridini Aziridine compounds such as lupropionate and pentaerythritol propane-tris- ⁇ -N-aziridinylpropionate; epoxy compounds such as glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether; aluminum triisopropoxide, mono- sec-Butoxyaluminum diisopropoxide, Aluminum tri-sec-butoxide, Ethyl acetoacetate Examples include aluminum alcoholates such as trialuminum diisopropoxide and aluminum trisethyl acetoa
  • drying accelerator examples include a fatty acid metal salt, an organic carboxylic acid metal salt, and an inorganic acid metal salt contained in the first solvent.
  • Examples of the organic carboxylic acid for forming the drying accelerator include acetic acid, propionic acid, butyric acid, isopentanoic acid, hexanoic acid, 2-ethylbutyric acid, naphthenic acid, octylic acid, nonanoic acid, decanoic acid, and 2-ethylhexane.
  • isooctanoic acid isononanoic acid
  • lauric acid palmitic acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, versatic acid, secanoic acid, tall oil fatty acid, linseed oil fatty acid, soybean oil fatty acid, dimethylhexanoic acid, Examples include 3,5,5-trimethylhexanoic acid and dimethyloctanoic acid.
  • the organic carboxylic acid is preferably a fatty acid contained in a drying oil or a semi-drying oil.
  • the organic carboxylic acid is preferably naphthenic acid.
  • the organic carboxylic acid is preferably acetic acid.
  • inorganic acids examples include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, and the like.
  • the drying accelerator is used as a paste dryer, the inorganic acid is preferably boric acid.
  • Examples of the metal for forming the metal salt of the acid include calcium, cobalt, lead, iron, manganese, zinc, vanadium, cerium, zirconium, sodium and the like.
  • ⁇ wax ⁇ Wax is an auxiliary agent for preventing the printed surface from being scratched.
  • the wax can impart properties such as friction resistance, anti-blocking properties, slipperiness, and anti-scratch properties to the surface of the ink coating.
  • the ink of the present invention may contain a known wax used for printing.
  • waxes examples include natural waxes such as carnauba wax, wax, lanolin, montan wax, paraffin wax, and microcrystalline wax; Fischer Trops wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, silicone compound Synthetic waxes such as; fluorinated products of synthetic waxes.
  • natural waxes such as carnauba wax, wax, lanolin, montan wax, paraffin wax, and microcrystalline wax
  • Fischer Trops wax polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax
  • silicone compound Synthetic waxes such as; fluorinated products of synthetic waxes.
  • the extender pigment is a pigment used for adjusting the viscosity of the ink, and has a low refractive index and a low coloring power. Accordingly, extender pigments are preferably used when the viscosity of the ink is high and wiping is difficult.
  • the ink of the present invention may contain a known extender pigment used for printing.
  • extender pigments examples include barium sulfate, calcium carbonate, calcium sulfate, kaolin, talc, silica, corn starch, titanium dioxide, and mixtures thereof.
  • a polymerization inhibitor such as phenothiazine and t-butylhydroxytoluene
  • a drying inhibitor such as phenothiazine and t-butylhydroxytoluene
  • an antioxidant such as phenothiazine and t-butylhydroxytoluene
  • a leveling aid such as phenothiazine and t-butylhydroxytoluene
  • a nonionic surfactant if desired.
  • a surfactant may be included.
  • the colorant is a component that adds color to the ink.
  • the ink of the present invention may contain a known colorant used for printing.
  • the colorant include inorganic pigments, organic pigments, dyes, organic pigments for toners, and the like.
  • inorganic pigments include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, alumina white, calcium carbonate, ultramarine, graphite, aluminum powder, bengara, barium ferrite, copper and zinc alloy. Examples thereof include powder, glass powder, and carbon black.
  • organic pigments examples include soluble azo pigments such as ⁇ -naphthol pigments, ⁇ -oxynaphthoic acid pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetate anilide pigments, and pyrazolone pigments; ⁇ -naphthol pigments Insoluble azo pigments such as pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetanilide monoazos, acetoacetanilide disazos, pyrazolone pigments; copper phthalocyanine blue, halogenated (eg chlorine or brominated) copper phthalocyanine blue, Phthalocyanine pigments such as sulfonated copper phthalocyanine blue and metal-free phthalocyanine; quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine
  • the organic pigment includes a lake pigment.
  • a lake pigment is obtained by dyeing a dye on an inorganic pigment or extender, and the lake pigment also has water insolubility according to the water insolubility of the inorganic pigment or extender.
  • lake pigments include the fanal (FANAL (registered trademark)) color series available from BASF.
  • the dye examples include azo dyes, complex salts of azo dyes and chromium, anthraquinone dyes, indigo dyes, phthalocyanine dyes, xanthene dyes, thiazine dyes, and the like.
  • the organic dye for toner is an organic dye that can be contained in the toner, and has charging properties in addition to the general characteristics of the colorant.
  • a dye or an organic pigment may be used, but a dye is preferred from the viewpoint of transparency and coloring power.
  • the functional material may be inorganic or organic, and may be an additive that imparts functionality to the ink.
  • chromic materials examples include chromic materials, magnetic pigments, ultraviolet absorbers, optically variable materials, pearl pigments, and the like.
  • a chromic material is a material that develops a color in response to energy such as light, heat, electricity, and fades when the energy is blocked or lost.
  • the chromic material include fluorescent pigments, excited luminescent pigments, temperature-sensitive color changing materials, photochromic materials, and stress luminescent materials.
  • the colorants listed above can be used alone or in combination of two or more.
  • the content of the infrared absorbing material fine particles in the infrared absorbing ink is preferably 1.0% by mass or more, 1.8% by mass or more, 2.5% by mass or more, or 3.0% by mass or more, This content may be 45 mass% or less, 37.5 mass% or less, 25 mass% or less, 20 mass% or less, 15 mass% or less, 9.0 mass% or less, or 8.0 mass% or less. preferable.
  • the content of the dispersant in the infrared absorbing ink is preferably 0.25% by mass or more, 0.5% by mass or more, or 1.0% by mass or more, and the content is 13% by mass or less, 10 It is preferable that it is mass% or less or 8 mass% or less.
  • the viscosity of the infrared absorbing ink may be 0.002 Pa ⁇ s or more, 0.02 Pa ⁇ s or more, 0.2 Pa ⁇ s or more, 2 Pa ⁇ s or more, or 5 Pa ⁇ s or more. It may be s or less, 150 Pa ⁇ s or less, or 100 Pa ⁇ s or less.
  • the solvent, resin, and photopolymerization component as the vehicle may be included in the infrared absorbing ink in such an amount that the viscosity of the infrared absorbing ink becomes 0.002 Pa ⁇ s to 200 Pa ⁇ s.
  • the content of the second solvent in the infrared absorbing ink is 2% by mass or less regardless of the presence or absence of the dispersant. is there.
  • the blending ratio of each component contained in the oil ink is such that when the viscosity of the oil ink is adjusted to about 5 to 100 Pa ⁇ s, the infrared absorbing material fine particles are 1. 0 to 45% by weight, vehicle is 20 to 85% by weight, colorant is 0 to 20% by weight, and auxiliary is 0.25 to 25% by weight.
  • the blending ratio of each component contained in the oil / UV combination ink is adjusted when the viscosity of the oil / UV combination ink is adjusted to several hundred Pa ⁇ s.
  • the vehicle for oil-based ink containing a solvent and a resin is 25 to 50% by mass
  • the vehicle for UV ink containing a resin and a photopolymerization component is 25 to 50% by mass
  • the fine particles of infrared absorbing material are 1.0 to 45% by mass. %, 0 to 20% by weight of the colorant, and 0.25 to 20% by weight of the auxiliary agent.
  • An embodiment of the method for producing the ink of the present invention comprises the following steps: (A) Dispersing the infrared absorbing material fine particles in a solvent to obtain a dispersion; and (b) mixing the dispersion with a vehicle to obtain an ink.
  • the method for performing step (a) may be any method that uniformly disperses the infrared-absorbing material fine particles in a solvent, and can be selected from any dispersion method.
  • step (a) is preferably performed by a wet medium mill such as a bead mill or a ball mill.
  • step (b) a resin is added as a vehicle component to the dispersion obtained in step (a), and if necessary, a group consisting of fine particles of infrared absorbing material, a vehicle component such as a solvent, an auxiliary agent, and a colorant.
  • a photopolymerization component may be added to the mixture or dispersion, and other materials may be added as desired to obtain the oil-based / UV combined ink of the present invention.
  • Each component contained in the infrared absorbing ink can be finally adjusted to a desired blending ratio by the step (b).
  • Step (b) can be carried out with a mixer, a meat mill, or the like.
  • the dispersion obtained in step (a) is preferably an infrared absorbing fine particle dispersion described later.
  • the infrared-absorbing fine particle dispersion contains the infrared-absorbing material fine particles, the first solvent, and the second solvent, and the content of the second solvent in the infrared-absorbing fine particle dispersion is 5.0. It is below mass%.
  • the infrared absorbing material fine particles, the first solvent, and the second solvent contained in the infrared absorbing fine particle dispersion are the infrared absorbing material fine particles and the first solvent described above for the infrared absorbing ink of the present invention. And a second solvent, respectively.
  • the infrared-absorbing fine particle dispersion is preferably produced by the method (A) or (B) for producing the infrared-absorbing fine particle dispersion described later.
  • the method (A) for producing the infrared-absorbing fine particle dispersion includes the following steps in the following order: (A-1) mixing the infrared-absorbing material fine particles into a second solvent and dispersing the mixture with a wet medium mill to obtain a first dispersion; (A-2) adding a first solvent to the first dispersion and mixing to obtain a second dispersion; and (A-3) a second solvent from the second dispersion. Removing the second solvent until the content of is less than 5.0% by mass.
  • the method of performing step (A-1) can be arbitrarily selected as long as it is a method of uniformly dispersing the infrared absorbing material fine particles in the second solvent. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill.
  • the boiling point of the second solvent is 180 ° C. or lower, preferably 150 ° C. or lower.
  • the concentration of the infrared-absorbing material fine particles in the first dispersion is 5% by mass or more, the productivity when producing the printing ink described later is excellent.
  • the concentration of the infrared absorbing material fine particles is 60% by mass or less, the viscosity of the first dispersion liquid does not increase, and the infrared absorbing material fine particles can be easily pulverized and dispersed.
  • the content of the infrared absorbing material fine particles in the first dispersion is 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more.
  • the content is 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 58% by mass or less, 56% by mass or less, 54% by mass or less, or 52% by mass or less. Is preferred.
  • step (A-2) it is preferable to select a solvent compatible with each other as the first solvent and the second solvent.
  • step (A-2) the infrared absorption finally obtained when 2.5 parts by weight or more of the first solvent is used with respect to 100 parts by weight of the infrared absorbing material fine particles contained in the first dispersion. This is preferable because the fluidity of the fine particle dispersion is maintained, the recovery is facilitated, and the productivity is maintained.
  • the first solvent has a boiling point higher than that of the second solvent, and is preferably 150 ° C. or higher or 180 ° C. or higher.
  • step (A-2) it is finally obtained that 270 parts by weight or less of the first solvent is used with respect to 100 parts by weight of the infrared absorbing material fine particles contained in the first dispersion.
  • This is preferable because the concentration of the infrared absorbing material fine particles in the infrared absorbing fine particle dispersion is ensured.
  • it is possible to avoid an excessive addition of the infrared-absorbing fine particle dispersion to the offset printing ink, and the viscosity of the ink can be ensured.
  • the viscosity of the ink is not greatly changed, viscosity adjustment is unnecessary, the process is simplified, and an increase in manufacturing cost can be avoided.
  • the first weight of the infrared-absorbing material fine particles contained in the first dispersion is The solvent is preferably 2.5 to 270 parts by weight, more preferably 70 to 270 parts by weight, and still more preferably 92 to 204 parts by weight.
  • the dispersant may be added to the first and / or second dispersion by the following method: A method of adding a dispersant to the second solvent in advance, A method of adding a dispersant to the first solvent in advance to obtain a dispersant solution and adding the dispersant solution to the first dispersion, or in parallel with the addition of the first solvent to the first dispersion And adding a dispersant to the first dispersion.
  • the dispersing agent soluble in a 2nd solvent is selected.
  • Step (A-3) can be performed by a heating distillation method using a difference in boiling points between the first solvent and the second solvent. Furthermore, the reduced pressure heating distillation including the reduced pressure operation is preferable from the viewpoints of safety, energy cost, and quality stabilization.
  • the method (B) for producing the infrared-absorbing fine particle dispersion includes the following steps in the following order: (B-1) A step of mixing the first solvent and the second solvent to obtain a mixed solvent; (B-2) a step of mixing the infrared-absorbing material fine particles in the mixed solvent, dispersing, and preferably dispersing with a wet medium mill to obtain a third dispersion; and (B-3) Removing the second solvent from the third dispersion until the content of the second solvent is 5.0% by mass or less.
  • step (B-1) one or more types of the first solvent and one or more types of the second solvent are mixed.
  • the first solvent and the second solvent those compatible with each other are preferably selected.
  • the method of performing step (B-2) can be arbitrarily selected as long as it is a method of uniformly dispersing the infrared absorbing material fine particles in the mixed solvent. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill.
  • the concentration of the infrared-absorbing material fine particles in the third dispersion is 5% by mass or more, the productivity is excellent when producing the printing ink described later.
  • the concentration of the infrared-absorbing material fine particles is 60% by mass or less, the viscosity of the third dispersion liquid does not increase, and the operation of pulverizing and dispersing the infrared-absorbing material fine particles is easy.
  • the content of the infrared absorbing material fine particles in the third dispersion is 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more.
  • the content is 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 58% by mass or less, 56% by mass or less, 54% by mass or less, or 52% by mass or less. Is preferred.
  • a dispersing agent may be added to the mixed solvent before the dispersing operation.
  • Step (B-3) can be performed by a heating distillation method using a difference in boiling points between the first solvent and the second solvent. Furthermore, the reduced pressure heating distillation method including a reduced pressure operation is preferable from the viewpoints of safety, energy cost, and quality stabilization.
  • the second dispersion or the third dispersion is distilled under reduced pressure while stirring, and the second solvent is separated from the third dispersion.
  • the apparatus used for the vacuum heating distillation method include a vacuum stirring type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
  • the temperature during the heating distillation is preferably 35 ° C. or higher, 40 ° C. or higher, or 60 ° C. or higher, and this temperature is preferably 200 ° C. or lower, 150 ° C. or lower, or 120 ° C. or lower. If the temperature at the time of heating distillation is 35 degreeC or more, the removal rate of a solvent can be ensured. If the temperature at the time of heating distillation is 200 ° C. or lower, alteration of the dispersant can be avoided.
  • the degree of vacuum is preferably ⁇ 0.05 MPa or less, more preferably ⁇ 0.06 MPa or less in terms of gauge pressure.
  • gauge pressure is ⁇ 0.05 MPa or less, the solvent removal rate is fast and the productivity is good.
  • the removal efficiency of the second solvent is improved and the infrared absorbing fine particle dispersion is not exposed to a high temperature for a long time. Aggregation of the absorbent material fine particles or deterioration of the first solvent does not occur, which is preferable. Furthermore, by using the above-mentioned reduced pressure heating distillation method, the productivity of the infrared absorbing fine particle dispersion is increased, and it is easy to recover the evaporated organic solvent.
  • An infrared-absorbing fine particle dispersion can be obtained by the production method (A) or (B) described above.
  • the higher the final concentration of the infrared-absorbing material fine particles in the infrared-absorbing fine particle dispersion the easier the ink preparation and the better.
  • this concentration becomes too high, the fluidity of the infrared-absorbing fine particle dispersion is lowered. Therefore, in the production method (A) or (B), the produced infrared-absorbing fine particle dispersion only needs to have fluidity that can be recovered.
  • the final content of the infrared absorbing material fine particles in the infrared absorbing fine particle dispersion is 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass.
  • the content is preferably 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 58% by mass or less, 56% by mass or less, 54% by mass or less, or 52% by mass or less. It is preferable that it is below mass%.
  • the dispersion particle diameter of the infrared absorbing material fine particles in the infrared absorbing fine particle dispersion can be arbitrarily controlled by the processing time of the wet medium mill. By extending the treatment time, the dispersed particle diameter of the infrared absorbing material fine particles can be reduced.
  • the lower limit of the viscosity of the infrared-absorbing fine particle dispersion depends on the viscosity of the first solvent used, that is, the viscosity of the vegetable oil or the vegetable oil-derived compound.
  • the viscosity of sunflower oil (24 ° C.) is 50 mPa ⁇ s
  • the viscosity of linseed oil (24 ° C.) is 40 mPa ⁇ s.
  • the upper limit of the viscosity of the infrared-absorbing fine particle dispersion may be arbitrarily determined according to the content of the infrared-absorbing material fine particles, but as the upper limit of the viscosity suitable for producing a printing ink described later, It is preferably 100 Pa ⁇ s or less.
  • a binder may be further added to the infrared absorbing fine particle dispersion.
  • the binder is not particularly limited, and examples thereof include resins used as vehicles, such as polyamide, polyurethane, nitrocellulose, acrylic resin, maleic acid resin, rosin, and modified rosin.
  • the infrared absorbing ink of the present invention can be used as a general printing ink.
  • the infrared absorbing ink of the present invention can be used as flexographic ink, letterpress printing ink, offset printing ink, intaglio printing ink, gravure printing ink, screen printing ink, inkjet printing ink, and the like.
  • the infrared absorbing ink of the present invention is preferably used as an offset printing ink, an intaglio printing ink or a screen printing ink.
  • the intaglio printing ink can be used for press printing using a direct printing plate surface or an etching plate surface.
  • the infrared absorbing ink of the present invention can provide a printed matter having a printing part by printing on a substrate.
  • the base material include paper base materials such as fine paper, coated paper, art paper, cast coated paper, foil paper, recycled paper, impregnated paper, variable information paper, etc .; film base materials such as polyester film, polypropylene film, Polystyrene film, vinyl chloride film, polyimide film, variable information film or the like; or a cloth substrate such as woven cloth or non-woven cloth may be used.
  • the printed matter may be banknotes, securities, cards or the like.
  • the printing ink of the present invention preferably contains 2 to 50% by mass of the infrared absorbing fine particle dispersion described above.
  • the printing ink of the present invention may contain 2.0% by mass or less of the second solvent described above.
  • the ink of the present invention has infrared absorptivity, it can be used for various information management by printing the printing ink of the present invention in an arbitrary pattern and reading it with a near-infrared light determining machine or the like.
  • the portion on which the ink of the present invention is printed absorbs infrared rays, Since it is displayed blacker than the portion of, the infrared absorption contrast can be detected. Therefore, the authenticity of the printed matter can be determined by comparing the predetermined infrared absorption contrast with the infrared absorption contrast of the observation target.
  • the dispersion particle size of the tungsten oxide fine particles in dispersion C-1 was measured with a particle size distribution analyzer ELS-8000 (manufactured by Otsuka Electronics Co., Ltd.), and it was 77 nm.
  • Example 1 As the infrared absorbing material fine particles, a dispersant having a hexagonal crystal Cs 0.33 WO 3 which is a composite tungsten oxide similar to that in Comparative Example 1 is 23% by mass and a fatty acid is included in the structure (non-volatile content: 100%, hereinafter, dispersed) 11.5% by mass and 65.5% by mass of methyl isobutyl ketone (hereinafter abbreviated as MIBK) as a solvent were weighed.
  • MIBK methyl isobutyl ketone
  • dispersion A the near-infrared fine particle dispersion (hereinafter referred to as dispersion A) according to Example 1 was obtained. Obtained.
  • Dispersion B a composite tungsten oxide fine particle dispersion
  • dispersion B when the amount of residual MIBK of dispersion B was measured with a dry moisture meter, it was 1.15% by mass.
  • the dispersed particle size of the tungsten oxide fine particles in dispersion B was measured with a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), and found to be 81 nm.
  • the offset printing vehicle was mixed with the dispersion B according to Example 1, it was dispersed by a conventional method using a three-roll mill to produce an offset printing ink, and a printed matter was produced using the ink.
  • the printed matter shows high transmittance in the visible light wavelength region, and the transmittance is remarkably low in the near-infrared light wavelength region.
  • the printed matter produced with the ink using the dispersion obtained in Example 1 can be discriminated with a near-infrared ray judging machine. That is, it has been found that by using the near-infrared fine particle dispersion according to the present invention, it is possible to easily produce an ink for offset printing having an absorption capability in the near-infrared light wavelength region and a clear contrast.
  • Comparative Example 2 As the infrared-absorbing material fine particles, 23% by mass of hexagonal Cs 0.33 WO 3 which is a composite tungsten oxide similar to Comparative Example 1, 11.5% by mass of dispersant a, ethylene glycol having a boiling point of 197 ° C. , Abbreviated as EG) 65.5% by mass was weighed.
  • Example 2 An infrared-absorbing fine particle dispersion (hereinafter referred to simply as “dispersion C”) according to Comparative Example 2 was obtained.
  • Residue E of dispersion D G It was 34.21 mass% when quantity was measured with the dry-type moisture meter.
  • the dispersion particle diameter of the tungsten oxide fine particles in dispersion D was measured with an Otsuka Electronics particle size distribution analyzer to be 71 nm.
  • Dispersion D contains E.I. G. Therefore, even if an ink is obtained from the dispersion D according to a general ink formulation, it is expected that the ink cannot be cured.
  • Example 2 to 9 Preparation of infrared absorbing fine particle dispersion
  • An infrared-absorbing fine particle dispersion was obtained in the same manner as in Example 1 except that the infrared-absorbing fine particle dispersion had the following composition: Hexagonal Cs 0.33 WO 3 : 50% by mass Sunflower oil: 22% by mass Dispersant a: 25% by mass Propylene glycol monomethyl ether acetate (PGMEA): 3% by mass
  • Comparative Examples 4 to 7 Commercially available ATO (ELCOM (registered trademark) P-special product, JGC Catalysts & Chemicals Co., Ltd.) was dispersed in Best One GIGA Medium (T & KTOKA), and Comparative Examples 4 to 7 each had an ATO content of 5 mass in ink. %, 7.5% by mass, 10% by mass and 15% by mass of an ATO-containing oil-based offset printing ink was obtained.
  • ATO ELCOM (registered trademark) P-special product, JGC Catalysts & Chemicals Co., Ltd.
  • FIG. 1 shows the result of reflectance measurement for printed matter obtained using the offset printing inks of Examples 2 and 3 and the offset printing inks of Comparative Examples 4 to 7.
  • the ink prints of Examples 2 and 3 containing composite tungsten oxide are more visible than the ink prints of Comparative Examples 4 to 7 containing commercial ATO. It can be seen that the contrast between the light wavelength region and the infrared wavelength region, in particular, the contrast between the visible light wavelength region and the near infrared wavelength region is clear.
  • Printing machine Offset printing machine RI tester (manufactured by IHI Machine System Co., Ltd.) Ink filling amount: 0.125 cc Ink film thickness: about 1 ⁇ m
  • the light reflectance of three types of printed samples was measured according to the following measurement conditions: (Measurement condition) Measuring device: UV-visible spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) Measurement item: Reflectance (%) Measurement wavelength: 350-2500 nm
  • FIG. 2 shows the reflectance in the wavelength range of 350 to 1500 nm for the indigo (C), red (M), and yellow (Y) process inks.
  • the infrared absorbing ink of the present invention was used as a general color ink by combining the reflectance graph of CMY process ink shown in FIG. 2 and the reflectance graph of Examples 2 and 3 shown in FIG. The relationship between the color tone and the infrared absorptivity can be expected.
  • the red and yellow process inks do not absorb light in the infrared wavelength region (780-1100 nm).
  • the reflectance graphs of Examples 2 and 3 shown in FIG. 1 since the average reflectance in the infrared wavelength region is lower than the average reflectance in the visible light wavelength region (380 nm to 780 nm), it is less red than visible light. It is thought that outside light is absorbed. Therefore, it can be seen that when the infrared absorbing ink of the present invention is used as a red or yellow ink, the ink can be imparted with an infrared absorbing property without affecting the red or yellow color tone.
  • the indigo process ink slightly absorbs light in the infrared wavelength region (780 to 1100 nm).
  • the ratio in which the indigo process ink absorbs infrared light is so low that it does not need to be considered. Therefore, it can be seen that even when the infrared absorbing ink of the present invention is used as an indigo ink, the ink can be imparted with an infrared absorbing property without affecting the color tone of the indigo color.
  • the infrared absorbing inks of Examples 2 and 3 do not contain a colorant, they can be grasped as special color inks or functional inks suitable for offset printing, intaglio printing, and the like.
  • the reflectance graph of Example 2 and 3 shown by FIG. 1 can be regarded as a graph showing the light reflection characteristic of the special color ink of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Printing Methods (AREA)

Abstract

The purpose of the present invention is to provide an infrared-absorbent ink which has excellent infrared absorbing properties and safety and can be used as a printing ink for forgery prevention. The infrared-absorbent ink according to the present invention includes: 1.0% by mass to 25% by mass of fine particles of at one or more types of infrared-absorbent material selected from composite tungsten oxides represented by the general formula MxWyOz (M, W, O, x, y, and z in the formula being as defined in the specification) or tungsten oxides having a Magneli phase represented by the general formula WyOz (W, O, y, and z in the formula being as defined in the specification); and a vehicle. The vehicle includes a first solvent selected from vegetable oils or vegetable-oil-derived compounds, a second solvent selected from alcohols and having a boiling point of 180°C or lower, and a resin. The content of the second solvent is 2% by mass or less with respect to the mass of the infrared-absorbent ink.

Description

赤外線吸収性インキInfrared absorbing ink
 本発明は、赤外線吸収性インキ、赤外線吸収性インキの製造方法等に関し、特に、偽造防止用の赤外線吸収性印刷インキに関する。 The present invention relates to an infrared absorbing ink, a method for producing the infrared absorbing ink, and the like, and more particularly, to an infrared absorbing printing ink for preventing counterfeiting.
 紙幣、有価証券等に、偽造防止を目的として、赤外線吸収性を有する印刷インキを使用して印刷を部分的に施すことが検討されている。 For the purpose of preventing counterfeiting, it has been studied to partially print on banknotes, securities, etc. using printing ink having infrared absorptivity.
 赤外線吸収性を有する印刷インキは、一般に用いられるインキに赤外線吸収剤を加えて構成される。赤外線吸収剤としては、シアニン系化合物、フタロシアニン系化合物などの赤外線吸収性有機材料;又は錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)等の赤外線吸収性無機材料が、知られている。近年では、赤外線吸収剤の耐候性を確保するために、赤外線吸収剤としては赤外線吸収性無機材料が使用されていた。 Printing ink having infrared absorptivity is configured by adding an infrared absorber to commonly used ink. As infrared absorbers, infrared absorbing organic materials such as cyanine compounds and phthalocyanine compounds; or infrared absorbing inorganic materials such as tin-doped indium oxide (ITO) and antimony-doped tin oxide (ATO) are known. . In recent years, an infrared absorbing inorganic material has been used as the infrared absorbing agent in order to ensure the weather resistance of the infrared absorbing agent.
 例えば、特許文献1には、赤外線吸収性無機材料としてITOを含む赤外線吸収性インキが、提案されている。 For example, Patent Document 1 proposes an infrared absorbing ink containing ITO as an infrared absorbing inorganic material.
 特許文献2には、赤外線吸収性無機材料としてATOを含む偽造防止用赤外線吸収性インキが、提案されている。 Patent Document 2 proposes an anti-counterfeit infrared absorbing ink containing ATO as an infrared absorbing inorganic material.
 ところで、特許文献3には、可視光透過性及び赤外線吸収性を有する日射遮蔽体形成用材料として、タングステン-セシウム複合酸化物微粒子又はタングステン酸化物微粒子の分散液が、記述されている。 By the way, Patent Document 3 describes a dispersion of tungsten-cesium composite oxide fine particles or tungsten oxide fine particles as a solar radiation shielding material having visible light transmission and infrared absorption.
特開2000-309736号公報JP 2000-309736 A 特開2010-006999号公報JP 2010-006999 A 特開2005-187323号公報JP 2005-187323 A
 特許文献1に記載のITO含有赤外線吸収性インキは、インジウムがアンチモンよりも高価であるため、特許文献2に記載のATO含有赤外線吸収性インキよりも使用されることが少なかった。 The ITO-containing infrared absorbing ink described in Patent Document 1 is less used than the ATO-containing infrared absorbing ink described in Patent Document 2 because indium is more expensive than antimony.
 特許文献2に記載のATO含有赤外線吸収性インキは、アンチモンがインジウム及びセシウムよりも安価であり、淡い白色を呈し、かつトルエン、メチルイソブチルケトン(MIBK)、メチルエチルケトン(MEK)、酢酸ブチル等の一般的な印刷インキ用非極性溶剤に分散されることができるので、他のプロセスインキの色調に与える影響の少ない偽造防止用赤外線吸収性インキとして、広く使用されている。 In the ATO-containing infrared absorbing ink described in Patent Document 2, antimony is cheaper than indium and cesium, has a light white color, and is commonly used in toluene, methyl isobutyl ketone (MIBK), methyl ethyl ketone (MEK), butyl acetate, and the like. Since it can be dispersed in a non-polar solvent for printing ink, it is widely used as an anti-counterfeit infrared absorbing ink having little influence on the color tone of other process inks.
 しかしながら、特許文献1及び2に記載の赤外線吸収性インキは、可視光波長領域での光の透過又は反射と、赤外光波長領域での光の透過又は反射とのコントラストが不十分であるため、偽造防止用印刷インキの印刷部において読み取り精度などが低下する問題があった。 However, the infrared absorbing inks described in Patent Documents 1 and 2 have insufficient contrast between the transmission or reflection of light in the visible light wavelength region and the transmission or reflection of light in the infrared light wavelength region. Further, there has been a problem that reading accuracy and the like are reduced in the printing portion of the anti-counterfeit printing ink.
 特許文献3に記載のタングステン-セシウム複合酸化物微粒子及びタングステン酸化物微粒子は、トルエン等の非極性有機溶剤に分散されているため、ゴム製のブランケットが非極性有機溶剤によって溶解する場合があり、一般的な印刷インキ、特にオフセット印刷用インキとして使用されることができなかった。 Since the tungsten-cesium composite oxide fine particles and the tungsten oxide fine particles described in Patent Document 3 are dispersed in a nonpolar organic solvent such as toluene, a rubber blanket may be dissolved by the nonpolar organic solvent. It could not be used as a general printing ink, in particular as an offset printing ink.
 なお、特許文献3に記載のタングステン-セシウム複合酸化物微粒子及びタングステン酸化物微粒子を、オフセット印刷インキ用溶剤として用いられる植物油又は植物油由来の化合物に単純に添加し、分散させると、分散液の粘性が上昇してしまうという知見が得られている。 When the tungsten-cesium composite oxide fine particles and tungsten oxide fine particles described in Patent Document 3 are simply added to and dispersed in the vegetable oil or the vegetable oil-derived compound used as a solvent for offset printing ink, the viscosity of the dispersion is increased. Has been found to increase.
 特許文献3に記載のタングステン-セシウム複合酸化物微粒子は、セシウムが極めて高価であるために、一般的な印刷インキ中での使用も予想されていなかった。さらに、特許文献3には、タングステン-セシウム複合酸化物微粒子及びタングステン酸化物微粒子を偽造防止用印刷インキに使用することも記載されていない。 The tungsten-cesium composite oxide fine particles described in Patent Document 3 were not expected to be used in general printing ink because cesium is extremely expensive. Further, Patent Document 3 does not describe the use of tungsten-cesium composite oxide fine particles and tungsten oxide fine particles for anti-counterfeit printing ink.
 したがって、本発明が解決しようとする課題は、赤外線吸収性及び耐光性を有し、ゴム製のブランケットを溶解することなく、かつ可視光を反射する波長領域と赤外光を吸収する波長領域との間のコントラストが明確な赤外線吸収インキを提供することである。 Therefore, the problem to be solved by the present invention is to have an infrared absorption and light resistance, a wavelength range that reflects visible light and a wavelength range that absorbs infrared light without dissolving a rubber blanket. It is to provide an infrared absorbing ink with a clear contrast between the two.
 本発明者らは、以下の発明によって、上記課題を解決できることを見出した。
[1]
 一般式M{式中、Mは、H、He、アルカリ金属元素、アルカリ土類金属元素、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIから成る群から選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素であり、x、y及びzは、それぞれ正数であり、0<x/y≦1であり、かつ2.2≦z/y≦3.0である}で表される複合タングステン酸化物、または一般式W{式中、Wはタングステンであり、Oは酸素であり、y及びzは、それぞれ正数であり、かつ2.45≦z/y≦2.999である}で表されるマグネリ相を有するタングステン酸化物から選択される1種以上の赤外線吸収性材料微粒子;および
 ビヒクル;
を含む赤外線吸収性インキであって、前記ビヒクルは、植物油または植物油由来の化合物から選択される第一の溶剤と、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、脂肪族炭化水素類、およびグリコールエーテル類から成る群から選択され、かつ180℃以下の沸点を有する第二の溶剤と、樹脂とを含み、かつ前記第二の溶剤の含有量は、前記赤外線吸収性インキの質量に対して2質量%以下である、赤外線吸収性インキ。
[2]
 前記赤外線吸収性材料微粒子の分散粒子径が、1nm以上200nm以下である、[1]に記載の赤外線吸収性インキ。
[3]
 前記赤外線吸収性材料微粒子の表面が、Si、Ti、AlおよびZrから成る群から選択される1種以上を含有する酸化物で被覆されている、[1]又は[2]に記載の赤外線吸収性インキ。
[4]
 前記複合タングステン酸化物は、六方晶の結晶構造を有するか、または六方晶の結晶構造から成る、[1]~[3]のいずれか1項に記載の赤外線吸収性インキ。
[5]
 前記第一の溶剤は植物油である、[1]~[4]のいずれか1項に記載の赤外線吸収性インキ。
[6]
 前記植物油は、乾性油または半乾性油である、[5]に記載の赤外線吸収性インキ。
[7]
 前記ビヒクルは、光重合成分をさらに含む、[1]~[6]のいずれか1項に記載の赤外線吸収性インキ。
[8]
 前記第一の溶剤に可溶な脂肪酸を構造中に有する分散剤をさらに含む、[1]~[7]のいずれか1項に記載の赤外線吸収性インキ。
[9]
 前記赤外線吸収性材料微粒子の含有量が、前記赤外線吸収性インキの質量に対して1.0質量%以上45質量%以下である、[1]~[8]のいずれか1項に記載の赤外線吸収性インキ。
[10]
 偽造防止用である、[1]~[9]のいずれか1項に記載の赤外線吸収性インキ。
[11]
 前記赤外線吸収性インキの粘度が、0.002Pa・s以上200Pa・s以下である、[1]~[10]のいずれか1項に記載の赤外線吸収性インキ。
[12]
 [1]~[11]のいずれか1項に記載の赤外線吸収性インキを使用して、フレキソ印刷、活版印刷、オフセット印刷、凹版印刷、グラビア印刷、スクリーン印刷またはインクジェット印刷で印刷物を得る方法。
[13]
 [1]~[11]のいずれか1項に記載の赤外線吸収性インキにより印刷された偽造防止用の印刷部を備える印刷物。
The present inventors have found that the above problems can be solved by the following invention.
[1]
General formula M x W y O z {wherein M is H, He, alkali metal element, alkaline earth metal element, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, One or more elements selected from the group consisting of Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, x, y And z are each a positive number, 0 <x / y ≦ 1 and 2.2 ≦ z / y ≦ 3.0}, or a composite tungsten oxide represented by the general formula W y O z {wherein W is tungsten, O is oxygen, and y and z are positive numbers, respectively. And one or more infrared absorbing material fine particles selected from tungsten oxide having a magnetic phase represented by 2.45 ≦ z / y ≦ 2.999; and a vehicle;
Infrared absorbing ink containing the vehicle, wherein the vehicle is a first solvent selected from vegetable oils or compounds derived from vegetable oils, alcohols, ethers, esters, ketones, aromatic hydrocarbons, aliphatic A second solvent selected from the group consisting of hydrocarbons and glycol ethers and having a boiling point of 180 ° C. or lower and a resin, and the content of the second solvent is the infrared absorbing ink. Infrared absorbing ink that is 2% by mass or less based on the mass of
[2]
The infrared absorbing ink according to [1], wherein the dispersed particle diameter of the infrared absorbing material fine particles is 1 nm or more and 200 nm or less.
[3]
The infrared ray absorbing material according to [1] or [2], wherein the surface of the infrared absorbing material fine particles is coated with an oxide containing at least one selected from the group consisting of Si, Ti, Al and Zr. Ink.
[4]
The infrared-absorbing ink according to any one of [1] to [3], wherein the composite tungsten oxide has a hexagonal crystal structure or a hexagonal crystal structure.
[5]
The infrared absorbing ink according to any one of [1] to [4], wherein the first solvent is vegetable oil.
[6]
The infrared absorbing ink according to [5], wherein the vegetable oil is a drying oil or a semi-drying oil.
[7]
The infrared absorbing ink according to any one of [1] to [6], wherein the vehicle further includes a photopolymerization component.
[8]
The infrared absorbing ink according to any one of [1] to [7], further comprising a dispersant having in its structure a fatty acid soluble in the first solvent.
[9]
The infrared ray according to any one of [1] to [8], wherein a content of the infrared absorbing material fine particles is 1.0% by mass or more and 45% by mass or less with respect to a mass of the infrared absorbing ink. Absorbent ink.
[10]
The infrared absorbing ink according to any one of [1] to [9], which is used for preventing counterfeiting.
[11]
The infrared absorbing ink according to any one of [1] to [10], wherein the viscosity of the infrared absorbing ink is 0.002 Pa · s to 200 Pa · s.
[12]
[1] A method for obtaining a printed matter by flexographic printing, letterpress printing, offset printing, intaglio printing, gravure printing, screen printing or ink jet printing using the infrared absorbing ink according to any one of [1] to [11].
[13]
[1] to [11] A printed matter comprising an anti-counterfeit printing part printed with the infrared absorbing ink according to any one of [1] to [11].
 本発明に使用される赤外線吸収性材料微粒子は、無機顔料であり、紫外線等の光線による劣化が起こり難いため、本発明によれば、高い耐光性及び赤外線吸収性を有する印刷インキを得ることができる。 The infrared-absorbing material fine particles used in the present invention are inorganic pigments, and are not easily deteriorated by light rays such as ultraviolet rays. Therefore, according to the present invention, it is possible to obtain a printing ink having high light resistance and infrared absorption. it can.
 本発明に使用される赤外線吸収性材料微粒子は、可視光を透過又は反射する波長領域と赤外光を吸収する波長領域との間のコントラストが明確であるため、赤外線吸収性インキ、特に偽造防止用である赤外線吸収性インキを提供することができる。すなわち、本発明によれば、赤外線吸収性、可視光の反射率と赤外線の反射率との間のコントラスト、及びデザイン性に優れた紙幣、有価証券、カード等の印刷物を得ることができる。 The fine particles of the infrared absorbing material used in the present invention have a clear contrast between the wavelength region that transmits or reflects visible light and the wavelength region that absorbs infrared light. Infrared absorbing ink for use can be provided. That is, according to the present invention, it is possible to obtain printed matter such as banknotes, securities, cards and the like excellent in infrared absorptivity, contrast between visible light reflectance and infrared reflectance, and design.
352nm~1600nmの波長における反射率について、実施例2及び3のインキ印刷物と市販ATO含有インキ印刷物との対比を示すグラフである。6 is a graph showing the contrast between the ink prints of Examples 2 and 3 and the commercially available ATO-containing ink prints with respect to the reflectance at wavelengths of 352 nm to 1600 nm. 350nm~1500nmの波長における藍・紅・黄(CMY)プロセスインキの反射率を示すグラフである。3 is a graph showing the reflectance of indigo / red / yellow (CMY) process ink at wavelengths of 350 nm to 1500 nm.
<赤外線吸収性インキ>
 本発明の赤外線吸収性インキは、複合タングステン酸化物又はマグネリ相を有するタングステン酸化物から選択される赤外線吸収性材料微粒子、及びビヒクルを含む。
<Infrared absorbing ink>
The infrared absorbing ink of the present invention includes infrared absorbing material fine particles selected from composite tungsten oxide or tungsten oxide having a magnetic phase, and a vehicle.
 本発明のインキは、赤外線吸収性材料微粒子の赤外線吸収性を利用して印刷物の偽造を防止するために、使用されることができる。 The ink of the present invention can be used to prevent forgery of printed matter by utilizing the infrared absorptivity of the infrared absorbing material fine particles.
 本発明に係る赤外線吸収性インキは、赤外線吸収性材料微粒子及びビヒクルを含み、ビヒクルは、植物油または植物油由来の化合物から選択される1種以上の第一の溶剤と、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、脂肪族炭化水素類及びグリコールエーテル類から成る群から選択され、かつ180℃以下の沸点を有する第二の溶剤と、樹脂とを含み、かつ第二の溶剤の含有量は、赤外線吸収性インキの質量に対して2質量%以下である。 The infrared absorbing ink according to the present invention includes infrared absorbing material fine particles and a vehicle, wherein the vehicle is one or more first solvents selected from vegetable oils or compounds derived from vegetable oils, alcohols, ethers, esters. A second solvent selected from the group consisting of a group, a ketone, an aromatic hydrocarbon, an aliphatic hydrocarbon, and a glycol ether, and having a boiling point of 180 ° C. or lower, and a resin, and The content of the solvent is 2% by mass or less with respect to the mass of the infrared absorbing ink.
 本発明のインキは、ビヒクルに赤外線吸収性材料微粒子が分散しており、好ましくは混合せずに1時間経過しても、赤外線吸収性材料微粒子のうちの10質量%以上、5質量%以上、3質量%以上、又は1質量%以上の沈降が発生しない。さらに好ましくは、本発明のインキは、赤外線吸収性材料微粒子をまず第二の溶剤に分散してから、第一の溶剤をその分散液に加えて、その後第二の溶剤を2質量%以下まで除去することによって得られる。 In the ink of the present invention, the infrared-absorbing material fine particles are dispersed in the vehicle, preferably 10% by mass or more, 5% by mass or more of the infrared-absorbing material fine particles even after 1 hour without mixing. Sedimentation of 3% by mass or more, or 1% by mass or more does not occur. More preferably, in the ink of the present invention, the infrared absorbing material fine particles are first dispersed in the second solvent, the first solvent is added to the dispersion, and then the second solvent is added to 2% by mass or less. It is obtained by removing.
 所望により、赤外線吸収性インキは、補助剤として、前記第一の溶剤に可溶な脂肪酸を構造中に有する分散剤をさらに含んでよく、かつ/又は分散剤以外の補助剤、着色剤等もさらに含んでよい。 If desired, the infrared absorbing ink may further contain a dispersant having a fatty acid soluble in the first solvent in the structure as an auxiliary agent, and / or an auxiliary agent other than the dispersant, a colorant, and the like. Further may be included.
 本発明のインキは、ビヒクル成分の種類に応じて、油性インキ、又は油性・紫外線硬化型併用インキとして使用されることができる。 The ink of the present invention can be used as an oil-based ink or an oil-based / ultraviolet curable ink depending on the type of vehicle component.
 油性インキは、ビヒクル成分の酸化重合により硬化可能なインキである。一般に、油性インキは、ビヒクル成分として、溶剤、樹脂等を含む。 Oil-based inks are inks that can be cured by oxidative polymerization of vehicle components. Generally, oil-based ink contains a solvent, resin, etc. as a vehicle component.
 紫外線硬化型インキ(以下、「UVインキ」と略記する)は、ビヒクル成分の光重合により硬化可能なインキである。一般に、UVインキは、ビヒクル成分として、樹脂、光重合性モノマー又はオリゴマー、光重合開始剤等を含むが、溶剤等の揮発成分を含まない。 UV curable ink (hereinafter abbreviated as “UV ink”) is an ink that can be cured by photopolymerization of a vehicle component. In general, the UV ink contains a resin, a photopolymerizable monomer or oligomer, a photopolymerization initiator and the like as a vehicle component, but does not contain a volatile component such as a solvent.
 油性・紫外線硬化型併用インキ(以下、「油性・UV併用インキ」と略記する)は、油性インキとUVインキの両方の硬化特性を備えたインキである。 The oil-based / ultraviolet-curing combined ink (hereinafter abbreviated as “oil-based / UV combined ink”) is an ink having curing characteristics of both oil-based ink and UV ink.
 本発明のインキに含まれる赤外線吸収性材料微粒子、ビヒクル、補助剤及び着色剤について以下に説明する。 The infrared absorbing material fine particles, vehicle, auxiliary agent and colorant contained in the ink of the present invention will be described below.
[赤外線吸収性材料微粒子]
 赤外線吸収材料微粒子は、下記一般式(1)で表される複合タングステン酸化物、又は下記一般式(2)で表されるマグネリ相を有するタングステン酸化物から選択される1種以上である:
 M   (1)
{式中、Mは、H、He、アルカリ金属元素、アルカリ土類金属元素、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIから成る群から選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素であり、x、y及びzは、それぞれ正数であり、0<x/y≦1であり、かつ2.2≦z/y≦3.0である}
 W   (2)
{式中、Wはタングステンであり、Oは酸素であり、y及びzは、それぞれ正数であり、かつ2.45≦z/y≦2.999である}
 なお、アルカリ金属元素は、水素を除く周期表第1族元素であり、アルカリ土類金属元素は、Be及びMgを除く周期表第2族元素であり、かつ希土類元素は、Sc、Y及びランタノイド元素である。
[Infrared absorbing material fine particles]
The infrared absorbing material fine particles are at least one selected from a composite tungsten oxide represented by the following general formula (1) or a tungsten oxide having a magnetic phase represented by the following general formula (2):
M x W y O z (1)
{Wherein M is H, He, alkali metal element, alkaline earth metal element, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, One or more elements selected from the group consisting of Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, and x, y, and z are positive numbers, respectively. Yes, 0 <x / y ≦ 1, and 2.2 ≦ z / y ≦ 3.0}
W y O z (2)
{Wherein W is tungsten, O is oxygen, y and z are positive numbers, and 2.45 ≦ z / y ≦ 2.999}
The alkali metal element is a Group 1 element of the periodic table excluding hydrogen, the alkaline earth metal element is a Group 2 element of the periodic table excluding Be and Mg, and the rare earth elements are Sc, Y and lanthanoids. It is an element.
 赤外線吸収性材料微粒子の製法として、特開2005-187323号公報に説明されている複合タングステン酸化物又はマグネリ相を有するタングステン酸化物の製法を使用することができる。 As a method for producing the infrared-absorbing material fine particles, a method for producing a composite tungsten oxide or a tungsten oxide having a magnetic phase described in JP-A-2005-187323 can be used.
 一般式(1)で表される複合タングステン酸化物には、元素Mが添加されている。この為、一般式(1)におけるz/y=3.0の場合も含めて、自由電子が生成され、近赤外光波長領域に自由電子由来の吸収特性が発現し、波長1000nm付近の近赤外線を吸収する材料として有効である。 Element M is added to the composite tungsten oxide represented by the general formula (1). For this reason, free electrons are generated including the case of z / y = 3.0 in the general formula (1), the free electron-derived absorption characteristics are expressed in the near-infrared wavelength region, and the wavelength near 1000 nm. It is effective as a material that absorbs infrared rays.
 特に、近赤外線吸収性材料としての光学特性及び耐候性を向上させる観点から、M元素は、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe及びSnのうちの1種類以上であることが好ましく、特にCsであることが好ましい。 In particular, from the viewpoint of improving optical properties and weather resistance as a near-infrared absorbing material, M element is one kind of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe and Sn. The above is preferable, and Cs is particularly preferable.
 また、Cs(0.25≦x/y≦0.35、2.2≦z/y≦3.0)の場合、格子定数が、a軸は7.4060Å以上7.4082Å以下で、c軸は7.6106Å以上7.6149Å以下であることが好ましい。格子定数が前記の範囲内にあると、特に光学特性や耐候性に優れた近赤外線吸収微粒子が得られる。 Further, in the case of Cs x W y O z (0.25 ≦ x / y ≦ 0.35, 2.2 ≦ z / y ≦ 3.0), the lattice constant is 7.4062 mm or more in the a-axis. In the following, it is preferable that the c-axis is 7.6106 mm or more and 7.6149 mm or less. When the lattice constant is within the above range, near-infrared absorbing fine particles having particularly excellent optical characteristics and weather resistance can be obtained.
 一般式(1)で表される複合タングステン酸化物が、シランカップリング剤で処理されていると、分散性、近赤外線吸収性及び可視光波長領域における透明性に優れるので好ましい。 It is preferable that the composite tungsten oxide represented by the general formula (1) is treated with a silane coupling agent because it is excellent in dispersibility, near infrared absorption, and transparency in the visible light wavelength region.
 元素Mの添加量を示すx/yの値が0超であれば、十分な量の自由電子が生成され近赤外線吸収効果を十分に得ることができる。元素Mの添加量が多いほど、自由電子の供給量が増加し、近赤外線吸収効果も上昇するが、x/yの値が1程度で飽和する。x/yの値が1以下であれば、微粒子含有層中における不純物相の生成を回避できるので好ましい。x/yの値は、0.001以上、0.2以上又は0.30以上であることが好ましく、この値は、0.85以下、0.5以下又は0.35以下であることが好ましい。x/yの値は、理想的には0.33である。 If the value of x / y indicating the addition amount of the element M is more than 0, a sufficient amount of free electrons is generated and a near infrared absorption effect can be sufficiently obtained. As the amount of the element M added increases, the supply amount of free electrons increases and the near-infrared absorption effect also increases. A value of x / y of 1 or less is preferable because generation of an impurity phase in the fine particle-containing layer can be avoided. The value of x / y is preferably 0.001 or more, 0.2 or more, or 0.30 or more, and this value is preferably 0.85 or less, 0.5 or less, or 0.35 or less. . The value of x / y is ideally 0.33.
 一般式(1)及び(2)において、z/yの値は、酸素量の制御の水準を示す。一般式(1)で表される複合タングステン酸化物は、z/yの値が2.2≦z/y≦3.0の関係を満たすので、一般式(2)で表されるタングステン酸化物と同じ酸素制御機構が働くことに加えて、z/y=3.0の場合でさえも元素Mの添加による自由電子の供給がある。一般式(1)において、z/yの値が2.45≦z/y≦3.0の関係を満たすことがより好ましい。 In the general formulas (1) and (2), the value of z / y indicates the level of control of the oxygen amount. Since the composite tungsten oxide represented by the general formula (1) satisfies the relationship of z ≦ y 2.2 ≦ z / y ≦ 3.0, the tungsten oxide represented by the general formula (2) In addition to working the same oxygen control mechanism, there is a supply of free electrons due to the addition of element M even when z / y = 3.0. In the general formula (1), it is more preferable that the value of z / y satisfies the relationship of 2.45 ≦ z / y ≦ 3.0.
 尚、本発明に係る複合タングステン酸化物やタングステン酸化物の製造時に使用する原料化合物に由来して、当該複合タングステン酸化物やタングステン酸化物を構成する酸素原子の一部がハロゲン原子に置換している場合があるが、本発明の実施において問題はない。そこで、本発明に係る複合タングステン酸化物やタングステン酸化物には、酸素原子の一部がハロゲン原子に置換している場合も含むものである。 In addition, it originates in the raw material compound used at the time of manufacture of the composite tungsten oxide or tungsten oxide according to the present invention, and a part of oxygen atoms constituting the composite tungsten oxide or tungsten oxide is substituted with a halogen atom. However, there is no problem in the implementation of the present invention. Therefore, the composite tungsten oxide or tungsten oxide according to the present invention includes a case where a part of oxygen atoms is substituted with halogen atoms.
 一般式(1)で表される複合タングステン酸化物は、六方晶の結晶構造を有するか、又は六方晶の結晶構造から成るとき、赤外線吸収性材料微粒子の可視光波長領域の透過が向上し、かつ近赤外光波長領域の吸収が向上するので好ましい。六方晶の空隙に元素Mの陽イオンが添加されて存在するとき、可視光波長領域の透過が向上し、近赤外光波長領域の吸収が向上する。ここで、一般には、イオン半径の大きな元素Mを添加したときに、六方晶が形成される。具体的には、Cs、K、Rb、Tl、In、Ba、Sn、Li、Ca、Sr、Fe等のイオン半径の大きい元素を添加したときに、六方晶が形成され易い。しかしながら、これらの元素に限定されるものではなく、これらの元素以外の元素でも、WO単位で形成される六角形の空隙に添加元素Mが存在すればよい。 When the composite tungsten oxide represented by the general formula (1) has a hexagonal crystal structure or a hexagonal crystal structure, the transmission of the infrared-absorbing material fine particles in the visible light wavelength region is improved, In addition, the absorption in the near infrared wavelength region is improved, which is preferable. When the cation of the element M is added to the hexagonal voids, the transmission in the visible light wavelength region is improved, and the absorption in the near infrared wavelength region is improved. Here, generally, when an element M having a large ionic radius is added, a hexagonal crystal is formed. Specifically, hexagonal crystals are easily formed when an element having a large ionic radius such as Cs, K, Rb, Tl, In, Ba, Sn, Li, Ca, Sr, and Fe is added. However, the present invention is not limited to these elements, and elements other than these elements may be present as long as the additive element M exists in the hexagonal void formed by the WO 6 unit.
 六方晶の結晶構造を有する複合タングステン酸化物が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、より好ましくは0.30以上0.35以下であり、理想的には0.33である。x/yの値が0.33となることで、添加元素Mが、六角形の空隙の全てに配置されると考えられる。 When the composite tungsten oxide having a hexagonal crystal structure has a uniform crystal structure, the addition amount of the additive element M is preferably 0.2 or more and 0.5 or less in terms of x / y, more preferably 0.8. It is 30 or more and 0.35 or less, and is ideally 0.33. When the value of x / y is 0.33, it is considered that the additive element M is arranged in all of the hexagonal voids.
 また、六方晶以外では、正方晶又は立方晶のタングステンブロンズも近赤外線吸収効果がある。これらの結晶構造によって、近赤外光波長領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光波長領域の吸収が少ないのは、六方晶<正方晶<立方晶の順である。このため、可視光波長領域の光をより透過して、近赤外光波長領域の光をより吸収する用途には、六方晶のタングステンブロンズを用いることが好ましい。 Besides hexagonal crystals, tetragonal or cubic tungsten bronzes also have a near infrared absorption effect. These crystal structures tend to change the absorption position in the near-infrared light wavelength region, and the absorption position tends to move to the longer wavelength side in the order of cubic <tetragonal <hexagonal. Further, it is in the order of hexagonal crystal <tetragonal crystal <cubic crystal that has little absorption in the visible light wavelength region. For this reason, it is preferable to use hexagonal tungsten bronze for applications that transmit more light in the visible light wavelength region and absorb more light in the near infrared light wavelength region.
 一般式(2)で表されるマグネリ相を有するタングステン酸化物において、z/yの値が2.45≦z/y≦2.999の関係を満たす組成比を有する所謂「マグネリ相」は、化学的に安定であり、近赤外光波長領域の吸収特性も良いので、近赤外線吸収材料として好ましい。 In the tungsten oxide having the magnetic phase represented by the general formula (2), the so-called “magnetic phase” having a composition ratio in which the value of z / y satisfies the relationship of 2.45 ≦ z / y ≦ 2.999 is: Since it is chemically stable and has good absorption characteristics in the near infrared wavelength region, it is preferable as a near infrared absorbing material.
 本発明に係る赤外線吸収性材料微粒子は、近赤外光波長領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調が青色系から緑色系となる物が多い。また、赤外線吸収性材料微粒子の分散粒子径は、その使用目的によって、各々選定することができる。まず、透明性を保持して応用する場合には、2000nm以下の分散粒子径を有していることが好ましい。これは、分散粒子径が2000nm以下であれば、可視光波長領域での透過率(反射率)のピークと近赤外光波長領域の吸収とのボトムの差が大きくなり、可視光波長領域の透明性を有する近赤外線吸収材料としての効果を発揮できるからである。さらに分散粒子径が2000nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光波長領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。 The infrared-absorbing material fine particles according to the present invention absorb a large amount of light in the near-infrared light wavelength region, particularly in the vicinity of a wavelength of 1000 nm, so that there are many things whose transmission color tone changes from blue to green. Further, the dispersed particle diameter of the infrared absorbing material fine particles can be selected depending on the purpose of use. First, when applying while maintaining transparency, it is preferable to have a dispersed particle size of 2000 nm or less. If the dispersed particle diameter is 2000 nm or less, the difference between the peak of the transmittance (reflectance) in the visible light wavelength region and the bottom of the absorption in the near-infrared light wavelength region becomes large. This is because the effect as a transparent near-infrared absorbing material can be exhibited. Furthermore, particles having a dispersed particle size smaller than 2000 nm do not completely block light due to scattering, can maintain visibility in the visible light wavelength region, and at the same time can efficiently maintain transparency.
 さらに可視光波長領域の透明性を重視する場合には、粒子による散乱を考慮することが好ましい。具体的には、赤外線吸収性材料微粒子の分散粒子径は、200nm以下であることが好ましく、好ましくは100nm以下であることがより好ましい。分散粒子径が小さければ、幾何学散乱又はミー散乱が低減するので、波長400nm~780nmの可視光波長領域の光の散乱が低減される結果、近赤外線吸収膜が曇りガラスのようになり鮮明な透明性が得られなくなるのを回避できるからである。即ち、赤外線吸収性材料微粒子の分散粒子径が200nm以下になると、上記幾何学散乱又はミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は分散粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い、散乱が低減し透明性が向上するからである。さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましい。一方、分散粒子径が1nm以上あれば工業的な製造は容易である。 Furthermore, when importance is attached to transparency in the visible light wavelength region, it is preferable to consider scattering by particles. Specifically, the dispersed particle diameter of the infrared absorbing material fine particles is preferably 200 nm or less, and more preferably 100 nm or less. If the dispersed particle size is small, geometrical scattering or Mie scattering is reduced, so that the scattering of light in the visible light wavelength region with a wavelength of 400 nm to 780 nm is reduced. As a result, the near-infrared absorbing film becomes like a frosted glass and is clear. This is because it is possible to avoid the loss of transparency. That is, when the dispersed particle diameter of the infrared absorbing material fine particles is 200 nm or less, the geometric scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained. This is because, in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the dispersed particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter decreases. Furthermore, when the dispersed particle diameter is 100 nm or less, the scattered light is preferably very small. From the viewpoint of avoiding light scattering, a smaller dispersed particle size is preferable. On the other hand, if the dispersed particle diameter is 1 nm or more, industrial production is easy.
 本発明の赤外線吸収性材料を構成する微粒子の表面が、Si、Ti、Al及びZrから成る群から選択される一種以上を含有する酸化物で被覆されていることも、当該赤外線吸収性材料の耐候性を向上させる観点から好ましい。 The surface of the fine particles constituting the infrared absorbing material of the present invention is coated with an oxide containing one or more selected from the group consisting of Si, Ti, Al and Zr. It is preferable from the viewpoint of improving the weather resistance.
[ビヒクル]
 ビヒクルは、赤外線吸収性材料微粒子及び/又は着色剤を被印刷物に転移させ、かつ印刷後には赤外線吸収性材料微粒子及び/又は着色剤を被印刷物に固着させる媒体である。本発明に用いられるビヒクルは、溶剤及び樹脂を含む。ビヒクルには、印刷に使用されている既知のビヒクル成分、例えば光重合成分等をさらに含有させてよい。溶剤、樹脂及び光重合成分について以下に説明する。
[Vehicle]
The vehicle is a medium for transferring the infrared-absorbing material fine particles and / or the colorant to the printing material and fixing the infrared-absorbing material fine particles and / or the coloring agent to the printing material after printing. The vehicle used in the present invention includes a solvent and a resin. The vehicle may further contain known vehicle components used for printing, such as photopolymerization components. The solvent, resin and photopolymerization component will be described below.
〔溶剤〕
 溶剤としては、第一の溶剤、第二の溶剤が挙げられ、さらに任意に鉱物油等を含んでもよい。
〔solvent〕
Examples of the solvent include a first solvent and a second solvent, and may optionally contain mineral oil or the like.
(第一の溶剤)
 本発明に用いられる第一の溶剤は、非水溶性であり、かつ、オフセット印刷において用いられるゴム製のブランケットを溶解しないことが求められる。具体的には、植物油、植物油由来の化合物から選択される1種類以上から成る溶剤が用いられる。植物油としては、アマニ油、ヒマワリ油、桐油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油が用いられる。植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類などが用いられる。
(First solvent)
The first solvent used in the present invention is insoluble in water, and is required not to dissolve a rubber blanket used in offset printing. Specifically, a solvent comprising at least one selected from vegetable oils and compounds derived from vegetable oils is used. Vegetable oils include dry oils such as linseed oil, sunflower oil and tung oil, semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil and rice bran oil, and non-drying oils such as olive oil, coconut oil, palm oil and dehydrated castor oil. Used. Examples of the vegetable oil-derived compound include fatty acid monoesters and ethers obtained by directly esterifying a fatty acid of a vegetable oil with a monoalcohol.
 上述した、植物油及び植物油由来の化合物は、構成成分である油脂の脂肪酸中に二重結合を有している。この二重結合が空気中の酸素と反応することで、二重結合間の重合反応が進行する。油の分子同士の重合反応や、油の分子とオフセット印刷用のインキ成分との重合反応によって結合することで、オフセット印刷後の塗膜が固化する。 The above-mentioned vegetable oil and the vegetable oil-derived compound have a double bond in the fatty acid of the fat that is a constituent component. This double bond reacts with oxygen in the air, so that a polymerization reaction between the double bonds proceeds. The coating film after the offset printing is solidified by bonding by a polymerization reaction between the oil molecules or a polymerization reaction between the oil molecules and the ink component for offset printing.
 当該固化は、脂肪酸中の二重結合が多い程速くなるが、当該脂肪酸中の二重結合はヨウ素価により評価される。即ち、植物油又は植物油由来の化合物の固化は、ヨウ素価が高い程早くなる。具体的には、乾性油ではヨウ素価が130以上、半乾性油では130~100、不乾性油では100以下である。そして、印刷に用いる場合には、植物油が好ましく、ヨウ素価が130以上であるアマニ油、ヒマワリ油、桐油等の乾性油がより好ましい。 The solidification becomes faster as the number of double bonds in the fatty acid increases, but the double bond in the fatty acid is evaluated by the iodine value. That is, the solidification of the vegetable oil or the vegetable oil-derived compound is faster as the iodine value is higher. Specifically, the dry oil has an iodine value of 130 or more, semi-dry oil is 130 to 100, and non-dry oil is 100 or less. And when using for printing, vegetable oil is preferable and dry oils, such as linseed oil, sunflower oil, and tung oil whose iodine number is 130 or more are more preferable.
 本発明に用いられる第一の溶剤の粘度としては、1mPa・s以上、5mPa・s以上、10mPa・s以上、20mPa・s以上、30mPa・s以上、50mPa・s以上、80mPa・s以上、又は100mPa・s以上であってもよく、この粘度は、500mPa・s以下、300mPa・s以下、200mPa・s以下、150mPa・s以下、又は100mPa・s以下であってもよい。 The viscosity of the first solvent used in the present invention is 1 mPa · s or more, 5 mPa · s or more, 10 mPa · s or more, 20 mPa · s or more, 30 mPa · s or more, 50 mPa · s or more, 80 mPa · s or more, or The viscosity may be 500 mPa · s or less, 300 mPa · s or less, 200 mPa · s or less, 150 mPa · s or less, or 100 mPa · s or less.
 ここで、本明細書において、「粘度」とは、振動式粘度計VM100A-L(CBCマテリアルズ(株)製)を用いて測定される粘度をいう。 Here, in this specification, “viscosity” refers to the viscosity measured using a vibration viscometer VM100A-L (manufactured by CBC Materials).
(第二の溶剤)
 本発明に用いられる第二の溶剤は、本発明に係る赤外線吸収性材料を微粒子に粉砕し、溶剤中に分散させる工程に適した溶剤である。具体的には、第二の溶剤は、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル、エチルエーテル、プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、エチルイソブチルケトン、メチルイソブチルケトンなどのケトン類、トルエン、キシレン、ベンゼンなどの芳香族炭化水素類、ノルマルヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルなどのグリコールエーテル類といった各種の有機溶媒であり、かつ180℃以下の沸点を有する。第二の溶剤は、第一の溶剤と相溶する溶剤であることが好ましい。
(Second solvent)
The second solvent used in the present invention is a solvent suitable for the step of pulverizing the infrared absorbing material according to the present invention into fine particles and dispersing it in the solvent. Specifically, the second solvent is an alcohol such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol or diacetone alcohol, an ether such as methyl ether, ethyl ether or propyl ether, an ester, acetone or methyl ethyl ketone. , Ketones such as diethyl ketone, cyclohexanone, ethyl isobutyl ketone, methyl isobutyl ketone, aromatic hydrocarbons such as toluene, xylene, benzene, aliphatic hydrocarbons such as normal hexane, heptane, cyclohexane, propylene glycol monomethyl ether acetate And various organic solvents such as glycol ethers such as propylene glycol monoethyl ether, and have a boiling point of 180 ° C. or lower. The second solvent is preferably a solvent that is compatible with the first solvent.
 なかでも、アルコール類、脂肪族炭化水素類、及びグリコールエーテル類は、人体への健康有害性が低く、工程での安全性又は操作性の観点から好ましい第二の溶剤である。また、メチルイソブチルケトン又はトルエンは、作業性に優れ、生産性向上の観点から好ましい第二の溶剤である。 Among these, alcohols, aliphatic hydrocarbons, and glycol ethers are the second solvents that have low health hazards to the human body and are preferable from the viewpoint of safety or operability in the process. Further, methyl isobutyl ketone or toluene is a second solvent that is excellent in workability and is preferable from the viewpoint of improving productivity.
 しかしながら、第二の溶剤は、オフセット印刷の際にインキが転写されるゴム製のブランケットを溶解する可能性があるので、オフセット印刷用インキ中では、所定量以下の含有量であることが求められる。具体的には5.0質量%以下、2.0質量%以下、1.5質量%以下、又は1.0質量%以下の含有量であることが好ましい。ただし、第二の溶剤は、0.1質量%以上、0.3質量%以上、0.5質量%以上、又は1.0質量%以上の含有量でインク中に含有されていてもよい。 However, since the second solvent may dissolve a rubber blanket to which the ink is transferred during offset printing, the offset solvent is required to have a content of a predetermined amount or less. . Specifically, the content is preferably 5.0% by mass or less, 2.0% by mass or less, 1.5% by mass or less, or 1.0% by mass or less. However, the second solvent may be contained in the ink at a content of 0.1% by mass or more, 0.3% by mass or more, 0.5% by mass or more, or 1.0% by mass or more.
 従って、本発明に係る赤外線吸収材料を微粒子に粉砕し、溶剤中に分散させる工程が終了した後は、これら第二の溶剤の含有量は十分に削減されることが好ましい。 Therefore, after the step of pulverizing the infrared absorbing material according to the present invention into fine particles and dispersing in the solvent is completed, the content of the second solvent is preferably sufficiently reduced.
 具体的には、これら第二の溶剤として低沸点の溶剤を用い、第一の溶剤との間に沸点の差を設け、加熱蒸留等によって第二の溶剤の含有量を削減することが考えられる。加熱蒸留による溶媒置換を行うのであれば、第二の溶剤の沸点は180℃以下、又は150℃以下であってもよい。また、前記第一の溶剤の沸点は、第二の溶剤の沸点よりも高いものであり、150℃超又は180℃超であってもよい。 Specifically, it is conceivable to use a low-boiling solvent as the second solvent, provide a difference in boiling point with the first solvent, and reduce the content of the second solvent by heating distillation or the like. . If solvent substitution is performed by heating distillation, the boiling point of the second solvent may be 180 ° C. or lower, or 150 ° C. or lower. The boiling point of the first solvent is higher than the boiling point of the second solvent, and may be higher than 150 ° C. or higher than 180 ° C.
 本発明に用いられる第二の溶剤の粘度としては、0.1mPa・s以上、0.2mPa・s以上、0.3mPa・s以上、0.5mPa・s以上、0.8mPa・s以上、又は1.0mPa・s以上であってもよく、この粘度は、10mPa・s以下、5.0mPa・s以下、3.0mPa・s以下、2.0mPa・s以下、1.5mPa・s以下、又は1.0mPa・s以下であってもよい。 The viscosity of the second solvent used in the present invention is 0.1 mPa · s or more, 0.2 mPa · s or more, 0.3 mPa · s or more, 0.5 mPa · s or more, 0.8 mPa · s or more, or It may be 1.0 mPa · s or more, and the viscosity is 10 mPa · s or less, 5.0 mPa · s or less, 3.0 mPa · s or less, 2.0 mPa · s or less, 1.5 mPa · s or less, or It may be 1.0 mPa · s or less.
(鉱物油)
 本発明のインキでは、インキの乾燥性、被印刷物への浸透性などを考慮して、溶剤として鉱物油を含んでもよい。鉱物油としては、スピンドル油、マシン油、白灯油、非芳香族系石油溶剤などが挙げられる。特に、鉱物油は、水と相溶せず、かつ180℃以上の沸点を有する非芳香族系石油溶剤であることが好ましい。非芳香族系石油溶剤の沸点は、200℃以上であることが好ましい。非芳香族系石油溶剤としては、例えば、n-ドデカン鉱油などが挙げられる。非芳香族系石油溶剤の具体例としては、0号ソルベント、AFソルベント5号、AFソルベント6号、AFソルベント7号(いずれも新日本石油株式会社製)などが挙げられる。
(mineral oil)
The ink of the present invention may contain a mineral oil as a solvent in consideration of the drying property of the ink, the permeability to the printing material, and the like. Examples of the mineral oil include spindle oil, machine oil, white kerosene, and non-aromatic petroleum solvent. In particular, the mineral oil is preferably a non-aromatic petroleum solvent that is incompatible with water and has a boiling point of 180 ° C. or higher. The boiling point of the non-aromatic petroleum solvent is preferably 200 ° C. or higher. Examples of the non-aromatic petroleum solvent include n-dodecane mineral oil. Specific examples of non-aromatic petroleum solvents include No. 0 Solvent, AF Solvent No. 5, AF Solvent No. 6, AF Solvent No. 7 (all manufactured by Nippon Oil Corporation).
〔樹脂〕
 本発明に使用される樹脂としては、印刷に使用されている既知の樹脂を使用してよい。例えば、油性インキに含まれる樹脂、又はUVインキに含まれる樹脂を使用してよい。
〔resin〕
As the resin used in the present invention, a known resin used for printing may be used. For example, a resin contained in oil-based ink or a resin contained in UV ink may be used.
 樹脂は、天然樹脂又は合成樹脂でよい。樹脂は、ホモポリマー又はコポリマーでよい。油性インキの粘性を確保するためには、樹脂が固形であることが好ましい。樹脂をUVインキ用バインダーとして使用するときには、樹脂の重量平均分子量は、約1000~約3,000,000であることが好ましい。 The resin may be a natural resin or a synthetic resin. The resin may be a homopolymer or a copolymer. In order to ensure the viscosity of the oil-based ink, the resin is preferably solid. When the resin is used as a binder for UV ink, the resin preferably has a weight average molecular weight of about 1000 to about 3,000,000.
 天然樹脂としては、例えば、松脂、琥珀、シェラック、ギルソナイトなどが挙げられる。一般に、天然樹脂は、不揮発性成分として、樹脂酸を含む。樹脂酸としては、例えば、アビエチン酸、ネオアビエチン酸、バラストリン酸、ピマール酸、イソピマール酸、デヒドロアビエチン酸、シェロール酸、アロイリチン酸などが挙げられる。 Examples of natural resins include rosin, cocoon, shellac, and gilsonite. Generally, natural resins contain a resin acid as a non-volatile component. Examples of the resin acid include abietic acid, neoabietic acid, ballastric acid, pimaric acid, isopimaric acid, dehydroabietic acid, chelolic acid, and aloyritic acid.
 合成樹脂としては、例えば、ロジン、フェノール樹脂、変性アルキド樹脂、ポリエステル樹脂、石油樹脂、ロジン変性マレイン酸樹脂等のマレイン酸樹脂、環化ゴム、及びその他の合成樹脂が挙げられる。 Examples of the synthetic resin include rosin, phenol resin, modified alkyd resin, polyester resin, petroleum resin, rosin modified maleic resin and other maleic resins, cyclized rubber, and other synthetic resins.
 ロジンは、松脂の精製により得られ、ガムロジン、ウッドロジン及びトール油ロジンの3種類に大別される。一般に、ロジンは、70~80℃の軟化点及び170~180の酸価を有する。ロジンは改質されていてもよい。 Rosin is obtained by refining rosin and is roughly divided into three types: gum rosin, wood rosin and tall oil rosin. In general, rosin has a softening point of 70-80 ° C. and an acid number of 170-180. The rosin may be modified.
 フェノール樹脂は、フェノールとアルデヒドとの縮合により得られる樹脂であり、ノボラック型樹脂、レゾール型樹脂、100%フェノール樹脂及び変性フェノール樹脂の4種類に大別される。ビヒクルの耐性を考慮すると、100%フェノール樹脂又は変性フェノール樹脂が好ましい。 Phenolic resins are resins obtained by condensation of phenol and aldehyde, and are roughly classified into four types: novolac type resin, resol type resin, 100% phenol resin and modified phenol resin. Considering the resistance of the vehicle, 100% phenolic resin or modified phenolic resin is preferable.
 100%フェノール樹脂は、アルキルフェノールとホルムアルデヒドを酸又はアルカリ触媒の存在下で縮合させることにより得られる樹脂である。 A 100% phenol resin is a resin obtained by condensing an alkylphenol and formaldehyde in the presence of an acid or an alkali catalyst.
 変性フェノール樹脂は、フェノールとホルマリンの縮合物を、ロジン、ロジンエステル、乾性油などの変性成分と反応させることにより得られる樹脂である。特に、変性成分としてロジンを使用した変性フェノール樹脂は、ロジン変性フェノール樹脂と呼ばれ、一般にオフセット印刷インキに使用される。 The modified phenolic resin is a resin obtained by reacting a condensate of phenol and formalin with a modifying component such as rosin, rosin ester or drying oil. In particular, a modified phenolic resin using rosin as a modifying component is called a rosin-modified phenolic resin and is generally used for offset printing ink.
 インキの耐水性、セット性、タック性又は顔料分散性を調整するために、ロジン変性フェノール樹脂は、5~40の酸価及び/又は130~190℃の軟化点を有することが好ましい。 In order to adjust the water resistance, setting property, tackiness or pigment dispersibility of the ink, the rosin-modified phenolic resin preferably has an acid value of 5 to 40 and / or a softening point of 130 to 190 ° C.
 変性アルキド樹脂は、多塩基酸と多価アルコールとの縮合物を、脂肪酸、ロジン、乾性油、半乾性油などの変性成分と反応させることにより得られる樹脂である。 The modified alkyd resin is a resin obtained by reacting a condensate of a polybasic acid and a polyhydric alcohol with a modified component such as fatty acid, rosin, drying oil or semi-drying oil.
 多塩基酸としては、例えば、無水フタル酸、イソフタル酸などが挙げられる。多価アルコールとしては、例えば、グリセリン、ペンタエリスリトールなどが挙げられる。脂肪酸としては、アマニ油、脱水ヒマシ油、大豆油などが挙げられる。 Examples of the polybasic acid include phthalic anhydride and isophthalic acid. Examples of the polyhydric alcohol include glycerin and pentaerythritol. Examples of fatty acids include linseed oil, dehydrated castor oil, soybean oil, and the like.
 変性アルキド樹脂の具体例としては、フェノール変性アルキド樹脂、エポキシ変性アルキド樹脂、ウレタン変性アルキド樹脂、シリコーン変性アルキド樹脂、アクリル変性アルキド樹脂、ビニル変性アルキド樹脂、中和酸アルキド樹脂などが挙げられる。 Specific examples of the modified alkyd resin include phenol-modified alkyd resin, epoxy-modified alkyd resin, urethane-modified alkyd resin, silicone-modified alkyd resin, acrylic-modified alkyd resin, vinyl-modified alkyd resin, neutralized acid alkyd resin, and the like.
 ポリエステル樹脂は、多価カルボン酸とポリアルコールとの重縮合体である。ポリエステル樹脂としては、例えば、不飽和ポリエステル樹脂、ポリエチレンテレフタレートなどが挙げられる。 Polyester resin is a polycondensate of polyvalent carboxylic acid and polyalcohol. Examples of the polyester resin include unsaturated polyester resin and polyethylene terephthalate.
 石油樹脂は、炭素数が5以上である不飽和オレフィンを重合することにより得られる樹脂である。一般に、石油樹脂は、80~130℃の軟化点を有する。 Petroleum resin is a resin obtained by polymerizing an unsaturated olefin having 5 or more carbon atoms. In general, petroleum resins have a softening point of 80-130 ° C.
 ロジン変性マレイン酸樹脂は、ロジンと無水マレイン酸と多価アルコールを反応させることにより得られる樹脂である。多価アルコールとしては、例えば、グリセリン、ペンタエリスリトールなどが挙げられる。ロジン変性マレイン酸樹脂は、80~140℃の軟化点及び/又は15~200の酸価を有することが好ましい。 The rosin-modified maleic resin is a resin obtained by reacting rosin, maleic anhydride and a polyhydric alcohol. Examples of the polyhydric alcohol include glycerin and pentaerythritol. The rosin-modified maleic resin preferably has a softening point of 80 to 140 ° C. and / or an acid value of 15 to 200.
 環化ゴムは、天然ゴムを塩化スズで処理することにより得られる樹脂である。環化ゴムは、120~140℃の軟化点を有し、乾性油又は溶剤との溶解性に優れる。 Cyclized rubber is a resin obtained by treating natural rubber with tin chloride. The cyclized rubber has a softening point of 120 to 140 ° C. and is excellent in solubility in a drying oil or a solvent.
 その他の合成樹脂としては、例えば、ジアリルフタレートポリマー、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル、ポリエステル-メラミンポリマー、スチレン-(メタ)アクリル酸コポリマー、スチレン-(メタ)アクリル酸-アルキル(メタ)アクリレートコポリマー、スチレン-マレイン酸コポリマー、スチレン-マレイン酸-アルキル(メタ)アクリレートコポリマー、スチレン-マレイン酸半エステルコポリマー、ビニルナフタレン-(メタ)アクリル酸コポリマー、ビニルナフタレン-マレイン酸コポリマー、及びそれらの塩などが挙げられる。 Examples of other synthetic resins include diallyl phthalate polymer, poly (meth) acrylic acid, poly (meth) acrylic acid ester, polyester-melamine polymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- Alkyl (meth) acrylate copolymer, styrene-maleic acid copolymer, styrene-maleic acid-alkyl (meth) acrylate copolymer, styrene-maleic acid half ester copolymer, vinylnaphthalene- (meth) acrylic acid copolymer, vinylnaphthalene-maleic acid copolymer, And salts thereof.
 上記で列挙した樹脂は、それぞれ単独で又は2種以上を組み合わせて使用されることができる。 The resins listed above can be used alone or in combination of two or more.
〔光重合成分〕
 本発明に使用される光重合成分は、モノマー、オリゴマー、光重合開始剤等を含む。
(Photopolymerization component)
The photopolymerization component used in the present invention includes a monomer, an oligomer, a photopolymerization initiator, and the like.
(モノマー・オリゴマー)
 モノマーは、従来から光重合に使用されていたエチレン性不飽和結合を有する化合物でよい。また、オリゴマーは、エチレン性不飽和結合を有する化合物を、オリゴマー化することにより得られる。
(Monomer / Oligomer)
The monomer may be a compound having an ethylenically unsaturated bond conventionally used for photopolymerization. Moreover, an oligomer is obtained by oligomerizing the compound which has an ethylenically unsaturated bond.
 オリゴマーは、UVインキの基本物性を支配する樹脂である。一方で、モノマーは、主に希釈剤として作用し、インキの粘度、硬化性、接着性などの性質を調整するために使用されることができる。 Oligomers are resins that govern the basic physical properties of UV ink. On the other hand, the monomer mainly acts as a diluent and can be used to adjust properties such as ink viscosity, curability and adhesion.
 エチレン性不飽和結合を有する化合物としては、例えば、(メタ)アクリル酸系化合物;マレイン酸系化合物;ウレタン系、エポキシ系、ポリエステル系、ポリオール系、植物油系化合物等で変性したエチレン性不飽和二重結合を有する化合物などが挙げられる。 Examples of compounds having an ethylenically unsaturated bond include (meth) acrylic acid compounds; maleic acid compounds; urethane-based, epoxy-based, polyester-based, polyol-based, vegetable oil-based compounds and the like. Examples include compounds having a heavy bond.
 具体的には、エチレン性不飽和結合を有する化合物としては、例えば、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、シリコーン(メタ)アクリレート、アクリル化されたアミン、アクリル飽和樹脂及びアクリルアクリレート、ビスフェノールA型エポキシ(メタ)アクリレートの酸無水物付加アクリレート、フェノールノボラックエポキシ(メタ)アクリレートの酸無水物付加アクリレート、ジペンタエリスリトールペンタアクリレート又はジペンタエリスリトールヘキサアクリレートの酸無水物付加アクリレート等の水酸基を有するアクリレートに酸無水物を付加させたカルボキシル基を有するアクリレート、水酸基を有するウレタンアクリレートに酸無水物を付加させたカルボキシル基を有するアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリグリセリンエポキシアクリレート、ポリグリセリンポリアクリレート等の水溶性アクリレート、アクリロイルモルホリンなどが挙げられる。 Specifically, examples of the compound having an ethylenically unsaturated bond include epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, silicone (meth) acrylate, acrylated amine, and acrylic saturation. Resin and acrylic acrylate, acid anhydride addition acrylate of bisphenol A type epoxy (meth) acrylate, acid anhydride addition acrylate of phenol novolac epoxy (meth) acrylate, acid addition addition of dipentaerythritol pentaacrylate or dipentaerythritol hexaacrylate An acrylate having a carboxyl group obtained by adding an acid anhydride to an acrylate having a hydroxyl group, such as an acrylate, or a carboxylic acid obtained by adding an acid anhydride to a urethane acrylate having a hydroxyl group. Acrylates having a hexyl group, polyethylene glycol diacrylate, polypropylene glycol diacrylate, polyglycerol epoxy acrylates, water-soluble acrylates such as polyglycerol acrylate, and acryloyl morpholine.
 これらの中でも、樹脂と相溶し、かつ親油性の高いエチレン性不飽和結合を有する化合物が好ましく、例えば、炭素数が6~24の長鎖アルキル基を有するエチレン性不飽和結合を有する化合物、ポリブチレングリコール変性されたエチレン性不飽和結合を有する化合物、植物油変性されたエチレン性不飽和結合を有する化合物などが好ましい。 Among these, a compound that is compatible with the resin and has a highly lipophilic ethylenically unsaturated bond is preferable, for example, a compound having an ethylenically unsaturated bond having a long-chain alkyl group having 6 to 24 carbon atoms, A compound having an ethylenically unsaturated bond modified with polybutylene glycol, a compound having an ethylenically unsaturated bond modified with vegetable oil, and the like are preferable.
(光重合開始剤)
 光重合開始剤は、紫外線照射によって活性酸素等のラジカルを発生する化合物である。本発明のインキには、印刷に使用されている既知の光重合開始剤を含有させてよい。
(Photopolymerization initiator)
The photopolymerization initiator is a compound that generates radicals such as active oxygen when irradiated with ultraviolet rays. The ink of the present invention may contain a known photopolymerization initiator used for printing.
 光重合開始剤としては、例えば、アセトフェノン、α-アミノアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-メチルプロピル)ケトン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノンなどのアセトフェノン類;ベイゾイン、ベイゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン-n-プロピルエーテル、ベイゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンゾインジメチルケタール、ベンゾインパーオキサイドなどのベンゾイン類;2,4,6-トリメトキシベンゾインジフェニルホスフィンオキサイドなどのアシルホフィンオキサイド類;ベンジル及びメチルフェニル-グリオキシエステル;ベンゾフェノン、メチル-4-フェニルベンゾフェノン、o-ベンゾイルベンゾエート、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド、アクリル-ベンゾフェノン、3,3’4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン類;2-メチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントンなどのチオキサントン類;ミヒラーケトン、4,4’-ジエチルアミノベンゾフェノンなどのアミノベンゾフェノン類;テトラメチルチウラムモノスルフィド;アゾビスイソブチロニトリル;ジ-tert-ブチルパーオキサイド;10-ブチル-2-クロロアクリドン;2-エチルアントラキノン;9,10-フェナントレンキノン;カンファキノンなどが挙げられる。 Examples of the photopolymerization initiator include acetophenone, α-aminoacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and benzyldimethyl ketal. 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-methylpropyl) ketone, 4- (2- Hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2- Dimethylamino-1- (4-morpholinophenyl) -butanone Which acetophenones; benzoins such as beizoin, beizoin methyl ether, benzoin ethyl ether, benzoin-n-propyl ether, beizoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, benzoin dimethyl ketal, benzoin peroxide Acyl phosphine oxides such as 2,4,6-trimethoxybenzoin diphenylphosphine oxide; benzyl and methylphenyl-glyoxyesters; benzophenone, methyl-4-phenylbenzophenone, o-benzoylbenzoate, 2-chlorobenzophenone, 4 , 4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, acrylic-benzo Benzophenones such as phenone, 3,3′4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-methylthioxanthone, 2-isopropylthioxanthone, 2,4 -Thioxanthones such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenones such as Michler ketone, 4,4'-diethylaminobenzophenone; Tetramethylthiuram monosulfide; Azobis Examples thereof include isobutyronitrile; di-tert-butyl peroxide; 10-butyl-2-chloroacridone; 2-ethylanthraquinone; 9,10-phenanthrenequinone;
 また、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどの光重合開始助剤を上記光重合開始剤と併用してもよい。 Further, a photopolymerization initiation assistant such as ethyl 4-dimethylaminobenzoate or isoamyl 4-dimethylaminobenzoate may be used in combination with the photopolymerization initiator.
[補助剤]
 本発明のインキには、印刷に使用されている既知の補助剤、例えば、分散剤、架橋剤、乾燥促進剤、ワックス、体質顔料、及びその他の添加剤を含有させてよい。本発明のインキには、補助剤として、第一の溶剤に可溶な脂肪酸を構造中に有する分散剤を含有させることが好ましい。
[Adjuvant]
The ink of the present invention may contain known auxiliary agents used in printing, such as dispersants, crosslinking agents, drying accelerators, waxes, extender pigments, and other additives. The ink of the present invention preferably contains a dispersant having a fatty acid soluble in the first solvent in the structure as an auxiliary agent.
〔分散剤〕
 赤外線吸収性材料微粒子をビヒクルに分散させるための分散剤は、第一の溶剤に可溶であり、かつ赤外線吸収性材料微粒子を分散可能であれば限定されない。特に、第一の溶剤に可溶な脂肪酸の構造を有する分散剤を用いると、第一の溶剤において赤外線吸収性材料微粒子の分散安定性に優れるため好ましい。
[Dispersant]
The dispersant for dispersing the infrared absorbing material fine particles in the vehicle is not limited as long as it is soluble in the first solvent and can disperse the infrared absorbing material fine particles. In particular, it is preferable to use a dispersant having a fatty acid structure soluble in the first solvent because the dispersion stability of the fine particles of the infrared absorbing material is excellent in the first solvent.
 赤外線吸収性材料微粒子以外の着色剤をビヒクルに分散させるために、第一の溶剤に可溶な脂肪酸を構造中に有する分散剤以外の分散剤、例えば、着色剤の顔料骨格から誘導される化合物等を使用してよい。 In order to disperse the colorant other than the fine particles of the infrared absorbing material in the vehicle, a dispersant other than the dispersant having a fatty acid soluble in the first solvent in the structure, for example, a compound derived from the pigment skeleton of the colorant Etc. may be used.
 尚、本発明に係る分散剤の添加量は、赤外線吸収性材料微粒子100重量部に対して、30重量部以上であることが好ましい。市販の分散剤を用いる場合には、当該分散剤がオフセット印刷用のゴム製のブランケットを溶解する可能性のある溶剤を含有していないことが好ましい。従って、分散剤中の不揮発分の含有量(180℃、20分間加熱後)は高いことが好ましく、例えば95%以上であることが好ましい。 In addition, it is preferable that the addition amount of the dispersing agent concerning this invention is 30 weight part or more with respect to 100 weight part of infrared rays absorbing material microparticles | fine-particles. When using a commercially available dispersing agent, it is preferable that the said dispersing agent does not contain the solvent which may melt | dissolve the rubber blanket for offset printing. Therefore, the content of the nonvolatile content in the dispersant (after heating at 180 ° C. for 20 minutes) is preferably high, for example, 95% or more.
〔架橋剤〕
 架橋剤又はゲル化剤は、上記樹脂を架橋又はゲル化させるために、ビヒクルに加えられることができる。
[Crosslinking agent]
A crosslinking agent or gelling agent can be added to the vehicle to crosslink or gel the resin.
 架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネートなどのイソシアネート化合物;トリメチロールプロパン-トリス-β-N-アジリジニルプロピオネート、ペンタエリスリトールプロパン-トリス-β-N-アジリジニルプロピオネートなどのアジリジン化合物;グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルなどのエポキシ化合物;アルミニウムトリイソプロポキシド、モノ-sec-ブトキシアルミニウムジイソプロポキシド、アルミニウムトリ-sec-ブトキシド、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリスエチルアセトアセテートなどのアルミニウムアルコラート類;アルミニウムキレート化合物などのアルミニウムキレートなどが挙げられる。 Examples of the cross-linking agent include isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, polymethylene polyphenyl polyisocyanate; trimethylolpropane-tris-β-N-aziridini Aziridine compounds such as lupropionate and pentaerythritol propane-tris-β-N-aziridinylpropionate; epoxy compounds such as glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether; aluminum triisopropoxide, mono- sec-Butoxyaluminum diisopropoxide, Aluminum tri-sec-butoxide, Ethyl acetoacetate Examples include aluminum alcoholates such as trialuminum diisopropoxide and aluminum trisethyl acetoacetate; and aluminum chelates such as aluminum chelate compounds.
〔乾燥促進剤〕
 乾燥促進剤としては、例えば、第一の溶剤に含まれる脂肪酸の金属塩、有機カルボン酸の金属塩、無機酸の金属塩などが挙げられる。
[Drying accelerator]
Examples of the drying accelerator include a fatty acid metal salt, an organic carboxylic acid metal salt, and an inorganic acid metal salt contained in the first solvent.
 乾燥促進剤を形成するための有機カルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、イソペンタン酸、ヘキサン酸、2-エチル酪酸、ナフテン酸、オクチル酸、ノナン酸、デカン酸、2-エチルヘキサン酸、イソオクタン酸、イソノナン酸、ラウリル酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、ネオデカン酸、バーサチック酸、セカノイック酸、トール油脂肪酸、アマニ油脂肪酸、大豆油脂肪酸、ジメチルヘキサノイック酸、3,5,5-トリメチルヘキサノイック酸、ジメチルオクタノイック酸などが挙げられる。 Examples of the organic carboxylic acid for forming the drying accelerator include acetic acid, propionic acid, butyric acid, isopentanoic acid, hexanoic acid, 2-ethylbutyric acid, naphthenic acid, octylic acid, nonanoic acid, decanoic acid, and 2-ethylhexane. Acid, isooctanoic acid, isononanoic acid, lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, neodecanoic acid, versatic acid, secanoic acid, tall oil fatty acid, linseed oil fatty acid, soybean oil fatty acid, dimethylhexanoic acid, Examples include 3,5,5-trimethylhexanoic acid and dimethyloctanoic acid.
 有機カルボン酸は、乾性油又は半乾性油に含まれる脂肪酸であることが好ましい。また、乾燥促進剤を液体ドライヤーとして使用するときには、有機カルボン酸は、ナフテン酸であることが好ましい。一方で、乾燥促進剤をペーストドライヤーとして使用するときには、有機カルボン酸は、酢酸であることが好ましい。 The organic carboxylic acid is preferably a fatty acid contained in a drying oil or a semi-drying oil. When the drying accelerator is used as a liquid dryer, the organic carboxylic acid is preferably naphthenic acid. On the other hand, when the drying accelerator is used as a paste dryer, the organic carboxylic acid is preferably acetic acid.
 無機酸としては、例えば、塩酸、硝酸、リン酸、硫酸、ホウ酸、フッ化水素酸などが挙げられる。乾燥促進剤をペーストドライヤーとして使用するときには、無機酸は、ホウ酸であることが好ましい。 Examples of inorganic acids include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrofluoric acid, and the like. When the drying accelerator is used as a paste dryer, the inorganic acid is preferably boric acid.
 上記酸の金属塩を形成するための金属としては、例えば、カルシウム、コバルト、鉛、鉄、マンガン、亜鉛、バナジウム、セリウム、ジルコニウム、ナトリウムなどが挙げられる。 Examples of the metal for forming the metal salt of the acid include calcium, cobalt, lead, iron, manganese, zinc, vanadium, cerium, zirconium, sodium and the like.
〔ワックス〕
 ワックスは、印刷面の擦傷を防ぐための補助剤である。具体的には、ワックスは、インキ被膜の表面に耐摩擦性、ブロッキング防止性、スベリ性、スリキズ防止性などの性質を付与することができる。本発明のインキには、印刷に使用されている既知のワックスを含有させてよい。
〔wax〕
Wax is an auxiliary agent for preventing the printed surface from being scratched. Specifically, the wax can impart properties such as friction resistance, anti-blocking properties, slipperiness, and anti-scratch properties to the surface of the ink coating. The ink of the present invention may contain a known wax used for printing.
 ワックスとしては、例えば、カルナバワックス、木ろう、ラノリン、モンタンワックス、パラフィンワックス、マイクロクリスタリンワックスなどの天然ワックス;フィッシャートロプスワックス、ポリエチレンワックス、ポリプロピレンワックス、ポリテトラフルオロエチレンワックス、ポリアミドワックス、シリコーン化合物などの合成ワックス;合成ワックスのフッ素化物などが挙げられる。 Examples of waxes include natural waxes such as carnauba wax, wax, lanolin, montan wax, paraffin wax, and microcrystalline wax; Fischer Trops wax, polyethylene wax, polypropylene wax, polytetrafluoroethylene wax, polyamide wax, silicone compound Synthetic waxes such as; fluorinated products of synthetic waxes.
〔体質顔料〕
 体質顔料は、インキの粘度を調整するために使用される顔料であり、屈折率が小さく、かつ着色力が低い。したがって、体質顔料は、インキの粘度が高く、拭きが困難な場合に使用されることが好ましい。本発明のインキには、印刷に使用されている既知の体質顔料を含有させてよい。
[External pigment]
The extender pigment is a pigment used for adjusting the viscosity of the ink, and has a low refractive index and a low coloring power. Accordingly, extender pigments are preferably used when the viscosity of the ink is high and wiping is difficult. The ink of the present invention may contain a known extender pigment used for printing.
 体質顔料としては、例えば、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、カオリン、タルク、シリカ、コーン澱粉、二酸化チタン、又はこれらの混合物が挙げられる。 Examples of extender pigments include barium sulfate, calcium carbonate, calcium sulfate, kaolin, talc, silica, corn starch, titanium dioxide, and mixtures thereof.
〔その他の添加剤〕
 本発明のインキには、所望により、フェノチアジン、t-ブチルヒドロキシトルエンなどの重合禁止剤;乾燥抑制剤;酸化防止剤;整面助剤;裏移り防止剤;又は非イオン系界面活性剤などの界面活性剤を含有させてよい。
[Other additives]
In the ink of the present invention, a polymerization inhibitor such as phenothiazine and t-butylhydroxytoluene; a drying inhibitor; an antioxidant; a leveling aid; an anti-set-off agent; or a nonionic surfactant, if desired. A surfactant may be included.
[着色剤]
 着色剤は、インキに色を付ける成分である。本発明のインキには、上記で説明した複合タングステン酸化物又はマグネリ層を有するタングステン酸化物に加えて、印刷に使用されている既知の着色剤を含有させてよい。着色剤としては、例えば、無機顔料、有機顔料、染料、トナー用有機色素などが挙げられる。
[Colorant]
The colorant is a component that adds color to the ink. In addition to the composite tungsten oxide or tungsten oxide having a magnetic layer described above, the ink of the present invention may contain a known colorant used for printing. Examples of the colorant include inorganic pigments, organic pigments, dyes, organic pigments for toners, and the like.
 無機顔料としては、例えば、黄鉛、亜鉛黄、紺青、硫酸バリウム、カドミウムレッド、酸化チタン、亜鉛華、アルミナホワイト、炭酸カルシウム、群青、グラファイト、アルミニウム粉、ベンガラ、バリウムフェライト、銅と亜鉛の合金粉、ガラス粉、カーボンブラックなどが挙げられる。 Examples of inorganic pigments include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, alumina white, calcium carbonate, ultramarine, graphite, aluminum powder, bengara, barium ferrite, copper and zinc alloy. Examples thereof include powder, glass powder, and carbon black.
 有機顔料としては、例えば、β-ナフトール系顔料、β-オキシナフトエ酸系顔料、β-オキシナフトエ酸系アニリド系顔料、アセト酢酸アニリド系顔料、ピラゾロン系顔料などの溶性アゾ顔料;β-ナフトール系顔料、β-オキシナフトエ酸アニリド系顔料、アセト酢酸アニリド系モノアゾ、アセト酢酸アニリド系ジスアゾ、ピラゾロン系顔料などの不溶性アゾ顔料;銅フタロシアニンブルー、ハロゲン化(例えば、塩素又は臭素化)銅フタロシアニンブルー、スルホン化銅フタロシアニンブルー、金属フリーフタロシアニンなどのフタロシアニン系顔料;キナクリドン系顔料、ジオキサジン系顔料、スレン系顔料(ピラントロン、アントアントロン、インダントロン、アントラピリミジン、フラバントロン、チオインジゴ、アントラキノン、ペリノン、ペリレンなど)、イソインドリノン系顔料、金属錯体系顔料、キノフタロン系顔料などの多環式又は複素環式顔料等が挙げられる。 Examples of organic pigments include soluble azo pigments such as β-naphthol pigments, β-oxynaphthoic acid pigments, β-oxynaphthoic acid anilide pigments, acetoacetate anilide pigments, and pyrazolone pigments; β-naphthol pigments Insoluble azo pigments such as pigments, β-oxynaphthoic acid anilide pigments, acetoacetanilide monoazos, acetoacetanilide disazos, pyrazolone pigments; copper phthalocyanine blue, halogenated (eg chlorine or brominated) copper phthalocyanine blue, Phthalocyanine pigments such as sulfonated copper phthalocyanine blue and metal-free phthalocyanine; quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine, flavantron, thioindigo, anthraquinone , Perinone, perylene, etc.), isoindolinone pigments, metal complex pigments, quinophthalone pigments, and other polycyclic or heterocyclic pigments.
 ここで、有機顔料は、レーキ顔料を含むものとする。一般に、レーキ顔料は、染料を無機顔料又は体質顔料に染め付けることにより得られるものであり、無機顔料又は体質顔料の水不溶性に応じて、レーキ顔料も水不溶性を有する。レーキ顔料としては、例えば、BASF社から入手可能なファナル(FANAL、登録商標)カラーシリーズなどが挙げられる。 Here, the organic pigment includes a lake pigment. In general, a lake pigment is obtained by dyeing a dye on an inorganic pigment or extender, and the lake pigment also has water insolubility according to the water insolubility of the inorganic pigment or extender. Examples of lake pigments include the fanal (FANAL (registered trademark)) color series available from BASF.
 染料としては、例えば、アゾ染料、アゾ染料とクロムの錯塩、アントラキノン染料、インジゴ染料、フタロシアニン染料、キサンテン系染料、チアジン系染料等が挙げられる。 Examples of the dye include azo dyes, complex salts of azo dyes and chromium, anthraquinone dyes, indigo dyes, phthalocyanine dyes, xanthene dyes, thiazine dyes, and the like.
 トナー用有機色素は、トナーに含有させることができる有機色素であり、着色剤の一般的な特性に加えて帯電性を有する。トナー用有機色素としては、染料又は有機顔料を使用してよいが、透明性及び着色力の観点から染料が好ましい。 The organic dye for toner is an organic dye that can be contained in the toner, and has charging properties in addition to the general characteristics of the colorant. As the organic pigment for toner, a dye or an organic pigment may be used, but a dye is preferred from the viewpoint of transparency and coloring power.
 さらに、上記で説明した着色剤以外に、機能性顔料、機能性染料などの他の機能性材料を、本発明に使用されるインキに配合してもよい。ここで、機能性材料は、無機でも有機でもよく、またインキに機能性を付与する添加剤でもよい。 Furthermore, in addition to the colorant described above, other functional materials such as functional pigments and functional dyes may be blended in the ink used in the present invention. Here, the functional material may be inorganic or organic, and may be an additive that imparts functionality to the ink.
 機能性材料としては、例えば、クロミック材料、磁性顔料、紫外線吸収剤、光学可変材料、パール顔料などが挙げられる。一般に、クロミック材料は、光・熱・電気などのエネルギーに反応して呈色し、かつ該エネルギーが遮られるか、又は失われると、退色する材料である。クロミック材料としては、例えば、蛍光顔料、励起発光顔料、感温変色材料、フォトクロミック材料、応力発光体などが挙げられる。 Examples of functional materials include chromic materials, magnetic pigments, ultraviolet absorbers, optically variable materials, pearl pigments, and the like. In general, a chromic material is a material that develops a color in response to energy such as light, heat, electricity, and fades when the energy is blocked or lost. Examples of the chromic material include fluorescent pigments, excited luminescent pigments, temperature-sensitive color changing materials, photochromic materials, and stress luminescent materials.
 上記で列挙した着色剤は、それぞれ単独で、又は2種類以上を併用して、使用されることができる。 The colorants listed above can be used alone or in combination of two or more.
<赤外線吸収性インキの組成及び粘度>
 赤外線吸収性インキ中の赤外線吸収性材料微粒子の含有量は、1.0質量%以上、1.8質量%以上、2.5質量%以上、又は3.0質量%以上であることが好ましく、この含有量は、45質量%以下、37.5質量%以下、25質量%以下、20質量%以下、15質量%以下、9.0質量%以下、又は8.0質量%以下であることが好ましい。
<Composition and viscosity of infrared absorbing ink>
The content of the infrared absorbing material fine particles in the infrared absorbing ink is preferably 1.0% by mass or more, 1.8% by mass or more, 2.5% by mass or more, or 3.0% by mass or more, This content may be 45 mass% or less, 37.5 mass% or less, 25 mass% or less, 20 mass% or less, 15 mass% or less, 9.0 mass% or less, or 8.0 mass% or less. preferable.
 赤外線吸収性インキ中の分散剤の含有量は、0.25質量%以上、0.5質量%以上又は1.0質量%以上であることが好ましく、この含有量は、13質量%以下、10質量%以下、又は8質量%以下であることが好ましい。 The content of the dispersant in the infrared absorbing ink is preferably 0.25% by mass or more, 0.5% by mass or more, or 1.0% by mass or more, and the content is 13% by mass or less, 10 It is preferable that it is mass% or less or 8 mass% or less.
 赤外線吸収性インキの粘度は、0.002Pa・s以上、0.02Pa・s以上、0.2Pa・s以上、2Pa・s以上、又は5Pa・s以上であってもよく、この粘度は、200Pa・s以下、150Pa・s以下、又は100Pa・s以下であってもよい。 The viscosity of the infrared absorbing ink may be 0.002 Pa · s or more, 0.02 Pa · s or more, 0.2 Pa · s or more, 2 Pa · s or more, or 5 Pa · s or more. It may be s or less, 150 Pa · s or less, or 100 Pa · s or less.
 ビヒクルとしての溶剤、樹脂及び光重合成分は、赤外線吸収性インキの粘度が0.002Pa・s~200Pa・sになる量で、それぞれ赤外線吸収性インキに含まれてよい。しかしながら、赤外線吸収性インキが第一の溶剤及び第二の溶剤を含む場合には、赤外線吸収性インキ中の第二の溶剤の含有量は、分散剤の有無によらず、2質量%以下である。 The solvent, resin, and photopolymerization component as the vehicle may be included in the infrared absorbing ink in such an amount that the viscosity of the infrared absorbing ink becomes 0.002 Pa · s to 200 Pa · s. However, when the infrared absorbing ink contains the first solvent and the second solvent, the content of the second solvent in the infrared absorbing ink is 2% by mass or less regardless of the presence or absence of the dispersant. is there.
 赤外線吸収性インキが油性インキである場合には、油性インキに含まれる各成分の配合比率は、油性インキの粘度を約5~100Pa・sに調整したときに、赤外線吸収性材料微粒子が1.0~45質量%であり、ビヒクルが20~85質量%であり、着色剤が0~20質量%であり、補助剤が0.25~25質量%である。 When the infrared absorbing ink is an oil ink, the blending ratio of each component contained in the oil ink is such that when the viscosity of the oil ink is adjusted to about 5 to 100 Pa · s, the infrared absorbing material fine particles are 1. 0 to 45% by weight, vehicle is 20 to 85% by weight, colorant is 0 to 20% by weight, and auxiliary is 0.25 to 25% by weight.
 赤外線吸収性インキが油性・UV併用インキである場合には、油性・UV併用インキに含まれる各成分の配合比率は、油性・UV併用インキの粘度を数百Pa・sに調整したときに、溶剤及び樹脂を含む油性インキ用ビヒクルが25~50質量%であり、樹脂及び光重合成分を含むUVインキ用ビヒクルが25~50質量%であり、赤外線吸収性材料微粒子が1.0~45質量%であり、着色剤が0~20質量%であり、かつ補助剤が0.25~20質量%である。 When the infrared absorbing ink is an oil / UV combination ink, the blending ratio of each component contained in the oil / UV combination ink is adjusted when the viscosity of the oil / UV combination ink is adjusted to several hundred Pa · s. The vehicle for oil-based ink containing a solvent and a resin is 25 to 50% by mass, the vehicle for UV ink containing a resin and a photopolymerization component is 25 to 50% by mass, and the fine particles of infrared absorbing material are 1.0 to 45% by mass. %, 0 to 20% by weight of the colorant, and 0.25 to 20% by weight of the auxiliary agent.
<赤外線吸収性インキの製造方法>
 本発明のインキを製造する方法の態様は、以下のステップを含む:
 (a)赤外線吸収性材料微粒子を溶剤に分散して、分散体を得るステップ;及び
 (b)上記分散体をビヒクルと混合してインキを得るステップ。
<Method for producing infrared absorbing ink>
An embodiment of the method for producing the ink of the present invention comprises the following steps:
(A) Dispersing the infrared absorbing material fine particles in a solvent to obtain a dispersion; and (b) mixing the dispersion with a vehicle to obtain an ink.
 ステップ(a)を行う方法は、赤外線吸収性材料微粒子を溶剤に均一に分散する方法であればよく、任意の分散方法から選択できる。具体的には、ステップ(a)は、ビーズミル、ボールミル等の湿式媒体ミルにより行なわれることが好ましい。 The method for performing step (a) may be any method that uniformly disperses the infrared-absorbing material fine particles in a solvent, and can be selected from any dispersion method. Specifically, step (a) is preferably performed by a wet medium mill such as a bead mill or a ball mill.
 ステップ(b)は、ステップ(a)で得られた分散体にビヒクル成分として樹脂を加え、必要に応じて、赤外線吸収性材料微粒子、溶剤等のビヒクル成分、補助剤、及び着色剤から成る群から選択される少なくとも1つを加え、さらに必要に応じて分散して、インキの最終組成、粘度、色調又は乾燥度を調整するために行われる。ステップ(b)において、混合物又は分散体に光重合成分を加え、所望により、その他の材料も加えて、本発明の油性・UV併用インキを得てもよい。赤外線吸収性インキに含まれる各成分は、ステップ(b)により、最終的に所望の配合比率に調整されることができる。ステップ(b)は、ミキサー、練肉機(ink mill)等により行なわれることができる。 In step (b), a resin is added as a vehicle component to the dispersion obtained in step (a), and if necessary, a group consisting of fine particles of infrared absorbing material, a vehicle component such as a solvent, an auxiliary agent, and a colorant. Is carried out in order to adjust the final composition, viscosity, color tone or dryness of the ink by adding at least one selected from In step (b), a photopolymerization component may be added to the mixture or dispersion, and other materials may be added as desired to obtain the oil-based / UV combined ink of the present invention. Each component contained in the infrared absorbing ink can be finally adjusted to a desired blending ratio by the step (b). Step (b) can be carried out with a mixer, a meat mill, or the like.
 ステップ(a)により得られる分散体は、後述する赤外線吸収性微粒子分散液であることが好ましい。 The dispersion obtained in step (a) is preferably an infrared absorbing fine particle dispersion described later.
[赤外線吸収性微粒子分散液]
 赤外線吸収性微粒子分散液は、赤外線吸収性材料微粒子と、第一の溶剤と、第二の溶剤と、を含み、かつ赤外線吸収性微粒子分散液中の第二の溶剤の含有量が5.0質量%以下である。
[Infrared absorbing fine particle dispersion]
The infrared-absorbing fine particle dispersion contains the infrared-absorbing material fine particles, the first solvent, and the second solvent, and the content of the second solvent in the infrared-absorbing fine particle dispersion is 5.0. It is below mass%.
 赤外線吸収性微粒子分散液に含まれる赤外線吸収性材料微粒子、第一の溶剤、及び第二の溶剤は、本発明の赤外線吸収性インキについて上記で説明された赤外線吸収性材料微粒子、第一の溶剤及び第二の溶剤とそれぞれ対応する。 The infrared absorbing material fine particles, the first solvent, and the second solvent contained in the infrared absorbing fine particle dispersion are the infrared absorbing material fine particles and the first solvent described above for the infrared absorbing ink of the present invention. And a second solvent, respectively.
 第一の溶剤は粘度が高いため、ステップ(a)において、第一の溶剤中で赤外線吸収性材料微粒子を分散処理することが困難なことがある。第一の溶剤が、例えば桐油のように、180mPa・s以上の粘度(24℃)を有するときには、第一の溶剤のみに赤外線吸収性材料微粒子を分散することは困難である。したがって、赤外線吸収性微粒子分散液は、具体的には、後述される赤外線吸収性微粒子分散液の製造方法(A)又は(B)により製造されることが好ましい。 Since the first solvent has a high viscosity, it may be difficult to disperse the infrared-absorbing material fine particles in the first solvent in the step (a). When the first solvent has a viscosity (24 ° C.) of 180 mPa · s or more, such as tung oil, it is difficult to disperse the infrared-absorbing material fine particles only in the first solvent. Therefore, specifically, the infrared-absorbing fine particle dispersion is preferably produced by the method (A) or (B) for producing the infrared-absorbing fine particle dispersion described later.
〔赤外線吸収性微粒子分散液の製造方法(A)〕
 赤外線吸収性微粒子分散液の製造方法(A)は、以下のステップを以下の順序で含む:
 (A-1)赤外線吸収性材料微粒子を第二の溶剤へ混合し、湿式媒体ミルで分散処理して、第一の分散液を得るステップ;
 (A-2)第一の分散液へ、第一の溶剤を添加し、混合して、第二の分散液を得るステップ;及び
 (A-3)第二の分散液から、第二の溶剤の含有量が5.0質量%以下となるまで、第二の溶剤を除去するステップ。
[Method for producing infrared-absorbing fine particle dispersion (A)]
The method (A) for producing the infrared-absorbing fine particle dispersion includes the following steps in the following order:
(A-1) mixing the infrared-absorbing material fine particles into a second solvent and dispersing the mixture with a wet medium mill to obtain a first dispersion;
(A-2) adding a first solvent to the first dispersion and mixing to obtain a second dispersion; and (A-3) a second solvent from the second dispersion. Removing the second solvent until the content of is less than 5.0% by mass.
 ステップ(A-1)を行う方法は、赤外線吸収性材料微粒子を第二の溶剤に均一に分散する方法である限り、任意に選択されることができる。具体的には、ビーズミル、ボールミル等の湿式媒体ミルを用いることが好ましい。なお、前記第二の溶剤の沸点は、180℃以下であり、好ましくは150℃以下である。 The method of performing step (A-1) can be arbitrarily selected as long as it is a method of uniformly dispersing the infrared absorbing material fine particles in the second solvent. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill. The boiling point of the second solvent is 180 ° C. or lower, preferably 150 ° C. or lower.
 前記第一の分散液中における赤外線吸収性材料微粒子の濃度が5質量%以上あれば、後述する印刷インキを製造する際の生産性に優れる。一方、赤外線吸収性材料微粒子の濃度が60質量%以下であれば、第一の分散液の粘度が高くならず、赤外線吸収性材料微粒子の粉砕及び分散操作が容易である。このような観点から、第一の分散液中の赤外線吸収性材料微粒子の含有量は、5質量%以上、10質量%以上、15質量%以上、20質量%以上又は25質量%以上であることが好ましく、この含有量は、75質量%以下、70質量%以下、65質量%以下、60質量%以下、58質量%以下、56質量%以下、54質量%以下又は52質量%以下であることが好ましい。 If the concentration of the infrared-absorbing material fine particles in the first dispersion is 5% by mass or more, the productivity when producing the printing ink described later is excellent. On the other hand, if the concentration of the infrared absorbing material fine particles is 60% by mass or less, the viscosity of the first dispersion liquid does not increase, and the infrared absorbing material fine particles can be easily pulverized and dispersed. From such a viewpoint, the content of the infrared absorbing material fine particles in the first dispersion is 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more. The content is 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 58% by mass or less, 56% by mass or less, 54% by mass or less, or 52% by mass or less. Is preferred.
 ステップ(A-2)では、第一の溶剤及び第二の溶剤として、互いに相溶するものを選択しておくことが好ましい。ステップ(A-2)では、第一の分散液に含まれる赤外線吸収性材料微粒子100重量部に対して、2.5重量部以上の第一の溶剤を使用すると、最終的に得られる赤外線吸収性微粒子分散液の流動性が保たれ、かつ回収が容易となり、生産性が保たれるので好ましい。なお、前記第一の溶剤は、その沸点が第二の溶剤の沸点よりも高いものであり、好ましくは150℃以上又は180℃以上である。 In step (A-2), it is preferable to select a solvent compatible with each other as the first solvent and the second solvent. In step (A-2), the infrared absorption finally obtained when 2.5 parts by weight or more of the first solvent is used with respect to 100 parts by weight of the infrared absorbing material fine particles contained in the first dispersion. This is preferable because the fluidity of the fine particle dispersion is maintained, the recovery is facilitated, and the productivity is maintained. The first solvent has a boiling point higher than that of the second solvent, and is preferably 150 ° C. or higher or 180 ° C. or higher.
 一方、ステップ(A-2)では、第一の分散液に含まれる赤外線吸収性材料微粒子100重量部に対して、270重量部以下の第一の溶剤を使用することが、最終的に得られる赤外線吸収性微粒子分散液中の赤外線吸収性材料微粒子の濃度が担保されるので好ましい。そのため、例えばオフセット印刷インキへ、赤外線吸収性微粒子分散液を過剰に添加する事態を回避でき、インキの粘度を担保できる。この結果、インキの粘度が大きく変化することはなくなり、粘度調整が不要であり、工程が単純化し、かつ製造コストの増加を回避できる。 On the other hand, in step (A-2), it is finally obtained that 270 parts by weight or less of the first solvent is used with respect to 100 parts by weight of the infrared absorbing material fine particles contained in the first dispersion. This is preferable because the concentration of the infrared absorbing material fine particles in the infrared absorbing fine particle dispersion is ensured. For this reason, for example, it is possible to avoid an excessive addition of the infrared-absorbing fine particle dispersion to the offset printing ink, and the viscosity of the ink can be ensured. As a result, the viscosity of the ink is not greatly changed, viscosity adjustment is unnecessary, the process is simplified, and an increase in manufacturing cost can be avoided.
 以上の観点から、ステップ(A-2)における第一の分散液と第一の溶剤との混合時には、第一の分散液に含まれる赤外線吸収性材料微粒子100重量部に対して、第一の溶剤が2.5~270重量部であることが好ましく、より好ましくは70~270重量部であり、さらに好ましくは92~204重量部である。 From the above viewpoint, at the time of mixing the first dispersion and the first solvent in step (A-2), the first weight of the infrared-absorbing material fine particles contained in the first dispersion is The solvent is preferably 2.5 to 270 parts by weight, more preferably 70 to 270 parts by weight, and still more preferably 92 to 204 parts by weight.
 ステップ(A-2)において第一及び第二の分散液の粘度の上昇をさらに抑制したい場合は、第一及び/又は第二の分散液へ、上述した分散剤を添加することも好ましい。その場合、分散剤は、以下の方法により第一及び/又は第二の分散液へ添加されてよい:
 分散剤を予め第二の溶剤に添加しておく方法、
 分散剤を予め第一の溶剤に添加して分散剤溶液を得ておき、その分散剤溶液を第一の分散液に添加する方法、又は
 第一の分散液に対する第一の溶剤の添加と並行して、分散剤を第一の分散液に添加する方法。
 なお、分散剤を予め第二の溶剤に添加しておく方法を用いる場合には、第二の溶剤に可溶な分散剤を選択する。
When it is desired to further suppress the increase in the viscosity of the first and second dispersions in step (A-2), it is also preferable to add the above-described dispersant to the first and / or second dispersion. In that case, the dispersant may be added to the first and / or second dispersion by the following method:
A method of adding a dispersant to the second solvent in advance,
A method of adding a dispersant to the first solvent in advance to obtain a dispersant solution and adding the dispersant solution to the first dispersion, or in parallel with the addition of the first solvent to the first dispersion And adding a dispersant to the first dispersion.
In addition, when using the method of adding a dispersing agent to a 2nd solvent previously, the dispersing agent soluble in a 2nd solvent is selected.
 ステップ(A-3)は、第一の溶剤と第二の溶剤の沸点の差を用いた加熱蒸留法により行なわれることができる。さらに、減圧操作も加えた減圧加熱蒸留は、安全性、エネルギーコスト、及び品質の安定化の観点から好ましい。 Step (A-3) can be performed by a heating distillation method using a difference in boiling points between the first solvent and the second solvent. Furthermore, the reduced pressure heating distillation including the reduced pressure operation is preferable from the viewpoints of safety, energy cost, and quality stabilization.
〔赤外線吸収性微粒子分散液の製造方法(B)〕
 赤外線吸収性微粒子分散液の製造方法(B)は、以下のステップを以下の順序で含む:
 (B-1)第一の溶剤と第二の溶剤とを混合して、混合溶剤を得る工程;
 (B-2)赤外線吸収性材料微粒子を、前記混合溶剤へ混合し、分散処理して、好ましくは湿式媒体ミルで分散処理して、第三の分散液を得る工程;及び
 (B-3)前記第三の分散液から、前記第二の溶剤の含有量が5.0質量%以下となるまで、前記第二の溶剤を除去する工程。
[Production method of infrared absorbing fine particle dispersion (B)]
The method (B) for producing the infrared-absorbing fine particle dispersion includes the following steps in the following order:
(B-1) A step of mixing the first solvent and the second solvent to obtain a mixed solvent;
(B-2) a step of mixing the infrared-absorbing material fine particles in the mixed solvent, dispersing, and preferably dispersing with a wet medium mill to obtain a third dispersion; and (B-3) Removing the second solvent from the third dispersion until the content of the second solvent is 5.0% by mass or less.
 ステップ(B-1)では、第一の溶剤の一種以上と第二の溶剤の一種以上とを混合する。第一の溶剤及び第二の溶剤として、互いに相溶するものを選択することが好ましい。 In step (B-1), one or more types of the first solvent and one or more types of the second solvent are mixed. As the first solvent and the second solvent, those compatible with each other are preferably selected.
 ステップ(B-2)を行う方法は、赤外線吸収性材料微粒子を混合溶剤に均一に分散する方法である限り、任意に選択されることができる。具体的には、ビーズミル、ボールミル等の湿式媒体ミルを用いることが好ましい。 The method of performing step (B-2) can be arbitrarily selected as long as it is a method of uniformly dispersing the infrared absorbing material fine particles in the mixed solvent. Specifically, it is preferable to use a wet medium mill such as a bead mill or a ball mill.
 前記第三の分散液中における赤外線吸収性材料微粒子の濃度が5質量%以上あれば、後述する印刷インキを製造する際に生産性に優れる。一方、赤外線吸収性材料微粒子の濃度が60質量%以下であれば、第三の分散液の粘度が高くならず、赤外線吸収性材料微粒子の粉砕及び分散操作が容易である。このような観点から、第3の分散液中の赤外線吸収性材料微粒子の含有量は、5質量%以上、10質量%以上、15質量%以上、20質量%以上又は25質量%以上であることが好ましく、この含有量は、75質量%以下、70質量%以下、65質量%以下、60質量%以下、58質量%以下、56質量%以下、54質量%以下又は52質量%以下であることが好ましい。 If the concentration of the infrared-absorbing material fine particles in the third dispersion is 5% by mass or more, the productivity is excellent when producing the printing ink described later. On the other hand, when the concentration of the infrared-absorbing material fine particles is 60% by mass or less, the viscosity of the third dispersion liquid does not increase, and the operation of pulverizing and dispersing the infrared-absorbing material fine particles is easy. From such a viewpoint, the content of the infrared absorbing material fine particles in the third dispersion is 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more. The content is 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 58% by mass or less, 56% by mass or less, 54% by mass or less, or 52% by mass or less. Is preferred.
 ステップ(B-2)中又はステップ(B-2)後に、赤外線吸収性材料微粒子を含む混合溶剤の粘度の上昇をさらに抑制したい場合には、上述した分散剤を添加することも好ましい。その場合、分散操作の前に前記混合溶剤へ分散剤を加えておけばよい。 In the step (B-2) or after the step (B-2), when it is desired to further suppress the increase in the viscosity of the mixed solvent containing the infrared absorbing material fine particles, it is also preferable to add the above-described dispersant. In that case, a dispersing agent may be added to the mixed solvent before the dispersing operation.
 ステップ(B-3)は、第一の溶剤と第二の溶剤の沸点の差を用いた加熱蒸留法により行なわれることができる。さらに、減圧操作も加えた減圧加熱蒸留法は、安全性、エネルギーコスト、及び品質の安定化の観点から好ましい。 Step (B-3) can be performed by a heating distillation method using a difference in boiling points between the first solvent and the second solvent. Furthermore, the reduced pressure heating distillation method including a reduced pressure operation is preferable from the viewpoints of safety, energy cost, and quality stabilization.
 具体的には、減圧加熱蒸留法では、前記第二の分散液又は前記第三の分散液を撹拌しながら減圧して蒸留し、当該第三の分散液から前記第二の溶剤を分離する。減圧加熱蒸留法に用いる装置としては、真空撹拌型の乾燥機が挙げられるが、上記機能を有する装置であればよく、特に限定されない。 Specifically, in the vacuum heating distillation method, the second dispersion or the third dispersion is distilled under reduced pressure while stirring, and the second solvent is separated from the third dispersion. Examples of the apparatus used for the vacuum heating distillation method include a vacuum stirring type dryer, but any apparatus having the above functions may be used, and the apparatus is not particularly limited.
 加熱蒸留の際の温度は、35℃以上、40℃以上、又は60℃以上が好ましく、この温度は、200℃以下、150℃以下、又は120℃以下であることが好ましい。加熱蒸留の際の温度が35℃以上あれば、溶剤の除去速度を担保できる。加熱蒸留の際の温度が200℃以下であれば、分散剤の変質を回避できる。 The temperature during the heating distillation is preferably 35 ° C. or higher, 40 ° C. or higher, or 60 ° C. or higher, and this temperature is preferably 200 ° C. or lower, 150 ° C. or lower, or 120 ° C. or lower. If the temperature at the time of heating distillation is 35 degreeC or more, the removal rate of a solvent can be ensured. If the temperature at the time of heating distillation is 200 ° C. or lower, alteration of the dispersant can be avoided.
 加熱蒸留操作と減圧操作を併用する場合には、真空度は、好ましくはゲージ圧で-0.05MPa以下、より好ましくは-0.06MPa以下である。ゲージ圧が-0.05MPa以下であると、溶剤の除去速度が速く、生産性が良い。 When the heating distillation operation and the decompression operation are used in combination, the degree of vacuum is preferably −0.05 MPa or less, more preferably −0.06 MPa or less in terms of gauge pressure. When the gauge pressure is −0.05 MPa or less, the solvent removal rate is fast and the productivity is good.
 上記の減圧加熱蒸留法を用いることによって、第二の溶剤の除去効率が向上すると共に、赤外線吸収性微粒子分散液が長時間に亘って高温に曝されることがないので、分散している赤外線吸収性材料微粒子の凝集又は第一の溶剤の劣化が起こらず、好ましい。さらに、上記の減圧加熱蒸留法を用いることによって、赤外線吸収性微粒子分散液の生産性も上がり、蒸発した有機溶剤を回収することも容易であるため、環境的配慮からも好ましい。 By using the reduced pressure heating distillation method, the removal efficiency of the second solvent is improved and the infrared absorbing fine particle dispersion is not exposed to a high temperature for a long time. Aggregation of the absorbent material fine particles or deterioration of the first solvent does not occur, which is preferable. Furthermore, by using the above-mentioned reduced pressure heating distillation method, the productivity of the infrared absorbing fine particle dispersion is increased, and it is easy to recover the evaporated organic solvent.
〔赤外線吸収性微粒子分散液の組成及び粘度〕
 上記で説明した製造方法(A)又は(B)により赤外線吸収性微粒子分散液が得られる。赤外線吸収性微粒子分散液中の赤外線吸収性材料微粒子の最終的な濃度が高いほどインキの調製が容易であり好ましい。一方、この濃度が高くなりすぎると、赤外線吸収性微粒子分散液の流動性が低下する。したがって、製造方法(A)又は(B)において、製造された赤外線吸収性微粒子分散液は、回収できる程度の流動性があればよい。このような観点から、赤外線吸収性微粒子分散液中の赤外線吸収性材料微粒子の最終的な含有量は、5質量%以上、10質量%以上、15質量%以上、20質量%以上、又は25質量%以上であることが好ましく、この含有量は、75質量%以下、70質量%以下、65質量%以下、60質量%以下、58質量%以下、56質量%以下、54質量%以下、又は52質量%以下であることが好ましい。
[Infrared absorbing fine particle dispersion composition and viscosity]
An infrared-absorbing fine particle dispersion can be obtained by the production method (A) or (B) described above. The higher the final concentration of the infrared-absorbing material fine particles in the infrared-absorbing fine particle dispersion, the easier the ink preparation and the better. On the other hand, when this concentration becomes too high, the fluidity of the infrared-absorbing fine particle dispersion is lowered. Therefore, in the production method (A) or (B), the produced infrared-absorbing fine particle dispersion only needs to have fluidity that can be recovered. From such a viewpoint, the final content of the infrared absorbing material fine particles in the infrared absorbing fine particle dispersion is 5% by mass or more, 10% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass. The content is preferably 75% by mass or less, 70% by mass or less, 65% by mass or less, 60% by mass or less, 58% by mass or less, 56% by mass or less, 54% by mass or less, or 52% by mass or less. It is preferable that it is below mass%.
 赤外線吸収性微粒子分散液中の赤外線吸収性材料微粒子の分散粒子径は、湿式媒体ミルの処理時間により、任意に制御されることができる。この処理時間を長くすることにより、赤外線吸収性材料微粒子の分散粒子径を小さくすることができる。 The dispersion particle diameter of the infrared absorbing material fine particles in the infrared absorbing fine particle dispersion can be arbitrarily controlled by the processing time of the wet medium mill. By extending the treatment time, the dispersed particle diameter of the infrared absorbing material fine particles can be reduced.
 赤外線吸収性微粒子分散液の粘度の下限値は、使用される第一の溶剤の粘度、すなわち植物油又は植物油由来の化合物の粘度に依存する。例えば、ヒマワリ油の粘度(24℃)は、50mPa・sであり、そしてアマニ油の粘度(24℃)は40mPa・sである。 The lower limit of the viscosity of the infrared-absorbing fine particle dispersion depends on the viscosity of the first solvent used, that is, the viscosity of the vegetable oil or the vegetable oil-derived compound. For example, the viscosity of sunflower oil (24 ° C.) is 50 mPa · s, and the viscosity of linseed oil (24 ° C.) is 40 mPa · s.
 赤外線吸収性微粒子分散液の粘度の上限値は、赤外線吸収性材料微粒子の含有量に応じて任意に決定されてよいが、後述される印刷インキを製造するために適した粘度の上限値として、100Pa・s以下であることが好ましい。 The upper limit of the viscosity of the infrared-absorbing fine particle dispersion may be arbitrarily determined according to the content of the infrared-absorbing material fine particles, but as the upper limit of the viscosity suitable for producing a printing ink described later, It is preferably 100 Pa · s or less.
 赤外線吸収性微粒子分散液には、さらにバインダーを添加してもよい。バインダーとしては、特に限定されないが、ビヒクルとして使用される樹脂、例えばポリアミド、ポリウレタン、ニトロセルロース、アクリル樹脂、マレイン酸樹脂、ロジン、改質ロジン等が挙げられる。 A binder may be further added to the infrared absorbing fine particle dispersion. The binder is not particularly limited, and examples thereof include resins used as vehicles, such as polyamide, polyurethane, nitrocellulose, acrylic resin, maleic acid resin, rosin, and modified rosin.
<印刷インキ>
 本発明の赤外線吸収性インキは、一般的な印刷インキとして使用されることができる。例えば、本発明の赤外線吸収性インキは、フレキソ印刷インキ、活版印刷インキ、オフセット印刷インキ、凹版印刷インキ、グラビア印刷インキ、スクリーン印刷インキ、インクジェット印刷インク等として使用されることができる。
<Printing ink>
The infrared absorbing ink of the present invention can be used as a general printing ink. For example, the infrared absorbing ink of the present invention can be used as flexographic ink, letterpress printing ink, offset printing ink, intaglio printing ink, gravure printing ink, screen printing ink, inkjet printing ink, and the like.
 これらの中でも、印刷物の偽造を防止するために、本発明の赤外線吸収性インキは、オフセット印刷インキ、凹版印刷インキ又はスクリーン印刷インキとして使用されることが好ましい。なお、凹版印刷インキは、直刻版面又は食刻版面を用いる押圧印刷に使用されることができる。 Among these, in order to prevent forgery of printed matter, the infrared absorbing ink of the present invention is preferably used as an offset printing ink, an intaglio printing ink or a screen printing ink. The intaglio printing ink can be used for press printing using a direct printing plate surface or an etching plate surface.
 本発明の赤外線吸収性インキは、基材に印刷されることにより、印刷部を備える印刷物を提供することができる。基材としては、紙基材、例えば、上質紙、コート紙、アート紙、キャストコート紙、フォイル紙、再生紙、含浸紙、可変情報用紙等;フィルム基材、例えば、ポリエステルフィルム、ポリプロピレンフィルム、ポリスチレンフィルム、塩化ビニルフィルム、ポリイミドフィルム、可変情報用フィルム等;又は布基材、例えば、織布、不織布等を使用してよい。印刷物は、紙幣、有価証券、カード等でよい。 The infrared absorbing ink of the present invention can provide a printed matter having a printing part by printing on a substrate. Examples of the base material include paper base materials such as fine paper, coated paper, art paper, cast coated paper, foil paper, recycled paper, impregnated paper, variable information paper, etc .; film base materials such as polyester film, polypropylene film, Polystyrene film, vinyl chloride film, polyimide film, variable information film or the like; or a cloth substrate such as woven cloth or non-woven cloth may be used. The printed matter may be banknotes, securities, cards or the like.
 本発明の印刷インキは、上記で説明した赤外線吸収性微粒子分散液を2~50質量%含むことが好ましい。本発明の印刷インキは、上記で説明した第二の溶剤を2.0質量%以下含んでもよい。 The printing ink of the present invention preferably contains 2 to 50% by mass of the infrared absorbing fine particle dispersion described above. The printing ink of the present invention may contain 2.0% by mass or less of the second solvent described above.
 本発明のインキは赤外線吸収性を有するので、本発明の印刷インキを任意のパターンで印刷し、近赤外線判定機等で読み取ることにより、各種情報管理等に使用可能となる。 Since the ink of the present invention has infrared absorptivity, it can be used for various information management by printing the printing ink of the present invention in an arbitrary pattern and reading it with a near-infrared light determining machine or the like.
 例えば、本発明のインキを基材に印刷することにより得られた印刷物を、赤外線カメラなどの赤外光検知器で観察すると、本発明のインキが印刷された部分は、赤外線を吸収し、その他の部分よりも黒く表示されるので、赤外線吸収のコントラストを検知することができる。したがって、所定の赤外線吸収のコントラストと観察対象の赤外線吸収のコントラストとを比較することにより、印刷物の真贋を判定することができる。 For example, when a printed matter obtained by printing the ink of the present invention on a substrate is observed with an infrared light detector such as an infrared camera, the portion on which the ink of the present invention is printed absorbs infrared rays, Since it is displayed blacker than the portion of, the infrared absorption contrast can be detected. Therefore, the authenticity of the printed matter can be determined by comparing the predetermined infrared absorption contrast with the infrared absorption contrast of the observation target.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるわけではない。
 本実施例に係る膜および印刷物の光学特性(透過率、反射率)は、特に言及する場合を除いて、分光光度計U-4000(株式会社日立製作所製)を用いて測定された。分光透過率の測定は、JIS R 3106に準拠して行われた。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not necessarily limited to these Examples.
The optical properties (transmittance, reflectance) of the film and the printed material according to this example were measured using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) unless otherwise specified. The spectral transmittance was measured according to JIS R 3106.
<赤外線吸収性微粒子分散液の作製>
(比較例1)
 近赤外線吸収材料微粒子として、複合タングステン酸化物である六方晶Cs0.33WO(a軸7.4075Å、c軸7.6127Å)を15.0質量%、アクリル系分散剤12.0質量%、トルエン(第二の溶剤)73.0質量%を混合し、0.3mmφのZrOビーズを入れたペイントシェーカーで10時間粉砕・分散処理することによって複合タングステン酸化物微粒子分散液(以下、分散液C-1と略称する。)を調製した。
<Preparation of infrared absorbing fine particle dispersion>
(Comparative Example 1)
As near-infrared absorbing material fine particles, hexagonal Cs 0.33 WO 3 (a-axis 7.4075 軸, c-axis 7.6127Å), which is a composite tungsten oxide, is 15.0% by mass, and acrylic dispersant 12.0% by mass. In addition, 73.0% by mass of toluene (second solvent) was mixed, and the mixture was pulverized and dispersed for 10 hours with a paint shaker containing 0.3 mmφ ZrO 2 beads (hereinafter referred to as dispersion). (Abbreviated as liquid C-1).
 分散液C-1内におけるタングステン酸化物微粒子の分散粒子径を粒度分布計ELS-8000(大塚電子製)で測定したところ77nmであった。 The dispersion particle size of the tungsten oxide fine particles in dispersion C-1 was measured with a particle size distribution analyzer ELS-8000 (manufactured by Otsuka Electronics Co., Ltd.), and it was 77 nm.
 分散液C-1に含まれるトルエンはオフセット印刷機のゴムローラー(ニトリルブタジエンゴム)を溶解するため、分散液C-1をそのままオフセット印刷へ適用することは困難であると予想される。 Since toluene contained in the dispersion C-1 dissolves the rubber roller (nitrile butadiene rubber) of the offset printing machine, it is expected that it is difficult to apply the dispersion C-1 as it is to offset printing.
(実施例1)
 赤外線吸性収材料微粒子として、比較例1と同様の複合タングステン酸化物である六方晶Cs0.33WOを23質量%、構造中に脂肪酸を有する分散剤(不揮発分100%、以下、分散剤aと略称する。)11.5質量%、溶剤としてメチルイソブチルケトン(以下、MIBKと略称する。)65.5質量%を秤量した。
(Example 1)
As the infrared absorbing material fine particles, a dispersant having a hexagonal crystal Cs 0.33 WO 3 which is a composite tungsten oxide similar to that in Comparative Example 1 is 23% by mass and a fatty acid is included in the structure (non-volatile content: 100%, hereinafter, dispersed) 11.5% by mass and 65.5% by mass of methyl isobutyl ketone (hereinafter abbreviated as MIBK) as a solvent were weighed.
 これらの成分を、0.3mmφのZrOビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し、実施例1に係る近赤外線微粒子分散液(以下、分散液Aと略称する)を得た。 These components were loaded into a paint shaker containing 0.3 mmφ ZrO 2 beads, pulverized and dispersed for 10 hours, and the near-infrared fine particle dispersion (hereinafter referred to as dispersion A) according to Example 1 was obtained. Obtained.
 さらに、分散液A100重量部へ桐油42.2重量部を混合添加し、それを撹拌型真空乾燥機(月島機械株式会社製ユニバーサルミキサー)を使用して、減圧操作も加えた加熱蒸留を80℃で1時間行い、MIBKを除去し、複合タングステン酸化物微粒子分散液(以下、分散液Bと略称する)を得た。 Furthermore, 42.2 parts by weight of paulownia oil was added to 100 parts by weight of dispersion A, and the mixture was heated and distilled at 80 ° C. using a stirring type vacuum dryer (universal mixer manufactured by Tsukishima Kikai Co., Ltd.) and pressure reduction operation. Then, MIBK was removed to obtain a composite tungsten oxide fine particle dispersion (hereinafter abbreviated as Dispersion B).
 ここで、分散液Bの残留MIBK量を乾式水分計で測定したところ、1.15質量%であった。分散液B中のタングステン酸化物微粒子の分散粒子径を粒度分布計(大塚電子製)で測定したところ81nmであった。 Here, when the amount of residual MIBK of dispersion B was measured with a dry moisture meter, it was 1.15% by mass. The dispersed particle size of the tungsten oxide fine particles in dispersion B was measured with a particle size distribution meter (manufactured by Otsuka Electronics Co., Ltd.), and found to be 81 nm.
 実施例1に係る分散液Bにオフセット印刷用ビヒクルを混合した後、三本ロールミルで常法により分散し、オフセット印刷インキを作製して、そのインキを用いて印刷物を作製した。その印刷物は、可視光波長領域では高い透過率を示し、近赤外光波長領域では透過率が顕著に低くなっている。この結果、実施例1で得られた分散液を用いたインキで作製した印刷物は、近赤外線判定機で判別可能であると考えられる。即ち、本発明に係る近赤外線微粒子分散液を用いることで、近赤外光波長領域の吸収能力を有し、かつコントラストが明確なオフセット印刷用インキを、容易に製造出来ることが判明した。 After the offset printing vehicle was mixed with the dispersion B according to Example 1, it was dispersed by a conventional method using a three-roll mill to produce an offset printing ink, and a printed matter was produced using the ink. The printed matter shows high transmittance in the visible light wavelength region, and the transmittance is remarkably low in the near-infrared light wavelength region. As a result, it is considered that the printed matter produced with the ink using the dispersion obtained in Example 1 can be discriminated with a near-infrared ray judging machine. That is, it has been found that by using the near-infrared fine particle dispersion according to the present invention, it is possible to easily produce an ink for offset printing having an absorption capability in the near-infrared light wavelength region and a clear contrast.
(比較例2)
 赤外線吸収性材料微粒子として、比較例1と同様の複合タングステン酸化物である六方晶Cs0.33WOを23質量%、分散剤a11.5質量%、溶剤として沸点197℃のエチレングリコール(以下、E.G.と略称する。)65.5質量%を秤量した。
(Comparative Example 2)
As the infrared-absorbing material fine particles, 23% by mass of hexagonal Cs 0.33 WO 3 which is a composite tungsten oxide similar to Comparative Example 1, 11.5% by mass of dispersant a, ethylene glycol having a boiling point of 197 ° C. , Abbreviated as EG) 65.5% by mass was weighed.
 これらの成分を、0.3mmφのZrOビーズを入れたペイントシェーカーに装填し、10時間粉砕・分散処理し比較例2に係る赤外線吸収性微粒子分散液(以下、分散液Cと略称する)を得た以外は、実施例1と同様にして、比較例2に係る複合タングステン酸化物微粒子分散液(以下、分散液Dと略称する)を得た。 These components were loaded into a paint shaker containing 0.3 mmφ ZrO 2 beads, pulverized and dispersed for 10 hours, and an infrared-absorbing fine particle dispersion (hereinafter referred to simply as “dispersion C”) according to Comparative Example 2 was obtained. A composite tungsten oxide fine particle dispersion liquid (hereinafter referred to simply as “dispersion liquid D”) according to Comparative Example 2 was obtained in the same manner as in Example 1 except that it was obtained.
 分散液Dの残留E.G.量を乾式水分計で測定したところ、34.21質量%であった。分散液D中におけるタングステン酸化物微粒子の分散粒子径を大塚電子製粒度分布計で測定したところ71nmであった。分散液DにはE.G.が多く含まれているので、一般的なインキ化処方に従って分散液Dからインキを得ても、そのインキを硬化することができないと予想される。 Residue E of dispersion D G. It was 34.21 mass% when quantity was measured with the dry-type moisture meter. The dispersion particle diameter of the tungsten oxide fine particles in dispersion D was measured with an Otsuka Electronics particle size distribution analyzer to be 71 nm. Dispersion D contains E.I. G. Therefore, even if an ink is obtained from the dispersion D according to a general ink formulation, it is expected that the ink cannot be cured.
(比較例3)
 赤外線吸収性材料微粒子として、比較例1と同様の複合タングステン酸化物である六方晶Cs0.33WOを23質量%、分散剤a11.5質量%、溶剤として桐油(第一の溶剤)65.5質量%を秤量した。
(Comparative Example 3)
As infrared-absorbing material fine particles, 23% by mass of hexagonal Cs 0.33 WO 3 which is the same composite tungsten oxide as in Comparative Example 1, 11.5% by mass of dispersant a, and paulownia oil (first solvent) 65 as a solvent .5% by mass was weighed.
 これらの成分を、0.3mmφのZrOビーズを入れたペイントシェーカーに装填し、40時間粉砕・分散処理したが、第二の溶剤に分散させることなく、最初から第一の溶剤に赤外線吸収性材料微粒子を添加したので、粘度が高かったため粉砕性が悪く近赤外線微粒子分散液は得られなかった。 These components were loaded into a paint shaker containing 0.3 mmφ ZrO 2 beads, and pulverized and dispersed for 40 hours. Since the material fine particles were added, the viscosity was high, so the grindability was poor and a near-infrared fine particle dispersion could not be obtained.
<赤外線吸収性インキの作製>
[実施例2~9]
(赤外線吸収性微粒子分散液の作製)
 赤外線吸収性微粒子分散液が下記組成を有すること以外は、実施例1と同様にして、赤外線吸収性微粒子分散液を得た:
 六方晶Cs0.33WO:50質量%
 ヒマワリ油:22質量%
 分散剤a:25質量%
 プロピレングリコールモノメチルエーテルアセテート(PGMEA):3質量%
<Preparation of infrared absorbing ink>
[Examples 2 to 9]
(Preparation of infrared absorbing fine particle dispersion)
An infrared-absorbing fine particle dispersion was obtained in the same manner as in Example 1 except that the infrared-absorbing fine particle dispersion had the following composition:
Hexagonal Cs 0.33 WO 3 : 50% by mass
Sunflower oil: 22% by mass
Dispersant a: 25% by mass
Propylene glycol monomethyl ether acetate (PGMEA): 3% by mass
(油性オフセット印刷インキの作製)
 表1に示される組成に従って、ベストワンGIGAメジウム(T&KTOKA)に上記赤外線吸収性微粒子分散液を混合した後、三本ロールミルで常法により分散して、実施例2~5の油性オフセット印刷インキを作製した。
(Production of oil-based offset printing ink)
According to the composition shown in Table 1, the above infrared absorbing fine particle dispersion was mixed with Best One GIGA Medium (T & KTOKA), and then dispersed by a conventional method using a three-roll mill, so that the oil-based offset printing inks of Examples 2 to 5 were used. Produced.
(油性・UV併用オフセット印刷インキの作製)
 表1に示される組成に従って、ベストワンGIGAメジウム(T&KTOKA)及びUV BF 無変色 メジウム(T&KTOKA)に上記赤外線吸収性微粒子分散液を混合した後、三本ロールミルで常法により分散して、実施例6~9の油性・UV併用オフセット印刷インキを作製した。
(Preparation of offset printing ink with oil and UV)
In accordance with the composition shown in Table 1, after mixing the above infrared-absorbing fine particle dispersion with Best One GIGA medium (T & KTOKA) and UV BF unchanged color medium (T & KTOKA), it is dispersed by a conventional method with a three-roll mill. 6-9 oil-based / UV combined offset printing inks were prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例4~7]
 市販のATO(ELCOM(登録商標) P-特殊品、日揮触媒化成株式会社)をベストワンGIGAメジウム(T&KTOKA)に分散して、比較例4~7について、それぞれインキ中のATO含有量が5質量%、7.5質量%、10質量%及び15質量%であるATO含有油性オフセット印刷インキを得た。
[Comparative Examples 4 to 7]
Commercially available ATO (ELCOM (registered trademark) P-special product, JGC Catalysts & Chemicals Co., Ltd.) was dispersed in Best One GIGA Medium (T & KTOKA), and Comparative Examples 4 to 7 each had an ATO content of 5 mass in ink. %, 7.5% by mass, 10% by mass and 15% by mass of an ATO-containing oil-based offset printing ink was obtained.
(オフセット印刷インキの赤外線吸収効果)
 実施例2~9及び比較例4~7のオフセット印刷インキをそれぞれ使用して、枚葉オフセット印刷機(RYOBI製)で上質紙(しらおい上質紙、日本製紙)に印刷し、乾燥させて12種類の印刷物を得た。実施例2~9のオフセット印刷インキを用いてオフセット印刷を行なった結果、印刷機のゴム製ブランケットが溶解していなかったことを確認した。
(Infrared absorption effect of offset printing ink)
Using the offset printing inks of Examples 2 to 9 and Comparative Examples 4 to 7, respectively, printed on high-quality paper (Shiraoi high-quality paper, Nippon Paper) with a sheet-fed offset printing machine (manufactured by RYOBI) and dried to 12 Kinds of printed materials were obtained. As a result of performing offset printing using the offset printing inks of Examples 2 to 9, it was confirmed that the rubber blanket of the printing machine was not dissolved.
 実施例2~9のオフセット印刷インキを使用して得られた8種類の印刷物を赤外線カメラ(ANMO社製Dino-Lite Pro)を用いて観察したところ、オフセット印刷インキの印刷面は、赤外光を吸収するために黒く見えたのに対して、オフセット印刷インキを印刷していない面(例えば、原紙部分、一般プロセスインキの印刷部分など)は、赤外線を透過又は反射するために、白く見えた。 When eight types of printed matter obtained using the offset printing inks of Examples 2 to 9 were observed using an infrared camera (Dino-Lite Pro manufactured by ANMO), the printed surface of the offset printing ink was infrared light. The surface that was not printed with offset printing ink (for example, the base paper portion, the printing portion of general process ink, etc.) appeared white because it was transmitting or reflecting infrared rays. .
 実施例2及び3のオフセット印刷インキと比較例4~7のオフセット印刷インキを使用して得られた印刷物について、反射率測定の結果を図1に示す。 FIG. 1 shows the result of reflectance measurement for printed matter obtained using the offset printing inks of Examples 2 and 3 and the offset printing inks of Comparative Examples 4 to 7.
 図1に示される352nm~1600nmの波長において反射率を対比すると、複合タングステン酸化物を含む実施例2及び3のインキ印刷物は、市販のATOを含む比較例4~7のインキ印刷物よりも、可視光波長域と赤外線波長域のコントラスト、特に、可視光波長域と近赤外線波長域のコントラストが明確であることが分かる。 Contrasting reflectance at wavelengths from 352 nm to 1600 nm shown in FIG. 1, the ink prints of Examples 2 and 3 containing composite tungsten oxide are more visible than the ink prints of Comparative Examples 4 to 7 containing commercial ATO. It can be seen that the contrast between the light wavelength region and the infrared wavelength region, in particular, the contrast between the visible light wavelength region and the near infrared wavelength region is clear.
〔オフセット印刷インキの色調と赤外線吸収性の関係〕
 以下に示される基材及びインキを用意した:
  基材:一般紙(王子製紙株式会社製 OKプリンス上質 斤量90kg)
  プロセスインキ(3色):
   藍色(C):スーパーテックGTシリーズ 藍(株式会社T&K TOKA製)
   紅色(M):スーパーテックGTシリーズ 紅(株式会社T&K TOKA製)
   黄色(Y):スーパーテックGTシリーズ 黄(株式会社T&K TOKA製)
[Relationship between offset printing ink color and infrared absorption]
The following substrates and inks were prepared:
Base material: General paper (OK Prince fine quality 90 kg)
Process ink (3 colors):
Indigo (C): Super Tech GT Series Indigo (T & K TOKA Co., Ltd.)
Crimson (M): Super Tech GT Series Crimson (T & K TOKA Co., Ltd.)
Yellow (Y): Super Tech GT Series Yellow (manufactured by T & K TOKA Corporation)
 以下の印刷サンプル作製条件に従って、基材に上記3色のプロセスインキをそれぞれ印刷して、それぞれの色に対応した3種類の印刷サンプルを得た:
(印刷サンプル作製条件)
 印刷機:オフセット印刷機 RIテスター(株式会社IHI機械システム製)
 インキ盛量:0.125cc
 インキ膜厚:約1μm
According to the following print sample preparation conditions, the above three color process inks were respectively printed on the substrate to obtain three types of print samples corresponding to the respective colors:
(Print sample preparation conditions)
Printing machine: Offset printing machine RI tester (manufactured by IHI Machine System Co., Ltd.)
Ink filling amount: 0.125 cc
Ink film thickness: about 1 μm
 以下の測定条件に従って、3種類の印刷サンプルの光反射率を測定した:
(測定条件)
 測定装置:紫外可視分光光度計 U-4000 (株式会社日立製作所製)
 測定項目:反射率(%)
 測定波長:350~2500nm
The light reflectance of three types of printed samples was measured according to the following measurement conditions:
(Measurement condition)
Measuring device: UV-visible spectrophotometer U-4000 (manufactured by Hitachi, Ltd.)
Measurement item: Reflectance (%)
Measurement wavelength: 350-2500 nm
 藍(C)、紅(M)及び黄(Y)プロセスインキについて、350~1500nmの波長域における反射率を図2に示す。 FIG. 2 shows the reflectance in the wavelength range of 350 to 1500 nm for the indigo (C), red (M), and yellow (Y) process inks.
 図2に示されるCMYプロセスインキの反射率グラフと、図1に示される実施例2及び3の反射率グラフとを組み合わせることにより、本発明の赤外線吸収性インキを一般的な色インキとして使用したときの色調と赤外線吸収性の関係を予想できる。 The infrared absorbing ink of the present invention was used as a general color ink by combining the reflectance graph of CMY process ink shown in FIG. 2 and the reflectance graph of Examples 2 and 3 shown in FIG. The relationship between the color tone and the infrared absorptivity can be expected.
 例えば、図2では、紅及び黄プロセスインキが、赤外線波長域(780~1100nm)の光を吸収していない。一方で、図1に示される実施例2及び3の反射率グラフでは、可視光波長域(380nm~780nm)の平均反射率よりも赤外線波長域の平均反射率が低いので、可視光よりも赤外光が吸収されていると考えられる。したがって、本発明の赤外線吸収性インキを紅又は黄インキとして使用すると、紅色又は黄色の色調に影響を与えることなく、インキに赤外線吸収性を付与できることが分かる。 For example, in FIG. 2, the red and yellow process inks do not absorb light in the infrared wavelength region (780-1100 nm). On the other hand, in the reflectance graphs of Examples 2 and 3 shown in FIG. 1, since the average reflectance in the infrared wavelength region is lower than the average reflectance in the visible light wavelength region (380 nm to 780 nm), it is less red than visible light. It is thought that outside light is absorbed. Therefore, it can be seen that when the infrared absorbing ink of the present invention is used as a red or yellow ink, the ink can be imparted with an infrared absorbing property without affecting the red or yellow color tone.
 また、図2から、藍プロセスインキが、赤外線波長域(780~1100nm)の光を僅かに吸収していると考えることもできる。しかしながら、図1において実施例2及び3の赤外線吸収インキが赤外光を吸収する割合と比べれば、藍プロセスインキが赤外光を吸収する割合は、考慮しなくてよいほど低い。したがって、本発明の赤外線吸収性インキを藍インキとして使用しても、藍色の色調に影響を与えることなく、インキに赤外線吸収性を付与できることが分かる。 Further, from FIG. 2, it can be considered that the indigo process ink slightly absorbs light in the infrared wavelength region (780 to 1100 nm). However, compared with the ratio in which the infrared absorbing inks of Examples 2 and 3 absorb infrared light in FIG. 1, the ratio in which the indigo process ink absorbs infrared light is so low that it does not need to be considered. Therefore, it can be seen that even when the infrared absorbing ink of the present invention is used as an indigo ink, the ink can be imparted with an infrared absorbing property without affecting the color tone of the indigo color.
 さらに、実施例2及び3の赤外線吸収インキは、着色剤を含まないので、オフセット印刷、凹版印刷等に適した特色インキ又は機能性インキと把握されることもできる。その場合、図1に示される実施例2及び3の反射率グラフを、本発明の特色インキの光反射特性を表すグラフとして見なすことができる。 Furthermore, since the infrared absorbing inks of Examples 2 and 3 do not contain a colorant, they can be grasped as special color inks or functional inks suitable for offset printing, intaglio printing, and the like. In that case, the reflectance graph of Example 2 and 3 shown by FIG. 1 can be regarded as a graph showing the light reflection characteristic of the special color ink of this invention.

Claims (13)

  1.  一般式M{式中、Mは、H、He、アルカリ金属元素、アルカリ土類金属元素、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、およびIから成る群から選択される1種類以上の元素であり、Wはタングステンであり、Oは酸素であり、x、y及びzは、それぞれ正数であり、0<x/y≦1であり、かつ2.2≦z/y≦3.0である}で表される複合タングステン酸化物、または一般式W{式中、Wはタングステンであり、Oは酸素であり、y及びzは、それぞれ正数であり、かつ2.45≦z/y≦2.999である}で表されるマグネリ相を有するタングステン酸化物から選択される1種以上の赤外線吸収性材料微粒子;および
     ビヒクル;
    を含む赤外線吸収性インキであって、前記ビヒクルは、植物油または植物油由来の化合物から選択される第一の溶剤と、アルコール類、エーテル類、エステル類、ケトン類、芳香族炭化水素類、脂肪族炭化水素類、およびグリコールエーテル類から成る群から選択され、かつ180℃以下の沸点を有する第二の溶剤と、樹脂とを含み、かつ前記第二の溶剤の含有量は、前記赤外線吸収性インキの質量に対して2質量%以下である、赤外線吸収性インキ。
    General formula M x W y O z {wherein M is H, He, alkali metal element, alkaline earth metal element, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, One or more elements selected from the group consisting of Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I, W is tungsten, O is oxygen, x, y And z are each a positive number, 0 <x / y ≦ 1 and 2.2 ≦ z / y ≦ 3.0}, or a composite tungsten oxide represented by the general formula W y O z {wherein W is tungsten, O is oxygen, and y and z are positive numbers, respectively. And one or more infrared absorbing material fine particles selected from tungsten oxide having a magnetic phase represented by 2.45 ≦ z / y ≦ 2.999; and a vehicle;
    Infrared absorbing ink containing the vehicle, wherein the vehicle is a first solvent selected from vegetable oils or compounds derived from vegetable oils, alcohols, ethers, esters, ketones, aromatic hydrocarbons, aliphatic A second solvent selected from the group consisting of hydrocarbons and glycol ethers and having a boiling point of 180 ° C. or lower and a resin, and the content of the second solvent is the infrared absorbing ink. Infrared absorbing ink that is 2% by mass or less based on the mass of
  2.  前記赤外線吸収性材料微粒子の分散粒子径が、1nm以上200nm以下である、請求項1に記載の赤外線吸収性インキ。 The infrared absorbing ink according to claim 1, wherein the dispersed particle diameter of the infrared absorbing material fine particles is 1 nm or more and 200 nm or less.
  3.  前記赤外線吸収性材料微粒子の表面が、Si、Ti、AlおよびZrから成る群から選択される1種以上を含有する酸化物で被覆されている、請求項1又は2に記載の赤外線吸収性インキ。 The infrared absorbing ink according to claim 1 or 2, wherein the surface of the infrared absorbing material fine particles is coated with an oxide containing at least one selected from the group consisting of Si, Ti, Al and Zr. .
  4.  前記複合タングステン酸化物は、六方晶の結晶構造を有するか、または六方晶の結晶構造から成る、請求項1~3のいずれか1項に記載の赤外線吸収性インキ。 The infrared absorbing ink according to any one of claims 1 to 3, wherein the composite tungsten oxide has a hexagonal crystal structure or a hexagonal crystal structure.
  5.  前記第一の溶剤は植物油である、請求項1~4のいずれか1項に記載の赤外線吸収性インキ。 The infrared absorbing ink according to any one of claims 1 to 4, wherein the first solvent is vegetable oil.
  6.  前記植物油は、乾性油または半乾性油である、請求項5に記載の赤外線吸収性インキ。 The infrared absorbing ink according to claim 5, wherein the vegetable oil is a drying oil or a semi-drying oil.
  7.  前記ビヒクルは、光重合成分をさらに含む、請求項1~6のいずれか1項に記載の赤外線吸収性インキ。 The infrared absorbing ink according to any one of claims 1 to 6, wherein the vehicle further contains a photopolymerization component.
  8.  前記第一の溶剤に可溶な脂肪酸を構造中に有する分散剤をさらに含む、請求項1~7のいずれか1項に記載の赤外線吸収性インキ。 The infrared absorbing ink according to any one of claims 1 to 7, further comprising a dispersant having a fatty acid soluble in the first solvent in its structure.
  9.  前記赤外線吸収性材料微粒子の含有量が、前記赤外線吸収性インキの質量に対して1.0質量%以上45質量%以下である、請求項1~8のいずれか1項に記載の赤外線吸収性インキ。 The infrared absorptivity according to any one of claims 1 to 8, wherein a content of the infrared absorbing material fine particles is 1.0% by mass or more and 45% by mass or less with respect to a mass of the infrared absorbing ink. ink.
  10.  偽造防止用である、請求項1~9のいずれか1項に記載の赤外線吸収性インキ。 The infrared absorbing ink according to any one of claims 1 to 9, which is used for preventing forgery.
  11.  前記赤外線吸収性インキの粘度が、0.002Pa・s以上200Pa・s以下である、請求項1~10のいずれか1項に記載の赤外線吸収性インキ。 The infrared-absorbing ink according to any one of claims 1 to 10, wherein the infrared-absorbing ink has a viscosity of 0.002 Pa · s to 200 Pa · s.
  12.  請求項1~11のいずれか1項に記載の赤外線吸収性インキを使用して、フレキソ印刷、活版印刷、オフセット印刷、凹版印刷、グラビア印刷、スクリーン印刷またはインクジェット印刷で印刷物を得る方法。 A method for obtaining a printed matter by flexographic printing, letterpress printing, offset printing, intaglio printing, gravure printing, screen printing or ink jet printing using the infrared absorbing ink according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の赤外線吸収性インキにより印刷された偽造防止用の印刷部を備える印刷物。 A printed matter comprising an anti-counterfeit printing part printed with the infrared absorbing ink according to any one of claims 1 to 11.
PCT/JP2016/052288 2015-01-27 2016-01-27 Infrared-absorbent ink WO2016121801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016572093A JP6403806B2 (en) 2015-01-27 2016-01-27 Infrared absorbing ink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015013572 2015-01-27
JP2015-013572 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016121801A1 true WO2016121801A1 (en) 2016-08-04

Family

ID=56543411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052288 WO2016121801A1 (en) 2015-01-27 2016-01-27 Infrared-absorbent ink

Country Status (3)

Country Link
JP (1) JP6403806B2 (en)
TW (1) TW201700641A (en)
WO (1) WO2016121801A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104855A1 (en) * 2015-12-18 2017-06-22 住友金属鉱山株式会社 Composition for anti-counterfeit ink, anti-counterfeit ink, printed article for counterfeit prevention, and method of producing composition for anti-counterfeit ink
WO2018235820A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
WO2019021992A1 (en) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting
JP2019077797A (en) * 2017-10-25 2019-05-23 ゼネラル株式会社 Inkjet ink and method for forming semi-stereoscopic image using the same
CN110753730A (en) * 2017-06-19 2020-02-04 住友金属矿山株式会社 Near-infrared-curable ink composition, method for producing same, near-infrared-curable film, and stereolithography method
JP2020050690A (en) * 2018-09-21 2020-04-02 共同印刷株式会社 Infrared absorbing UV ink and method for producing the same
WO2020061631A1 (en) * 2018-09-25 2020-04-02 Ccl Secure Pty Ltd Security documents and security devices comprising infrared-absorbent compositions
WO2020061629A1 (en) * 2018-09-25 2020-04-02 Ccl Secure Pty Ltd An ink for printing a security document and a security feature on a substrate for a security document
JPWO2021049381A1 (en) * 2019-09-13 2021-03-18
WO2021161430A1 (en) * 2020-02-12 2021-08-19 共同印刷株式会社 Infrared-absorbing uv ink and method for producing same
CN113755058A (en) * 2021-09-24 2021-12-07 中钞印制技术研究院有限公司 Ink and printed matter
EP3981604A4 (en) * 2019-06-05 2022-08-10 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink and anti-counterfeit printed matter
WO2023120513A1 (en) * 2021-12-22 2023-06-29 共同印刷株式会社 Printed fabric for assessing authenticity, and method for producing same
CN117467310A (en) * 2023-10-31 2024-01-30 珠海市铠信科技有限公司 Anti-counterfeiting color paste, ultraviolet light curing anti-counterfeiting ink-jet ink, and preparation methods and applications thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371376B2 (en) * 2019-07-23 2023-10-31 住友金属鉱山株式会社 Composition containing infrared absorbing fine particles and method for producing the same
JP2022010821A (en) * 2020-06-29 2022-01-17 共同印刷株式会社 Infrared ray-absorbing ultraviolet-ray curable ink and infrared ray-absorbing printed matter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP2006143778A (en) * 2004-11-16 2006-06-08 Sun Bijutsu Insatsu Kk Information-carrying sheet and printing ink for it
JP2008291167A (en) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd Planographic ink composition
WO2012128332A1 (en) * 2011-03-24 2012-09-27 旭硝子株式会社 Liquid composition, method for producing same, and glass article
JP2012229388A (en) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film
JP2012532822A (en) * 2009-07-07 2012-12-20 ビーエーエスエフ ソシエタス・ヨーロピア Potassium / cesium / tungsten bronze particles
JP2013112791A (en) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Infrared shielding material particulate dispersion liquid, production method thereof, and heat-ray shielding membrane and heat-ray shielding laminated transparent substrate
JP2013526625A (en) * 2010-05-10 2013-06-24 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Polymer composition having heat absorption characteristics and high stability
JP2015117353A (en) * 2013-12-20 2015-06-25 住友金属鉱山株式会社 Anti-counterfeit ink and anti-counterfeit printed matter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP2006143778A (en) * 2004-11-16 2006-06-08 Sun Bijutsu Insatsu Kk Information-carrying sheet and printing ink for it
JP2008291167A (en) * 2007-05-28 2008-12-04 Toyo Ink Mfg Co Ltd Planographic ink composition
JP2012532822A (en) * 2009-07-07 2012-12-20 ビーエーエスエフ ソシエタス・ヨーロピア Potassium / cesium / tungsten bronze particles
JP2013526625A (en) * 2010-05-10 2013-06-24 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Polymer composition having heat absorption characteristics and high stability
WO2012128332A1 (en) * 2011-03-24 2012-09-27 旭硝子株式会社 Liquid composition, method for producing same, and glass article
JP2012229388A (en) * 2011-04-14 2012-11-22 Sumitomo Metal Mining Co Ltd Method for manufacturing heat-ray shielding fine particle-containing composition and heat-ray shielding fine particle-containing composition, heat-ray shielding film using the heat-ray shielding fine particle-containing composition and heat-ray shielding transparent laminated substrate using the heat-ray shielding film
JP2013112791A (en) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Infrared shielding material particulate dispersion liquid, production method thereof, and heat-ray shielding membrane and heat-ray shielding laminated transparent substrate
JP2015117353A (en) * 2013-12-20 2015-06-25 住友金属鉱山株式会社 Anti-counterfeit ink and anti-counterfeit printed matter

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008476B2 (en) * 2015-12-18 2021-05-18 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
WO2017104855A1 (en) * 2015-12-18 2017-06-22 住友金属鉱山株式会社 Composition for anti-counterfeit ink, anti-counterfeit ink, printed article for counterfeit prevention, and method of producing composition for anti-counterfeit ink
US20190002712A1 (en) * 2015-12-18 2019-01-03 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
CN110770310A (en) * 2017-06-19 2020-02-07 住友金属矿山株式会社 Composition for forgery-preventing ink, forgery-preventing printed matter, and method for producing composition for forgery-preventing ink
KR102522325B1 (en) * 2017-06-19 2023-04-18 스미토모 긴조쿠 고잔 가부시키가이샤 Composition for anti-counterfeiting ink, anti-counterfeiting ink, print for anti-counterfeiting, and method for producing composition for anti-counterfeiting ink
CN110753730A (en) * 2017-06-19 2020-02-04 住友金属矿山株式会社 Near-infrared-curable ink composition, method for producing same, near-infrared-curable film, and stereolithography method
AU2018289672B2 (en) * 2017-06-19 2023-08-10 Sumitomo Metal Mining Co., Ltd. Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
KR20200019870A (en) * 2017-06-19 2020-02-25 스미토모 긴조쿠 고잔 가부시키가이샤 Method for producing composition for anti-counterfeiting ink, anti-counterfeiting ink, printed matter for anti-counterfeiting, and composition for anti-counterfeiting ink
WO2018235820A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
US11807766B2 (en) 2017-06-19 2023-11-07 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing the anti-counterfeit ink composition
EP3643757A4 (en) * 2017-06-19 2021-03-24 Sumitomo Metal Mining Co., Ltd. Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
JPWO2018235820A1 (en) * 2017-06-19 2020-04-23 住友金属鉱山株式会社 Anti-counterfeit ink composition, anti-counterfeit ink, anti-counterfeit printed matter, and method for producing anti-counterfeit ink composition
JP7140117B2 (en) 2017-06-19 2022-09-21 住友金属鉱山株式会社 Anti-counterfeiting ink composition, anti-counterfeiting ink, anti-counterfeiting printed matter, and method for producing anti-counterfeiting ink composition
JPWO2019021992A1 (en) * 2017-07-24 2020-05-28 住友金属鉱山株式会社 Infrared absorbing fine particle dispersed powder, infrared absorbing fine particle dispersed powder containing dispersion, infrared absorbing fine particle dispersed powder containing ink, anti-counterfeit ink, and anti-counterfeit printed matter
IL272223B1 (en) * 2017-07-24 2023-09-01 Sumitomo Metal Mining Co Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, and anti-counterfeit ink, and anti-counterfeit printed matter
US11787949B2 (en) 2017-07-24 2023-10-17 Sumitomo Metal Mining Co., Ltd. Infrared absorbing fine particle dispersed powder, dispersion liquid containing infrared absorbing fine particle dispersed powder, ink containing infrared absorbing fine particle dispersed powder, and anti-counterfeit ink, and anti-counterfeit printed matter
WO2019021992A1 (en) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting
JP7259748B2 (en) 2017-07-24 2023-04-18 住友金属鉱山株式会社 Dispersed powder of infrared-absorbing fine particles, dispersion liquid containing dispersed powder of infrared-absorbing fine particles, ink containing dispersed powder of infrared-absorbing fine particles, anti-counterfeiting ink, and printed matter for preventing counterfeiting
JP2019077797A (en) * 2017-10-25 2019-05-23 ゼネラル株式会社 Inkjet ink and method for forming semi-stereoscopic image using the same
JP2020050690A (en) * 2018-09-21 2020-04-02 共同印刷株式会社 Infrared absorbing UV ink and method for producing the same
JP7122920B2 (en) 2018-09-21 2022-08-22 共同印刷株式会社 Infrared absorbing UV ink and its manufacturing method
GB2592151A (en) * 2018-09-25 2021-08-18 Ccl Secure Pty Ltd Security documents and security devices comprising infrared-absorbent compositions
WO2020061631A1 (en) * 2018-09-25 2020-04-02 Ccl Secure Pty Ltd Security documents and security devices comprising infrared-absorbent compositions
WO2020061629A1 (en) * 2018-09-25 2020-04-02 Ccl Secure Pty Ltd An ink for printing a security document and a security feature on a substrate for a security document
EP3981604A4 (en) * 2019-06-05 2022-08-10 Sumitomo Metal Mining Co., Ltd. Anti-counterfeit ink composition, anti-counterfeit ink and anti-counterfeit printed matter
JPWO2021049381A1 (en) * 2019-09-13 2021-03-18
WO2021049381A1 (en) * 2019-09-13 2021-03-18 共同印刷株式会社 Printed object
CN114341284A (en) * 2019-09-13 2022-04-12 共同印刷株式会社 Printed matter
EP4030344A4 (en) * 2019-09-13 2023-10-11 Kyodo Printing Co., Ltd. Printed object
US20220348034A1 (en) * 2019-09-13 2022-11-03 Kyodo Printing Co., Ltd. Printed object
JP7433329B2 (en) 2019-09-13 2024-02-19 共同印刷株式会社 printed matter
WO2021161430A1 (en) * 2020-02-12 2021-08-19 共同印刷株式会社 Infrared-absorbing uv ink and method for producing same
CN113755058A (en) * 2021-09-24 2021-12-07 中钞印制技术研究院有限公司 Ink and printed matter
WO2023120513A1 (en) * 2021-12-22 2023-06-29 共同印刷株式会社 Printed fabric for assessing authenticity, and method for producing same
CN117467310A (en) * 2023-10-31 2024-01-30 珠海市铠信科技有限公司 Anti-counterfeiting color paste, ultraviolet light curing anti-counterfeiting ink-jet ink, and preparation methods and applications thereof

Also Published As

Publication number Publication date
JPWO2016121801A1 (en) 2017-10-05
JP6403806B2 (en) 2018-10-10
TW201700641A (en) 2017-01-01

Similar Documents

Publication Publication Date Title
JP6403806B2 (en) Infrared absorbing ink
EP3252117B1 (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
JP6541400B2 (en) Anti-counterfeit ink and printed matter thereof
US11084949B2 (en) Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
JP2014514367A (en) Compositions and methods for improving coagulation properties and rub resistance of printing inks
JP7358785B2 (en) Anti-counterfeiting ink composition, anti-counterfeiting ink, anti-counterfeiting printed matter
TW201634396A (en) Near-infrared ray absorbing microparticle dispersion solution and production method thereof
CN104629524A (en) Oily offset printing ink capable of absorbing infrared rays
WO2015068290A1 (en) Infrared-absorptive intaglio printing ink
WO2015068289A1 (en) Infrared-absorptive letterpress printing ink
WO2015068283A1 (en) Infrared-absorptive offset printing ink
KR102313716B1 (en) intaglio ink for improving printability and usability and method for preparing the same
WO2015068281A1 (en) Infrared-absorptive screen printing ink
TWI841535B (en) Powder in which infrared absorbing particles are dispersed, dispersion containing powder in which infrared absorbing particles are dispersed, ink containing powder in which infrared absorbing particles are dispersed, and anti-counterfeiting ink and anti-counterfeiting printed matter
TW201518446A (en) Infrared-absorptive offset printing ink
WO2015068280A1 (en) Infrared-absorptive gravure printing ink
WO2015068291A1 (en) Printed article
TW201518426A (en) Infrared-absorptive intaglio printing ink
TW201518427A (en) Infrared-absorptive flexographic printing ink
TW201908420A (en) a powder in which infrared absorbing fine particles are dispersed, a dispersion containing a powder in which infrared absorbing fine particles are dispersed, an ink containing a powder in which infrared absorbing fine particles are dispersed, and an anti-counterfeiting ink and an anti-counterfeit printed matter
TW201518428A (en) Infrared-absorptive gravure printing ink
TW201518429A (en) Infrared-absorptive screen printing ink
JP2007031655A (en) Method for producing pigment composition and printing ink and printed matter
TW201518430A (en) Printed article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572093

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743404

Country of ref document: EP

Kind code of ref document: A1