WO2016121608A1 - Base station and user terminal - Google Patents

Base station and user terminal Download PDF

Info

Publication number
WO2016121608A1
WO2016121608A1 PCT/JP2016/051647 JP2016051647W WO2016121608A1 WO 2016121608 A1 WO2016121608 A1 WO 2016121608A1 JP 2016051647 W JP2016051647 W JP 2016051647W WO 2016121608 A1 WO2016121608 A1 WO 2016121608A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
measurement result
reference signal
enb
user terminal
Prior art date
Application number
PCT/JP2016/051647
Other languages
French (fr)
Japanese (ja)
Inventor
宏行 浦林
空悟 守田
憲由 福田
直久 松本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2016571978A priority Critical patent/JP6438052B2/en
Publication of WO2016121608A1 publication Critical patent/WO2016121608A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to a user terminal capable of communicating in a licensed band and an unlicensed band and a base station capable of communicating with the user terminal.
  • the base station measures the interference power in the unlicensed band.
  • the measurement result is good (specifically, when the interference power is low), a radio signal can be transmitted in the unlicensed band.
  • the base station includes: a transmission unit that transmits a reference signal in an unlicensed band; a reception unit that receives a measurement result of a radio signal in the unlicensed band from a user terminal; and A control unit that excludes measurement values measured at a timing when the reference signal is not transmitted in the unlicensed band.
  • FIG. 1 is a configuration diagram of an LTE system according to each embodiment.
  • FIG. 2 is a block diagram of the UE according to each embodiment.
  • FIG. 3 is a block diagram of the eNB according to each embodiment.
  • FIG. 4 is a protocol stack diagram according to each embodiment.
  • FIG. 5 is a configuration diagram of a radio frame according to each embodiment.
  • FIG. 6 is a diagram for explaining an operation according to the first embodiment.
  • FIG. 7 is a diagram for explaining an operation according to the second embodiment.
  • FIG. 8 is a diagram for explaining an operation according to the third embodiment.
  • FIG. 9 is a diagram for explaining an operation according to the fourth embodiment.
  • FIG. 10 is a diagram for explaining an operation according to the modified example of the fourth embodiment.
  • FIG. 11 is a diagram for explaining a listen failure before DRS transmission.
  • FIG. 12 is a diagram for explaining LAA DRS RSRP measurement.
  • FIG. 13 is a diagram for explaining an example (right) of existing channel mapping (left
  • the user terminal performs measurement on the reference signal transmitted from the base station in the unlicensed band.
  • the base station can measure the availability of communication with the user terminal or the communication quality in the unlicensed band.
  • the base station cannot transmit the reference signal when the measurement result of the interference power is bad. For this reason, even if the user terminal knows the scheduled transmission timing of the reference signal, the user terminal cannot determine whether the reference signal is not transmitted or whether the reference signal is transmitted but cannot be received due to interference. As a result, there is a possibility that an appropriate measurement result for the reference signal cannot be acquired.
  • an object of the present application is to make it possible to obtain an appropriate measurement result for a reference signal in an unlicensed band.
  • the base station includes: a transmission unit that transmits a reference signal in an unlicensed band; a reception unit that receives a measurement result of a radio signal in the unlicensed band from a user terminal; and A control unit that excludes measurement values measured at a timing when the reference signal is not transmitted in the licensed band.
  • the reception unit may receive the measurement result from the user terminal that transmits one measurement result every time the base station transmits one reference signal.
  • the base station can communicate in the unlicensed band with user terminals that can communicate in the licensed band and the unlicensed band.
  • the base station includes a control unit that measures interference power in the unlicensed band, a transmission unit that transmits a reference signal in the unlicensed band based on a measurement result of the interference power, and a measurement of the interference power. And a storage unit that holds a transmission record related to the timing at which the reference signal is not transmitted based on the result.
  • the control unit when a measurement result for the reference signal is reported from the user terminal, based on the transmission record, a predetermined result corresponding to a timing at which the reference signal is not transmitted from the measurement result for the reference signal. Exclude measurement results.
  • the transmission unit transmits setting information for causing the user terminal to perform measurement of interference power in the unlicensed band at the same timing as the base station.
  • the control unit acquires the measurement result of the interference power in the user terminal, and transmits the measurement result of the interference power in the user terminal and the measurement result of the interference power in the user terminal to the user terminal. Determine data error tolerance.
  • the control unit measures interference power in the unlicensed band immediately before transmitting the data.
  • the measurement result of the interference power in the local station includes not only the measurement result of the interference power measured immediately before the transmission of the reference signal but also the measurement result of the interference power measured immediately before the transmission of the data.
  • the user terminal can communicate in the licensed band, and can communicate in the unlicensed band with a base station that transmits a radio signal based on the measurement result of interference power in the unlicensed band. It is.
  • the user terminal includes a control unit that performs measurement on a predetermined radio signal in the unlicensed band and reports a measurement result on the predetermined radio signal.
  • the control unit specifies a timing at which a reference signal is not transmitted from the base station in the unlicensed band, and excludes a predetermined measurement result corresponding to the specified timing.
  • the user terminal further includes a storage unit that stores signal sequence information for specifying a signal sequence related to the reference signal transmitted from the base station.
  • a storage unit that stores signal sequence information for specifying a signal sequence related to the reference signal transmitted from the base station.
  • the user terminal further includes a receiving unit that receives transmission information related to the timing at which the reference signal is transmitted.
  • the control unit identifies a timing at which the reference signal is not transmitted based on the transmission information.
  • the user terminal further includes a receiving unit that receives schedule information related to a scheduled transmission timing of the reference signal before measurement of the predetermined radio signal.
  • the control unit measures the predetermined radio signal at the scheduled transmission timing based on the schedule information, and measures interference power in the unlicensed band at a timing different from the scheduled transmission timing.
  • the control unit identifies a timing at which the reference signal is not transmitted based on a measurement result at the different timing and a measurement result at the scheduled transmission timing.
  • the different timing is at least one of the timing before and after the scheduled transmission timing.
  • the control unit refers to the scheduled transmission timing when the first reception level, which is a measurement result at the different timing, is higher than a second reception level, which is the measurement result at the scheduled transmission timing, by a predetermined value or more. It is specified as the timing when the signal is transmitted.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network (LTE network).
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the EPC 20 may include OAM (Operation and Maintenance).
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the OAM is a server device managed by an operator and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 'that constitutes the control unit.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the wireless transceiver 110 includes a wireless transceiver 110A and a wireless transceiver 110B.
  • the radio transmission / reception 110A transmits / receives a radio signal in the licensed band
  • the radio transmission / reception 110B transmits / receives a radio signal in the unlicensed band.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores electric power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 corresponds to a control unit, and executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 'that constitutes the control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 transmits and receives radio signals in the licensed band.
  • the wireless transceiver 210 may be able to transmit and receive wireless signals not only in the licensed band but also in the unlicensed band.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 corresponds to a control unit, and executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines (schedules) uplink / downlink transport formats (transport block size, modulation / coding scheme) and resource blocks allocated to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks
  • time resources are configured by subframes (or slots).
  • the UE 100 may perform communication using not only a licensed band (licensed band / licensed spectrum) licensed to a cellular network operator but also an unlicensed band (unlicensed band / unlicensed spectrum) that can be used without a license. it can.
  • a licensed band licensed band / licensed spectrum
  • an unlicensed band unlicensed band / unlicensed spectrum
  • the UE 100 can perform communication using an unlicensed band by carrier aggregation (CA).
  • CA carrier aggregation
  • the carrier (frequency band) in LTE is positioned as a component carrier in order to realize a wide band while ensuring backward compatibility with LTE, and UE 100 communicates using a plurality of component carriers (a plurality of serving cells) simultaneously.
  • a cell that provides predetermined information when a UE starts an RRC connection is called a primary cell (PCell).
  • the primary cell provides NAS mobility information (eg, TAI) during RRC connection establishment / re-establishment / handover, or provides security information during RRC connection re-establishment / handover.
  • the auxiliary serving cell paired with the primary cell is called a secondary cell (SCell).
  • the secondary cell is formed together with the primary cell.
  • a predetermined frequency (carrier) in the unlicensed band is used as a secondary cell.
  • the secondary cell is referred to as a U-SCell.
  • the UE 100 can perform communication using an unlicensed band by a dual connection method (Dual Connectivity: DC).
  • DC Dual Connectivity
  • radio resources are assigned to the UE 100 from a plurality of eNBs 200.
  • the DC may be referred to as inter-eNB carrier aggregation (inter-eNB CA).
  • a master eNB among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100.
  • a secondary eNB among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100.
  • An Xn interface is set between the MeNB and SeNB. The Xn interface is an X2 interface or a new interface.
  • the UE 100 can perform carrier aggregation using the N cells managed by the MeNB and the M cells managed by the SeNB at the same time.
  • a group consisting of N cells managed by the MeNB is referred to as a master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • PSCell a cell having at least an uplink control signal (PUCCH) reception function is referred to as a PSCell.
  • PSCell has some functions similar to PCell, but does not perform RRC connection with UE 100 and does not transmit an RRC message, for example.
  • the SCell When a predetermined frequency (carrier) in the unlicensed band is used as an SCell, the SCell is referred to as a U-SCell. When used as a PSCell, the SCell is referred to as a U-PSCell. Called.
  • LAA Licensed-Assessed Access
  • the UE 100 communicates with a cell operated in a licensed band (hereinafter, licensed cell) and a cell operated in an unlicensed band (hereinafter, unlicensed cell).
  • the licensed cell may be used as a PCell, and the unlicensed cell may be used as an SCell (or PSCell).
  • the said licensed cell and the said unlicensed cell may be managed by one node (for example, eNB200).
  • the unlicensed cell When the licensed cell and the unlicensed cell are managed (controlled) by one eNB 200, the unlicensed cell (and licensed cell) is formed by an RRH (Remote Radio Head) having a radio transceiver. Also good.
  • the license cell may be managed by the eNB 200, and the unlicensed cell may be managed by a radio communication apparatus different from the eNB 200.
  • the eNB 200 and the wireless communication apparatus can exchange various types of information to be described later via a predetermined interface (X2 interface or S1 interface).
  • the eNB 200 that manages the license cell may notify the information acquired from the UE 100 to the radio communication device, or may notify the UE 100 of the information acquired from the radio communication device.
  • CCA Carrier Channel Assessment
  • LBT Listen Before Talk
  • the eNB 200 measures interference power to confirm whether or not a frequency (carrier) in the unlicensed band is available.
  • the eNB 200 allocates, to the UE 100, radio resources included in the frequency (carrier) that is confirmed to be an empty channel based on the measurement result of the interference power (scheduling).
  • the eNB 200 performs scheduling in the unlicensed cell via the unlicensed cell.
  • eNB200 may perform the scheduling in an unlicensed cell via a licensed cell (namely, cross-carrier scheduling).
  • the operation by the eNB 200 will be appropriately described as an operation by a cell managed by the eNB 200.
  • a case where one eNB 200 communicates with the UE 100 using a frequency in the licensed band (licensed cell) and a frequency in the unlicensed band (unlicensed cell) will be mainly described, but the present invention is not limited thereto. Should be noted.
  • FIG. 6 is a diagram for explaining an operation according to the first embodiment.
  • the UE 100 is located in a PCell (licensed cell) managed by the eNB 200.
  • the UE 100 may be in an RRC idle state or an RRC connected state.
  • the UE 100 has not started communication with the U-SCell (unlicensed cell) managed by the eNB 200.
  • the UE 100 may perform communication with the U-SCel.
  • the PCell (eNB 200) transmits signal sequence information.
  • the signal sequence information may be transmitted by a common signal (for example, SIB, PDCCH), or may be transmitted by an individual signal (for example, PDSCH).
  • the UE 100 stores the received signal sequence information in the memory 150.
  • the signal sequence information is information for specifying a signal sequence related to a reference signal transmitted from the U-SCell (eNB 200).
  • the reference signal is, for example, a discovery reference signal (DRS: Discovery Reference signal).
  • DRS includes a synchronization signal (primary synchronization signal (PSS) and / or secondary synchronization signal (SSS)), cell reference signal, channel state information reference signal (CSI-RS), and downlink demodulation reference signal (DL-DMRS). Including at least one of the signals. Therefore, DRS is used for at least one of cell identification, synchronization, and channel state observation.
  • the signal sequence information includes a subframe number, a cell identifier (Cell ID), a CSI identifier (CSI ID), and the like.
  • Cell ID cell identifier
  • CSI ID CSI identifier
  • the U-SCell (eNB 200) transmits a reference signal (DRS).
  • the reference signal is transmitted using a specific frequency (carrier) on which the U-SCell is operated.
  • the eNB 200 measures the interference power at a specific frequency before the reference signal is transmitted.
  • the eNB 200 is set to transmit the reference signal periodically (for example, at intervals of Xms). However, when the interference power exceeds the threshold (when interference is detected) as a result of measuring the interference power at a predetermined frequency in the unlicensed band, the eNB 200 stops transmitting the radio signal. Therefore, there may be a period during which the eNB 200 cannot transmit a radio signal as set.
  • the UE 100 performs measurement (Measurement) on a radio signal in the unlicensed band.
  • the UE 100 may receive information on the DRS transmission timing from the PCell and / or information indicating a specific frequency on which the U-SCell is operated, and perform measurement based on the information.
  • UE100 confirms whether the acquired measurement result is a measurement result with respect to DRS.
  • the UE 100 calculates a signal sequence of a radio signal received during measurement, and obtains a correlation value between the signal sequence and a signal sequence calculated based on the signal sequence information.
  • UE100 determines whether the calculated
  • the UE 100 determines that the received radio signal is a reference signal transmitted from the U-SCell. In this case, the UE 100 specifies the measured timing as the timing at which the reference signal is transmitted.
  • the threshold may be stored in advance by the UE 100 or may be provided from the eNB 200.
  • the UE100 does not need to memorize
  • the UE 100 stores the measurement value and the measurement time for the radio signal in association with each other, and the UE 100 performs the above determination before reporting the measurement result, and the measurement result corresponding to the timing at which the reference signal is not transmitted. You may exclude from report object.
  • the UE 100 transmits the measurement result for the radio signal in the unlicensed band to the PCell.
  • the measurement result may be a result regarding the reception level (RSRP / RSRQ) or a result regarding the channel state (specifically, CSI, PMI, RI, etc.).
  • the UE 100 excludes the measurement result corresponding to the timing when the reference signal is not transmitted from the report target, the measurement result does not include the measurement result measured at the timing when the reference signal is not transmitted.
  • eNB200 PCell
  • PCell can determine appropriately regarding UE100 and communication in an unlicensed band based on a measurement result.
  • the eNB 200 can determine whether or not communication (connection) with the PSCell is possible based on the measurement result, and can calculate communication quality in the PSCell.
  • FIG. 7 is a diagram for explaining an operation according to the second embodiment. Description of the same parts as those in the above-described embodiment will be omitted as appropriate.
  • the UE 100 excludes the measurement result corresponding to the timing at which the reference signal is not transmitted, from the report target, based on the information received from the eNB 200.
  • step S201 the U-SCell (eNB 200) performs interference power measurement (CCA) at a specific frequency where the U-SCell is operated.
  • CCA interference power measurement
  • step S202 the U-SCell transmits a DRS on a specific frequency.
  • step S203 the UE 100 performs measurement on a radio signal at a specific frequency.
  • the UE 100 stores the measurement result (first measurement result).
  • the measurement result is stored in association with the measurement time.
  • step S204 the U-SCell measures the interference power after a predetermined time has elapsed after performing the CCA in step S201.
  • the description will be made assuming that the interference power is equal to or greater than the threshold value.
  • the U-SCell stops the DRS transmission.
  • step S205 the UE 100 performs measurement on the radio signal at the specific frequency, and stores the measurement result (second measurement result).
  • step S206 the U-SCell measures the interference power after a predetermined time has elapsed after performing the CCA in step S204.
  • the description will be made assuming that the interference power is less than the threshold value.
  • step S207 the U-SCell transmits a DRS on a specific frequency.
  • step S208 the UE 100 performs the measurement on the radio signal at the specific frequency, and stores the measurement result (third measurement result).
  • the PCell transmits transmission information related to the timing at which the reference signal is transmitted.
  • UE100 receives transmission information.
  • the transmission information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH).
  • the transmission information may be information indicating the timing when the reference signal is transmitted, or may be information indicating the timing when the reference signal is not transmitted.
  • the transmission information may be a list of subframe numbers.
  • the transmission information may be included in a message requesting deletion of the measurement result corresponding to the timing when the reference signal is not transmitted.
  • ENB 200 stores at least one of the timing at which the reference signal is transmitted and the timing at which the reference signal is not transmitted.
  • the timing at which the reference signal is not transmitted may be a timing at which the reference signal is scheduled to be transmitted and a timing at which the reference signal cannot be transmitted based on the measurement result of the interference power.
  • the UE 100 identifies the timing at which the reference signal is not transmitted based on the transmission information.
  • the UE 100 excludes the measurement result corresponding to the identified timing from the report target.
  • the transmission information indicates the timing at which the transmission of the reference signal after step S204 is scheduled.
  • the UE 100 excludes the second measurement result corresponding to the timing indicated by the transmission information from the report target.
  • the UE 100 may perform an operation of excluding the measurement result from the report target by using the reception of the transmission information as a trigger, or excluding the measurement result from the report target by starting the operation for reporting the measurement result. May be performed.
  • step S210 the UE 100 transmits the measurement result to the PCell.
  • the measurement result includes the first measurement result and the third measurement result, and does not include the second measurement result that is not the measurement result for the reference signal.
  • eNB200 can acquire a suitable measurement result. Therefore, the eNB 200 can appropriately determine the communication in the unlicensed band based on the measurement result.
  • the transmission information indicates a plurality of timings related to the reference signal, but is not limited thereto.
  • the transmission information may be transmitted to the UE 100 every time the DRS is not transmitted, or may be transmitted to the UE 100 every time the DRS is transmitted.
  • FIG. 8 is a diagram for explaining an operation according to the third embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
  • the UE 100 excludes the measurement result corresponding to the timing at which the reference signal is not transmitted, from the report target, based on the measurement result of the interference power.
  • the first radio communication device (WT 400-1) exists in the vicinity of the UE 100, and the second radio communication device (WT 400-2) exists in the vicinity of the eNB 200.
  • WT 400-1 and WT 400-2 transmit radio signals at a specific frequency in the unlicensed band (see FIG. 8B).
  • the eNB 200 transmits setting information related to the scheduled transmission timing of the reference signal.
  • UE100 receives the setting information regarding the transmission plan timing of a reference signal.
  • the setting information may be information specifying measurement timing for a reference signal at a specific frequency.
  • the setting information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH). Based on the setting information, the UE 100 performs the measurement for the reference signal at the specific frequency at the reference signal transmission scheduled timing.
  • the UE 100 measures the interference power at a specific frequency (execution of CCA) at a timing different from the scheduled transmission timing of the reference signal.
  • the different timing is at least one of the timing before and after the scheduled transmission timing.
  • the different timing may be a timing before a predetermined time and / or a timing after a predetermined time with respect to the timing for performing the measurement on the reference signal.
  • the different timing may be the same timing as the timing at which the eNB 200 measures the interference power.
  • the UE 100 measures the interference power at timings before and after the scheduled transmission timing (see FIG. 8B).
  • the WT 400-1 transmits a radio signal at a specific frequency.
  • WT 400-2 transmits a radio signal at a specific frequency.
  • the eNB 200 and the UE 100 measure the interference power. Since the eNB 200 is far from the WT 400-1, the interference power in the eNB 200 is less than the threshold value. As a result, the eNB 200 determines to transmit the reference signal at t2.
  • the eNB 200 transmits a reference signal at a specific frequency.
  • the UE 100 performs measurement at a specific frequency.
  • the UE 100 measures the interference power.
  • the eNB 200 and the UE 100 measure the interference power. Since eNB 200 is close to WT 400-2, the interference power in eNB 200 is equal to or greater than the threshold. As a result, the eNB 200 determines not to transmit the reference signal at t5.
  • the eNB 200 does not transmit a reference signal, but the UE 100 performs measurement at a specific frequency.
  • the eNB 200 and the UE 100 operate in the same manner as from t1 to t3.
  • the CCA result in FIG. 8 (B) shows the measurement result (measurement value: reception level) in the UE 100.
  • the UE 100 measures the measurement results at different timings (specifically, t1, t3, t4, t6, t7, t9) and the measurement results at the scheduled transmission timings (specifically, t2, t5, t8). Based on the above, the timing at which the reference signal is not transmitted is specified.
  • the eNB 200 Since the reception level at t2 is higher than the reception level at t1 (t3) by a predetermined value or more (ie, reception level at t2 ⁇ reception level at t1 (t3)> predetermined value), the eNB 200 receives the reference signal. I guess it was sent. Therefore, the UE 100 specifies the timing of t2 and the timing at which the reference signal is transmitted.
  • the eNB 200 since the reception level at t5 is not higher than a predetermined value by the UE 100 than the reception level at t4 (t6) (ie, the reception level at t5 ⁇ the reception level at t4 (t6) ⁇ the predetermined value), the eNB 200 It is assumed that the reference signal is not transmitted. Therefore, the UE 100 specifies the timing at t2 and the timing at which the reference signal is not transmitted.
  • the eNB 200 since the reception level at t8 is higher than the reception level at t7 (t9) by the UE 100 (that is, reception level at t8 ⁇ reception level at t7 (t9)> predetermined value), the eNB 200 refers to Guess that a signal was sent. Therefore, the UE 100 specifies the timing of t2 and the timing at which the reference signal is transmitted.
  • the UE 100 excludes the measurement result at t5 from the report target, and reports the measurement results at t2 and t8 to the eNB 200. Therefore, the eNB 200 can appropriately determine the communication in the unlicensed band based on the measurement result.
  • FIG. 9 is a diagram for explaining an operation according to the fourth embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
  • the eNB 200 excludes the measurement result based on the transmission record of the reference signal.
  • FIG. 9 The operating environment in FIG. 9 is the same as the operating environment in the first embodiment (FIG. 6).
  • Steps S301 to S308 correspond to Steps S201 to S208.
  • step S309 the UE 100 transmits the measurement result to the PCell.
  • the measurement result here includes not only the first measurement result and the third measurement result but also the second measurement result.
  • the eNB 200 stores at least one of the timing at which the reference signal is transmitted and the timing at which the reference signal is not transmitted, as in the second embodiment. Specifically, the eNB 200 holds a transmission record related to the timing when the reference signal is not transmitted. Specifically, the eNB 200 leaves at least one of the timing at which the reference signal is transmitted and the timing at which the reference signal is not transmitted in the transmission record. In the present embodiment, the eNB 200 leaves the timing at which the reference signal was not transmitted according to the measurement result of step S304 in the transmission record.
  • the PCell excludes the measurement result corresponding to the timing at which the reference signal is not transmitted from the measurement result reported from the UE 100.
  • the eNB 200 excludes the second measurement result corresponding to the timing at which the transmission of the reference signal after step S304 is scheduled. Thereby, eNB200 can acquire a suitable measurement result.
  • FIG. 10 is a diagram for explaining an operation according to the modified example of the fourth embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
  • the UE 100 reports not only the measurement result for the reference signal but also the measurement result of the interference power to the eNB 200.
  • eNB200 determines MCS (transmission rate, error tolerance) of the data transmitted to UE100 based on the measurement result of interference power.
  • the first radio communication device (WT 400-1) exists in the vicinity of the UE 100-1, and the second radio communication device (WT 400-1) exists in the vicinity of the UE 100-2 and the eNB 200.
  • WT 400-2) exists.
  • WT 400-1 and WT 400-2 transmit radio signals at a specific frequency in the unlicensed band (see FIG. 10B).
  • the eNB 200 transmits first setting information related to the scheduled transmission timing of the reference signal.
  • Each UE 100 receives the first setting information regarding the scheduled transmission timing of the reference signal.
  • Each UE 100 performs a measurement on a reference signal at a specific frequency at a scheduled transmission timing of the reference signal based on the first setting information.
  • the eNB 200 transmits second setting information for causing each UE 100 to perform measurement of interference power to each UE 100.
  • This 2nd setting information contains the information for making UE100 perform the measurement of the interference power in the specific frequency in an unlicensed band at the same timing as eNB200.
  • Each UE 100 measures the interference power at the same timing as the eNB 200 based on the second setting information. Note that each UE 100 may estimate the timing at which the eNB 200 measures the interference power based on the first setting information even when the UE 100 does not receive the second setting information.
  • WT 400-1 transmits a radio signal at a specific frequency.
  • WT 400-2 transmits a radio signal at a specific frequency.
  • the eNB 200 and each UE 100 measure the interference power at the same timing. Since the eNB 200 is far from the WT 400-1, the interference power in the eNB 200 is less than the threshold value. As a result, the eNB 200 determines to transmit the reference signal.
  • the eNB 200 transmits a reference signal at a specific frequency.
  • Each UE 100 performs measurement at a specific frequency.
  • the measurement result of UE 100-1 is a measurement result that has received interference from WT 400-1.
  • the eNB 200 and the UE 100 measure the interference power at the same timing. Since eNB 200 is close to WT 400-2, the interference power in eNB 200 is equal to or greater than the threshold. As a result, the eNB 200 determines not to transmit the reference signal. Although the eNB 200 does not transmit a reference signal, each UE 100 performs measurement at a specific frequency. The measurement result of UE 100-2 is a measurement result that has received interference from WT 400-2.
  • each UE 100 reports not only the measurement result (DRS result) with respect to the reference signal but also the measurement result (CCA result) of the interference power to the eNB 200.
  • the eNB 200 receives (acquires) the first measurement result and the second measurement result.
  • the eNB 200 measures the interference power.
  • the interference power in the eNB 200 is less than the threshold value.
  • the eNB 200 determines that no interference is received in the eNB 200 similarly to t1.
  • the eNB 200 determines to transmit data to the UE 100.
  • the eNB 200 determines that there is an interference source near the UE 100 that is the transmission source of the DRS result. As a result, the eNB 200 increases error tolerance of transmission data to the UE 100.
  • the first threshold may be a threshold used by the eNB 200 for detection of interference, or may be a threshold corresponding to the transmission power of the reference signal (DRS) transmitted by the eNB 200.
  • DRS reference signal
  • the eNB 200 determines that there is no interference source near the UE 100 that is the transmission source of the first measurement result. to decide. As a result, the eNB 200 reduces the error resistance of transmission data to the UE 100.
  • the second threshold for example, a threshold lower than the first threshold
  • the eNB 200 compares the CCA result in the local station immediately before transmitting data with the past CCA result in the local station (for example, the CCA result immediately before transmitting the reference signal), thereby improving the error tolerance of the transmission data. Can be determined.
  • the eNB 200 determines error tolerance (MCS) as follows.
  • the eNB 200 determines that the UE 100-1 has received interference at t1 based on the CCA result from the UE 100-1. In addition, the eNB 200 receives the interference of the UE 100-1 at t1, even though the eNB 200 is not receiving the interference. For this reason, the eNB 200 determines that there is a possibility that the UE 100-1 may receive interference at t4 although it has not received interference at t4. Therefore, the eNB 200 determines the MCS for the transmission data to the UE 100-1 to be an MCS with high error resistance based on the DRS result at t1 from the UE 100-1.
  • the eNB 200 determines error tolerance based on the CCA result (or DRS result) in which the UE 100-1 is not receiving interference.
  • the eNB 200 does not transmit the reference signal (DRS) at t2.
  • the eNB 200 does not normally determine error resilience (MCS) based on the DRS result at t2 from the UE 100-1.
  • MCS error resilience
  • the CCA result from the UE 100-1 knows that the UE 100-1 is not receiving interference when the eNB 200 is receiving interference.
  • the eNB 200 determines from the CCA result at t1 that the UE 100-2 is not receiving interference at the t1, similarly to the eNB 200. For this reason, since the eNB 200 has not received interference at t4, the eNB 200 determines that the possibility that the UE 100-2 receives interference at t4 is low. Thereby, the eNB 200 determines MCS (for transmission data to the UE 100-2) as MCS with high transmission rate (MCS with low error tolerance) based on the DRS result at t1.
  • the eNB 200 transmits data only to one of the UE 100-1 and the UE 100-2 at t4, for example, the eNB 200 transmits (priority) the data to the UE 100-2 that is unlikely to receive interference. Then you can decide.
  • eNB 200 In eNB 200, a case is assumed in which the CCA result at t4 is larger than the CCA result at t1 and smaller than the CCA result at t2 (t2 result> t4 result> t1 result). In this case, the eNB 200 determines that the UE 100-2 is receiving interference in the same manner as the eNB 200 based on the CCA result from the UE 100-2. Therefore, the eNB 200 determines that there is a high possibility that the UE 100-2 is receiving interference at t4 based on the CCA result of the eNB 200 at t4. The eNB 200 determines the MCS to be applied to the transmission data to the UE 100-2 at t4 as the MCS with high error tolerance.
  • the eNB 200 determines that the UE 100-1 is not receiving interference in the same manner as the eNB 200 based on the CCA result at t2 from the UE 100-1. Therefore, the eNB 200 determines that the UE 100-1 is unlikely to receive interference at t4 based on the CCA result of the eNB 200 at t4.
  • the eNB 200 determines an MCS to be applied to transmission data to the UE 100-2 as an MCS having a high transmission rate.
  • the eNB 200 transmits data only to one of the UE 100-1 and the UE 100-2 at t4, for example, the eNB 200 transmits (priority) the data to the UE 100-1 that is unlikely to receive interference. Then you can decide.
  • the eNB 200 determines the UE 100 and the MCS that are data transmission destinations based on the CCA result in the eNB 200 (particularly, the CCA result immediately before the data transmission to the UE 100), the DRS result and the CCA result of each UE 100. Can be determined.
  • UE100 demonstrated the case where a measurement result was reported to eNB200, it is not restricted to this.
  • the UE 100 may make a predetermined determination based on a highly effective measurement result from which the measurement result corresponding to the timing at which the reference signal is not transmitted from the eNB 200 is excluded. For example, the UE 100 can make a determination regarding the communication environment of the unlicensed cell based on a highly effective measurement result.
  • the LTE system has been described as an example of the mobile communication system, but the present invention is not limited to the LTE system, and the contents of the present application may be applied to a system other than the LTE system.
  • Rel-12 DRS is the starting point for the design of reference signal used in RRM measurement in the unlicensed band.
  • the eNB is required to transmit PSS / SSS / CRS (and CSI-RS) at regular intervals without exception. It can be achieved without problems because the eNB uses licensed band resources allocated to transmit DRS. However, in contrast to the licensed band, more than one wireless system / node could share the unlicensed band. In addition to sharing unlicensed bandwidth, each system uses LBT (Listen Before Talk) to avoid collisions required in some countries / regions. Therefore, DRS, in our view, requires LBT when DRS is transmitted in an unlicensed band.
  • LBT Listen Before Talk
  • LBT Low-power Bluetooth
  • EU regulation does not detect the frequency for the presence of signal, but transmits management and control frames, that is, short-time control signaling transmission (Short Control Signaling Transmission) )
  • adaptive device short-time control signaling transmissions should have a maximum duty cycle of 10% within a 50 millisecond observation period.
  • LBT should be mandated as it helps to obtain fair coexistence with other systems and avoid collisions.
  • the LBT mandate will also be considered a simple design and could provide one general solution for all regions where LAA is expected to be deployed.
  • Proposal 1 Recommendation 1: It should be agreed to apply LBT functionality to Rel-12 DRS based on LAA DRS transmission.
  • the LBT functionality does not allow the eNB to transmit its DRS in the unlicensed band if a busy channel is detected (see FIG. 10).
  • the measurement accuracy requirement may not be met if the eNB has not transmitted a DRS during some of the DRS transmission opportunities.
  • the UE must measure RSRP in a subframe configured as a discovery signal opportunity. This is because the UE has to monitor the configured radio resources and the UE may include these resource results in the final measurement result regardless of whether DRS was actually transmitted on these resources. It means you can't.
  • the number of resource elements in the measurement frequency band and in the measurement period used by the UE to determine RSRP is left to the implementation of the UE with constraints that the corresponding measurement accuracy requirements must be met. . Therefore, the reported RSRP can be very inaccurate.
  • the combination of the UE implementation based on RSRP measurements and the unavailability of some DRS transmissions due to the eNB's LBT functionality provides the UE with accurate radio environment information for the exact unlicensed band to the eNB. The problem of not being able to do.
  • RAN1 To be solved by RAN4.
  • One approach is for RAN1 to send a request LS to RAN4 to perform a search to see if the current measurement accuracy requirements are satisfied by the existing specification. In cases where the current specification does not meet the exact requirements, new solutions can be considered. Below are some candidate options.
  • Option 1 The eNB broadcasts / unicasts a DRS measurement instruction in the licensed band.
  • the eNB notifies the UE via the licensed band about the condition under which the RSRP of the subframe is to be calculated.
  • the UE will adopt and modify the DRS measurement according to the information provided from the eNB about the RSRP measurement conditions in the unlicensed band.
  • the eNB can provide this information to the UE is a further challenge.
  • Option 2 Specify CRS (included in DRS) based on RSRP measurement for LAA.
  • the UE performs DRS measurements to determine RSRP. For example, the UE should send one measurement result per 1 DRS burst. Since the eNB knows which DRS is transmitted in the unlicensed band, the eNB can determine whether the measurement report received from the specific UE is reliable or not (see FIG. 11).
  • Proposal 2 If Proposal 1 is accepted as an agreement, RAN1 should send an LS requesting whether the current measurement accuracy requirements are satisfied by the existing specification to RAN4.
  • Proposal 3 LAA DRS based on Rel-12 DRS with LBT should also be used for AGC configuration, coarse synchronization and CSI measurements.
  • the eNB may not be able to transmit DRS in the unlicensed band for a long time due to the presence of other transmissions by neighboring nodes sharing the same band.
  • One approach is to set a fixed upper limit for the period between two DRS transmissions, for example 160 msec. If the eNB is unable to transmit a DRS longer than the upper limit, it should be assumed that fine frequency / time estimation is not guaranteed. However, due to interference, the UE may not be able to detect / decode some of the correct DRS transmissions. This situation forces consideration to provide other synchronization signals during data transmission in addition to DRS transmission.
  • the eNB transmits a synchronization signal (LAA sync (LAA sync)) in a symbol located before the data region (for example, the first symbol of the subframe) (see FIG. 12).
  • LAA sync LAA sync
  • This approach is very similar to the D2D sync signal design.
  • the UE achieves coarse synchronization using DRS and fine frequency / time estimation using the LAA sink.
  • the AGC configuration is performed based on the LAA sink instead of the DRS because the LAA sink is located next to the data area in the first subframe received at the UE. .
  • the current physical control channel area should be replaced by LAA sink.
  • the number of resource elements used to transmit the physical control channel is changed according to the number of UEs scheduled in the subframe, for example.
  • the physical control channel area may not be fully occupied, resulting in low resource element density and resulting low transmit power over OFDM symbols resulting in higher false positives by neighboring nodes . This leads to collisions because neighboring nodes may assume that a channel is available for each transmission.
  • the physical control channel should be removed from unlicensed band transmissions and instead LAA sinks should be transmitted. Further research is needed on how the LAA sink is mapped just before the data region.
  • Proposal 4 The current physical control channel area should be replaced with this LAA sink.

Abstract

A base station according to an embodiment of the present invention is provided with: a transmission unit that transmits a reference signal in an unlicensed band; a reception unit that receives, from a user terminal, measurement results regarding a wireless signal in the unlicensed band; and a control unit that excludes, from the measurement results, a measurement value that was measured at a time when the reference signal was not sent in the unlicensed band.

Description

基地局及びユーザ端末Base station and user terminal
 本出願は、ライセンスド帯域及びアンライセンスド帯域において通信可能なユーザ端末及び当該ユーザ端末と通信可能な基地局に関する。 This application relates to a user terminal capable of communicating in a licensed band and an unlicensed band and a base station capable of communicating with the user terminal.
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、急増するトラフィック需要に応えるべく、LTE(Long Term Evolution)を高度化する仕様策定が進められている(例えば非特許文献1参照)。 In 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, specifications are being developed to improve LTE (Long Term Evolution) to meet the rapidly increasing traffic demand (see Non-Patent Document 1, for example). .
 また、急増するトラフィック需要に応えるために、免許を要する周波数帯域(ライセンスド帯域)を用いた通信だけでなく、免許不要な周波数帯域(アンライセンスド帯域(Unlicensed Band/Unlicensed Spectrum))を用いた通信が注目されている。 In addition, in order to respond to the rapidly increasing traffic demand, not only communication using a licensed frequency band (licensed band) but also a frequency band that does not require a license (Unlicensed Band / Unlicensed Spectrum) was used. Communication is attracting attention.
 ここで、法律(例えば、日本における電波法)上、アンライセンスド帯域を用いて無線信号を送信する場合、無線信号を送信する前にCCA(Clear channel Assessment)を実行することが要求されている。具体的には、基地局は、アンライセンスド帯域における干渉電力を測定する。測定結果が良好な場合(具体的には、干渉電力が低い場合)、アンライセンスド帯域において無線信号を送信できる。 Here, according to the law (for example, the Radio Law in Japan), when a radio signal is transmitted using an unlicensed band, it is required to execute CCA (Clear channel Assessment) before transmitting the radio signal. . Specifically, the base station measures the interference power in the unlicensed band. When the measurement result is good (specifically, when the interference power is low), a radio signal can be transmitted in the unlicensed band.
 一実施形態に係る基地局は、アンライセンスド帯域において参照信号を送信する送信部と、前記アンライセンスド帯域における無線信号の測定結果をユーザ端末から受信する受信部と、前記測定結果から、前記アンライセンスド帯域において前記参照信号が送信されていないタイミングで測定された測定値を除外する制御部と、を備える。 The base station according to an embodiment includes: a transmission unit that transmits a reference signal in an unlicensed band; a reception unit that receives a measurement result of a radio signal in the unlicensed band from a user terminal; and A control unit that excludes measurement values measured at a timing when the reference signal is not transmitted in the unlicensed band.
図1は、各実施形態に係るLTEシステムの構成図である。FIG. 1 is a configuration diagram of an LTE system according to each embodiment. 図2は、各実施形態に係るUEのブロック図である。FIG. 2 is a block diagram of the UE according to each embodiment. 図3は、各実施形態に係るeNBのブロック図である。FIG. 3 is a block diagram of the eNB according to each embodiment. 図4は、各実施形態に係るプロトコルスタック図である。FIG. 4 is a protocol stack diagram according to each embodiment. 図5は、各実施形態に係る無線フレームの構成図である。FIG. 5 is a configuration diagram of a radio frame according to each embodiment. 図6は、第1実施形態に係る動作を説明するための図である。FIG. 6 is a diagram for explaining an operation according to the first embodiment. 図7は、第2実施形態に係る動作を説明するための図である。FIG. 7 is a diagram for explaining an operation according to the second embodiment. 図8は、第3実施形態に係る動作を説明するための図である。FIG. 8 is a diagram for explaining an operation according to the third embodiment. 図9は、第4実施形態に係る動作を説明するための図である。FIG. 9 is a diagram for explaining an operation according to the fourth embodiment. 図10は、第4実施形態の変更例に係る動作を説明するための図である。FIG. 10 is a diagram for explaining an operation according to the modified example of the fourth embodiment. 図11は、DRS送信前のリッスン失敗を説明するための図である。FIG. 11 is a diagram for explaining a listen failure before DRS transmission. 図12は、LAA DRS RSRP測定を説明するための図である。FIG. 12 is a diagram for explaining LAA DRS RSRP measurement. 図13は、既存のチャネルマッピング(左)及び提案するチャネルマッピングの一例(右)を説明するための図である。FIG. 13 is a diagram for explaining an example (right) of existing channel mapping (left) and proposed channel mapping.
 [実施形態の概要]
 ここで、ユーザ端末が、アンライセンスド帯域において基地局から送信された参照信号に対する測定を行うことを想定する。ユーザ端末が当該測定結果を基地局に報告することによって、基地局は、アンライセンスド帯域において当該ユーザ端末との通信の可否又は通信品質の測定を行うことができる。
[Outline of Embodiment]
Here, it is assumed that the user terminal performs measurement on the reference signal transmitted from the base station in the unlicensed band. When the user terminal reports the measurement result to the base station, the base station can measure the availability of communication with the user terminal or the communication quality in the unlicensed band.
 しかしながら、基地局は、干渉電力の測定結果が悪い場合には、参照信号を送信できない。このため、ユーザ端末は、参照信号の送信予定タイミングを知っていたとしても、参照信号が送信されていないのか、参照信号が送信されたが干渉により参照信号を受信できなかったのか判定できない。その結果、参照信号に対する適切な測定結果を取得できない虞がある。 However, the base station cannot transmit the reference signal when the measurement result of the interference power is bad. For this reason, even if the user terminal knows the scheduled transmission timing of the reference signal, the user terminal cannot determine whether the reference signal is not transmitted or whether the reference signal is transmitted but cannot be received due to interference. As a result, there is a possibility that an appropriate measurement result for the reference signal cannot be acquired.
 そこで、本出願は、アンライセンスド帯域における参照信号に対する適切な測定結果を取得可能とすることを目的とする。 Therefore, an object of the present application is to make it possible to obtain an appropriate measurement result for a reference signal in an unlicensed band.
 実施形態に係る基地局は、アンライセンスド帯域において参照信号を送信する送信部と、前記アンライセンスド帯域における無線信号の測定結果をユーザ端末から受信する受信部と、前記測定結果から、前記アンライセンスド帯域において前記参照信号が送信されていないタイミングで測定された測定値を除外する制御部と、を備える。 The base station according to the embodiment includes: a transmission unit that transmits a reference signal in an unlicensed band; a reception unit that receives a measurement result of a radio signal in the unlicensed band from a user terminal; and A control unit that excludes measurement values measured at a timing when the reference signal is not transmitted in the licensed band.
 前記受信部は、前記基地局が1つの参照信号を送信する機会毎に1つの測定結果を送信する前記ユーザ端末から、前記測定結果を受信してもよい。 The reception unit may receive the measurement result from the user terminal that transmits one measurement result every time the base station transmits one reference signal.
 第4実施形態に係る基地局は、ライセンスド帯域及びアンライセンスド帯域において通信可能なユーザ端末と前記アンライセンスド帯域において通信可能である。前記基地局は、前記アンライセンスド帯域における干渉電力を測定する制御部と、前記干渉電力の測定結果に基づいて、前記アンライセンスド帯域において参照信号を送信する送信部と、前記干渉電力の測定結果に基づいて前記参照信号が送信されなかったタイミングに関する送信記録を保持する記憶部と、を備る。前記制御部は、前記参照信号に対する測定結果を前記ユーザ端末から報告された場合、前記送信記録に基づいて、前記参照信号に対する測定結果から、前記参照信号が送信されていないタイミングに対応する所定の測定結果を除外する。 The base station according to the fourth embodiment can communicate in the unlicensed band with user terminals that can communicate in the licensed band and the unlicensed band. The base station includes a control unit that measures interference power in the unlicensed band, a transmission unit that transmits a reference signal in the unlicensed band based on a measurement result of the interference power, and a measurement of the interference power. And a storage unit that holds a transmission record related to the timing at which the reference signal is not transmitted based on the result. The control unit, when a measurement result for the reference signal is reported from the user terminal, based on the transmission record, a predetermined result corresponding to a timing at which the reference signal is not transmitted from the measurement result for the reference signal. Exclude measurement results.
 第4実施形態の変更例では、前記送信部は、前記アンライセンスド帯域における干渉電力の測定を前記基地局と同じタイミングで前記ユーザ端末に実行させるための設定情報を前記ユーザ端末に送信する。前記制御部は、前記ユーザ端末における前記干渉電力の測定結果を取得し、自局における前記干渉電力の測定結果と前記ユーザ端末における前記干渉電力の測定結果とに基づいて、前記ユーザ端末へ送信するデータのエラー耐性を決定する。 In the modification of the fourth embodiment, the transmission unit transmits setting information for causing the user terminal to perform measurement of interference power in the unlicensed band at the same timing as the base station. The control unit acquires the measurement result of the interference power in the user terminal, and transmits the measurement result of the interference power in the user terminal and the measurement result of the interference power in the user terminal to the user terminal. Determine data error tolerance.
 第4実施形態の変更例では、前記制御部は、前記データを送信する直前に前記アンライセンスド帯域における干渉電力を測定する。前記自局における前記干渉電力の測定結果は、前記参照信号の送信直前に測定された前記干渉電力の測定結果だけでなく、前記データの送信直前に測定された前記干渉電力の測定結果も含む。 In a modification of the fourth embodiment, the control unit measures interference power in the unlicensed band immediately before transmitting the data. The measurement result of the interference power in the local station includes not only the measurement result of the interference power measured immediately before the transmission of the reference signal but also the measurement result of the interference power measured immediately before the transmission of the data.
 各実施形態に係るユーザ端末は、ライセンスド帯域において通信可能であり、且つ、アンライセンスド帯域における干渉電力の測定結果に基づいて無線信号の送信を行う基地局と前記アンライセンスド帯域において通信可能である。前記ユーザ端末は、前記アンライセンスド帯域において所定の無線信号に対する測定を行い、当該所定の無線信号に対する測定結果を報告する制御部を備える。前記制御部は、前記アンライセンスド帯域において前記基地局から参照信号が送信されていないタイミングを特定し、当該特定されたタイミングに対応する所定の測定結果を除外する。 The user terminal according to each embodiment can communicate in the licensed band, and can communicate in the unlicensed band with a base station that transmits a radio signal based on the measurement result of interference power in the unlicensed band. It is. The user terminal includes a control unit that performs measurement on a predetermined radio signal in the unlicensed band and reports a measurement result on the predetermined radio signal. The control unit specifies a timing at which a reference signal is not transmitted from the base station in the unlicensed band, and excludes a predetermined measurement result corresponding to the specified timing.
 第1実施形態に係るユーザ端末は、前記基地局から送信される前記参照信号に関する信号系列を特定するための信号系列情報を記憶する記憶部をさらに備える。前記制御部は、前記所定の無線信号の信号系列と前記信号系列情報に基づいて特定された信号系列との相関値が閾値未満である場合、前記所定の無線信号が送信されたタイミングを、前記参照信号が送信されていないタイミングとして特定する。 The user terminal according to the first embodiment further includes a storage unit that stores signal sequence information for specifying a signal sequence related to the reference signal transmitted from the base station. When the correlation value between the signal sequence of the predetermined radio signal and the signal sequence specified based on the signal sequence information is less than a threshold, the control unit determines the timing at which the predetermined radio signal is transmitted, It is specified as the timing when the reference signal is not transmitted.
 第2実施形態に係るユーザ端末は、前記参照信号が送信されたタイミングに関する送信情報を受信する受信部をさらに備える。前記制御部は、前記送信情報に基づいて、前記参照信号が送信されていないタイミングを特定する。 The user terminal according to the second embodiment further includes a receiving unit that receives transmission information related to the timing at which the reference signal is transmitted. The control unit identifies a timing at which the reference signal is not transmitted based on the transmission information.
 第3実施形態に係るユーザ端末は、前記所定の無線信号に対する測定前に、前記参照信号の送信予定タイミングに関する予定情報を受信する受信部をさらに備える。前記制御部は、前記予定情報に基づいて、前記送信予定タイミングで前記所定の無線信号に対する測定を行うと共に、前記送信予定タイミングと異なるタイミングで前記アンライセンスド帯域における干渉電力の測定を行う。前記制御部は、前記異なるタイミングでの測定結果と前記送信予定タイミングでの測定結果とに基づいて、前記参照信号が送信されていないタイミングを特定する。 The user terminal according to the third embodiment further includes a receiving unit that receives schedule information related to a scheduled transmission timing of the reference signal before measurement of the predetermined radio signal. The control unit measures the predetermined radio signal at the scheduled transmission timing based on the schedule information, and measures interference power in the unlicensed band at a timing different from the scheduled transmission timing. The control unit identifies a timing at which the reference signal is not transmitted based on a measurement result at the different timing and a measurement result at the scheduled transmission timing.
 第3実施形態では、前記異なるタイミングは、前記送信予定タイミングの前及びの後のタイミングの少なくとも一方である。前記制御部は、前記異なるタイミングでの測定結果である第1の受信レベルが前記送信予定タイミングでの測定結果である第2の受信レベルよりも所定値以上高い場合、前記送信予定タイミングを前記参照信号が送信されたタイミングとして特定する。 In the third embodiment, the different timing is at least one of the timing before and after the scheduled transmission timing. The control unit refers to the scheduled transmission timing when the first reception level, which is a measurement result at the different timing, is higher than a second reception level, which is the measurement result at the scheduled transmission timing, by a predetermined value or more. It is specified as the timing when the signal is transmitted.
 [第1実施形態]
 以下において、本出願の内容をLTEシステムに適用する場合の実施形態を説明する。
[First Embodiment]
In the following, an embodiment in which the contents of the present application are applied to an LTE system will be described.
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成図である。図1に示すように、実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
(System configuration)
FIG. 1 is a configuration diagram of an LTE system according to the embodiment. As shown in FIG. 1, the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。 UE 100 corresponds to a user terminal. The UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell). The configuration of the UE 100 will be described later.
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。 E-UTRAN 10 corresponds to a radio access network. The E-UTRAN 10 includes an eNB 200 (evolved Node-B). The eNB 200 corresponds to a base station. The eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。 The eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell. The eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like. “Cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワーク(LTEネットワーク)が構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。EPC20は、OAM(Operation and Maintenance)を含んでもよい。 The EPC 20 corresponds to a core network. The E-UTRAN 10 and the EPC 20 constitute an LTE system network (LTE network). The EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300. The EPC 20 may include OAM (Operation and Maintenance).
 MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。 The MME performs various mobility controls for the UE 100. The S-GW controls user data transfer. The MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
 OAMは、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。 The OAM is a server device managed by an operator and performs maintenance and monitoring of the E-UTRAN 10.
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)を制御部を構成するプロセッサ160’としてもよい。 FIG. 2 is a block diagram of the UE 100. As shown in FIG. 2, the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160. The UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 'that constitutes the control unit.
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。 The antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals. The radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
 無線送受信機110は、無線送受信機110A及び無線送受信機110Bを有する。無線送受信110Aは、ライセンスド帯域において無線信号を送受信し、無線送受信110Bは、アンライセンスド帯域において無線信号を送受信する。 The wireless transceiver 110 includes a wireless transceiver 110A and a wireless transceiver 110B. The radio transmission / reception 110A transmits / receives a radio signal in the licensed band, and the radio transmission / reception 110B transmits / receives a radio signal in the unlicensed band.
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給する電力を蓄える。 The user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons. The user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160. The GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100. The battery 140 stores electric power to be supplied to each block of the UE 100.
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、制御部に相当し、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160. The processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. . The processor 160 may further include a codec that performs encoding / decoding of an audio / video signal. The processor 160 corresponds to a control unit, and executes various processes and various communication protocols described later.
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、複数のアンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)を制御部を構成するプロセッサ240’としてもよい。 FIG. 3 is a block diagram of the eNB 200. As illustrated in FIG. 3, the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240. The memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 'that constitutes the control unit.
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、ライセンスド帯域において無線信号を送受信する。或いは、無線送受信機210は、ライセンスド帯域だけでなくアンライセンスド帯域において無線信号を送受信できてもよい。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。 The antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals. The radio transceiver 210 transmits and receives radio signals in the licensed band. Alternatively, the wireless transceiver 210 may be able to transmit and receive wireless signals not only in the licensed band but also in the unlicensed band. The radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201. In addition, the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。 The network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface. The network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、制御部に相当し、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240. The processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes. The processor 240 corresponds to a control unit, and executes various processes and various communication protocols described later.
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。 FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer. The second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes an RRC (Radio Resource Control) layer.
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロックを決定(スケジューリング)するスケジューラを含む。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel. The MAC layer of the eNB 200 includes a scheduler that determines (schedules) uplink / downlink transport formats (transport block size, modulation / coding scheme) and resource blocks allocated to the UE 100.
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態であり、そうでない場合、UE100はRRCアイドル状態である。 The RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンク(DL)にはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンク(UL)にはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 5 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink (DL), and SC-FDMA (Single Carrier Frequency Multiple Access) is applied to the uplink (UL).
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。 As shown in FIG. 5, the radio frame is composed of 10 subframes arranged in the time direction. Each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. Each resource block includes a plurality of subcarriers in the frequency direction. A resource element is composed of one subcarrier and one symbol. Among radio resources allocated to the UE 100, frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
 (アンライセンスド帯域を利用した通信)
 以下において、本実施形態に係るアンライセンスド帯域を利用した通信について説明する。
(Communication using unlicensed bandwidth)
Hereinafter, communication using an unlicensed band according to the present embodiment will be described.
 UE100は、セルラネットワークオペレータに免許が付与されたライセンスド帯域(Licensed band/Licensed spectrum)だけでなく、免許不要で利用できるアンライセンスド帯域(Unlicensed Band/Unlicensed spectrum)を利用した通信を行うことができる。 The UE 100 may perform communication using not only a licensed band (licensed band / licensed spectrum) licensed to a cellular network operator but also an unlicensed band (unlicensed band / unlicensed spectrum) that can be used without a license. it can.
 具体的には、第1に、UE100は、キャリアアグリゲーション(Carrier Aggregation:CA)によって、アンライセンスド帯域を利用した通信を行うことができる。 Specifically, first, the UE 100 can perform communication using an unlicensed band by carrier aggregation (CA).
 CAでは、LTEとの後方互換性を確保しながら広帯域化を実現すべく、LTEにおけるキャリア(周波数帯)をコンポーネントキャリアと位置付け、UE100が複数のコンポーネントキャリア(複数のサービングセル)を同時に使用して通信を行う。CAにおいて、UEがRRC接続を開始する際に所定の情報の提供を行うセルはプライマリセル(PCell)と称される。例えば、プライマリセルは、RRC接続確立/再確立/ハンドオーバ時にNASモビリティ情報(例えば、TAI)の提供を行ったり、RRC接続再確立/ハンドオーバ時にセキュリティ情報の提供を行ったりする。一方、プライマリセルと対をなす補助的なサービングセルはセカンダリセル(SCell)と称される。セカンダリセルは、プライマリセルと一緒に形成される。 In CA, the carrier (frequency band) in LTE is positioned as a component carrier in order to realize a wide band while ensuring backward compatibility with LTE, and UE 100 communicates using a plurality of component carriers (a plurality of serving cells) simultaneously. I do. In CA, a cell that provides predetermined information when a UE starts an RRC connection is called a primary cell (PCell). For example, the primary cell provides NAS mobility information (eg, TAI) during RRC connection establishment / re-establishment / handover, or provides security information during RRC connection re-establishment / handover. On the other hand, the auxiliary serving cell paired with the primary cell is called a secondary cell (SCell). The secondary cell is formed together with the primary cell.
 アンライセンスド帯域を利用した通信にCAを利用する場合、アンライセンスド帯域内の所定周波数(キャリア)をセカンダリセルとして利用するケースがある。以下において、所定周波数をセカンダリセルとして利用する場合、当該セカンダリセルは、U-SCellと称される。 When using CA for communication using an unlicensed band, there are cases where a predetermined frequency (carrier) in the unlicensed band is used as a secondary cell. In the following, when a predetermined frequency is used as a secondary cell, the secondary cell is referred to as a U-SCell.
 第2に、UE100は、二重接続方式(Dual Connectivity:DC)によって、アンライセンスド帯域を利用した通信を行うことができる。 Second, the UE 100 can perform communication using an unlicensed band by a dual connection method (Dual Connectivity: DC).
 DCでは、UE100には、複数のeNB200から無線リソースが割り当てられる。DCは、eNB間キャリアアグリゲーション(inter-eNB CA)と称されることもある。 In DC, radio resources are assigned to the UE 100 from a plurality of eNBs 200. The DC may be referred to as inter-eNB carrier aggregation (inter-eNB CA).
 DCでは、UE100との接続を確立する複数のeNB200のうち、マスタeNB(MeNB)のみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNB(SeNB)は、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。MeNBとSeNBとの間にはXnインターフェイスが設定される。Xnインターフェイスは、X2インターフェイス又は新たなインターフェイスである。 In DC, only the master eNB (MeNB) among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100. On the other hand, a secondary eNB (SeNB) among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100. An Xn interface is set between the MeNB and SeNB. The Xn interface is an X2 interface or a new interface.
 DCでは、UE100は、MeNBが管理するN個のセル及びSeNBが管理するM個のセルを同時に利用したキャリアアグリゲーションが可能である。また、MeNBが管理するN個のセルからなるグループは、マスタセルグループ(MCG)と称される。また、SeNBが管理するM個のセルからなるグループは、セカンダリセルグループ(SCG)と称される。また、SeNBが管理するセルのうち、少なくとも上りリンクの制御信号(PUCCH)の受信機能を持つセルは、PSCellと称される。PSCellは、PCellと同様のいくつかの機能を有するが、例えば、UE100とRRC接続を行わず、RRCメッセージを送信しない。なお、アンライセンスド帯域における所定周波数(キャリア)がSCellとして利用される場合には、当該SCellは、U-SCellと称され、PSCellとして利用される場合には、当該SCellは、U-PSCellと称される。 In DC, the UE 100 can perform carrier aggregation using the N cells managed by the MeNB and the M cells managed by the SeNB at the same time. A group consisting of N cells managed by the MeNB is referred to as a master cell group (MCG). Moreover, the group which consists of M cells which SeNB manages is called a secondary cell group (SCG). Further, among cells managed by the SeNB, a cell having at least an uplink control signal (PUCCH) reception function is referred to as a PSCell. PSCell has some functions similar to PCell, but does not perform RRC connection with UE 100 and does not transmit an RRC message, for example. When a predetermined frequency (carrier) in the unlicensed band is used as an SCell, the SCell is referred to as a U-SCell. When used as a PSCell, the SCell is referred to as a U-PSCell. Called.
 ここで、アンライセンスド帯域を利用した通信の一形態として、LAA(LAA:Licensed-Assited Access)を利用することが想定される。LAAでは、UE100は、ライセンスド帯域で運用されるセル(以下、ライセンスドセル)とアンライセンスド帯域で運用されるセル(以下、アンライセンスドセル)と通信を行う。ライセンスドセルは、PCellとして使用され、アンライセンスドセルは、SCell(又はPSCell)として使用されてもよい。UE100がライセンスドセル及びアンライセンスドセルと通信を行う場合、当該ライセンスドセル及び当該アンライセンスドセルは、1つのノード(例えば、eNB200)によって管理されていてもよい。なお、当該ライセンスドセル及び当該アンライセンスドセルは、1つのeNB200によって管理(制御)されている場合、アンライセンスドセル(及びライセンスドセル)は、無線送受信機を有するRRH(Remote Radio Head)によって形成されてもよい。或いは、ライセンスセルは、eNB200に管理され、アンライセンスドセルは、当該eNB200とは異なる無線通信装置に管理されていてもよい。eNB200と当該無線通信装置とは、所定のインターフェイス(X2インターフェイス又はS1インターフェイス)を介して後述する各種情報のやり取りを行うことができる。ライセンスセルを管理するeNB200は、UE100から取得した情報を無線通信装置に通知してもよいし、無線通信装置から取得した情報をUE100に通知してもよい。 Here, it is assumed that LAA (LAA: Licensed-Assessed Access) is used as a form of communication using the unlicensed band. In LAA, the UE 100 communicates with a cell operated in a licensed band (hereinafter, licensed cell) and a cell operated in an unlicensed band (hereinafter, unlicensed cell). The licensed cell may be used as a PCell, and the unlicensed cell may be used as an SCell (or PSCell). When UE100 communicates with a licensed cell and an unlicensed cell, the said licensed cell and the said unlicensed cell may be managed by one node (for example, eNB200). When the licensed cell and the unlicensed cell are managed (controlled) by one eNB 200, the unlicensed cell (and licensed cell) is formed by an RRH (Remote Radio Head) having a radio transceiver. Also good. Alternatively, the license cell may be managed by the eNB 200, and the unlicensed cell may be managed by a radio communication apparatus different from the eNB 200. The eNB 200 and the wireless communication apparatus can exchange various types of information to be described later via a predetermined interface (X2 interface or S1 interface). The eNB 200 that manages the license cell may notify the information acquired from the UE 100 to the radio communication device, or may notify the UE 100 of the information acquired from the radio communication device.
 アンライセンスド帯域においては、LTEシステムとは異なるシステム(無線LAN等)又は他のオペレータのLTEシステムとの干渉を回避するために、無線信号を送信する前にCCA(Clear channel Assessment)を実行すること(いわゆる、LBT(Listen Befor Talk))が要求されている。具体的には、CCAでは、eNB200は、アンライセンスド帯域内の周波数(キャリア)が空いているか否かを確認するために、干渉電力を測定する。eNB200は、干渉電力の測定結果に基づいて、空きチャネルであることが確認された周波数(キャリア)に含まれる無線リソースをUE100に割り当てる(スケジューリング)。eNB200は、アンライセンスドセルを介して、アンライセンスドセルにおけるスケジューリングを行う。或いは、eNB200は、ライセンスドセルを介して、アンライセンスドセルにおけるスケジューリングを行ってもよい(すなわち、クロスキャリアスケジューリング)。 In the unlicensed band, CCA (Clear channel Assessment) is executed before transmitting a radio signal in order to avoid interference with a system different from the LTE system (such as a wireless LAN) or another operator's LTE system. (So-called LBT (Listen Before Talk)) is required. Specifically, in CCA, the eNB 200 measures interference power to confirm whether or not a frequency (carrier) in the unlicensed band is available. The eNB 200 allocates, to the UE 100, radio resources included in the frequency (carrier) that is confirmed to be an empty channel based on the measurement result of the interference power (scheduling). The eNB 200 performs scheduling in the unlicensed cell via the unlicensed cell. Or eNB200 may perform the scheduling in an unlicensed cell via a licensed cell (namely, cross-carrier scheduling).
 以下において、eNB200による動作を、eNB200が管理するセルによる動作として適宜説明する。また、以下において、1つのeNB200がライセンスド帯域における周波数(ライセンスドセル)及びアンライセンスド帯域における周波数(アンライセンスドセル)によってUE100と通信を行うケースを中心に説明するが、これに限られないことに留意すべきである。 Hereinafter, the operation by the eNB 200 will be appropriately described as an operation by a cell managed by the eNB 200. In the following, a case where one eNB 200 communicates with the UE 100 using a frequency in the licensed band (licensed cell) and a frequency in the unlicensed band (unlicensed cell) will be mainly described, but the present invention is not limited thereto. Should be noted.
 (第1実施形態に係る動作)
 次に、第1実施形態に係る動作について、図6を用いて説明する。図6は、第1実施形態に係る動作を説明するための図である。
(Operation according to the first embodiment)
Next, the operation according to the first embodiment will be described with reference to FIG. FIG. 6 is a diagram for explaining an operation according to the first embodiment.
 図6において、UE100は、eNB200が管理するPCell(ライセンスドセル)に在圏している。UE100は、RRCアイドル状態であってもよいし、RRCコネクティッド状態であってもよい。図6の初期状態において、UE100は、eNB200が管理するU-SCell(アンライセンスドセル)との通信を開始していない。或いは、UE100は、U-SCelとの通信を行っていてもよい。 In FIG. 6, the UE 100 is located in a PCell (licensed cell) managed by the eNB 200. The UE 100 may be in an RRC idle state or an RRC connected state. In the initial state of FIG. 6, the UE 100 has not started communication with the U-SCell (unlicensed cell) managed by the eNB 200. Alternatively, the UE 100 may perform communication with the U-SCel.
 図6に示すように、ステップS101において、PCell(eNB200)は、信号系列情報を送信する。信号系列情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。UE100は、受信した信号系列情報をメモリ150に記憶する。 As shown in FIG. 6, in step S101, the PCell (eNB 200) transmits signal sequence information. The signal sequence information may be transmitted by a common signal (for example, SIB, PDCCH), or may be transmitted by an individual signal (for example, PDSCH). The UE 100 stores the received signal sequence information in the memory 150.
 信号系列情報は、U-SCell(eNB200)から送信される参照信号に関する信号系列を特定するための情報である。参照信号は、例えば、発見参照信号(DRS:Discovery Reference signal)である。DRSは、同期信号(プライマリ同期信号(PSS)及び/又はセカンダリ同期信号(SSS))、セル参照信号、チャネル状態情報参照信号(CSI-RS)、下りリンクにおける復調参照信号(DL-DMRS)の少なくともいずれかの信号を含む。従って、DRSは、セルの識別、同期、チャネル状況の観測の少なくともいずれかに用いられる。 The signal sequence information is information for specifying a signal sequence related to a reference signal transmitted from the U-SCell (eNB 200). The reference signal is, for example, a discovery reference signal (DRS: Discovery Reference signal). The DRS includes a synchronization signal (primary synchronization signal (PSS) and / or secondary synchronization signal (SSS)), cell reference signal, channel state information reference signal (CSI-RS), and downlink demodulation reference signal (DL-DMRS). Including at least one of the signals. Therefore, DRS is used for at least one of cell identification, synchronization, and channel state observation.
 また、信号系列情報は、サブフレーム番号、セル識別子(Cell ID)、CSI識別子(CSI ID)などである。UE100は、信号系列情報に基づいて、U-SCellから送信される参照信号の信号系列を算出する。 The signal sequence information includes a subframe number, a cell identifier (Cell ID), a CSI identifier (CSI ID), and the like. The UE 100 calculates the signal sequence of the reference signal transmitted from the U-SCell based on the signal sequence information.
 ステップS102において、U-SCell(eNB200)は、参照信号(DRS)を送信する。参照信号は、U-SCellが運用される特定周波数(キャリア)を用いて送信される。ここで、eNB200は、参照信号が送信される前に、特定周波数において干渉電力の測定を行う。 In step S102, the U-SCell (eNB 200) transmits a reference signal (DRS). The reference signal is transmitted using a specific frequency (carrier) on which the U-SCell is operated. Here, the eNB 200 measures the interference power at a specific frequency before the reference signal is transmitted.
 なお、eNB200は、参照信号を周期的に(例えば、Xms間隔で)送信するように設定されている。しかしながら、eNB200は、アンライセンスド帯域内の所定周波数における干渉電力を測定した結果、干渉電力が閾値を超えていた場合(干渉を検知した場合)、無線信号の送信を中止する。従って、eNB200が無線信号を設定通りに送信できない期間が存在し得る。 Note that the eNB 200 is set to transmit the reference signal periodically (for example, at intervals of Xms). However, when the interference power exceeds the threshold (when interference is detected) as a result of measuring the interference power at a predetermined frequency in the unlicensed band, the eNB 200 stops transmitting the radio signal. Therefore, there may be a period during which the eNB 200 cannot transmit a radio signal as set.
 以下において、干渉電力が閾値未満であると仮定して説明を進める。 In the following, description will be made assuming that the interference power is less than the threshold.
 UE100は、アンライセンスド帯域における無線信号に対する測定(Measurement)を行う。UE100は、PCellからDRSの送信タイミングに関する情報及び/又はU-SCellが運用される特定周波数を示す情報を受信し、当該情報に基づいて、測定を行ってもよい。 UE 100 performs measurement (Measurement) on a radio signal in the unlicensed band. The UE 100 may receive information on the DRS transmission timing from the PCell and / or information indicating a specific frequency on which the U-SCell is operated, and perform measurement based on the information.
 ここで、UE100は、取得した測定結果がDRSに対する測定結果であるかを確認する。まず、UE100は、測定中に受信した無線信号の信号系列を算出し、この信号系列と信号系列情報に基づいて算出された信号系列との相関値を求める。次に、UE100は、求められた相関値が閾値未満であるか否かを判定する。UE100は、相関値が閾値未満である場合、測定中に受信した無線信号がU-SCellから送信された参照信号でないと判定する。この場合、UE100は、測定したタイミングを参照信号が送信されていないタイミングとして特定する。一方、UE100は、相関値が閾値以上である場合、受信した無線信号がU-SCellから送信された参照信号であると判定する。この場合、UE100は、測定したタイミングを参照信号が送信されたタイミングとして特定する。なお、閾値は、UE100が予め保持していてもよいし、eNB200から提供されてもよい。 Here, UE100 confirms whether the acquired measurement result is a measurement result with respect to DRS. First, the UE 100 calculates a signal sequence of a radio signal received during measurement, and obtains a correlation value between the signal sequence and a signal sequence calculated based on the signal sequence information. Next, UE100 determines whether the calculated | required correlation value is less than a threshold value. When the correlation value is less than the threshold, the UE 100 determines that the radio signal received during the measurement is not a reference signal transmitted from the U-SCell. In this case, the UE 100 specifies the measured timing as the timing at which the reference signal is not transmitted. On the other hand, when the correlation value is equal to or greater than the threshold value, the UE 100 determines that the received radio signal is a reference signal transmitted from the U-SCell. In this case, the UE 100 specifies the measured timing as the timing at which the reference signal is transmitted. Note that the threshold may be stored in advance by the UE 100 or may be provided from the eNB 200.
 UE100は、測定したタイミングを参照信号が送信されていないタイミングとして特定した場合、測定結果を記憶しなくてもよい。これにより、参照信号が送信されていないタイミングに対応する測定結果を報告対象から除外することができる。或いは、UE100は、無線信号に対する測定値と測定時間とを関連付けて記憶し、UE100は、測定結果を報告する前に上記判定を行って、参照信号が送信されていないタイミングに対応する測定結果を報告対象から除外してもよい。 UE100 does not need to memorize | store a measurement result, when specifying the measured timing as a timing in which the reference signal is not transmitted. Thereby, the measurement result corresponding to the timing when the reference signal is not transmitted can be excluded from the report target. Alternatively, the UE 100 stores the measurement value and the measurement time for the radio signal in association with each other, and the UE 100 performs the above determination before reporting the measurement result, and the measurement result corresponding to the timing at which the reference signal is not transmitted. You may exclude from report object.
 ステップS103において、UE100は、アンライセンスド帯域における無線信号に対する測定結果をPCellに送信する。測定結果は、受信レベル(RSRP/RSRQ)に関する結果であってもよいし、チャネル状態に関する結果(具体的には、CSI、PMI、RIなど)であってもよい。 In step S103, the UE 100 transmits the measurement result for the radio signal in the unlicensed band to the PCell. The measurement result may be a result regarding the reception level (RSRP / RSRQ) or a result regarding the channel state (specifically, CSI, PMI, RI, etc.).
 UE100は、参照信号が送信されていないタイミングに対応する測定結果を報告対象から除外しているため、測定結果は、参照信号が送信されていないタイミングで測定された測定結果を含まない。このため、eNB200(PCell)は、測定結果に基づいて、アンライセンスド帯域においてUE100と通信に関して適切に判定できる。例えば、eNB200は、測定結果に基づいて、PSCellと通信(接続)可能か否かを判定したり、PSCellにおける通信品質を算出したりすることが可能となる。 Since the UE 100 excludes the measurement result corresponding to the timing when the reference signal is not transmitted from the report target, the measurement result does not include the measurement result measured at the timing when the reference signal is not transmitted. For this reason, eNB200 (PCell) can determine appropriately regarding UE100 and communication in an unlicensed band based on a measurement result. For example, the eNB 200 can determine whether or not communication (connection) with the PSCell is possible based on the measurement result, and can calculate communication quality in the PSCell.
 [第2実施形態]
 次に、第2実施形態に係る動作について、図7を用いて説明する。図7は、第2実施形態に係る動作を説明するための図である。上述した実施形態と同様の部分は、説明を適宜省略する。
[Second Embodiment]
Next, an operation according to the second embodiment will be described with reference to FIG. FIG. 7 is a diagram for explaining an operation according to the second embodiment. Description of the same parts as those in the above-described embodiment will be omitted as appropriate.
 第2実施形態では、UE100は、eNB200から受信した情報に基づいて、参照信号が送信されていないタイミングに対応する測定結果を報告対象から除外する。 In the second embodiment, the UE 100 excludes the measurement result corresponding to the timing at which the reference signal is not transmitted, from the report target, based on the information received from the eNB 200.
 図7に示すように、ステップS201において、U-SCell(eNB200)は、U-SCellが運用される特定周波数において干渉電力の測定(CCA)を行う。ここでは、干渉電力が閾値未満であると仮定して説明を進める。 As shown in FIG. 7, in step S201, the U-SCell (eNB 200) performs interference power measurement (CCA) at a specific frequency where the U-SCell is operated. Here, the description will be made assuming that the interference power is less than the threshold value.
 ステップS202において、U-SCellは、特定周波数においてDRSを送信する。 In step S202, the U-SCell transmits a DRS on a specific frequency.
 ステップS203において、UE100は、特定周波数において無線信号に対する測定を行う。UE100は、測定結果(第1の測定結果)を記憶する。測定結果は、測定時間と関連づけて記憶される。 In step S203, the UE 100 performs measurement on a radio signal at a specific frequency. The UE 100 stores the measurement result (first measurement result). The measurement result is stored in association with the measurement time.
 ステップS204において、U-SCellは、ステップS201におけるCCAを行ってから所定時間経過した後、干渉電力の測定を行う。ここでは、干渉電力が閾値以上であると仮定して説明を進める。この場合、U-SCellは、DRSの送信を中止する。 In step S204, the U-SCell measures the interference power after a predetermined time has elapsed after performing the CCA in step S201. Here, the description will be made assuming that the interference power is equal to or greater than the threshold value. In this case, the U-SCell stops the DRS transmission.
 ステップS205において、UE100は、特定周波数において無線信号に対する測定を行い、測定結果(第2の測定結果)を記憶する。 In step S205, the UE 100 performs measurement on the radio signal at the specific frequency, and stores the measurement result (second measurement result).
 ステップS206において、U-SCellは、ステップS204におけるCCAを行ってから所定時間経過した後、干渉電力の測定を行う。ここでは、干渉電力が閾値未満であると仮定して説明を進める。 In step S206, the U-SCell measures the interference power after a predetermined time has elapsed after performing the CCA in step S204. Here, the description will be made assuming that the interference power is less than the threshold value.
 ステップS207において、U-SCellは、特定周波数においてDRSを送信する。 In step S207, the U-SCell transmits a DRS on a specific frequency.
 ステップS208において、UE100は、特定周波数において無線信号に対する測定を行い、測定結果(第3の測定結果)を記憶する。 In step S208, the UE 100 performs the measurement on the radio signal at the specific frequency, and stores the measurement result (third measurement result).
 ステップS209において、PCellは、参照信号が送信されたタイミングに関する送信情報(transmission information)を送信する。UE100は、送信情報を受信する。送信情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。 In step S209, the PCell transmits transmission information related to the timing at which the reference signal is transmitted. UE100 receives transmission information. The transmission information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH).
 送信情報は、参照信号が送信されたタイミングを示す情報であってもよいし、参照信号が送信されなかったタイミングを示す情報であってもよい。例えば、送信情報は、サブフレーム番号のリストであってもよい。また、送信情報は、参照信号が送信されなかったタイミングに対応する測定結果の削除を要求するメッセージに含まれていてもよい。 The transmission information may be information indicating the timing when the reference signal is transmitted, or may be information indicating the timing when the reference signal is not transmitted. For example, the transmission information may be a list of subframe numbers. The transmission information may be included in a message requesting deletion of the measurement result corresponding to the timing when the reference signal is not transmitted.
 eNB200は、参照信号が送信されたタイミング及び参照信号が送信されなかったタイミングの少なくとも一方を記憶する。なお、参照信号が送信されなかったタイミングは、参照信号の送信が予定されたタイミングで、且つ、干渉電力の測定結果に基づいて、参照信号が送信できなかったタイミングであってもよい。 ENB 200 stores at least one of the timing at which the reference signal is transmitted and the timing at which the reference signal is not transmitted. Note that the timing at which the reference signal is not transmitted may be a timing at which the reference signal is scheduled to be transmitted and a timing at which the reference signal cannot be transmitted based on the measurement result of the interference power.
 一方、UE100は、送信情報に基づいて、参照信号が送信されていないタイミングを特定する。UE100は、特定したタイミングに対応する測定結果を報告対象から除外する。本実施形態において、送信情報は、ステップS204の後の参照信号の送信が予定されたタイミングを示すと仮定する。UE100は、送信情報によって示されるタイミングに対応する第2の測定結果を報告対象から除外する。 On the other hand, the UE 100 identifies the timing at which the reference signal is not transmitted based on the transmission information. The UE 100 excludes the measurement result corresponding to the identified timing from the report target. In the present embodiment, it is assumed that the transmission information indicates the timing at which the transmission of the reference signal after step S204 is scheduled. The UE 100 excludes the second measurement result corresponding to the timing indicated by the transmission information from the report target.
 UE100は、送信情報の受信をトリガとして、測定結果を報告対象から除外する動作を行ってもよいし、測定結果を報告するための動作を開始したことをトリガとして、測定結果を報告対象から除外する動作を行ってもよい。 The UE 100 may perform an operation of excluding the measurement result from the report target by using the reception of the transmission information as a trigger, or excluding the measurement result from the report target by starting the operation for reporting the measurement result. May be performed.
 ステップS210において、UE100は、測定結果をPCellに送信する。測定結果は、第1の測定結果及び第3の測定結果を含み、参照信号に対する測定結果でない第2の測定結果を含まない。これにより、eNB200は、適切な測定結果を取得できる。従って、eNB200は、測定結果に基づいて、アンライセンスド帯域における通信に関して適切に判定できる。 In step S210, the UE 100 transmits the measurement result to the PCell. The measurement result includes the first measurement result and the third measurement result, and does not include the second measurement result that is not the measurement result for the reference signal. Thereby, eNB200 can acquire a suitable measurement result. Therefore, the eNB 200 can appropriately determine the communication in the unlicensed band based on the measurement result.
 なお、本実施形態において、送信情報は、参照信号に関する複数のタイミングを示していたが、これに限られない。送信情報は、DRSが送信されなかった度にUE100に送信されてもよいし、DRSが送信される度にUE100に送信されてもよい。 In the present embodiment, the transmission information indicates a plurality of timings related to the reference signal, but is not limited thereto. The transmission information may be transmitted to the UE 100 every time the DRS is not transmitted, or may be transmitted to the UE 100 every time the DRS is transmitted.
 [第3実施形態]
 次に、第3実施形態に係る動作について、図8を用いて説明する。図8は、第3実施形態に係る動作を説明するための図である。上述した各実施形態と同様の部分は、説明を適宜省略する。
[Third Embodiment]
Next, an operation according to the third embodiment will be described with reference to FIG. FIG. 8 is a diagram for explaining an operation according to the third embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
 第3実施形態では、UE100は、干渉電力の測定結果に基づいて、参照信号が送信されていないタイミングに対応する測定結果を報告対象から除外する。 In the third embodiment, the UE 100 excludes the measurement result corresponding to the timing at which the reference signal is not transmitted, from the report target, based on the measurement result of the interference power.
 図8(A)に示すように、UE100の近傍には、第1の無線通信装置(WT400-1)が存在し、eNB200の近傍には、第2の無線通信装置(WT400-2)が存在する。WT400-1及びWT400-2は、アンライセンスド帯域における特定周波数において無線信号を送信する(図8(B)参照)。 As shown in FIG. 8A, the first radio communication device (WT 400-1) exists in the vicinity of the UE 100, and the second radio communication device (WT 400-2) exists in the vicinity of the eNB 200. To do. WT 400-1 and WT 400-2 transmit radio signals at a specific frequency in the unlicensed band (see FIG. 8B).
 また、eNB200は、参照信号の送信予定タイミングに関する設定情報を送信する。UE100は、参照信号の送信予定タイミングに関する設定情報を受信する。設定情報は、特定周波数における参照信号に対する測定タイミングを指定する情報であってもよい。設定情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。UE100は、設定情報に基づいて、参照信号の送信予定タイミングで特定周波数における参照信号に対する測定を行う。 Also, the eNB 200 transmits setting information related to the scheduled transmission timing of the reference signal. UE100 receives the setting information regarding the transmission plan timing of a reference signal. The setting information may be information specifying measurement timing for a reference signal at a specific frequency. The setting information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH). Based on the setting information, the UE 100 performs the measurement for the reference signal at the specific frequency at the reference signal transmission scheduled timing.
 さらに、UE100は、参照信号の送信予定タイミングと異なるタイミングで、特定周波数における干渉電力の測定(CCAの実行)を行う。異なるタイミングは、送信予定タイミングの前及び後のタイミングの少なくとも一方である。異なるタイミングは、参照信号に対する測定を行うタイミングよりも所定時間前のタイミング及び/又は所定時間後のタイミングであってもよい。異なるタイミングは、eNB200が干渉電力を測定するタイミングと同じタイミングであってもよい。本実施形態において、UE100は、送信予定タイミングの前及び後のタイミングで干渉電力の測定を行う(図8(B)参照)。 Furthermore, the UE 100 measures the interference power at a specific frequency (execution of CCA) at a timing different from the scheduled transmission timing of the reference signal. The different timing is at least one of the timing before and after the scheduled transmission timing. The different timing may be a timing before a predetermined time and / or a timing after a predetermined time with respect to the timing for performing the measurement on the reference signal. The different timing may be the same timing as the timing at which the eNB 200 measures the interference power. In the present embodiment, the UE 100 measures the interference power at timings before and after the scheduled transmission timing (see FIG. 8B).
 図8(B)に示すように、t1からt3において、WT400-1は、特定周波数において無線信号の送信を行っている。t4からt6において、WT400-2は、特定周波数において無線信号の送信を行っている。 As shown in FIG. 8B, from t1 to t3, the WT 400-1 transmits a radio signal at a specific frequency. From t4 to t6, WT 400-2 transmits a radio signal at a specific frequency.
 t1において、eNB200及びUE100は、干渉電力の測定を行う。eNB200は、WT400-1から遠いため、eNB200における干渉電力が閾値未満である。その結果、eNB200は、t2において参照信号を送信すると決定する。 At t1, the eNB 200 and the UE 100 measure the interference power. Since the eNB 200 is far from the WT 400-1, the interference power in the eNB 200 is less than the threshold value. As a result, the eNB 200 determines to transmit the reference signal at t2.
 t2において、eNB200は、特定周波数において参照信号を送信する。UE100は、特定周波数における測定を行う。 At t2, the eNB 200 transmits a reference signal at a specific frequency. The UE 100 performs measurement at a specific frequency.
 t3において、UE100は、干渉電力の測定を行う。 At t3, the UE 100 measures the interference power.
 t4において、eNB200及びUE100は、干渉電力の測定を行う。eNB200は、WT400-2から近いため、eNB200における干渉電力が閾値以上である。その結果、eNB200は、t5において参照信号を送信しないと決定する。 At t4, the eNB 200 and the UE 100 measure the interference power. Since eNB 200 is close to WT 400-2, the interference power in eNB 200 is equal to or greater than the threshold. As a result, the eNB 200 determines not to transmit the reference signal at t5.
 t5において、eNB200が参照信号を送信しないが、UE100は、特定周波数における測定を行う。 At t5, the eNB 200 does not transmit a reference signal, but the UE 100 performs measurement at a specific frequency.
 t6において、特定周波数における測定を行う。 At t6, measurement at a specific frequency is performed.
 t7からt9において、eNB200及びUE100は、t1からt3と同様に動作する。 From t7 to t9, the eNB 200 and the UE 100 operate in the same manner as from t1 to t3.
 図8(B)におけるCCA結果は、UE100における測定結果(測定値:受信レベル)を示す。 The CCA result in FIG. 8 (B) shows the measurement result (measurement value: reception level) in the UE 100.
 次に、UE100は、異なるタイミングでの測定結果(具体的には、t1、t3、t4、t6、t7、t9)と送信予定タイミングでの測定結果(具体的には、t2、t5、t8)とに基づいて、参照信号が送信されていないタイミングを特定する。 Next, the UE 100 measures the measurement results at different timings (specifically, t1, t3, t4, t6, t7, t9) and the measurement results at the scheduled transmission timings (specifically, t2, t5, t8). Based on the above, the timing at which the reference signal is not transmitted is specified.
 UE100は、t2における受信レベルがt1(t3)における受信レベルよりも所定値以上高いため(すなわち、t2の受信レベル-t1(t3)の受信レベル>所定値であるため)、eNB200が参照信号を送信したと推測する。従って、UE100は、t2のタイミングと参照信号が送信されたタイミングとして特定する。 Since the reception level at t2 is higher than the reception level at t1 (t3) by a predetermined value or more (ie, reception level at t2−reception level at t1 (t3)> predetermined value), the eNB 200 receives the reference signal. I guess it was sent. Therefore, the UE 100 specifies the timing of t2 and the timing at which the reference signal is transmitted.
 また、UE100は、t5における受信レベルがt4(t6)における受信レベルよりも所定値以上高くないため(すなわち、t5の受信レベル-t4(t6)の受信レベル<所定値であるため)、eNB200が参照信号を送信していないと推測する。従って、UE100は、t2のタイミングと参照信号が送信されていないタイミングとして特定する。 Further, since the reception level at t5 is not higher than a predetermined value by the UE 100 than the reception level at t4 (t6) (ie, the reception level at t5−the reception level at t4 (t6) <the predetermined value), the eNB 200 It is assumed that the reference signal is not transmitted. Therefore, the UE 100 specifies the timing at t2 and the timing at which the reference signal is not transmitted.
 また、UE100は、t8における受信レベルがt7(t9)における受信レベルよりも所定値以上高いため(すなわち、t8の受信レベル-t7(t9)の受信レベル>所定値であるため)、eNB200が参照信号を送信したと推測する。従って、UE100は、t2のタイミングと参照信号が送信されたタイミングとして特定する。 Further, since the reception level at t8 is higher than the reception level at t7 (t9) by the UE 100 (that is, reception level at t8−reception level at t7 (t9)> predetermined value), the eNB 200 refers to Guess that a signal was sent. Therefore, the UE 100 specifies the timing of t2 and the timing at which the reference signal is transmitted.
 以上より、UE100は、t5における測定結果を報告対象から除外し、t2及びt8における測定結果をeNB200に報告する。従って、eNB200は、測定結果に基づいて、アンライセンスド帯域における通信に関して適切に判定できる。 From the above, the UE 100 excludes the measurement result at t5 from the report target, and reports the measurement results at t2 and t8 to the eNB 200. Therefore, the eNB 200 can appropriately determine the communication in the unlicensed band based on the measurement result.
 [第4実施形態]
 (第4実施形態に係る動作)
 次に、第4実施形態に係る動作について、図9を用いて説明する。図9は、第4実施形態に係る動作を説明するための図である。上述した各実施形態と同様の部分は、説明を適宜省略する。
[Fourth Embodiment]
(Operation according to the fourth embodiment)
Next, an operation according to the fourth embodiment will be described with reference to FIG. FIG. 9 is a diagram for explaining an operation according to the fourth embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
 第4実施形態では、eNB200が、参照信号の送信記録に基づいて、測定結果を除外する。 In the fourth embodiment, the eNB 200 excludes the measurement result based on the transmission record of the reference signal.
 図9における動作環境は、第1実施形態(図6)における動作環境と同様である。 The operating environment in FIG. 9 is the same as the operating environment in the first embodiment (FIG. 6).
 ステップS301からS308は、ステップS201からS208に対応する。 Steps S301 to S308 correspond to Steps S201 to S208.
 ステップS309において、UE100は、測定結果をPCellに送信する。ここでの測定結果は、第1の測定結果及び第3の測定結果だけでなく、第2の測定結果も含む。 In step S309, the UE 100 transmits the measurement result to the PCell. The measurement result here includes not only the first measurement result and the third measurement result but also the second measurement result.
 ここで、本実施形態では、eNB200は、第2実施形態と同様に、参照信号が送信されたタイミング及び参照信号が送信されなかったタイミングの少なくとも一方を記憶する。具体的には、eNB200は、参照信号が送信されなかったタイミングに関する送信記録を保持する。具体的には、eNB200は、参照信号が送信されたタイミング及び参照信号が送信されなかったタイミングの少なくとも一方を送信記録に残す。本実施形態では、eNB200は、ステップS304の測定結果によって参照信号が送信されなかったタイミングを送信記録に残す。 Here, in the present embodiment, the eNB 200 stores at least one of the timing at which the reference signal is transmitted and the timing at which the reference signal is not transmitted, as in the second embodiment. Specifically, the eNB 200 holds a transmission record related to the timing when the reference signal is not transmitted. Specifically, the eNB 200 leaves at least one of the timing at which the reference signal is transmitted and the timing at which the reference signal is not transmitted in the transmission record. In the present embodiment, the eNB 200 leaves the timing at which the reference signal was not transmitted according to the measurement result of step S304 in the transmission record.
 ステップS310において、PCell(eNB200)は、UE100から報告された測定結果から、参照信号が送信されていないタイミングに対応する測定結果を除外する。本実施形態では、eNB200は、ステップS304の後の参照信号の送信が予定されたタイミングに対応する第2の測定結果を除外する。これにより、eNB200は、適切な測定結果を取得できる。 In step S310, the PCell (eNB 200) excludes the measurement result corresponding to the timing at which the reference signal is not transmitted from the measurement result reported from the UE 100. In the present embodiment, the eNB 200 excludes the second measurement result corresponding to the timing at which the transmission of the reference signal after step S304 is scheduled. Thereby, eNB200 can acquire a suitable measurement result.
 (第4実施形態の変更例)
 次に、第4実施形態の変更例に係る動作について、図10を用いて説明する。図10は、第4実施形態の変更例に係る動作を説明するための図である。上述した各実施形態と同様の部分は、説明を適宜省略する。
(Modification of the fourth embodiment)
Next, an operation according to a modified example of the fourth embodiment will be described with reference to FIG. FIG. 10 is a diagram for explaining an operation according to the modified example of the fourth embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
 第4実施形態の変更例では、UE100は、参照信号に対する測定結果だけでなく、干渉電力の測定結果をeNB200に報告する。eNB200は、干渉電力の測定結果に基づいて、UE100へ送信するデータのMCS(送信レート、エラー耐性)を決定する。 In the modification of the fourth embodiment, the UE 100 reports not only the measurement result for the reference signal but also the measurement result of the interference power to the eNB 200. eNB200 determines MCS (transmission rate, error tolerance) of the data transmitted to UE100 based on the measurement result of interference power.
 図10(A)に示すように、UE100-1の近傍には、第1の無線通信装置(WT400-1)が存在し、UE100-2及びeNB200の近傍には、第2の無線通信装置(WT400-2)が存在する。WT400-1及びWT400-2は、アンライセンスド帯域における特定周波数において無線信号を送信する(図10(B)参照)。 As shown in FIG. 10A, the first radio communication device (WT 400-1) exists in the vicinity of the UE 100-1, and the second radio communication device (WT 400-1) exists in the vicinity of the UE 100-2 and the eNB 200. WT 400-2) exists. WT 400-1 and WT 400-2 transmit radio signals at a specific frequency in the unlicensed band (see FIG. 10B).
 また、eNB200は、参照信号の送信予定タイミングに関する第1の設定情報を送信する。各UE100(UE100-1及びUE100-2)は、参照信号の送信予定タイミングに関する第1の設定情報を受信する。各UE100は、第1の設定情報に基づいて、参照信号の送信予定タイミングで特定周波数における参照信号に対する測定を行う。 Also, the eNB 200 transmits first setting information related to the scheduled transmission timing of the reference signal. Each UE 100 (UE 100-1 and UE 100-2) receives the first setting information regarding the scheduled transmission timing of the reference signal. Each UE 100 performs a measurement on a reference signal at a specific frequency at a scheduled transmission timing of the reference signal based on the first setting information.
 さらに、eNB200は、各UE100に対して干渉電力の測定を実行させるための第2の設定情報を各UE100に送信する。この第2の設定情報は、アンライセンスド帯域内の特定周波数における干渉電力の測定をeNB200と同じタイミングでUE100に実行させるための情報を含む。各UE100は、第2の設定情報に基づいて、eNB200と同じタイミングで干渉電力の測定を行う。なお、各UE100は、第2の設定情報を受信しない場合であっても、第1の設定情報に基づいて、eNB200が干渉電力を測定するタイミングを推測してもよい。 Furthermore, the eNB 200 transmits second setting information for causing each UE 100 to perform measurement of interference power to each UE 100. This 2nd setting information contains the information for making UE100 perform the measurement of the interference power in the specific frequency in an unlicensed band at the same timing as eNB200. Each UE 100 measures the interference power at the same timing as the eNB 200 based on the second setting information. Note that each UE 100 may estimate the timing at which the eNB 200 measures the interference power based on the first setting information even when the UE 100 does not receive the second setting information.
 図10(B)に示すように、t1において、WT400-1は、特定周波数において無線信号の送信を行っている。t2において、WT400-2は、特定周波数において無線信号の送信を行っている。 As shown in FIG. 10B, at t1, WT 400-1 transmits a radio signal at a specific frequency. At t2, WT 400-2 transmits a radio signal at a specific frequency.
 t1において、eNB200及び各UE100は、同じタイミングで干渉電力の測定を行う。eNB200は、WT400-1から遠いため、eNB200における干渉電力が閾値未満である。その結果、eNB200は、参照信号を送信すると決定する。 At t1, the eNB 200 and each UE 100 measure the interference power at the same timing. Since the eNB 200 is far from the WT 400-1, the interference power in the eNB 200 is less than the threshold value. As a result, the eNB 200 determines to transmit the reference signal.
 次に、eNB200は、特定周波数において参照信号を送信する。各UE100は、特定周波数における測定を行う。UE100-1の測定結果は、WT400-1からの干渉を受けた測定結果である。 Next, the eNB 200 transmits a reference signal at a specific frequency. Each UE 100 performs measurement at a specific frequency. The measurement result of UE 100-1 is a measurement result that has received interference from WT 400-1.
 t2において、eNB200及びUE100は、同じタイミングで干渉電力の測定を行う。eNB200は、WT400-2から近いため、eNB200における干渉電力が閾値以上である。その結果、eNB200は、参照信号を送信しないと決定する。eNB200が参照信号を送信しないが、各UE100は、特定周波数における測定を行う。UE100-2の測定結果は、WT400-2からの干渉を受けた測定結果である。 At t2, the eNB 200 and the UE 100 measure the interference power at the same timing. Since eNB 200 is close to WT 400-2, the interference power in eNB 200 is equal to or greater than the threshold. As a result, the eNB 200 determines not to transmit the reference signal. Although the eNB 200 does not transmit a reference signal, each UE 100 performs measurement at a specific frequency. The measurement result of UE 100-2 is a measurement result that has received interference from WT 400-2.
 t3において、各UE100は、参照信号に対する測定結果(DRS結果)だけでなく、干渉電力の測定結果(CCA結果)もeNB200に報告する。eNB200は、第1の測定結果及び第2の測定結果を受信(取得)する。 At t3, each UE 100 reports not only the measurement result (DRS result) with respect to the reference signal but also the measurement result (CCA result) of the interference power to the eNB 200. The eNB 200 receives (acquires) the first measurement result and the second measurement result.
 t4において、eNB200は、干渉電力の測定を行う。eNB200における干渉電力が閾値未満である。その結果、eNB200は、t1と同様にeNB200において干渉を受けていないと判断する。eNB200は、UE100へデータを送信すると決定する。 At t4, the eNB 200 measures the interference power. The interference power in the eNB 200 is less than the threshold value. As a result, the eNB 200 determines that no interference is received in the eNB 200 similarly to t1. The eNB 200 determines to transmit data to the UE 100.
 eNB200は、UE100からのDRS結果が第1閾値よりも大きい場合、当該DRS結果の送信元のUE100の近くに干渉源が存在すると判断する。その結果、eNB200は、当該UE100への送信データのエラー耐性を高くする。第1閾値は、eNB200が干渉の検出に用いる閾値であってもよいし、eNB200が送信した参照信号(DRS)の送信電力に対応する閾値であってもよい。 When the DRS result from the UE 100 is larger than the first threshold, the eNB 200 determines that there is an interference source near the UE 100 that is the transmission source of the DRS result. As a result, the eNB 200 increases error tolerance of transmission data to the UE 100. The first threshold may be a threshold used by the eNB 200 for detection of interference, or may be a threshold corresponding to the transmission power of the reference signal (DRS) transmitted by the eNB 200.
 一方、eNB200は、UE100からのCCA結果が第2閾値(例えば、第1閾値よりも低い閾値)よりも小さい場合、当該第1の測定結果の送信元のUE100の近くに干渉源が存在しないと判断する。その結果、eNB200は、当該UE100への送信データのエラー耐性を低くする。 On the other hand, when the CCA result from the UE 100 is smaller than the second threshold (for example, a threshold lower than the first threshold), the eNB 200 determines that there is no interference source near the UE 100 that is the transmission source of the first measurement result. to decide. As a result, the eNB 200 reduces the error resistance of transmission data to the UE 100.
 さらに、eNB200は、データを送信する直前の自局におけるCCA結果と、自局における過去のCCA結果(例えば、参照信号を送信する直前のCCA結果)とを比較して、送信データのエラー耐性を決定することができる。eNB200は、例えば、以下のようにエラー耐性(MCS)を決定する。 Further, the eNB 200 compares the CCA result in the local station immediately before transmitting data with the past CCA result in the local station (for example, the CCA result immediately before transmitting the reference signal), thereby improving the error tolerance of the transmission data. Can be determined. For example, the eNB 200 determines error tolerance (MCS) as follows.
 eNB200は、UE100-1からのCCA結果に基づいて、t1においてUE100-1が干渉を受けていたと判断する。また、eNB200は、t1において、eNB200は干渉を受けていないにもかかわらず、UE100-1が干渉を受けている。このため、eNB200は、t4において干渉を受けていないが、UE100-1がt4において干渉を受ける可能性があると判断する。そこで、eNB200は、UE100-1からのt1におけるDRS結果に基づいて、UE100-1への送信データに対するMCSを、エラー耐性の高いMCSに決定する。 The eNB 200 determines that the UE 100-1 has received interference at t1 based on the CCA result from the UE 100-1. In addition, the eNB 200 receives the interference of the UE 100-1 at t1, even though the eNB 200 is not receiving the interference. For this reason, the eNB 200 determines that there is a possibility that the UE 100-1 may receive interference at t4 although it has not received interference at t4. Therefore, the eNB 200 determines the MCS for the transmission data to the UE 100-1 to be an MCS with high error resistance based on the DRS result at t1 from the UE 100-1.
 或いは、eNB200は、UE100-1が干渉を受けていないCCA結果(又はDRS結果)に基づいて、エラー耐性を決定する。ここで、eNB200は、t2において、参照信号(DRS)を送信していない。このため、eNB200は、通常、UE100-1からのt2におけるDRS結果に基づいてエラー耐性(MCS)を決定しない。一方で、UE100-1からのCCA結果から、eNB200が干渉を受けている時にUE100-1は干渉を受けていないことを知る。 Alternatively, the eNB 200 determines error tolerance based on the CCA result (or DRS result) in which the UE 100-1 is not receiving interference. Here, the eNB 200 does not transmit the reference signal (DRS) at t2. For this reason, the eNB 200 does not normally determine error resilience (MCS) based on the DRS result at t2 from the UE 100-1. On the other hand, the CCA result from the UE 100-1 knows that the UE 100-1 is not receiving interference when the eNB 200 is receiving interference.
 一方、eNB200は、t1におけるCCA結果から、t1において、eNB200と同様に、UE100-2が干渉を受けていないと判断する。このため、eNB200は、t4において干渉を受けていないので、t4においてUE100-2が干渉を受ける可能性が低いと判断する。これにより、eNB200は、t1におけるDRS結果に基づいて、UE100-2への送信データに対するMCS(を、送信レートの高いMCS(エラー耐性の低いMCS)に決定する。 On the other hand, the eNB 200 determines from the CCA result at t1 that the UE 100-2 is not receiving interference at the t1, similarly to the eNB 200. For this reason, since the eNB 200 has not received interference at t4, the eNB 200 determines that the possibility that the UE 100-2 receives interference at t4 is low. Thereby, the eNB 200 determines MCS (for transmission data to the UE 100-2) as MCS with high transmission rate (MCS with low error tolerance) based on the DRS result at t1.
 このケースにおいて、eNB200は、t4において、UE100-1及びUE100-2の一方にのみデータを送信する場合には、例えば、干渉を受ける可能性が低いUE100-2にデータを(優先的に)送信すると決定できる。 In this case, when the eNB 200 transmits data only to one of the UE 100-1 and the UE 100-2 at t4, for example, the eNB 200 transmits (priority) the data to the UE 100-2 that is unlikely to receive interference. Then you can decide.
 なお、仮に、eNB200において、t4におけるCCA結果が、t1におけるCCA結果よりも大きく、且つ、t2におけるCCA結果よりも小さい(t2結果>t4結果>t1結果)というケースを想定する。この場合、eNB200は、UE100-2からのCCA結果に基づいて、UE100-2がeNB200と同様に干渉を受けていると判断する。従って、eNB200は、t4におけるeNB200のCCA結果に基づいて、t4においてUE100-2が干渉を受けている可能性が高いと判断する。eNB200は、t4におけるUE100-2への送信データに適用するMCSをエラー耐性の高いMCSに決定する。 In eNB 200, a case is assumed in which the CCA result at t4 is larger than the CCA result at t1 and smaller than the CCA result at t2 (t2 result> t4 result> t1 result). In this case, the eNB 200 determines that the UE 100-2 is receiving interference in the same manner as the eNB 200 based on the CCA result from the UE 100-2. Therefore, the eNB 200 determines that there is a high possibility that the UE 100-2 is receiving interference at t4 based on the CCA result of the eNB 200 at t4. The eNB 200 determines the MCS to be applied to the transmission data to the UE 100-2 at t4 as the MCS with high error tolerance.
 一方、eNB200は、UE100-1からのt2におけるCCA結果に基づいて、UE100-1がeNB200と同様に干渉を受けていないと判断する。従って、eNB200は、t4におけるeNB200のCCA結果に基づいて、t4においてUE100-1が干渉を受ける可能性が低いと判断する。eNB200は、UE100-2への送信データに適用するMCSを伝送レートが高いMCSに決定する。 Meanwhile, the eNB 200 determines that the UE 100-1 is not receiving interference in the same manner as the eNB 200 based on the CCA result at t2 from the UE 100-1. Therefore, the eNB 200 determines that the UE 100-1 is unlikely to receive interference at t4 based on the CCA result of the eNB 200 at t4. The eNB 200 determines an MCS to be applied to transmission data to the UE 100-2 as an MCS having a high transmission rate.
 このケースにおいて、eNB200は、t4において、UE100-1及びUE100-2の一方にのみデータを送信する場合には、例えば、干渉を受ける可能性が低いUE100-1にデータを(優先的に)送信すると決定できる。 In this case, when the eNB 200 transmits data only to one of the UE 100-1 and the UE 100-2 at t4, for example, the eNB 200 transmits (priority) the data to the UE 100-1 that is unlikely to receive interference. Then you can decide.
 このように、eNB200は、eNB200におけるCCA結果(特に、UE100へのデータ送信の直前のCCA結果)と、各UE100のDRS結果及びCCA結果とに基づいて、データの送信先となるUE100及びMCSを決定できる。 As described above, the eNB 200 determines the UE 100 and the MCS that are data transmission destinations based on the CCA result in the eNB 200 (particularly, the CCA result immediately before the data transmission to the UE 100), the DRS result and the CCA result of each UE 100. Can be determined.
 [その他の実施形態]
 上述した各実施形態では、UE100が、測定結果をeNB200に報告するケースを説明したが、これに限られない。UE100は、eNB200から参照信号が送信されていないタイミングに対応する測定結果が除外された有効性の高い測定結果に基づいて、所定の判定を行ってもよい。例えば、UE100は、有効性の高い測定結果に基づいて、アンライセンスドセルの通信環境に関する判定を行うことができる。
[Other Embodiments]
In each embodiment mentioned above, although UE100 demonstrated the case where a measurement result was reported to eNB200, it is not restricted to this. The UE 100 may make a predetermined determination based on a highly effective measurement result from which the measurement result corresponding to the timing at which the reference signal is not transmitted from the eNB 200 is excluded. For example, the UE 100 can make a determination regarding the communication environment of the unlicensed cell based on a highly effective measurement result.
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本出願の内容を適用してもよい。 In the embodiment described above, the LTE system has been described as an example of the mobile communication system, but the present invention is not limited to the LTE system, and the contents of the present application may be applied to a system other than the LTE system.
 [付記]
 (1)導入
 この付記では、LAA RRM測定のための参照信号のデザインを述べる。参照信号へのアプローチを考慮した他の機能性についての見解も提供する。
[Appendix]
(1) Introduction This appendix describes the design of a reference signal for LAA RRM measurement. It also provides views on other functionality that takes into account the approach to reference signals.
 (2)RRM測定のための参照信号のデザイン
 Rel-12 DRSが、アンライセンスド帯域でのRRM測定において用いられる参照信号のデザインのための出発点であることが合意された。Rel-12DRSデザインに基づいて、eNBは、例外なく、一定の間隔でPSS/SSS/CRS(及びCSI-RS)を送信することが要求される。それは、eNBは、DRSを送信するために割り当てられたライセンスド帯域のリソースを使用するので、問題なく達成することができる。しかしながら、ライセンスド帯域とは対照的に、1より多い無線システム/ノードは、アンライセンスド帯域を共有することができるだろう。アンライセンスド帯域を共有することに加えて、各システムは、一部の国/地域で要求される衝突を回避するためにLBT(Listen Befor Talk)を使用する。従って、DRSは、我々の見解では、DRSがアンライセンスド帯域で送信された場合、LBTが必要である。
(2) Design of reference signal for RRM measurement It was agreed that Rel-12 DRS is the starting point for the design of reference signal used in RRM measurement in the unlicensed band. Based on the Rel-12 DRS design, the eNB is required to transmit PSS / SSS / CRS (and CSI-RS) at regular intervals without exception. It can be achieved without problems because the eNB uses licensed band resources allocated to transmit DRS. However, in contrast to the licensed band, more than one wireless system / node could share the unlicensed band. In addition to sharing unlicensed bandwidth, each system uses LBT (Listen Before Talk) to avoid collisions required in some countries / regions. Therefore, DRS, in our view, requires LBT when DRS is transmitted in an unlicensed band.
 一つのデザインの観点は、LBTは必須機能であるべきか否かを検討することである。LBTは、EUと日本では必須の機能であるが、EU規制は、信号の存在のための周波数を検知することなく、管理及び制御フレームの送信、すなわち、短時間制御シグナリング送信(Short Control Signalling Transmission)を許可する。EU規制によれば、適応型機器の短時間制御シグナリング送信は、50ミリ秒の観察期間内に最大10%の負荷サイクルを有するべきである。上記の要件に基づいて、DRS送信が条件を満たす場合、LTE eNBは、LBTを実行せずにアンライセンスド帯域でDRSを送信することができる。しかしながら、他のシステムとの公正な共存を取得し、衝突を回避するのに役立つので、LBTが義務付けられるべきである。LBTの義務付けは、また、シンプルなデザインと見なされ、かつ、LAAが展開されると予想されるすべての地域のための1つの汎用ソリューションを提供することができるだろう。 One design perspective is to consider whether LBT should be an essential function. LBT is an indispensable function in EU and Japan, but EU regulation does not detect the frequency for the presence of signal, but transmits management and control frames, that is, short-time control signaling transmission (Short Control Signaling Transmission) ) According to EU regulations, adaptive device short-time control signaling transmissions should have a maximum duty cycle of 10% within a 50 millisecond observation period. Based on the above requirements, when the DRS transmission satisfies the condition, the LTE eNB can transmit the DRS in the unlicensed band without executing the LBT. However, LBT should be mandated as it helps to obtain fair coexistence with other systems and avoid collisions. The LBT mandate will also be considered a simple design and could provide one general solution for all regions where LAA is expected to be deployed.
 提案1:提言1:LAAのDRS送信ベースのRel-12 DRSにLBT機能性を適用することに同意すべきである。 Proposal 1: Recommendation 1: It should be agreed to apply LBT functionality to Rel-12 DRS based on LAA DRS transmission.
 提案1が合意事項として認められる場合、LBT機能性は、使用中チャネル(busy channel)が検出された場合、eNBがそのDRSをアンライセンスド帯域で送信することを許可しない(図10参照)。結果として、eNBがDRSの送信機会のいくつかの間にDRSを送信していない場合には、測定の精度要件を満たさないかもしれない。RSRP測定の現在の定義によれば、UEは、発見信号機会として設定されるサブフレーム内のRSRPを測定しなければならない。これは、UEが設定された無線リソースを監視しなければならず、かつ、DRSがこれらのリソースで実際に送信されたかどうかにかかわらず最終的な測定結果にUEがこれらのリソース結果を含めるかもしれないことを意味する。さらに、RSRPを決定するためにUEが使用する測定周波数帯内及び測定期間内のリソースエレメントの数は、対応する測定精度の要件が満たされなければならない制約を持つUEの実装に任されている。従って、報告されたRSRPが非常に不正確になる可能性がある。RSRP測定に基づくUEの実装とeNBのLBT機能性が原因であるいくつかのDRS送信の利用できないこととの組み合わせは、UEがeNBに正確なアンライセンスド帯域の正確な無線環境情報を提供することができないという問題をもたらす。 If Proposal 1 is accepted as an agreement, the LBT functionality does not allow the eNB to transmit its DRS in the unlicensed band if a busy channel is detected (see FIG. 10). As a result, the measurement accuracy requirement may not be met if the eNB has not transmitted a DRS during some of the DRS transmission opportunities. According to the current definition of RSRP measurement, the UE must measure RSRP in a subframe configured as a discovery signal opportunity. This is because the UE has to monitor the configured radio resources and the UE may include these resource results in the final measurement result regardless of whether DRS was actually transmitted on these resources. It means you can't. Furthermore, the number of resource elements in the measurement frequency band and in the measurement period used by the UE to determine RSRP is left to the implementation of the UE with constraints that the corresponding measurement accuracy requirements must be met. . Therefore, the reported RSRP can be very inaccurate. The combination of the UE implementation based on RSRP measurements and the unavailability of some DRS transmissions due to the eNB's LBT functionality provides the UE with accurate radio environment information for the exact unlicensed band to the eNB. The problem of not being able to do.
 上述の課題は、RAN4で解決しなければならないと考える。1つのアプローチは、RAN1が、現在の測定正確要件が既存の仕様によって満足するかどうかを確かめるための調査を実行するために、要求LSをRAN4へ送ることである。現在の仕様が正確な要件を満たさないケースでは、新たな解決策を検討することができる。以下に候補の選択肢がいくつかある。 I think that the above-mentioned problems must be solved by RAN4. One approach is for RAN1 to send a request LS to RAN4 to perform a search to see if the current measurement accuracy requirements are satisfied by the existing specification. In cases where the current specification does not meet the exact requirements, new solutions can be considered. Below are some candidate options.
 選択肢1:eNBがライセンスド帯域でDRS測定指示をブロードキャスト/ユニキャストする。 Option 1: The eNB broadcasts / unicasts a DRS measurement instruction in the licensed band.
 この選択肢では、eNBは、サブフレームのRSRPが計算されるべき条件について、UEにライセンスド帯域を介して通知する。RSRPの計算の間、アンライセンスド帯域でのRSRP測定条件についてeNBから提供された情報に従って、UEがDRS測定を採用及び修正することが期待される。eNBがこの情報をUEへいつ及びどのように提供できるかはさらなる課題である。 In this option, the eNB notifies the UE via the licensed band about the condition under which the RSRP of the subframe is to be calculated. During the RSRP calculation, it is expected that the UE will adopt and modify the DRS measurement according to the information provided from the eNB about the RSRP measurement conditions in the unlicensed band. When and how the eNB can provide this information to the UE is a further challenge.
 選択肢2:LAAのためのRSRP測定に基づく(DRSに含まれる)CRSを規定すること。 Option 2: Specify CRS (included in DRS) based on RSRP measurement for LAA.
 この選択肢2では、RSRPを決定するために、UEがDRS測定を実行する方法にいくつかの制約が適用される。例えば、UEは、1DRSバースト毎に1つの測定結果を送るべきである。eNBは、どのDRSがアンライセンスド帯域で送信されたかを認識しているので、当該eNBは、特定のUEから受信した測定報告が信頼できるかできないかを決定できる(図11参照)。 In this option 2, some restrictions apply to the way the UE performs DRS measurements to determine RSRP. For example, the UE should send one measurement result per 1 DRS burst. Since the eNB knows which DRS is transmitted in the unlicensed band, the eNB can determine whether the measurement report received from the specific UE is reliable or not (see FIG. 11).
 提案2:提案1が合意事項として認められる場合、RAN1が、現在の測定正確要件が既存の仕様によって満足するかどうかを要求するLSをRAN4へ送るべきである。 Proposal 2: If Proposal 1 is accepted as an agreement, RAN1 should send an LS requesting whether the current measurement accuracy requirements are satisfied by the existing specification to RAN4.
 (3)LAAのための機能性の分析
 RRM測定とは異なり、他の機能性をサポートするための参照信号は、扱われなかった。もし提案1が合意事項として認められる場合、LBTを伴うRel-12 DRSも同様に、他の機能性のための出発点であるべきである。AGC(Automatic Gain Control)設定、粗い同期及びCSI測定は、LAAのために上記のDRSを使用して実行できると考える。これは、ベースライン解決策であるだろう。しかしながら、eNBが、DRSの送信機会のいくつかの間のどこかでDRSを送信しないケースのために更なる研究が必要とされる。前で説明したように、この状況は、RRM測定に似ている。
(3) Functionality analysis for LAA Unlike RRM measurements, reference signals to support other functionality were not treated. If Proposal 1 is accepted as an agreement, Rel-12 DRS with LBT should be the starting point for other functionality as well. It is assumed that AGC (Automatic Gain Control) setting, coarse synchronization and CSI measurement can be performed using the above DRS for LAA. This would be a baseline solution. However, further research is needed for the case where the eNB does not transmit DRS somewhere during some of the transmission opportunities of DRS. As explained earlier, this situation is similar to RRM measurements.
 一方、eNBが、現在仕様化された最大DRS間隔よりもDRSを送信できない場合、少なくとも復調用の細かい周波数/時間推定はできない可能性がある。既存の仕様は、160msecよりも長いDRS間隔を保証できない。この課題が次の章で考察される。 On the other hand, if the eNB cannot transmit the DRS beyond the currently specified maximum DRS interval, there is a possibility that at least fine frequency / time estimation for demodulation cannot be performed. Existing specifications cannot guarantee a DRS interval longer than 160 msec. This issue will be discussed in the next chapter.
 提案3:LBTを伴うRel-12 DRSに基づくLAA DRSも、AGC設定、粗い同期及びCSI測定に使用されるべきである。 Proposal 3: LAA DRS based on Rel-12 DRS with LBT should also be used for AGC configuration, coarse synchronization and CSI measurements.
 (4)同期信号デザイン
 上述の通り、送信に基づくLBTは、様々な国/地域でアンライセンスド帯域において必要とされる。従って、eNBが、同じ帯域を共有する隣接ノードによる他の送信の存在が原因で、長期間、アンライセンスド帯域でDRSを伝送することができない可能性がある。一つのアプローチは、2つのDRS送信の間の期間に関する固定上限、例えば160msecを設定することである。eNBが、DRSを上限よりも長い時間を送信できない場合、細かい周波数/時間推定が保証されないと想定されるべきである。しかしながら、干渉が原因でUEが正確なDRS送信のいくつかを検出/デコードできない可能性もある。この状況は、DRS送信に加えて、データ送信の中に他の同期信号を提供することを検討することを強制する。一つの解決策は、eNBは、データ領域(例えば、サブフレームの最初のシンボル)の前に位置するシンボルで同期信号(LAAシンク(LAA sync))を送信する(図12参照)。このアプローチは、D2D同期信号デザインに非常に類似している。そのケースでは、UEは、DRSを用いて粗い同期を実現し、上記LAAシンクを用いて細かい周波数/時間推定を実現する。この解決策が適用される場合、LAAシンクがUEで受信された最初のサブフレーム内のデータ領域の次に配置されているので、AGC設定は、DRSの代わりに、LAAシンクに基づいて行われる。
(4) Synchronous signal design As mentioned above, LBT based on transmission is required in the unlicensed band in various countries / regions. Therefore, the eNB may not be able to transmit DRS in the unlicensed band for a long time due to the presence of other transmissions by neighboring nodes sharing the same band. One approach is to set a fixed upper limit for the period between two DRS transmissions, for example 160 msec. If the eNB is unable to transmit a DRS longer than the upper limit, it should be assumed that fine frequency / time estimation is not guaranteed. However, due to interference, the UE may not be able to detect / decode some of the correct DRS transmissions. This situation forces consideration to provide other synchronization signals during data transmission in addition to DRS transmission. In one solution, the eNB transmits a synchronization signal (LAA sync (LAA sync)) in a symbol located before the data region (for example, the first symbol of the subframe) (see FIG. 12). This approach is very similar to the D2D sync signal design. In that case, the UE achieves coarse synchronization using DRS and fine frequency / time estimation using the LAA sink. When this solution is applied, the AGC configuration is performed based on the LAA sink instead of the DRS because the LAA sink is located next to the data area in the first subframe received at the UE. .
 現在の物理制御チャネル領域がLAAシンクにより置き換わるべきであることを提案する。物理制御チャネルを送信するために使用されるリソースエレメントの数は、例えば、サブフレームにスケジュールされたUEの数に応じて変更される。低交通状況のケースでは、物理制御チャネル領域が十分に占有されていない可能性があり、低リソースエレメント密度及び近隣ノードによってより高い誤検出という結果になるOFDMシンボルにわたる結果的な低送信電力をもたらす。近隣ノードがそれぞれの送信のためにチャネルが利用可能であると仮定する可能性があるので、これは、衝突をもたらす。衝突を回避するために、物理制御チャネルはアンライセンスド帯域送信から取り除くべきであり、代わりとして、LAAシンクが送信されるべきであることを提案する。どのようにLAAシンクがデータ領域の直前にマッピングされるかさらなる研究が必要とされる。 It is proposed that the current physical control channel area should be replaced by LAA sink. The number of resource elements used to transmit the physical control channel is changed according to the number of UEs scheduled in the subframe, for example. In the case of low traffic situations, the physical control channel area may not be fully occupied, resulting in low resource element density and resulting low transmit power over OFDM symbols resulting in higher false positives by neighboring nodes . This leads to collisions because neighboring nodes may assume that a channel is available for each transmission. In order to avoid collisions, it is proposed that the physical control channel should be removed from unlicensed band transmissions and instead LAA sinks should be transmitted. Further research is needed on how the LAA sink is mapped just before the data region.
 提案4:現在の物理制御チャネル領域は、このLAAシンクに置き換えるべきである。 Proposal 4: The current physical control channel area should be replaced with this LAA sink.
 なお、米国仮出願第62/109850号(2015年1月30日出願)の全内容が、参照により、本願明細書に組み込まれている。 Note that the entire contents of US Provisional Application No. 62/109850 (filed on January 30, 2015) are incorporated herein by reference.

Claims (10)

  1.  基地局であって、
     アンライセンスド帯域において参照信号を送信する送信部と、
     前記アンライセンスド帯域における無線信号の測定結果をユーザ端末から受信する受信部と、
     前記測定結果から、前記アンライセンスド帯域において前記参照信号が送信されていないタイミングで測定された測定値を除外する制御部と、を備えることを特徴とする基地局。
    A base station,
    A transmitter for transmitting a reference signal in an unlicensed band;
    A receiver that receives a measurement result of a radio signal in the unlicensed band from a user terminal;
    And a control unit that excludes a measurement value measured at a timing when the reference signal is not transmitted in the unlicensed band from the measurement result.
  2.  前記受信部は、前記基地局が1つの参照信号を送信する機会毎に1つの測定結果を送信する前記ユーザ端末から、前記測定結果を受信する請求項1に記載の基地局。 The base station according to claim 1, wherein the reception unit receives the measurement result from the user terminal that transmits one measurement result every time the base station transmits one reference signal.
  3.  ライセンスド帯域及びアンライセンスド帯域において通信可能なユーザ端末と前記アンライセンスド帯域において通信可能な基地局であって、
     前記アンライセンスド帯域における干渉電力を測定する制御部と、
     前記干渉電力の測定結果に基づいて、前記アンライセンスド帯域において参照信号を送信する送信部と、
     前記干渉電力の測定結果に基づいて前記参照信号が送信されなかったタイミングに関する送信記録を保持する記憶部と、を備え、
     前記制御部は、前記参照信号に対する測定結果を前記ユーザ端末から報告された場合、前記送信記録に基づいて、前記参照信号に対する測定結果から、前記参照信号が送信されていないタイミングに対応する所定の測定結果を除外することを特徴とする基地局。
    A user terminal capable of communicating in a licensed band and an unlicensed band and a base station capable of communicating in the unlicensed band,
    A control unit for measuring interference power in the unlicensed band;
    A transmitter that transmits a reference signal in the unlicensed band based on the measurement result of the interference power;
    A storage unit that holds a transmission record related to the timing at which the reference signal was not transmitted based on the measurement result of the interference power, and
    The control unit, when a measurement result for the reference signal is reported from the user terminal, based on the transmission record, a predetermined result corresponding to a timing at which the reference signal is not transmitted from the measurement result for the reference signal. A base station that excludes measurement results.
  4.  前記送信部は、前記アンライセンスド帯域における干渉電力の測定を前記基地局と同じタイミングで前記ユーザ端末に実行させるための設定情報を前記ユーザ端末に送信し、
     前記制御部は、前記ユーザ端末における前記干渉電力の測定結果を取得し、自局における前記干渉電力の測定結果と前記ユーザ端末における前記干渉電力の測定結果とに基づいて、前記ユーザ端末へ送信するデータのエラー耐性を決定することを特徴とする請求項3に記載の基地局。
    The transmitter transmits setting information for causing the user terminal to perform measurement of interference power in the unlicensed band at the same timing as the base station, and
    The control unit acquires the measurement result of the interference power in the user terminal, and transmits the measurement result of the interference power in the user terminal and the measurement result of the interference power in the user terminal to the user terminal. 4. The base station according to claim 3, wherein error tolerance of data is determined.
  5.  前記制御部は、前記データを送信する直前に前記アンライセンスド帯域における干渉電力を測定し、
     前記自局における前記干渉電力の測定結果は、前記参照信号の送信直前に測定された前記干渉電力の測定結果だけでなく、前記データの送信直前に測定された前記干渉電力の測定結果も含むことを特徴とする請求項4に記載の基地局。
    The control unit measures the interference power in the unlicensed band immediately before transmitting the data,
    The measurement result of the interference power in the local station includes not only the measurement result of the interference power measured immediately before the transmission of the reference signal but also the measurement result of the interference power measured immediately before the transmission of the data. The base station according to claim 4.
  6.  ライセンスド帯域において通信可能であり、且つ、アンライセンスド帯域における干渉電力の測定結果に基づいて無線信号の送信を行う基地局と前記アンライセンスド帯域において通信可能なユーザ端末であって、
     前記アンライセンスド帯域において所定の無線信号に対する測定を行い、当該所定の無線信号に対する測定結果を報告する制御部を備え、
     前記制御部は、前記アンライセンスド帯域において前記基地局から参照信号が送信されていないタイミングを特定し、当該特定されたタイミングに対応する所定の測定結果を除外することを特徴とするユーザ端末。
    A user terminal capable of communicating in the licensed band and capable of communicating in the unlicensed band with a base station that transmits a radio signal based on a measurement result of interference power in the unlicensed band,
    A control unit that performs measurement on a predetermined radio signal in the unlicensed band and reports a measurement result on the predetermined radio signal;
    The user terminal characterized by specifying a timing at which a reference signal is not transmitted from the base station in the unlicensed band, and excluding a predetermined measurement result corresponding to the specified timing.
  7.  前記基地局から送信される前記参照信号に関する信号系列を特定するための信号系列情報を記憶する記憶部をさらに備え、
     前記制御部は、前記所定の無線信号の信号系列と前記信号系列情報に基づいて特定された信号系列との相関値が閾値未満である場合、前記所定の無線信号が送信されたタイミングを、前記参照信号が送信されていないタイミングとして特定することを特徴とする請求項6に記載のユーザ端末。
    A storage unit for storing signal sequence information for specifying a signal sequence related to the reference signal transmitted from the base station;
    When the correlation value between the signal sequence of the predetermined radio signal and the signal sequence specified based on the signal sequence information is less than a threshold, the control unit determines the timing at which the predetermined radio signal is transmitted, The user terminal according to claim 6, wherein the user terminal is specified as a timing at which the reference signal is not transmitted.
  8.  前記参照信号が送信されたタイミングに関する送信情報を受信する受信部をさらに備え、
     前記制御部は、前記送信情報に基づいて、前記参照信号が送信されていないタイミングを特定することを特徴とする請求項6に記載のユーザ端末。
    A receiver that receives transmission information related to the timing at which the reference signal is transmitted;
    The user terminal according to claim 6, wherein the control unit specifies a timing at which the reference signal is not transmitted based on the transmission information.
  9.  前記所定の無線信号に対する測定前に、前記参照信号の送信予定タイミングに関する予定情報を受信する受信部をさらに備え、
     前記制御部は、前記予定情報に基づいて、前記送信予定タイミングで前記所定の無線信号に対する測定を行うと共に、前記送信予定タイミングと異なるタイミングで前記アンライセンスド帯域における干渉電力の測定を行い、
     前記制御部は、前記異なるタイミングでの測定結果と前記送信予定タイミングでの測定結果とに基づいて、前記参照信号が送信されていないタイミングを特定することを特徴とする請求項6に記載のユーザ端末。
    A receiver for receiving schedule information related to a scheduled transmission timing of the reference signal before measuring the predetermined radio signal;
    The control unit performs measurement on the predetermined radio signal at the scheduled transmission timing based on the schedule information, and measures interference power in the unlicensed band at a timing different from the scheduled transmission timing,
    The user according to claim 6, wherein the control unit specifies a timing at which the reference signal is not transmitted based on a measurement result at the different timing and a measurement result at the scheduled transmission timing. Terminal.
  10.  前記異なるタイミングは、前記送信予定タイミングの前及びの後のタイミングの少なくとも一方であり、
     前記制御部は、前記異なるタイミングでの測定結果である第1の受信レベルが前記送信予定タイミングでの測定結果である第2の受信レベルよりも所定値以上高い場合、前記送信予定タイミングを前記参照信号が送信されたタイミングとして特定することを特徴とする請求項9に記載のユーザ端末。
    The different timing is at least one of a timing before and after the scheduled transmission timing,
    The control unit refers to the scheduled transmission timing when the first reception level, which is a measurement result at the different timing, is higher than a second reception level, which is the measurement result at the scheduled transmission timing, by a predetermined value or more. The user terminal according to claim 9, wherein the user terminal is specified as a timing at which a signal is transmitted.
PCT/JP2016/051647 2015-01-30 2016-01-21 Base station and user terminal WO2016121608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571978A JP6438052B2 (en) 2015-01-30 2016-01-21 Base station and user terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562109850P 2015-01-30 2015-01-30
US62/109,850 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121608A1 true WO2016121608A1 (en) 2016-08-04

Family

ID=56543223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051647 WO2016121608A1 (en) 2015-01-30 2016-01-21 Base station and user terminal

Country Status (2)

Country Link
JP (2) JP6438052B2 (en)
WO (1) WO2016121608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454550B2 (en) 2018-08-08 2024-03-22 インターデイジタル パテント ホールディングス インコーポレイテッド Radio link monitoring and radio resource management measurement procedures for NR-U

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7305780B2 (en) * 2019-10-03 2023-07-10 京セラ株式会社 Communication control method and user device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017328A1 (en) * 2014-07-31 2016-02-04 株式会社Nttドコモ User terminal, wireless communication system, and wireless communication method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016121917A1 (en) * 2015-01-29 2017-12-07 株式会社Nttドコモ Wireless base station, user terminal, and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017328A1 (en) * 2014-07-31 2016-02-04 株式会社Nttドコモ User terminal, wireless communication system, and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Measurement and synchronization in LAA", 3GPP TSG RAN WG1 MEETING #79 R1-144903, 8 November 2014 (2014-11-08), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG1_RL1/TSGR1_79/Docs/R1-144903.zip> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454550B2 (en) 2018-08-08 2024-03-22 インターデイジタル パテント ホールディングス インコーポレイテッド Radio link monitoring and radio resource management measurement procedures for NR-U

Also Published As

Publication number Publication date
JP6619862B2 (en) 2019-12-11
JP2019062542A (en) 2019-04-18
JPWO2016121608A1 (en) 2017-11-24
JP6438052B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
US9854618B2 (en) Mobile communication system and user terminal
US11159974B2 (en) Base station and user terminal for performing measurement and communication in unlicensed frequency bands
US9826562B2 (en) Communication control method, user terminal, processor, storage medium, and base station for D2D communication
WO2014017498A1 (en) Mobile communication system
WO2016186077A1 (en) Terminal device
JP6316990B2 (en) User terminal, processor and mobile communication system
US9923689B2 (en) Mobile communication system, user terminal, and processor for assigning radio resources for transmission of sounding reference signals and device to device communication resources
EP2861023A1 (en) Communication control method, user terminal, processor, and storage medium
US20150304969A1 (en) Communication control method, base station, user terminal, processor, and storage medium
US10433227B2 (en) Base station and wireless LAN termination apparatus
JP6619862B2 (en) User terminal, communication method and communication system
US20170325100A1 (en) Base station
US20170019892A1 (en) Communication control method, base station, and user terminal
US10813056B2 (en) Radio terminal and base station
US9456463B2 (en) Mobile communication system, user terminal, and communication control method
EP2981140A1 (en) Mobile communication system, base station, and user terminal
WO2016121609A1 (en) User terminal and base station
JPWO2017026406A1 (en) Base station and wireless terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571978

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743212

Country of ref document: EP

Kind code of ref document: A1