WO2016121609A1 - User terminal and base station - Google Patents

User terminal and base station Download PDF

Info

Publication number
WO2016121609A1
WO2016121609A1 PCT/JP2016/051648 JP2016051648W WO2016121609A1 WO 2016121609 A1 WO2016121609 A1 WO 2016121609A1 JP 2016051648 W JP2016051648 W JP 2016051648W WO 2016121609 A1 WO2016121609 A1 WO 2016121609A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
measurement
timing
unlicensed band
user terminal
Prior art date
Application number
PCT/JP2016/051648
Other languages
French (fr)
Japanese (ja)
Inventor
宏行 浦林
空悟 守田
憲由 福田
直久 松本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2016121609A1 publication Critical patent/WO2016121609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to a user terminal capable of communicating in a licensed band and an unlicensed band and a base station capable of communicating with the user terminal.
  • the base station measures the interference power in the unlicensed band.
  • the measurement result is good (specifically, when the interference level is low), a radio signal can be transmitted in the unlicensed band.
  • a radio signal that satisfies a predetermined condition can be exceptionally transmitted without measuring interference power in the unlicensed band.
  • the user terminal can communicate in the licensed band, and can communicate in the unlicensed band with a base station that periodically transmits a reference signal in the unlicensed band.
  • the user terminal includes a control unit that measures a reference signal from the base station in the unlicensed band and reports a measurement result of the reference signal.
  • the control unit specifies a timing at which the user terminal receives interference during the measurement, and excludes the measurement result corresponding to the specified timing.
  • FIG. 1 is a configuration diagram of an LTE system according to each embodiment.
  • FIG. 2 is a block diagram of the UE according to each embodiment.
  • FIG. 3 is a block diagram of the eNB according to each embodiment.
  • FIG. 4 is a protocol stack diagram according to each embodiment.
  • FIG. 5 is a configuration diagram of a radio frame according to each embodiment.
  • FIG. 6 is a diagram for explaining an operation according to the first embodiment.
  • FIG. 7 is a diagram for explaining an operation according to the second embodiment.
  • FIG. 8 is a diagram for explaining an operation according to the third embodiment.
  • FIG. 9 is a diagram for explaining an operation according to the fourth embodiment.
  • FIG. 10 is a diagram for explaining a listening failure before DRS transmission.
  • FIG. 11 is a diagram for explaining LAA DRS RSRP measurement.
  • FIG. 12 is a diagram for explaining an example (right) of existing channel mapping (left) and proposed channel mapping.
  • the base station since it is not necessary to measure interference power, it is assumed that the base station periodically transmits a reference signal (Discovery Reference signal) without measuring the interference power in the unlicensed band. .
  • the user terminal can measure the reference signal transmitted periodically and report the measurement result to the base station. Based on the measurement result, the base station can determine whether communication with the user terminal in the unlicensed band is possible or the communication quality in the unlicensed band.
  • the base station since the base station transmits the reference signal without measuring the interference power, the measurement result for the reference signal may be affected by interference. As a result, there is a possibility that an appropriate measurement result for the reference signal in the unlicensed band cannot be acquired.
  • an object of the present application is to make it possible to obtain an appropriate measurement result for a reference signal in an unlicensed band.
  • the user terminals according to the first to third embodiments can communicate in the licensed band, and can communicate in the unlicensed band with a base station that periodically transmits a reference signal in the unlicensed band.
  • the user terminal includes a control unit that measures a reference signal from the base station in the unlicensed band and reports a measurement result of the reference signal.
  • the control unit specifies a timing at which the user terminal receives interference during the measurement, and excludes the measurement result corresponding to the specified timing.
  • the user terminal further includes a receiving unit that receives interference information related to timing at which the base station receives interference before transmitting the reference signal.
  • the control unit identifies timing at which the user terminal receives interference based on the interference information.
  • control unit measures interference power in the unlicensed band before the base station transmits the reference signal. Based on the measurement result of the interference power, the timing at which the user terminal receives interference during the measurement is specified.
  • the control unit measures the interference power in the unlicensed band at a timing different from the transmission timing of the reference signal.
  • the control unit identifies a timing at which the user terminal receives interference during the measurement based on a measurement result at the different timing and a measurement result at the transmission timing.
  • the base station can communicate in the unlicensed band with user terminals that can communicate in the licensed band and the unlicensed band.
  • the base station includes a control unit that identifies a timing at which interference does not occur in the unlicensed band, a first wireless communication unit that transmits measurement information to the user terminal in the licensed band, and in the unlicensed band A second wireless communication unit that transmits the reference signal at the timing.
  • the measurement information is information for causing the user terminal to perform measurement on a reference signal in the unlicensed band at the timing.
  • the said control part allocates a radio
  • the reference signal is transmitted along with the user data.
  • the second wireless communication unit transmits another reference signal in the unlicensed band before transmitting the reference signal.
  • the control unit is a predetermined unit for reporting the measurement result of the reference signal based on the measurement result of the other reference signal from the user terminal of the own station that has transmitted the measurement result of the other reference signal. A user terminal is determined.
  • control unit measures interference power in the unlicensed band.
  • the control unit specifies the timing based on the measurement result of the interference power.
  • FIG. 1 is a configuration diagram of an LTE system according to the embodiment.
  • the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
  • UE User Equipment
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • EPC Evolved Packet Core
  • the UE 100 corresponds to a user terminal.
  • the UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell).
  • the configuration of the UE 100 will be described later.
  • the E-UTRAN 10 corresponds to a radio access network.
  • the E-UTRAN 10 includes an eNB 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
  • the eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell.
  • the eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like.
  • RRM radio resource management
  • Cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the EPC 20 corresponds to a core network.
  • the E-UTRAN 10 and the EPC 20 constitute an LTE system network (LTE network).
  • the EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300.
  • the EPC 20 may include OAM (Operation and Maintenance).
  • the MME performs various mobility controls for the UE 100.
  • the S-GW controls user data transfer.
  • the MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
  • the OAM is a server device managed by an operator and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the UE 100 may not have the GNSS receiver 130.
  • the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 'that constitutes the control unit.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
  • the wireless transceiver 110 includes a wireless transceiver 110A and a wireless transceiver 110B.
  • the radio transmission / reception 110A transmits / receives a radio signal in the licensed band
  • the radio transmission / reception 110B transmits / receives a radio signal in the unlicensed band.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100.
  • the battery 140 stores electric power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 corresponds to a control unit, and executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 'that constitutes the control unit.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the radio transceiver 210 transmits and receives radio signals in the licensed band.
  • the wireless transceiver 210 may be able to transmit and receive wireless signals not only in the licensed band but also in the unlicensed band.
  • the radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes.
  • the processor 240 corresponds to a control unit, and executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer.
  • the second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • the third layer includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel.
  • the MAC layer of the eNB 200 includes a scheduler that determines (schedules) uplink / downlink transport formats (transport block size, modulation / coding scheme) and resource blocks allocated to the UE 100.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer.
  • RRC connection When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction.
  • Each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • Each resource block includes a plurality of subcarriers in the frequency direction.
  • a resource element is composed of one subcarrier and one symbol.
  • frequency resources are configured by resource blocks
  • time resources are configured by subframes (or slots).
  • the UE 100 may perform communication using not only a licensed band (licensed band / licensed spectrum) licensed to a cellular network operator but also an unlicensed band (unlicensed band / unlicensed spectrum) that can be used without a license. it can.
  • a licensed band licensed band / licensed spectrum
  • an unlicensed band unlicensed band / unlicensed spectrum
  • the UE 100 can perform communication using an unlicensed band by carrier aggregation (CA).
  • CA carrier aggregation
  • the carrier (frequency band) in LTE is positioned as a component carrier in order to realize a wide band while ensuring backward compatibility with LTE, and UE 100 communicates using a plurality of component carriers (a plurality of serving cells) simultaneously.
  • a cell that provides predetermined information when a UE starts an RRC connection is called a primary cell (PCell).
  • the primary cell provides NAS mobility information (eg, TAI) during RRC connection establishment / re-establishment / handover, or provides security information during RRC connection re-establishment / handover.
  • the auxiliary serving cell paired with the primary cell is called a secondary cell (SCell).
  • the secondary cell is formed together with the primary cell.
  • a predetermined frequency (carrier) in the unlicensed band is used as a secondary cell.
  • the secondary cell is referred to as a U-SCell.
  • the UE 100 can perform communication using an unlicensed band by a dual connection method (Dual Connectivity: DC).
  • DC Dual Connectivity
  • radio resources are assigned to the UE 100 from a plurality of eNBs 200.
  • the DC may be referred to as inter-eNB carrier aggregation (inter-eNB CA).
  • a master eNB among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100.
  • a secondary eNB among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100.
  • An Xn interface is set between the MeNB and SeNB. The Xn interface is an X2 interface or a new interface.
  • the UE 100 can perform carrier aggregation using the N cells managed by the MeNB and the M cells managed by the SeNB at the same time.
  • a group consisting of N cells managed by the MeNB is referred to as a master cell group (MCG).
  • MCG master cell group
  • SCG secondary cell group
  • PSCell a cell having at least an uplink control signal (PUCCH) reception function is referred to as a PSCell.
  • PSCell has some functions similar to PCell, but does not perform RRC connection with UE 100 and does not transmit an RRC message, for example.
  • the SCell When a predetermined frequency (carrier) in the unlicensed band is used as an SCell, the SCell is referred to as a U-SCell. When used as a PSCell, the SCell is referred to as a U-PSCell. Called.
  • LAA Licensed-Assessed Access
  • the UE 100 communicates with a cell operated in a licensed band (hereinafter, licensed cell) and a cell operated in an unlicensed band (hereinafter, unlicensed cell).
  • the licensed cell may be used as a PCell, and the unlicensed cell may be used as an SCell (or PSCell).
  • the said licensed cell and the said unlicensed cell may be managed by one node (for example, eNB200).
  • the unlicensed cell When the licensed cell and the unlicensed cell are managed (controlled) by one eNB 200, the unlicensed cell (and licensed cell) is formed by an RRH (Remote Radio Head) having a radio transceiver. Also good.
  • the license cell may be managed by the eNB 200, and the unlicensed cell may be managed by a radio communication apparatus different from the eNB 200.
  • the eNB 200 and the wireless communication apparatus can exchange various types of information to be described later via a predetermined interface (X2 interface or S1 interface).
  • the eNB 200 that manages the license cell may notify the information acquired from the UE 100 to the radio communication device, or may notify the UE 100 of the information acquired from the radio communication device.
  • CCA Carrier Channel Assessment
  • LBT Listen Before Talk
  • eNB 200 measures interference power to confirm whether or not a frequency (carrier) in the unlicensed band is available (CCA).
  • CCA Clear Before Talk
  • the eNB 200 allocates, to the UE 100, radio resources included in the frequency (carrier) that is confirmed to be an empty channel based on the measurement result of the interference power (scheduling).
  • the eNB 200 performs scheduling in the unlicensed cell via the unlicensed cell.
  • eNB200 may perform the scheduling in an unlicensed cell via a licensed cell (namely, cross-carrier scheduling).
  • a control signal (Short control signaling) that satisfies a predetermined condition can be transmitted without measuring interference power in the unlicensed band.
  • a control signal that satisfies a predetermined condition is a signal that satisfies a maximum duty cycle of 5% within an observation period of 50 ms.
  • the eNB 200 when the eNB 200 transmits a reference signal as control information, the reference signal can be periodically transmitted.
  • the UE 100 performs measurement on the reference signal transmitted periodically, and the eNB 200 can report the measurement result to the management. Based on the measurement result, the eNB 200 can determine whether communication with the UE 100 in the unlicensed band is possible or the communication quality in the unlicensed band.
  • the eNB 200 since the eNB 200 transmits the reference signal without measuring the interference power, the measurement result for the reference signal may be subject to interference. As a result, there is a possibility that an appropriate measurement result for the reference signal in the unlicensed band cannot be acquired.
  • the operation by the eNB 200 will be appropriately described as an operation by a cell managed by the eNB 200.
  • a case where one eNB 200 communicates with the UE 100 using a frequency in the licensed band (licensed cell) and a frequency in the unlicensed band (unlicensed cell) will be mainly described, but the present invention is not limited thereto. Should be noted.
  • FIG. 6 is a diagram for explaining an operation according to the first embodiment.
  • the UE 100 is located in a licensed cell managed by the eNB 200.
  • the UE 100 may be in an RRC idle state or an RRC connected state.
  • the UE 100 has not started communication at a specific frequency within the unlicensed band managed by the eNB 200.
  • the UE 100 may perform communication at a specific frequency.
  • the eNB 200 performs interference power measurement (CCA) at a specific frequency and then transmits a reference signal at the specific frequency. However, the eNB 200 periodically transmits the reference signal regardless of the measurement result of the interference power.
  • CCA interference power measurement
  • the AP 400 transmits a radio signal (data: DATA) at a specific frequency in the unlicensed band.
  • data data: DATA
  • the AP 400 transmits data at t1 and t3.
  • the eNB 200 measures interference power at a specific frequency in the unlicensed band.
  • the eNB 200 demonstrates on the assumption that interference electric power exceeded the threshold value.
  • the eNB 200 determines that it has received interference and stores the transmission timing of the reference signal immediately after.
  • the eNB 200 transmits a reference signal even when the interference power is larger than a threshold value (for example, a threshold value indicating that there is no empty channel in the LBT method).
  • a threshold value for example, a threshold value indicating that there is no empty channel in the LBT method.
  • the reference signal is, for example, a discovery reference signal (DRS: Discovery Reference signal).
  • DRS includes a synchronization signal (primary synchronization signal (PSS) and / or secondary synchronization signal (SSS)), cell reference signal, channel state information reference signal (CSI-RS), and downlink demodulation reference signal (DL-DMRS). Including at least one of the signals.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CSI-RS channel state information reference signal
  • DL-DMRS downlink demodulation reference signal
  • the UE 100 performs a measurement on a reference signal at a specific frequency in the unlicensed band.
  • the UE 100 can perform measurement on the reference signal based on the setting information.
  • the setting information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH).
  • the UE 100 stores the measurement result for the reference signal in association with the measurement timing. Since the AP 400 is transmitting data at t1, the measurement result is affected by interference.
  • the eNB 200 measures the interference power similarly to t1.
  • the eNB 200 since there is no data transmission from AP400, it demonstrates supposing that interference power is less than a threshold value.
  • the eNB 200 determines that no interference is received.
  • the eNB 200 may not store the transmission timing of the reference signal immediately after. Thereafter, the eNB 200 transmits a reference signal.
  • the UE100 performs the measurement for the reference signal in the same manner as t1.
  • the UE 100 stores the measurement result in association with the measurement timing. Since the AP 400 transmits data at t2, the measurement result is not affected by interference.
  • each of the UE 100 and the eNB 200 operates similarly to t1, and at t4, each of the UE 100 and the eNB 200 operates similarly to t2.
  • the eNB 200 transmits, to the UE 100, interference information regarding the timing at which the interference is received before transmitting the reference signal.
  • the interference information is, for example, information (list) indicating the transmission timing of the reference signal transmitted after determining that the interference has been received. In the present embodiment, timings indicating t1 and t3 are shown.
  • the interference information may be indicated by a subframe number.
  • the interference information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH). These signals may be transmitted to the UE 100 by a frequency (carrier) in the licensed band, or may be transmitted to the UE 100 by a specific frequency (carrier) in the unlicensed band. Further, the interference information may be included in a message requesting deletion of the measurement result corresponding to the timing indicated by the interference information. In addition, eNB200 may notify one transmission timing, whenever interference power exceeds a threshold value, without notifying several transmission timing collectively.
  • the UE 100 specifies the timing at which the UE 100 receives interference while performing the measurement on the reference signal based on the interference information. That is, the UE 100 specifies (estimates) the timing at which the UE 100 receives interference during measurement of the timing at which the eNB 200 receives interference. The UE 100 excludes (deletes) the measurement result corresponding to the identified timing (timing indicated by the interference information). Thereby, UE100 can exclude the measurement result estimated to have received interference from the calculation object or the report object to eNB200. Therefore, the UE 100 and the eNB 200 can acquire an appropriate measurement result.
  • FIG. 7 is a diagram for explaining an operation according to the second embodiment. Description of the same parts as those in the above-described embodiment will be omitted as appropriate.
  • the operating environment of the second embodiment is the same as the operating environment of the first embodiment.
  • the UE 100 measures the interference power in the unlicensed band, and the UE 100 excludes the measurement result based on the measurement result of the interference power.
  • the eNB 200 measures the interference power as in the first embodiment, and periodically transmits the reference signal regardless of the measurement result of the interference power. Note that the eNB 200 may periodically transmit the reference signal without measuring the interference power.
  • the UE 100 measures the interference power (performs CCA).
  • the UE 100 measures the interference power at the timing when the eNB 200 performs CCA to determine whether or not the reference signal can be transmitted in the LBT scheme. That is, the UE 100 measures the interference power at the timing when the eNB 200 measures the interference power.
  • the measurement for the reference signal and the measurement of the interference power may be different from each other, but are the same operation in terms of measurement for a radio signal at a specific frequency.
  • UE100 excludes the measurement result of the reference signal when the interference power exceeds the threshold value. Or UE100 does not need to memorize the measurement result of a reference signal, and does not need to perform the measurement to a reference signal, when interference power exceeds a threshold. Thereby, UE100 and eNB200 can acquire a suitable measurement result.
  • the UE 100 may receive the interference information from the eNB 200 and exclude the measurement result based on the interference information as well as its own measurement result. Thereby, UE100 and eNB200 can acquire the appropriate measurement result in the timing when data is not transmitted in a specific frequency.
  • FIG. 8 is a diagram for explaining an operation according to the third embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
  • the UE 100 performs interference power measurement (CCA) at a timing different from the transmission timing of the reference signal.
  • CCA interference power measurement
  • UE100 specifies the timing which received interference based on the measurement result with respect to a reference signal, and the measurement result of interference electric power.
  • a first wireless communication device (WT 500-1) and a second wireless communication device (WT 500-2) exist in the vicinity of the UE 100.
  • UE 100 is closer to WT 500-1 than WT 500-2.
  • WT 500-1 and WT 500-2 transmit a radio signal at a specific frequency in the unlicensed band (see FIG. 8B).
  • the eNB 200 periodically transmits a reference signal.
  • the eNB 200 transmits setting information related to the scheduled transmission timing of the reference signal.
  • UE100 receives the setting information regarding the transmission plan timing of a reference signal.
  • the setting information may be information specifying measurement timing for a reference signal at a specific frequency.
  • the setting information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH). Based on the setting information, the UE 100 performs the measurement for the reference signal at the specific frequency at the reference signal transmission scheduled timing.
  • the UE 100 performs interference power measurement (CCA) at a specific frequency at a timing different from the scheduled transmission timing of the reference signal.
  • the different timing is at least one of the timing before and after the scheduled transmission timing.
  • the different timing may be a timing before a predetermined time and / or a timing after a predetermined time with respect to the timing for performing the measurement on the reference signal.
  • the different timing may be the same timing as the timing at which the eNB 200 measures the interference power.
  • the UE 100 measures the interference power at the timing before (immediately before) and after (immediately) the scheduled transmission timing (see FIG. 8B).
  • the UE 100 measures the interference power at an intermediate time (t4, t8) between the predetermined transmission scheduled timing and the next scheduled transmission timing. Therefore, the UE 100 intermittently measures the interference power.
  • the eNB 200 transmits a reference signal at a specific frequency, and the UE 100 performs measurement on the reference signal.
  • the UE 100 measures interference power at t1, t3, t4, t5, t7, t8, t9, and t10.
  • the WT 500-1 transmits a radio signal at a specific frequency from t5 to t8.
  • the WT 500-2 transmits a radio signal at a specific frequency from t1 to t3.
  • the measurement results from t1 to t3 in the UE 100 are affected by interference due to the transmission of the radio signal from the WT 500-2.
  • the measurement results from t5 to t7 in the UE 100 are more strongly affected by interference due to the transmission of a radio signal from the WT 500-1 that exists near the UE 100 than in the WT 500-2.
  • the UE 100 determines whether or not the UE 100 is receiving interference during measurement of the reference signal.
  • the measurement value in FIG. 8 (B) indicates the measurement result (reception level) in the UE 100.
  • the measurement values at t2, t6, and t10 are DRS measurement values that can include interference power, and the measurement values at t1, t3, t4, t5, t7, t8, t9, and t10 are interference measurement values. In the following, description will be made assuming that the measured value at t4 is the lowest value.
  • the UE 100 compares the measured value (DRS measured value) at the scheduled transmission timing with the measured value (interference measured value) at timings before and after the scheduled transmission timing (first timing).
  • DRS measured value the measured value
  • interference measured value the measured value
  • the UE 100 may have received the interference, or the DRS interference It is determined that it has not received.
  • the UE 100 determines that interference has occurred (it is highly likely that the interference has been received).
  • the DRS measurement value at t6 is specified as the timing of the interference.
  • the UE 100 compares the measurement value (interference measurement value) at the first timing with the lowest measurement value (minimum measurement value) among the interference measurement values.
  • the interference measurement value is higher than the minimum measurement value by a predetermined value or more (ie, interference measurement value ⁇ minimum measurement value> predetermined value)
  • the UE 100 receives the DRS measurement value before or after the first interference measurement value due to interference. It is determined that there is a possibility. In other words, when the difference between the interference measurement value and the minimum measurement value is less than the predetermined value, the UE 100 determines that it is receiving interference (may be receiving interference).
  • the UE 100 may have the interference of the DRS measurement value at t2. judge.
  • the difference between the interference measurement value at t9 (t11) and the minimum measurement value at t4 is less than a predetermined value, it is determined that the DRS measurement value at t10 is not subject to interference.
  • the UE 100 identifies the timing at which the UE 100 receives interference during the measurement by comparing the DRS measurement value and the interference measurement value or by comparing the interference measurement values. Thereby, UE100 and eNB200 can acquire an appropriate measurement result by excluding the measurement result (DRS measurement value) corresponding to the specified timing.
  • the U100 may determine whether or not to exclude the interference measurement value determined to be subject to interference from the calculation target or the report target depending on the accuracy and parameter of the measurement result.
  • the UE 100 may report not only the measurement result for the reference signal but also the measurement result (interference measurement value) of the interference power to the eNB 200.
  • the UE 100 reports the measurement result of the interference power associated with the measurement timing to the eNB 200.
  • the eNB 200 may make the above determination based on the measurement report. Further, the eNB 200 may remove a predetermined measurement result in consideration of its own interference power measurement result.
  • FIG. 9 is a diagram for explaining an operation according to the fourth embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
  • each UE 100 (UE 100-1 to UE 100-3) is located in a licensed cell managed by the eNB 200.
  • the UE 100-2 may not be located in the licensed cell.
  • each UE 100 In the initial state, each UE 100 may be in the RRC idle state or in the RRC connected state.
  • Each UE 100 does not start communication at a specific frequency within the unlicensed band managed by the eNB 200.
  • the eNB 200 identifies the timing at which no interference occurs, and the UE 100 performs the measurement for the reference signal at the identified timing.
  • step S101 the eNB 200 transmits a first reference signal (DRS) at a specific frequency in the unlicensed band.
  • DRS first reference signal
  • Each UE 100 performs a measurement on a reference signal.
  • the DRS is transmitted for a period of 1 to 5 subframes, for example.
  • each UE 100 determines whether or not the measurement result in step S101 exceeds a threshold value. Specifically, each UE 100 executes the process of step S103 when the reception level (RSRP) of the reference signal exceeds the threshold.
  • RSRP reception level
  • step S103 the UE 100-1 and the UE 100-3 perform a measurement report indicating that the reception level of the first reference signal exceeds the threshold to the eNB 200. Accordingly, the UE 100 reports (transmits) only the measurement result of the first reference signal once (for example, 1 to 5 subframes) to the eNB 200. UE100 can report the measurement result of a 1st reference signal to eNB200 via a licensed cell. Thereby, the eNB 200 receives the first measurement report (that is, the measurement result of the first reference signal) from the UE 100-1 and the UE 100-3.
  • the first measurement report that is, the measurement result of the first reference signal
  • step S104 the eNB 200 performs scheduling based on the first measurement report.
  • the eNB 200 determines that the UE 100-1 and the UE 100-3 that transmitted the first measurement report exist in an unlicensed cell operated at a specific frequency. On the other hand, the eNB 200 determines that the UE 100-2 that has not transmitted the first measurement report does not exist in the unlicensed cell.
  • the eNB 200 transmits user data at a specific frequency in the unlicensed band from the UE 100 of the own station (specifically, the UE 100-1 and the UE 100-3 existing in the unlicensed band). Allocate radio resources. For example, the eNB 200 allocates radio resources (radio resources at specific frequencies in the unlicensed band) to the UE 100 having a large RSRP value included in the first measurement report. Thereby, eNB200 determines UE100 used as the receiving object of user data. Here, the description will proceed assuming that the eNB 200 has assigned radio resources to the UE 100-1.
  • the eNB 200 causes other UEs 100-3 existing in the unlicensed state to perform measurement and report of measurement results for the second reference signal (CRS) within the radio resources allocated to the UE 100-1.
  • UE 100 is determined. That is, eNB200 determines predetermined
  • the measurement information includes information indicating the transmission timing of the second reference signal in the radio resource allocated to the UE 100-1.
  • the measurement information indicates, for example, a subframe number in which at least the second reference signal is transmitted.
  • the measurement information may indicate a subframe number in which user data of the UE 100-1 is transmitted.
  • the eNB 200 determines the UE 100-3 that is not the user data reception target as the measurement report target.
  • the eNB 200 measures the interference power at the specific frequency before assigning the radio resource to the UE 100-1, and confirms that the interference power at the specific frequency is less than the threshold. Thereby, eNB200 specifies the timing when interference does not occur in an unlicensed band based on interference power. The eNB 200 assigns radio resources to the UE 100-1 at a timing at which no interference occurs.
  • the eNB 200 transmits measurement information to the UE 100-3 using the frequency in the licensed band.
  • the UE 100-3 receives the measurement information.
  • the measurement information may be transmitted by a common signal (for example, SIB, PDCCH), or may be transmitted by an individual signal (for example, PDSCH).
  • the eNB 200 transmits scheduling information indicating the radio resource allocated to the UE 100-1 using the frequency in the licensed band.
  • the UE 100-1 receives the scheduling information.
  • the scheduling information may be transmitted by a common signal (for example, SIB, PDCCH), or may be transmitted by an individual signal (for example, PDSCH).
  • step S107 eNB200 transmits user data using the radio
  • the UE 100-1 receives user data.
  • the eNB 200 transmits a second reference signal accompanying the user data.
  • the UE 100-1 receives user data.
  • the UE 100-1 may perform measurement on the second reference signal transmitted along with the user data.
  • step S109 the UE 100-3 performs measurement on the second reference signal based on the measurement information.
  • the UE 100 can measure reception strength (RSRP), reception quality (RSRQ, SINR), and the like as the measurement for the second reference signal.
  • RSRP reception strength
  • RSSQ reception quality
  • SINR SINR
  • the UE 100-1 and the UE 100-3 report the measurement result for the second reference signal to the eNB 200.
  • the eNB 200 receives the second measurement report (that is, the measurement result of the second reference signal).
  • the second measurement report may include a measurement report of reception strength (RSRP) and reception quality (RSRQ, SINR).
  • step S111 the eNB 200 determines the UE 100 that is a user data reception target based on the second measurement report, similarly to step S104. Since the second measurement report may include a measurement report of reception strength (RSRP) and reception quality (RSRQ, SINR), the eNB 200 determines whether the UE 100 is receiving interference from a radio communication apparatus that the eNB 200 cannot detect. be able to.
  • RSRP reception strength
  • RSSQ reception quality
  • measurement is performed based on the second reference signal instead of the first reference signal. Since the second reference signal is transmitted at a timing at which no interference occurs, an appropriate measurement result can be acquired.
  • the eNB 200 may omit the transmission of the first reference signal after instructing the UE 100 to measure the second reference signal, or may perform the first reference based on the interference power measurement result in the eNB 200.
  • the signal may be transmitted intermittently.
  • the LTE system has been described as an example of the mobile communication system.
  • the embodiment is not limited to the LTE system, and the content of the present application may be applied to a system other than the LTE system.
  • Rel-12 DRS is the starting point for the design of reference signal used in RRM measurement in the unlicensed band.
  • the eNB is required to transmit PSS / SSS / CRS (and CSI-RS) at regular intervals without exception. It can be achieved without problems because the eNB uses licensed band resources allocated to transmit DRS. However, in contrast to the licensed band, more than one wireless system / node could share the unlicensed band. In addition to sharing unlicensed bandwidth, each system uses LBT (Listen Before Talk) to avoid collisions required in some countries / regions. Therefore, DRS, in our view, requires LBT when DRS is transmitted in an unlicensed band.
  • LBT Listen Before Talk
  • LBT Low-power Bluetooth
  • EU regulation does not detect the frequency for the presence of signal, but transmits management and control frames, that is, short-time control signaling transmission (Short Control Signaling Transmission) )
  • adaptive device short-time control signaling transmissions should have a maximum duty cycle of 10% within a 50 millisecond observation period.
  • LBT should be mandated as it helps to obtain fair coexistence with other systems and avoid collisions.
  • the LBT mandate will also be considered a simple design and could provide one general solution for all regions where LAA is expected to be deployed.
  • Proposal 1 Recommendation 1: It should be agreed to apply LBT functionality to Rel-12 DRS based on LAA DRS transmission.
  • the LBT functionality does not allow the eNB to transmit its DRS in the unlicensed band if a busy channel is detected (see FIG. 10).
  • the measurement accuracy requirement may not be met if the eNB has not transmitted a DRS during some of the DRS transmission opportunities.
  • the UE must measure RSRP in a subframe configured as a discovery signal opportunity. This is because the UE has to monitor the configured radio resources and the UE may include these resource results in the final measurement result regardless of whether DRS was actually transmitted on these resources. It means you can't.
  • the number of resource elements in the measurement frequency band and in the measurement period used by the UE to determine RSRP is left to the implementation of the UE with constraints that the corresponding measurement accuracy requirements must be met. . Therefore, the reported RSRP can be very inaccurate.
  • the combination of the UE implementation based on RSRP measurements and the unavailability of some DRS transmissions due to the eNB's LBT functionality provides the UE with accurate radio environment information for the exact unlicensed band to the eNB. The problem of not being able to do.
  • RAN1 To be solved by RAN4.
  • One approach is for RAN1 to send a request LS to RAN4 to perform a search to see if the current measurement accuracy requirements are satisfied by the existing specification. In cases where the current specification does not meet the exact requirements, new solutions can be considered. Below are some candidate options.
  • Option 1 The eNB broadcasts / unicasts a DRS measurement instruction in the licensed band.
  • the eNB notifies the UE via the licensed band about the condition under which the RSRP of the subframe is to be calculated.
  • the UE will adopt and modify the DRS measurement according to the information provided from the eNB about the RSRP measurement conditions in the unlicensed band.
  • the eNB can provide this information to the UE is a further challenge.
  • Option 2 Specify CRS (included in DRS) based on RSRP measurement for LAA.
  • the UE performs DRS measurements to determine RSRP. For example, the UE should send one measurement result per 1 DRS burst. Since the eNB knows which DRS is transmitted in the unlicensed band, the eNB can determine whether the measurement report received from the specific UE is reliable or not (see FIG. 11).
  • Proposal 2 If Proposal 1 is accepted as an agreement, RAN1 should send an LS requesting whether the current measurement accuracy requirements are satisfied by the existing specification to RAN4.
  • Proposal 3 LAA DRS based on Rel-12 DRS with LBT should also be used for AGC configuration, coarse synchronization and CSI measurements.
  • the eNB may not be able to transmit DRS in the unlicensed band for a long time due to the presence of other transmissions by neighboring nodes sharing the same band.
  • One approach is to set a fixed upper limit for the period between two DRS transmissions, for example 160 msec. If the eNB is unable to transmit a DRS longer than the upper limit, it should be assumed that fine frequency / time estimation is not guaranteed. However, due to interference, the UE may not be able to detect / decode some of the correct DRS transmissions. This situation forces consideration to provide other synchronization signals during data transmission in addition to DRS transmission.
  • the eNB transmits a synchronization signal (LAA sync (LAA sync)) in a symbol located before the data region (for example, the first symbol of the subframe) (see FIG. 12).
  • LAA sync LAA sync
  • This approach is very similar to the D2D sync signal design.
  • the UE achieves coarse synchronization using DRS and fine frequency / time estimation using the LAA sink.
  • the AGC configuration is performed based on the LAA sink instead of the DRS because the LAA sink is located next to the data area in the first subframe received at the UE. .
  • the current physical control channel area should be replaced by LAA sink.
  • the number of resource elements used to transmit the physical control channel is changed according to the number of UEs scheduled in the subframe, for example.
  • the physical control channel area may not be fully occupied, resulting in low resource element density and resulting low transmit power over OFDM symbols resulting in higher false positives by neighboring nodes . This leads to collisions because neighboring nodes may assume that a channel is available for each transmission.
  • the physical control channel should be removed from unlicensed band transmissions and instead LAA sinks should be transmitted. Further research is needed on how the LAA sink is mapped just before the data region.
  • Proposal 4 The current physical control channel area should be replaced with this LAA sink.

Abstract

A user terminal according to an embodiment of the present invention can communicate in a licensed band and can communicate, in an unlicensed band, with a base station that periodically transmits a reference signal in the unlicensed band. The user terminal is provided with a control unit that makes a measurement regarding a reference signal from the base station in the unlicensed band, and reports measurement results regarding the reference signal. The control unit identifies a time when the user terminal received interference during the measurement, and excludes the measurement result corresponding to the identified time.

Description

ユーザ端末及び基地局User terminal and base station
 本出願は、ライセンスド帯域及びアンライセンスド帯域において通信可能なユーザ端末及び当該ユーザ端末と通信可能な基地局に関する。 This application relates to a user terminal capable of communicating in a licensed band and an unlicensed band and a base station capable of communicating with the user terminal.
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、急増するトラフィック需要に応えるべく、LTE(Long Term Evolution)を高度化する仕様策定が進められている(例えば非特許文献1参照)。 In 3GPP (3rd Generation Partnership Project), which is a standardization project for mobile communication systems, specifications are being developed to improve LTE (Long Term Evolution) to meet the rapidly increasing traffic demand (see Non-Patent Document 1, for example). .
 また、急増するトラフィック需要に応えるために、免許を要する周波数帯域(ライセンスド帯域)を用いた通信だけでなく、免許不要な周波数帯域(アンライセンスド帯域(Unlicensed Band/Unlicensed Spectrum))を用いた通信が注目されている。 In addition, in order to respond to the rapidly increasing traffic demand, not only communication using a licensed frequency band (licensed band) but also a frequency band that does not require a license (Unlicensed Band / Unlicensed Spectrum) was used. Communication is attracting attention.
 ここで、法律(例えば、日本における電波法)上、アンライセンスド帯域を用いて無線信号を送信する場合、無線信号を送信する前にCCA(Clear channel Assessment)を実行することが要求されている。具体的には、基地局は、アンライセンスド帯域における干渉電力を測定する。測定結果が良好な場合(具体的には、干渉レベルが低い場合)、アンライセンスド帯域において無線信号を送信できる。 Here, according to the law (for example, the Radio Law in Japan), when a radio signal is transmitted using an unlicensed band, it is required to execute CCA (Clear channel Assessment) before transmitting the radio signal. . Specifically, the base station measures the interference power in the unlicensed band. When the measurement result is good (specifically, when the interference level is low), a radio signal can be transmitted in the unlicensed band.
 一方で、一部の地域(例えば、ヨーロッパ)では、所定の条件を満たす無線信号は、例外的に、アンライセンスド帯域において干渉電力を測定せずに送信可能である。 On the other hand, in some regions (for example, Europe), a radio signal that satisfies a predetermined condition can be exceptionally transmitted without measuring interference power in the unlicensed band.
 一実施形態に係るユーザ端末は、ライセンスド帯域において通信可能であり、且つ、アンライセンスド帯域において周期的に参照信号を送信する基地局と前記アンライセンスド帯域において通信可能である。前記ユーザ端末は、前記アンライセンスド帯域において前記基地局からの参照信号に対する測定を行い、当該参照信号に対する測定結果を報告する制御部を備える。前記制御部は、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定して、当該特定されたタイミングに対応する前記測定結果を除外する。 The user terminal according to an embodiment can communicate in the licensed band, and can communicate in the unlicensed band with a base station that periodically transmits a reference signal in the unlicensed band. The user terminal includes a control unit that measures a reference signal from the base station in the unlicensed band and reports a measurement result of the reference signal. The control unit specifies a timing at which the user terminal receives interference during the measurement, and excludes the measurement result corresponding to the specified timing.
図1は、各実施形態に係るLTEシステムの構成図である。FIG. 1 is a configuration diagram of an LTE system according to each embodiment. 図2は、各実施形態に係るUEのブロック図である。FIG. 2 is a block diagram of the UE according to each embodiment. 図3は、各実施形態に係るeNBのブロック図である。FIG. 3 is a block diagram of the eNB according to each embodiment. 図4は、各実施形態に係るプロトコルスタック図である。FIG. 4 is a protocol stack diagram according to each embodiment. 図5は、各実施形態に係る無線フレームの構成図である。FIG. 5 is a configuration diagram of a radio frame according to each embodiment. 図6は、第1実施形態に係る動作を説明するための図である。FIG. 6 is a diagram for explaining an operation according to the first embodiment. 図7は、第2実施形態に係る動作を説明するための図である。FIG. 7 is a diagram for explaining an operation according to the second embodiment. 図8は、第3実施形態に係る動作を説明するための図である。FIG. 8 is a diagram for explaining an operation according to the third embodiment. 図9は、第4実施形態に係る動作を説明するための図である。FIG. 9 is a diagram for explaining an operation according to the fourth embodiment. 図10は、DRS送信前のリッスン失敗を説明するための図である。FIG. 10 is a diagram for explaining a listening failure before DRS transmission. 図11は、LAA DRS RSRP測定を説明するための図である。FIG. 11 is a diagram for explaining LAA DRS RSRP measurement. 図12は、既存のチャネルマッピング(左)及び提案するチャネルマッピングの一例(右)を説明するための図である。FIG. 12 is a diagram for explaining an example (right) of existing channel mapping (left) and proposed channel mapping.
 [実施形態の概要]
 一部の地域では、干渉電力の測定が不要であるため、基地局が、アンライセンスド帯域において干渉電力を測定せずに参照信号(Discovery Reference signal)を周期的に送信することが想定される。ユーザ端末は、周期的に送信される参照信号に対する測定を行い、測定結果を基地局に報告できる。基地局は、測定結果に基づいて、アンライセンスド帯域におけるユーザ端末と通信の可否又はアンライセンスド帯域における通信品質の判定を行うことができる。
[Outline of Embodiment]
In some areas, since it is not necessary to measure interference power, it is assumed that the base station periodically transmits a reference signal (Discovery Reference signal) without measuring the interference power in the unlicensed band. . The user terminal can measure the reference signal transmitted periodically and report the measurement result to the base station. Based on the measurement result, the base station can determine whether communication with the user terminal in the unlicensed band is possible or the communication quality in the unlicensed band.
 しかしながら、基地局は、干渉電力を測定せずに参照信号を送信するため、参照信号に対する測定結果は、干渉の影響を受けている可能性がある。その結果、アンライセンスド帯域における参照信号に対する適切な測定結果を取得できない虞がある。 However, since the base station transmits the reference signal without measuring the interference power, the measurement result for the reference signal may be affected by interference. As a result, there is a possibility that an appropriate measurement result for the reference signal in the unlicensed band cannot be acquired.
 そこで、本出願は、アンライセンスド帯域における参照信号に対する適切な測定結果を取得可能とすることを目的とする。 Therefore, an object of the present application is to make it possible to obtain an appropriate measurement result for a reference signal in an unlicensed band.
 第1から第3実施形態に係るユーザ端末は、ライセンスド帯域において通信可能であり、且つ、アンライセンスド帯域において周期的に参照信号を送信する基地局と前記アンライセンスド帯域において通信可能である。前記ユーザ端末は、前記アンライセンスド帯域において前記基地局からの参照信号に対する測定を行い、当該参照信号に対する測定結果を報告する制御部を備える。前記制御部は、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定して、当該特定されたタイミングに対応する前記測定結果を除外する。 The user terminals according to the first to third embodiments can communicate in the licensed band, and can communicate in the unlicensed band with a base station that periodically transmits a reference signal in the unlicensed band. . The user terminal includes a control unit that measures a reference signal from the base station in the unlicensed band and reports a measurement result of the reference signal. The control unit specifies a timing at which the user terminal receives interference during the measurement, and excludes the measurement result corresponding to the specified timing.
 第1実施形態に係るユーザ端末は、前記基地局が前記参照信号を送信する前に干渉を受けたタイミングに関する干渉情報を受信する受信部をさらに備える。前記制御部は、前記干渉情報に基づいて、前記ユーザ端末が干渉を受けたタイミングを特定する。 The user terminal according to the first embodiment further includes a receiving unit that receives interference information related to timing at which the base station receives interference before transmitting the reference signal. The control unit identifies timing at which the user terminal receives interference based on the interference information.
 第2実施形態では、前記制御部は、前記基地局が前記参照信号を送信する前に前記アンライセンスド帯域における干渉電力を測定する。前記干渉電力の測定結果に基づいて、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定する。 In the second embodiment, the control unit measures interference power in the unlicensed band before the base station transmits the reference signal. Based on the measurement result of the interference power, the timing at which the user terminal receives interference during the measurement is specified.
 第3実施形態では、前記制御部は、前記参照信号の送信タイミングと異なるタイミングで前記アンライセンスド帯域における干渉電力を測定する。前記制御部は、前記異なるタイミングでの測定結果と前記送信タイミングでの測定結果とに基づいて、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定する。 In the third embodiment, the control unit measures the interference power in the unlicensed band at a timing different from the transmission timing of the reference signal. The control unit identifies a timing at which the user terminal receives interference during the measurement based on a measurement result at the different timing and a measurement result at the transmission timing.
 第4実施形態に係る基地局は、ライセンスド帯域及びアンライセンスド帯域において通信可能なユーザ端末と前記アンライセンスド帯域において通信可能である。前記基地局は、前記アンライセンスド帯域において干渉が発生しないタイミングを特定する制御部と、前記ライセンスド帯域において前記ユーザ端末に測定情報を送信する第1無線通信部と、前記アンライセンスド帯域において前記タイミングで前記参照信号を送信する第2無線通信部と、を備える。前記測定情報は、前記アンライセンスド帯域における参照信号に対する測定を前記ユーザ端末に前記タイミングで実行させるための情報である。 The base station according to the fourth embodiment can communicate in the unlicensed band with user terminals that can communicate in the licensed band and the unlicensed band. The base station includes a control unit that identifies a timing at which interference does not occur in the unlicensed band, a first wireless communication unit that transmits measurement information to the user terminal in the licensed band, and in the unlicensed band A second wireless communication unit that transmits the reference signal at the timing. The measurement information is information for causing the user terminal to perform measurement on a reference signal in the unlicensed band at the timing.
 第4実施形態において、前記制御部は、他のユーザ端末に対して、前記タイミングでユーザデータを送信するために無線リソースを割り当てる。前記参照信号は、前記ユーザデータに付随して送信される。 In 4th Embodiment, the said control part allocates a radio | wireless resource in order to transmit user data at the said timing with respect to another user terminal. The reference signal is transmitted along with the user data.
 第4実施形態において、前記第2無線通信部は、前記参照信号を送信する前に、前記アンライセンスド帯域において他の参照信号を送信する。前記制御部は、前記他の参照信号の測定結果を送信してきた自局のユーザ端末の中から、前記他の参照信号の前記測定結果に基づいて、記参照信号の測定結果を報告させる所定のユーザ端末を決定する。 In the fourth embodiment, the second wireless communication unit transmits another reference signal in the unlicensed band before transmitting the reference signal. The control unit is a predetermined unit for reporting the measurement result of the reference signal based on the measurement result of the other reference signal from the user terminal of the own station that has transmitted the measurement result of the other reference signal. A user terminal is determined.
 第4実施形態において、前記制御部は、前記アンライセンスド帯域において干渉電力を測定する。前記制御部は、前記干渉電力の測定結果に基づいて、前記タイミングを特定する。 In the fourth embodiment, the control unit measures interference power in the unlicensed band. The control unit specifies the timing based on the measurement result of the interference power.
 [第1実施形態]
 以下において、本出願の内容をLTEシステムに適用する場合の実施形態を説明する。
[First Embodiment]
In the following, an embodiment in which the contents of the present application are applied to an LTE system will be described.
 (システム構成)
 図1は、実施形態に係るLTEシステムの構成図である。図1に示すように、実施形態に係るLTEシステムは、UE(User Equipment)100、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10、及びEPC(Evolved Packet Core)20を備える。
(System configuration)
FIG. 1 is a configuration diagram of an LTE system according to the embodiment. As shown in FIG. 1, the LTE system according to the embodiment includes a UE (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, and an EPC (Evolved Packet Core) 20.
 UE100は、ユーザ端末に相当する。UE100は、移動型の通信装置であり、接続先のセル(サービングセル)との無線通信を行う。UE100の構成については後述する。 UE 100 corresponds to a user terminal. The UE 100 is a mobile communication device, and performs wireless communication with a connection destination cell (serving cell). The configuration of the UE 100 will be described later.
 E-UTRAN10は、無線アクセスネットワークに相当する。E-UTRAN10は、eNB200(evolved Node-B)を含む。eNB200は、基地局に相当する。eNB200は、X2インターフェイスを介して相互に接続される。eNB200の構成については後述する。 E-UTRAN 10 corresponds to a radio access network. The E-UTRAN 10 includes an eNB 200 (evolved Node-B). The eNB 200 corresponds to a base station. The eNB 200 is connected to each other via the X2 interface. The configuration of the eNB 200 will be described later.
 eNB200は、1又は複数のセルを管理しており、自セルとの接続を確立したUE100との無線通信を行う。eNB200は、無線リソース管理(RRM)機能、ユーザデータのルーティング機能、モビリティ制御・スケジューリングのための測定制御機能などを有する。「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。 The eNB 200 manages one or a plurality of cells and performs radio communication with the UE 100 that has established a connection with the own cell. The eNB 200 has a radio resource management (RRM) function, a user data routing function, a measurement control function for mobility control / scheduling, and the like. “Cell” is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
 EPC20は、コアネットワークに相当する。E-UTRAN10及びEPC20によりLTEシステムのネットワーク(LTEネットワーク)が構成される。EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300を含む。EPC20は、OAM(Operation and Maintenance)を含んでもよい。 The EPC 20 corresponds to a core network. The E-UTRAN 10 and the EPC 20 constitute an LTE system network (LTE network). The EPC 20 includes an MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300. The EPC 20 may include OAM (Operation and Maintenance).
 MMEは、UE100に対する各種モビリティ制御などを行う。S-GWは、ユーザデータの転送制御を行う。MME/S-GW300は、S1インターフェイスを介してeNB200と接続される。 The MME performs various mobility controls for the UE 100. The S-GW controls user data transfer. The MME / S-GW 300 is connected to the eNB 200 via the S1 interface.
 OAMは、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。 The OAM is a server device managed by an operator and performs maintenance and monitoring of the E-UTRAN 10.
 図2は、UE100のブロック図である。図2に示すように、UE100は、複数のアンテナ101、無線送受信機110、ユーザインターフェイス120、GNSS(Global Navigation Satellite System)受信機130、バッテリ140、メモリ150、及びプロセッサ160を備える。UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)を制御部を構成するプロセッサ160’としてもよい。 FIG. 2 is a block diagram of the UE 100. As shown in FIG. 2, the UE 100 includes a plurality of antennas 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160. The UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 'that constitutes the control unit.
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。無線送受信機110は、プロセッサ160が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ160に出力する。 The antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals. The radio transceiver 110 converts the baseband signal (transmission signal) output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal (received signal) and outputs the baseband signal to the processor 160.
 無線送受信機110は、無線送受信機110A及び無線送受信機110Bを有する。無線送受信110Aは、ライセンスド帯域において無線信号を送受信し、無線送受信110Bは、アンライセンスド帯域において無線信号を送受信する。 The wireless transceiver 110 includes a wireless transceiver 110A and a wireless transceiver 110B. The radio transmission / reception 110A transmits / receives a radio signal in the licensed band, and the radio transmission / reception 110B transmits / receives a radio signal in the unlicensed band.
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。バッテリ140は、UE100の各ブロックに供給する電力を蓄える。 The user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons. The user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160. The GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain location information indicating the geographical location of the UE 100. The battery 140 stores electric power to be supplied to each block of the UE 100.
 メモリ150は、プロセッサ160により実行されるプログラム、及びプロセッサ160による処理に使用される情報を記憶する。プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、制御部に相当し、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160. The processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. . The processor 160 may further include a codec that performs encoding / decoding of an audio / video signal. The processor 160 corresponds to a control unit, and executes various processes and various communication protocols described later.
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、複数のアンテナ201、無線送受信機210、ネットワークインターフェイス220、メモリ230、及びプロセッサ240を備える。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)を制御部を構成するプロセッサ240’としてもよい。 FIG. 3 is a block diagram of the eNB 200. As illustrated in FIG. 3, the eNB 200 includes a plurality of antennas 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240. The memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 'that constitutes the control unit.
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。無線送受信機210は、ライセンスド帯域において無線信号を送受信する。或いは、無線送受信機210は、ライセンスド帯域だけでなくアンライセンスド帯域において無線信号を送受信できてもよい。無線送受信機210は、プロセッサ240が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号(受信信号)に変換してプロセッサ240に出力する。 The antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals. The radio transceiver 210 transmits and receives radio signals in the licensed band. Alternatively, the wireless transceiver 210 may be able to transmit and receive wireless signals not only in the licensed band but also in the unlicensed band. The radio transceiver 210 converts the baseband signal (transmission signal) output from the processor 240 into a radio signal and transmits it from the antenna 201. In addition, the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal (received signal) and outputs the baseband signal to the processor 240.
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。 The network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface. The network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
 メモリ230は、プロセッサ240により実行されるプログラム、及びプロセッサ240による処理に使用される情報を記憶する。プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、制御部に相当し、後述する各種の処理及び各種の通信プロトコルを実行する。 The memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240. The processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes a program stored in the memory 230 and performs various processes. The processor 240 corresponds to a control unit, and executes various processes and various communication protocols described later.
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルの第1層乃至第3層に区分されており、第1層は物理(PHY)層である。第2層は、MAC(Medium Access Control)層、RLC(Radio Link Control)層、及びPDCP(Packet Data Convergence Protocol)層を含む。第3層は、RRC(Radio Resource Control)層を含む。 FIG. 4 is a protocol stack diagram of a radio interface in the LTE system. As shown in FIG. 4, the radio interface protocol is divided into the first to third layers of the OSI reference model, and the first layer is a physical (PHY) layer. The second layer includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer. The third layer includes an RRC (Radio Resource Control) layer.
 物理層は、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100の物理層とeNB200の物理層との間では、物理チャネルを介してユーザデータ及び制御信号が伝送される。 The physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Between the physical layer of UE100 and the physical layer of eNB200, user data and a control signal are transmitted via a physical channel.
 MAC層は、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMAC層とeNB200のMAC層との間では、トランスポートチャネルを介してユーザデータ及び制御信号が伝送される。eNB200のMAC層は、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式)、UE100への割当リソースブロックを決定(スケジューリング)するスケジューラを含む。 The MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Between the MAC layer of the UE 100 and the MAC layer of the eNB 200, user data and control signals are transmitted via a transport channel. The MAC layer of the eNB 200 includes a scheduler that determines (schedules) uplink / downlink transport formats (transport block size, modulation / coding scheme) and resource blocks allocated to the UE 100.
 RLC層は、MAC層及び物理層の機能を利用してデータを受信側のRLC層に伝送する。UE100のRLC層とeNB200のRLC層との間では、論理チャネルを介してユーザデータ及び制御信号が伝送される。 The RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Between the RLC layer of the UE 100 and the RLC layer of the eNB 200, user data and control signals are transmitted via a logical channel.
 PDCP層は、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。 The PDCP layer performs header compression / decompression and encryption / decryption.
 RRC層は、制御信号を取り扱う制御プレーンでのみ定義される。UE100のRRC層とeNB200のRRC層との間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRC層は、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態であり、そうでない場合、UE100はRRCアイドル状態である。 The RRC layer is defined only in the control plane that handles control signals. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200. The RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. When there is a connection (RRC connection) between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in the RRC connected state, and otherwise, the UE 100 is in the RRC idle state.
 RRC層の上位に位置するNAS(Non-Access Stratum)層は、セッション管理及びモビリティ管理などを行う。 The NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンク(DL)にはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンク(UL)にはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ適用される。 FIG. 5 is a configuration diagram of a radio frame used in the LTE system. In the LTE system, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink (DL), and SC-FDMA (Single Carrier Frequency Multiple Access) is applied to the uplink (UL).
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成される。各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルによりリソースエレメントが構成される。UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより構成され、時間リソースはサブフレーム(又はスロット)により構成される。 As shown in FIG. 5, the radio frame is composed of 10 subframes arranged in the time direction. Each subframe is composed of two slots arranged in the time direction. The length of each subframe is 1 ms, and the length of each slot is 0.5 ms. Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction. Each resource block includes a plurality of subcarriers in the frequency direction. A resource element is composed of one subcarrier and one symbol. Among radio resources allocated to the UE 100, frequency resources are configured by resource blocks, and time resources are configured by subframes (or slots).
 (アンライセンスド帯域を利用した通信)
 以下において、本実施形態に係るアンライセンスド帯域を利用した通信について説明する。
(Communication using unlicensed bandwidth)
Hereinafter, communication using an unlicensed band according to the present embodiment will be described.
 UE100は、セルラネットワークオペレータに免許が付与されたライセンスド帯域(Licensed band/Licensed spectrum)だけでなく、免許不要で利用できるアンライセンスド帯域(Unlicensed Band/Unlicensed spectrum)を利用した通信を行うことができる。 The UE 100 may perform communication using not only a licensed band (licensed band / licensed spectrum) licensed to a cellular network operator but also an unlicensed band (unlicensed band / unlicensed spectrum) that can be used without a license. it can.
 具体的には、第1に、UE100は、キャリアアグリゲーション(Carrier Aggregation:CA)によって、アンライセンスド帯域を利用した通信を行うことができる。 Specifically, first, the UE 100 can perform communication using an unlicensed band by carrier aggregation (CA).
 CAでは、LTEとの後方互換性を確保しながら広帯域化を実現すべく、LTEにおけるキャリア(周波数帯)をコンポーネントキャリアと位置付け、UE100が複数のコンポーネントキャリア(複数のサービングセル)を同時に使用して通信を行う。CAにおいて、UEがRRC接続を開始する際に所定の情報の提供を行うセルはプライマリセル(PCell)と称される。例えば、プライマリセルは、RRC接続確立/再確立/ハンドオーバ時にNASモビリティ情報(例えば、TAI)の提供を行ったり、RRC接続再確立/ハンドオーバ時にセキュリティ情報の提供を行ったりする。一方、プライマリセルと対をなす補助的なサービングセルはセカンダリセル(SCell)と称される。セカンダリセルは、プライマリセルと一緒に形成される。 In CA, the carrier (frequency band) in LTE is positioned as a component carrier in order to realize a wide band while ensuring backward compatibility with LTE, and UE 100 communicates using a plurality of component carriers (a plurality of serving cells) simultaneously. I do. In CA, a cell that provides predetermined information when a UE starts an RRC connection is called a primary cell (PCell). For example, the primary cell provides NAS mobility information (eg, TAI) during RRC connection establishment / re-establishment / handover, or provides security information during RRC connection re-establishment / handover. On the other hand, the auxiliary serving cell paired with the primary cell is called a secondary cell (SCell). The secondary cell is formed together with the primary cell.
 アンライセンスド帯域を利用した通信にCAを利用する場合、アンライセンスド帯域内の所定周波数(キャリア)をセカンダリセルとして利用するケースがある。以下において、所定周波数をセカンダリセルとして利用する場合、当該セカンダリセルは、U-SCellと称される。 When using CA for communication using an unlicensed band, there are cases where a predetermined frequency (carrier) in the unlicensed band is used as a secondary cell. In the following, when a predetermined frequency is used as a secondary cell, the secondary cell is referred to as a U-SCell.
 第2に、UE100は、二重接続方式(Dual Connectivity:DC)によって、アンライセンスド帯域を利用した通信を行うことができる。 Second, the UE 100 can perform communication using an unlicensed band by a dual connection method (Dual Connectivity: DC).
 DCでは、UE100には、複数のeNB200から無線リソースが割り当てられる。DCは、eNB間キャリアアグリゲーション(inter-eNB CA)と称されることもある。 In DC, radio resources are assigned to the UE 100 from a plurality of eNBs 200. The DC may be referred to as inter-eNB carrier aggregation (inter-eNB CA).
 DCでは、UE100との接続を確立する複数のeNB200のうち、マスタeNB(MeNB)のみが当該UE100とのRRC接続を確立する。これに対し、当該複数のeNB200のうちセカンダリeNB(SeNB)は、RRC接続をUE100と確立せずに、追加的な無線リソースをUE100に提供する。MeNBとSeNBとの間にはXnインターフェイスが設定される。Xnインターフェイスは、X2インターフェイス又は新たなインターフェイスである。 In DC, only the master eNB (MeNB) among the plurality of eNBs 200 that establish a connection with the UE 100 establishes an RRC connection with the UE 100. On the other hand, a secondary eNB (SeNB) among the plurality of eNBs 200 provides the UE 100 with additional radio resources without establishing an RRC connection with the UE 100. An Xn interface is set between the MeNB and SeNB. The Xn interface is an X2 interface or a new interface.
 DCでは、UE100は、MeNBが管理するN個のセル及びSeNBが管理するM個のセルを同時に利用したキャリアアグリゲーションが可能である。また、MeNBが管理するN個のセルからなるグループは、マスタセルグループ(MCG)と称される。また、SeNBが管理するM個のセルからなるグループは、セカンダリセルグループ(SCG)と称される。また、SeNBが管理するセルのうち、少なくとも上りリンクの制御信号(PUCCH)の受信機能を持つセルは、PSCellと称される。PSCellは、PCellと同様のいくつかの機能を有するが、例えば、UE100とRRC接続を行わず、RRCメッセージを送信しない。なお、アンライセンスド帯域における所定周波数(キャリア)がSCellとして利用される場合には、当該SCellは、U-SCellと称され、PSCellとして利用される場合には、当該SCellは、U-PSCellと称される。 In DC, the UE 100 can perform carrier aggregation using the N cells managed by the MeNB and the M cells managed by the SeNB at the same time. A group consisting of N cells managed by the MeNB is referred to as a master cell group (MCG). Moreover, the group which consists of M cells which SeNB manages is called a secondary cell group (SCG). Further, among cells managed by the SeNB, a cell having at least an uplink control signal (PUCCH) reception function is referred to as a PSCell. PSCell has some functions similar to PCell, but does not perform RRC connection with UE 100 and does not transmit an RRC message, for example. When a predetermined frequency (carrier) in the unlicensed band is used as an SCell, the SCell is referred to as a U-SCell. When used as a PSCell, the SCell is referred to as a U-PSCell. Called.
 ここで、アンライセンスド帯域を利用した通信の一形態として、LAA(LAA:Licensed-Assited Access)を利用することが想定される。LAAでは、UE100は、ライセンスド帯域で運用されるセル(以下、ライセンスドセル)とアンライセンスド帯域で運用されるセル(以下、アンライセンスドセル)と通信を行う。ライセンスドセルは、PCellとして使用され、アンライセンスドセルは、SCell(又はPSCell)として使用されてもよい。UE100がライセンスドセル及びアンライセンスドセルと通信を行う場合、当該ライセンスドセル及び当該アンライセンスドセルは、1つのノード(例えば、eNB200)によって管理されていてもよい。なお、当該ライセンスドセル及び当該アンライセンスドセルは、1つのeNB200によって管理(制御)されている場合、アンライセンスドセル(及びライセンスドセル)は、無線送受信機を有するRRH(Remote Radio Head)によって形成されてもよい。或いは、ライセンスセルは、eNB200に管理され、アンライセンスドセルは、当該eNB200とは異なる無線通信装置に管理されていてもよい。eNB200と当該無線通信装置とは、所定のインターフェイス(X2インターフェイス又はS1インターフェイス)を介して後述する各種情報のやり取りを行うことができる。ライセンスセルを管理するeNB200は、UE100から取得した情報を無線通信装置に通知してもよいし、無線通信装置から取得した情報をUE100に通知してもよい。 Here, it is assumed that LAA (LAA: Licensed-Assessed Access) is used as a form of communication using the unlicensed band. In LAA, the UE 100 communicates with a cell operated in a licensed band (hereinafter, licensed cell) and a cell operated in an unlicensed band (hereinafter, unlicensed cell). The licensed cell may be used as a PCell, and the unlicensed cell may be used as an SCell (or PSCell). When UE100 communicates with a licensed cell and an unlicensed cell, the said licensed cell and the said unlicensed cell may be managed by one node (for example, eNB200). When the licensed cell and the unlicensed cell are managed (controlled) by one eNB 200, the unlicensed cell (and licensed cell) is formed by an RRH (Remote Radio Head) having a radio transceiver. Also good. Alternatively, the license cell may be managed by the eNB 200, and the unlicensed cell may be managed by a radio communication apparatus different from the eNB 200. The eNB 200 and the wireless communication apparatus can exchange various types of information to be described later via a predetermined interface (X2 interface or S1 interface). The eNB 200 that manages the license cell may notify the information acquired from the UE 100 to the radio communication device, or may notify the UE 100 of the information acquired from the radio communication device.
 アンライセンスド帯域においては、LTEシステムとは異なるシステム(無線LAN等)又は他のオペレータのLTEシステムとの干渉を回避するために、無線信号を送信する前にCCA(Clear channel Assessment)を実行すること(いわゆる、LBT(Listen Befor Talk))が要求されている。具体的には、CCAでは、eNB200は、アンライセンスド帯域内の周波数(キャリア)が空いているか否かを確認するために、干渉電力を測定する(CCA)。eNB200は、干渉電力の測定結果に基づいて、空きチャネルであることが確認された周波数(キャリア)に含まれる無線リソースをUE100に割り当てる(スケジューリング)。なお、eNB200は、アンライセンスドセルを介して、アンライセンスドセルにおけるスケジューリングを行う。或いは、eNB200は、ライセンスドセルを介して、アンライセンスドセルにおけるスケジューリングを行ってもよい(すなわち、クロスキャリアスケジューリング)。 In the unlicensed band, CCA (Clear channel Assessment) is executed before transmitting a radio signal in order to avoid interference with a system different from the LTE system (such as a wireless LAN) or another operator's LTE system. (So-called LBT (Listen Before Talk)) is required. Specifically, in CCA, eNB 200 measures interference power to confirm whether or not a frequency (carrier) in the unlicensed band is available (CCA). The eNB 200 allocates, to the UE 100, radio resources included in the frequency (carrier) that is confirmed to be an empty channel based on the measurement result of the interference power (scheduling). Note that the eNB 200 performs scheduling in the unlicensed cell via the unlicensed cell. Or eNB200 may perform the scheduling in an unlicensed cell via a licensed cell (namely, cross-carrier scheduling).
 一方で、一部の地域(例えば、ヨーロッパ)では、所定の条件を満たす制御信号(Short control signaling)は、例外的に、アンライセンスド帯域において干渉電力を測定せずに送信可能である。例えば、所定の条件を満たす制御信号は、50msの観測期間内で5%の最大負荷サイクルを満たす信号である。 On the other hand, in some areas (for example, Europe), a control signal (Short control signaling) that satisfies a predetermined condition can be transmitted without measuring interference power in the unlicensed band. For example, a control signal that satisfies a predetermined condition is a signal that satisfies a maximum duty cycle of 5% within an observation period of 50 ms.
 ここで、eNB200が、制御情報として参照信号を送信した場合、参照信号を周期的に送信することができる。UE100は、周期的に送信される参照信号に対する測定を行い、測定結果をeNB200が管理に報告できる。eNB200は、測定結果に基づいて、アンライセンスド帯域におけるUE100との通信の可否又はアンライセンスド帯域における通信品質の判定を行うことができる。 Here, when the eNB 200 transmits a reference signal as control information, the reference signal can be periodically transmitted. The UE 100 performs measurement on the reference signal transmitted periodically, and the eNB 200 can report the measurement result to the management. Based on the measurement result, the eNB 200 can determine whether communication with the UE 100 in the unlicensed band is possible or the communication quality in the unlicensed band.
 しかしながら、eNB200は、干渉電力を測定せずに参照信号を送信するため、参照信号に対する測定結果は、干渉を受けている可能性がある。その結果、アンライセンスド帯域における参照信号に対する適切な測定結果を取得できない虞がある。 However, since the eNB 200 transmits the reference signal without measuring the interference power, the measurement result for the reference signal may be subject to interference. As a result, there is a possibility that an appropriate measurement result for the reference signal in the unlicensed band cannot be acquired.
 そこで、以下に示す方法により、上述した問題を解決する。 Therefore, the above-described problem is solved by the following method.
 以下において、eNB200による動作を、eNB200が管理するセルによる動作として適宜説明する。また、以下において、1つのeNB200がライセンスド帯域における周波数(ライセンスドセル)及びアンライセンスド帯域における周波数(アンライセンスドセル)によってUE100と通信を行うケースを中心に説明するが、これに限られないことに留意すべきである。 Hereinafter, the operation by the eNB 200 will be appropriately described as an operation by a cell managed by the eNB 200. In the following, a case where one eNB 200 communicates with the UE 100 using a frequency in the licensed band (licensed cell) and a frequency in the unlicensed band (unlicensed cell) will be mainly described, but the present invention is not limited thereto. Should be noted.
 (第1実施形態に係る動作)
 次に、第1実施形態に係る動作について、図6を用いて説明する。図6は、第1実施形態に係る動作を説明するための図である。
(Operation according to the first embodiment)
Next, the operation according to the first embodiment will be described with reference to FIG. FIG. 6 is a diagram for explaining an operation according to the first embodiment.
 図6において、UE100は、eNB200が管理するライセンスドセルに在圏している。UE100は、RRCアイドル状態であってもよいし、RRCコネクティッド状態であってもよい。図6の初期状態において、UE100は、eNB200が管理するアンライセンスド帯域内の特定周波数において通信を開始していない。或いは、UE100は、特定周波数において通信を行っていてもよい。 In FIG. 6, the UE 100 is located in a licensed cell managed by the eNB 200. The UE 100 may be in an RRC idle state or an RRC connected state. In the initial state of FIG. 6, the UE 100 has not started communication at a specific frequency within the unlicensed band managed by the eNB 200. Alternatively, the UE 100 may perform communication at a specific frequency.
 本実施形態では、eNB200は、後述するように、特定周波数において干渉電力の測定(CCA)を行ってから、特定周波数において参照信号を送信する。しかしながら、eNB200は、干渉電力の測定結果にかかわらず、参照信号を周期的に送信する。 In this embodiment, as will be described later, the eNB 200 performs interference power measurement (CCA) at a specific frequency and then transmits a reference signal at the specific frequency. However, the eNB 200 periodically transmits the reference signal regardless of the measurement result of the interference power.
 UE100及びeNB200の近傍には、アンライセンスド帯域における特定周波数において無線信号(データ:DATA)を送信するAP400が存在する。図6において、AP400は、t1及びt3においてデータを送信する。 Near the UE 100 and the eNB 200, there is an AP 400 that transmits a radio signal (data: DATA) at a specific frequency in the unlicensed band. In FIG. 6, the AP 400 transmits data at t1 and t3.
 図6に示すように、t1において、eNB200は、アンライセンスド帯域における特定周波数において干渉電力の測定を行う。ここでは、AP400からのデータ送信に基づいて、干渉電力が閾値を超えたと仮定して説明する。eNB200は、干渉を受けたと判定し、直後の参照信号の送信タイミングを記憶する。 As shown in FIG. 6, at t1, the eNB 200 measures interference power at a specific frequency in the unlicensed band. Here, based on the data transmission from AP400, it demonstrates on the assumption that interference electric power exceeded the threshold value. The eNB 200 determines that it has received interference and stores the transmission timing of the reference signal immediately after.
 次に、eNB200は、干渉電力が閾値(例えば、LBT方式において空きチャネルがないことを示す閾値)よりも大きい場合であっても、参照信号の送信を行う。 Next, the eNB 200 transmits a reference signal even when the interference power is larger than a threshold value (for example, a threshold value indicating that there is no empty channel in the LBT method).
 ここで、参照信号は、例えば、発見参照信号(DRS:Discovery Reference signal)である。DRSは、同期信号(プライマリ同期信号(PSS)及び/又はセカンダリ同期信号(SSS))、セル参照信号、チャネル状態情報参照信号(CSI-RS)、下りリンクにおける復調参照信号(DL-DMRS)の少なくともいずれかの信号を含む。 Here, the reference signal is, for example, a discovery reference signal (DRS: Discovery Reference signal). The DRS includes a synchronization signal (primary synchronization signal (PSS) and / or secondary synchronization signal (SSS)), cell reference signal, channel state information reference signal (CSI-RS), and downlink demodulation reference signal (DL-DMRS). Including at least one of the signals.
 UE100は、アンライセンスド帯域における特定周波数において参照信号に対する測定を行う。UE100は、参照信号の送信予定タイミングに関する設定情報をeNB200から受信している場合、当該設定情報に基づいて、参照信号に対する測定を行うことができる。設定情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。 UE 100 performs a measurement on a reference signal at a specific frequency in the unlicensed band. When receiving setting information related to the transmission timing of the reference signal from the eNB 200, the UE 100 can perform measurement on the reference signal based on the setting information. The setting information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH).
 UE100は、参照信号に対する測定結果を測定タイミングと関連付けて記憶する。t1においてAP400がデータを送信しているため、測定結果は、干渉の影響を受けている。 The UE 100 stores the measurement result for the reference signal in association with the measurement timing. Since the AP 400 is transmitting data at t1, the measurement result is affected by interference.
 t2において、eNB200は、t1と同様に干渉電力の測定を行う。ここでは、AP400からのデータ送信がないため、干渉電力が閾値未満であると仮定して説明する。eNB200は、干渉を受けていないと判定する。eNB200は、直後の参照信号の送信タイミングを記憶しなくてもよい。その後、eNB200は、参照信号の送信を行う。 At t2, the eNB 200 measures the interference power similarly to t1. Here, since there is no data transmission from AP400, it demonstrates supposing that interference power is less than a threshold value. The eNB 200 determines that no interference is received. The eNB 200 may not store the transmission timing of the reference signal immediately after. Thereafter, the eNB 200 transmits a reference signal.
 UE100は、t1と同様に参照信号に対する測定を行う。UE100は、測定結果を測定タイミングと関連付けて記憶する。t2においてAP400がデータを送信しているため、測定結果は、干渉の影響を受けていない。 UE100 performs the measurement for the reference signal in the same manner as t1. The UE 100 stores the measurement result in association with the measurement timing. Since the AP 400 transmits data at t2, the measurement result is not affected by interference.
 t3において、t1と同様に、UE100及びeNB200のそれぞれは、動作し、t4において、t2と同様に、UE100及びeNB200のそれぞれは、動作する。 At t3, each of the UE 100 and the eNB 200 operates similarly to t1, and at t4, each of the UE 100 and the eNB 200 operates similarly to t2.
 ここで、eNB200は、参照信号を送信する前に干渉を受けたタイミングに関する干渉情報をUE100に送信する。干渉情報は、例えば、干渉を受けたと判定した後に送信した参照信号の送信タイミングを示す情報(リスト)である。本実施形態では、t1及びt3を示すタイミングを示す。干渉情報は、サブフレーム番号によって示されてもよい。干渉情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。これらの信号は、ライセンスド帯域における周波数(キャリア)によってUE100に送信されてもよいし、アンライセンスド帯域における特定周波数(キャリア)によってUE100に送信されてもよい。また、干渉情報は、干渉情報によって示されるタイミングに対応する測定結果の削除を要求するメッセージに含まれていてもよい。なお、eNB200は、複数の送信タイミングを纏めて通知せずに、干渉電力が閾値を超える度に、1つの送信タイミングを通知してもよい。 Here, the eNB 200 transmits, to the UE 100, interference information regarding the timing at which the interference is received before transmitting the reference signal. The interference information is, for example, information (list) indicating the transmission timing of the reference signal transmitted after determining that the interference has been received. In the present embodiment, timings indicating t1 and t3 are shown. The interference information may be indicated by a subframe number. The interference information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH). These signals may be transmitted to the UE 100 by a frequency (carrier) in the licensed band, or may be transmitted to the UE 100 by a specific frequency (carrier) in the unlicensed band. Further, the interference information may be included in a message requesting deletion of the measurement result corresponding to the timing indicated by the interference information. In addition, eNB200 may notify one transmission timing, whenever interference power exceeds a threshold value, without notifying several transmission timing collectively.
 UE100は、干渉情報に基づいて、参照信号に対する測定を行っている間にUE100が干渉を受けたタイミングを特定する。すなわち、UE100は、eNB200が干渉を受けたタイミングを測定中にUE100が干渉を受けたタイミングと特定(推定)する。UE100は、特定されたタイミング(干渉情報によって示されるタイミング)に対応する測定結果を除外(削除)する。これにより、UE100は、干渉を受けたと推定される測定結果を計算対象又はeNB200への報告対象から除外できる。従って、UE100及びeNB200は、適切な測定結果が取得可能である。 The UE 100 specifies the timing at which the UE 100 receives interference while performing the measurement on the reference signal based on the interference information. That is, the UE 100 specifies (estimates) the timing at which the UE 100 receives interference during measurement of the timing at which the eNB 200 receives interference. The UE 100 excludes (deletes) the measurement result corresponding to the identified timing (timing indicated by the interference information). Thereby, UE100 can exclude the measurement result estimated to have received interference from the calculation object or the report object to eNB200. Therefore, the UE 100 and the eNB 200 can acquire an appropriate measurement result.
 [第2実施形態]
 次に、第2実施形態に係る動作について、図7を用いて説明する。図7は、第2実施形態に係る動作を説明するための図である。上述した実施形態と同様の部分は、説明を適宜省略する。第2実施形態の動作環境は、第1実施形態の動作環境と同様である。
[Second Embodiment]
Next, an operation according to the second embodiment will be described with reference to FIG. FIG. 7 is a diagram for explaining an operation according to the second embodiment. Description of the same parts as those in the above-described embodiment will be omitted as appropriate. The operating environment of the second embodiment is the same as the operating environment of the first embodiment.
 第2実施形態では、UE100は、アンライセンスド帯域における干渉電力を測定し、干渉電力の測定結果に基づいて、UE100が測定結果を除外する。 In the second embodiment, the UE 100 measures the interference power in the unlicensed band, and the UE 100 excludes the measurement result based on the measurement result of the interference power.
 t1において、eNB200は、第1実施形態と同様に、干渉電力を測定し、干渉電力の測定結果にかかわらず、参照信号を周期的に送信する。なお、eNB200は、干渉電力の測定を行わずに、参照信号を周期的に送信してもよい。 At t1, the eNB 200 measures the interference power as in the first embodiment, and periodically transmits the reference signal regardless of the measurement result of the interference power. Note that the eNB 200 may periodically transmit the reference signal without measuring the interference power.
 一方、UE100は、参照信号に対する測定を行う前に、干渉電力を測定する(CCAを実行する)。UE100は、LBT方式において参照信号を送信可能か否かを判断するためにeNB200がCCAを行うタイミングで、干渉電力を測定する。すなわち、UE100は、eNB200が干渉電力を測定するタイミングで、干渉電力を測定する。なお、参照信号に対する測定と干渉電力の測定とは、測定の項目が異なることもあるが、特定周波数における無線信号に対する測定という点で同一の動作である。 On the other hand, before measuring the reference signal, the UE 100 measures the interference power (performs CCA). The UE 100 measures the interference power at the timing when the eNB 200 performs CCA to determine whether or not the reference signal can be transmitted in the LBT scheme. That is, the UE 100 measures the interference power at the timing when the eNB 200 measures the interference power. Note that the measurement for the reference signal and the measurement of the interference power may be different from each other, but are the same operation in terms of measurement for a radio signal at a specific frequency.
 UE100は、干渉電力が閾値を超えた場合に、参照信号の測定結果を除外する。或いは、UE100は、干渉電力が閾値を超えた場合には、参照信号の測定結果を記憶しなくてもよいし、参照信号に対する測定を行わなくてもよい。これにより、UE100及びeNB200は、適切な測定結果が取得可能である。 UE100 excludes the measurement result of the reference signal when the interference power exceeds the threshold value. Or UE100 does not need to memorize the measurement result of a reference signal, and does not need to perform the measurement to a reference signal, when interference power exceeds a threshold. Thereby, UE100 and eNB200 can acquire a suitable measurement result.
 なお、第1実施形態のように、UE100は、eNB200から干渉情報を受信し、自身の測定結果だけでなく、干渉情報に基づいて、測定結果を除外してもよい。これにより、UE100及びeNB200は、特定周波数においてデータが送信されていないタイミングにおける適切な測定結果を取得することができる。 Note that, as in the first embodiment, the UE 100 may receive the interference information from the eNB 200 and exclude the measurement result based on the interference information as well as its own measurement result. Thereby, UE100 and eNB200 can acquire the appropriate measurement result in the timing when data is not transmitted in a specific frequency.
 [第3実施形態]
 次に、第3実施形態に係る動作について、図8を用いて説明する。図8は、第3実施形態に係る動作を説明するための図である。上述した各実施形態と同様の部分は、説明を適宜省略する。
[Third Embodiment]
Next, an operation according to the third embodiment will be described with reference to FIG. FIG. 8 is a diagram for explaining an operation according to the third embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
 第3実施形態では、UE100は、参照信号の送信タイミングと異なるタイミングで干渉電力の測定(CCA)を行う。UE100は、参照信号に対する測定結果と干渉電力の測定結果とに基づいて、干渉を受けたタイミングを特定する。 In the third embodiment, the UE 100 performs interference power measurement (CCA) at a timing different from the transmission timing of the reference signal. UE100 specifies the timing which received interference based on the measurement result with respect to a reference signal, and the measurement result of interference electric power.
 図8(A)に示すように、UE100の近傍には、第1の無線通信装置(WT500-1)及び第2の無線通信装置(WT500-2)が存在する。UE100は、WT500-2よりもWT500-1に近い。WT500-1及びWT500-2は、アンライセンスド帯域における特定周波数において無線信号を送信する(図8(B)参照)。 As shown in FIG. 8A, a first wireless communication device (WT 500-1) and a second wireless communication device (WT 500-2) exist in the vicinity of the UE 100. UE 100 is closer to WT 500-1 than WT 500-2. WT 500-1 and WT 500-2 transmit a radio signal at a specific frequency in the unlicensed band (see FIG. 8B).
 また、eNB200は、周期的に参照信号を送信する。eNB200は、参照信号の送信予定タイミングに関する設定情報を送信する。UE100は、参照信号の送信予定タイミングに関する設定情報を受信する。設定情報は、特定周波数における参照信号に対する測定タイミングを指定する情報であってもよい。設定情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。UE100は、設定情報に基づいて、参照信号の送信予定タイミングで特定周波数における参照信号に対する測定を行う。 Further, the eNB 200 periodically transmits a reference signal. The eNB 200 transmits setting information related to the scheduled transmission timing of the reference signal. UE100 receives the setting information regarding the transmission plan timing of a reference signal. The setting information may be information specifying measurement timing for a reference signal at a specific frequency. The setting information may be transmitted by a common signal (for example, SIB, PDCCH) or may be transmitted by an individual signal (for example, PDSCH). Based on the setting information, the UE 100 performs the measurement for the reference signal at the specific frequency at the reference signal transmission scheduled timing.
 さらに、UE100は、参照信号の送信予定タイミングと異なるタイミングで、特定周波数における干渉電力の測定(CCA)を行う。異なるタイミングは、送信予定タイミングの前及び後のタイミングの少なくとも一方である。異なるタイミングは、参照信号に対する測定を行うタイミングよりも所定時間前のタイミング及び/又は所定時間後のタイミングであってもよい。異なるタイミングは、eNB200が干渉電力を測定するタイミングと同じタイミングであってもよい。本実施形態において、UE100は、送信予定タイミングの前(直前)及び後(直後)のタイミングで干渉電力の測定を行う(図8(B)参照)。加えて、UE100は、所定の送信予定タイミングと次の送信予定タイミングとの中間時点(t4、t8)で干渉電力の測定を行う。従って、UE100は、干渉電力の測定を断続的に行う。 Furthermore, the UE 100 performs interference power measurement (CCA) at a specific frequency at a timing different from the scheduled transmission timing of the reference signal. The different timing is at least one of the timing before and after the scheduled transmission timing. The different timing may be a timing before a predetermined time and / or a timing after a predetermined time with respect to the timing for performing the measurement on the reference signal. The different timing may be the same timing as the timing at which the eNB 200 measures the interference power. In the present embodiment, the UE 100 measures the interference power at the timing before (immediately before) and after (immediately) the scheduled transmission timing (see FIG. 8B). In addition, the UE 100 measures the interference power at an intermediate time (t4, t8) between the predetermined transmission scheduled timing and the next scheduled transmission timing. Therefore, the UE 100 intermittently measures the interference power.
 図8(B)に示すように、t2、t6、t10において、eNB200は、特定周波数において参照信号を送信し、UE100は、参照信号に対する測定を行う。また、UE100は、t1、t3、t4、t5、t7、t8、t9、t10において、干渉電力の測定を行う。WT500-1は、t5からt8において、特定周波数において無線信号の送信を行う。WT500-2は、t1からt3において、特定周波数において無線信号の送信を行う。これにより、UE100におけるt1からt3の測定結果は、WT500-2からの無線信号の送信により干渉の影響を受ける。UE100におけるt5からt7の測定結果は、WT500-2よりもUE100の近くに存在するWT500-1からの無線信号の送信により干渉の影響を強く受ける。 As shown in FIG. 8B, at t2, t6, and t10, the eNB 200 transmits a reference signal at a specific frequency, and the UE 100 performs measurement on the reference signal. In addition, the UE 100 measures interference power at t1, t3, t4, t5, t7, t8, t9, and t10. The WT 500-1 transmits a radio signal at a specific frequency from t5 to t8. The WT 500-2 transmits a radio signal at a specific frequency from t1 to t3. As a result, the measurement results from t1 to t3 in the UE 100 are affected by interference due to the transmission of the radio signal from the WT 500-2. The measurement results from t5 to t7 in the UE 100 are more strongly affected by interference due to the transmission of a radio signal from the WT 500-1 that exists near the UE 100 than in the WT 500-2.
 次に、UE100は、参照信号に対する測定中に、UE100が干渉を受けているか否かを判定する。 Next, the UE 100 determines whether or not the UE 100 is receiving interference during measurement of the reference signal.
 図8(B)における測定値は、UE100における測定結果(受信レベル)を示す。t2、t6、t10における測定値が干渉電力を含み得るDRS測定値であり、t1、t3、t4、t5、t7、t8、t9、t10における測定値が干渉測定値である。以下において、t4における測定値が最低値と仮定して説明を進める。 The measurement value in FIG. 8 (B) indicates the measurement result (reception level) in the UE 100. The measurement values at t2, t6, and t10 are DRS measurement values that can include interference power, and the measurement values at t1, t3, t4, t5, t7, t8, t9, and t10 are interference measurement values. In the following, description will be made assuming that the measured value at t4 is the lowest value.
 第1に、UE100は、送信予定タイミングでの測定値(DRS測定値)と送信予定タイミングの前後のタイミング(第1のタイミング)での測定値(干渉測定値)とを比較する。UE100は、DRS測定値が干渉測定値よりも所定値以上高い(すなわち、DRS測定値-干渉測定値>所定値)場合、DRS測定値が干渉を受けている可能性がある、又は、DRS干渉を受けていないと判定する。言い換えると、UE100は、DRS測定値と干渉測定値との差が所定値未満である場合、干渉を受けている(干渉を受けている可能性が高い)と判定する。 First, the UE 100 compares the measured value (DRS measured value) at the scheduled transmission timing with the measured value (interference measured value) at timings before and after the scheduled transmission timing (first timing). When the DRS measurement value is higher than the interference measurement value by a predetermined value or more (that is, the DRS measurement value−interference measurement value> predetermined value), the UE 100 may have received the interference, or the DRS interference It is determined that it has not received. In other words, when the difference between the DRS measurement value and the interference measurement value is less than the predetermined value, the UE 100 determines that interference has occurred (it is highly likely that the interference has been received).
 具体的には、t6のDRS測定値とt5(t7)の干渉測定値との差は、所定値未満であるため、t6のDRS測定値は、干渉を受けたタイミングと特定する。 Specifically, since the difference between the DRS measurement value at t6 and the interference measurement value at t5 (t7) is less than a predetermined value, the DRS measurement value at t6 is specified as the timing of the interference.
 第2に、UE100は、第1のタイミングでの測定値(干渉測定値)と、干渉測定値のうち最も低い測定値(最低測定値)とを比較する。UE100は、干渉測定値が最低測定値よりも所定値以上高い(すなわち、干渉測定値-最低測定値>所定値)場合、第1の干渉測定値の前又は後のDRS測定値が干渉を受けている可能性があると判定する。言い換えると、UE100は、干渉測定値と最低測定値との差が所定値未満である場合、干渉を受けている(干渉を受けている可能性がある)と判定する。 Second, the UE 100 compares the measurement value (interference measurement value) at the first timing with the lowest measurement value (minimum measurement value) among the interference measurement values. When the interference measurement value is higher than the minimum measurement value by a predetermined value or more (ie, interference measurement value−minimum measurement value> predetermined value), the UE 100 receives the DRS measurement value before or after the first interference measurement value due to interference. It is determined that there is a possibility. In other words, when the difference between the interference measurement value and the minimum measurement value is less than the predetermined value, the UE 100 determines that it is receiving interference (may be receiving interference).
 具体的には、t1(t3)の干渉測定値とt4の最低測定値との差は、所定値以上であるため、UE100は、t2のDRS測定値が干渉を受けている可能性があると判定する。一方で、t9(t11)の干渉測定値とt4の最低測定値との差は、所定値未満であるため、t10のDRS測定値が干渉を受けていないと判定する。 Specifically, since the difference between the interference measurement value at t1 (t3) and the minimum measurement value at t4 is equal to or greater than a predetermined value, the UE 100 may have the interference of the DRS measurement value at t2. judge. On the other hand, since the difference between the interference measurement value at t9 (t11) and the minimum measurement value at t4 is less than a predetermined value, it is determined that the DRS measurement value at t10 is not subject to interference.
 このようして、UE100は、DRS測定値と干渉測定値を比較したり、干渉測定値どうしを比較したりすることによって、測定中にUE100が干渉を受けたタイミングを特定する。これにより、UE100は、特定されたタイミングに対応する測定結果(DRS測定値)を除外することによって、UE100及びeNB200は、適切な測定結果が取得可能である。 Thus, the UE 100 identifies the timing at which the UE 100 receives interference during the measurement by comparing the DRS measurement value and the interference measurement value or by comparing the interference measurement values. Thereby, UE100 and eNB200 can acquire an appropriate measurement result by excluding the measurement result (DRS measurement value) corresponding to the specified timing.
 U100は、干渉を受けている可能性があると判定された干渉測定値を、測定結果の精度や母数に応じて、計算対象又は報告対象から除外するか否かを判定してもよい。 The U100 may determine whether or not to exclude the interference measurement value determined to be subject to interference from the calculation target or the report target depending on the accuracy and parameter of the measurement result.
 なお、UE100は、参照信号に対する測定結果だけでなく、干渉電力の測定結果(干渉測定値)もeNB200に報告してもよい。この場合、UE100は、測定タイミングと関連付けられた干渉電力の測定結果をeNB200に報告する。eNB200は、測定報告に基づいて、上述の判断を行ってもよい。さらに、eNB200は、自身の干渉電力の測定結果も考慮して、所定の測定結果を除去してもよい。 Note that the UE 100 may report not only the measurement result for the reference signal but also the measurement result (interference measurement value) of the interference power to the eNB 200. In this case, the UE 100 reports the measurement result of the interference power associated with the measurement timing to the eNB 200. The eNB 200 may make the above determination based on the measurement report. Further, the eNB 200 may remove a predetermined measurement result in consideration of its own interference power measurement result.
 [第4実施形態]
 次に、第4実施形態に係る動作について、図9を用いて説明する。図9は、第4実施形態に係る動作を説明するための図である。上述した各実施形態と同様の部分は、説明を適宜省略する。
[Fourth Embodiment]
Next, an operation according to the fourth embodiment will be described with reference to FIG. FIG. 9 is a diagram for explaining an operation according to the fourth embodiment. Description of parts similar to those of the above-described embodiments is omitted as appropriate.
 図9において、各UE100(UE100-1~UE100-3)は、eNB200が管理するライセンスドセルに在圏している。UE100-2は、ライセンスドセルに在圏していなくてもよい。初期状態において、各UE100は、RRCアイドル状態であってもよいし、RRCコネクティッド状態であってもよい。各UE100は、eNB200が管理するアンライセンスド帯域内の特定周波数において通信を開始していない。 In FIG. 9, each UE 100 (UE 100-1 to UE 100-3) is located in a licensed cell managed by the eNB 200. The UE 100-2 may not be located in the licensed cell. In the initial state, each UE 100 may be in the RRC idle state or in the RRC connected state. Each UE 100 does not start communication at a specific frequency within the unlicensed band managed by the eNB 200.
 第4実施形態では、eNB200が干渉が発生しないタイミングを特定して、特定されたタイミングでUE100が参照信号に対する測定を行う。 In the fourth embodiment, the eNB 200 identifies the timing at which no interference occurs, and the UE 100 performs the measurement for the reference signal at the identified timing.
 図9に示すように、ステップS101において、eNB200は、アンライセンスド帯域内の特定周波数において第1の参照信号(DRS)を送信する。各UE100は、参照信号に対する測定を行う。DRSは、例えば、1~5サブフレームの期間、送信される。 As shown in FIG. 9, in step S101, the eNB 200 transmits a first reference signal (DRS) at a specific frequency in the unlicensed band. Each UE 100 performs a measurement on a reference signal. The DRS is transmitted for a period of 1 to 5 subframes, for example.
 ステップS102において、各UE100は、ステップS101における測定結果が閾値を超えたか否かを判定する。具体的には、各UE100は、参照信号の受信レベル(RSRP)が閾値を超えている場合、ステップS103の処理を実行する。ここでは、UE100-1及びUE100-3における受信レベルが閾値を超えたと仮定して説明を進める。 In step S102, each UE 100 determines whether or not the measurement result in step S101 exceeds a threshold value. Specifically, each UE 100 executes the process of step S103 when the reception level (RSRP) of the reference signal exceeds the threshold. Here, the description will be made on the assumption that the reception level in UE 100-1 and UE 100-3 exceeds the threshold.
 ステップS103において、UE100-1及びUE100-3は、第1の参照信号の受信レベルが閾値を超えたことを示す測定報告をeNB200に行う。従って、UE100は、1回(例えば、1~5サブフレーム)の第1の参照信号の測定結果のみをeNB200に報告(送信)する。UE100は、ライセンスドセルを介して、eNB200に第1の参照信号の測定結果を報告できる。これにより、eNB200は、UE100-1及びUE100-3から第1の測定報告(すなわち、第1の参照信号の測定結果)を受信する。 In step S103, the UE 100-1 and the UE 100-3 perform a measurement report indicating that the reception level of the first reference signal exceeds the threshold to the eNB 200. Accordingly, the UE 100 reports (transmits) only the measurement result of the first reference signal once (for example, 1 to 5 subframes) to the eNB 200. UE100 can report the measurement result of a 1st reference signal to eNB200 via a licensed cell. Thereby, the eNB 200 receives the first measurement report (that is, the measurement result of the first reference signal) from the UE 100-1 and the UE 100-3.
 ステップS104において、eNB200は、第1の測定報告に基づいて、スケジューリングを行う。 In step S104, the eNB 200 performs scheduling based on the first measurement report.
 eNB200は、第1の測定報告を送信したUE100-1及びUE100-3は、特定周波数で運用されるアンライセンスドセル内に存在すると判断する。一方、eNB200は、第1の測定報告を送信していないUE100-2は、アンライセンスドセル内に存在しないと判断する。 The eNB 200 determines that the UE 100-1 and the UE 100-3 that transmitted the first measurement report exist in an unlicensed cell operated at a specific frequency. On the other hand, the eNB 200 determines that the UE 100-2 that has not transmitted the first measurement report does not exist in the unlicensed cell.
 また、eNB200は、自局のUE100(具体的には、アンライセンスド内に存在するUE100-1及びUE100-3)の中から、アンライセンスド帯域内の特定周波数においてユーザデータを送信するための無線リソースを割り当てる。例えば、eNB200は、第1の測定報告に含まれるRSRPの値が大きいUE100に無線リソース(アンライセンスド帯域内の特定周波数における無線リソース)を割り当てる。これにより、eNB200は、ユーザデータの受信対象となるUE100を決定する。ここでは、eNB200は、UE100-1に無線リソースを割り当てたと仮定して説明を進める。 Further, the eNB 200 transmits user data at a specific frequency in the unlicensed band from the UE 100 of the own station (specifically, the UE 100-1 and the UE 100-3 existing in the unlicensed band). Allocate radio resources. For example, the eNB 200 allocates radio resources (radio resources at specific frequencies in the unlicensed band) to the UE 100 having a large RSRP value included in the first measurement report. Thereby, eNB200 determines UE100 used as the receiving object of user data. Here, the description will proceed assuming that the eNB 200 has assigned radio resources to the UE 100-1.
 一方で、eNB200は、アンライセンスド内に存在する他のUE100-3に、UE100-1に割り当てた無線リソース内で、第2の参照信号(CRS)に対する測定及び測定結果の報告を実行させる所定のUE100を決定する。すなわち、eNB200は、後述する測定情報に基づいて第2の参照信号の測定結果を報告させる所定のUE100(測定報告対象)を決定する。測定情報は、UE100-1に割り当てた無線リソース内の第2の参照信号の送信タイミングを示す情報を含む。測定情報は、例えば、少なくとも第2の参照信号が送信されるサブフレーム番号を示す。測定情報は、UE100-1のユーザデータが送信されるサブフレーム番号を示してもよい。 On the other hand, the eNB 200 causes other UEs 100-3 existing in the unlicensed state to perform measurement and report of measurement results for the second reference signal (CRS) within the radio resources allocated to the UE 100-1. UE 100 is determined. That is, eNB200 determines predetermined | prescribed UE100 (measurement report object) which reports the measurement result of a 2nd reference signal based on the measurement information mentioned later. The measurement information includes information indicating the transmission timing of the second reference signal in the radio resource allocated to the UE 100-1. The measurement information indicates, for example, a subframe number in which at least the second reference signal is transmitted. The measurement information may indicate a subframe number in which user data of the UE 100-1 is transmitted.
 ここでは、eNB200は、ユーザデータの受信対象でないUE100-3を、測定報告対象と決定する。 Here, the eNB 200 determines the UE 100-3 that is not the user data reception target as the measurement report target.
 なお、eNB200は、無線リソースをUE100-1に割り当てる前に、特定周波数における干渉電力を測定して、特定周波数における干渉電力が閾値未満であることを確認する。これにより、eNB200は、干渉電力に基づいて、アンライセンスド帯域において干渉が発生しないタイミングを特定する。eNB200は、干渉が発生しないタイミングにおける無線リソースをUE100-1に割り当てる。 Note that the eNB 200 measures the interference power at the specific frequency before assigning the radio resource to the UE 100-1, and confirms that the interference power at the specific frequency is less than the threshold. Thereby, eNB200 specifies the timing when interference does not occur in an unlicensed band based on interference power. The eNB 200 assigns radio resources to the UE 100-1 at a timing at which no interference occurs.
 ステップS105において、eNB200は、ライセンスド帯域内の周波数を用いて測定情報をUE100-3に送信する。UE100-3は、測定情報を受信する。測定情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。 In step S105, the eNB 200 transmits measurement information to the UE 100-3 using the frequency in the licensed band. The UE 100-3 receives the measurement information. The measurement information may be transmitted by a common signal (for example, SIB, PDCCH), or may be transmitted by an individual signal (for example, PDSCH).
 ステップS106において、eNB200は、ライセンスド帯域内の周波数を用いてUE100-1に割り当てた無線リソースを示すスケジューリング情報を送信する。UE100-1は、スケジューリング情報を受信する。スケジューリング情報は、共通信号(例えば、SIB、PDCCH)によって送信されてもよいし、個別信号(例えば、PDSCH)によって送信されてもよい。 In step S106, the eNB 200 transmits scheduling information indicating the radio resource allocated to the UE 100-1 using the frequency in the licensed band. The UE 100-1 receives the scheduling information. The scheduling information may be transmitted by a common signal (for example, SIB, PDCCH), or may be transmitted by an individual signal (for example, PDSCH).
 ステップS107において、eNB200は、特定周波数において割り当てた無線リソースを用いてユーザデータを送信する。UE100-1は、ユーザデータを受信する。一方で、eNB200は、ユーザデータに付随して第2の参照信号を送信する。 In step S107, eNB200 transmits user data using the radio | wireless resource allocated in the specific frequency. The UE 100-1 receives user data. On the other hand, the eNB 200 transmits a second reference signal accompanying the user data.
 ステップS108において、UE100-1は、ユーザデータを受信する。UE100-1は、ユーザデータに付随して送信された第2の参照信号に対する測定を行ってもよい。ここでは、UE100-1は、第2の参照信号に対する測定を行ったと仮定する。 In step S108, the UE 100-1 receives user data. The UE 100-1 may perform measurement on the second reference signal transmitted along with the user data. Here, it is assumed that UE 100-1 has performed measurement on the second reference signal.
 ステップS109において、UE100-3は、測定情報に基づいて、第2の参照信号に対する測定を行う。ここで、UE100は、第2の参照信号に対する測定として、受信強度(RSRP)、受信品質(RSRQ、SINR)などの測定を行うことができる。 In step S109, the UE 100-3 performs measurement on the second reference signal based on the measurement information. Here, the UE 100 can measure reception strength (RSRP), reception quality (RSRQ, SINR), and the like as the measurement for the second reference signal.
 ステップS110において、UE100-1及びUE100-3は、第2の参照信号に対する測定結果をeNB200に報告する。eNB200は、第2の測定報告(すなわち、第2の参照信号の測定結果)を受信する。第2の測定報告は、受信強度(RSRP)、受信品質(RSRQ、SINR)の測定報告を含むことができる。 In step S110, the UE 100-1 and the UE 100-3 report the measurement result for the second reference signal to the eNB 200. The eNB 200 receives the second measurement report (that is, the measurement result of the second reference signal). The second measurement report may include a measurement report of reception strength (RSRP) and reception quality (RSRQ, SINR).
 ステップS111において、eNB200は、ステップS104と同様に、第2の測定報告に基づいて、ユーザデータの受信対象となるUE100を決定する。第2の測定報告は、受信強度(RSRP)、受信品質(RSRQ、SINR)の測定報告を含み得るため、eNB200が検出不能な無線通信装置からの干渉をUE100が受けているかをeNB200は判定することができる。 In step S111, the eNB 200 determines the UE 100 that is a user data reception target based on the second measurement report, similarly to step S104. Since the second measurement report may include a measurement report of reception strength (RSRP) and reception quality (RSRQ, SINR), the eNB 200 determines whether the UE 100 is receiving interference from a radio communication apparatus that the eNB 200 cannot detect. be able to.
 このように、第4実施形態では、第1の参照信号の代わりに、第2の参照信号に基づいて測定が行われる。第2の参照信号は、干渉が発生しないタイミングで送信されるため、適切な測定結果を取得することができる。 Thus, in the fourth embodiment, measurement is performed based on the second reference signal instead of the first reference signal. Since the second reference signal is transmitted at a timing at which no interference occurs, an appropriate measurement result can be acquired.
 なお、eNB200は、第2の参照信号に対する測定をUE100に指示した後、第1の参照信号の送信を省略してもよいし、或いは、eNB200における干渉電力の測定結果に基づいて第1の参照信号を間欠的に送信してもよい。 Note that the eNB 200 may omit the transmission of the first reference signal after instructing the UE 100 to measure the second reference signal, or may perform the first reference based on the interference power measurement result in the eNB 200. The signal may be transmitted intermittently.
 [その他の実施形態]
 上述した実施形態では、移動通信システムの一例としてLTEシステムを説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本出願の内容を適用してもよい。
[Other Embodiments]
In the above-described embodiment, the LTE system has been described as an example of the mobile communication system. However, the embodiment is not limited to the LTE system, and the content of the present application may be applied to a system other than the LTE system.
 なお、上述した各実施形態を適宜組み合わせることが可能であることは勿論である。 Of course, the above-described embodiments can be appropriately combined.
 [付記]
 (1)導入
 この付記では、LAA RRM測定のための参照信号のデザインを述べる。参照信号へのアプローチを考慮した他の機能性についての見解も提供する。
[Appendix]
(1) Introduction This appendix describes the design of a reference signal for LAA RRM measurement. It also provides views on other functionality that takes into account the approach to reference signals.
 (2)RRM測定のための参照信号のデザイン
 Rel-12 DRSが、アンライセンスド帯域でのRRM測定において用いられる参照信号のデザインのための出発点であることが合意された。Rel-12DRSデザインに基づいて、eNBは、例外なく、一定の間隔でPSS/SSS/CRS(及びCSI-RS)を送信することが要求される。それは、eNBは、DRSを送信するために割り当てられたライセンスド帯域のリソースを使用するので、問題なく達成することができる。しかしながら、ライセンスド帯域とは対照的に、1より多い無線システム/ノードは、アンライセンスド帯域を共有することができるだろう。アンライセンスド帯域を共有することに加えて、各システムは、一部の国/地域で要求される衝突を回避するためにLBT(Listen Befor Talk)を使用する。従って、DRSは、我々の見解では、DRSがアンライセンスド帯域で送信された場合、LBTが必要である。
(2) Design of reference signal for RRM measurement It was agreed that Rel-12 DRS is the starting point for the design of reference signal used in RRM measurement in the unlicensed band. Based on the Rel-12 DRS design, the eNB is required to transmit PSS / SSS / CRS (and CSI-RS) at regular intervals without exception. It can be achieved without problems because the eNB uses licensed band resources allocated to transmit DRS. However, in contrast to the licensed band, more than one wireless system / node could share the unlicensed band. In addition to sharing unlicensed bandwidth, each system uses LBT (Listen Before Talk) to avoid collisions required in some countries / regions. Therefore, DRS, in our view, requires LBT when DRS is transmitted in an unlicensed band.
 一つのデザインの観点は、LBTは必須機能であるべきか否かを検討することである。LBTは、EUと日本では必須の機能であるが、EU規制は、信号の存在のための周波数を検知することなく、管理及び制御フレームの送信、すなわち、短時間制御シグナリング送信(Short Control Signalling Transmission)を許可する。EU規制によれば、適応型機器の短時間制御シグナリング送信は、50ミリ秒の観察期間内に最大10%の負荷サイクルを有するべきである。上記の要件に基づいて、DRS送信が条件を満たす場合、LTE eNBは、LBTを実行せずにアンライセンスド帯域でDRSを送信することができる。しかしながら、他のシステムとの公正な共存を取得し、衝突を回避するのに役立つので、LBTが義務付けられるべきである。LBTの義務付けは、また、シンプルなデザインと見なされ、かつ、LAAが展開されると予想されるすべての地域のための1つの汎用ソリューションを提供することができるだろう。 One design perspective is to consider whether LBT should be an essential function. LBT is an indispensable function in EU and Japan, but EU regulation does not detect the frequency for the presence of signal, but transmits management and control frames, that is, short-time control signaling transmission (Short Control Signaling Transmission) ) According to EU regulations, adaptive device short-time control signaling transmissions should have a maximum duty cycle of 10% within a 50 millisecond observation period. Based on the above requirements, when the DRS transmission satisfies the condition, the LTE eNB can transmit the DRS in the unlicensed band without executing the LBT. However, LBT should be mandated as it helps to obtain fair coexistence with other systems and avoid collisions. The LBT mandate will also be considered a simple design and could provide one general solution for all regions where LAA is expected to be deployed.
 提案1:提言1:LAAのDRS送信ベースのRel-12 DRSにLBT機能性を適用することに同意すべきである。 Proposal 1: Recommendation 1: It should be agreed to apply LBT functionality to Rel-12 DRS based on LAA DRS transmission.
 提案1が合意事項として認められる場合、LBT機能性は、使用中チャネル(busy channel)が検出された場合、eNBがそのDRSをアンライセンスド帯域で送信することを許可しない(図10参照)。結果として、eNBがDRSの送信機会のいくつかの間にDRSを送信していない場合には、測定の精度要件を満たさないかもしれない。RSRP測定の現在の定義によれば、UEは、発見信号機会として設定されるサブフレーム内のRSRPを測定しなければならない。これは、UEが設定された無線リソースを監視しなければならず、かつ、DRSがこれらのリソースで実際に送信されたかどうかにかかわらず最終的な測定結果にUEがこれらのリソース結果を含めるかもしれないことを意味する。さらに、RSRPを決定するためにUEが使用する測定周波数帯内及び測定期間内のリソースエレメントの数は、対応する測定精度の要件が満たされなければならない制約を持つUEの実装に任されている。従って、報告されたRSRPが非常に不正確になる可能性がある。RSRP測定に基づくUEの実装とeNBのLBT機能性が原因であるいくつかのDRS送信の利用できないこととの組み合わせは、UEがeNBに正確なアンライセンスド帯域の正確な無線環境情報を提供することができないという問題をもたらす。 If Proposal 1 is accepted as an agreement, the LBT functionality does not allow the eNB to transmit its DRS in the unlicensed band if a busy channel is detected (see FIG. 10). As a result, the measurement accuracy requirement may not be met if the eNB has not transmitted a DRS during some of the DRS transmission opportunities. According to the current definition of RSRP measurement, the UE must measure RSRP in a subframe configured as a discovery signal opportunity. This is because the UE has to monitor the configured radio resources and the UE may include these resource results in the final measurement result regardless of whether DRS was actually transmitted on these resources. It means you can't. Furthermore, the number of resource elements in the measurement frequency band and in the measurement period used by the UE to determine RSRP is left to the implementation of the UE with constraints that the corresponding measurement accuracy requirements must be met. . Therefore, the reported RSRP can be very inaccurate. The combination of the UE implementation based on RSRP measurements and the unavailability of some DRS transmissions due to the eNB's LBT functionality provides the UE with accurate radio environment information for the exact unlicensed band to the eNB. The problem of not being able to do.
 上述の課題は、RAN4で解決しなければならないと考える。1つのアプローチは、RAN1が、現在の測定正確要件が既存の仕様によって満足するかどうかを確かめるための調査を実行するために、要求LSをRAN4へ送ることである。現在の仕様が正確な要件を満たさないケースでは、新たな解決策を検討することができる。以下に候補の選択肢がいくつかある。 I think that the above-mentioned problems must be solved by RAN4. One approach is for RAN1 to send a request LS to RAN4 to perform a search to see if the current measurement accuracy requirements are satisfied by the existing specification. In cases where the current specification does not meet the exact requirements, new solutions can be considered. Below are some candidate options.
 選択肢1:eNBがライセンスド帯域でDRS測定指示をブロードキャスト/ユニキャストする。 Option 1: The eNB broadcasts / unicasts a DRS measurement instruction in the licensed band.
 この選択肢では、eNBは、サブフレームのRSRPが計算されるべき条件について、UEにライセンスド帯域を介して通知する。RSRPの計算の間、アンライセンスド帯域でのRSRP測定条件についてeNBから提供された情報に従って、UEがDRS測定を採用及び修正することが期待される。eNBがこの情報をUEへいつ及びどのように提供できるかはさらなる課題である。 In this option, the eNB notifies the UE via the licensed band about the condition under which the RSRP of the subframe is to be calculated. During the RSRP calculation, it is expected that the UE will adopt and modify the DRS measurement according to the information provided from the eNB about the RSRP measurement conditions in the unlicensed band. When and how the eNB can provide this information to the UE is a further challenge.
 選択肢2:LAAのためのRSRP測定に基づく(DRSに含まれる)CRSを規定すること。 Option 2: Specify CRS (included in DRS) based on RSRP measurement for LAA.
 この選択肢2では、RSRPを決定するために、UEがDRS測定を実行する方法にいくつかの制約が適用される。例えば、UEは、1DRSバースト毎に1つの測定結果を送るべきである。eNBは、どのDRSがアンライセンスド帯域で送信されたかを認識しているので、当該eNBは、特定のUEから受信した測定報告が信頼できるかできないかを決定できる(図11参照)。 In this option 2, some restrictions apply to the way the UE performs DRS measurements to determine RSRP. For example, the UE should send one measurement result per 1 DRS burst. Since the eNB knows which DRS is transmitted in the unlicensed band, the eNB can determine whether the measurement report received from the specific UE is reliable or not (see FIG. 11).
 提案2:提案1が合意事項として認められる場合、RAN1が、現在の測定正確要件が既存の仕様によって満足するかどうかを要求するLSをRAN4へ送るべきである。 Proposal 2: If Proposal 1 is accepted as an agreement, RAN1 should send an LS requesting whether the current measurement accuracy requirements are satisfied by the existing specification to RAN4.
 (3)LAAのための機能性の分析
 RRM測定とは異なり、他の機能性をサポートするための参照信号は、扱われなかった。もし提案1が合意事項として認められる場合、LBTを伴うRel-12 DRSも同様に、他の機能性のための出発点であるべきである。AGC(Automatic Gain Control)設定、粗い同期及びCSI測定は、LAAのために上記のDRSを使用して実行できると考える。これは、ベースライン解決策であるだろう。しかしながら、eNBが、DRSの送信機会のいくつかの間のどこかでDRSを送信しないケースのために更なる研究が必要とされる。前で説明したように、この状況は、RRM測定に似ている。
(3) Functionality analysis for LAA Unlike RRM measurements, reference signals to support other functionality were not treated. If Proposal 1 is accepted as an agreement, Rel-12 DRS with LBT should be the starting point for other functionality as well. It is assumed that AGC (Automatic Gain Control) setting, coarse synchronization and CSI measurement can be performed using the above DRS for LAA. This would be a baseline solution. However, further research is needed for the case where the eNB does not transmit DRS somewhere during some of the transmission opportunities of DRS. As explained earlier, this situation is similar to RRM measurements.
 一方、eNBが、現在仕様化された最大DRS間隔よりもDRSを送信できない場合、少なくとも復調用の細かい周波数/時間推定はできない可能性がある。既存の仕様は、160msecよりも長いDRS間隔を保証できない。この課題が次の章で考察される。 On the other hand, if the eNB cannot transmit the DRS beyond the currently specified maximum DRS interval, there is a possibility that at least fine frequency / time estimation for demodulation cannot be performed. Existing specifications cannot guarantee a DRS interval longer than 160 msec. This issue will be discussed in the next chapter.
 提案3:LBTを伴うRel-12 DRSに基づくLAA DRSも、AGC設定、粗い同期及びCSI測定に使用されるべきである。 Proposal 3: LAA DRS based on Rel-12 DRS with LBT should also be used for AGC configuration, coarse synchronization and CSI measurements.
 (4)同期信号デザイン
 上述の通り、送信に基づくLBTは、様々な国/地域でアンライセンスド帯域において必要とされる。従って、eNBが、同じ帯域を共有する隣接ノードによる他の送信の存在が原因で、長期間、アンライセンスド帯域でDRSを伝送することができない可能性がある。一つのアプローチは、2つのDRS送信の間の期間に関する固定上限、例えば160msecを設定することである。eNBが、DRSを上限よりも長い時間を送信できない場合、細かい周波数/時間推定が保証されないと想定されるべきである。しかしながら、干渉が原因でUEが正確なDRS送信のいくつかを検出/デコードできない可能性もある。この状況は、DRS送信に加えて、データ送信の中に他の同期信号を提供することを検討することを強制する。一つの解決策は、eNBは、データ領域(例えば、サブフレームの最初のシンボル)の前に位置するシンボルで同期信号(LAAシンク(LAA sync))を送信する(図12参照)。このアプローチは、D2D同期信号デザインに非常に類似している。そのケースでは、UEは、DRSを用いて粗い同期を実現し、上記LAAシンクを用いて細かい周波数/時間推定を実現する。この解決策が適用される場合、LAAシンクがUEで受信された最初のサブフレーム内のデータ領域の次に配置されているので、AGC設定は、DRSの代わりに、LAAシンクに基づいて行われる。
(4) Synchronous signal design As mentioned above, LBT based on transmission is required in the unlicensed band in various countries / regions. Therefore, the eNB may not be able to transmit DRS in the unlicensed band for a long time due to the presence of other transmissions by neighboring nodes sharing the same band. One approach is to set a fixed upper limit for the period between two DRS transmissions, for example 160 msec. If the eNB is unable to transmit a DRS longer than the upper limit, it should be assumed that fine frequency / time estimation is not guaranteed. However, due to interference, the UE may not be able to detect / decode some of the correct DRS transmissions. This situation forces consideration to provide other synchronization signals during data transmission in addition to DRS transmission. In one solution, the eNB transmits a synchronization signal (LAA sync (LAA sync)) in a symbol located before the data region (for example, the first symbol of the subframe) (see FIG. 12). This approach is very similar to the D2D sync signal design. In that case, the UE achieves coarse synchronization using DRS and fine frequency / time estimation using the LAA sink. When this solution is applied, the AGC configuration is performed based on the LAA sink instead of the DRS because the LAA sink is located next to the data area in the first subframe received at the UE. .
 現在の物理制御チャネル領域がLAAシンクにより置き換わるべきであることを提案する。物理制御チャネルを送信するために使用されるリソースエレメントの数は、例えば、サブフレームにスケジュールされたUEの数に応じて変更される。低交通状況のケースでは、物理制御チャネル領域が十分に占有されていない可能性があり、低リソースエレメント密度及び近隣ノードによってより高い誤検出という結果になるOFDMシンボルにわたる結果的な低送信電力をもたらす。近隣ノードがそれぞれの送信のためにチャネルが利用可能であると仮定する可能性があるので、これは、衝突をもたらす。衝突を回避するために、物理制御チャネルはアンライセンスド帯域送信から取り除くべきであり、代わりとして、LAAシンクが送信されるべきであることを提案する。どのようにLAAシンクがデータ領域の直前にマッピングされるかさらなる研究が必要とされる。 It is proposed that the current physical control channel area should be replaced by LAA sink. The number of resource elements used to transmit the physical control channel is changed according to the number of UEs scheduled in the subframe, for example. In the case of low traffic situations, the physical control channel area may not be fully occupied, resulting in low resource element density and resulting low transmit power over OFDM symbols resulting in higher false positives by neighboring nodes . This leads to collisions because neighboring nodes may assume that a channel is available for each transmission. In order to avoid collisions, it is proposed that the physical control channel should be removed from unlicensed band transmissions and instead LAA sinks should be transmitted. Further research is needed on how the LAA sink is mapped just before the data region.
 提案4:現在の物理制御チャネル領域は、このLAAシンクに置き換えるべきである。 Proposal 4: The current physical control channel area should be replaced with this LAA sink.
 なお、米国仮出願第62/109879号(2015年1月30日出願)の全内容が、参照により、本願明細書に組み込まれている。 Note that the entire contents of US Provisional Application No. 62/109879 (filed on January 30, 2015) are incorporated herein by reference.

Claims (8)

  1.  ライセンスド帯域において通信可能であり、且つ、アンライセンスド帯域において周期的に参照信号を送信する基地局と前記アンライセンスド帯域において通信可能なユーザ端末であって、
     前記アンライセンスド帯域において前記基地局からの参照信号に対する測定を行い、当該参照信号に対する測定結果を報告する制御部を備え、
     前記制御部は、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定して、当該特定されたタイミングに対応する前記測定結果を除外することを特徴とするユーザ端末。
    A user terminal capable of communicating in the licensed band and capable of communicating in the unlicensed band with a base station that periodically transmits a reference signal in the unlicensed band,
    A controller that performs a measurement on a reference signal from the base station in the unlicensed band and reports a measurement result on the reference signal;
    The said control part specifies the timing when the said user terminal received interference during the said measurement, and excludes the said measurement result corresponding to the said specified timing, The user terminal characterized by the above-mentioned.
  2.  前記基地局が前記参照信号を送信する前に干渉を受けたタイミングに関する干渉情報を受信する受信部をさらに備え、
     前記制御部は、前記干渉情報に基づいて、前記ユーザ端末が干渉を受けたタイミングを特定することを特徴とする請求項1に記載のユーザ端末。
    A receiver that receives interference information related to timing at which the base station receives interference before transmitting the reference signal;
    The said control part specifies the timing when the said user terminal received interference based on the said interference information, The user terminal of Claim 1 characterized by the above-mentioned.
  3.  前記制御部は、前記基地局が前記参照信号を送信する前に前記アンライセンスド帯域における干渉電力を測定し、
     前記干渉電力の測定結果に基づいて、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定することを特徴とする請求項1に記載のユーザ端末。
    The control unit measures interference power in the unlicensed band before the base station transmits the reference signal,
    The user terminal according to claim 1, wherein a timing at which the user terminal receives interference during the measurement is specified based on a measurement result of the interference power.
  4.  前記制御部は、前記参照信号の送信タイミングと異なるタイミングで前記アンライセンスド帯域における干渉電力を測定し、
     前記制御部は、前記異なるタイミングでの測定結果と前記送信タイミングでの測定結果とに基づいて、前記測定中に前記ユーザ端末が干渉を受けたタイミングを特定することを特徴とする請求項1に記載のユーザ端末。
    The control unit measures interference power in the unlicensed band at a timing different from the transmission timing of the reference signal,
    The said control part specifies the timing when the said user terminal received interference during the said measurement based on the measurement result in the said different timing, and the measurement result in the said transmission timing. The described user terminal.
  5.  ライセンスド帯域及びアンライセンスド帯域において通信可能なユーザ端末と前記アンライセンスド帯域において通信可能な基地局であって、
     前記アンライセンスド帯域において干渉が発生しないタイミングを特定する制御部と、
     前記ライセンスド帯域において前記ユーザ端末に測定情報を送信する第1無線通信部と、
     前記アンライセンスド帯域において前記タイミングで前記参照信号を送信する第2無線通信部と、を備え、
     前記測定情報は、前記アンライセンスド帯域における参照信号に対する測定を前記ユーザ端末に前記タイミングで実行させるための情報であることを特徴とする基地局。
    A user terminal capable of communicating in a licensed band and an unlicensed band and a base station capable of communicating in the unlicensed band,
    A control unit that identifies a timing at which no interference occurs in the unlicensed band;
    A first wireless communication unit for transmitting measurement information to the user terminal in the licensed band;
    A second wireless communication unit that transmits the reference signal at the timing in the unlicensed band,
    The base station characterized in that the measurement information is information for causing the user terminal to perform measurement on a reference signal in the unlicensed band at the timing.
  6.  前記制御部は、他のユーザ端末に対して、前記タイミングでユーザデータを送信するために無線リソースを割り当て、
     前記参照信号は、前記ユーザデータに付随して送信されることを特徴とする請求項5に記載の基地局。
    The control unit allocates radio resources to other user terminals to transmit user data at the timing,
    The base station according to claim 5, wherein the reference signal is transmitted along with the user data.
  7.  前記第2無線通信部は、前記参照信号を送信する前に、前記アンライセンスド帯域において他の参照信号を送信し、
     前記制御部は、前記他の参照信号の測定結果を送信してきた自局のユーザ端末の中から、前記他の参照信号の前記測定結果に基づいて、前記参照信号の測定結果を報告させる所定のユーザ端末を決定することを特徴とする請求項5に記載の基地局。
    The second wireless communication unit transmits another reference signal in the unlicensed band before transmitting the reference signal,
    The control unit is a predetermined unit that reports the measurement result of the reference signal based on the measurement result of the other reference signal from the user terminal of the own station that has transmitted the measurement result of the other reference signal. The base station according to claim 5, wherein a user terminal is determined.
  8.  前記制御部は、前記アンライセンスド帯域において干渉電力を測定し、
     前記制御部は、前記干渉電力の測定結果に基づいて、前記タイミングを特定することを特徴とする請求項5に記載の基地局。
     
    The control unit measures interference power in the unlicensed band,
    The base station according to claim 5, wherein the control unit specifies the timing based on a measurement result of the interference power.
PCT/JP2016/051648 2015-01-30 2016-01-21 User terminal and base station WO2016121609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562109879P 2015-01-30 2015-01-30
US62/109,879 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121609A1 true WO2016121609A1 (en) 2016-08-04

Family

ID=56543224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051648 WO2016121609A1 (en) 2015-01-30 2016-01-21 User terminal and base station

Country Status (1)

Country Link
WO (1) WO2016121609A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017328A1 (en) * 2014-07-31 2016-02-04 株式会社Nttドコモ User terminal, wireless communication system, and wireless communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017328A1 (en) * 2014-07-31 2016-02-04 株式会社Nttドコモ User terminal, wireless communication system, and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Measurement and synchronization in LAA", 3GPP TSG RAN WG1 MEETING #79 R1-144903, 8 November 2014 (2014-11-08), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_79/Docs/R1-144903.zip> *

Similar Documents

Publication Publication Date Title
US11374647B2 (en) Mobile communications system, communications terminals and methods for coordinating relay communications
US11159974B2 (en) Base station and user terminal for performing measurement and communication in unlicensed frequency bands
US10499377B2 (en) Base station and user terminal
EP3243360B1 (en) Communications devices, infrastructure equipment, and methods for selecting a relay in device-to-device communication
US20180206241A1 (en) Base station and user terminal
EP3297374B1 (en) Terminal device for csi measurement
WO2016047513A1 (en) Base station and user terminal
JP6316990B2 (en) User terminal, processor and mobile communication system
US10433227B2 (en) Base station and wireless LAN termination apparatus
US10382570B2 (en) Base station and user terminal
US20170325100A1 (en) Base station
JP6619862B2 (en) User terminal, communication method and communication system
EP3282730B1 (en) Base station and wireless terminal
US20170019892A1 (en) Communication control method, base station, and user terminal
JP6746082B2 (en) Wireless terminals and base stations
WO2016121609A1 (en) User terminal and base station
WO2017026406A1 (en) Base station and wireless terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16743213

Country of ref document: EP

Kind code of ref document: A1