WO2016121592A1 - Biosignal transmission device - Google Patents

Biosignal transmission device Download PDF

Info

Publication number
WO2016121592A1
WO2016121592A1 PCT/JP2016/051535 JP2016051535W WO2016121592A1 WO 2016121592 A1 WO2016121592 A1 WO 2016121592A1 JP 2016051535 W JP2016051535 W JP 2016051535W WO 2016121592 A1 WO2016121592 A1 WO 2016121592A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
biological signal
disposable
transmission device
side electrode
Prior art date
Application number
PCT/JP2016/051535
Other languages
French (fr)
Japanese (ja)
Inventor
土基 博史
猛 片矢
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016571969A priority Critical patent/JP6365693B2/en
Publication of WO2016121592A1 publication Critical patent/WO2016121592A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor

Definitions

  • the present invention relates to a biological signal transmitter that transmits a biological signal input from a living body to an external device.
  • a transmission module 2 is connected by a lead 3 to a pair of electrode parts 1 attached to a body surface such as a chest of a subject.
  • the transmission module 2 operates by receiving electric power supplied from the power supply unit 4, amplifies the potential change of the body surface detected by the electrode unit 1 to a predetermined level by the amplification unit 5, and the R wave detection unit 6 To enter.
  • the R wave detection unit 6 detects an R wave from the received electrocardiogram signal and sends it to the transmission unit 7.
  • the transmission unit 7 transmits an output communication signal 8 using a radio wave having a predetermined time width to the wristwatch-type signal receiver in synchronization with the input R wave detection signal.
  • This signal transmitter can be reused by being stuck to the body surface of the subject by the sticking part and selecting the adhesive of the sticking part. In that case, it is effective to use a rechargeable secondary battery for the power supply unit 4.
  • FIG. 1 There is also a conventional wearable wireless transmission type electrocardiograph shown in FIG.
  • This electrocardiograph operates on a small battery 10 such as a button-type battery, and the electrodes 11, 12, and 13 are continuously attached to the subject's chest by the adhesive force of the adhesive pad.
  • the electrocardiogram signals measured by the electrodes 11, 12, and 13 are amplified by the electrocardiogram measurement amplifier 14a in the electrocardiogram measurement unit 14, are analog / digital converted by the A / D 14b, and are input to the CPU 14c.
  • the CPU 14c checks whether or not the subject's heart rate is within a predetermined number range and whether or not the rate of change of the heart rate is within the predetermined rate of change based on the timing signal given every predetermined time from the timer 14d.
  • the electrocardiographic data for a predetermined time is output to the wireless transmission unit 15.
  • the wireless transmission unit 15 transmits the electrocardiogram data for a short predetermined time toward a recording device or a wireless relay unit attached to the subject's waist or the
  • This biological signal transmitting apparatus is composed of a biological mounting part 21 and a transmitter 22.
  • a support body 23 mounted on the surface of a living body is made of a dielectric material, and an electrode 24 for detecting a biological signal and a microstrip antenna (MSA) 25 are integrally provided on the support body 23.
  • the MSA 25 includes a ground plate 26 disposed on the living body mounting surface of the support 23 and a radiation plate 27 disposed on the opposite surface of the support 23.
  • the transmitter 22 is provided with an electric circuit 32 including an amplification unit 28, a modulation unit 29, a power supply unit 30 and a transmission unit 31.
  • the transmitter 22 is mounted on a support 23, and the electrode 24 and the amplifier 28 are electrically connected to each other via the connector 33, and the MSA 25 and the transmitter 31 are electrically connected to each other via the connectors 34 and 35.
  • the electrode 36 attached to the other part of the living body is connected to the amplification unit 28 via the connector 37.
  • Each connector 33, 34, 35 includes a hook provided on the living body mounting portion 21 side and a female hook provided on the transmitter 22 side.
  • the power is supplied from the power supply unit 30 to the amplification unit 28, the modulation unit 29, and the transmission unit 31.
  • the biological signals detected by the electrodes 24 and 36 are amplified by the amplification unit 28, modulated by the modulation unit 29, and sent from the transmission unit 31 to the MSA 25.
  • the MSA 25 wirelessly transmits the received biological signal to the receiver.
  • any of the biological signal transmitters disclosed in the above-mentioned conventional patent documents 1, 2, and 3 operates using a primary battery or a secondary battery as a power source, and when the battery is exhausted, the battery is taken out and charged. The battery must be replaced. For this reason, the conventional biomedical signal transmission apparatus took time and effort to handle.
  • a main body provided with at least a secondary battery or a capacitor, a disposable part which is attached to a living body and inputs a biological signal from the living body, and a main body part which electrically connects the main body part and the disposable part are provided.
  • the disposable part has a non-contact power receiving circuit that receives power from the outside in a non-contact manner and supplies power to the secondary battery or capacitor,
  • a biological signal transmitting apparatus configured to transmit a biological signal input from a living body to an external device using electric power stored in a secondary battery or a capacitor.
  • the main body part can be reduced in size and price.
  • the biological signal transmission device cannot receive power from the outside by the non-contact power receiving circuit. Even if it exists, a biological signal transmitter can operate
  • the present invention is characterized in that the conductive material protrudes from the main body portion to form the main body side electrode, and the conductive material protrudes from the disposable portion to form the disposable side electrode.
  • the main body side electrode and the disposable side electrode can be manufactured at low cost with a simple structure, and the main body portion and the disposable portion are electrically connected at low cost. For this reason, in order to electrically connect the main body part and the disposable part, it is necessary to prepare a dedicated structural member such as a connector composed of a hook and a female hook like a conventional biological signal transmission device. Disappear. Therefore, it can suppress that the product cost of a biosignal transmitter increases.
  • the present invention also provides: The main body side electrode and the disposable side electrode are arranged in a row, The body part and the disposable part are fixed to each other by a fixing material around the body side electrode and the disposable side electrode arranged in a row, with the body side electrode and the disposable side electrode facing each other, Any one of the main body side electrode and the disposable side electrode is formed such that the one arranged at both ends of the row has a lower protruding height than the one arranged inside the row and is higher than the height of the fixing material It is characterized by that.
  • the thinly formed disposable part is Even if the distance between the main electrode and the disposable side electrode that is bent and arranged inside the row is widened, one of the main body side electrode and the disposable side electrode is arranged in the inner row. Since it protrudes from what was arrange
  • one of the main body side electrode and the disposable side electrode arranged at both ends of the row is a fixing material that fixes the main body portion and the disposable portion to each other around the main body side electrode or the disposable side electrode. Since the height is higher than the height, the opposing main body side electrode and the disposable side electrode are well electrically connected with a predetermined contact pressure.
  • the present invention is characterized in that a main body side electrode and a disposable side electrode for connecting a secondary battery or a capacitor and a non-contact power receiving circuit are arranged at both ends of a line.
  • the main body side electrode and the disposable side electrode arranged at both ends of the row having the lowest height among the main body side electrode and the disposable side electrode arranged in a row are used and provided in the main body portion.
  • the secondary battery or the capacitor and the non-contact power receiving circuit provided in the disposable part are electrically connected. Therefore, the main body side electrodes arranged at both ends of the row where the voltage of the electric power fed from the non-contact power receiving circuit to the secondary battery or the capacitor is monitored on the main body side and the lowest height is most likely to cause a contact failure; By detecting the connection state with the disposable side electrode, it becomes possible to reliably detect the connection state between all the main body side electrodes arranged in a row and the disposable side electrode.
  • the present invention is characterized in that the non-contact power receiving circuit is an antenna capable of data communication that receives power and transmits a biological signal to an external device.
  • the main body side electrode and the disposable side electrode that connect between the secondary battery or the capacitor and the non-contact power receiving circuit are arranged at both ends of the row, it is detected whether or not data communication can be performed by a data reader or the like. This makes it possible to detect the connection state between the main body side electrode and the disposable side electrode.
  • the present invention is characterized by including a wireless communication circuit that transmits a biological signal to an external device separately from the antenna.
  • the biological signal can be transmitted to the external device in real time by the wireless communication circuit.
  • the present invention is characterized in that the secondary battery provided in the main body part or the capacitor or the primary battery or secondary battery for assisting the capacitor is provided in the disposable part.
  • the disposable part is provided.
  • the shortage is compensated by the capacitor, the primary battery or the secondary battery. For this reason, it is possible to instantaneously use power exceeding the current capacity that cannot be supplied only by the secondary battery or capacitor provided in the main body, and the secondary battery or capacitor having an unnecessarily large storage capacity can be used. No need to install on For this reason, it is possible to reduce the size and cost of the main body while securing a large instantaneous current consumption supply capability.
  • the present invention is characterized in that a mark for guiding the mutual position of the main body part and the disposable part is formed on the disposable part.
  • the main body is fixed to the disposable part by being guided by the mark formed on the disposable part. For this reason, the mutual position of the main body side electrode provided on the main body portion side and the disposable side electrode provided on the disposable portion side is easily and accurately positioned, and the main body portion and the disposable portion can be easily and quickly Accurately connected electrically.
  • the present invention is characterized by including a voltage stabilizing circuit that keeps a voltage supplied to an analog sensor circuit for detecting and processing a biological signal at a constant value.
  • the analog sensor circuit for detecting and processing the biological signal can operate stably, and the biological signal can be accurately measured with high reproducibility.
  • the present invention is characterized in that a circuit other than a secondary battery or a capacitor and a sensor for measuring a biological signal is formed in the disposable part.
  • the main body is provided with only the secondary battery or capacitor and the sensor for measuring the biological signal. For this reason, the assembly of the main body is facilitated, and the size of the main body is reduced, so that the manufacturing cost of the main body is reduced. Further, since the number of components provided in the main body portion is reduced, the required number of main body side electrodes and disposable side electrodes for electrically connecting the main body portion and the disposable portion is also reduced. As a result, the total manufacturing cost of the biological signal transmitter is reduced.
  • the present invention is characterized in that a secondary battery or a capacitor and a sensor for measuring a biological signal are provided in the main body without using a circuit board.
  • the manufacturing cost of the main body is further reduced. For this reason, the total manufacturing cost of the biological signal transmitter is further reduced.
  • the present invention there is no need to take out a battery from the biological signal transmission device and charge or replace the battery as in the prior art, and convenience in handling the biological signal transmission device is improved.
  • FIG. 1 is a plan view of a biological signal transmission apparatus according to a first embodiment of the present invention.
  • A is a top view of the film part which comprises the biological signal transmitter by 1st Embodiment,
  • b) is a side view of the film part,
  • c) is a biological signal transmission by 1st Embodiment.
  • the internal perspective top view of the main-body part which comprises an apparatus (d) is a side view of the main-body part, (e) is the biological signal transmission by 1st Embodiment when a main-body part adheres on a film part. It is a side view of an apparatus.
  • (A) is a partially enlarged side view of the electrode part for electrically connecting the main body part and the film part shown in FIG. 5 (e), and (b) is a state in which the main body part and the film part are fixed. It is a partially expanded side view of the electrode part.
  • FIG. 4 is a plan view of the biological signal transmitter 41 according to the first embodiment of the present invention.
  • the biological signal transmission device 41 includes a film part 42 having a thickness of about 25 ⁇ m or 50 ⁇ m, and a module-like main body part 43 fixed on the film part 42.
  • the film part 42 is a disposable part that is attached to a living body and inputs a biological signal from the living body.
  • an inexpensive and excellent electrode processability material such as a polyethylene terephthalate (PET) material or a polyimide material is selected, and the cost of the disposable part is reduced.
  • the main body 43 has a watertight sealed structure in which the electronic component is surrounded by resin or the electronic component is housed in a casing that does not open and close, and has a certain thickness. It is formed in a rectangular parallelepiped shape having rigidity.
  • FIG. 5 (a) is a plan view of the film part 42
  • FIG. 5 (b) is a side view.
  • FIG. 7 is a block configuration diagram showing a schematic configuration of the biological signal transmission device 41.
  • a pair of electrocardiographic electrodes 51, 51 made of a conductive gel is provided on the human body pasting surface, which is the lower surface of the film portion 42.
  • the pair of electrocardiographic electrodes 51 and 51 are continuously applied to the surface of the living body. Contact.
  • the attachment of the film part 42 to the human body is not limited to such a conductive gel, and the entire lower surface of the film part 42 excluding the part where the electrocardiographic electrodes 51 and 51 are formed is adhered to the human body with a plaster-like adhesive tape. It can also be configured to be affixed to the skin.
  • a harvest antenna (Harvest ANT) 53 that receives electric power from outside without contact and supplies power to the EDLC 61 described later, and four electrode pads 54 a, 54 b, 54 c, 54 d are formed. ing.
  • the ANT 53 and the electrode pads 54a, 54b, 54c, 54d are formed on the film portion 42 by printing or the like using film electronics (FE) or printed electronics (PE) technology.
  • the ANT 53 constitutes a non-contact power receiving circuit.
  • the ANT 53 receives electric power in a non-contact manner by an electromagnetic induction method from an AC magnetic field formed by a power transmission coil included in an external device such as a reader / writer (signal reader / writer).
  • the non-contact power receiving circuit is configured by an electromagnetic induction method, but is not limited thereto.
  • the non-contact power receiving circuit is, for example, a magnetic resonance method that receives power in a non-contact manner by magnetic energy accumulated in the space by LC resonance, or an electrostatic charge accumulated in the space by flowing a displacement current between the capacitor plates. It can also be configured by an electric field resonance method in which power is received by energy in a non-contact manner.
  • the electrode pads 54 a, 54 b, 54 c, 54 d are formed by a printed conductive material protruding from the film part 42 and arranged in a row, and electrically connect the film part 42, which is a disposable part, and the main body part 43.
  • the disposable electrode provided on the film part 42 side is configured.
  • the ANT 53 receives power as described above, and has a configuration capable of data communication (Data TRX) for transmitting a biological signal detected by the electrocardiographic electrodes 51 and 51 to an external device. ing.
  • Data TRX data communication
  • One end of the wiring constituting the ANT 53 is connected to the electrode pad 54a, the other end is connected to the electrode pad 54d, and the electrode pads 54a and 54d arranged at both ends of the row are used, and the EDLC 61 and the ANT 53 are electrically connected.
  • one electrode pad 54 b arranged inside a row is one of a pair of electrocardiographic electrodes 51, 51 via a wiring 55, and the other electrode pad 54 c is a pair of electrocardiographic electrodes 51 via a wiring 56. , 51 are electrically connected through through holes.
  • marks for guiding the mutual positions of the main body part 43 and the film part 42 are formed as dummy electrodes 57.
  • This dummy electrode 57 is also formed on the film part 42 together with the ANT 53 and the electrode pads 54a, 54b, 54c, 54d by FE or PE technology.
  • the mark for guiding the mutual position between the main body 43 and the film part 42 is not limited to the dummy electrode 57, and can be formed by making a hole in the film part 42 or the like.
  • a fixing material 58 for fixing the main body 43 and the film part 42 to each other is provided on the upper surface of the film part 42 surrounding the electrode pads 54a, 54b, 54c, 54d.
  • the fixing material 58 is composed of, for example, a double-sided tape or the like, but may be any other material as long as it has adhesiveness.
  • the fixing material 58 is provided so that the fixing material 58 completely surrounds the electrode pads 54a, 54b, 54c, and 54d.
  • the fixing material 58 is not limited to this, and the electrode pad 54a. , 54b, 54c, 54d may be provided in the periphery by separating them into two or more.
  • FIG. 5C is an internal perspective plan view of the main body 43
  • FIG. 5D is a side view.
  • ball electrodes 59a, 59b, 59c, and 59d that face the electrode pads 54a, 54b, 54c, and 54d of the film portion 42 are formed on the lower surface of the main body 43.
  • the ball electrodes 59a, 59b, 59c, and 59d are formed by a spherical body of conductive material protruding from the main body portion 43 and arranged in a row, and electrically connecting the main body portion 43 and the film portion 42.
  • the main body side electrode provided on the portion 43 side is configured.
  • the main body portion 43 and the film portion 42 are fixed by placing the main body portion 43 on the film portion 42 using the dummy electrode 57 of the film portion 42 as a mark. It is fixed by the material 58. By this fixing, the opposing ball electrodes 59a, 59b, 59c, 59d and the electrode pads 54a, 54b, 54c, 54d are electrically connected. When a failure occurs in this electrical connection, the film part 42 is replaced with a new one, and the main body part 43 is attached to the new film part 42 again.
  • the pitch between the ball electrodes 59a, 59b, 59c, 59d and the electrode pads 54a, 54b, 54c, 54d takes into account the deviation of the formation position of the dummy electrode 57 from the proper position and the deviation at the time of attachment by the user.
  • the pitch is set to a sufficiently large pitch, and the probability of malfunction occurring in the biological signal transmitter 41 is reduced.
  • the ball electrodes 59a, 59b, 59c, and 59d have protrusion heights h1 of the ball electrodes 59a and 59d arranged at both ends of the row.
  • the ball electrodes 59b and 59c arranged on the inner side of one row are formed lower than the protruding height h2. For this reason, the ball electrodes 59b and 59c on the side of the main body 43 arranged on the inner side in a row after the main body 43 and the film part 42 are attached have a structure that is easy to hit the electrode pads 54b and 54c on the side of the film 42. It has become.
  • the main body portion 43 and the film portion 42 are opposed to ball electrodes 59a, 59b, 59c, 59d and electrode pads 54a, 54b, 54c, With the contact 54d in contact, the ball electrodes 59a, 59b, 59c, 59d arranged in a row and the electrode pads 54a, 54b, 54c, 54d are fixed to each other by the fixing material 58 outside.
  • the protruding heights h1 of the ball electrodes 59a and 59d arranged at both ends of the row are formed higher than the height h3 of the fixing material 58 after the main body 43 and the film part 42 are fixed.
  • the protruding heights h1 of the ball electrodes 59a, 59d arranged at both ends of the ball electrodes 59a, 59b, 59c, 59d arranged in a line on the main body 43 are arranged inside the line.
  • the protruding heights of the ball electrodes 59a, 59b, 59c, 59d are set to be equal, and the electrode pads 54a, 54d arranged at both ends of the electrode pads 54a, 54b, 54c, 54d arranged in a line on the film part 42 are set.
  • EDLC electric double layer capacitor
  • Harvest IC 62
  • REG regulator
  • ECG electrocardiograph
  • NTC thermistor 65
  • 66 66
  • a temperature 66
  • a measurement circuit 67 and a micro control unit (MCU) 68 are accommodated.
  • the harvest IC 62 is an IC (High Density Integrated Circuit) having a near field communication (NFC) function, and uses the power stored in the EDLC 61 to transmit a biological signal input from a living body to an external device by the ANT 53. . Further, the harvest IC 62 receives a command from an external device such as a reader / writer by the ANT 53 and transmits a reply according to the received command by the ANT 53. The ANT 53 receives power by the data carrier and transmits power to the EDLC 61 even when such data is transmitted / received. In the present embodiment, the configuration in which the power received by the ANT 53 is stored in the EDLC 61 is described. However, the configuration may be such that the secondary battery stores the power instead of the EDLC 61.
  • the ECG 64 takes in an electrocardiographic signal input from the pair of electrocardiographic electrodes 51 and 51 as a biological signal and amplifies it by an analog amplifier. Then, the amplified biological signal is converted from an analog signal to a digital signal by an analog / digital converter (ADC) and output to the MCU 68. Also, Temp. 67 takes in the voltage according to the body temperature input from NTC thermistors 65 and 66 as a biological signal, and amplifies it with an analog amplifier. The amplified biological signal is converted from an analog signal to a digital signal by the ADC and output to the MCU 68.
  • ADC analog / digital converter
  • the NTC thermistors 65 and 66 are provided at two locations away from the main body 43, and the MCU 68 calculates the deep body temperature inside the living body from the body temperature measured at the two locations and the thermal resistance between the two locations.
  • the MCU 68 operates with an algorithm according to the stored firmware and controls the operation of each part of the circuit.
  • the voltage received from the harvest IC 62 after being received by the ANT 53 varies depending on the distance between the external device on the power supply side that transmits power to the ANT 53 from the outside and the ANT 53.
  • this fluctuating supply voltage is maintained at a constant value by the REG 63.
  • ECG64, Temp. 67 and MCU 68 are supplied with a voltage maintained at a constant value by REG 63, and ECG 64, Temp. 67 and MCU 68 are always operated at a constant voltage.
  • REG63 is an analog sensor circuit that detects and processes biological signals, ECG64 and Temp.
  • a voltage stabilization circuit is configured to keep the reference voltage supplied to 67 at a constant value.
  • MCU68 is the ECG data detected by ECG64, and Temp.
  • the living body deep body temperature data calculated by the biological signal from 67 is transmitted to the external device by controlling the harvest IC 62.
  • the biological signal transmission device 41 receives power from the outside in a non-contact manner by the ANT 53 provided in the film unit 42 as described above. Power is supplied to the EDLC 61 or the secondary battery provided in the main body 43. Transmission of a biological signal such as an electrocardiogram signal or a deep body temperature input from a living body to an external device is performed using this electric power stored in the EDLC 61 or the secondary battery. For this reason, it is not necessary to take out and charge the battery or replace the battery as in the conventional biological signal transmission device, and the convenience in handling the biological signal transmission device 41 is improved.
  • the main body part 43 can be reduced in size and price. Moreover, even if the harvesting environment in which the biological signal transmission device 41 cannot receive power from the outside by the ANT 53 is in a bad state, the biological signal transmission device 41 operates independently by using the power stored in the EDLC 61 or the secondary battery. Can be done. Therefore, the biological signal transmission device 41 can operate continuously without being influenced by the environment in which the biological signal transmission device 41 is placed. The biological signal transmission device 41 can continuously acquire a biological signal from a living body or continuously acquire the acquired biological signal to an external device. It is also possible to transmit a biological signal in a part such as a armpit that is difficult to receive or receive power from the outside.
  • the electrode pads 54a, 54b, 54c, 54d are formed by projecting a conductive material or the like and projecting from the film part 42, and the ball electrodes 59a, 59b, Since 59c and 59d are formed by projecting the conductive material into a spherical mass and projecting from the main body 43, the electrode pads 54a, 54b, 54c and 54d and the ball electrodes 59a, 59b, 59c and 59d are simple and inexpensive. Can be manufactured. Therefore, the main body portion 43 and the film portion 42 are electrically connected at a low cost.
  • the main body portion 43 and the film portion 42 are fixed to each other by the fixing material 58, and the opposing electrode pads 54a, 54b, 54c, 54d and the ball
  • the electrodes 59a, 59b, 59c, and 59d are electrically connected, the thin film portion 42 is bent, and the distance between the electrode pads 54b and 54c and the ball electrodes 59b and 59c arranged on the inner side of the row is increased.
  • the ball electrodes 59b, 59c, 59d are spread, the ball electrodes 59b, 59c arranged inside one row of the ball electrodes 59a, 59b, 59d protrude from the ball electrodes 59a, 59d arranged at both ends of the row. Electrical connection between the inner electrode pads 54b and 54c and the ball electrodes 59b and 59c is ensured. Similarly, when the electrode pads 54b and 54c arranged inside one row of the electrode pads 54a, 54b, 54c and 54d protrude from the electrode pads 54a and 54d arranged at both ends of the row, the same applies. The electrical connection between the inner electrode pads 54b and 54c and the ball electrodes 59b and 59c is ensured.
  • 54a and 54d are higher than the height h3 of the fixing material 58 that fixes the main body portion 43 and the film portion 42 to each other outside both ends thereof, so that the opposing ball electrodes 59a, 59b, 59c, 59d and electrode pads 54a, 54b, 54c and 54d are electrically connected well with a predetermined contact pressure.
  • the height is the lowest among the ball electrodes 59a, 59b, 59c, 59d and the electrode pads 54a, 54b, 54c, 54d arranged in a line.
  • Ball electrodes 59a and 59d and electrode pads 54a and 54d arranged at both ends of one row are used, and an electrical connection is made between the EDLC 61 or the secondary battery provided in the main body 43 and the ANT 53 provided in the film part 42. Connected to.
  • the voltage of the electric power supplied from the ANT 53 to the EDLC 61 or the secondary battery is monitored by the MCU 68 on the main body 43 side, and the ball electrodes 59a disposed at both ends of the row having the lowest height and the most prone to contact failure.
  • the connection state between all the ball electrodes 59a, 59b, 59c and 59d arranged in a row and the electrode pads 54a, 54b, 54c and 54d is ensured. It becomes possible to detect.
  • the biological signal transmission device 41 by receiving power from the outside with the ANT 53 capable of data communication, power can be received at the same time during data communication, and the convenience of the biological signal transmission device 41 is achieved. Improves. Further, by detecting whether or not data communication can be performed with the biological signal transmission device 41 by an external device such as a reader / writer, the connection state between the ball electrodes 59a and 59d and the electrode pads 54a and 54d is detected. Is possible.
  • the main body 43 is fixed to the film part 42 while being guided by the dummy electrode 57 formed on the film part 42. For this reason, the mutual positions of the ball electrodes 59a, 59b, 59c, 59d provided on the main body 43 side and the electrode pads 54a, 54b, 54c, 54d provided on the film portion 42 side are easily and accurately positioned.
  • the main body portion 43 and the film portion 42 are electrically connected easily, quickly and accurately.
  • ECG 64 and Temp. 67 can operate stably, and can measure a biological signal accurately and with high reproducibility.
  • FIG. 8 is a block configuration diagram showing a schematic configuration of a biological signal transmission device 41A according to the second embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • the biological signal transmission device 41A includes a WiFi or BAN (BodyBArea Network) circuit 71 in the main body 43 separately from the ANT53, and a large capacity capacitor (Film CAP) 72 in the film unit 42. And the point that the NTC thermistor 66 provided in the main body portion 43 is provided in the film portion 42 is different from the biological signal transmission device 41 according to the first embodiment.
  • BAN BodyBArea Network
  • the WiFi / BAN circuit 71 is configured by a low power consumption (IC) IC, and configures a wireless communication circuit that transmits a biological signal to an external device.
  • the film CAP 72 is formed by a printing method or the like and has a function of assisting the EDLC 61 or the secondary battery provided in the main body 43.
  • the biological signal transmission device 41A includes electrode pads 54e and 54f on the film part 42 side and ball electrodes 59e and 59f on the body part 43 side in order to electrically connect the Film CAP 72 with the EDLC 61 or the secondary battery.
  • a primary battery or a lithium polymer secondary battery may be formed by a printing method or the like.
  • the biological signal transmission device 41A sets the NTC thermistor 66 to Temp.
  • electrode pads 54g and 54h are provided on the film part 42 side, and ball electrodes 59g and 59h are provided on the main body part 43 side.
  • the electrode pads 54a to 54h on the film part 42 side and the ball electrodes 59a to 59h on the main body part 43 side are arranged in a row, and the electrode pads 54a and 54d and the ball electrodes 59a that electrically connect the ANT 53 and the harvest IC 62 to each other.
  • 59d is arranged at both ends of one row.
  • the protruding heights of the ball electrodes 59a, 59d arranged at both ends of the row are lower than the protruding heights of the ball electrodes 59b, 59c, 59e to 59h arranged inside the row, and the height of the fixing material 58 is high. Higher than that, formed.
  • the protruding heights of the electrode pads 54a and 54d arranged at both ends of the row are lower than the protruding heights of the electrode pads 54b, 54c and 54e to 54h arranged inside the row, and the height of the fixing material 58 is high. Higher than that, formed.
  • the biological signal transmission device 41A according to the second embodiment as described above, the same effects as the biological signal transmission device 41 according to the first embodiment can be obtained, and even when communication by the ANT53 cannot be performed.
  • the bio-signal can be transmitted to the external device in real time by the WiFi / BAN circuit 71.
  • the WiFi / BAN circuit 71 on the main body 43 side is used as a communication means with an external device, the ANT 53 can be used for non-contact power reception.
  • the power amplifier (PA) in the circuit performs a burst operation, resulting in an instantaneous increase in current consumption.
  • the electric power stored in the EDLC 61 or the secondary battery provided in the unit 43 is insufficient, the shortage is compensated by the FilmFiCAP 72 or the primary battery or the lithium polymer secondary battery provided in the film unit 42.
  • the FilmFiCAP 72 or the primary battery or the lithium polymer secondary battery provided in the film unit 42 it is possible to instantaneously use power exceeding the current capacity that cannot be supplied only by the EDLC 61 or the secondary battery provided in the main body 43, and the EDLC 61 or the secondary battery having an unnecessarily large storage capacity is installed in the main body. It is not necessary to mount the unit 43. For this reason, it is possible to reduce the size and cost of the main body 43 while securing a large instantaneous current consumption supply capability.
  • NTC thermistor 66 is provided on the side of the film part 42 that is very close to the living body and the body temperature of the living body can be measured more accurately, the deep body temperature calculated from each body temperature measured by the NTC thermistor 65 and the NTC thermistor 66. Will be more accurate.
  • FIG. 9 is a block configuration diagram showing a schematic configuration of a biological signal transmission device 41B according to the third embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
  • all the circuits other than the EDLC 61 or the secondary battery and the NTC thermistor 65 for measuring the biological temperature are configured in the film unit 42 by a printing method or component mounting. However, it is different from the biological signal transmission device 41 according to the first embodiment.
  • the biological signal transmission device 41B connects the NTC thermistor 65 to Temp.
  • electrode pads 54i and 54j are provided on the film part 42 side, and ball electrodes 59i and 59j are provided on the main body part 43 side.
  • electrode pads 54k and 54l are provided on the film part 42 side, and ball electrodes 59k and 59l are provided on the body part 43 side.
  • the EDLC 61 or the secondary battery and the NTC thermistor 65 use lead type components instead of the surface mount type, and the lead wire of the NTC thermistor 65 is directly connected to the electrode pads 54i and 54j, the EDLC 61 or the secondary battery without using a circuit board.
  • the lead wires are directly connected to the ball electrodes 59i and 59j, and the EDLC 61 or the secondary battery and the NTC thermistor 65 are provided in the main body 43.
  • the harvest IC 62 and the ANT 53 and the ECG 64 and the pair of electrocardiographic electrodes 51 and 51 are directly connected without interposing electrodes.
  • the electrode pads 54i to 54l on the film part 42 side and the ball electrodes 59i to 59l on the main body part 43 side are arranged in a row, and electrode pads 54k, 54l for electrically connecting the EDLC 61 or the secondary battery and the harvest IC 62, and
  • the ball electrodes 59k and 59l are arranged at both ends of the line. Further, the protruding heights of the ball electrodes 59k, 59l arranged at both ends of the row are lower than the protruding heights of the ball electrodes 59i, 59j arranged inside the row, and higher than the height of the fixing member 58, It is formed.
  • the protruding height of the electrode pads 54k and 54l arranged at both ends of the row is lower than the protruding height of the electrode pads 54i and 54j arranged inside the row and higher than the height of the fixing member 58, It is formed.
  • the biological signal transmission device 41B according to the third embodiment the same operational effects as the biological signal transmission device 41 according to the first embodiment are exhibited. Furthermore, according to the biological signal transmission device 41B according to the third embodiment, the main body 43 is provided with only the EDLC 61 or the secondary battery and the NTC thermistor 65. For this reason, the assembly of the main body 43 is facilitated, and the size of the main body 43 is reduced, so that the manufacturing cost of the main body 43 is reduced. In addition, since the number of components provided in the main body 43 is reduced, the necessary number of electrodes for electrically connecting the main body 43 and the film part 42 is also greater than that of the biological signal transmission device 41A according to the second embodiment. Less.
  • the total manufacturing cost of the biological signal transmission device 41B is reduced.
  • the manufacturing cost of the main body 43 is further reduced. For this reason, the total manufacturing cost of the biological signal transmitter 41 is further reduced.
  • Electrocardiogram electrode 53 ... Harvest antenna 54a to 54l ... Electrode pads (disposable electrodes) 55, 56 ... wiring 57 ... dummy electrode (mark) 58 ... Adhesive material 59a to 59l ... Ball electrode (main body side electrode) 61 ... Electric double layer capacitor (EDLC) 62 ... Harvest IC 63 ... REG (voltage stabilization circuit) 64 ... ECG measurement circuit (ECG: analog sensor circuit) 65, 66 ... NTC thermistor 67 ... Temperature measurement circuit (Temp .: Analog sensor circuit) 68 ... Micro Control Unit (MCU) 71 ... WiFi / BAN circuit (wireless communication circuit) 72 ... Large Capacitor (Film CAP)

Abstract

Provided is a biosignal transmission device with improved convenience in handling such that a battery does not have to be removed from the device in order to be recharged nor is battery replacement necessary. The biosignal transmission device (41) according to the present invention is constituted from an extremely thin film part (42) and a modular main body part (43) that is affixed on the film part (42). The main body part (43) and the film part (42) are affixed by an affixing material (58) when the main body part (43) is placed on the film part (42). Ball electrodes (59a), (59b), (59c), (59d) and electrode pads (54a), (54b), (54c), (54d) that face each other are electrically connected by this affixing. In the biosignal transmission device (41), electrical power is received contactlessly from outside by an antenna (53) that is provided in the film part (42) and fed to an EDLC (61) or a secondary battery provided in the main body part (43).

Description

生体信号送信装置Biological signal transmitter
 本発明は、生体から入力した生体信号を外部機器へ送信する生体信号送信装置に関するものである。 The present invention relates to a biological signal transmitter that transmits a biological signal input from a living body to an external device.
 従来、この種の生体信号送信装置としては、例えば、特許文献1に開示された図1に示される心拍数計における信号送信機がある。被験者の胸部等の体表に貼着される一対の電極部1には、送信モジュール2がリード部3によって接続されている。送信モジュール2は、電源部4から供給される電力を受けて動作し、電極部1で検出された体表の電位変化を増幅部5にて所定のレベルまで増幅して、R波検出部6に入力する。R波検出部6は、受け取った心電図信号中よりR波を検出し、送信部7へ送る。送信部7は入力されたR波検出信号に同期して、一定時間幅の電波による出力通信信号8を腕時計型の信号受信機へ送信する。この信号送信機は、被験者の体表に貼着部によって貼着され、貼着部の粘着剤を選ぶことで再利用することも可能である。その場合、電源部4に充電可能な二次電池を用いれば有効である。 Conventionally, as this type of biological signal transmission device, for example, there is a signal transmitter in the heart rate meter shown in FIG. A transmission module 2 is connected by a lead 3 to a pair of electrode parts 1 attached to a body surface such as a chest of a subject. The transmission module 2 operates by receiving electric power supplied from the power supply unit 4, amplifies the potential change of the body surface detected by the electrode unit 1 to a predetermined level by the amplification unit 5, and the R wave detection unit 6 To enter. The R wave detection unit 6 detects an R wave from the received electrocardiogram signal and sends it to the transmission unit 7. The transmission unit 7 transmits an output communication signal 8 using a radio wave having a predetermined time width to the wristwatch-type signal receiver in synchronization with the input R wave detection signal. This signal transmitter can be reused by being stuck to the body surface of the subject by the sticking part and selecting the adhesive of the sticking part. In that case, it is effective to use a rechargeable secondary battery for the power supply unit 4.
 また、従来、特許文献2に開示された図2に示される装着型無線伝送式心電計もある。この心電計は、ボタン型電池等の小型の電池10で動作し、電極11,12,13が粘着パッドの粘着力によって被験者の胸部に連続的に装着される。電極11,12,13で計測される心電信号は、心電計測ユニット14内の心電計測アンプ14aで増幅され、A/D14bでアナログ/デジタル変換されてCPU14cに入力される。CPU14cは、タイマ14dから所定時間ごとに与えられるタイミング信号に基づき、被験者の心拍数が所定数範囲内か否か、およびその心拍数の変化率が所定変化率以内か否かをチェックし、安静時の所定時間分の心電データを無線送信ユニット15に出力する。無線送信ユニット15は、その短い所定時間分の心電データを被験者の腰等に装着した記録装置や無線中継ユニットに向けて送信する。 There is also a conventional wearable wireless transmission type electrocardiograph shown in FIG. This electrocardiograph operates on a small battery 10 such as a button-type battery, and the electrodes 11, 12, and 13 are continuously attached to the subject's chest by the adhesive force of the adhesive pad. The electrocardiogram signals measured by the electrodes 11, 12, and 13 are amplified by the electrocardiogram measurement amplifier 14a in the electrocardiogram measurement unit 14, are analog / digital converted by the A / D 14b, and are input to the CPU 14c. The CPU 14c checks whether or not the subject's heart rate is within a predetermined number range and whether or not the rate of change of the heart rate is within the predetermined rate of change based on the timing signal given every predetermined time from the timer 14d. The electrocardiographic data for a predetermined time is output to the wireless transmission unit 15. The wireless transmission unit 15 transmits the electrocardiogram data for a short predetermined time toward a recording device or a wireless relay unit attached to the subject's waist or the like.
 また、従来、特許文献3に開示された図3に示される生体信号送信装置もある。この生体信号送信装置は、生体装着部21と送信機22とから構成される。生体装着部21は、生体の表面に装着される支持体23が誘電体材料で構成され、生体信号を検出する電極24とマイクロストリップアンテナ(MSA)25とが支持体23上に一体に設けられる。MSA25は、支持体23の生体装着面に配置された地板26と、支持体23の反対側の面に配置された放射板27とから構成される。送信機22には増幅部28、変調部29、電源部30および送信部31から構成される電気回路32が設けられている。送信機22は支持体23に装着され、電極24と増幅部28とはコネクタ33、MSA25と送信部31とはコネクタ34,35を介して電気的に接続される。生体の他の部分に装着される電極36は、コネクタ37を介して増幅部28に接続される。各コネクタ33,34,35は、生体装着部21側に設けられるフォックと、送信機22側に設けられるメスフォックとから構成される。 There is also a biological signal transmission device shown in FIG. 3 disclosed in Patent Document 3 conventionally. This biological signal transmitting apparatus is composed of a biological mounting part 21 and a transmitter 22. In the living body mounting portion 21, a support body 23 mounted on the surface of a living body is made of a dielectric material, and an electrode 24 for detecting a biological signal and a microstrip antenna (MSA) 25 are integrally provided on the support body 23. . The MSA 25 includes a ground plate 26 disposed on the living body mounting surface of the support 23 and a radiation plate 27 disposed on the opposite surface of the support 23. The transmitter 22 is provided with an electric circuit 32 including an amplification unit 28, a modulation unit 29, a power supply unit 30 and a transmission unit 31. The transmitter 22 is mounted on a support 23, and the electrode 24 and the amplifier 28 are electrically connected to each other via the connector 33, and the MSA 25 and the transmitter 31 are electrically connected to each other via the connectors 34 and 35. The electrode 36 attached to the other part of the living body is connected to the amplification unit 28 via the connector 37. Each connector 33, 34, 35 includes a hook provided on the living body mounting portion 21 side and a female hook provided on the transmitter 22 side.
 増幅部28、変調部29および送信部31には電源部30から電力が供給される。支持体23を被験者の生体表面に装着したとき、電極24および電極36が検出した生体信号は増幅部28で増幅され、変調部29で変調されて、送信部31からMSA25に送られる。MSA25は、受け取った生体信号を受信機に無線送信する。 The power is supplied from the power supply unit 30 to the amplification unit 28, the modulation unit 29, and the transmission unit 31. When the support 23 is mounted on the surface of the subject's living body, the biological signals detected by the electrodes 24 and 36 are amplified by the amplification unit 28, modulated by the modulation unit 29, and sent from the transmission unit 31 to the MSA 25. The MSA 25 wirelessly transmits the received biological signal to the receiver.
特開平2-283354号公報JP-A-2-283354 特開2006-136405号公報JP 2006-136405 A 特開平11-188014号公報JP-A-11-188014
 しかしながら、上記従来の各特許文献1,2,3に開示されたいずれの生体信号送信装置も、一次電池または二次電池を電源として動作し、電池が消耗したときには、電池を取り出して充電したり、電池交換しなければならない。このため、従来の生体信号送信装置は、取り扱いに手間がかかった。 However, any of the biological signal transmitters disclosed in the above-mentioned conventional patent documents 1, 2, and 3 operates using a primary battery or a secondary battery as a power source, and when the battery is exhausted, the battery is taken out and charged. The battery must be replaced. For this reason, the conventional biomedical signal transmission apparatus took time and effort to handle.
 また、上記従来の特許文献3に開示された生体信号送信装置では、生体装着部21と送信機22との間のコネクタ33,34,35による電気的接触が十分であるか否かを検出する手段は無い。したがって、受信機で生体信号が受信できない場合、ユーザ側でこれに対応する処理をすることはできない。 Further, in the biological signal transmission device disclosed in the above-described conventional Patent Document 3, it is detected whether or not the electrical contact by the connectors 33, 34, and 35 between the biological attachment unit 21 and the transmitter 22 is sufficient. There is no means. Therefore, when a biological signal cannot be received by the receiver, the user cannot perform a corresponding process.
 このため、上記従来の特許文献3に開示された生体信号送信装置では、生体装着部21と送信機22とを電気接続するのに、フォックとメスフォックとから構成される専用のコネクタ33,34,35を用いることで、接続信頼性を担保している。このため、上記従来の特許文献3に開示された生体信号送信装置では、生体装着部21と送信機22とを接続信頼性を担保して電気接続するのに、専用の構造部材を準備する必要があり、コネクタコストが生体信号送信装置の製品コストの増加要因になっている。 For this reason, in the biological signal transmitter disclosed in the above-mentioned conventional patent document 3, dedicated connectors 33, 34, which are composed of a hook and a female hook are used to electrically connect the living body mounting portion 21 and the transmitter 22. By using 35, connection reliability is ensured. For this reason, in the biological signal transmission device disclosed in the above-described conventional Patent Document 3, it is necessary to prepare a dedicated structural member to ensure electrical connection between the biological attachment unit 21 and the transmitter 22 while ensuring connection reliability. Therefore, the connector cost is an increase factor of the product cost of the biological signal transmission device.
 本発明はこのような課題を解決するためになされたもので、
少なくとも2次電池またはキャパシタを備えた本体部と、生体に装着されて生体から生体信号を入力する使い捨て可能部と、本体部と使い捨て可能部とを電気的に接続する本体部側に設けられた本体側電極および使い捨て可能部側に設けられた使い捨て側電極とから構成され、
外部から非接触で電力を受電して2次電池またはキャパシタに給電する非接触受電回路を使い捨て可能部に備え、
生体から入力した生体信号を2次電池またはキャパシタに蓄えられた電力を使用して外部機器へ送信する生体信号送信装置を構成した。
The present invention has been made to solve such problems,
A main body provided with at least a secondary battery or a capacitor, a disposable part which is attached to a living body and inputs a biological signal from the living body, and a main body part which electrically connects the main body part and the disposable part are provided. Consists of a body side electrode and a disposable side electrode provided on the disposable part side,
The disposable part has a non-contact power receiving circuit that receives power from the outside in a non-contact manner and supplies power to the secondary battery or capacitor,
A biological signal transmitting apparatus configured to transmit a biological signal input from a living body to an external device using electric power stored in a secondary battery or a capacitor.
 本構成によれば、使い捨て可能部に備えられた非接触受電回路によって外部から非接触で生体信号送信装置に電力が受電されて、本体部に備えられた2次電池またはキャパシタに給電される。生体から入力された生体信号の外部機器への送信は、2次電池またはキャパシタに蓄えられたこの電力が使用されて行われる。このため、従来のように、生体信号送信装置から電池を取り出して充電したり、電池交換する必要がなくなり、生体信号送信装置を取り扱う際の利便性は向上する。 According to this configuration, power is received from the outside in a non-contact manner by the non-contact power receiving circuit provided in the disposable part, and is supplied to the secondary battery or capacitor provided in the main body part. Transmission of a biological signal input from a living body to an external device is performed using this electric power stored in a secondary battery or a capacitor. For this reason, it is not necessary to take out the battery from the biological signal transmission device and charge or replace the battery as in the conventional case, and the convenience in handling the biological signal transmission device is improved.
 また、非接触受電回路を使い捨て可能部に備えることで、本体部を小型化および低価格化することができる。また、非接触受電回路によって外部から非接触で電力が受電されている間に、2次電池またはキャパシタに蓄電されるため、生体信号送信装置が非接触受電回路によって外部から電力を受電できない状態にあっても、生体信号送信装置は単独で動作を行える。このため、生体信号送信装置は、それが置かれる環境に左右されることなく連続動作が可能で、生体から連続的に生体信号を取得したり、取得した生体信号を連続的に外部機器に送信したり、さらに、外部から電力を受電し難い腋下等の部位における生体信号を取得することも可能になる。 Also, by providing the non-contact power receiving circuit in the disposable part, the main body part can be reduced in size and price. In addition, since the secondary battery or the capacitor is charged while the non-contact power receiving circuit receives power from the outside in a non-contact manner, the biological signal transmission device cannot receive power from the outside by the non-contact power receiving circuit. Even if it exists, a biological signal transmitter can operate | move independently. For this reason, the biological signal transmission device can continuously operate without being influenced by the environment in which it is placed, and continuously acquires a biological signal from a living body or continuously transmits the acquired biological signal to an external device. In addition, it is also possible to acquire a biological signal in a part such as a armpit where it is difficult to receive power from the outside.
 また、本発明は、導電材が本体部から突出して本体側電極が形成され、導電材が使い捨て可能部から突出して使い捨て側電極が形成されることを特徴とする。 Further, the present invention is characterized in that the conductive material protrudes from the main body portion to form the main body side electrode, and the conductive material protrudes from the disposable portion to form the disposable side electrode.
 本構成によれば、本体側電極および使い捨て側電極は簡易な構造で安価に製造することができ、本体部と使い捨て可能部とは低コストで電気的に接続される。このため、本体部と使い捨て可能部とを電気的に接続するのに、従来の生体信号送信装置のように、フォックとメスフォックとから構成されるコネクタのような専用の構造部材を準備する必要は無くなる。したがって、生体信号送信装置の製品コストが増加するのを抑制することができる。 According to this configuration, the main body side electrode and the disposable side electrode can be manufactured at low cost with a simple structure, and the main body portion and the disposable portion are electrically connected at low cost. For this reason, in order to electrically connect the main body part and the disposable part, it is necessary to prepare a dedicated structural member such as a connector composed of a hook and a female hook like a conventional biological signal transmission device. Disappear. Therefore, it can suppress that the product cost of a biosignal transmitter increases.
 また、本発明は、
本体側電極および使い捨て側電極が一列に配置され、
本体部と使い捨て可能部とが、対向する本体側電極および使い捨て側電極が接触した状態で、一列に配置された本体側電極および使い捨て側電極の周囲で固着材によって相互に固定され、
本体側電極および使い捨て側電極のいずれか一方は、一列の両端に配置されたものが一列の内側に配置されたものよりも突出高さが低く、かつ、固着材の高さよりも高く形成される
ことを特徴とする。
The present invention also provides:
The main body side electrode and the disposable side electrode are arranged in a row,
The body part and the disposable part are fixed to each other by a fixing material around the body side electrode and the disposable side electrode arranged in a row, with the body side electrode and the disposable side electrode facing each other,
Any one of the main body side electrode and the disposable side electrode is formed such that the one arranged at both ends of the row has a lower protruding height than the one arranged inside the row and is higher than the height of the fixing material It is characterized by that.
 本構成によれば、本体部と使い捨て可能部とが固着材によって相互に固定されて、対向する本体側電極と使い捨て側電極とが電気的に接続される際、薄く形成された使い捨て可能部が撓み、一列の内側に配置されて対向する使い捨て側電極と本体側電極との間隔が広がっても、本体側電極および使い捨て側電極のいずれか一方が、一列の内側に配置されたものが一列の両端に配置されたものより突出しているため、一列の内側に配置されて対向する使い捨て側電極と本体側電極との電気的接続は確実に行われる。また、本体側電極および使い捨て側電極のいずれか一方が、一列の両端に配置されたものが、本体側電極または使い捨て側電極の周囲で本体部と使い捨て可能部とを相互に固着する固着材の高さよりも高いので、対向する本体側電極と使い捨て側電極とは所定の接触圧を持って良好に電気的に接続される。 According to this configuration, when the main body part and the disposable part are fixed to each other by the fixing material, and the opposing main body side electrode and the disposable side electrode are electrically connected, the thinly formed disposable part is Even if the distance between the main electrode and the disposable side electrode that is bent and arranged inside the row is widened, one of the main body side electrode and the disposable side electrode is arranged in the inner row. Since it protrudes from what was arrange | positioned at both ends, the electrical connection of the disposable side electrode and main body side electrode which are arrange | positioned inside a row and opposes is performed reliably. In addition, one of the main body side electrode and the disposable side electrode arranged at both ends of the row is a fixing material that fixes the main body portion and the disposable portion to each other around the main body side electrode or the disposable side electrode. Since the height is higher than the height, the opposing main body side electrode and the disposable side electrode are well electrically connected with a predetermined contact pressure.
 また、本発明は、2次電池またはキャパシタと非接触受電回路との間を接続する本体側電極および使い捨て側電極が一列の両端に配置されることを特徴とする。 Further, the present invention is characterized in that a main body side electrode and a disposable side electrode for connecting a secondary battery or a capacitor and a non-contact power receiving circuit are arranged at both ends of a line.
 本構成によれば、一列に配置された本体側電極および使い捨て側電極の中で最も高さが低い一列の両端に配置される本体側電極および使い捨て側電極が使用されて、本体部に設けられた2次電池またはキャパシタと使い捨て可能部に設けられた非接触受電回路との間が電気的に接続される。したがって、非接触受電回路から2次電池またはキャパシタに給電される電力の電圧を本体部側で監視し、最も高さが低くて最も接触不良の起き易い一列の両端に配置される本体側電極と使い捨て側電極との接続状態を検出することで、一列に配置された全ての本体側電極と使い捨て側電極との接続状態を確実に検出することが可能になる。このため、この接続状態の検出で接触不良が判明した場合、本体部から音や光等でアラームを発生することで、外部機器で生体信号が受信できないときに、ユーザ側でこれに対応する処理をすることが可能になる。この結果、安価で信頼性が高く、しかも、生体に接触する使い捨て可能部を随時交換することが可能な生体信号送信装置を提供することができる。 According to this configuration, the main body side electrode and the disposable side electrode arranged at both ends of the row having the lowest height among the main body side electrode and the disposable side electrode arranged in a row are used and provided in the main body portion. In addition, the secondary battery or the capacitor and the non-contact power receiving circuit provided in the disposable part are electrically connected. Therefore, the main body side electrodes arranged at both ends of the row where the voltage of the electric power fed from the non-contact power receiving circuit to the secondary battery or the capacitor is monitored on the main body side and the lowest height is most likely to cause a contact failure; By detecting the connection state with the disposable side electrode, it becomes possible to reliably detect the connection state between all the main body side electrodes arranged in a row and the disposable side electrode. For this reason, when a contact failure is found by detecting this connection state, when a biological signal cannot be received by an external device by generating an alarm with sound, light, etc. from the main body, a process corresponding to this on the user side It becomes possible to do. As a result, it is possible to provide a biological signal transmission device that is inexpensive and highly reliable, and that can replace the disposable part that contacts the living body as needed.
 また、本発明は、非接触受電回路が、電力を受電すると共に生体信号を外部機器へ送信するデータ通信可能なアンテナであることを特徴とする。 Further, the present invention is characterized in that the non-contact power receiving circuit is an antenna capable of data communication that receives power and transmits a biological signal to an external device.
 本構成によれば、データ通信可能なアンテナで外部から電力を受電することで、データ通信時に同時に電力の受電も行え、生体信号送信装置の利便性が向上する。また、2次電池またはキャパシタと非接触受電回路との間を接続する本体側電極および使い捨て側電極が一列の両端に配置される場合、データ読み取り機等でデータ通信が行えるか否かを検出することで、本体側電極と使い捨て側電極との接続状態を検出することが可能になる。このため、データ読み取り機等でデータ通信が行えず、一列の両端に配置される本体側電極と使い捨て側電極との接触不良が判明した場合、生体信号を外部機器で受信できないことが分かり、ユーザ側でこれに対応する処理をすることが可能になる。 According to this configuration, by receiving power from the outside with an antenna capable of data communication, power can be received at the same time during data communication, and the convenience of the biological signal transmission device is improved. Further, when the main body side electrode and the disposable side electrode that connect between the secondary battery or the capacitor and the non-contact power receiving circuit are arranged at both ends of the row, it is detected whether or not data communication can be performed by a data reader or the like. This makes it possible to detect the connection state between the main body side electrode and the disposable side electrode. For this reason, when data communication cannot be performed with a data reader or the like, and it is found that contact failure between the main body side electrode and the disposable side electrode arranged at both ends of the line is found, it is understood that the biosignal cannot be received by the external device, and the user It is possible to perform processing corresponding to this on the side.
 また、本発明は、アンテナとは別に生体信号を外部機器へ送信する無線通信回路を備えることを特徴とする。 Further, the present invention is characterized by including a wireless communication circuit that transmits a biological signal to an external device separately from the antenna.
 本構成によれば、アンテナによる通信が行えない場合でも、無線通信回路によって生体信号をリアルタイムに外部機器へ送信することができる。 According to this configuration, even when communication by the antenna cannot be performed, the biological signal can be transmitted to the external device in real time by the wireless communication circuit.
 また、本発明は、本体部に備えられた2次電池またはキャパシタを補助するキャパシタまたは1次電池または2次電池を使い捨て可能部に備えることを特徴とする。 Further, the present invention is characterized in that the secondary battery provided in the main body part or the capacitor or the primary battery or secondary battery for assisting the capacitor is provided in the disposable part.
 本構成によれば、無線通信回路によるデータ通信時に瞬間的に消費電流が増大し、本体部に備えられた2次電池またはキャパシタに蓄電された電力が足りなくなっても、使い捨て可能部に備えられるキャパシタまたは1次電池または2次電池により、不足分が補われる。このため、本体部に備えられた2次電池またはキャパシタのみでは供給できない電流容量を超えた電力の瞬間的な使用が可能になり、不必要に大きな蓄電容量を持つ2次電池またはキャパシタを本体部に搭載する必要がなくなる。このため、大きな瞬間的な消費電流の供給能力を確保しながら、本体部の小型化および低コスト化を図ることが可能になる。 According to this configuration, even if the current consumption increases instantaneously during data communication by the wireless communication circuit and the power stored in the secondary battery or capacitor provided in the main body is insufficient, the disposable part is provided. The shortage is compensated by the capacitor, the primary battery or the secondary battery. For this reason, it is possible to instantaneously use power exceeding the current capacity that cannot be supplied only by the secondary battery or capacitor provided in the main body, and the secondary battery or capacitor having an unnecessarily large storage capacity can be used. No need to install on For this reason, it is possible to reduce the size and cost of the main body while securing a large instantaneous current consumption supply capability.
 また、本発明は、本体部と使い捨て可能部との相互位置を案内するマークが使い捨て可能部に形成されていることを特徴とする。 Further, the present invention is characterized in that a mark for guiding the mutual position of the main body part and the disposable part is formed on the disposable part.
 本構成によれば、本体部の使い捨て可能部への固着は、使い捨て可能部に形成されているマークに案内されて行われる。このため、本体部側に設けられた本体側電極と使い捨て可能部側に設けられた使い捨て側電極との相互位置が容易に正確に位置決めされて、本体部と使い捨て可能部とは容易かつ迅速かつ的確に電気的に接続される。 According to this configuration, the main body is fixed to the disposable part by being guided by the mark formed on the disposable part. For this reason, the mutual position of the main body side electrode provided on the main body portion side and the disposable side electrode provided on the disposable portion side is easily and accurately positioned, and the main body portion and the disposable portion can be easily and quickly Accurately connected electrically.
 また、本発明は、生体信号を検出処理するアナログセンサ回路に供給される電圧を一定値に保つ電圧安定化回路を備えることを特徴とする。 Further, the present invention is characterized by including a voltage stabilizing circuit that keeps a voltage supplied to an analog sensor circuit for detecting and processing a biological signal at a constant value.
 本構成によれば、非接触受電回路に受電される電圧が変動しても、生体信号を検出処理するアナログセンサ回路に供給される電圧は電圧安定化回路によって一定値に保たれる。このため、生体信号を検出処理するアナログセンサ回路は安定して動作することができ、生体信号を正確で再現性高く計測することが可能になる。 According to this configuration, even if the voltage received by the non-contact power receiving circuit fluctuates, the voltage supplied to the analog sensor circuit that detects and processes the biological signal is maintained at a constant value by the voltage stabilizing circuit. For this reason, the analog sensor circuit for detecting and processing the biological signal can operate stably, and the biological signal can be accurately measured with high reproducibility.
 また、本発明は、2次電池またはキャパシタと生体信号を計測するセンサ以外の回路が使い捨て可能部に形成されることを特徴とする。 Further, the present invention is characterized in that a circuit other than a secondary battery or a capacitor and a sensor for measuring a biological signal is formed in the disposable part.
 本構成によれば、本体部には、2次電池またはキャパシタと生体信号を計測するセンサとだけが設けられる。このため、本体部の組み立ては容易になり、しかも、本体部のサイズは小型化するので、本体部の製造コストは低減される。また、本体部に備えられる部品数は少なくなるので、本体部と使い捨て可能部とを電気的に接続するための本体側電極および使い捨て側電極の必要個数も少なくなる。この結果、生体信号送信装置のトータルの製造コストは低減される。 According to this configuration, the main body is provided with only the secondary battery or capacitor and the sensor for measuring the biological signal. For this reason, the assembly of the main body is facilitated, and the size of the main body is reduced, so that the manufacturing cost of the main body is reduced. Further, since the number of components provided in the main body portion is reduced, the required number of main body side electrodes and disposable side electrodes for electrically connecting the main body portion and the disposable portion is also reduced. As a result, the total manufacturing cost of the biological signal transmitter is reduced.
 また、本発明は、2次電池またはキャパシタと生体信号を計測するセンサとが回路基板を使うことなく本体部に設けられることを特徴とする。 Further, the present invention is characterized in that a secondary battery or a capacitor and a sensor for measuring a biological signal are provided in the main body without using a circuit board.
 本構成によれば、回路基板を使うことなく2次電池またはキャパシタと生体信号を計測するセンサとが本体部に設けられるので、本体部の製造コストはさらに低減される。このため、生体信号送信装置のトータルの製造コストは一層低減される。 According to this configuration, since the secondary battery or the capacitor and the sensor for measuring the biological signal are provided in the main body without using the circuit board, the manufacturing cost of the main body is further reduced. For this reason, the total manufacturing cost of the biological signal transmitter is further reduced.
 本発明によれば、従来のように、生体信号送信装置から電池を取り出して充電したり、電池交換する必要がなくなり、生体信号送信装置を取り扱う際の利便性が向上する。 According to the present invention, there is no need to take out a battery from the biological signal transmission device and charge or replace the battery as in the prior art, and convenience in handling the biological signal transmission device is improved.
従来の第1の生体信号送信装置の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the conventional 1st biological signal transmitter. 従来の第2の生体信号送信装置の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the 2nd conventional biological signal transmitter. 従来の第3の生体信号送信装置の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the conventional 3rd biological signal transmitter. 本発明の第1の実施の形態による生体信号送信装置の平面図である。1 is a plan view of a biological signal transmission apparatus according to a first embodiment of the present invention. (a)は、第1の実施の形態による生体信号送信装置を構成するフィルム部の平面図、(b)は同フィルム部の側面図、(c)は第1の実施の形態による生体信号送信装置を構成する本体部の内部透視平面図、(d)は同本体部の側面図、(e)は、本体部がフィルム部上に固着される際における第1の実施の形態による生体信号送信装置の側面図である。(A) is a top view of the film part which comprises the biological signal transmitter by 1st Embodiment, (b) is a side view of the film part, (c) is a biological signal transmission by 1st Embodiment. The internal perspective top view of the main-body part which comprises an apparatus, (d) is a side view of the main-body part, (e) is the biological signal transmission by 1st Embodiment when a main-body part adheres on a film part. It is a side view of an apparatus. (a)は、図5(e)に示す本体部とフィルム部とを電気的に接続する電極部の一部拡大側面図、(b)は、本体部とフィルム部とが固着された状態における同電極部の一部拡大側面図である。(A) is a partially enlarged side view of the electrode part for electrically connecting the main body part and the film part shown in FIG. 5 (e), and (b) is a state in which the main body part and the film part are fixed. It is a partially expanded side view of the electrode part. 第1の実施の形態による生体信号送信装置の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the biosignal transmission apparatus by 1st Embodiment. 本発明の第2の実施の形態による生体信号送信装置の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the biosignal transmitter by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による生体信号送信装置の概略構成を示すブロック構成図である。It is a block block diagram which shows schematic structure of the biosignal transmitter by the 3rd Embodiment of this invention.
 次に、本発明の生体信号送信装置を実施するための形態について、説明する。 Next, a mode for carrying out the biological signal transmission apparatus of the present invention will be described.
 図4は、本発明の第1の実施の形態による生体信号送信装置41の平面図である。 FIG. 4 is a plan view of the biological signal transmitter 41 according to the first embodiment of the present invention.
 生体信号送信装置41は、25μmや50μm程度の厚さのフィルム部42と、このフィルム部42上に固着されるモジュール状の本体部43とから構成される。フィルム部42は、生体に装着されて生体から生体信号を入力する使い捨て可能部を構成している。フィルム部42の材料には、ポリエチレンテレフタレート(PET)材やポリイミド材などの廉価で電極加工性の優れた材料が選定されており、使い捨てされる部分のコストが低減されている。また、本体部43は 電子部品の周囲が樹脂で囲まれて、または開閉しない筐体に電子部品が収納されて、耐水性を有する封止された構造になっており、ある程度の厚みを持って剛性を有する直方体状に形成されている。 The biological signal transmission device 41 includes a film part 42 having a thickness of about 25 μm or 50 μm, and a module-like main body part 43 fixed on the film part 42. The film part 42 is a disposable part that is attached to a living body and inputs a biological signal from the living body. As the material of the film part 42, an inexpensive and excellent electrode processability material such as a polyethylene terephthalate (PET) material or a polyimide material is selected, and the cost of the disposable part is reduced. In addition, the main body 43 has a watertight sealed structure in which the electronic component is surrounded by resin or the electronic component is housed in a casing that does not open and close, and has a certain thickness. It is formed in a rectangular parallelepiped shape having rigidity.
 図5(a)はフィルム部42の平面図、同図(b)は側面図である。また、図7は生体信号送信装置41の概略構成を示すブロック構成図である。 FIG. 5 (a) is a plan view of the film part 42, and FIG. 5 (b) is a side view. FIG. 7 is a block configuration diagram showing a schematic configuration of the biological signal transmission device 41.
 図5(b)に示すように、フィルム部42の下面となる人体貼り付け面には、導電ゲルからなる一対の心電用電極51,51が設けられている。フィルム部42がこの一対の心電用電極51,51によって人体に貼り付けられ、生体信号送信装置41が生体に装着されると、一対の心電用電極51,51は生体表面に連続的に接触する。なお、フィルム部42の人体への貼り付けは、このような導電ゲルによるものに限られず、心電用電極51,51の形成部分を除くフィルム部42の下面全面を絆創膏状粘着テープで人体の皮膚に貼り付ける構成にすることもできる。 As shown in FIG. 5 (b), a pair of electrocardiographic electrodes 51, 51 made of a conductive gel is provided on the human body pasting surface, which is the lower surface of the film portion 42. When the film part 42 is affixed to the human body by the pair of electrocardiographic electrodes 51 and 51 and the biological signal transmitting device 41 is attached to the living body, the pair of electrocardiographic electrodes 51 and 51 are continuously applied to the surface of the living body. Contact. Note that the attachment of the film part 42 to the human body is not limited to such a conductive gel, and the entire lower surface of the film part 42 excluding the part where the electrocardiographic electrodes 51 and 51 are formed is adhered to the human body with a plaster-like adhesive tape. It can also be configured to be affixed to the skin.
 フィルム部42の上面には、外部から非接触で電力を受電して後述するEDLC61に給電するハーベスト・アンテナ(Harvest・ANT)53、および4個の電極パッド54a,54b,54c,54dが形成されている。これらANT53および電極パッド54a,54b,54c,54dはフィルム・エレクトロニクス(FE)やプリンテッド・エレクトロニクス(PE)技術によってフィルム部42上に印刷等されて形成される。ANT53は非接触受電回路を構成し、本実施の形態では、リーダライタ(信号読み書き機)等の外部機器が有する送電コイルが形成する交流磁界から、電磁誘導方式によって非接触で電力を受電する。 On the upper surface of the film part 42, a harvest antenna (Harvest ANT) 53 that receives electric power from outside without contact and supplies power to the EDLC 61 described later, and four electrode pads 54 a, 54 b, 54 c, 54 d are formed. ing. The ANT 53 and the electrode pads 54a, 54b, 54c, 54d are formed on the film portion 42 by printing or the like using film electronics (FE) or printed electronics (PE) technology. The ANT 53 constitutes a non-contact power receiving circuit. In this embodiment, the ANT 53 receives electric power in a non-contact manner by an electromagnetic induction method from an AC magnetic field formed by a power transmission coil included in an external device such as a reader / writer (signal reader / writer).
 なお、本実施の形態では、非接触受電回路を電磁誘導方式によって構成しているが、これに限られるものではない。非接触受電回路は、例えば、LC共振によって空間に蓄積される磁気エネルギーによって電力を非接触で受電する磁界共鳴方式や、コンデンサの極板間に変位電流を流すことで空間に蓄積される静電エネルギーによって電力を非接触で受電する電界共鳴方式などによって、構成することもできる。 In this embodiment, the non-contact power receiving circuit is configured by an electromagnetic induction method, but is not limited thereto. The non-contact power receiving circuit is, for example, a magnetic resonance method that receives power in a non-contact manner by magnetic energy accumulated in the space by LC resonance, or an electrostatic charge accumulated in the space by flowing a displacement current between the capacitor plates. It can also be configured by an electric field resonance method in which power is received by energy in a non-contact manner.
 電極パッド54a,54b,54c,54dは、印刷等された導電材がフィルム部42から突出して一列に配置されて形成され、使い捨て可能部であるフィルム部42と本体部43とを電気的に接続する、フィルム部42側に設けられた使い捨て側電極を構成している。本実施の形態では、ANT53は、上記のように電力を受電すると共に、心電用電極51,51で検出された生体信号を外部機器へ送信するデータ通信(Data・TRX)可能な構成になっている。ANT53を構成する配線の一端は電極パッド54a、他端は電極パッド54dに接続され、一列の両端に配置される電極パッド54a,54dが使用されて、EDLC61とANT53との間は電気的に接続されている。また、一列の内側に配置される一方の電極パッド54bは配線55を介して一対の心電用電極51,51の一方、他方の電極パッド54cは配線56を介して一対の心電用電極51,51の他方にスルーホールで電気的に接続されている。 The electrode pads 54 a, 54 b, 54 c, 54 d are formed by a printed conductive material protruding from the film part 42 and arranged in a row, and electrically connect the film part 42, which is a disposable part, and the main body part 43. The disposable electrode provided on the film part 42 side is configured. In the present embodiment, the ANT 53 receives power as described above, and has a configuration capable of data communication (Data TRX) for transmitting a biological signal detected by the electrocardiographic electrodes 51 and 51 to an external device. ing. One end of the wiring constituting the ANT 53 is connected to the electrode pad 54a, the other end is connected to the electrode pad 54d, and the electrode pads 54a and 54d arranged at both ends of the row are used, and the EDLC 61 and the ANT 53 are electrically connected. Has been. In addition, one electrode pad 54 b arranged inside a row is one of a pair of electrocardiographic electrodes 51, 51 via a wiring 55, and the other electrode pad 54 c is a pair of electrocardiographic electrodes 51 via a wiring 56. , 51 are electrically connected through through holes.
 また、フィルム部42の上面には、本体部43とフィルム部42との相互位置を案内するマークがダミー電極57として形成されている。このダミー電極57も、FEやPE技術により、ANT53および電極パッド54a,54b,54c,54dと共にフィルム部42上に形成される。なお、本体部43とフィルム部42との相互位置を案内するマークは、このようなダミー電極57に限られるものではなく、フィルム部42に穴を開けることなどによっても、形成することができる。 Further, on the upper surface of the film part 42, marks for guiding the mutual positions of the main body part 43 and the film part 42 are formed as dummy electrodes 57. This dummy electrode 57 is also formed on the film part 42 together with the ANT 53 and the electrode pads 54a, 54b, 54c, 54d by FE or PE technology. The mark for guiding the mutual position between the main body 43 and the film part 42 is not limited to the dummy electrode 57, and can be formed by making a hole in the film part 42 or the like.
 また、電極パッド54a,54b,54c,54dを囲むフィルム部42の上面には、本体部43とフィルム部42とを相互に固定するための固着材58が設けられている。固着材58は例えば両面テープ等で構成されるが、粘着性を有する材料であれば他のものであってもよい。なお、図5(a)においては、固着材58が電極パッド54a,54b,54c,54dを完全に囲むように固着材58を設けているが、固着材58はこれに限らず、電極パッド54a,54b,54c,54dを挟むように2つあるいはそれ以上に分離して周囲に設けてもよい。 Further, a fixing material 58 for fixing the main body 43 and the film part 42 to each other is provided on the upper surface of the film part 42 surrounding the electrode pads 54a, 54b, 54c, 54d. The fixing material 58 is composed of, for example, a double-sided tape or the like, but may be any other material as long as it has adhesiveness. In FIG. 5A, the fixing material 58 is provided so that the fixing material 58 completely surrounds the electrode pads 54a, 54b, 54c, and 54d. However, the fixing material 58 is not limited to this, and the electrode pad 54a. , 54b, 54c, 54d may be provided in the periphery by separating them into two or more.
 図5(c)は本体部43の内部透視平面図、同図(d)は側面図である。 FIG. 5C is an internal perspective plan view of the main body 43, and FIG. 5D is a side view.
 同図(d)に示すように、本体部43の下面には、フィルム部42の電極パッド54a,54b,54c,54dに対向するボール電極59a,59b,59c,59dが形成されている。ボール電極59a,59b,59c,59dは、導電材の球状になった固まりが本体部43から突出して一列に配置されて形成され、本体部43とフィルム部42とを電気的に接続する、本体部43側に設けられた本体側電極を構成している。 As shown in FIG. 4D, ball electrodes 59a, 59b, 59c, and 59d that face the electrode pads 54a, 54b, 54c, and 54d of the film portion 42 are formed on the lower surface of the main body 43. The ball electrodes 59a, 59b, 59c, and 59d are formed by a spherical body of conductive material protruding from the main body portion 43 and arranged in a row, and electrically connecting the main body portion 43 and the film portion 42. The main body side electrode provided on the portion 43 side is configured.
 本体部43とフィルム部42とは、同図(e)の側面図に示すように、本体部43がフィルム部42のダミー電極57を目印としてフィルム部42上に載置されることで、固着材58によって固定される。この固定により、対向するボール電極59a,59b,59c,59dおよび電極パッド54a,54b,54c,54dが電気的に接続されることになる。この電気的接続に不具合が発生した場合には、フィルム部42を新品のものと交換して、新品のフィルム部42に本体部43を再度貼り付ける。各ボール電極59a,59b,59c,59dおよび電極パッド54a,54b,54c,54d間のピッチは、ダミー電極57の形成位置の適正な位置からのずれや、ユーザによる貼り付け時の位置ずれを考慮して、十分大きいピッチに設定されており、生体信号送信装置41に起こる動作不良の発生確率が低減されている。 As shown in the side view of FIG. 4E, the main body portion 43 and the film portion 42 are fixed by placing the main body portion 43 on the film portion 42 using the dummy electrode 57 of the film portion 42 as a mark. It is fixed by the material 58. By this fixing, the opposing ball electrodes 59a, 59b, 59c, 59d and the electrode pads 54a, 54b, 54c, 54d are electrically connected. When a failure occurs in this electrical connection, the film part 42 is replaced with a new one, and the main body part 43 is attached to the new film part 42 again. The pitch between the ball electrodes 59a, 59b, 59c, 59d and the electrode pads 54a, 54b, 54c, 54d takes into account the deviation of the formation position of the dummy electrode 57 from the proper position and the deviation at the time of attachment by the user. Thus, the pitch is set to a sufficiently large pitch, and the probability of malfunction occurring in the biological signal transmitter 41 is reduced.
 図6(a)に示す電極部の一部拡大側面図に示すように、ボール電極59a,59b,59c,59dは、一列の両端に配置されたボール電極59a,59dの突出高さh1が、一列の内側に配置されたボール電極59b,59cの突出高さh2よりも低く、形成されている。このため、本体部43とフィルム部42との貼り付け後における、一列の内側に配置された本体部43側のボール電極59b,59cは、フィルム部42側の電極パッド54b,54cに当たり易い構造になっている。 As shown in the partially enlarged side view of the electrode portion shown in FIG. 6A, the ball electrodes 59a, 59b, 59c, and 59d have protrusion heights h1 of the ball electrodes 59a and 59d arranged at both ends of the row. The ball electrodes 59b and 59c arranged on the inner side of one row are formed lower than the protruding height h2. For this reason, the ball electrodes 59b and 59c on the side of the main body 43 arranged on the inner side in a row after the main body 43 and the film part 42 are attached have a structure that is easy to hit the electrode pads 54b and 54c on the side of the film 42. It has become.
 本体部43とフィルム部42とは、同図(b)に示す電極部の一部拡大側面図に示すように、対向するボール電極59a,59b,59c,59dおよび電極パッド54a,54b,54c,54dが接触した状態で、一列に配置されたボール電極59a,59b,59c,59dおよび電極パッド54a,54b,54c,54dの両端外側で、固着材58によって相互に固定される。一列の両端に配置されたボール電極59a,59dの突出高さh1は、本体部43とフィルム部42との固定後における固着材58の高さh3よりも、高く形成されている。 As shown in the partially enlarged side view of the electrode portion shown in FIG. 4B, the main body portion 43 and the film portion 42 are opposed to ball electrodes 59a, 59b, 59c, 59d and electrode pads 54a, 54b, 54c, With the contact 54d in contact, the ball electrodes 59a, 59b, 59c, 59d arranged in a row and the electrode pads 54a, 54b, 54c, 54d are fixed to each other by the fixing material 58 outside. The protruding heights h1 of the ball electrodes 59a and 59d arranged at both ends of the row are formed higher than the height h3 of the fixing material 58 after the main body 43 and the film part 42 are fixed.
 なお、本実施の形態では、本体部43に一列に配置されたボール電極59a,59b,59c,59dの両端に配置されたボール電極59a,59dの突出高さh1を、一列の内側に配置されたボール電極59b,59cの突出高さh2よりも低く形成した場合について、説明している。しかし、ボール電極59a,59b,59c,59dの突出高さは等しく設定し、フィルム部42に一列に配置された電極パッド54a,54b,54c,54dの両端に配置された電極パッド54a,54dの突出高さを、一列の内側に配置された電極パッド54b,54cの突出高さよりも低く、かつ、固着材58の高さh3よりも高く形成するように、構成してもよい。 In the present embodiment, the protruding heights h1 of the ball electrodes 59a, 59d arranged at both ends of the ball electrodes 59a, 59b, 59c, 59d arranged in a line on the main body 43 are arranged inside the line. The case where the ball electrodes 59b and 59c are formed lower than the protruding height h2 is described. However, the protruding heights of the ball electrodes 59a, 59b, 59c, 59d are set to be equal, and the electrode pads 54a, 54d arranged at both ends of the electrode pads 54a, 54b, 54c, 54d arranged in a line on the film part 42 are set. You may comprise so that protrusion height may be formed lower than the protrusion height of the electrode pads 54b and 54c arrange | positioned inside a row, and higher than the height h3 of the adhering material 58. FIG.
 本体部43には、図7に示す、電気二重層キャパシタ(EDLC)61、ハーベスト(Harvest)IC62、レギュレータ(REG)63、心電計測回路(ECG:Electorocardiogram)64、NTCサーミスタ65,66、温度計測回路(Temp.)67、およびマイクロコントロールユニット(MCU)68が収納されている。これら電子部品は、回路基板に実装されて樹脂または筐体によって封止されている。 7 includes an electric double layer capacitor (EDLC) 61, a Harvest IC 62, a regulator (REG) 63, an electrocardiograph (ECG) 64, an NTC thermistor 65, 66, and a temperature. A measurement circuit (Temp.) 67 and a micro control unit (MCU) 68 are accommodated. These electronic components are mounted on a circuit board and sealed with resin or a casing.
 ハーベストIC62は、近距離無線通信(NFC)機能を備えたIC(高密度集積回路)であり、EDLC61に蓄えられた電力を使用して、生体から入力した生体信号をANT53によって外部機器へ送信する。また、ハーベストIC62は、リーダライタ等の外部機器からの指令をANT53によって受信し、受信した指令に応じた返信をANT53によって送信する。ANT53は、このようなデータの送受信時にもデータの搬送波によって電力を受電し、EDLC61に電力を給電する。なお、本実施の形態では、ANT53によって受電された電力をEDLC61に蓄える構成について説明しているが、EDLC61ではなく、2次電池に蓄えるように構成してもよい。 The harvest IC 62 is an IC (High Density Integrated Circuit) having a near field communication (NFC) function, and uses the power stored in the EDLC 61 to transmit a biological signal input from a living body to an external device by the ANT 53. . Further, the harvest IC 62 receives a command from an external device such as a reader / writer by the ANT 53 and transmits a reply according to the received command by the ANT 53. The ANT 53 receives power by the data carrier and transmits power to the EDLC 61 even when such data is transmitted / received. In the present embodiment, the configuration in which the power received by the ANT 53 is stored in the EDLC 61 is described. However, the configuration may be such that the secondary battery stores the power instead of the EDLC 61.
 ECG64は、一対の心電用電極51,51から入力される心電信号を生体信号として取り込み、アナログアンプによって増幅する。そして、増幅した生体信号をアナログ/デジタル・コンバータ(ADC)によってアナログ信号からデジタル信号に変換して、MCU68へ出力する。また、Temp.67は、NTCサーミスタ65,66から入力される体温に応じた電圧を生体信号として取り込み、アナログアンプによって増幅する。そして、増幅した生体信号をADCによってアナログ信号からデジタル信号に変換して、MCU68へ出力する。NTCサーミスタ65,66は、本体部43の離れた2箇所に設けられており、MCU68は、2箇所で計測される体温および2箇所間の熱抵抗から、生体内部の深部体温を算出する。MCU68は、記憶したファームウエアに従うアルゴリズムで動作し、回路各部の動作を制御する。 The ECG 64 takes in an electrocardiographic signal input from the pair of electrocardiographic electrodes 51 and 51 as a biological signal and amplifies it by an analog amplifier. Then, the amplified biological signal is converted from an analog signal to a digital signal by an analog / digital converter (ADC) and output to the MCU 68. Also, Temp. 67 takes in the voltage according to the body temperature input from NTC thermistors 65 and 66 as a biological signal, and amplifies it with an analog amplifier. The amplified biological signal is converted from an analog signal to a digital signal by the ADC and output to the MCU 68. The NTC thermistors 65 and 66 are provided at two locations away from the main body 43, and the MCU 68 calculates the deep body temperature inside the living body from the body temperature measured at the two locations and the thermal resistance between the two locations. The MCU 68 operates with an algorithm according to the stored firmware and controls the operation of each part of the circuit.
 ANT53で受電されてハーベストIC62から供給される電圧は、外部からANT53に電力を送電する電力供給側の外部機器とANT53との間の距離等に依存して変動する。しかし、この変動する供給電圧は、REG63により、一定値に保たれる。ECG64、Temp.67およびMCU68にはREG63によって一定値に保たれた電圧が供給され、ECG64、Temp.67およびMCU68は常に一定電圧で動作させられる。REG63は、生体信号を検出処理するアナログセンサ回路であるECG64およびTemp.67に供給されるリファレンス電圧を一定値に保つ電圧安定化回路を構成する。 The voltage received from the harvest IC 62 after being received by the ANT 53 varies depending on the distance between the external device on the power supply side that transmits power to the ANT 53 from the outside and the ANT 53. However, this fluctuating supply voltage is maintained at a constant value by the REG 63. ECG64, Temp. 67 and MCU 68 are supplied with a voltage maintained at a constant value by REG 63, and ECG 64, Temp. 67 and MCU 68 are always operated at a constant voltage. REG63 is an analog sensor circuit that detects and processes biological signals, ECG64 and Temp. A voltage stabilization circuit is configured to keep the reference voltage supplied to 67 at a constant value.
 MCU68は、ECG64で検出された心電データ、およびTemp.67からの生体信号によって算出した生体の深部体温データを、ハーベストIC62を制御して外部機器へ送信する。 MCU68 is the ECG data detected by ECG64, and Temp. The living body deep body temperature data calculated by the biological signal from 67 is transmitted to the external device by controlling the harvest IC 62.
 このような第1の実施の形態による生体信号送信装置41によれば、上記のように、フィルム部42に備えられたANT53によって外部から非接触で生体信号送信装置41に電力が受電されて、本体部43に備えられたEDLC61または2次電池に給電される。生体から入力された心電信号や深部体温といった生体信号の外部機器への送信は、EDLC61または2次電池に蓄えられたこの電力が使用されて行われる。このため、従来の生体信号送信装置のように、電池を取り出して充電したり、電池交換する必要がなくなり、生体信号送信装置41を取り扱う際の利便性は向上する。 According to the biological signal transmission device 41 according to the first embodiment as described above, the biological signal transmission device 41 receives power from the outside in a non-contact manner by the ANT 53 provided in the film unit 42 as described above. Power is supplied to the EDLC 61 or the secondary battery provided in the main body 43. Transmission of a biological signal such as an electrocardiogram signal or a deep body temperature input from a living body to an external device is performed using this electric power stored in the EDLC 61 or the secondary battery. For this reason, it is not necessary to take out and charge the battery or replace the battery as in the conventional biological signal transmission device, and the convenience in handling the biological signal transmission device 41 is improved.
 また、比較的大きな面積を必要とするANT53をフィルム部42に備えることで、本体部43を小型化および低価格化することができる。また、生体信号送信装置41がANT53によって外部から電力を受電できないハーベスト環境が悪い状態にあっても、EDLC61または2次電池に蓄電された電力を用いることにより、生体信号送信装置41は単独で動作を行える。このため、生体信号送信装置41は、それが置かれる環境に左右されることなく連続動作が可能で、生体から連続的に生体信号を取得したり、取得した生体信号を連続的に外部機器に送信したり、さらに、外部から電力を受電し難い腋下等の部位における生体信号を取得することも可能になる。 Also, by providing the film part 42 with the ANT 53 that requires a relatively large area, the main body part 43 can be reduced in size and price. Moreover, even if the harvesting environment in which the biological signal transmission device 41 cannot receive power from the outside by the ANT 53 is in a bad state, the biological signal transmission device 41 operates independently by using the power stored in the EDLC 61 or the secondary battery. Can be done. Therefore, the biological signal transmission device 41 can operate continuously without being influenced by the environment in which the biological signal transmission device 41 is placed. The biological signal transmission device 41 can continuously acquire a biological signal from a living body or continuously acquire the acquired biological signal to an external device. It is also possible to transmit a biological signal in a part such as a armpit that is difficult to receive or receive power from the outside.
 また、第1の実施の形態による生体信号送信装置41によれば、電極パッド54a,54b,54c,54dは導電材が印刷等されてフィルム部42から突出して形成され、ボール電極59a,59b,59c,59dは導電材が球状の固まりにされて本体部43から突出して形成されるので、電極パッド54a,54b,54c,54dおよびボール電極59a,59b,59c,59dは簡易な構造で安価に製造することができる。よって、本体部43とフィルム部42とは低コストで電気的に接続される。このため、本体部43とフィルム部42とを電気的に接続するのに、従来の生体信号送信装置のように、フォックとメスフォックとから構成されるコネクタのような専用の構造部材を準備する必要は無くなる。したがって、生体信号送信装置41の製品コストが増加するのを抑制することができる。 Further, according to the biological signal transmission device 41 according to the first embodiment, the electrode pads 54a, 54b, 54c, 54d are formed by projecting a conductive material or the like and projecting from the film part 42, and the ball electrodes 59a, 59b, Since 59c and 59d are formed by projecting the conductive material into a spherical mass and projecting from the main body 43, the electrode pads 54a, 54b, 54c and 54d and the ball electrodes 59a, 59b, 59c and 59d are simple and inexpensive. Can be manufactured. Therefore, the main body portion 43 and the film portion 42 are electrically connected at a low cost. For this reason, in order to electrically connect the main body portion 43 and the film portion 42, it is necessary to prepare a dedicated structural member such as a connector composed of a hook and a female hook as in a conventional biological signal transmission device. Will disappear. Therefore, it is possible to suppress an increase in product cost of the biological signal transmission device 41.
 また、第1の実施の形態による生体信号送信装置41によれば、本体部43とフィルム部42とが固着材58によって相互に固定されて、対向する電極パッド54a,54b,54c,54dとボール電極59a,59b,59c,59dとが電気的に接続される際、薄く形成されたフィルム部42が撓み、一列の内側に配置された電極パッド54b,54cとボール電極59b,59cとの間隔が広がっても、ボール電極59a,59b,59c,59dの中の一列の内側に配置されたボール電極59b,59cが、一列の両端に配置されたボール電極59a,59dより突出しているため、一列の内側の電極パッド54b,54cとボール電極59b,59cとの電気的接続は確実に行われる。また、電極パッド54a,54b,54c,54dの中の一列の内側に配置された電極パッド54b,54cが、一列の両端に配置された電極パッド54a,54dより突出している場合にも、同様に、一列の内側の電極パッド54b,54cとボール電極59b,59cとの電気的接続は確実に行われる。 Further, according to the biological signal transmission device 41 according to the first embodiment, the main body portion 43 and the film portion 42 are fixed to each other by the fixing material 58, and the opposing electrode pads 54a, 54b, 54c, 54d and the ball When the electrodes 59a, 59b, 59c, and 59d are electrically connected, the thin film portion 42 is bent, and the distance between the electrode pads 54b and 54c and the ball electrodes 59b and 59c arranged on the inner side of the row is increased. Even if the ball electrodes 59a, 59b, 59c, 59d are spread, the ball electrodes 59b, 59c arranged inside one row of the ball electrodes 59a, 59b, 59d protrude from the ball electrodes 59a, 59d arranged at both ends of the row. Electrical connection between the inner electrode pads 54b and 54c and the ball electrodes 59b and 59c is ensured. Similarly, when the electrode pads 54b and 54c arranged inside one row of the electrode pads 54a, 54b, 54c and 54d protrude from the electrode pads 54a and 54d arranged at both ends of the row, the same applies. The electrical connection between the inner electrode pads 54b and 54c and the ball electrodes 59b and 59c is ensured.
 また、ボール電極59a,59b,59c,59dの中の一列の両端に配置されたボール電極59a,59d、または、電極パッド54a,54b,54c,54dの中の一列の両端に配置された電極パッド54a,54dは、その両端よりも外側で本体部43とフィルム部42とを相互に固着する固着材58の高さh3よりも高いので、対向するボール電極59a,59b,59c,59dと電極パッド54a,54b,54c,54dとは所定の接触圧を持って良好に電気的に接続される。 Further, the ball electrodes 59a and 59d disposed at both ends of one row in the ball electrodes 59a, 59b, 59c and 59d, or the electrode pads disposed at both ends of one row in the electrode pads 54a, 54b, 54c and 54d. 54a and 54d are higher than the height h3 of the fixing material 58 that fixes the main body portion 43 and the film portion 42 to each other outside both ends thereof, so that the opposing ball electrodes 59a, 59b, 59c, 59d and electrode pads 54a, 54b, 54c and 54d are electrically connected well with a predetermined contact pressure.
 また、第1の実施の形態による生体信号送信装置41によれば、一列に配置されたボール電極59a,59b,59c,59dおよび電極パッド54a,54b,54c,54dの中で最も高さが低い一列の両端に配置されるボール電極59a,59dおよび電極パッド54a,54dが使用されて、本体部43に設けられたEDLC61または2次電池とフィルム部42に設けられたANT53との間が電気的に接続される。したがって、ANT53からEDLC61または2次電池に給電される電力の電圧を本体部43側でMCU68によって監視し、最も高さが低くて最も接触不良の起き易い一列の両端に配置されるボール電極59a,59dと電極パッド54a,54dとの接続状態を検出することで、一列に配置された全てのボール電極59a,59b,59c,59dと電極パッド54a,54b,54c,54dとの接続状態を確実に検出することが可能になる。 Moreover, according to the biological signal transmission device 41 according to the first embodiment, the height is the lowest among the ball electrodes 59a, 59b, 59c, 59d and the electrode pads 54a, 54b, 54c, 54d arranged in a line. Ball electrodes 59a and 59d and electrode pads 54a and 54d arranged at both ends of one row are used, and an electrical connection is made between the EDLC 61 or the secondary battery provided in the main body 43 and the ANT 53 provided in the film part 42. Connected to. Therefore, the voltage of the electric power supplied from the ANT 53 to the EDLC 61 or the secondary battery is monitored by the MCU 68 on the main body 43 side, and the ball electrodes 59a disposed at both ends of the row having the lowest height and the most prone to contact failure. By detecting the connection state between 59d and the electrode pads 54a and 54d, the connection state between all the ball electrodes 59a, 59b, 59c and 59d arranged in a row and the electrode pads 54a, 54b, 54c and 54d is ensured. It becomes possible to detect.
 このため、この接続状態の検出で接触不良が判明した場合、本体部43から音や光等でアラームを発生することで、外部機器で生体信号が受信できないときに、ユーザ側でこれに対応する処理をすることが可能になる。この結果、安価で信頼性が高く、しかも、生体に接触するフィルム部42を随時交換することが可能な生体信号送信装置41を提供することができる。 For this reason, when a contact failure is found by detecting this connection state, an alarm is generated from the main body 43 with sound, light, or the like, so that when the external device cannot receive a biological signal, the user responds to this. It becomes possible to process. As a result, it is possible to provide a biological signal transmitter 41 that is inexpensive and highly reliable, and that can replace the film portion 42 that contacts the living body as needed.
 また、第1の実施の形態による生体信号送信装置41によれば、データ通信可能なANT53で外部から電力を受電することで、データ通信時に同時に電力の受電も行え、生体信号送信装置41の利便性が向上する。また、リーダライタ等の外部機器によって生体信号送信装置41との間でデータ通信が行えるか否かを検出することで、ボール電極59a,59dと電極パッド54a,54dとの接続状態を検出することが可能になる。このため、リーダライタ等の外部機器でデータ通信が行えず、一列の両端に配置されるボール電極59a,59dと電極パッド54a,54dとの間のオープン接触不良が判明した場合、生体信号を外部機器で受信できないことが分かり、ユーザ側でこれに対応する処理をすることが可能になる。 In addition, according to the biological signal transmission device 41 according to the first embodiment, by receiving power from the outside with the ANT 53 capable of data communication, power can be received at the same time during data communication, and the convenience of the biological signal transmission device 41 is achieved. Improves. Further, by detecting whether or not data communication can be performed with the biological signal transmission device 41 by an external device such as a reader / writer, the connection state between the ball electrodes 59a and 59d and the electrode pads 54a and 54d is detected. Is possible. For this reason, data communication cannot be performed with an external device such as a reader / writer, and when a poor open contact between the ball electrodes 59a and 59d and the electrode pads 54a and 54d arranged at both ends of a line is found, a biosignal is externally transmitted. It is understood that the device cannot receive the signal, and the user can perform processing corresponding to this.
 また、第1の実施の形態による生体信号送信装置41によれば、本体部43のフィルム部42への固着は、フィルム部42に形成されているダミー電極57に案内されて行われる。このため、本体部43側に設けられたボール電極59a,59b,59c,59dとフィルム部42側に設けられた電極パッド54a,54b,54c,54dとの相互位置が容易に正確に位置決めされて、本体部43とフィルム部42とは容易かつ迅速かつ的確に電気的に接続される。 Further, according to the biological signal transmission device 41 according to the first embodiment, the main body 43 is fixed to the film part 42 while being guided by the dummy electrode 57 formed on the film part 42. For this reason, the mutual positions of the ball electrodes 59a, 59b, 59c, 59d provided on the main body 43 side and the electrode pads 54a, 54b, 54c, 54d provided on the film portion 42 side are easily and accurately positioned. The main body portion 43 and the film portion 42 are electrically connected easily, quickly and accurately.
 また、第1の実施の形態による生体信号送信装置41によれば、ANT53に受電される電圧が変動しても、生体信号を検出処理するECG64およびTemp.67に供給される電圧はREG63によって一定値に保たれる。このため、生体信号を検出処理するECG64およびTemp.67は安定して動作することができ、生体信号を正確で再現性高く計測することが可能になる。 Further, according to the biological signal transmission device 41 according to the first embodiment, even if the voltage received by the ANT 53 varies, ECG 64 and Temp. The voltage supplied to 67 is kept constant by the REG 63. For this reason, ECG64 and Temp. 67 can operate stably, and can measure a biological signal accurately and with high reproducibility.
 図8は、本発明の第2の実施の形態による生体信号送信装置41Aの概略構成を示すブロック構成図である。なお、同図において図7と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 8 is a block configuration diagram showing a schematic configuration of a biological signal transmission device 41A according to the second embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第2の実施の形態による生体信号送信装置41Aは、ANT53とは別に本体部43にWiFiまたはBAN(Body Area Network)回路71を備えている点、フィルム部42に大容量キャパシタ(Film CAP)72を備えている点、および、本体部43に備えられていたNTCサーミスタ66がフィルム部42に設けられている点が、第1の実施の形態による生体信号送信装置41と相違する。 The biological signal transmission device 41A according to the second embodiment includes a WiFi or BAN (BodyBArea Network) circuit 71 in the main body 43 separately from the ANT53, and a large capacity capacitor (Film CAP) 72 in the film unit 42. And the point that the NTC thermistor 66 provided in the main body portion 43 is provided in the film portion 42 is different from the biological signal transmission device 41 according to the first embodiment.
 WiFi/BAN回路71は低消費電力(Low Energy)ICによって構成され、生体信号を外部機器へ送信する無線通信回路を構成する。Film CAP72は、印刷工法等で形成され、本体部43に備えられたEDLC61または2次電池を補助する機能を有している。生体信号送信装置41Aは、Film CAP72をEDLC61または2次電池と電気的に接続するために、フィルム部42側に電極パッド54e,54f、本体部43側にボール電極59e,59fを備える。なお、Film CAP72に代えて、1次電池またはリチウムポリマー2次電池を印刷工法等で形成する構成にすることもできる。また、生体信号送信装置41Aは、NTCサーミスタ66をTemp.67と電気的に接続するために、フィルム部42側に電極パッド54g,54h、本体部43側にボール電極59g,59hを備える。 The WiFi / BAN circuit 71 is configured by a low power consumption (IC) IC, and configures a wireless communication circuit that transmits a biological signal to an external device. The film CAP 72 is formed by a printing method or the like and has a function of assisting the EDLC 61 or the secondary battery provided in the main body 43. The biological signal transmission device 41A includes electrode pads 54e and 54f on the film part 42 side and ball electrodes 59e and 59f on the body part 43 side in order to electrically connect the Film CAP 72 with the EDLC 61 or the secondary battery. In place of Film に CAP72, a primary battery or a lithium polymer secondary battery may be formed by a printing method or the like. In addition, the biological signal transmission device 41A sets the NTC thermistor 66 to Temp. In order to be electrically connected to 67, electrode pads 54g and 54h are provided on the film part 42 side, and ball electrodes 59g and 59h are provided on the main body part 43 side.
 フィルム部42側の電極パッド54a~54hおよび本体部43側のボール電極59a~59hは一列に配置され、ANT53とハーベストIC62との間を電気的に接続する電極パッド54a、54dおよびボール電極59a,59dは一列の両端に配置される。また、一列の両端に配置されるボール電極59a,59dの突出高さは、一列の内側に配置されるボール電極59b,59c,59e~59hの突出高さよりも低く、かつ、固着材58の高さよりも高く、形成される。または、一列の両端に配置される電極パッド54a、54dの突出高さは、一列の内側に配置される電極パッド54b,54c,54e~54hの突出高さよりも低く、かつ、固着材58の高さよりも高く、形成される。 The electrode pads 54a to 54h on the film part 42 side and the ball electrodes 59a to 59h on the main body part 43 side are arranged in a row, and the electrode pads 54a and 54d and the ball electrodes 59a that electrically connect the ANT 53 and the harvest IC 62 to each other. 59d is arranged at both ends of one row. Further, the protruding heights of the ball electrodes 59a, 59d arranged at both ends of the row are lower than the protruding heights of the ball electrodes 59b, 59c, 59e to 59h arranged inside the row, and the height of the fixing material 58 is high. Higher than that, formed. Alternatively, the protruding heights of the electrode pads 54a and 54d arranged at both ends of the row are lower than the protruding heights of the electrode pads 54b, 54c and 54e to 54h arranged inside the row, and the height of the fixing material 58 is high. Higher than that, formed.
 このような第2の実施の形態による生体信号送信装置41Aによれば、第1の実施の形態による生体信号送信装置41と同様な作用効果が奏されると共に、ANT53による通信が行えない場合でも、WiFi/BAN回路71によって生体信号をリアルタイムに外部機器へ送信することができる。外部機器との通信手段として本体部43側のWiFi/BAN回路71を用いる場合、ANT53を非接触受電用として使用することができる。 According to the biological signal transmission device 41A according to the second embodiment as described above, the same effects as the biological signal transmission device 41 according to the first embodiment can be obtained, and even when communication by the ANT53 cannot be performed. The bio-signal can be transmitted to the external device in real time by the WiFi / BAN circuit 71. When the WiFi / BAN circuit 71 on the main body 43 side is used as a communication means with an external device, the ANT 53 can be used for non-contact power reception.
 また、WiFi/BAN回路71によるWiFiやBluetooth(登録商標)などによるデータパケット通信時に、回路内のパワーアンプ(PA)などがバースト動作するのに起因して瞬間的に消費電流が増大し、本体部43に備えられたEDLC61または2次電池に蓄電された電力が足りなくなっても、フィルム部42に備えられるFilm CAP72または1次電池またはリチウムポリマー2次電池により、不足分が補われる。このため、本体部43に備えられたEDLC61または2次電池のみでは供給できない電流容量を超えた電力の瞬間的な使用が可能になり、不必要に大きな蓄電容量を持つEDLC61または2次電池を本体部43に搭載する必要がなくなる。このため、大きな瞬間的な消費電流の供給能力を確保しながら、本体部43の小型化および低コスト化を図ることが可能になる。 In addition, during the data packet communication by WiFi / Bluetooth (registered trademark) by the WiFi / BAN circuit 71, the power amplifier (PA) in the circuit performs a burst operation, resulting in an instantaneous increase in current consumption. Even if the electric power stored in the EDLC 61 or the secondary battery provided in the unit 43 is insufficient, the shortage is compensated by the FilmFiCAP 72 or the primary battery or the lithium polymer secondary battery provided in the film unit 42. For this reason, it is possible to instantaneously use power exceeding the current capacity that cannot be supplied only by the EDLC 61 or the secondary battery provided in the main body 43, and the EDLC 61 or the secondary battery having an unnecessarily large storage capacity is installed in the main body. It is not necessary to mount the unit 43. For this reason, it is possible to reduce the size and cost of the main body 43 while securing a large instantaneous current consumption supply capability.
 また、一方のNTCサーミスタ66が生体に極近いフィルム部42側に設けられ、生体の体温をより正確に計測できるので、NTCサーミスタ65およびNTCサーミスタ66によって計測される各体温から算出される深部体温もより正確なものとなる。 In addition, since one NTC thermistor 66 is provided on the side of the film part 42 that is very close to the living body and the body temperature of the living body can be measured more accurately, the deep body temperature calculated from each body temperature measured by the NTC thermistor 65 and the NTC thermistor 66. Will be more accurate.
 図9は、本発明の第3の実施の形態による生体信号送信装置41Bの概略構成を示すブロック構成図である。なお、同図において図7と同一または相当する部分には同一符号を付してその説明は省略する。 FIG. 9 is a block configuration diagram showing a schematic configuration of a biological signal transmission device 41B according to the third embodiment of the present invention. In the figure, the same or corresponding parts as in FIG.
 第3の実施の形態による生体信号送信装置41Bは、EDLC61または2次電池と生体温度を計測するNTCサーミスタ65以外の全ての回路が、印刷工法や部品実装によってフィルム部42に構成されている点が、第1の実施の形態による生体信号送信装置41と相違する。 In the biological signal transmission device 41B according to the third embodiment, all the circuits other than the EDLC 61 or the secondary battery and the NTC thermistor 65 for measuring the biological temperature are configured in the film unit 42 by a printing method or component mounting. However, it is different from the biological signal transmission device 41 according to the first embodiment.
 生体信号送信装置41Bは、NTCサーミスタ65をTemp.67と電気的に接続するために、フィルム部42側に電極パッド54i,54j、本体部43側にボール電極59i,59jを備える。また、EDLC61または2次電池をハーベストIC62と電気的に接続するために、フィルム部42側に電極パッド54k,54l、本体部43側にボール電極59k,59lを備える。EDLC61または2次電池およびNTCサーミスタ65には表面実装タイプでなくリードタイプの部品が使用され、回路基板を使うことなく、NTCサーミスタ65のリード線は直接電極パッド54i,54j、EDLC61または2次電池のリード線は直接ボール電極59i,59jに接続されて、EDLC61または2次電池とNTCサーミスタ65とは本体部43に設けられている。また、生体信号送信装置41Bは、ハーベストIC62とANT53との間、およびECG64と一対の心電用電極51,51との間が電極を介することなく、直接接続されている。 The biological signal transmission device 41B connects the NTC thermistor 65 to Temp. In order to be electrically connected to 67, electrode pads 54i and 54j are provided on the film part 42 side, and ball electrodes 59i and 59j are provided on the main body part 43 side. In order to electrically connect the EDLC 61 or the secondary battery to the harvest IC 62, electrode pads 54k and 54l are provided on the film part 42 side, and ball electrodes 59k and 59l are provided on the body part 43 side. The EDLC 61 or the secondary battery and the NTC thermistor 65 use lead type components instead of the surface mount type, and the lead wire of the NTC thermistor 65 is directly connected to the electrode pads 54i and 54j, the EDLC 61 or the secondary battery without using a circuit board. The lead wires are directly connected to the ball electrodes 59i and 59j, and the EDLC 61 or the secondary battery and the NTC thermistor 65 are provided in the main body 43. Further, in the biological signal transmission device 41B, the harvest IC 62 and the ANT 53 and the ECG 64 and the pair of electrocardiographic electrodes 51 and 51 are directly connected without interposing electrodes.
 フィルム部42側の電極パッド54i~54lおよび本体部43側のボール電極59i~59lは一列に配置され、EDLC61または2次電池とハーベストIC62との間を電気的に接続する電極パッド54k,54lおよびボール電極59k,59lは一列の両端に配置される。また、一列の両端に配置されるボール電極59k,59lの突出高さは、一列の内側に配置されるボール電極59i,59jの突出高さよりも低く、かつ、固着材58の高さよりも高く、形成される。または、一列の両端に配置される電極パッド54k,54lの突出高さは、一列の内側に配置される電極パッド54i,54jの突出高さよりも低く、かつ、固着材58の高さよりも高く、形成される。 The electrode pads 54i to 54l on the film part 42 side and the ball electrodes 59i to 59l on the main body part 43 side are arranged in a row, and electrode pads 54k, 54l for electrically connecting the EDLC 61 or the secondary battery and the harvest IC 62, and The ball electrodes 59k and 59l are arranged at both ends of the line. Further, the protruding heights of the ball electrodes 59k, 59l arranged at both ends of the row are lower than the protruding heights of the ball electrodes 59i, 59j arranged inside the row, and higher than the height of the fixing member 58, It is formed. Alternatively, the protruding height of the electrode pads 54k and 54l arranged at both ends of the row is lower than the protruding height of the electrode pads 54i and 54j arranged inside the row and higher than the height of the fixing member 58, It is formed.
 このような第3の実施の形態による生体信号送信装置41Bによっても、第1の実施の形態による生体信号送信装置41と同様な作用効果が奏される。さらに、第3の実施の形態による生体信号送信装置41Bによれば、本体部43には、EDLC61または2次電池とNTCサーミスタ65とだけが設けられる。このため、本体部43の組み立ては容易になり、しかも、本体部43のサイズは小型化するので、本体部43の製造コストは低減される。また、本体部43に備えられる部品数は少なくなるので、本体部43とフィルム部42とを電気的に接続するための電極の必要個数も、第2の実施の形態による生体信号送信装置41Aよりも少なくなる。この結果、生体信号送信装置41Bのトータルの製造コストは低減される。また、回路基板を使うことなくEDLC61または2次電池とNTCサーミスタ65とが本体部43に設けられるので、本体部43の製造コストはさらに低減される。このため、生体信号送信装置41のトータルの製造コストは一層低減される。 Also by the biological signal transmission device 41B according to the third embodiment, the same operational effects as the biological signal transmission device 41 according to the first embodiment are exhibited. Furthermore, according to the biological signal transmission device 41B according to the third embodiment, the main body 43 is provided with only the EDLC 61 or the secondary battery and the NTC thermistor 65. For this reason, the assembly of the main body 43 is facilitated, and the size of the main body 43 is reduced, so that the manufacturing cost of the main body 43 is reduced. In addition, since the number of components provided in the main body 43 is reduced, the necessary number of electrodes for electrically connecting the main body 43 and the film part 42 is also greater than that of the biological signal transmission device 41A according to the second embodiment. Less. As a result, the total manufacturing cost of the biological signal transmission device 41B is reduced. In addition, since the EDLC 61 or the secondary battery and the NTC thermistor 65 are provided in the main body 43 without using a circuit board, the manufacturing cost of the main body 43 is further reduced. For this reason, the total manufacturing cost of the biological signal transmitter 41 is further reduced.
 41,41A,41B…生体信号送信装置
 42…本体部
 43…フィルム部(使い捨て可能部)
 51…心電用電極
 53…ハーベスト・アンテナ(Harvest・ANT)
 54a~54l…電極パッド(使い捨て側電極)
 55,56…配線
 57…ダミー電極(マーク)
 58…固着材
 59a~59l…ボール電極(本体側電極)
 61…電気二重層キャパシタ(EDLC)
 62…ハーベスト(Harvest)IC
 63…REG(電圧安定化回路)
 64…心電計測回路(ECG:アナログセンサ回路)
 65,66…NTCサーミスタ
 67…温度計測回路(Temp.:アナログセンサ回路)
 68…マイクロコントロールユニット(MCU)
 71…WiFi/BAN回路(無線通信回路)
 72…大容量キャパシタ(Film CAP)
41, 41A, 41B ... biological signal transmitter 42 ... main body 43 ... film part (disposable part)
51 ... Electrocardiogram electrode 53 ... Harvest antenna
54a to 54l ... Electrode pads (disposable electrodes)
55, 56 ... wiring 57 ... dummy electrode (mark)
58 ... Adhesive material 59a to 59l ... Ball electrode (main body side electrode)
61 ... Electric double layer capacitor (EDLC)
62 ... Harvest IC
63 ... REG (voltage stabilization circuit)
64 ... ECG measurement circuit (ECG: analog sensor circuit)
65, 66 ... NTC thermistor 67 ... Temperature measurement circuit (Temp .: Analog sensor circuit)
68 ... Micro Control Unit (MCU)
71 ... WiFi / BAN circuit (wireless communication circuit)
72 ... Large Capacitor (Film CAP)

Claims (11)

  1.  少なくとも2次電池またはキャパシタを備えた本体部と、生体に装着されて生体から生体信号を入力する使い捨て可能部と、前記本体部と前記使い捨て可能部とを電気的に接続する前記本体部側に設けられた本体側電極および前記使い捨て可能部側に設けられた使い捨て側電極とから構成され、
     外部から非接触で電力を受電して前記2次電池またはキャパシタに給電する非接触受電回路を前記使い捨て可能部に備え、
     生体から入力した生体信号を前記2次電池またはキャパシタに蓄えられた電力を使用して外部機器へ送信する生体信号送信装置。
    A main body provided with at least a secondary battery or a capacitor; a disposable part that is attached to a living body and receives a biological signal from the living body; and the main body part that electrically connects the main body part and the disposable part The main body side electrode provided and the disposable side electrode provided on the disposable part side,
    The disposable part includes a non-contact power receiving circuit that receives power from the outside in a non-contact manner and supplies power to the secondary battery or capacitor,
    A biological signal transmitter that transmits a biological signal input from a living body to an external device using electric power stored in the secondary battery or capacitor.
  2.  前記本体側電極は導電材が前記本体部から突出して形成され、前記使い捨て側電極は導電材が前記使い捨て可能部から突出して形成されることを特徴とする請求項1に記載の生体信号送信装置。 2. The biological signal transmission device according to claim 1, wherein the main body side electrode is formed with a conductive material protruding from the main body portion, and the disposable side electrode is formed with a conductive material protruding from the disposable portion. .
  3.  前記本体側電極および前記使い捨て側電極は一列に配置され、
     前記本体部と前記使い捨て可能部とは、対向する前記本体側電極および前記使い捨て側電極が接触した状態で、前記一列に配置された前記本体側電極および前記使い捨て側電極の周囲で固着材によって相互に固定され、
     前記本体側電極および前記使い捨て側電極のいずれか一方は、前記一列の両端に配置されたものが前記一列の内側に配置されたものよりも突出高さが低く、かつ、前記固着材の高さよりも高く形成される
     ことを特徴とする請求項1または請求項2に記載の生体信号送信装置。
    The main body side electrode and the disposable side electrode are arranged in a line,
    The main body part and the disposable part are mutually attached by a fixing material around the main body side electrode and the disposable side electrode arranged in a row in a state where the opposing main body side electrode and the disposable side electrode are in contact with each other. Fixed to
    Any one of the main body side electrode and the disposable side electrode has a protruding height lower than that of the one arranged at both ends of the row and the height of the fixing material than those arranged inside the row. The biological signal transmission device according to claim 1, wherein the biological signal transmission device is formed to be higher.
  4.  前記2次電池またはキャパシタと前記非接触受電回路との間を接続する前記本体側電極および前記使い捨て側電極は前記一列の両端に配置されることを特徴とする請求項3に記載の生体信号送信装置。 The biological signal transmission according to claim 3, wherein the main body side electrode and the disposable side electrode that connect between the secondary battery or capacitor and the non-contact power receiving circuit are disposed at both ends of the row. apparatus.
  5.  前記非接触受電回路は、電力を受電すると共に生体信号を前記外部機器へ送信するデータ通信可能なアンテナであることを特徴とする請求項1から請求項4のいずれか1項に記載の生体信号送信装置。 5. The biological signal according to claim 1, wherein the non-contact power receiving circuit is an antenna capable of data communication that receives electric power and transmits a biological signal to the external device. Transmitter device.
  6.  前記アンテナとは別に生体信号を前記外部機器へ送信する無線通信回路を備えることを特徴とする請求項5に記載の生体信号送信装置。 6. The biological signal transmission device according to claim 5, further comprising a wireless communication circuit that transmits a biological signal to the external device separately from the antenna.
  7.  前記本体部に備えられた前記2次電池またはキャパシタを補助するキャパシタまたは1次電池または2次電池を前記使い捨て可能部に備えることを特徴とする請求項6に記載の生体信号送信装置。 The biosignal transmission device according to claim 6, wherein the disposable part includes a capacitor, a primary battery, or a secondary battery that assists the secondary battery or capacitor provided in the main body part.
  8.  前記本体部と前記使い捨て可能部との相互位置を案内するマークが前記使い捨て可能部に形成されていることを特徴とする請求項1から請求項7のいずれか1項に記載の生体信号送信装置。 The biosignal transmission device according to any one of claims 1 to 7, wherein a mark for guiding a mutual position between the main body portion and the disposable portion is formed on the disposable portion. .
  9.  生体信号を検出処理するアナログセンサ回路に供給される電圧を一定値に保つ電圧安定化回路を備えることを特徴とする請求項1から請求項8のいずれか1項に記載の生体信号送信装置。 The biological signal transmission device according to any one of claims 1 to 8, further comprising a voltage stabilization circuit that maintains a voltage supplied to an analog sensor circuit that detects and processes the biological signal at a constant value.
  10.  前記2次電池またはキャパシタと生体信号を計測するセンサ以外の回路が前記使い捨て可能部に形成されることを特徴とする請求項1から請求項9のいずれか1項に記載の生体信号送信装置。 10. The biological signal transmission device according to claim 1, wherein a circuit other than the secondary battery or the capacitor and a sensor that measures a biological signal is formed in the disposable part. 11.
  11.  前記2次電池またはキャパシタと生体信号を計測する前記センサとは回路基板を使うことなく前記本体部に設けられることを特徴とする請求項10に記載の生体信号送信装置。 The biological signal transmission device according to claim 10, wherein the secondary battery or capacitor and the sensor for measuring a biological signal are provided in the main body without using a circuit board.
PCT/JP2016/051535 2015-01-30 2016-01-20 Biosignal transmission device WO2016121592A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571969A JP6365693B2 (en) 2015-01-30 2016-01-20 Biological signal transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015017584 2015-01-30
JP2015-017584 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121592A1 true WO2016121592A1 (en) 2016-08-04

Family

ID=56543209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051535 WO2016121592A1 (en) 2015-01-30 2016-01-20 Biosignal transmission device

Country Status (2)

Country Link
JP (1) JP6365693B2 (en)
WO (1) WO2016121592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528201A (en) * 2018-06-29 2021-10-21 コアラ−ライフ アクチエボラグ Electrode extension assembly for portable ECG and PCG sensor devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1070479A2 (en) * 1999-07-19 2001-01-24 Altec Incorporated Biosignal monitoring system and method
US6577893B1 (en) * 1993-09-04 2003-06-10 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
WO2006009767A1 (en) * 2004-06-18 2006-01-26 Neuronetrix, Inc Wireless electrode for biopotential measurement
JP2007125104A (en) * 2005-11-01 2007-05-24 Kyokko Denki Kk Sensor signal interface device and interface system for robot using the same
WO2010029966A1 (en) * 2008-09-10 2010-03-18 国立大学法人筑波大学 Wearing tool for measuring biological signal, and wearing-type motion assisting device
JP2012515329A (en) * 2009-01-13 2012-07-05 ラボラトワール ユルゴ Interface pressure measurement system
JP2012135626A (en) * 2005-03-09 2012-07-19 Cutisense As Three-dimensional adhesive device having microelectronic system embedded therein

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577893B1 (en) * 1993-09-04 2003-06-10 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
EP1070479A2 (en) * 1999-07-19 2001-01-24 Altec Incorporated Biosignal monitoring system and method
WO2006009767A1 (en) * 2004-06-18 2006-01-26 Neuronetrix, Inc Wireless electrode for biopotential measurement
JP2012135626A (en) * 2005-03-09 2012-07-19 Cutisense As Three-dimensional adhesive device having microelectronic system embedded therein
JP2007125104A (en) * 2005-11-01 2007-05-24 Kyokko Denki Kk Sensor signal interface device and interface system for robot using the same
WO2010029966A1 (en) * 2008-09-10 2010-03-18 国立大学法人筑波大学 Wearing tool for measuring biological signal, and wearing-type motion assisting device
JP2012515329A (en) * 2009-01-13 2012-07-05 ラボラトワール ユルゴ Interface pressure measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021528201A (en) * 2018-06-29 2021-10-21 コアラ−ライフ アクチエボラグ Electrode extension assembly for portable ECG and PCG sensor devices
JP7258921B2 (en) 2018-06-29 2023-04-17 コアラ-ライフ アクチエボラグ Electrode Extension Assembly for Portable ECG and PCG Sensor Devices

Also Published As

Publication number Publication date
JP6365693B2 (en) 2018-08-01
JPWO2016121592A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
US11633110B2 (en) Biological data measurement device
US9583256B2 (en) Three-dimensional wireless charging coil
US10418755B2 (en) Cable unit for connecting devices to enable wireless exchange of data and/or power between them
EP3345281B1 (en) Connector and device for wireless transmission of data and/or power
US20180263557A1 (en) Battery module for wireless exchange of data and power
KR101674579B1 (en) Electrode for living body and device for detecting living signal
KR20180036768A (en) Physical parameter monitoring device
EP3566320B1 (en) Device for wireless transmission of data and/or power
US10483805B2 (en) Device for wireless transmission of data and power
US10623061B2 (en) Stackable connector and device for wireless transmission of power
US20180206729A1 (en) Wearable patch comprising three electrodes for measurement and charging
US20200046270A1 (en) Medical sensor system, in particular continuous glucose monitoring system
US20220079438A1 (en) Patch-type thermometer and system therefor
KR102064361B1 (en) patch type sensor module
JP6365693B2 (en) Biological signal transmitter
US20190021658A1 (en) Dual purpose wearable patch for measurement and treatment
KR20180135673A (en) patch type sensor module
KR20220015892A (en) Clip type signal sensing tag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743196

Country of ref document: EP

Kind code of ref document: A1