WO2016121418A1 - Stirling refrigerator - Google Patents

Stirling refrigerator Download PDF

Info

Publication number
WO2016121418A1
WO2016121418A1 PCT/JP2016/050127 JP2016050127W WO2016121418A1 WO 2016121418 A1 WO2016121418 A1 WO 2016121418A1 JP 2016050127 W JP2016050127 W JP 2016050127W WO 2016121418 A1 WO2016121418 A1 WO 2016121418A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacer
working gas
expander
regenerator
central axis
Prior art date
Application number
PCT/JP2016/050127
Other languages
French (fr)
Japanese (ja)
Inventor
中野 恭介
善勝 平塚
健太 湯本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015015571A external-priority patent/JP2016138737A/en
Priority claimed from JP2015019457A external-priority patent/JP6433318B2/en
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2016121418A1 publication Critical patent/WO2016121418A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a Stirling refrigerator.
  • the split Stirling refrigerator includes a compressor, an expander, and a connecting pipe that connects the compressor to the expander.
  • the connecting pipe is connected to the side of the expander and communicates with the working gas receiving chamber of the expander.
  • the expander is provided with a regenerator. The working gas flows from the outlet of the connecting pipe into the regenerator through the working gas receiving chamber.
  • the working gas When working gas flows into the expander from the compressor, the working gas is ejected from the outlet of the connecting pipe into the working gas receiving chamber.
  • the ejected gas is directed toward a certain region of the gas receiving chamber, for example, a region opposite to the connecting pipe outlet by virtue of the momentum. Therefore, the gas flow rate flowing into the regenerator from that region can be larger than the gas flow rate flowing into the regenerator from another region, for example, the region on the connection pipe side.
  • drift is generated in the regenerator. That is, a location where the gas flow rate is relatively high and a location where the gas flow rate is relatively small are generated in the regenerator, and as a result, a temperature difference may occur between these regions.
  • Such a non-uniform regenerator temperature distribution causes a decrease in performance of the regenerator.
  • the drift can be prominent when the operating frequency of the refrigerator is high or when the refrigerator is large.
  • One exemplary purpose of one aspect of the present invention is to mitigate the drift of working gas that can occur in a regenerator of a Stirling refrigerator.
  • a Stirling refrigerator that includes an expander, a compressor, and a connecting pipe that connects the compressor to the expander.
  • the expander is a displacer extending in the axial direction, the displacer facing the working gas expansion space on one end side in the axial direction and facing the working gas compression space on the other end side in the axial direction, and the displacer in the axial direction.
  • a regenerator that is disposed around the displacer so as to guide the reciprocating movement of the displacer and forms a working gas flow path between the working gas compression space and the working gas expansion space, and contains the displacer and the regenerator.
  • An expander container that has a connection port that is formed at a first circumferential position and connects the working gas compression space to the connection pipe, and extends in the circumferential direction from the connection port to define the working gas compression space.
  • An expander container including an enclosing container portion.
  • a first working gas region of the working gas compression space is formed between the connection port and the displacer at the first circumferential position, and the first working gas region is formed at the connection port at the first circumferential position.
  • the displacer has a first radial width.
  • a second working gas region of the working gas compression space is formed between the container portion and the displacer at a second circumferential position different from the first circumferential position, and the second working gas region is the second working gas region.
  • a second radial width is provided between the container portion and the displacer at a circumferential position. The second radial width is smaller than the first radial width.
  • a Stirling refrigerator that includes an expander, a compressor, and a connecting pipe that connects the compressor to the expander.
  • the expander is a regenerator extending in the direction of the central axis, and the working gas expansion space located on one end side of the regenerator in the direction of the central axis and the regenerator in the direction of the central axis.
  • a regenerator that forms a working gas flow path between the working gas compression space located on the end side, and an expander container that accommodates the regenerator, the container having a container portion surrounding the working gas compression space A container.
  • connection pipe is connected to the compressor at one end and has a main pipe having a branching part at the other end, a first branch pipe branched from the main pipe at the branching part, and a first branch pipe branched from the main pipe at the branching part.
  • the container portion is formed on one side with respect to the central axis and connected to the first branch pipe, and is formed on the other side with respect to the central axis and connected to the second branch pipe.
  • a second connection port is formed on one side with respect to the central axis and connected to the first branch pipe, and is formed on the other side with respect to the central axis and connected to the second branch pipe.
  • a Stirling refrigerator including an expander, at least one compressor, and at least one connection pipe connecting the at least one compressor to the expander.
  • the expander is a regenerator extending in the direction of the central axis, and the working gas compression space located on one end side of the regenerator in the direction of the central axis and the other of the regenerator in the direction of the central axis.
  • a regenerator that forms a working gas flow path between a working gas expansion space located on the end side, and an expander container that houses the regenerator, the container having a container portion surrounding the working gas compression space
  • the container portion is formed on one side with respect to the central axis and connected to the connecting pipe, and the second connection is formed on the other side with respect to the central axis and connected to the connecting pipe. And a mouth.
  • FIG. 1 is a diagram schematically showing a Stirling refrigerator 10 according to the first embodiment of the present invention.
  • the Stirling refrigerator 10 includes a compressor 11, a connecting pipe 12, and an expander 13.
  • the Stirling refrigerator 10 is a split type Stirling refrigerator.
  • the compressor 11 includes a compressor case 14.
  • the compressor case 14 is a pressure vessel configured to hold a high-pressure working gas in an airtight manner.
  • the working gas is, for example, helium gas.
  • the compressor 11 includes a compressor unit that is accommodated in the compressor case 14.
  • the compressor unit includes a compressor piston and a compressor cylinder, one of which is a movable member 15 configured to reciprocate in the compressor case 14 and the other is fixed to the compressor case 14. It is a stationary member.
  • the compressor unit includes a drive source for moving the movable member 15 relative to the compressor case 14 in a direction along the central axis of the movable member 15.
  • the compressor 11 includes a support portion 16 that supports the movable member 15 on the compressor case 14 so that the movable member 15 can reciprocate.
  • the movable member 15 vibrates with respect to the compressor case 14 and the stationary member with a certain amplitude and frequency. As a result, the volume and pressure of the working gas in the compressor 11 also vibrate with
  • a working gas chamber is formed between the compressor piston and the compressor cylinder.
  • This working gas chamber is connected to one end of the connection pipe 12 through a communication passage formed in the stationary member and the compressor case 14 described above.
  • the other end of the connection pipe 12 is connected to the working gas receiving chamber of the expander 13.
  • the working gas chamber of the compressor 11 is connected to the working gas receiving chamber of the expander 13 by the connecting pipe 12.
  • the expander 13 includes an expander container 20, a displacer 22, and at least one support portion 40, as will be described later with reference to FIG.
  • FIG. 2 is a diagram schematically showing the expander 13 according to the first embodiment of the present invention.
  • FIG. 2 shows an outline of the internal structure of the expander 13.
  • the expander container 20 is a pressure container configured to hold a high-pressure working gas in an airtight manner.
  • This pressure vessel may be composed of a plurality of vessel parts connected to each other so as to keep the inside airtight.
  • the displacer 22 is a movable member configured to reciprocate in the expander container 20.
  • the support part 40 supports the displacer 22 on the expander container 20 so that the displacer 22 can reciprocate.
  • the expander container 20 includes a first compartment 24 and a second compartment 26.
  • the first compartment 24 includes a working gas expansion space 28 and a compression space 36 formed between the expander vessel 20 and the displacer 22.
  • a portion of the expander container 20 adjacent to the expansion space 28 is provided with a cooling stage 29 for cooling the object.
  • the cooling stage 29 is also called a cold head.
  • the second section 26 is configured to support the displacer 22 on the expander container 20 via the elastic member 30.
  • the second section 26 is adjacent to the first section 24 in the reciprocating direction of the displacer 22 (indicated by an arrow C in the figure).
  • a seal portion 25 is provided between the second compartment 26 and the first compartment 24, whereby the second compartment 26 is partitioned from the first compartment 24. Therefore, the pressure fluctuation of the working gas in the first section 24 is not transmitted to the second section 26 or does not significantly affect the pressure of the working gas in the second section 26.
  • the second compartment 26 is filled with the same type of gas as the working gas so as to have a pressure equivalent to the average pressure of the working gas flowing through the connecting pipe 12.
  • the displacer 22 includes a displacer head 32 accommodated in the first section 24 and a displacer rod 34.
  • the displacer rod 34 is a shaft portion thinner than the displacer head 32.
  • the displacer 22 has a central axis (indicated by the alternate long and short dash line A in the figure) parallel to the reciprocating direction of the displacer, and the displacer head 32 and the displacer rod 34 are provided coaxially with the central axis of the displacer 22.
  • the displacer head 32 has a cavity inside and is filled with the same kind of gas as the working gas.
  • the displacer rod 34 extends from the displacer head 32 through the seal portion 25 to the second section 26.
  • the displacer rod 34 is supported by the expander vessel 20 in the second compartment 26 to allow the displacer 22 to reciprocate.
  • the above-described seal portion 25 may be, for example, a rod seal formed between the displacer rod 34 and the expander container 20.
  • the displacer rod 34 Similar to the displacer head 32, the displacer rod 34 also has a cavity inside. The cavity of the displacer rod 34 is connected to the cavity of the displacer head 32. The distal end of the displacer rod 34 may be opened, and the internal cavity of the displacer 22 may be communicated with the second compartment 26.
  • the first section 24 forms a cylinder portion that surrounds the displacer head 32.
  • An expansion space 28 is formed between the bottom surface of the cylinder portion (that is, the inner surface of the cooling stage 29) and the distal end surface 32a of the displacer head 32.
  • the expansion space 28 is formed on the opposite side of the joint between the displacer head 32 and the displacer rod 34 in the reciprocating direction of the displacer 22.
  • a compressed gas space 36 for the working gas in the expander 13 is formed between the joint portion and the seal portion 25. Therefore, the displacer head 32 faces the expansion space 28 on one end side in the axial direction and faces the compression space 36 on the other end side in the axial direction.
  • the compression space 36 is a working gas receiving chamber of the expander 13 connected to the compressor 11 through the connection pipe 12.
  • a regenerator 38 is provided in the cylinder portion of the expander container 20 adjacent to the radially outer side of the displacer head 32.
  • the radial direction refers to a direction perpendicular to the direction of the central axis.
  • the regenerator 38 is accommodated in the expander container 20.
  • the regenerator 38 extends in the axial direction coaxially with the displacer 22 and is formed in an annular shape or a donut shape. More specifically, the regenerator 38 is provided on the side surface of the cylinder portion of the expander container 20 so as to be located in a cylindrical region having the longitudinal axis of the displacer 22 as a central axis in the outer peripheral portion of the displacer head 32. .
  • the regenerator 38 includes, for example, a wire mesh laminated structure as a regenerator material.
  • the working gas can be circulated between the expansion space 28 and the compression space 36 through a regenerator 38.
  • the expansion space 28 is located on one end side of the regenerator 38 in the direction of the central axis, and the compression space 36 is located on the other end side of the regenerator 38 in the direction of the central axis.
  • a radiator 37 is provided adjacent to the regenerator 38 between the regenerator 38 and the compression space 36 in the axial direction.
  • the radiator 37 is, for example, a water-cooled heat exchanger.
  • the radiator 37 is also formed in an annular shape or a donut shape.
  • the radiator 37 forms a cylinder part together with the regenerator 38.
  • the heat radiator 37 cools the working gas supplied from the compressor 11 and realizes heat exchange for releasing the heat to the outside of the expander 13. Since the working gas supplied from the compressor 11 to the compression space 36 generally has a temperature higher than room temperature, the radiator 37 cools the high-temperature gas to about room temperature.
  • the radiator 37 is disposed around the displacer head 32.
  • the side surface of the displacer head 32 is slidable with the inner wall portion of the radiator 37, whereby the radiator 37 can guide the reciprocating movement of the displacer head 32 in the axial direction.
  • a seal portion that prevents the working gas from flowing through the compression space 36 and the expansion space 28 may be formed between the side surface of the displacer head 32 and the inner wall portion of the radiator 37.
  • a low-temperature heat exchanger 39 is attached adjacent to the regenerator 38 between the regenerator 38 and the cooling stage 29 in the axial direction.
  • the low temperature heat exchanger 39 is disposed around the displacer tip.
  • a working gas flow path that connects the compression space 36 and the expansion space 28 is formed by a radiator 37, a regenerator 38, and a low-temperature heat exchanger 39.
  • a minute clearance may be formed between the regenerator 38 and the displacer head 32 in the radial direction.
  • a minute clearance may be formed between the low-temperature heat exchanger 39 and the displacer head 32 in the radial direction.
  • the expander 13 supports the displacer 22 on the expander container 20 so that the displacer 22 can reciprocate at a plurality of different positions in the reciprocating direction of the displacer 22.
  • the expander 13 includes two support portions 40. These two support portions 40 are provided in the second section 26.
  • the regenerator 38 and the radiator 37 are disposed around the displacer head 32 so as to guide the reciprocating movement of the displacer 22 in the direction of the central axis. Therefore, the regenerator 38 and the radiator 37 also form a support part of the displacer 22. In this way, tilting of the displacer 22 with respect to the central axis can be suppressed.
  • the support unit 40 includes the elastic member 30 described above.
  • the elastic member 30 is disposed between the displacer rod 34 and the expander container 20 so that an elastic restoring force acts on the displacer 22 when the displacer 22 is displaced from the neutral position.
  • the displacer 22 reciprocates at a natural frequency determined from the spring constant of the elastic member 30, the spring constant due to the pressure of the working gas, and the weight of the displacer 22.
  • the elastic member 30 includes, for example, a spring mechanism including at least one leaf spring.
  • the leaf spring is a spring called a flexure bearing, and is flexible in the reciprocating direction of the displacer 22 and rigid in the direction perpendicular to the reciprocating direction. Therefore, the displacer 22 is allowed to move in the direction along the central axis by the elastic member 30, but the movement in the direction orthogonal to the displacer 22 is restricted.
  • the displacer rod 34 is fixed to the elastic member 30 via the elastic member mounting portion 51.
  • a vibration system composed of the displacer 22 and the elastic member 30 is configured.
  • This vibration system is configured such that the displacer 22 vibrates at the same frequency as the vibration of the movable member 15 of the compressor 11 and has a phase difference with the vibration.
  • the displacer 22 is driven by the pulsation of the working gas pressure generated in the compression space 36 by the vibration of the movable member 15 of the compressor 11.
  • a reverse Stirling cycle is formed between the expansion space 28 and the compression space 36 by the reciprocation of the displacer 22 and the reciprocation of the movable member 15 of the compressor 11.
  • the low temperature heat exchanger 39 adjacent to the expansion space 28 is cooled.
  • the cooling stage 29 is cooled by the low-temperature heat exchanger 39, and the Stirling refrigerator 10 can cool the object.
  • the expander container 20 includes a first container part 20a, a second container part 20b, a third container part 20c, and a fourth container part 20d.
  • the cooling stage 29, the first container part 20a, the second container part 20b, the third container part 20c, and the fourth container part 20d are arranged adjacent to each other in this order, and the inside of the expander container 20 is kept airtight. Are connected to each other.
  • the expander container 20 is formed in a substantially cylindrical shape, and its side wall is formed by the first container part 20a, the second container part 20b, the third container part 20c, and the fourth container part 20d. In the axial direction, one end of the expander container 20 is closed by the cooling stage 29, and the other end is closed by the fourth container portion 20d.
  • the first container portion 20a surrounds the regenerator 38 and the low-temperature heat exchanger 39.
  • the second container portion 20 b surrounds the heat radiator 37.
  • the third container portion 20 c includes a side wall portion 52 and a bottom wall portion 54 and surrounds the compression space 36.
  • the third container portion 20 c includes a connection port 56 formed on the side wall portion 52 and connected to the connection pipe 12.
  • the fourth container portion 20 d defines a second compartment 26.
  • the side wall portion 52 of the third container portion 20c includes an outer wall portion 52a and an inner wall portion 52b.
  • the outer wall 52a and the inner wall 52b extend from the connection port 56 in the circumferential direction around the central axis.
  • the outer wall portion 52a connects the second container portion 20b to the fourth container portion 20d.
  • the inner wall portion 52 b connects the inner wall portion of the radiator 37 to the bottom wall portion 54.
  • the inner wall portion 52b partitions the compression space 36 into an outer peripheral space 36a and a central space 36b.
  • An opening 57 that connects the outer peripheral space 36a and the central space 36b is formed in the inner wall portion 52b.
  • the openings 57 are a plurality of openings arranged at equal angular intervals in the circumferential direction.
  • the opening 57 may be one or more slits extending in the circumferential direction.
  • connection port 56 is a single opening formed on one side with respect to the central axis and penetrating the outer wall 52a and the inner wall 52b in the radial direction.
  • the opening 57 is located between the connection port 56 and the radiator 37 in the axial direction.
  • the connection port 56 is formed on the bottom wall portion 54 side, and the opening 57 is formed between the connection port 56 and the radiator 37.
  • the side wall 52 is formed so as to fill an annular portion 52c surrounding a region on the bottom wall 54 side of the central space 36b. Therefore, the annular portion 52 c does not serve as a gas flow path except for the connection port 56.
  • the bottom wall portion 54 extends radially inward from the outer wall portion 52a at the joint portion between the outer wall portion 52a and the fourth container portion 20d.
  • a through hole through which the displacer rod 34 passes is formed at the center of the bottom wall portion 54.
  • a rod seal is formed between the bottom wall portion 54 and the displacer rod 34.
  • the third container portion 20c is provided with a block 58.
  • the block 58 is disposed in the central space 36b in contact with the inner wall portion 52b and the bottom wall portion 54.
  • FIG. 3 is a sectional view schematically showing the block 58 and the displacer rod 34 according to the first embodiment of the present invention.
  • This sectional view shows a section taken along a plane perpendicular to the central axis of the displacer rod 34.
  • the block 58 is a ring-shaped member extending over the entire circumference in the circumferential direction.
  • a through hole 59 through which the displacer rod 34 passes is formed at the center of the block 58.
  • the through hole 59 is a circular opening that is eccentric from the central axis of the displacer rod 34.
  • the center of the through hole 59 is located between the center of the displacer rod 34 and the connection port 56.
  • connection port 56 penetrates the block 58 at the first circumferential direction position.
  • a first working gas region 60 of the compression space 36 is formed between the connection port 56 and the displacer rod 34 at the first circumferential position.
  • the first working gas region 60 has a first radial width W1 between the connection port 56 and the displacer rod 34 at the first circumferential position.
  • the second working gas region 62 of the compression space 36 is formed between the block 58 and the displacer rod 34 at a second circumferential position different from the first circumferential position.
  • the second circumferential position is opposite to the first circumferential position with respect to the central axis of the displacer rod 34.
  • the second working gas region 62 has a second radial width W2 between the block 58 and the displacer rod 34 at the second circumferential position.
  • the second radial width W2 is smaller than the first radial width W1.
  • the second radial width W2 is smaller than 2/3 of the first radial width W1, smaller than 1/2, smaller than 1/4, or smaller than 1/8.
  • the block 58 may not be provided over the entire circumference.
  • the block 58 may be provided only in a certain circumferential range including the second circumferential position.
  • the axial thickness of the block 58 is shorter than the axial length from the bottom wall portion 54 to the opening 57. Therefore, the third working gas region formed between the opening 57 and the displacer rod 34 has the first radial width W1 at the second circumferential position.
  • the axial thickness of the block 58 may be longer than the axial length from the bottom wall portion 54 to the opening 57. In this case, an opening communicating with the opening 57 may be formed in the block 58.
  • the gas flows from the connecting pipe 12 to the central space 36b through the connecting port 56. Some gases pass through the first working gas region 60 and some other gases pass through the second working gas region 62. From there, the gas flows through the opening 57 to the outer peripheral space 36a. The gas flows from the outer peripheral space 36 a into the regenerator 38 through the radiator 37. The gas flows from the regenerator 38 into the expansion space 28 and expands. The expanded gas exits from the expander 13 to the connecting pipe 12 through the reverse path.
  • FIG. 4 is a cross-sectional view schematically showing an expander 113 of a Stirling refrigerator.
  • the expander 113 has substantially the same configuration as the expander 13 shown in FIG. 2 except that the expander 113 does not have the block 58.
  • the compression space 136 has a single connection port 156.
  • the connection port 156 is connected to the compressor 11 through the connection pipe 112.
  • the regenerator 38 is disposed around the displacer head 32 so as to guide the reciprocating movement of the displacer 22 in the direction of the central axis.
  • the regenerator 38 forms a working gas flow path between the expansion space 28 located on one axial end side and the compression space 136 located on the other axial end side.
  • the gas ejected from the compressor 11 to the compression space 136 through the connection port 156 is directed toward the wall surface 158 opposite to the connection port 156 as illustrated by the arrow 72 by the momentum.
  • the gas is directed to the radiator 37 by the wall surface 158.
  • the gas flows into the regenerator 38 through the radiator 37. Therefore, the gas flow rate flowing into the cool storage material located on the side opposite to the connection port 156 is larger than the gas flow rate flowing into the cool storage material positioned on the connection port 156 side.
  • a drift is generated inside the regenerator 38. That is, a non-uniform distribution occurs in the axial gas flow in the regenerator 38.
  • the regenerator material located on the side opposite to the connection port 156 receives more heat from the working gas than the regenerator material located on the connection port 156 side, and the regenerator 38 is circumferentially and / or radially oriented. Temperature difference occurs.
  • Such non-uniform regenerator temperature distribution may cause an increase in pressure loss and a decrease in regenerator efficiency, and may reduce the performance of the regenerator 38.
  • the drift and thus the refrigeration performance decrease can be significant when the operating frequency of the refrigerator is high or when the radial dimension of the refrigerator is large.
  • the other part of the compression space 36 is narrower than the compression space 36 adjacent to the connection port 56.
  • the second working gas region 62 is narrowed by the block 58 as compared with the first working gas region 60. Therefore, the gas flow rate flowing into the regenerator 38 from the side opposite to the connection port 56 through the second working gas region 62 can be suppressed. Therefore, the expander 13 according to the present embodiment can reduce and preferably prevent the drift of the working gas that may occur in the regenerator 38. Therefore, the temperature distribution of the regenerator 38 in the plane perpendicular to the central axis is made uniform, and the refrigeration performance is improved. This performance improvement increases as the cold head temperature decreases.
  • FIG. 5 is a diagram schematically showing an expander 13 according to another embodiment of the present invention.
  • the expander 13 shown in FIG. 5 is different from the expander 13 shown in FIG. 2 with respect to the displacer rod 34 and the third container portion 20c.
  • the expander 13 shown by FIG. 5 is the same as that of the expander 13 shown in FIG. 2, and in order to avoid redundancy, description is abbreviate
  • FIG. 6 is a cross-sectional view schematically showing a displacer rod 34 according to an embodiment of the present invention. This sectional view shows a section taken along a plane perpendicular to the central axis of the displacer rod 34.
  • the displacer rod 34 has an elliptical shape in a cross section perpendicular to the axial direction. Accordingly, the displacer rod 34 is provided with convex portions 76 directed to the inner wall portion 52b of the third container portion 20c on both radial sides.
  • the second working gas region 62 is formed between the inner wall portion 52b of the third container portion 20c and the convex portion 76.
  • the convex portion 76 is formed over an axial range corresponding to the compression space 36. Since the convex part 76 is not formed in the seal part 25, the cross section of the displacer rod 34 in the seal part 25 is circular.
  • a first working gas region 60 is formed between the connection port 56 and the displacer rod 34 at the first circumferential position.
  • the first working gas region 60 has a first radial width W1 between the connection port 56 and the displacer rod 34 at the first circumferential position.
  • the second working gas region 62 is formed between the inner wall portion 52b of the third container portion 20c and the convex portion 76 of the displacer rod 34 at a second circumferential position different from the first circumferential position.
  • the second circumferential position is a position that is 90 degrees different from the first circumferential position in the circumferential direction.
  • the second working gas region 62 has a second radial width W2 between the inner wall portion 52b and the convex portion 76 at the second circumferential position.
  • the second working gas region 62 is narrowed by the convex portion 76 as compared with the first working gas region 60. Therefore, the gas flow rate flowing into the regenerator 38 from the side opposite to the connection port 56 through the second working gas region 62 can be suppressed. Therefore, the expander 13 according to the present embodiment can reduce and preferably prevent the drift of the working gas that may occur in the regenerator 38. Therefore, the temperature distribution of the regenerator 38 in the plane perpendicular to the central axis is made uniform, and the refrigeration performance is improved.
  • the shape of the convex portion 76 is not limited to an ellipse, and may take other shapes such as an ellipse or a rectangle.
  • the circumferential position of the convex portion 76 is not limited to the illustrated example, and may be any other location.
  • the convex portion 76 may be provided only on one side of the displacer rod 34. In this case, the convex portion 76 may be directed to the side opposite to the connection port 56.
  • the displacer rod 34 may include three or more protrusions.
  • the block 58 and the convex portion 76 may be combined. That is, the expander 13 may include the third container portion 20 c including the block 58 and the displacer 22 including the convex portion 76.
  • the displacer head 32 may include a convex portion.
  • the convex portion may be formed on the surface of the displacer head 32 facing the compression space 36.
  • the second working gas region 62 may be formed between the third container portion 20 c and the convex portion of the displacer head 32.
  • FIG. 7 is a diagram schematically showing a Stirling refrigerator 1010 according to the second embodiment of the present invention.
  • the Stirling refrigerator 1010 includes a compressor 1011, a connecting pipe 1012, and an expander 1013.
  • the Stirling refrigerator 1010 is a split type Stirling refrigerator.
  • the compressor 1011 includes a compressor case 1014.
  • the compressor case 1014 is a pressure vessel configured to hold a high-pressure working gas in an airtight manner.
  • the working gas is, for example, helium gas.
  • the compressor 1011 includes a compressor unit housed in a compressor case 1014.
  • the compressor unit includes a compressor piston and a compressor cylinder, one of which is a movable member 1015 configured to reciprocate in the compressor case 1014, and the other is fixed to the compressor case 1014. It is a stationary member.
  • the compressor unit includes a drive source for moving the movable member 1015 relative to the compressor case 1014 in a direction along the central axis of the movable member 1015.
  • the compressor 1011 includes a support portion 1016 that supports the movable member 1015 on the compressor case 1014 so that the movable member 1015 can reciprocate.
  • the movable member 1015 vibrates with respect to the compressor case 1014 and the stationary member with a certain amplitude and frequency. As a result, the volume and pressure of the working gas in the compressor 1011 also vibrate with a specific amplitude and frequency.
  • a working gas chamber is formed between the compressor piston and the compressor cylinder.
  • This working gas chamber is connected to one end of the connection pipe 1012 through a communication passage formed in the stationary member and the compressor case 1014 described above.
  • the other end of the connection pipe 1012 is connected to the working gas receiving chamber of the expander 1013.
  • the working gas chamber of the compressor 1011 is connected to the working gas receiving chamber of the expander 1013 by the connecting pipe 1012.
  • the expander 1013 includes an expander container 1020, a displacer 1022, and at least one support portion 1040, as will be described later with reference to FIG.
  • FIG. 8 is a diagram schematically showing an expander 1013 according to the second embodiment of the present invention.
  • FIG. 8 shows an outline of the internal structure of the expander 1013.
  • the expander container 1020 is a pressure container configured to hold a high-pressure working gas in an airtight manner.
  • This pressure vessel may be composed of a plurality of vessel parts connected to each other so as to keep the inside airtight.
  • the displacer 1022 is a movable member configured to reciprocate within the expander container 1020.
  • the support unit 1040 supports the displacer 1022 on the expander container 1020 so that the displacer 1022 can reciprocate.
  • the expander container 1020 includes a first compartment 1024 and a second compartment 1026.
  • the first compartment 1024 includes an expansion space 1028 and a compression space 1036 for working gas formed between the expander vessel 1020 and the displacer 1022.
  • a portion of the expander container 1020 adjacent to the expansion space 1028 is provided with a cooling stage 1029 for cooling the object.
  • the cooling stage 1029 is also called a cold head.
  • the second section 1026 is configured to support the displacer 1022 on the expander container 1020 via the elastic member 1030.
  • the second section 1026 is adjacent to the first section 1024 in the reciprocating direction of the displacer 1022 (indicated by arrow C in the figure).
  • a seal portion 1025 is provided between the second compartment 1026 and the first compartment 1024, so that the second compartment 1026 is partitioned from the first compartment 1024.
  • the pressure fluctuations of the working gas in the first compartment 1024 are not transmitted to the second compartment 1026 or do not significantly affect the pressure of the working gas in the second compartment 1026.
  • the second compartment 1026 is filled with the same type of gas as the working gas so as to have a pressure equivalent to the average pressure of the working gas flowing through the connecting pipe 1012.
  • the displacer 1022 includes a displacer head 1032 accommodated in the first section 1024 and a displacer rod 1034.
  • Displacer rod 1034 is a shaft portion thinner than displacer head 1032.
  • the displacer 1022 has a central axis (indicated by the alternate long and short dash line A) in the reciprocating direction, and the displacer head 1032 and the displacer rod 1034 are provided coaxially with the central axis of the displacer 1022.
  • the displacer head 1032 has a cavity inside and is filled with the same kind of gas as the working gas.
  • Displacer rod 1034 extends from displacer head 1032 through seal 1025 to second compartment 1026.
  • the displacer rod 1034 is supported by the expander vessel 1020 in the second compartment 1026 to allow the displacer 1022 to reciprocate.
  • the seal portion 1025 described above may be a rod seal formed between the displacer rod 1034 and the expander container 1020, for example.
  • the displacer rod 1034 also has a cavity inside, similar to the displacer head 1032.
  • the cavity of the displacer rod 1034 is connected to the cavity of the displacer head 1032.
  • the distal end of the displacer rod 1034 may be open, and the internal cavity of the displacer 1022 may be in communication with the second compartment 1026.
  • the first section 1024 forms a cylinder portion that surrounds the displacer head 1032.
  • An expansion space 1028 is formed between the bottom surface of the cylinder portion (that is, the inner surface of the cooling stage 1029) and the distal end surface 1032a of the displacer head 1032.
  • the expansion space 1028 is formed on the side opposite to the joint between the displacer head 1032 and the displacer rod 1034 in the reciprocating direction of the displacer 1022.
  • a working gas compression space 1036 in the expander 1013 is formed between the joint portion and the seal portion 1025. Therefore, the displacer head 1032 faces the expansion space 1028 on one end side in the axial direction and faces the compression space 1036 on the other end side in the axial direction.
  • the compression space 1036 is a working gas receiving chamber of the expander 1013 connected to the compressor 1011 through the connection pipe 1012.
  • a regenerator 1038 is provided adjacent to the radially outer side of the displacer head 1032.
  • the radial direction refers to a direction perpendicular to the direction of the central axis.
  • the regenerator 1038 is accommodated in the expander container 1020.
  • the regenerator 1038 extends in the axial direction coaxially with the displacer 1022 and is formed in an annular or donut shape. More specifically, the regenerator 1038 is provided on the side surface of the cylinder portion of the expander container 1020 so as to be positioned in a cylindrical region around the longitudinal axis of the displacer 1022 in the outer peripheral portion of the displacer head 1032. .
  • the regenerator 1038 includes, for example, a laminated structure of wire mesh as a regenerator material.
  • the working gas can be circulated between the expansion space 1028 and the compression space 1036 through the regenerator 1038.
  • the expansion space 1028 is located on one end side of the regenerator 1038 in the direction of the central axis, and the compression space 1036 is located on the other end side of the regenerator 1038 in the direction of the central axis.
  • a radiator 1037 is provided adjacent to the regenerator 1038 between the regenerator 1038 and the compression space 1036 in the axial direction.
  • the radiator 1037 is, for example, a water-cooled heat exchanger.
  • the radiator 1037 is formed in an annular shape or a donut shape.
  • the radiator 1037 forms a cylinder part together with the regenerator 1038.
  • the heat radiator 1037 cools the working gas supplied from the compressor 1011 and realizes heat exchange for releasing the heat to the outside of the expander 1013. Since the working gas supplied from the compressor 1011 to the compression space 1036 generally has a temperature higher than room temperature, the radiator 1037 cools the high-temperature gas to about room temperature.
  • the heat radiator 1037 is disposed around the displacer head 1032.
  • the side surface of the displacer head 1032 is slidable with the inner wall portion of the radiator 1037, whereby the radiator 1037 can guide the reciprocating movement of the displacer head 1032 in the axial direction.
  • a seal portion that prevents the working gas from flowing through the compression space 1036 and the expansion space 1028 may be formed between the side surface of the displacer head 1032 and the inner wall portion of the radiator 1037.
  • a low-temperature heat exchanger 1039 is attached adjacent to the regenerator 1038 between the regenerator 1038 and the cooling stage 1029 in the axial direction.
  • the low temperature heat exchanger 1039 is disposed around the displacer tip.
  • a working gas flow path connecting the compression space 1036 and the expansion space 1028 is formed by the radiator 1037, the regenerator 1038, and the low temperature heat exchanger 1039.
  • a minute clearance may be formed between the regenerator 1038 and the displacer head 1032 in the radial direction.
  • a minute clearance may be formed between the low-temperature heat exchanger 1039 and the displacer head 1032 in the radial direction.
  • the expander 1013 supports the displacer 1022 on the expander container 1020 so that the displacer 1022 can reciprocate at a plurality of different positions in the reciprocating direction of the displacer 1022.
  • the expander 1013 includes two support portions 1040. These two support portions 1040 are provided in the second section 1026.
  • the regenerator 1038 and the radiator 1037 are disposed around the displacer head 1032 so as to guide the reciprocating movement of the displacer 1022 in the direction of the central axis.
  • the regenerator 1038 and the radiator 1037 also form a support for the displacer 1022. In this way, the tilt of the displacer 1022 with respect to the central axis can be suppressed.
  • the support portion 1040 includes the elastic member 1030 described above.
  • the elastic member 1030 is disposed between the displacer rod 1034 and the expander container 1020 so that an elastic restoring force acts on the displacer 1022 when the displacer 1022 is displaced from the neutral position. Accordingly, the displacer 1022 reciprocates at a natural frequency determined from the spring constant of the elastic member 1030, the spring constant resulting from the pressure of the working gas, and the weight of the displacer 1022.
  • the elastic member 1030 includes, for example, a spring mechanism including at least one leaf spring.
  • the leaf spring is a spring called a flexure bearing and is flexible in the reciprocating direction of the displacer 1022 and rigid in the direction perpendicular to the reciprocating direction. Accordingly, the displacer 1022 is allowed to move in the direction along the central axis by the elastic member 1030, but the movement in the direction orthogonal thereto is restricted.
  • the displacer rod 1034 is fixed to the elastic member 1030 via the elastic member mounting portion 1051.
  • a vibration system including the displacer 1022 and the elastic member 1030 is configured.
  • This vibration system is configured such that the displacer 1022 vibrates at the same frequency as the vibration of the movable member 1015 of the compressor 1011 and has a phase difference with the vibration.
  • the displacer 1022 is driven by the pulsation of the working gas pressure generated in the compression space 1036 by the vibration of the movable member 1015 of the compressor 1011.
  • a reverse Stirling cycle is formed between the expansion space 1028 and the compression space 1036 by the reciprocation of the displacer 1022 and the reciprocation of the movable member 1015 of the compressor 1011.
  • the low temperature heat exchanger 1039 adjacent to the expansion space 1028 is cooled.
  • the cooling stage 1029 is cooled by the low-temperature heat exchanger 1039, and the Stirling refrigerator 1010 can cool the object.
  • connection pipe 1012 and the expander container 1020 will be further described.
  • the connection pipe 1012 includes a main pipe 1060, a first branch pipe 1062, and a second branch pipe 1064.
  • the main pipe 1060 is connected to the compressor 1011 at one end and includes a branching portion 1066 at the other end.
  • the first branch pipe 1062 branches off from the main pipe 1060 at the branch portion 1066.
  • the second branch pipe 1064 branches from the main pipe 1060 at the branch portion 1066.
  • the expander container 1020 includes a first container part 1020a, a second container part 1020b, a third container part 1020c, and a fourth container part 1020d in addition to the cooling stage 1029.
  • the cooling stage 1029, the first container part 1020a, the second container part 1020b, the third container part 1020c, and the fourth container part 1020d are arranged adjacent to each other in this order, and the inside of the expander container 1020 is kept airtight. Are connected to each other.
  • the expander container 1020 is generally formed in a cylindrical shape, and its side wall is formed by the first container part 1020a, the second container part 1020b, the third container part 1020c, and the fourth container part 1020d. In the axial direction, one end of the expander container 1020 is closed by the cooling stage 1029, and the other end is closed by the fourth container portion 1020d.
  • the first container portion 1020a surrounds the regenerator 1038 and the low temperature heat exchanger 1039.
  • the second container portion 1020 b surrounds the heat radiator 1037.
  • the third container portion 1020 c includes a side wall portion 1052 and a bottom wall portion 1054 and surrounds the compression space 1036.
  • the side wall part 1052 connects the second container part 1020b to the fourth container part 1020d.
  • Side wall portion 1052 extends in the circumferential direction around the central axis.
  • the bottom wall portion 1054 extends radially inward from the side wall portion 1052 at the joint portion between the side wall portion 1052 and the fourth container portion 1020d.
  • a through hole through which the displacer rod 1034 passes is formed at the center of the bottom wall portion 1054.
  • a rod seal is formed between the bottom wall portion 1054 and the displacer rod 1034.
  • the fourth container portion 1020d defines a second compartment 1026.
  • the third container portion 1020c includes a first connection port 1056 formed on one side with respect to the central axis, and a second connection port 1058 formed on the other side with respect to the central axis.
  • the first connection port 1056 is formed in the side wall portion 1052.
  • the second connection port 1058 is formed in the side wall portion 1052 so as to face the first connection port 1056 across the central axis.
  • the first connection port 1056 and the second connection port 1058 are formed at intervals of 180 degrees in the circumferential direction.
  • the first connection port 1056 and the second connection port 1058 are formed point-symmetrically with respect to the central axis on a plane perpendicular to the central axis.
  • the first branch pipe 1062 is connected to the first connection port 1056.
  • the second branch pipe 1064 is connected to the second connection port 1058.
  • the first branch pipe 1062 extends from the first connection port 1056 to the branch portion 1066 outward in the radial direction.
  • the second branch pipe 1064 includes an outlet portion 1064a extending from the second connection port 1058 outward in the radial direction, and a connecting portion 1064b connecting the outlet portion 1064a to the branch portion 1066.
  • the connecting portion 1064b extends from the branch portion 1066 to the outlet portion 1064a along the outer surface of the fourth container portion 1020d.
  • the first connection port 1056 When the working gas flows from the compressor 1011 into the compression space 1036 of the expander 1013, the first connection port 1056 generates a first gas flow 1068 directed toward the central axis. At this time, the second connection port 1058 generates a second gas flow 1070 toward the central axis in the opposite direction to the first gas flow 1068.
  • the connecting pipe 1012 is connected to the expander container 1020 so as to generate a plurality of working gas flows in the compression space 1036 each directed toward the central axis of the regenerator 1038.
  • branching portion 1066 may be provided on the second connection port 1058 side.
  • the second branch pipe 1064 may extend from the second connection port 1058 to the branch portion 1066 outward in the radial direction.
  • the first branch pipe 1062 may include an outlet portion that extends radially outward from the first connection port 1056 and a connection portion that connects the outlet portion to the branch portion 1066.
  • each of the first branch pipe 1062 and the second branch pipe 1064 includes an outlet portion extending radially outward from a corresponding connection port, and a connection portion connecting the outlet portion to the branch portion 1066.
  • the first branch pipe 1062 and the second branch pipe 1064 may be configured such that the pressure loss of the working gas in the first branch pipe 1062 is equal to the pressure loss of the working gas in the second branch pipe 1064.
  • the first branch pipe 1062 and the second branch pipe 1064 may have equal paths, lengths, and / or cross-sectional areas.
  • connection portion of the first branch pipe 1062 and / or the second branch pipe 1064 may extend in the circumferential direction along the outer surface of the third container portion 1020c.
  • FIG. 9 is a cross-sectional view schematically showing an expander 1113 of a Stirling refrigerator.
  • the expander 1113 has a single connection port 1156 in the compression space 1136.
  • the connection port 1156 is connected to the compressor 1011 through a non-branching connection pipe 1112.
  • regenerator 1038 is disposed around the displacer head 1032 to guide the reciprocating movement of the displacer 1022 in the direction of the central axis.
  • the regenerator 1038 forms a working gas flow path between the expansion space 1028 located on one axial end side and the compression space 1136 located on the other axial end side.
  • the gas ejected from the compressor 1011 to the compression space 1136 through the connection port 1156 is directed toward the wall surface 1158 on the opposite side of the connection port 1156 as shown by the arrow 1072 by the momentum.
  • the gas is directed to the radiator 1037 by the wall 1158.
  • the gas flows into the regenerator 1038 through the radiator 1037. Therefore, the gas flow rate flowing into the cool storage material located on the side opposite to the connection port 1156 is larger than the gas flow rate flowing into the cool storage material positioned on the connection port 1156 side.
  • a drift is generated inside the regenerator 1038. That is, non-uniform distribution occurs in the axial gas flow in the regenerator 1038.
  • the regenerator material located on the side opposite to the connection port 1156 receives more heat from the working gas than the regenerator material located on the connection port 1156 side, and the regenerator 1038 receives the heat in the circumferential direction and / or radial direction. Temperature difference occurs.
  • Such a non-uniform regenerator temperature distribution may cause an increase in pressure loss and a decrease in regenerator efficiency, and may reduce the performance of the regenerator 1038.
  • the drift and thus the refrigeration performance decrease can be significant when the operating frequency of the refrigerator is high or when the radial dimension of the refrigerator is large.
  • the expander 1013 according to this embodiment as shown in FIG. 8, the first gas flow 1068 and the second gas flow 1070 facing the first gas flow 1070 collide with each other at the center of the compression space 1036. , The momentum is suppressed. Therefore, the expander 1013 according to the present embodiment can reduce and preferably prevent the drift of the working gas that may occur in the regenerator 1038. Therefore, the temperature distribution of the regenerator 1038 in the plane perpendicular to the central axis is made uniform, and the refrigeration performance is improved. This performance improvement increases as the cold head temperature decreases.
  • connection ports may be formed on one side with respect to the central axis of the regenerator, and one or more connection ports may be formed on the other side with respect to the central axis of the regenerator.
  • three or more connection ports may be formed.
  • the connection ports may be formed at equiangular intervals.
  • one connection port may be formed on one side, two connection ports may be formed on the other side, and these three connection ports may be formed at intervals of 120 degrees in the circumferential direction. That is, the connection ports may be arranged in a regular triangle shape when viewed in the axial direction. In this case, the connection ports do not face each other across the central axis.
  • the four connection ports may be formed at intervals of 90 degrees in the circumferential direction, the first set of connection ports facing each other across the central axis, and the second set of connection ports facing each other across the central axis.
  • the plurality of connection ports may not be formed at equiangular intervals.
  • a first group of connection ports composed of a plurality of connection ports is formed on one side with respect to the central axis of the regenerator, and a second group of connection ports composed of a plurality of connection ports is defined relative to the center axis of the regenerator It may be formed on the other side.
  • the connection ports of the first group may be arranged close to each other in the circumferential direction.
  • the connection ports of the second group may be arranged close to each other in the circumferential direction.
  • the connection port of the first group and the connection port of the second group may face each other.
  • connection port 1056, the second connection port 1058, and / or other connection ports may be formed not on the side wall portion 1052 but on the bottom wall portion 1054.
  • connection pipe corresponding to the connection port formed in the bottom wall portion 1054 may be connected to the connection port through the fourth container portion 1020d and the second section 1026.
  • the Stirling refrigerator may include a plurality of compressors 1011.
  • a connection pipe 1012 ′ and a connection port 1056 ′ may be provided for each compressor 1011.
  • the connecting pipe 1012 ′ may be a pipe that does not have a branch portion.
  • connection pipe 1012 ′ corresponding to each compressor 1011 may have a branch portion.
  • the connecting pipe 1012 ′ has a plurality of branch pipes that branch from the main pipe at the branch portion. Each of the branch pipes may be connected to a corresponding connection port.
  • the regenerator may be built in the displacer.
  • the expander container may include a container part surrounding the compression space adjacent to the displacer with a built-in regenerator.
  • the container portion may include one or more connection ports formed on one side with respect to the displacer central axis and one or more connection ports formed on the other side with respect to the displacer central axis.
  • a corresponding branch pipe or an unbranched connection pipe may be connected to each of the connection ports.
  • the Stirling refrigerator may be a Stirling pulse tube refrigerator.
  • the embodiment of the present invention can also be expressed as follows.
  • An expander, a compressor, and a connecting pipe connecting the compressor to the expander The expander is A displacer extending in the axial direction, facing the working gas expansion space on one end side in the axial direction and facing the working gas compression space on the other end side in the axial direction; A regenerator disposed around the displacer to guide reciprocating movement of the displacer in the axial direction and forming a working gas flow path between the working gas compression space and the working gas expansion space; An expander container that houses the displacer and the regenerator, and has a connection port that is formed at a first circumferential position and connects the working gas compression space to the connection pipe, and extends from the connection port in the circumferential direction.
  • An expander vessel including a vessel portion existing and surrounding the working gas compression space; A first working gas region of the working gas compression space is formed between the connection port and the displacer at the first circumferential position, and the first working gas region is formed at the connection port at the first circumferential position. And a first radial width between the displacer and A second working gas region of the working gas compression space is formed between the container portion and the displacer at a second circumferential position different from the first circumferential position, and the second working gas region is the second working gas region. Having a second radial width between the container portion and the displacer at a circumferential position; The Stirling refrigerator, wherein the second radial width is smaller than the first radial width.
  • the container portion includes a block extending in a circumferential range including the second circumferential position;
  • the displacer includes a convex portion that is directed radially toward the container portion in a cross section perpendicular to the axial direction,
  • the Stirling refrigerator according to Embodiment 1 or 2 wherein the second working gas region is formed between the container portion and the convex portion.
  • the displacer comprises a displacer head having a displacer tip surface facing the working gas expansion space, and a displacer rod extending from the displacer head in the axial direction to the working gas compression space,
  • the regenerator is disposed around the displacer head,
  • the first working gas region is formed between the connection port and the displacer rod, and the second working gas region is formed between the container portion and the displacer rod.
  • An expander, a compressor, and a connecting pipe connecting the compressor to the expander is A regenerator extending in the direction of the central axis, the working gas expansion space located on one end side of the regenerator in the direction of the central axis and the other end side of the regenerator in the direction of the central axis A regenerator that forms a working gas flow path between the working gas compression space;
  • the connecting pipe is A main pipe connected to the compressor at one end and having a branching portion at the other end; A first branch pipe branched from the main pipe at the branch portion; A second branch pipe branched from the main pipe at the branch portion, The container portion is formed on one side with respect to the central axis and connected to the first branch pipe, and is formed on the other side with respect to the central axis and connected to the second branch pipe. And a second connection port.
  • the container portion includes a side wall extending around the central axis;
  • the expander further comprises a displacer extending along the central axis,
  • the displacer includes a displacer head facing the working gas expansion space on one axial end side and facing the working gas compression space on the other axial end side,
  • the expander is A regenerator extending in the direction of the central axis, the working gas compression space located on one end side of the regenerator in the direction of the central axis and located on the other end side of the regenerator in the direction of the central axis A regenerator that forms a working gas flow path between the working gas expansion space;
  • a Stirling refrigerator having a mouth.
  • the container portion includes a side wall extending around the central axis;
  • the Stirling refrigerator includes a single compressor and a single connection pipe that connects the single compressor to the expander,
  • the connecting pipe is A main pipe connected to the compressor at one end and having a branching portion at the other end; A first branch pipe branched from the main pipe at the branch portion and connected to the first connection port;
  • the expander further comprises a displacer extending along the central axis,
  • the displacer includes a displacer head facing the working gas expansion space on one axial end side and facing the working gas compression space on the other axial end side,
  • the Stirling refrigerator according to any one of Embodiments 8 to 10, wherein the regenerator is disposed around the displacer head so as to guide reciprocal movement of the displacer in the direction of the central axis. .
  • the present invention can be used in the field of Stirling refrigerators.

Abstract

An expander (13) is provided with: a displacer (22) that extends in the axial direction; a cold accumulator (38) that is installed around the displacer (22) so as to guide reciprocation of the displacer (22) in the axial direction; and an expander case (20). The expander case (20) has a connecting port (56) that is formed at a first circumferential position and that connects a compression space (36) to a connecting pipe (12), and is provided with a case section that extends from the connecting port (56) in the circumferential direction and that surrounds the compression space (36). A first working-gas area (60) of the compression space (36) is formed, at the first circumferential position, between the connecting port (56) and the displacer (22). A second working-gas area (62) of the compression space (36) is formed, at a second circumferential position that is different from the first circumferential position, between the case section and the displacer (22). A second radial width of the second working-gas area (62) is smaller than a first radial width of the first working-gas area (60).

Description

スターリング冷凍機Stirling refrigerator
 本発明は、スターリング冷凍機に関する。 The present invention relates to a Stirling refrigerator.
 スターリング冷凍機の一種として、圧縮機の可動部と膨張機の可動部とが機械的に連結されていないスプリット式スターリング冷凍機が知られている。スプリット式スターリング冷凍機は、圧縮機と、膨張機と、圧縮機を膨張機に接続する接続管とを有する。接続管は膨張機の側部に接続され膨張機の作動ガス受入室に連通される。膨張機には蓄冷器が設けられている。作動ガスは接続管の出口から作動ガス受入室を経由して蓄冷器に流入する。 As a kind of Stirling refrigerator, a split type Stirling refrigerator in which the movable part of the compressor and the movable part of the expander are not mechanically connected is known. The split Stirling refrigerator includes a compressor, an expander, and a connecting pipe that connects the compressor to the expander. The connecting pipe is connected to the side of the expander and communicates with the working gas receiving chamber of the expander. The expander is provided with a regenerator. The working gas flows from the outlet of the connecting pipe into the regenerator through the working gas receiving chamber.
特開2000-121187号公報JP 2000-121187 A
 圧縮機から膨張機に作動ガスが流入するとき、接続管の出口から作動ガス受入室に作動ガスが噴出する。噴出したガスはその勢いによって、ガス受入室のある領域、例えば接続管出口と反対側の領域に向かう。よって、その領域から蓄冷器に流入するガス流量は、他の領域、例えば接続管の側の領域から蓄冷器に流入するガス流量よりも多くなりうる。このようにして、蓄冷器内に偏流が生成される。すなわち、蓄冷器内にガスの流量が比較的多い場所と比較的少ない場所とが生まれ、その結果、これら領域間には温度差が生じうる。このような不均一な蓄冷器温度分布は、蓄冷器の性能低下の原因となる。偏流は、冷凍機の運転周波数が高い場合や冷凍機が大型である場合に顕著となりうる。 When working gas flows into the expander from the compressor, the working gas is ejected from the outlet of the connecting pipe into the working gas receiving chamber. The ejected gas is directed toward a certain region of the gas receiving chamber, for example, a region opposite to the connecting pipe outlet by virtue of the momentum. Therefore, the gas flow rate flowing into the regenerator from that region can be larger than the gas flow rate flowing into the regenerator from another region, for example, the region on the connection pipe side. In this way, drift is generated in the regenerator. That is, a location where the gas flow rate is relatively high and a location where the gas flow rate is relatively small are generated in the regenerator, and as a result, a temperature difference may occur between these regions. Such a non-uniform regenerator temperature distribution causes a decrease in performance of the regenerator. The drift can be prominent when the operating frequency of the refrigerator is high or when the refrigerator is large.
 本発明のある態様の例示的な目的のひとつは、スターリング冷凍機の蓄冷器に生じうる作動ガスの偏流を緩和することにある。 One exemplary purpose of one aspect of the present invention is to mitigate the drift of working gas that can occur in a regenerator of a Stirling refrigerator.
 本発明のある態様によると、膨張機と、圧縮機と、前記圧縮機を前記膨張機に接続する接続管と、を備えるスターリング冷凍機が提供される。前記膨張機は 軸方向に延在するディスプレーサであって、軸方向一端側にて作動ガス膨張空間に面しかつ軸方向他端側にて作動ガス圧縮空間に面するディスプレーサと 前記軸方向における前記ディスプレーサの往復移動を案内するよう前記ディスプレーサの周囲に配設され、前記作動ガス圧縮空間と前記作動ガス膨張空間との間の作動ガス流路を形成する蓄冷器と 前記ディスプレーサ及び前記蓄冷器を収容する膨張機容器であって、第1周方向位置に形成され前記作動ガス圧縮空間を前記接続管に接続する接続口を有し、前記接続口から周方向に延在し前記作動ガス圧縮空間を囲む容器部分を含む膨張機容器と、を備える。前記作動ガス圧縮空間の第1作動ガス領域が前記第1周方向位置において前記接続口と前記ディスプレーサとの間に形成され、前記第1作動ガス領域は、前記第1周方向位置において前記接続口と前記ディスプレーサとの間に第1径方向幅を有する。前記作動ガス圧縮空間の第2作動ガス領域が前記第1周方向位置と異なる第2周方向位置において前記容器部分と前記ディスプレーサとの間に形成され、前記第2作動ガス領域は、前記第2周方向位置において前記容器部分と前記ディスプレーサとの間に第2径方向幅を有する。前記第2径方向幅は、前記第1径方向幅より小さい。 According to an aspect of the present invention, there is provided a Stirling refrigerator that includes an expander, a compressor, and a connecting pipe that connects the compressor to the expander. The expander is a displacer extending in the axial direction, the displacer facing the working gas expansion space on one end side in the axial direction and facing the working gas compression space on the other end side in the axial direction, and the displacer in the axial direction. A regenerator that is disposed around the displacer so as to guide the reciprocating movement of the displacer and forms a working gas flow path between the working gas compression space and the working gas expansion space, and contains the displacer and the regenerator. An expander container that has a connection port that is formed at a first circumferential position and connects the working gas compression space to the connection pipe, and extends in the circumferential direction from the connection port to define the working gas compression space. An expander container including an enclosing container portion. A first working gas region of the working gas compression space is formed between the connection port and the displacer at the first circumferential position, and the first working gas region is formed at the connection port at the first circumferential position. And the displacer has a first radial width. A second working gas region of the working gas compression space is formed between the container portion and the displacer at a second circumferential position different from the first circumferential position, and the second working gas region is the second working gas region. A second radial width is provided between the container portion and the displacer at a circumferential position. The second radial width is smaller than the first radial width.
 本発明のある態様によると、膨張機と、圧縮機と、前記圧縮機を前記膨張機に接続する接続管と、を備えるスターリング冷凍機が提供される。前記膨張機は、中心軸の方向に延在する蓄冷器であって、前記中心軸の方向において前記蓄冷器の一端側に位置する作動ガス膨張空間と前記中心軸の方向において前記蓄冷器の他端側に位置する作動ガス圧縮空間との間の作動ガス流路を形成する蓄冷器と、前記蓄冷器を収容する膨張機容器であって、前記作動ガス圧縮空間を囲む容器部分を備える膨張機容器と、を備える。前記接続管は、一端にて前記圧縮機に接続され、他端に分岐部を備える主管と、前記分岐部で前記主管から分岐する第1枝管と、前記分岐部で前記主管から分岐する第2枝管と、を備える。前記容器部分は、前記中心軸に対して一方側に形成され前記第1枝管に接続される第1接続口と、前記中心軸に対して他方側に形成され前記第2枝管に接続される第2接続口と、を備える。 According to an aspect of the present invention, there is provided a Stirling refrigerator that includes an expander, a compressor, and a connecting pipe that connects the compressor to the expander. The expander is a regenerator extending in the direction of the central axis, and the working gas expansion space located on one end side of the regenerator in the direction of the central axis and the regenerator in the direction of the central axis. A regenerator that forms a working gas flow path between the working gas compression space located on the end side, and an expander container that accommodates the regenerator, the container having a container portion surrounding the working gas compression space A container. The connection pipe is connected to the compressor at one end and has a main pipe having a branching part at the other end, a first branch pipe branched from the main pipe at the branching part, and a first branch pipe branched from the main pipe at the branching part. A two-branch pipe. The container portion is formed on one side with respect to the central axis and connected to the first branch pipe, and is formed on the other side with respect to the central axis and connected to the second branch pipe. A second connection port.
 本発明のある態様によると、膨張機と、少なくとも1つの圧縮機と、前記少なくとも1つの圧縮機を前記膨張機に接続する少なくとも1つの接続管と、を備えるスターリング冷凍機が提供される。前記膨張機は、中心軸の方向に延在する蓄冷器であって、前記中心軸の方向において前記蓄冷器の一端側に位置する作動ガス圧縮空間と前記中心軸の方向において前記蓄冷器の他端側に位置する作動ガス膨張空間との間の作動ガス流路を形成する蓄冷器と、前記蓄冷器を収容する膨張機容器であって、前記作動ガス圧縮空間を囲む容器部分を備える膨張機容器と、を備える。前記容器部分は、前記中心軸に対して一方側に形成され前記接続管に接続される第1接続口と、前記中心軸に対して他方側に形成され前記接続管に接続される第2接続口と、を備える。 According to an aspect of the present invention, there is provided a Stirling refrigerator including an expander, at least one compressor, and at least one connection pipe connecting the at least one compressor to the expander. The expander is a regenerator extending in the direction of the central axis, and the working gas compression space located on one end side of the regenerator in the direction of the central axis and the other of the regenerator in the direction of the central axis. A regenerator that forms a working gas flow path between a working gas expansion space located on the end side, and an expander container that houses the regenerator, the container having a container portion surrounding the working gas compression space A container. The container portion is formed on one side with respect to the central axis and connected to the connecting pipe, and the second connection is formed on the other side with respect to the central axis and connected to the connecting pipe. And a mouth.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、スターリング冷凍機の蓄冷器に生じうる作動ガスの偏流を緩和することができる。 According to the present invention, it is possible to reduce the drift of working gas that may occur in the regenerator of the Stirling refrigerator.
本発明の第1実施形態に係るスターリング冷凍機を概略的に示す図である。It is a figure showing roughly the Stirling refrigerator concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るスターリング冷凍機の膨張機を概略的に示す断面図である。It is sectional drawing which shows roughly the expander of the Stirling refrigerator which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るブロック及びディスプレーサロッドを概略的に示す断面図である。It is sectional drawing which shows schematically the block and displacer rod which concern on 1st Embodiment of this invention. あるスターリング冷凍機の膨張機を概略的に示す断面図である。It is sectional drawing which shows schematically the expander of a certain Stirling refrigerator. 本発明の他の実施形態に係るスターリング冷凍機の膨張機を概略的に示す断面図である。It is sectional drawing which shows schematically the expander of the Stirling refrigerator which concerns on other embodiment of this invention. 本発明の他の実施形態に係るディスプレーサロッドを概略的に示す断面図である。It is sectional drawing which shows schematically the displacer rod which concerns on other embodiment of this invention. 本発明の第2実施形態に係るスターリング冷凍機を概略的に示す図である。It is a figure which shows schematically the Stirling refrigerator which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るスターリング冷凍機の膨張機を概略的に示す断面図である。It is sectional drawing which shows schematically the expander of the Stirling refrigerator which concerns on 2nd Embodiment of this invention. あるスターリング冷凍機の膨張機を概略的に示す断面図である。It is sectional drawing which shows schematically the expander of a certain Stirling refrigerator. 本発明の他の実施形態に係るスターリング冷凍機の膨張機を概略的に示す断面図である。It is sectional drawing which shows schematically the expander of the Stirling refrigerator which concerns on other embodiment of this invention.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、以下に述べる構成は例示であり、本発明の範囲を何ら限定するものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. Moreover, the structure described below is an illustration and does not limit the scope of the present invention at all.
(第1実施形態)
 図1は、本発明の第1実施形態に係るスターリング冷凍機10を概略的に示す図である。スターリング冷凍機10は、圧縮機11、接続管12、及び膨張機13を備える。スターリング冷凍機10は、スプリット式のスターリング冷凍機である。
(First embodiment)
FIG. 1 is a diagram schematically showing a Stirling refrigerator 10 according to the first embodiment of the present invention. The Stirling refrigerator 10 includes a compressor 11, a connecting pipe 12, and an expander 13. The Stirling refrigerator 10 is a split type Stirling refrigerator.
 圧縮機11は、圧縮機ケース14を備える。圧縮機ケース14は、高圧の作動ガスを気密に保持するよう構成されている圧力容器である。作動ガスは例えばヘリウムガスである。また、圧縮機11は、圧縮機ケース14に収容されている圧縮機ユニットを備える。圧縮機ユニットは圧縮機ピストン及び圧縮機シリンダを備えており、それらのうち一方は圧縮機ケース14の中で往復移動するよう構成されている可動部材15であり、他方は圧縮機ケース14に固定されている静止部材である。圧縮機ユニットは、可動部材15の中心軸に沿う方向に可動部材15を圧縮機ケース14に対して移動させるための駆動源を備える。圧縮機11は、可動部材15の往復移動を可能とするように可動部材15を圧縮機ケース14に支持する支持部16を備える。可動部材15は、ある振幅及び周波数で圧縮機ケース14及び静止部材に対し振動する。この結果、圧縮機11内の作動ガスの容積及び圧力も、特定の振幅および周波数で振動する。 The compressor 11 includes a compressor case 14. The compressor case 14 is a pressure vessel configured to hold a high-pressure working gas in an airtight manner. The working gas is, for example, helium gas. The compressor 11 includes a compressor unit that is accommodated in the compressor case 14. The compressor unit includes a compressor piston and a compressor cylinder, one of which is a movable member 15 configured to reciprocate in the compressor case 14 and the other is fixed to the compressor case 14. It is a stationary member. The compressor unit includes a drive source for moving the movable member 15 relative to the compressor case 14 in a direction along the central axis of the movable member 15. The compressor 11 includes a support portion 16 that supports the movable member 15 on the compressor case 14 so that the movable member 15 can reciprocate. The movable member 15 vibrates with respect to the compressor case 14 and the stationary member with a certain amplitude and frequency. As a result, the volume and pressure of the working gas in the compressor 11 also vibrate with a specific amplitude and frequency.
 圧縮機ピストンと圧縮機シリンダとの間に作動ガス室が形成されている。この作動ガス室は、上述の静止部材及び圧縮機ケース14に形成されている連通路を通じて、接続管12の一端に接続されている。接続管12の他端は、膨張機13の作動ガス受入室へと接続されている。こうして接続管12により、圧縮機11の作動ガス室が膨張機13の作動ガス受入室に接続される。 A working gas chamber is formed between the compressor piston and the compressor cylinder. This working gas chamber is connected to one end of the connection pipe 12 through a communication passage formed in the stationary member and the compressor case 14 described above. The other end of the connection pipe 12 is connected to the working gas receiving chamber of the expander 13. Thus, the working gas chamber of the compressor 11 is connected to the working gas receiving chamber of the expander 13 by the connecting pipe 12.
 膨張機13は、図2を参照して後述するように、膨張機容器20、ディスプレーサ22、及び少なくとも1つの支持部40を備える。 The expander 13 includes an expander container 20, a displacer 22, and at least one support portion 40, as will be described later with reference to FIG.
 図2は、本発明の第1実施形態に係る膨張機13を概略的に示す図である。図2には膨張機13の内部構造の概略を示す。 FIG. 2 is a diagram schematically showing the expander 13 according to the first embodiment of the present invention. FIG. 2 shows an outline of the internal structure of the expander 13.
 膨張機容器20は、高圧の作動ガスを気密に保持するよう構成されている圧力容器である。この圧力容器は、内部を気密に保持するよう相互に連結された複数の容器部分から構成されていてもよい。ディスプレーサ22は、膨張機容器20の中で往復移動するよう構成されている可動部材である。支持部40は、ディスプレーサ22の往復移動を可能とするようにディスプレーサ22を膨張機容器20に支持する。 The expander container 20 is a pressure container configured to hold a high-pressure working gas in an airtight manner. This pressure vessel may be composed of a plurality of vessel parts connected to each other so as to keep the inside airtight. The displacer 22 is a movable member configured to reciprocate in the expander container 20. The support part 40 supports the displacer 22 on the expander container 20 so that the displacer 22 can reciprocate.
 膨張機容器20は、第1区画24及び第2区画26を備える。第1区画24は、膨張機容器20とディスプレーサ22との間に形成される作動ガスの膨張空間28及び圧縮空間36を含む。膨張空間28に隣接する膨張機容器20の部分には、対象物を冷却するための冷却ステージ29が設けられている。冷却ステージ29はコールドヘッドとも呼ばれる。第2区画26は、弾性部材30を介してディスプレーサ22を膨張機容器20に支持するよう構成されている。 The expander container 20 includes a first compartment 24 and a second compartment 26. The first compartment 24 includes a working gas expansion space 28 and a compression space 36 formed between the expander vessel 20 and the displacer 22. A portion of the expander container 20 adjacent to the expansion space 28 is provided with a cooling stage 29 for cooling the object. The cooling stage 29 is also called a cold head. The second section 26 is configured to support the displacer 22 on the expander container 20 via the elastic member 30.
 第2区画26は、ディスプレーサ22の往復移動方向(図において矢印Cで示す)において第1区画24と隣接する。第2区画26と第1区画24との間にはシール部25が設けられており、これにより第2区画26は第1区画24から仕切られている。よって、第1区画24における作動ガスの圧力変動は、第2区画26に伝わらないか、または第2区画26における作動ガスの圧力にあまり影響しない。なお、第2区画26は、接続管12を流れる作動ガスの平均圧力と同等の圧力となるように、作動ガスと同種のガスが封入されている。 The second section 26 is adjacent to the first section 24 in the reciprocating direction of the displacer 22 (indicated by an arrow C in the figure). A seal portion 25 is provided between the second compartment 26 and the first compartment 24, whereby the second compartment 26 is partitioned from the first compartment 24. Therefore, the pressure fluctuation of the working gas in the first section 24 is not transmitted to the second section 26 or does not significantly affect the pressure of the working gas in the second section 26. Note that the second compartment 26 is filled with the same type of gas as the working gas so as to have a pressure equivalent to the average pressure of the working gas flowing through the connecting pipe 12.
 ディスプレーサ22は、第1区画24に収容されているディスプレーサヘッド32と、ディスプレーサロッド34と、を備える。ディスプレーサロッド34は、ディスプレーサヘッド32より細い軸部である。ディスプレーサ22はその往復移動方向に平行である中心軸(図において一点鎖線Aで示す)を有しており、ディスプレーサヘッド32及びディスプレーサロッド34はディスプレーサ22の中心軸に同軸に設けられている。ディスプレーサヘッド32は内部に空洞を有しており、作動ガスと同種のガスで満たされている。 The displacer 22 includes a displacer head 32 accommodated in the first section 24 and a displacer rod 34. The displacer rod 34 is a shaft portion thinner than the displacer head 32. The displacer 22 has a central axis (indicated by the alternate long and short dash line A in the figure) parallel to the reciprocating direction of the displacer, and the displacer head 32 and the displacer rod 34 are provided coaxially with the central axis of the displacer 22. The displacer head 32 has a cavity inside and is filled with the same kind of gas as the working gas.
 ディスプレーサロッド34は、ディスプレーサヘッド32からシール部25を通って第2区画26へと延在する。ディスプレーサロッド34は、ディスプレーサ22の往復移動を可能とするよう第2区画26において膨張機容器20により支持される。上述のシール部25は例えば、ディスプレーサロッド34と膨張機容器20との間に形成されるロッドシールであってもよい。なお、ディスプレーサロッド34もディスプレーサヘッド32と同様に内部に空洞を有している。ディスプレーサロッド34の空洞はディスプレーサヘッド32の空洞と接続している。ディスプレーサロッド34の末端が開放され、ディスプレーサ22の内部空洞は第2区画26に連通されていてもよい。 The displacer rod 34 extends from the displacer head 32 through the seal portion 25 to the second section 26. The displacer rod 34 is supported by the expander vessel 20 in the second compartment 26 to allow the displacer 22 to reciprocate. The above-described seal portion 25 may be, for example, a rod seal formed between the displacer rod 34 and the expander container 20. Similar to the displacer head 32, the displacer rod 34 also has a cavity inside. The cavity of the displacer rod 34 is connected to the cavity of the displacer head 32. The distal end of the displacer rod 34 may be opened, and the internal cavity of the displacer 22 may be communicated with the second compartment 26.
 第1区画24は、ディスプレーサヘッド32を囲むシリンダ部を形成する。このシリンダ部の底面(すなわち冷却ステージ29の内面)とディスプレーサヘッド32の先端面32aとの間に膨張空間28が形成されている。膨張空間28は、ディスプレーサ22の往復移動方向においてディスプレーサヘッド32とディスプレーサロッド34との接合部とは反対側に形成されている。この接合部とシール部25との間には、膨張機13における作動ガスの圧縮空間36が形成されている。よって、ディスプレーサヘッド32は、軸方向一端側にて膨張空間28に面し、軸方向他端側にて圧縮空間36に面する。圧縮空間36は接続管12を通じて圧縮機11に接続される膨張機13の作動ガス受入室である。 The first section 24 forms a cylinder portion that surrounds the displacer head 32. An expansion space 28 is formed between the bottom surface of the cylinder portion (that is, the inner surface of the cooling stage 29) and the distal end surface 32a of the displacer head 32. The expansion space 28 is formed on the opposite side of the joint between the displacer head 32 and the displacer rod 34 in the reciprocating direction of the displacer 22. A compressed gas space 36 for the working gas in the expander 13 is formed between the joint portion and the seal portion 25. Therefore, the displacer head 32 faces the expansion space 28 on one end side in the axial direction and faces the compression space 36 on the other end side in the axial direction. The compression space 36 is a working gas receiving chamber of the expander 13 connected to the compressor 11 through the connection pipe 12.
 膨張機容器20のシリンダ部には、ディスプレーサヘッド32の径方向外側に隣接して蓄冷器38が設けられている。ここで径方向は中心軸の方向に垂直な方向をいう。こうして蓄冷器38は膨張機容器20に収容されている。蓄冷器38は、ディスプレーサ22と同軸に軸方向に延在し、環状またはドーナツ状に形成されている。より具体的には、蓄冷器38は、ディスプレーサヘッド32の外周部においてディスプレーサ22の長手軸を中心軸とする円筒形状の領域に位置するように、膨張機容器20のシリンダ部の側面に備えられる。蓄冷器38は蓄冷材として例えば、金網の積層構造を備える。膨張空間28と圧縮空間36との間の作動ガスの流通は蓄冷器38を通じて可能である。膨張空間28は、中心軸の方向において蓄冷器38の一端側に位置し、圧縮空間36は、中心軸の方向において蓄冷器38の他端側に位置する。 A regenerator 38 is provided in the cylinder portion of the expander container 20 adjacent to the radially outer side of the displacer head 32. Here, the radial direction refers to a direction perpendicular to the direction of the central axis. Thus, the regenerator 38 is accommodated in the expander container 20. The regenerator 38 extends in the axial direction coaxially with the displacer 22 and is formed in an annular shape or a donut shape. More specifically, the regenerator 38 is provided on the side surface of the cylinder portion of the expander container 20 so as to be located in a cylindrical region having the longitudinal axis of the displacer 22 as a central axis in the outer peripheral portion of the displacer head 32. . The regenerator 38 includes, for example, a wire mesh laminated structure as a regenerator material. The working gas can be circulated between the expansion space 28 and the compression space 36 through a regenerator 38. The expansion space 28 is located on one end side of the regenerator 38 in the direction of the central axis, and the compression space 36 is located on the other end side of the regenerator 38 in the direction of the central axis.
 軸方向において蓄冷器38と圧縮空間36の間には、蓄冷器38に隣接して放熱器37が設けられる。放熱器37は例えば水冷式熱交換器である。放熱器37も蓄冷器38と同様に環状またはドーナツ状に形成されている。放熱器37は蓄冷器38とともにシリンダ部を形成する。 A radiator 37 is provided adjacent to the regenerator 38 between the regenerator 38 and the compression space 36 in the axial direction. The radiator 37 is, for example, a water-cooled heat exchanger. Similarly to the regenerator 38, the radiator 37 is also formed in an annular shape or a donut shape. The radiator 37 forms a cylinder part together with the regenerator 38.
 放熱器37は、圧縮機11から供給された作動ガスを冷却し、その熱を膨張機13の外部へ放出するための熱交換を実現する。圧縮機11から圧縮空間36に供給される作動ガスは一般に室温より高い温度を有するので、放熱器37は、この高温ガスを室温程度に冷却する。 The heat radiator 37 cools the working gas supplied from the compressor 11 and realizes heat exchange for releasing the heat to the outside of the expander 13. Since the working gas supplied from the compressor 11 to the compression space 36 generally has a temperature higher than room temperature, the radiator 37 cools the high-temperature gas to about room temperature.
 放熱器37は、ディスプレーサヘッド32の周囲に配設されている。ディスプレーサヘッド32の側面は放熱器37の内壁部と摺動可能であり、それにより放熱器37はディスプレーサヘッド32の軸方向往復移動を案内することができる。圧縮空間36と膨張空間28との作動ガスの流通を妨げるシール部が、ディスプレーサヘッド32の側面と放熱器37の内壁部との間に形成されていてもよい。 The radiator 37 is disposed around the displacer head 32. The side surface of the displacer head 32 is slidable with the inner wall portion of the radiator 37, whereby the radiator 37 can guide the reciprocating movement of the displacer head 32 in the axial direction. A seal portion that prevents the working gas from flowing through the compression space 36 and the expansion space 28 may be formed between the side surface of the displacer head 32 and the inner wall portion of the radiator 37.
 また、軸方向において蓄冷器38と冷却ステージ29との間には、蓄冷器38に隣接して低温熱交換器39が取り付けられる。低温熱交換器39は、ディスプレーサ先端部の周囲に配設されている。圧縮空間36と膨張空間28とを接続する作動ガス流路が放熱器37、蓄冷器38、及び低温熱交換器39によって形成されている。径方向において蓄冷器38とディスプレーサヘッド32との間には微小なクリアランスが形成されていてもよい。同様に、径方向において低温熱交換器39とディスプレーサヘッド32との間には微小なクリアランスが形成されていてもよい。 Further, a low-temperature heat exchanger 39 is attached adjacent to the regenerator 38 between the regenerator 38 and the cooling stage 29 in the axial direction. The low temperature heat exchanger 39 is disposed around the displacer tip. A working gas flow path that connects the compression space 36 and the expansion space 28 is formed by a radiator 37, a regenerator 38, and a low-temperature heat exchanger 39. A minute clearance may be formed between the regenerator 38 and the displacer head 32 in the radial direction. Similarly, a minute clearance may be formed between the low-temperature heat exchanger 39 and the displacer head 32 in the radial direction.
 膨張機13は、ディスプレーサ22の往復移動方向における複数の異なる位置で、ディスプレーサ22の往復移動を可能とするようディスプレーサ22を膨張機容器20に支持する。そのために、膨張機13は2つの支持部40を備える。これら2つの支持部40は第2区画26に設けられている。また、蓄冷器38及び放熱器37は上述のように、中心軸の方向におけるディスプレーサ22の往復移動を案内するようディスプレーサヘッド32の周囲に配設されている。よって、蓄冷器38及び放熱器37もまた、ディスプレーサ22の支持部を形成する。このようにして、中心軸に対するディスプレーサ22の傾動を抑制することができる。 The expander 13 supports the displacer 22 on the expander container 20 so that the displacer 22 can reciprocate at a plurality of different positions in the reciprocating direction of the displacer 22. For this purpose, the expander 13 includes two support portions 40. These two support portions 40 are provided in the second section 26. Further, as described above, the regenerator 38 and the radiator 37 are disposed around the displacer head 32 so as to guide the reciprocating movement of the displacer 22 in the direction of the central axis. Therefore, the regenerator 38 and the radiator 37 also form a support part of the displacer 22. In this way, tilting of the displacer 22 with respect to the central axis can be suppressed.
 支持部40は上述の弾性部材30を備える。弾性部材30は、ディスプレーサ22が中立位置から変位するときディスプレーサ22に弾性的復元力が作用するように、ディスプレーサロッド34と膨張機容器20との間に配設されている。これにより、ディスプレーサ22は、弾性部材30のバネ定数、作動ガスの圧力に起因するバネ定数、およびディスプレーサ22の重量から定まる固有振動数で往復移動する。 The support unit 40 includes the elastic member 30 described above. The elastic member 30 is disposed between the displacer rod 34 and the expander container 20 so that an elastic restoring force acts on the displacer 22 when the displacer 22 is displaced from the neutral position. As a result, the displacer 22 reciprocates at a natural frequency determined from the spring constant of the elastic member 30, the spring constant due to the pressure of the working gas, and the weight of the displacer 22.
 弾性部材30は例えば、少なくとも1つの板バネを含むバネ機構を備える。板バネはフレクシャベアリングとも呼ばれるバネであり、ディスプレーサ22の往復移動方向に柔軟であり、往復移動方向に垂直な方向に剛である。したがって、弾性部材30により、ディスプレーサ22はその中心軸に沿う方向への移動が許容されているが、それと直交する方向への移動は規制されている。ディスプレーサロッド34は、弾性部材取付部51を介して弾性部材30に固定される。 The elastic member 30 includes, for example, a spring mechanism including at least one leaf spring. The leaf spring is a spring called a flexure bearing, and is flexible in the reciprocating direction of the displacer 22 and rigid in the direction perpendicular to the reciprocating direction. Therefore, the displacer 22 is allowed to move in the direction along the central axis by the elastic member 30, but the movement in the direction orthogonal to the displacer 22 is restricted. The displacer rod 34 is fixed to the elastic member 30 via the elastic member mounting portion 51.
 このようにして、ディスプレーサ22と弾性部材30とからなる振動系が構成されている。この振動系は、圧縮機11の可動部材15の振動と同一の周波数で当該振動と位相差を有してディスプレーサ22が振動するよう構成されている。ディスプレーサ22は、圧縮機11の可動部材15の振動によって圧縮空間36に生じる作動ガス圧力の脈動によって駆動される。ディスプレーサ22の往復動及び圧縮機11の可動部材15の往復動によって膨張空間28と圧縮空間36との間に逆スターリングサイクルが形成される。こうして、膨張空間28に隣接する低温熱交換器39が冷却される。低温熱交換器39によって冷却ステージ29が冷却され、スターリング冷凍機10は対象物を冷却することができる。 Thus, a vibration system composed of the displacer 22 and the elastic member 30 is configured. This vibration system is configured such that the displacer 22 vibrates at the same frequency as the vibration of the movable member 15 of the compressor 11 and has a phase difference with the vibration. The displacer 22 is driven by the pulsation of the working gas pressure generated in the compression space 36 by the vibration of the movable member 15 of the compressor 11. A reverse Stirling cycle is formed between the expansion space 28 and the compression space 36 by the reciprocation of the displacer 22 and the reciprocation of the movable member 15 of the compressor 11. Thus, the low temperature heat exchanger 39 adjacent to the expansion space 28 is cooled. The cooling stage 29 is cooled by the low-temperature heat exchanger 39, and the Stirling refrigerator 10 can cool the object.
 続いて、膨張機容器20について更に説明する。 Subsequently, the expander container 20 will be further described.
 膨張機容器20は、冷却ステージ29に加えて、第1容器部分20a、第2容器部分20b、第3容器部分20c、及び第4容器部分20dを備える。冷却ステージ29、第1容器部分20a、第2容器部分20b、第3容器部分20c、及び第4容器部分20dは、この記載の順に隣接して配置され、膨張機容器20の内部を気密に保持するよう相互に連結されている。 In addition to the cooling stage 29, the expander container 20 includes a first container part 20a, a second container part 20b, a third container part 20c, and a fourth container part 20d. The cooling stage 29, the first container part 20a, the second container part 20b, the third container part 20c, and the fourth container part 20d are arranged adjacent to each other in this order, and the inside of the expander container 20 is kept airtight. Are connected to each other.
 膨張機容器20は、概ね筒状に形成されており、その側壁を第1容器部分20a、第2容器部分20b、第3容器部分20c、及び第4容器部分20dにより形成する。また、軸方向において膨張機容器20の一端は冷却ステージ29により閉じられ、他端は第4容器部分20dにより閉じられている。 The expander container 20 is formed in a substantially cylindrical shape, and its side wall is formed by the first container part 20a, the second container part 20b, the third container part 20c, and the fourth container part 20d. In the axial direction, one end of the expander container 20 is closed by the cooling stage 29, and the other end is closed by the fourth container portion 20d.
 第1容器部分20aは、蓄冷器38及び低温熱交換器39を囲む。第2容器部分20bは、放熱器37を囲む。第3容器部分20cは、側壁部52及び底壁部54を備え、圧縮空間36を囲む。第3容器部分20cは、側壁部52に形成され接続管12に接続される接続口56を備える。第4容器部分20dは、第2区画26を画定する。 The first container portion 20a surrounds the regenerator 38 and the low-temperature heat exchanger 39. The second container portion 20 b surrounds the heat radiator 37. The third container portion 20 c includes a side wall portion 52 and a bottom wall portion 54 and surrounds the compression space 36. The third container portion 20 c includes a connection port 56 formed on the side wall portion 52 and connected to the connection pipe 12. The fourth container portion 20 d defines a second compartment 26.
 第3容器部分20cの側壁部52は、外壁部52a及び内壁部52bを備える。外壁部52a及び内壁部52bは、中心軸まわりに周方向に接続口56から延在する。外壁部52aは、第2容器部分20bを第4容器部分20dに接続する。内壁部52bは、放熱器37の内壁部を底壁部54に接続する。内壁部52bは、圧縮空間36を外周空間36aと中心空間36bとに区画する。内壁部52bには、外周空間36aと中心空間36bとを接続する開口部57が形成されている。開口部57は、周方向に等角度間隔に配列された複数の開口である。開口部57は、周方向に延びる1以上のスリットであってもよい。 The side wall portion 52 of the third container portion 20c includes an outer wall portion 52a and an inner wall portion 52b. The outer wall 52a and the inner wall 52b extend from the connection port 56 in the circumferential direction around the central axis. The outer wall portion 52a connects the second container portion 20b to the fourth container portion 20d. The inner wall portion 52 b connects the inner wall portion of the radiator 37 to the bottom wall portion 54. The inner wall portion 52b partitions the compression space 36 into an outer peripheral space 36a and a central space 36b. An opening 57 that connects the outer peripheral space 36a and the central space 36b is formed in the inner wall portion 52b. The openings 57 are a plurality of openings arranged at equal angular intervals in the circumferential direction. The opening 57 may be one or more slits extending in the circumferential direction.
 接続口56は、中心軸に対して一方側に形成され、外壁部52a及び内壁部52bを径方向に貫通する単一の開口である。開口部57は、軸方向において接続口56と放熱器37との間に位置する。軸方向において、接続口56は底壁部54側に形成され、開口部57は接続口56と放熱器37との間に形成されている。側壁部52は、中心空間36bの底壁部54側の領域を囲む環状部分52cを埋めるよう形成されている。よって、環状部分52cは、接続口56を除き、ガスの流路とはならない。 The connection port 56 is a single opening formed on one side with respect to the central axis and penetrating the outer wall 52a and the inner wall 52b in the radial direction. The opening 57 is located between the connection port 56 and the radiator 37 in the axial direction. In the axial direction, the connection port 56 is formed on the bottom wall portion 54 side, and the opening 57 is formed between the connection port 56 and the radiator 37. The side wall 52 is formed so as to fill an annular portion 52c surrounding a region on the bottom wall 54 side of the central space 36b. Therefore, the annular portion 52 c does not serve as a gas flow path except for the connection port 56.
 底壁部54は、外壁部52aと第4容器部分20dとの接合部において外壁部52aから径方向内側に延在する。底壁部54の中心にはディスプレーサロッド34を通す貫通孔が形成されている。底壁部54とディスプレーサロッド34との間にロッドシールが形成される。 The bottom wall portion 54 extends radially inward from the outer wall portion 52a at the joint portion between the outer wall portion 52a and the fourth container portion 20d. A through hole through which the displacer rod 34 passes is formed at the center of the bottom wall portion 54. A rod seal is formed between the bottom wall portion 54 and the displacer rod 34.
 第3容器部分20cにはブロック58が設けられている。ブロック58は、内壁部52b及び底壁部54に接して中心空間36bに配置されている。 The third container portion 20c is provided with a block 58. The block 58 is disposed in the central space 36b in contact with the inner wall portion 52b and the bottom wall portion 54.
 図3は、本発明の第1実施形態に係るブロック58及びディスプレーサロッド34を概略的に示す断面図である。この断面図はディスプレーサロッド34の中心軸に垂直な平面による断面を示す。ブロック58は、周方向に全周にわたって延在するリング状の部材である。ブロック58の中心には、ディスプレーサロッド34を通す貫通孔59が形成されている。貫通孔59は、ディスプレーサロッド34の中心軸から偏心した円形開口である。貫通孔59の中心は、ディスプレーサロッド34の中心と接続口56との間に位置する。 FIG. 3 is a sectional view schematically showing the block 58 and the displacer rod 34 according to the first embodiment of the present invention. This sectional view shows a section taken along a plane perpendicular to the central axis of the displacer rod 34. The block 58 is a ring-shaped member extending over the entire circumference in the circumferential direction. A through hole 59 through which the displacer rod 34 passes is formed at the center of the block 58. The through hole 59 is a circular opening that is eccentric from the central axis of the displacer rod 34. The center of the through hole 59 is located between the center of the displacer rod 34 and the connection port 56.
 接続口56は、第1周方向位置においてブロック58を貫通する。圧縮空間36の第1作動ガス領域60が第1周方向位置において接続口56とディスプレーサロッド34との間に形成されている。第1作動ガス領域60は、第1周方向位置において接続口56とディスプレーサロッド34との間に第1径方向幅W1を有する。 The connection port 56 penetrates the block 58 at the first circumferential direction position. A first working gas region 60 of the compression space 36 is formed between the connection port 56 and the displacer rod 34 at the first circumferential position. The first working gas region 60 has a first radial width W1 between the connection port 56 and the displacer rod 34 at the first circumferential position.
 また、圧縮空間36の第2作動ガス領域62が第1周方向位置と異なる第2周方向位置においてブロック58とディスプレーサロッド34との間に形成されている。第2周方向位置は、ディスプレーサロッド34の中心軸に対し第1周方向位置と反対側にある。第2作動ガス領域62は、第2周方向位置においてブロック58とディスプレーサロッド34との間に第2径方向幅W2を有する。 Also, the second working gas region 62 of the compression space 36 is formed between the block 58 and the displacer rod 34 at a second circumferential position different from the first circumferential position. The second circumferential position is opposite to the first circumferential position with respect to the central axis of the displacer rod 34. The second working gas region 62 has a second radial width W2 between the block 58 and the displacer rod 34 at the second circumferential position.
 第2径方向幅W2は、第1径方向幅W1より小さい。例えば、第2径方向幅W2は、第1径方向幅W1の2/3より小さく、1/2より小さく、1/4より小さく、または1/8より小さい。 The second radial width W2 is smaller than the first radial width W1. For example, the second radial width W2 is smaller than 2/3 of the first radial width W1, smaller than 1/2, smaller than 1/4, or smaller than 1/8.
 なお、ブロック58は全周にわたって設けられていなくてもよい。ブロック58は、第2周方向位置を含むある周方向範囲にのみ設けられていてもよい。 Note that the block 58 may not be provided over the entire circumference. The block 58 may be provided only in a certain circumferential range including the second circumferential position.
 図2に示されるように、ブロック58の軸方向厚さは、底壁部54から開口部57までの軸方向長さより短い。よって、開口部57とディスプレーサロッド34との間に形成される第3作動ガス領域は、第2周方向位置において第1径方向幅W1を有する。なお、ブロック58の軸方向厚さは、底壁部54から開口部57までの軸方向長さより長くてもよい。この場合、開口部57に連通する開口がブロック58に形成されていてもよい。 As shown in FIG. 2, the axial thickness of the block 58 is shorter than the axial length from the bottom wall portion 54 to the opening 57. Therefore, the third working gas region formed between the opening 57 and the displacer rod 34 has the first radial width W1 at the second circumferential position. The axial thickness of the block 58 may be longer than the axial length from the bottom wall portion 54 to the opening 57. In this case, an opening communicating with the opening 57 may be formed in the block 58.
 膨張機13に作動ガスが流入するとき、ガスは接続管12から接続口56を通じて中心空間36bに流れる。一部のガスは第1作動ガス領域60を通り、他の一部のガスは第2作動ガス領域62を通る。そこからガスは開口部57を通じて外周空間36aに流れる。ガスは外周空間36aから放熱器37を通じて蓄冷器38に流入する。ガスは蓄冷器38から膨張空間28に流入し膨張する。膨張したガスは逆の経路を通って膨張機13から接続管12へと出る。 When the working gas flows into the expander 13, the gas flows from the connecting pipe 12 to the central space 36b through the connecting port 56. Some gases pass through the first working gas region 60 and some other gases pass through the second working gas region 62. From there, the gas flows through the opening 57 to the outer peripheral space 36a. The gas flows from the outer peripheral space 36 a into the regenerator 38 through the radiator 37. The gas flows from the regenerator 38 into the expansion space 28 and expands. The expanded gas exits from the expander 13 to the connecting pipe 12 through the reverse path.
 図4は、あるスターリング冷凍機の膨張機113を概略的に示す断面図である。膨張機113は、ブロック58を有しない点を除いて、図2に示す膨張機13と概ね同様の構成を有する。例えば、圧縮空間136に単一の接続口156を有する。接続口156は、接続管112を通じて圧縮機11に接続される。蓄冷器38は、中心軸の方向におけるディスプレーサ22の往復移動を案内するようディスプレーサヘッド32の周囲に配設されている。蓄冷器38は、軸方向一端側に位置する膨張空間28と軸方向他端側に位置する圧縮空間136との間の作動ガス流路を形成する。 FIG. 4 is a cross-sectional view schematically showing an expander 113 of a Stirling refrigerator. The expander 113 has substantially the same configuration as the expander 13 shown in FIG. 2 except that the expander 113 does not have the block 58. For example, the compression space 136 has a single connection port 156. The connection port 156 is connected to the compressor 11 through the connection pipe 112. The regenerator 38 is disposed around the displacer head 32 so as to guide the reciprocating movement of the displacer 22 in the direction of the central axis. The regenerator 38 forms a working gas flow path between the expansion space 28 located on one axial end side and the compression space 136 located on the other axial end side.
 圧縮機11から接続口156を通じて圧縮空間136に噴出したガスはその勢いによって、矢印72で図示するように、接続口156と反対側の壁面158に向かう。ガスは壁面158によって放熱器37へと向けられる。ガスは放熱器37を通って蓄冷器38に流入する。そのため、接続口156と反対側に位置する蓄冷材に流入するガス流量は、接続口156の側に位置する蓄冷材に流入するガス流量よりも多くなる。 The gas ejected from the compressor 11 to the compression space 136 through the connection port 156 is directed toward the wall surface 158 opposite to the connection port 156 as illustrated by the arrow 72 by the momentum. The gas is directed to the radiator 37 by the wall surface 158. The gas flows into the regenerator 38 through the radiator 37. Therefore, the gas flow rate flowing into the cool storage material located on the side opposite to the connection port 156 is larger than the gas flow rate flowing into the cool storage material positioned on the connection port 156 side.
 ガスは蓄冷器38から膨張空間28に流入し膨張する。矢印74で図示するように、膨張空間28からの戻りガスに関しては逆に、接続口156の側に位置する蓄冷材に流入するガス流量が、接続口156と反対側に位置する蓄冷材に流入するガス流量よりも多くなる。 Gas flows from the regenerator 38 into the expansion space 28 and expands. As shown by the arrow 74, conversely with respect to the return gas from the expansion space 28, the gas flow rate flowing into the regenerator material located on the connection port 156 side flows into the regenerator material located on the opposite side to the connection port 156. More than the gas flow rate.
 このようにして、蓄冷器38の内部に偏流が生成される。すなわち、蓄冷器38における軸方向ガス流れに不均一な分布が生じる。その結果、接続口156と反対側に位置する蓄冷材は、接続口156の側に位置する蓄冷材に比べて作動ガスから多くの熱を受け取り、蓄冷器38には周方向及び/または径方向に温度差が生じる。このような不均一な蓄冷器温度分布は、圧力損失の増加や蓄冷器効率の低下を招き、蓄冷器38の性能を低下させうる。偏流ひいては冷凍性能の低下は、冷凍機の運転周波数が高い場合や冷凍機の径方向寸法が大きい場合に顕著となりうる。 In this way, a drift is generated inside the regenerator 38. That is, a non-uniform distribution occurs in the axial gas flow in the regenerator 38. As a result, the regenerator material located on the side opposite to the connection port 156 receives more heat from the working gas than the regenerator material located on the connection port 156 side, and the regenerator 38 is circumferentially and / or radially oriented. Temperature difference occurs. Such non-uniform regenerator temperature distribution may cause an increase in pressure loss and a decrease in regenerator efficiency, and may reduce the performance of the regenerator 38. The drift and thus the refrigeration performance decrease can be significant when the operating frequency of the refrigerator is high or when the radial dimension of the refrigerator is large.
 これに対して、本実施形態に係る膨張機13においては、接続口56に隣接する圧縮空間36の領域に比べて圧縮空間36の他の一部の領域が狭くなっている。具体的には、ブロック58によって第2作動ガス領域62が第1作動ガス領域60に比べて狭窄されている。そのため、第2作動ガス領域62を通って接続口56と反対側から蓄冷器38に流入するガス流量を抑制することができる。したがって、本実施形態に係る膨張機13は、蓄冷器38に生じうる作動ガスの偏流を緩和し、好ましくは防止することができる。よって、中心軸に垂直な面における蓄冷器38の温度分布が均一化され、冷凍性能が向上される。この性能向上は、コールドヘッド温度が低いほど大きくなる。 On the other hand, in the expander 13 according to this embodiment, the other part of the compression space 36 is narrower than the compression space 36 adjacent to the connection port 56. Specifically, the second working gas region 62 is narrowed by the block 58 as compared with the first working gas region 60. Therefore, the gas flow rate flowing into the regenerator 38 from the side opposite to the connection port 56 through the second working gas region 62 can be suppressed. Therefore, the expander 13 according to the present embodiment can reduce and preferably prevent the drift of the working gas that may occur in the regenerator 38. Therefore, the temperature distribution of the regenerator 38 in the plane perpendicular to the central axis is made uniform, and the refrigeration performance is improved. This performance improvement increases as the cold head temperature decreases.
 図5は、本発明の他の実施形態に係る膨張機13を概略的に示す図である。図5に示される膨張機13は、ディスプレーサロッド34及び第3容器部分20cに関して図2に示す膨張機13と相違する。その余の構成については、図5に示される膨張機13は図2に示す膨張機13と同様であり、冗長を避けるため説明を適宜省略する。 FIG. 5 is a diagram schematically showing an expander 13 according to another embodiment of the present invention. The expander 13 shown in FIG. 5 is different from the expander 13 shown in FIG. 2 with respect to the displacer rod 34 and the third container portion 20c. About the other structure, the expander 13 shown by FIG. 5 is the same as that of the expander 13 shown in FIG. 2, and in order to avoid redundancy, description is abbreviate | omitted suitably.
 また、図6は、本発明のある実施形態に係るディスプレーサロッド34を概略的に示す断面図である。この断面図はディスプレーサロッド34の中心軸に垂直な平面による断面を示す。 FIG. 6 is a cross-sectional view schematically showing a displacer rod 34 according to an embodiment of the present invention. This sectional view shows a section taken along a plane perpendicular to the central axis of the displacer rod 34.
 図5及び図6に示されるように、ディスプレーサロッド34は、軸方向に垂直な断面において楕円形状を有する。したがって、ディスプレーサロッド34は、径方向両側に第3容器部分20cの内壁部52bに向けられた凸部76を備える。第2作動ガス領域62は、第3容器部分20cの内壁部52bと凸部76との間に形成される。凸部76は、圧縮空間36に相当する軸方向範囲にわたって形成されている。シール部25には凸部76が形成されていないので、シール部25におけるディスプレーサロッド34の断面は円形である。 As shown in FIGS. 5 and 6, the displacer rod 34 has an elliptical shape in a cross section perpendicular to the axial direction. Accordingly, the displacer rod 34 is provided with convex portions 76 directed to the inner wall portion 52b of the third container portion 20c on both radial sides. The second working gas region 62 is formed between the inner wall portion 52b of the third container portion 20c and the convex portion 76. The convex portion 76 is formed over an axial range corresponding to the compression space 36. Since the convex part 76 is not formed in the seal part 25, the cross section of the displacer rod 34 in the seal part 25 is circular.
 第1作動ガス領域60が第1周方向位置において接続口56とディスプレーサロッド34との間に形成されている。第1作動ガス領域60は、第1周方向位置において接続口56とディスプレーサロッド34との間に第1径方向幅W1を有する。 A first working gas region 60 is formed between the connection port 56 and the displacer rod 34 at the first circumferential position. The first working gas region 60 has a first radial width W1 between the connection port 56 and the displacer rod 34 at the first circumferential position.
 また、第2作動ガス領域62が第1周方向位置と異なる第2周方向位置において第3容器部分20cの内壁部52bとディスプレーサロッド34の凸部76との間に形成されている。第2周方向位置は、第1周方向位置と周方向に90度異なる位置である。第2作動ガス領域62は、第2周方向位置において内壁部52bと凸部76との間に第2径方向幅W2を有する。 Also, the second working gas region 62 is formed between the inner wall portion 52b of the third container portion 20c and the convex portion 76 of the displacer rod 34 at a second circumferential position different from the first circumferential position. The second circumferential position is a position that is 90 degrees different from the first circumferential position in the circumferential direction. The second working gas region 62 has a second radial width W2 between the inner wall portion 52b and the convex portion 76 at the second circumferential position.
 凸部76によって第2作動ガス領域62が第1作動ガス領域60に比べて狭窄されている。そのため、第2作動ガス領域62を通って接続口56と反対側から蓄冷器38に流入するガス流量を抑制することができる。したがって、本実施形態に係る膨張機13は、蓄冷器38に生じうる作動ガスの偏流を緩和し、好ましくは防止することができる。よって、中心軸に垂直な面における蓄冷器38の温度分布が均一化され、冷凍性能が向上される。 The second working gas region 62 is narrowed by the convex portion 76 as compared with the first working gas region 60. Therefore, the gas flow rate flowing into the regenerator 38 from the side opposite to the connection port 56 through the second working gas region 62 can be suppressed. Therefore, the expander 13 according to the present embodiment can reduce and preferably prevent the drift of the working gas that may occur in the regenerator 38. Therefore, the temperature distribution of the regenerator 38 in the plane perpendicular to the central axis is made uniform, and the refrigeration performance is improved.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, various modifications are possible, and such modifications are within the scope of the present invention. By the way.
 例えば、凸部76の形状は楕円に限られず、長円や長方形など他の形状をとりうる。凸部76の周方向位置は、図示の例に限られず、他の任意の場所であってもよい。 For example, the shape of the convex portion 76 is not limited to an ellipse, and may take other shapes such as an ellipse or a rectangle. The circumferential position of the convex portion 76 is not limited to the illustrated example, and may be any other location.
 また、凸部76は、ディスプレーサロッド34の片側のみに設けられていてもよい。この場合、凸部76は、接続口56と反対側に向けられていてもよい。あるいは、ディスプレーサロッド34は、3つ又はそれより多数の凸部を備えてもよい。 Further, the convex portion 76 may be provided only on one side of the displacer rod 34. In this case, the convex portion 76 may be directed to the side opposite to the connection port 56. Alternatively, the displacer rod 34 may include three or more protrusions.
 ある実施形態においては、ブロック58と凸部76とを組み合わせてもよい。すなわち、膨張機13は、ブロック58を備える第3容器部分20cと、凸部76を備えるディスプレーサ22と、を備えてもよい。 In an embodiment, the block 58 and the convex portion 76 may be combined. That is, the expander 13 may include the third container portion 20 c including the block 58 and the displacer 22 including the convex portion 76.
 ある実施形態においては、ディスプレーサヘッド32が凸部を備えてもよい。凸部は、圧縮空間36に面するディスプレーサヘッド32の表面に形成されてもよい。第2作動ガス領域62が第3容器部分20cとディスプレーサヘッド32の凸部との間に形成されてもよい。 In an embodiment, the displacer head 32 may include a convex portion. The convex portion may be formed on the surface of the displacer head 32 facing the compression space 36. The second working gas region 62 may be formed between the third container portion 20 c and the convex portion of the displacer head 32.
(第2実施形態)
 図7は、本発明の第2実施形態に係るスターリング冷凍機1010を概略的に示す図である。スターリング冷凍機1010は、圧縮機1011、接続管1012、及び膨張機1013を備える。スターリング冷凍機1010は、スプリット式のスターリング冷凍機である。
(Second Embodiment)
FIG. 7 is a diagram schematically showing a Stirling refrigerator 1010 according to the second embodiment of the present invention. The Stirling refrigerator 1010 includes a compressor 1011, a connecting pipe 1012, and an expander 1013. The Stirling refrigerator 1010 is a split type Stirling refrigerator.
 圧縮機1011は、圧縮機ケース1014を備える。圧縮機ケース1014は、高圧の作動ガスを気密に保持するよう構成されている圧力容器である。作動ガスは例えばヘリウムガスである。また、圧縮機1011は、圧縮機ケース1014に収容されている圧縮機ユニットを備える。圧縮機ユニットは圧縮機ピストン及び圧縮機シリンダを備えており、それらのうち一方は圧縮機ケース1014の中で往復移動するよう構成されている可動部材1015であり、他方は圧縮機ケース1014に固定されている静止部材である。圧縮機ユニットは、可動部材1015の中心軸に沿う方向に可動部材1015を圧縮機ケース1014に対して移動させるための駆動源を備える。圧縮機1011は、可動部材1015の往復移動を可能とするように可動部材1015を圧縮機ケース1014に支持する支持部1016を備える。可動部材1015は、ある振幅及び周波数で圧縮機ケース1014及び静止部材に対し振動する。この結果、圧縮機1011内の作動ガスの容積及び圧力も、特定の振幅および周波数で振動する。 The compressor 1011 includes a compressor case 1014. The compressor case 1014 is a pressure vessel configured to hold a high-pressure working gas in an airtight manner. The working gas is, for example, helium gas. Further, the compressor 1011 includes a compressor unit housed in a compressor case 1014. The compressor unit includes a compressor piston and a compressor cylinder, one of which is a movable member 1015 configured to reciprocate in the compressor case 1014, and the other is fixed to the compressor case 1014. It is a stationary member. The compressor unit includes a drive source for moving the movable member 1015 relative to the compressor case 1014 in a direction along the central axis of the movable member 1015. The compressor 1011 includes a support portion 1016 that supports the movable member 1015 on the compressor case 1014 so that the movable member 1015 can reciprocate. The movable member 1015 vibrates with respect to the compressor case 1014 and the stationary member with a certain amplitude and frequency. As a result, the volume and pressure of the working gas in the compressor 1011 also vibrate with a specific amplitude and frequency.
 圧縮機ピストンと圧縮機シリンダとの間に作動ガス室が形成されている。この作動ガス室は、上述の静止部材及び圧縮機ケース1014に形成されている連通路を通じて、接続管1012の一端に接続されている。接続管1012の他端は、膨張機1013の作動ガス受入室へと接続されている。こうして接続管1012により、圧縮機1011の作動ガス室が膨張機1013の作動ガス受入室に接続される。 A working gas chamber is formed between the compressor piston and the compressor cylinder. This working gas chamber is connected to one end of the connection pipe 1012 through a communication passage formed in the stationary member and the compressor case 1014 described above. The other end of the connection pipe 1012 is connected to the working gas receiving chamber of the expander 1013. In this way, the working gas chamber of the compressor 1011 is connected to the working gas receiving chamber of the expander 1013 by the connecting pipe 1012.
 膨張機1013は、図8を参照して後述するように、膨張機容器1020、ディスプレーサ1022、及び少なくとも1つの支持部1040を備える。 The expander 1013 includes an expander container 1020, a displacer 1022, and at least one support portion 1040, as will be described later with reference to FIG.
 図8は、本発明の第2実施形態に係る膨張機1013を概略的に示す図である。図8には膨張機1013の内部構造の概略を示す。 FIG. 8 is a diagram schematically showing an expander 1013 according to the second embodiment of the present invention. FIG. 8 shows an outline of the internal structure of the expander 1013.
 膨張機容器1020は、高圧の作動ガスを気密に保持するよう構成されている圧力容器である。この圧力容器は、内部を気密に保持するよう相互に連結された複数の容器部分から構成されていてもよい。ディスプレーサ1022は、膨張機容器1020の中で往復移動するよう構成されている可動部材である。支持部1040は、ディスプレーサ1022の往復移動を可能とするようにディスプレーサ1022を膨張機容器1020に支持する。 The expander container 1020 is a pressure container configured to hold a high-pressure working gas in an airtight manner. This pressure vessel may be composed of a plurality of vessel parts connected to each other so as to keep the inside airtight. The displacer 1022 is a movable member configured to reciprocate within the expander container 1020. The support unit 1040 supports the displacer 1022 on the expander container 1020 so that the displacer 1022 can reciprocate.
 膨張機容器1020は、第1区画1024及び第2区画1026を備える。第1区画1024は、膨張機容器1020とディスプレーサ1022との間に形成される作動ガスの膨張空間1028及び圧縮空間1036を含む。膨張空間1028に隣接する膨張機容器1020の部分には、対象物を冷却するための冷却ステージ1029が設けられている。冷却ステージ1029はコールドヘッドとも呼ばれる。第2区画1026は、弾性部材1030を介してディスプレーサ1022を膨張機容器1020に支持するよう構成されている。 The expander container 1020 includes a first compartment 1024 and a second compartment 1026. The first compartment 1024 includes an expansion space 1028 and a compression space 1036 for working gas formed between the expander vessel 1020 and the displacer 1022. A portion of the expander container 1020 adjacent to the expansion space 1028 is provided with a cooling stage 1029 for cooling the object. The cooling stage 1029 is also called a cold head. The second section 1026 is configured to support the displacer 1022 on the expander container 1020 via the elastic member 1030.
 第2区画1026は、ディスプレーサ1022の往復移動方向(図において矢印Cで示す)において第1区画1024と隣接する。第2区画1026と第1区画1024との間にはシール部1025が設けられており、これにより第2区画1026は第1区画1024から仕切られている。よって、第1区画1024における作動ガスの圧力変動は、第2区画1026に伝わらないか、または第2区画1026における作動ガスの圧力にあまり影響しない。なお、第2区画1026は、接続管1012を流れる作動ガスの平均圧力と同等の圧力となるように、作動ガスと同種のガスが封入されている。 The second section 1026 is adjacent to the first section 1024 in the reciprocating direction of the displacer 1022 (indicated by arrow C in the figure). A seal portion 1025 is provided between the second compartment 1026 and the first compartment 1024, so that the second compartment 1026 is partitioned from the first compartment 1024. Thus, the pressure fluctuations of the working gas in the first compartment 1024 are not transmitted to the second compartment 1026 or do not significantly affect the pressure of the working gas in the second compartment 1026. Note that the second compartment 1026 is filled with the same type of gas as the working gas so as to have a pressure equivalent to the average pressure of the working gas flowing through the connecting pipe 1012.
 ディスプレーサ1022は、第1区画1024に収容されているディスプレーサヘッド1032と、ディスプレーサロッド1034と、を備える。ディスプレーサロッド1034は、ディスプレーサヘッド1032より細い軸部である。ディスプレーサ1022はその往復移動方向に平行である中心軸(図において一点鎖線Aで示す)を有しており、ディスプレーサヘッド1032及びディスプレーサロッド1034はディスプレーサ1022の中心軸に同軸に設けられている。ディスプレーサヘッド1032は内部に空洞を有しており、作動ガスと同種のガスで満たされている。 The displacer 1022 includes a displacer head 1032 accommodated in the first section 1024 and a displacer rod 1034. Displacer rod 1034 is a shaft portion thinner than displacer head 1032. The displacer 1022 has a central axis (indicated by the alternate long and short dash line A) in the reciprocating direction, and the displacer head 1032 and the displacer rod 1034 are provided coaxially with the central axis of the displacer 1022. The displacer head 1032 has a cavity inside and is filled with the same kind of gas as the working gas.
 ディスプレーサロッド1034は、ディスプレーサヘッド1032からシール部1025を通って第2区画1026へと延在する。ディスプレーサロッド1034は、ディスプレーサ1022の往復移動を可能とするよう第2区画1026において膨張機容器1020により支持される。上述のシール部1025は例えば、ディスプレーサロッド1034と膨張機容器1020との間に形成されるロッドシールであってもよい。なお、ディスプレーサロッド1034もディスプレーサヘッド1032と同様に内部に空洞を有している。ディスプレーサロッド1034の空洞はディスプレーサヘッド1032の空洞と接続している。ディスプレーサロッド1034の末端が開放され、ディスプレーサ1022の内部空洞は第2区画1026に連通されていてもよい。 Displacer rod 1034 extends from displacer head 1032 through seal 1025 to second compartment 1026. The displacer rod 1034 is supported by the expander vessel 1020 in the second compartment 1026 to allow the displacer 1022 to reciprocate. The seal portion 1025 described above may be a rod seal formed between the displacer rod 1034 and the expander container 1020, for example. The displacer rod 1034 also has a cavity inside, similar to the displacer head 1032. The cavity of the displacer rod 1034 is connected to the cavity of the displacer head 1032. The distal end of the displacer rod 1034 may be open, and the internal cavity of the displacer 1022 may be in communication with the second compartment 1026.
 第1区画1024は、ディスプレーサヘッド1032を囲むシリンダ部を形成する。このシリンダ部の底面(すなわち冷却ステージ1029の内面)とディスプレーサヘッド1032の先端面1032aとの間に膨張空間1028が形成されている。膨張空間1028は、ディスプレーサ1022の往復移動方向においてディスプレーサヘッド1032とディスプレーサロッド1034との接合部とは反対側に形成されている。この接合部とシール部1025との間には、膨張機1013における作動ガスの圧縮空間1036が形成されている。よって、ディスプレーサヘッド1032は、軸方向一端側にて膨張空間1028に面し、軸方向他端側にて圧縮空間1036に面する。圧縮空間1036は接続管1012を通じて圧縮機1011に接続される膨張機1013の作動ガス受入室である。 The first section 1024 forms a cylinder portion that surrounds the displacer head 1032. An expansion space 1028 is formed between the bottom surface of the cylinder portion (that is, the inner surface of the cooling stage 1029) and the distal end surface 1032a of the displacer head 1032. The expansion space 1028 is formed on the side opposite to the joint between the displacer head 1032 and the displacer rod 1034 in the reciprocating direction of the displacer 1022. A working gas compression space 1036 in the expander 1013 is formed between the joint portion and the seal portion 1025. Therefore, the displacer head 1032 faces the expansion space 1028 on one end side in the axial direction and faces the compression space 1036 on the other end side in the axial direction. The compression space 1036 is a working gas receiving chamber of the expander 1013 connected to the compressor 1011 through the connection pipe 1012.
 膨張機容器1020のシリンダ部には、ディスプレーサヘッド1032の径方向外側に隣接して蓄冷器1038が設けられている。ここで径方向は中心軸の方向に垂直な方向をいう。こうして蓄冷器1038は膨張機容器1020に収容されている。蓄冷器1038は、ディスプレーサ1022と同軸に軸方向に延在し、環状またはドーナツ状に形成されている。より具体的には、蓄冷器1038は、ディスプレーサヘッド1032の外周部においてディスプレーサ1022の長手軸を中心軸とする円筒形状の領域に位置するように、膨張機容器1020のシリンダ部の側面に備えられる。蓄冷器1038は蓄冷材として例えば、金網の積層構造を備える。膨張空間1028と圧縮空間1036との間の作動ガスの流通は蓄冷器1038を通じて可能である。膨張空間1028は、中心軸の方向において蓄冷器1038の一端側に位置し、圧縮空間1036は、中心軸の方向において蓄冷器1038の他端側に位置する。 In the cylinder portion of the expander container 1020, a regenerator 1038 is provided adjacent to the radially outer side of the displacer head 1032. Here, the radial direction refers to a direction perpendicular to the direction of the central axis. Thus, the regenerator 1038 is accommodated in the expander container 1020. The regenerator 1038 extends in the axial direction coaxially with the displacer 1022 and is formed in an annular or donut shape. More specifically, the regenerator 1038 is provided on the side surface of the cylinder portion of the expander container 1020 so as to be positioned in a cylindrical region around the longitudinal axis of the displacer 1022 in the outer peripheral portion of the displacer head 1032. . The regenerator 1038 includes, for example, a laminated structure of wire mesh as a regenerator material. The working gas can be circulated between the expansion space 1028 and the compression space 1036 through the regenerator 1038. The expansion space 1028 is located on one end side of the regenerator 1038 in the direction of the central axis, and the compression space 1036 is located on the other end side of the regenerator 1038 in the direction of the central axis.
 軸方向において蓄冷器1038と圧縮空間1036の間には、蓄冷器1038に隣接して放熱器1037が設けられる。放熱器1037は例えば水冷式熱交換器である。放熱器1037も蓄冷器1038と同様に環状またはドーナツ状に形成されている。放熱器1037は蓄冷器1038とともにシリンダ部を形成する。 A radiator 1037 is provided adjacent to the regenerator 1038 between the regenerator 1038 and the compression space 1036 in the axial direction. The radiator 1037 is, for example, a water-cooled heat exchanger. Similarly to the regenerator 1038, the radiator 1037 is formed in an annular shape or a donut shape. The radiator 1037 forms a cylinder part together with the regenerator 1038.
 放熱器1037は、圧縮機1011から供給された作動ガスを冷却し、その熱を膨張機1013の外部へ放出するための熱交換を実現する。圧縮機1011から圧縮空間1036に供給される作動ガスは一般に室温より高い温度を有するので、放熱器1037は、この高温ガスを室温程度に冷却する。 The heat radiator 1037 cools the working gas supplied from the compressor 1011 and realizes heat exchange for releasing the heat to the outside of the expander 1013. Since the working gas supplied from the compressor 1011 to the compression space 1036 generally has a temperature higher than room temperature, the radiator 1037 cools the high-temperature gas to about room temperature.
 放熱器1037は、ディスプレーサヘッド1032の周囲に配設されている。ディスプレーサヘッド1032の側面は放熱器1037の内壁部と摺動可能であり、それにより放熱器1037はディスプレーサヘッド1032の軸方向往復移動を案内することができる。圧縮空間1036と膨張空間1028との作動ガスの流通を妨げるシール部が、ディスプレーサヘッド1032の側面と放熱器1037の内壁部との間に形成されていてもよい。 The heat radiator 1037 is disposed around the displacer head 1032. The side surface of the displacer head 1032 is slidable with the inner wall portion of the radiator 1037, whereby the radiator 1037 can guide the reciprocating movement of the displacer head 1032 in the axial direction. A seal portion that prevents the working gas from flowing through the compression space 1036 and the expansion space 1028 may be formed between the side surface of the displacer head 1032 and the inner wall portion of the radiator 1037.
 また、軸方向において蓄冷器1038と冷却ステージ1029との間には、蓄冷器1038に隣接して低温熱交換器1039が取り付けられる。低温熱交換器1039は、ディスプレーサ先端部の周囲に配設されている。圧縮空間1036と膨張空間1028とを接続する作動ガス流路が放熱器1037、蓄冷器1038、及び低温熱交換器1039によって形成されている。径方向において蓄冷器1038とディスプレーサヘッド1032との間には微小なクリアランスが形成されていてもよい。同様に、径方向において低温熱交換器1039とディスプレーサヘッド1032との間には微小なクリアランスが形成されていてもよい。 In addition, a low-temperature heat exchanger 1039 is attached adjacent to the regenerator 1038 between the regenerator 1038 and the cooling stage 1029 in the axial direction. The low temperature heat exchanger 1039 is disposed around the displacer tip. A working gas flow path connecting the compression space 1036 and the expansion space 1028 is formed by the radiator 1037, the regenerator 1038, and the low temperature heat exchanger 1039. A minute clearance may be formed between the regenerator 1038 and the displacer head 1032 in the radial direction. Similarly, a minute clearance may be formed between the low-temperature heat exchanger 1039 and the displacer head 1032 in the radial direction.
 膨張機1013は、ディスプレーサ1022の往復移動方向における複数の異なる位置で、ディスプレーサ1022の往復移動を可能とするようディスプレーサ1022を膨張機容器1020に支持する。そのために、膨張機1013は2つの支持部1040を備える。これら2つの支持部1040は第2区画1026に設けられている。また、蓄冷器1038及び放熱器1037は上述のように、中心軸の方向におけるディスプレーサ1022の往復移動を案内するようディスプレーサヘッド1032の周囲に配設されている。よって、蓄冷器1038及び放熱器1037もまた、ディスプレーサ1022の支持部を形成する。このようにして、中心軸に対するディスプレーサ1022の傾動を抑制することができる。 The expander 1013 supports the displacer 1022 on the expander container 1020 so that the displacer 1022 can reciprocate at a plurality of different positions in the reciprocating direction of the displacer 1022. For this purpose, the expander 1013 includes two support portions 1040. These two support portions 1040 are provided in the second section 1026. Further, as described above, the regenerator 1038 and the radiator 1037 are disposed around the displacer head 1032 so as to guide the reciprocating movement of the displacer 1022 in the direction of the central axis. Thus, the regenerator 1038 and the radiator 1037 also form a support for the displacer 1022. In this way, the tilt of the displacer 1022 with respect to the central axis can be suppressed.
 支持部1040は上述の弾性部材1030を備える。弾性部材1030は、ディスプレーサ1022が中立位置から変位するときディスプレーサ1022に弾性的復元力が作用するように、ディスプレーサロッド1034と膨張機容器1020との間に配設されている。これにより、ディスプレーサ1022は、弾性部材1030のバネ定数、作動ガスの圧力に起因するバネ定数、およびディスプレーサ1022の重量から定まる固有振動数で往復移動する。 The support portion 1040 includes the elastic member 1030 described above. The elastic member 1030 is disposed between the displacer rod 1034 and the expander container 1020 so that an elastic restoring force acts on the displacer 1022 when the displacer 1022 is displaced from the neutral position. Accordingly, the displacer 1022 reciprocates at a natural frequency determined from the spring constant of the elastic member 1030, the spring constant resulting from the pressure of the working gas, and the weight of the displacer 1022.
 弾性部材1030は例えば、少なくとも1つの板バネを含むバネ機構を備える。板バネはフレクシャベアリングとも呼ばれるバネであり、ディスプレーサ1022の往復移動方向に柔軟であり、往復移動方向に垂直な方向に剛である。したがって、弾性部材1030により、ディスプレーサ1022はその中心軸に沿う方向への移動が許容されているが、それと直交する方向への移動は規制されている。ディスプレーサロッド1034は、弾性部材取付部1051を介して弾性部材1030に固定される。 The elastic member 1030 includes, for example, a spring mechanism including at least one leaf spring. The leaf spring is a spring called a flexure bearing and is flexible in the reciprocating direction of the displacer 1022 and rigid in the direction perpendicular to the reciprocating direction. Accordingly, the displacer 1022 is allowed to move in the direction along the central axis by the elastic member 1030, but the movement in the direction orthogonal thereto is restricted. The displacer rod 1034 is fixed to the elastic member 1030 via the elastic member mounting portion 1051.
 このようにして、ディスプレーサ1022と弾性部材1030とからなる振動系が構成されている。この振動系は、圧縮機1011の可動部材1015の振動と同一の周波数で当該振動と位相差を有してディスプレーサ1022が振動するよう構成されている。ディスプレーサ1022は、圧縮機1011の可動部材1015の振動によって圧縮空間1036に生じる作動ガス圧力の脈動によって駆動される。ディスプレーサ1022の往復動及び圧縮機1011の可動部材1015の往復動によって膨張空間1028と圧縮空間1036との間に逆スターリングサイクルが形成される。こうして、膨張空間1028に隣接する低温熱交換器1039が冷却される。低温熱交換器1039によって冷却ステージ1029が冷却され、スターリング冷凍機1010は対象物を冷却することができる。 Thus, a vibration system including the displacer 1022 and the elastic member 1030 is configured. This vibration system is configured such that the displacer 1022 vibrates at the same frequency as the vibration of the movable member 1015 of the compressor 1011 and has a phase difference with the vibration. The displacer 1022 is driven by the pulsation of the working gas pressure generated in the compression space 1036 by the vibration of the movable member 1015 of the compressor 1011. A reverse Stirling cycle is formed between the expansion space 1028 and the compression space 1036 by the reciprocation of the displacer 1022 and the reciprocation of the movable member 1015 of the compressor 1011. Thus, the low temperature heat exchanger 1039 adjacent to the expansion space 1028 is cooled. The cooling stage 1029 is cooled by the low-temperature heat exchanger 1039, and the Stirling refrigerator 1010 can cool the object.
 続いて、接続管1012及び膨張機容器1020の構成について更に説明する。 Subsequently, the configuration of the connection pipe 1012 and the expander container 1020 will be further described.
 接続管1012は、主管1060、第1枝管1062、及び第2枝管1064を備える。主管1060は、その一端にて圧縮機1011に接続され、他端に分岐部1066を備える。第1枝管1062は、分岐部1066で主管1060から分岐する。同様に、第2枝管1064は、分岐部1066で主管1060から分岐する。 The connection pipe 1012 includes a main pipe 1060, a first branch pipe 1062, and a second branch pipe 1064. The main pipe 1060 is connected to the compressor 1011 at one end and includes a branching portion 1066 at the other end. The first branch pipe 1062 branches off from the main pipe 1060 at the branch portion 1066. Similarly, the second branch pipe 1064 branches from the main pipe 1060 at the branch portion 1066.
 膨張機容器1020は、冷却ステージ1029に加えて、第1容器部分1020a、第2容器部分1020b、第3容器部分1020c、及び第4容器部分1020dを備える。冷却ステージ1029、第1容器部分1020a、第2容器部分1020b、第3容器部分1020c、及び第4容器部分1020dは、この記載の順に隣接して配置され、膨張機容器1020の内部を気密に保持するよう相互に連結されている。 The expander container 1020 includes a first container part 1020a, a second container part 1020b, a third container part 1020c, and a fourth container part 1020d in addition to the cooling stage 1029. The cooling stage 1029, the first container part 1020a, the second container part 1020b, the third container part 1020c, and the fourth container part 1020d are arranged adjacent to each other in this order, and the inside of the expander container 1020 is kept airtight. Are connected to each other.
 膨張機容器1020は、概ね筒状に形成されており、その側壁を第1容器部分1020a、第2容器部分1020b、第3容器部分1020c、及び第4容器部分1020dにより形成する。また、軸方向において膨張機容器1020の一端は冷却ステージ1029により閉じられ、他端は第4容器部分1020dにより閉じられている。 The expander container 1020 is generally formed in a cylindrical shape, and its side wall is formed by the first container part 1020a, the second container part 1020b, the third container part 1020c, and the fourth container part 1020d. In the axial direction, one end of the expander container 1020 is closed by the cooling stage 1029, and the other end is closed by the fourth container portion 1020d.
 第1容器部分1020aは、蓄冷器1038及び低温熱交換器1039を囲む。第2容器部分1020bは、放熱器1037を囲む。第3容器部分1020cは、側壁部1052及び底壁部1054を備え、圧縮空間1036を囲む。側壁部1052は、第2容器部分1020bを第4容器部分1020dに接続する。側壁部1052は、中心軸まわりに周方向に延在する。底壁部1054は、側壁部1052と第4容器部分1020dとの接合部において側壁部1052から径方向内側に延在する。底壁部1054の中心にはディスプレーサロッド1034を通す貫通孔が形成されている。底壁部1054とディスプレーサロッド1034との間にロッドシールが形成される。第4容器部分1020dは、第2区画1026を画定する。 The first container portion 1020a surrounds the regenerator 1038 and the low temperature heat exchanger 1039. The second container portion 1020 b surrounds the heat radiator 1037. The third container portion 1020 c includes a side wall portion 1052 and a bottom wall portion 1054 and surrounds the compression space 1036. The side wall part 1052 connects the second container part 1020b to the fourth container part 1020d. Side wall portion 1052 extends in the circumferential direction around the central axis. The bottom wall portion 1054 extends radially inward from the side wall portion 1052 at the joint portion between the side wall portion 1052 and the fourth container portion 1020d. A through hole through which the displacer rod 1034 passes is formed at the center of the bottom wall portion 1054. A rod seal is formed between the bottom wall portion 1054 and the displacer rod 1034. The fourth container portion 1020d defines a second compartment 1026.
 第3容器部分1020cは、中心軸に対して一方側に形成された第1接続口1056と、中心軸に対して他方側に形成された第2接続口1058と、を備える。第1接続口1056は、側壁部1052に形成されている。第2接続口1058は、中心軸を挟んで第1接続口1056と向かい合うように側壁部1052に形成されている。第1接続口1056及び第2接続口1058は、周方向に180度間隔で形成されている。第1接続口1056及び第2接続口1058は、中心軸に垂直な平面において中心軸を対称点として点対称に形成されている。 The third container portion 1020c includes a first connection port 1056 formed on one side with respect to the central axis, and a second connection port 1058 formed on the other side with respect to the central axis. The first connection port 1056 is formed in the side wall portion 1052. The second connection port 1058 is formed in the side wall portion 1052 so as to face the first connection port 1056 across the central axis. The first connection port 1056 and the second connection port 1058 are formed at intervals of 180 degrees in the circumferential direction. The first connection port 1056 and the second connection port 1058 are formed point-symmetrically with respect to the central axis on a plane perpendicular to the central axis.
 第1接続口1056に第1枝管1062が接続される。同様に、第2接続口1058に第2枝管1064が接続される。第1枝管1062は、径方向に外向きに第1接続口1056から分岐部1066まで延在する。第2枝管1064は、径方向に外向きに第2接続口1058から延在する出口部1064aと、出口部1064aを分岐部1066に接続する接続部1064bと、を備える。接続部1064bは、第4容器部分1020dの外面に沿って分岐部1066から出口部1064aへと延びている。こうして、膨張機1013の圧縮空間1036が複数の接続口を通じて圧縮機1011に接続されている。 The first branch pipe 1062 is connected to the first connection port 1056. Similarly, the second branch pipe 1064 is connected to the second connection port 1058. The first branch pipe 1062 extends from the first connection port 1056 to the branch portion 1066 outward in the radial direction. The second branch pipe 1064 includes an outlet portion 1064a extending from the second connection port 1058 outward in the radial direction, and a connecting portion 1064b connecting the outlet portion 1064a to the branch portion 1066. The connecting portion 1064b extends from the branch portion 1066 to the outlet portion 1064a along the outer surface of the fourth container portion 1020d. Thus, the compression space 1036 of the expander 1013 is connected to the compressor 1011 through a plurality of connection ports.
 膨張機1013の圧縮空間1036に圧縮機1011から作動ガスが流入するとき、第1接続口1056は中心軸に向かう第1ガス流れ1068を生成する。このとき、第2接続口1058は、第1ガス流れ1068と反対向きに中心軸に向かう第2ガス流れ1070を生成する。こうして、接続管1012は、各々が蓄冷器1038の中心軸に向かう複数の作動ガス流れを圧縮空間1036に生成するように膨張機容器1020に接続されている。 When the working gas flows from the compressor 1011 into the compression space 1036 of the expander 1013, the first connection port 1056 generates a first gas flow 1068 directed toward the central axis. At this time, the second connection port 1058 generates a second gas flow 1070 toward the central axis in the opposite direction to the first gas flow 1068. Thus, the connecting pipe 1012 is connected to the expander container 1020 so as to generate a plurality of working gas flows in the compression space 1036 each directed toward the central axis of the regenerator 1038.
 なお、分岐部1066は第2接続口1058の側に設けられていてもよい。この場合、第2枝管1064が径方向に外向きに第2接続口1058から分岐部1066まで延在してもよい。第1枝管1062は、径方向に外向きに第1接続口1056から延在する出口部と、出口部を分岐部1066に接続する接続部と、を備えてもよい。 Note that the branching portion 1066 may be provided on the second connection port 1058 side. In this case, the second branch pipe 1064 may extend from the second connection port 1058 to the branch portion 1066 outward in the radial direction. The first branch pipe 1062 may include an outlet portion that extends radially outward from the first connection port 1056 and a connection portion that connects the outlet portion to the branch portion 1066.
 あるいは、第1枝管1062及び第2枝管1064のそれぞれが、対応する接続口から径方向外向きに延在する出口部と、出口部を分岐部1066に接続する接続部と、を備えてもよい。この場合、第1枝管1062における作動ガスの圧力損失が第2枝管1064における作動ガスの圧力損失と等しくなるように、第1枝管1062及び第2枝管1064が構成されていてもよい。例えば、第1枝管1062と第2枝管1064とが等しい経路、長さ、及び/または断面積を有してもよい。 Alternatively, each of the first branch pipe 1062 and the second branch pipe 1064 includes an outlet portion extending radially outward from a corresponding connection port, and a connection portion connecting the outlet portion to the branch portion 1066. Also good. In this case, the first branch pipe 1062 and the second branch pipe 1064 may be configured such that the pressure loss of the working gas in the first branch pipe 1062 is equal to the pressure loss of the working gas in the second branch pipe 1064. . For example, the first branch pipe 1062 and the second branch pipe 1064 may have equal paths, lengths, and / or cross-sectional areas.
 また、第1枝管1062及び/または第2枝管1064の接続部は、第3容器部分1020cの外面に沿って周方向に延びていてもよい。 Further, the connection portion of the first branch pipe 1062 and / or the second branch pipe 1064 may extend in the circumferential direction along the outer surface of the third container portion 1020c.
 図9は、あるスターリング冷凍機の膨張機1113を概略的に示す断面図である。膨張機1113は、圧縮空間1136に単一の接続口1156を有する。接続口1156は、非分岐の接続管1112を通じて圧縮機1011に接続される。 FIG. 9 is a cross-sectional view schematically showing an expander 1113 of a Stirling refrigerator. The expander 1113 has a single connection port 1156 in the compression space 1136. The connection port 1156 is connected to the compressor 1011 through a non-branching connection pipe 1112.
 膨張機1113のその他の構成は、図8に示す膨張機1013と概ね同様である。例えば、蓄冷器1038は、中心軸の方向におけるディスプレーサ1022の往復移動を案内するようディスプレーサヘッド1032の周囲に配設されている。蓄冷器1038は、軸方向一端側に位置する膨張空間1028と軸方向他端側に位置する圧縮空間1136との間の作動ガス流路を形成する。 Other configurations of the expander 1113 are substantially the same as those of the expander 1013 shown in FIG. For example, the regenerator 1038 is disposed around the displacer head 1032 to guide the reciprocating movement of the displacer 1022 in the direction of the central axis. The regenerator 1038 forms a working gas flow path between the expansion space 1028 located on one axial end side and the compression space 1136 located on the other axial end side.
 圧縮機1011から接続口1156を通じて圧縮空間1136に噴出したガスはその勢いによって、矢印1072で図示するように、接続口1156と反対側の壁面1158に向かう。ガスは壁面1158によって放熱器1037へと向けられる。ガスは放熱器1037を通って蓄冷器1038に流入する。そのため、接続口1156と反対側に位置する蓄冷材に流入するガス流量は、接続口1156の側に位置する蓄冷材に流入するガス流量よりも多くなる。 The gas ejected from the compressor 1011 to the compression space 1136 through the connection port 1156 is directed toward the wall surface 1158 on the opposite side of the connection port 1156 as shown by the arrow 1072 by the momentum. The gas is directed to the radiator 1037 by the wall 1158. The gas flows into the regenerator 1038 through the radiator 1037. Therefore, the gas flow rate flowing into the cool storage material located on the side opposite to the connection port 1156 is larger than the gas flow rate flowing into the cool storage material positioned on the connection port 1156 side.
 ガスは蓄冷器1038から膨張空間1028に流入し膨張する。矢印1074で図示するように、膨張空間1028からの戻りガスに関しては逆に、接続口1156の側に位置する蓄冷材に流入するガス流量が、接続口1156と反対側に位置する蓄冷材に流入するガス流量よりも多くなる。 Gas flows from the regenerator 1038 into the expansion space 1028 and expands. Contrary to the return gas from the expansion space 1028, the gas flow rate flowing into the regenerator material located on the connection port 1156 side flows into the regenerator material located on the opposite side to the connection port 1156, as shown by the arrow 1074. More than the gas flow rate.
 このようにして、蓄冷器1038の内部に偏流が生成される。すなわち、蓄冷器1038における軸方向ガス流れに不均一な分布が生じる。その結果、接続口1156と反対側に位置する蓄冷材は、接続口1156の側に位置する蓄冷材に比べて作動ガスから多くの熱を受け取り、蓄冷器1038には周方向及び/または径方向に温度差が生じる。このような不均一な蓄冷器温度分布は、圧力損失の増加や蓄冷器効率の低下を招き、蓄冷器1038の性能を低下させうる。偏流ひいては冷凍性能の低下は、冷凍機の運転周波数が高い場合や冷凍機の径方向寸法が大きい場合に顕著となりうる。 In this way, a drift is generated inside the regenerator 1038. That is, non-uniform distribution occurs in the axial gas flow in the regenerator 1038. As a result, the regenerator material located on the side opposite to the connection port 1156 receives more heat from the working gas than the regenerator material located on the connection port 1156 side, and the regenerator 1038 receives the heat in the circumferential direction and / or radial direction. Temperature difference occurs. Such a non-uniform regenerator temperature distribution may cause an increase in pressure loss and a decrease in regenerator efficiency, and may reduce the performance of the regenerator 1038. The drift and thus the refrigeration performance decrease can be significant when the operating frequency of the refrigerator is high or when the radial dimension of the refrigerator is large.
 これに対して、本実施形態に係る膨張機1013においては、図8に示されるように第1ガス流れ1068とこれに対向する第2ガス流れ1070とが圧縮空間1036の中心部にて衝突し、その勢いが抑えられる。したがって、本実施形態に係る膨張機1013は、蓄冷器1038に生じうる作動ガスの偏流を緩和し、好ましくは防止することができる。よって、中心軸に垂直な面における蓄冷器1038の温度分布が均一化され、冷凍性能が向上される。この性能向上は、コールドヘッド温度が低いほど大きくなる。 On the other hand, in the expander 1013 according to this embodiment, as shown in FIG. 8, the first gas flow 1068 and the second gas flow 1070 facing the first gas flow 1070 collide with each other at the center of the compression space 1036. , The momentum is suppressed. Therefore, the expander 1013 according to the present embodiment can reduce and preferably prevent the drift of the working gas that may occur in the regenerator 1038. Therefore, the temperature distribution of the regenerator 1038 in the plane perpendicular to the central axis is made uniform, and the refrigeration performance is improved. This performance improvement increases as the cold head temperature decreases.
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。 The present invention has been described above based on the embodiments. It will be understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, various modifications are possible, and such modifications are within the scope of the present invention. By the way.
 例えば、1以上の接続口が蓄冷器の中心軸に対して一方側に形成され、1以上の接続口が蓄冷器の中心軸に対して他方側に形成されてもよい。こうして、3つ又はそれより多数の接続口が形成されてもよい。接続口は等角度間隔に形成されてもよい。例えば、一方側に1つの接続口が形成され、他方側に2つの接続口が形成され、これら3つの接続口が周方向に120度間隔に形成されてもよい。つまり軸方向に見て正三角形状に接続口が配置されていてもよく、この場合、接続口は中心軸を挟んで向かい合ってはいない。あるいは、4つの接続口が周方向に90度間隔に形成され、第1組の接続口が中心軸を挟んで向かい合い、第2組の接続口が中心軸を挟んで向かい合っていてもよい。 For example, one or more connection ports may be formed on one side with respect to the central axis of the regenerator, and one or more connection ports may be formed on the other side with respect to the central axis of the regenerator. Thus, three or more connection ports may be formed. The connection ports may be formed at equiangular intervals. For example, one connection port may be formed on one side, two connection ports may be formed on the other side, and these three connection ports may be formed at intervals of 120 degrees in the circumferential direction. That is, the connection ports may be arranged in a regular triangle shape when viewed in the axial direction. In this case, the connection ports do not face each other across the central axis. Alternatively, the four connection ports may be formed at intervals of 90 degrees in the circumferential direction, the first set of connection ports facing each other across the central axis, and the second set of connection ports facing each other across the central axis.
 複数の接続口は等角度間隔に形成されていなくてもよい。例えば、複数の接続口からなる接続口の第1グループが蓄冷器の中心軸に対して一方側に形成され、複数の接続口からなる接続口の第2グループが蓄冷器の中心軸に対して他方側に形成されてもよい。第1グループの接続口は、周方向において互いに近接して配置されてもよい。同様に、第2グループの接続口は、周方向において互いに近接して配置されてもよい。こうして、第1グループの接続口と第2グループの接続口とが対向していてもよい。 The plurality of connection ports may not be formed at equiangular intervals. For example, a first group of connection ports composed of a plurality of connection ports is formed on one side with respect to the central axis of the regenerator, and a second group of connection ports composed of a plurality of connection ports is defined relative to the center axis of the regenerator It may be formed on the other side. The connection ports of the first group may be arranged close to each other in the circumferential direction. Similarly, the connection ports of the second group may be arranged close to each other in the circumferential direction. Thus, the connection port of the first group and the connection port of the second group may face each other.
 第1接続口1056、第2接続口1058、及び/または、その他の接続口は、側壁部1052ではなく、底壁部1054に形成されていてもよい。この場合、底壁部1054に形成された接続口に対応する接続管は、第4容器部分1020d及び第2区画1026を通じて当該接続口に接続されてもよい。 The first connection port 1056, the second connection port 1058, and / or other connection ports may be formed not on the side wall portion 1052 but on the bottom wall portion 1054. In this case, the connection pipe corresponding to the connection port formed in the bottom wall portion 1054 may be connected to the connection port through the fourth container portion 1020d and the second section 1026.
 図10に示されるように、スターリング冷凍機は、複数の圧縮機1011を備えてもよい。この場合、圧縮機1011ごとに接続管1012’及び接続口1056’が設けられていてもよい。接続管1012’は、分岐部を有しない管であってもよい。 As shown in FIG. 10, the Stirling refrigerator may include a plurality of compressors 1011. In this case, a connection pipe 1012 ′ and a connection port 1056 ′ may be provided for each compressor 1011. The connecting pipe 1012 ′ may be a pipe that does not have a branch portion.
 あるいは、上述の実施形態と同様に、個々の圧縮機1011に対応する接続管1012’が分岐部を有してもよい。この場合、接続管1012’は分岐部において主管から分岐する複数の枝管を有する。枝管のそれぞれが対応する接続口に接続されてもよい。 Alternatively, as in the above-described embodiment, the connection pipe 1012 ′ corresponding to each compressor 1011 may have a branch portion. In this case, the connecting pipe 1012 ′ has a plurality of branch pipes that branch from the main pipe at the branch portion. Each of the branch pipes may be connected to a corresponding connection port.
 ある実施形態においては、蓄冷器はディスプレーサに内蔵されていてもよい。この場合、膨張機容器は、蓄冷器内蔵ディスプレーサに隣接する圧縮空間を囲む容器部分を備えてもよい。容器部分は、ディスプレーサ中心軸に対して一方側に形成された1以上の接続口と、ディスプレーサ中心軸に対して他方側に形成された1以上の接続口と、を備えてもよい。接続口のそれぞれには、対応する枝管、または非分岐の接続管が接続されてもよい。 In an embodiment, the regenerator may be built in the displacer. In this case, the expander container may include a container part surrounding the compression space adjacent to the displacer with a built-in regenerator. The container portion may include one or more connection ports formed on one side with respect to the displacer central axis and one or more connection ports formed on the other side with respect to the displacer central axis. A corresponding branch pipe or an unbranched connection pipe may be connected to each of the connection ports.
 ある実施形態に係るスターリング冷凍機は、スターリング型パルス管冷凍機であってもよい。 The Stirling refrigerator according to an embodiment may be a Stirling pulse tube refrigerator.
 本発明の実施形態は以下のように表現することもできる。 The embodiment of the present invention can also be expressed as follows.
 1.膨張機と、圧縮機と、前記圧縮機を前記膨張機に接続する接続管と、を備え、
 前記膨張機は、
 軸方向に延在するディスプレーサであって、軸方向一端側にて作動ガス膨張空間に面しかつ軸方向他端側にて作動ガス圧縮空間に面するディスプレーサと、
 前記軸方向における前記ディスプレーサの往復移動を案内するよう前記ディスプレーサの周囲に配設され、前記作動ガス圧縮空間と前記作動ガス膨張空間との間の作動ガス流路を形成する蓄冷器と、
 前記ディスプレーサ及び前記蓄冷器を収容する膨張機容器であって、第1周方向位置に形成され前記作動ガス圧縮空間を前記接続管に接続する接続口を有し、前記接続口から周方向に延在し前記作動ガス圧縮空間を囲む容器部分を含む膨張機容器と、を備え、
 前記作動ガス圧縮空間の第1作動ガス領域が前記第1周方向位置において前記接続口と前記ディスプレーサとの間に形成され、前記第1作動ガス領域は、前記第1周方向位置において前記接続口と前記ディスプレーサとの間に第1径方向幅を有し、
 前記作動ガス圧縮空間の第2作動ガス領域が前記第1周方向位置と異なる第2周方向位置において前記容器部分と前記ディスプレーサとの間に形成され、前記第2作動ガス領域は、前記第2周方向位置において前記容器部分と前記ディスプレーサとの間に第2径方向幅を有し、
 前記第2径方向幅は、前記第1径方向幅より小さいことを特徴とするスターリング冷凍機。
1. An expander, a compressor, and a connecting pipe connecting the compressor to the expander,
The expander is
A displacer extending in the axial direction, facing the working gas expansion space on one end side in the axial direction and facing the working gas compression space on the other end side in the axial direction;
A regenerator disposed around the displacer to guide reciprocating movement of the displacer in the axial direction and forming a working gas flow path between the working gas compression space and the working gas expansion space;
An expander container that houses the displacer and the regenerator, and has a connection port that is formed at a first circumferential position and connects the working gas compression space to the connection pipe, and extends from the connection port in the circumferential direction. An expander vessel including a vessel portion existing and surrounding the working gas compression space;
A first working gas region of the working gas compression space is formed between the connection port and the displacer at the first circumferential position, and the first working gas region is formed at the connection port at the first circumferential position. And a first radial width between the displacer and
A second working gas region of the working gas compression space is formed between the container portion and the displacer at a second circumferential position different from the first circumferential position, and the second working gas region is the second working gas region. Having a second radial width between the container portion and the displacer at a circumferential position;
The Stirling refrigerator, wherein the second radial width is smaller than the first radial width.
 2.前記容器部分は、前記第2周方向位置を含む周方向範囲に延在するブロックを備え、
 前記第2作動ガス領域は、前記ブロックと前記ディスプレーサとの間に形成されることを特徴とする実施形態1に記載のスターリング冷凍機。
2. The container portion includes a block extending in a circumferential range including the second circumferential position;
The Stirling refrigerator according to the first embodiment, wherein the second working gas region is formed between the block and the displacer.
 3.前記ディスプレーサは、前記軸方向に垂直な断面において径方向に前記容器部分に向けられた凸部を備え、
 前記第2作動ガス領域は、前記容器部分と前記凸部との間に形成されることを特徴とする実施形態1または2に記載のスターリング冷凍機。
3. The displacer includes a convex portion that is directed radially toward the container portion in a cross section perpendicular to the axial direction,
The Stirling refrigerator according to Embodiment 1 or 2, wherein the second working gas region is formed between the container portion and the convex portion.
 4.前記ディスプレーサは、前記作動ガス膨張空間に面するディスプレーサ先端面を有するディスプレーサヘッドと、前記ディスプレーサヘッドから前記軸方向に前記作動ガス圧縮空間に延出するディスプレーサロッドと、を備え、
 前記蓄冷器は、前記ディスプレーサヘッドの周囲に配設され、
 前記第1作動ガス領域は、前記接続口と前記ディスプレーサロッドとの間に形成され、前記第2作動ガス領域は、前記容器部分と前記ディスプレーサロッドとの間に形成されていることを特徴とする実施形態1から3のいずれかに記載のスターリング冷凍機。
4). The displacer comprises a displacer head having a displacer tip surface facing the working gas expansion space, and a displacer rod extending from the displacer head in the axial direction to the working gas compression space,
The regenerator is disposed around the displacer head,
The first working gas region is formed between the connection port and the displacer rod, and the second working gas region is formed between the container portion and the displacer rod. The Stirling refrigerator according to any one of Embodiments 1 to 3.
 5.膨張機と、圧縮機と、前記圧縮機を前記膨張機に接続する接続管と、を備え、
 前記膨張機は、
 中心軸の方向に延在する蓄冷器であって、前記中心軸の方向において前記蓄冷器の一端側に位置する作動ガス膨張空間と前記中心軸の方向において前記蓄冷器の他端側に位置する作動ガス圧縮空間との間の作動ガス流路を形成する蓄冷器と、
 前記蓄冷器を収容する膨張機容器であって、前記作動ガス圧縮空間を囲む容器部分を備える膨張機容器と、を備え、
 前記接続管は、
 一端にて前記圧縮機に接続され、他端に分岐部を備える主管と、
 前記分岐部で前記主管から分岐する第1枝管と、
 前記分岐部で前記主管から分岐する第2枝管と、を備え、
 前記容器部分は、前記中心軸に対して一方側に形成され前記第1枝管に接続される第1接続口と、前記中心軸に対して他方側に形成され前記第2枝管に接続される第2接続口と、を備えることを特徴とするスターリング冷凍機。
5. An expander, a compressor, and a connecting pipe connecting the compressor to the expander,
The expander is
A regenerator extending in the direction of the central axis, the working gas expansion space located on one end side of the regenerator in the direction of the central axis and the other end side of the regenerator in the direction of the central axis A regenerator that forms a working gas flow path between the working gas compression space;
An expander container containing the regenerator, the expander container including a container portion surrounding the working gas compression space, and
The connecting pipe is
A main pipe connected to the compressor at one end and having a branching portion at the other end;
A first branch pipe branched from the main pipe at the branch portion;
A second branch pipe branched from the main pipe at the branch portion,
The container portion is formed on one side with respect to the central axis and connected to the first branch pipe, and is formed on the other side with respect to the central axis and connected to the second branch pipe. And a second connection port.
 6.前記容器部分は、前記中心軸まわりに延在する側壁部を備え、
 前記第1接続口と前記第2接続口とは、前記中心軸を挟んで向かい合うように前記側壁部に形成されていることを特徴とする実施形態5に記載のスターリング冷凍機。
6). The container portion includes a side wall extending around the central axis;
The Stirling refrigerator according to the fifth embodiment, wherein the first connection port and the second connection port are formed in the side wall portion so as to face each other across the central axis.
 7.前記膨張機は、前記中心軸に沿って延在するディスプレーサをさらに備え、
 前記ディスプレーサは、軸方向一端側にて前記作動ガス膨張空間に面し、軸方向他端側にて前記作動ガス圧縮空間に面するディスプレーサヘッドを備え、
 前記蓄冷器は、前記中心軸の方向における前記ディスプレーサの往復移動を案内するよう前記ディスプレーサヘッドの周囲に配設されていることを特徴とする実施形態5または6に記載のスターリング冷凍機。
7). The expander further comprises a displacer extending along the central axis,
The displacer includes a displacer head facing the working gas expansion space on one axial end side and facing the working gas compression space on the other axial end side,
The Stirling refrigerator according to embodiment 5 or 6, wherein the regenerator is disposed around the displacer head so as to guide reciprocal movement of the displacer in the direction of the central axis.
 8.膨張機と、少なくとも1つの圧縮機と、前記少なくとも1つの圧縮機を前記膨張機に接続する少なくとも1つの接続管と、を備え、
 前記膨張機は、
 中心軸の方向に延在する蓄冷器であって、前記中心軸の方向において前記蓄冷器の一端側に位置する作動ガス圧縮空間と前記中心軸の方向において前記蓄冷器の他端側に位置する作動ガス膨張空間との間の作動ガス流路を形成する蓄冷器と、
 前記蓄冷器を収容する膨張機容器であって、前記作動ガス圧縮空間を囲む容器部分を備える膨張機容器と、を備え、
 前記容器部分は、前記中心軸に対して一方側に形成され前記接続管に接続される第1接続口と、前記中心軸に対して他方側に形成され前記接続管に接続される第2接続口と、を備えることを特徴とするスターリング冷凍機。
8). An expander, at least one compressor, and at least one connecting pipe connecting the at least one compressor to the expander,
The expander is
A regenerator extending in the direction of the central axis, the working gas compression space located on one end side of the regenerator in the direction of the central axis and located on the other end side of the regenerator in the direction of the central axis A regenerator that forms a working gas flow path between the working gas expansion space;
An expander container containing the regenerator, the expander container including a container portion surrounding the working gas compression space, and
The container portion is formed on one side with respect to the central axis and connected to the connecting pipe, and the second connection is formed on the other side with respect to the central axis and connected to the connecting pipe. And a Stirling refrigerator having a mouth.
 9.前記容器部分は、前記中心軸まわりに延在する側壁部を備え、
 前記第1接続口と前記第2接続口とは、前記中心軸を挟んで向かい合うように前記側壁部に形成されていることを特徴とする実施形態8に記載のスターリング冷凍機。
9. The container portion includes a side wall extending around the central axis;
The Stirling refrigerator according to the eighth embodiment, wherein the first connection port and the second connection port are formed in the side wall portion so as to face each other across the central axis.
 10.前記スターリング型の冷凍機は、単一の圧縮機と、前記単一の圧縮機を前記膨張機に接続する単一の接続管と、を備え、
 前記接続管は、
 一端にて前記圧縮機に接続され、他端に分岐部を備える主管と、
 前記分岐部で前記主管から分岐し、前記第1接続口に接続される第1枝管と、
 前記分岐部で前記主管から分岐し、前記第2接続口に接続される第2枝管と、を備えることを特徴とする実施形態8または9に記載のスターリング冷凍機。
10. The Stirling refrigerator includes a single compressor and a single connection pipe that connects the single compressor to the expander,
The connecting pipe is
A main pipe connected to the compressor at one end and having a branching portion at the other end;
A first branch pipe branched from the main pipe at the branch portion and connected to the first connection port;
The Stirling refrigerator according to Embodiment 8 or 9, further comprising: a second branch pipe branched from the main pipe at the branch portion and connected to the second connection port.
 11.前記膨張機は、前記中心軸に沿って延在するディスプレーサをさらに備え、
 前記ディスプレーサは、軸方向一端側にて前記作動ガス膨張空間に面し、軸方向他端側にて前記作動ガス圧縮空間に面するディスプレーサヘッドを備え、
 前記蓄冷器は、前記中心軸の方向における前記ディスプレーサの往復移動を案内するよう前記ディスプレーサヘッドの周囲に配設されていることを特徴とする実施形態8から10のいずれかに記載のスターリング冷凍機。
11. The expander further comprises a displacer extending along the central axis,
The displacer includes a displacer head facing the working gas expansion space on one axial end side and facing the working gas compression space on the other axial end side,
The Stirling refrigerator according to any one of Embodiments 8 to 10, wherein the regenerator is disposed around the displacer head so as to guide reciprocal movement of the displacer in the direction of the central axis. .
 10 スターリング冷凍機、 11 圧縮機、 12 接続管、 13 膨張機、 20 膨張機容器、 22 ディスプレーサ、 28 膨張空間、 32 ディスプレーサヘッド、 34 ディスプレーサロッド、 36 圧縮空間、 36a 外周空間、 36b 中心空間、 37 放熱器、 38 蓄冷器、 52 側壁部、 52a 外壁部、 52b 内壁部、 54 底壁部、 56 接続口、 57 開口部、 58 ブロック、 59 貫通孔、 60 第1作動ガス領域、 62 第2作動ガス領域、 76 凸部、 1010 スターリング冷凍機、 1011 圧縮機、 1012 接続管、 1013 膨張機、 1020 膨張機容器、 1020a 第1容器部分、 1020b 第2容器部分、 1020c 第3容器部分、 1020d 第4容器部分、 1022 ディスプレーサ、 1028 膨張空間、 1032 ディスプレーサヘッド、 1036 圧縮空間、 1038 蓄冷器、 1052 側壁部、 1056 第1接続口、 1058 第2接続口、 1060 主管、 1062 第1枝管、 1064 第2枝管、 1066 分岐部。 10 Stirling refrigerator, 11 compressor, 12 connecting pipe, 13 expander, 20 expander container, 22 displacer, 28 expansion space, 32 displacer head, 34 displacer rod, 36 compression space, 36a outer space, 36b central space, 37 Radiator, 38 regenerator, 52 side wall, 52a outer wall, 52b inner wall, 54 bottom wall, 56 connection port, 57 opening, 58 block, 59 through hole, 60 first working gas region, 62 second operation Gas region, 76 convex part, 1010 Stirling refrigerator, 1011 compressor, 1012 connecting pipe, 1013 expander, 1020 expander container, 1020a first container part, 1020b second container part, 10 0c 3rd container part, 1020d 4th container part, 1022 displacer, 1028 expansion space, 1032 displacer head, 1036 compression space, 1038 regenerator, 1052 side wall, 1056 first connection port, 1058 second connection port, 1060 main pipe, 1062 1st branch pipe, 1064 2nd branch pipe, 1066 Branching part.
 本発明は、スターリング冷凍機の分野における利用が可能である。 The present invention can be used in the field of Stirling refrigerators.

Claims (8)

  1.  膨張機と、圧縮機と、前記圧縮機を前記膨張機に接続する接続管と、を備え、
     前記膨張機は、
     軸方向に延在するディスプレーサであって、軸方向一端側にて作動ガス膨張空間に面しかつ軸方向他端側にて作動ガス圧縮空間に面するディスプレーサと、
     前記軸方向における前記ディスプレーサの往復移動を案内するよう前記ディスプレーサの周囲に配設され、前記作動ガス圧縮空間と前記作動ガス膨張空間との間の作動ガス流路を形成する蓄冷器と、
     前記ディスプレーサ及び前記蓄冷器を収容する膨張機容器であって、第1周方向位置に形成され前記作動ガス圧縮空間を前記接続管に接続する接続口を有し、前記接続口から周方向に延在し前記作動ガス圧縮空間を囲む容器部分を含む膨張機容器と、を備え、
     前記作動ガス圧縮空間の第1作動ガス領域が前記第1周方向位置において前記接続口と前記ディスプレーサとの間に形成され、前記第1作動ガス領域は、前記第1周方向位置において前記接続口と前記ディスプレーサとの間に第1径方向幅を有し、
     前記作動ガス圧縮空間の第2作動ガス領域が前記第1周方向位置と異なる第2周方向位置において前記容器部分と前記ディスプレーサとの間に形成され、前記第2作動ガス領域は、前記第2周方向位置において前記容器部分と前記ディスプレーサとの間に第2径方向幅を有し、
     前記第2径方向幅は、前記第1径方向幅より小さいことを特徴とするスターリング冷凍機。
    An expander, a compressor, and a connecting pipe connecting the compressor to the expander,
    The expander is
    A displacer extending in the axial direction, facing the working gas expansion space on one end side in the axial direction and facing the working gas compression space on the other end side in the axial direction;
    A regenerator disposed around the displacer to guide reciprocating movement of the displacer in the axial direction and forming a working gas flow path between the working gas compression space and the working gas expansion space;
    An expander container that houses the displacer and the regenerator, and has a connection port that is formed at a first circumferential position and connects the working gas compression space to the connection pipe, and extends from the connection port in the circumferential direction. An expander vessel including a vessel portion existing and surrounding the working gas compression space;
    A first working gas region of the working gas compression space is formed between the connection port and the displacer at the first circumferential position, and the first working gas region is formed at the connection port at the first circumferential position. And a first radial width between the displacer and
    A second working gas region of the working gas compression space is formed between the container portion and the displacer at a second circumferential position different from the first circumferential position, and the second working gas region is the second working gas region. Having a second radial width between the container portion and the displacer at a circumferential position;
    The Stirling refrigerator, wherein the second radial width is smaller than the first radial width.
  2.  前記容器部分は、前記第2周方向位置を含む周方向範囲に延在するブロックを備え、
     前記第2作動ガス領域は、前記ブロックと前記ディスプレーサとの間に形成されることを特徴とする請求項1に記載のスターリング冷凍機。
    The container portion includes a block extending in a circumferential range including the second circumferential position;
    The Stirling refrigerator according to claim 1, wherein the second working gas region is formed between the block and the displacer.
  3.  前記ディスプレーサは、前記軸方向に垂直な断面において径方向に前記容器部分に向けられた凸部を備え、
     前記第2作動ガス領域は、前記容器部分と前記凸部との間に形成されることを特徴とする請求項1または2に記載のスターリング冷凍機。
    The displacer includes a convex portion that is directed radially toward the container portion in a cross section perpendicular to the axial direction,
    The Stirling refrigerator according to claim 1 or 2, wherein the second working gas region is formed between the container portion and the convex portion.
  4.  前記ディスプレーサは、前記作動ガス膨張空間に面するディスプレーサ先端面を有するディスプレーサヘッドと、前記ディスプレーサヘッドから前記軸方向に前記作動ガス圧縮空間に延出するディスプレーサロッドと、を備え、
     前記蓄冷器は、前記ディスプレーサヘッドの周囲に配設され、
     前記第1作動ガス領域は、前記接続口と前記ディスプレーサロッドとの間に形成され、前記第2作動ガス領域は、前記容器部分と前記ディスプレーサロッドとの間に形成されていることを特徴とする請求項1から3のいずれかに記載のスターリング冷凍機。
    The displacer comprises a displacer head having a displacer tip surface facing the working gas expansion space, and a displacer rod extending from the displacer head in the axial direction to the working gas compression space,
    The regenerator is disposed around the displacer head,
    The first working gas region is formed between the connection port and the displacer rod, and the second working gas region is formed between the container portion and the displacer rod. The Stirling refrigerator according to any one of claims 1 to 3.
  5.  膨張機と、圧縮機と、前記圧縮機を前記膨張機に接続する接続管と、を備え、
     前記膨張機は、
     中心軸の方向に延在する蓄冷器であって、前記中心軸の方向において前記蓄冷器の一端側に位置する作動ガス膨張空間と前記中心軸の方向において前記蓄冷器の他端側に位置する作動ガス圧縮空間との間の作動ガス流路を形成する蓄冷器と、
     前記蓄冷器を収容する膨張機容器であって、前記作動ガス圧縮空間を囲む容器部分を備える膨張機容器と、を備え、
     前記接続管は、
     一端にて前記圧縮機に接続され、他端に分岐部を備える主管と、
     前記分岐部で前記主管から分岐する第1枝管と、
     前記分岐部で前記主管から分岐する第2枝管と、を備え、
     前記容器部分は、前記中心軸に対して一方側に形成され前記第1枝管に接続される第1接続口と、前記中心軸に対して他方側に形成され前記第2枝管に接続される第2接続口と、を備えることを特徴とするスターリング冷凍機。
    An expander, a compressor, and a connecting pipe connecting the compressor to the expander,
    The expander is
    A regenerator extending in the direction of the central axis, the working gas expansion space located on one end side of the regenerator in the direction of the central axis and the other end side of the regenerator in the direction of the central axis A regenerator that forms a working gas flow path between the working gas compression space;
    An expander container containing the regenerator, the expander container including a container portion surrounding the working gas compression space, and
    The connecting pipe is
    A main pipe connected to the compressor at one end and having a branching portion at the other end;
    A first branch pipe branched from the main pipe at the branch portion;
    A second branch pipe branched from the main pipe at the branch portion,
    The container portion is formed on one side with respect to the central axis and connected to the first branch pipe, and is formed on the other side with respect to the central axis and connected to the second branch pipe. And a second connection port.
  6.  前記容器部分は、前記中心軸まわりに延在する側壁部を備え、
     前記第1接続口と前記第2接続口とは、前記中心軸を挟んで向かい合うように前記側壁部に形成されていることを特徴とする請求項5に記載のスターリング冷凍機。
    The container portion includes a side wall extending around the central axis;
    6. The Stirling refrigerator according to claim 5, wherein the first connection port and the second connection port are formed in the side wall portion so as to face each other with the central axis interposed therebetween.
  7.  前記膨張機は、前記中心軸に沿って延在するディスプレーサをさらに備え、
     前記ディスプレーサは、軸方向一端側にて前記作動ガス膨張空間に面し、軸方向他端側にて前記作動ガス圧縮空間に面するディスプレーサヘッドを備え、
     前記蓄冷器は、前記中心軸の方向における前記ディスプレーサの往復移動を案内するよう前記ディスプレーサヘッドの周囲に配設されていることを特徴とする請求項5または6に記載のスターリング冷凍機。
    The expander further comprises a displacer extending along the central axis,
    The displacer includes a displacer head facing the working gas expansion space on one axial end side and facing the working gas compression space on the other axial end side,
    The Stirling refrigerator according to claim 5 or 6, wherein the regenerator is disposed around the displacer head so as to guide reciprocal movement of the displacer in the direction of the central axis.
  8.  膨張機と、少なくとも1つの圧縮機と、前記少なくとも1つの圧縮機を前記膨張機に接続する少なくとも1つの接続管と、を備え、
     前記膨張機は、
     中心軸の方向に延在する蓄冷器であって、前記中心軸の方向において前記蓄冷器の一端側に位置する作動ガス圧縮空間と前記中心軸の方向において前記蓄冷器の他端側に位置する作動ガス膨張空間との間の作動ガス流路を形成する蓄冷器と、
     前記蓄冷器を収容する膨張機容器であって、前記作動ガス圧縮空間を囲む容器部分を備える膨張機容器と、を備え、
     前記容器部分は、前記中心軸に対して一方側に形成され前記接続管に接続される第1接続口と、前記中心軸に対して他方側に形成され前記接続管に接続される第2接続口と、を備えることを特徴とするスターリング冷凍機。
    An expander, at least one compressor, and at least one connecting pipe connecting the at least one compressor to the expander,
    The expander is
    A regenerator extending in the direction of the central axis, the working gas compression space located on one end side of the regenerator in the direction of the central axis and located on the other end side of the regenerator in the direction of the central axis A regenerator that forms a working gas flow path between the working gas expansion space;
    An expander container containing the regenerator, the expander container including a container portion surrounding the working gas compression space, and
    The container portion is formed on one side with respect to the central axis and connected to the connecting pipe, and the second connection is formed on the other side with respect to the central axis and connected to the connecting pipe. And a Stirling refrigerator having a mouth.
PCT/JP2016/050127 2015-01-29 2016-01-05 Stirling refrigerator WO2016121418A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015015571A JP2016138737A (en) 2015-01-29 2015-01-29 Stirling refrigerator
JP2015-015571 2015-01-29
JP2015-019457 2015-02-03
JP2015019457A JP6433318B2 (en) 2015-02-03 2015-02-03 Stirling refrigerator

Publications (1)

Publication Number Publication Date
WO2016121418A1 true WO2016121418A1 (en) 2016-08-04

Family

ID=56543040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050127 WO2016121418A1 (en) 2015-01-29 2016-01-05 Stirling refrigerator

Country Status (1)

Country Link
WO (1) WO2016121418A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075007A (en) * 2001-09-04 2003-03-12 Sharp Corp Stirling engine
JP2008292084A (en) * 2007-05-25 2008-12-04 Aisin Seiki Co Ltd Stirling refrigerating machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075007A (en) * 2001-09-04 2003-03-12 Sharp Corp Stirling engine
JP2008292084A (en) * 2007-05-25 2008-12-04 Aisin Seiki Co Ltd Stirling refrigerating machine

Similar Documents

Publication Publication Date Title
CN107223196B (en) Thermoacoustic heat pump
JP2009236456A (en) Pulse tube-type heat storage engine
JP2007040647A (en) Pulse type heat storage engine
JP2015230131A (en) Stirling type pulse tube refrigerator
US20170010026A1 (en) Stirling cryocooler
US10393411B2 (en) Stirling cryocooler
US9127864B2 (en) Regenerative refrigerator
WO2016121418A1 (en) Stirling refrigerator
JPH11344266A (en) Acoustic freezer
JP6275524B2 (en) Stirling refrigerator
JP6433318B2 (en) Stirling refrigerator
WO2007053809A2 (en) Acoustic cooling device with coldhead and resonant driver separated
JP2008292084A (en) Stirling refrigerating machine
CN110736263A (en) Split type Stirling expander
JP6054079B2 (en) Stirling refrigerator
JP2016138737A (en) Stirling refrigerator
JP6071917B2 (en) Stirling refrigerator
JP6440361B2 (en) Cryogenic refrigerator
JP2020134008A (en) Displacer assembly and cryogenic freezer
JP6532392B2 (en) Cryogenic refrigerator
JP2024047316A (en) Stirling type cryocooler
WO2020235555A1 (en) Cryogenic device and cryostat
JP2016044821A (en) Stirling type refrigeration machine
WO2017073529A1 (en) Regenerator and cryogenic freezer
JP2022085122A (en) Pulse tube refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743022

Country of ref document: EP

Kind code of ref document: A1