WO2016121280A1 - Composite anion exchange membrane, method for producing same, ion exchange membrane module, and ion exchanger - Google Patents

Composite anion exchange membrane, method for producing same, ion exchange membrane module, and ion exchanger Download PDF

Info

Publication number
WO2016121280A1
WO2016121280A1 PCT/JP2015/086159 JP2015086159W WO2016121280A1 WO 2016121280 A1 WO2016121280 A1 WO 2016121280A1 JP 2015086159 W JP2015086159 W JP 2015086159W WO 2016121280 A1 WO2016121280 A1 WO 2016121280A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange membrane
anion exchange
group
surface layer
composite
Prior art date
Application number
PCT/JP2015/086159
Other languages
French (fr)
Japanese (ja)
Inventor
邦行 神長
和臣 井上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016121280A1 publication Critical patent/WO2016121280A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • B01D61/46Apparatus therefor
    • B01D61/463Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/12Ion-exchange processes in general; Apparatus therefor characterised by the use of ion-exchange material in the form of ribbons, filaments, fibres or sheets, e.g. membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances

Definitions

  • the present invention relates to a composite anion exchange membrane and a method for producing the same, an ion exchange membrane module, and an ion exchange device.
  • Electrodesalting is a water treatment process in which ions are removed from an aqueous liquid using ion exchange membranes and electrical potentials to achieve ion transport. Unlike other water purification techniques such as conventional ion exchange, it does not require the use of chemicals such as acid or caustic soda and can be used to produce ultrapure water. Electrodialysis (ED) and reverse electrodialysis (EDR) are electrochemical separation processes that remove ions and the like from water and other fluids.
  • Patent Document 1 when removing nitrate ions from an aqueous solution containing nitrate ions by electrodialysis, a membrane having a negative charge thin layer having a thickness of 10 angstroms to 5 ⁇ m on the membrane surface is used as the anion exchange membrane.
  • a method for removing nitrate ions is described, wherein the anion exchange membrane is arranged with the side having the thin layer as the desalting chamber side.
  • the problem to be solved by the present invention is a composite anion exchange membrane excellent in monovalent ion selectivity, a production method thereof, an ion exchange membrane module using the composite anion exchange membrane, and an ion exchange device Is to provide.
  • a surface layer having an anionic functional group is provided on one side or both sides of a base anion exchange membrane, and the density of the anionic functional group in the surface layer is 3.0 eq / g to 10.0 eq / a composite anion exchange membrane characterized in that ⁇ 2>
  • the composite anion exchange membrane according to ⁇ 1>, wherein the surface layer and the base anion exchange membrane are bonded via a covalent bond ⁇ 3>
  • the composite anion exchange membrane according to ⁇ 1> or ⁇ 2>, wherein the anionic functional group is a sulfo group, a carboxy group, or a phosphate group, ⁇ 4> The composite anion exchange membrane according to any one of ⁇ 1> to ⁇ 3>, wherein the surface layer has a structure of the following formula 1.
  • each R 1 independently represents an anionic functional group
  • i represents an integer of 1 to 5
  • L 1 represents an i + m-valent linking group
  • * represents each independently anion exchange serving as a base
  • j represents an integer of 1 to 3
  • R 2 independently represents a monovalent organic group
  • k represents an integer of (3-j)
  • m represents an integer of 1 to 6
  • ⁇ 5> The composite anion exchange membrane according to any one of ⁇ 2> to ⁇ 4>, wherein the base anion exchange membrane has a hydroxy group
  • ⁇ 6> An application step of applying a coating solution for forming a surface layer containing a silane coupling agent having an anionic functional group on one side or both sides of the base anion exchange membrane, and the applied coating for forming the surface layer
  • a composite anion exchange membrane excellent in monovalent ion selectivity a production method thereof, an ion exchange membrane module using the composite anion exchange membrane, and an ion exchange device. I was able to.
  • the geometrical isomer that is the substitution pattern of the double bond in each formula may be either E-form or Z-form, unless otherwise specified, even if one of the isomers is described for the convenience of display. Or a mixture thereof.
  • the chemical structural formula in this specification may be expressed as a simplified structural formula in which a hydrogen atom is omitted.
  • “(meth) acrylate” represents acrylate and methacrylate
  • “(meth) acryl” represents acryl and methacryl
  • “(meth) acryloyl” represents acryloyl and methacryloyl
  • (meth) ) Acrylamide refers to acrylamide and methacrylamide.
  • “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
  • the combination of a preferable aspect is a more preferable aspect.
  • the composite anion exchange membrane of the present invention has a surface layer having an anionic functional group on one side or both sides of a base anion exchange membrane (hereinafter also referred to as “base membrane”), and an anionic property in the surface layer.
  • the density of the functional group is 3.0 equivalent / g to 10.0 equivalent / g.
  • the composite anion exchange membrane of the present invention preferably has a surface layer having an anionic functional group on both sides.
  • an anion exchange membrane having a conventional anionic surface layer the distance between the anionic functional groups in the surface layer is relatively long, and there is a region that is less susceptible to repulsive force due to Coulomb force when the anion in the treated water permeates. It was. In this region, various anions are considered to be able to permeate relatively freely, which is considered to be one of the causes of a decrease in monovalent ion selectivity of the membrane.
  • the distance between the anionic functional groups is reduced, the area where the influence of Coulomb force is small is reduced, and monovalent ion selectivity is reduced. It is thought that it was possible to improve.
  • the present inventors have found that according to the configuration of the present invention, the transport number is maintained while monovalent ion selectivity is obtained. In addition, in the present invention, an excellent effect of reducing the water permeability was also confirmed. This is considered to be caused by the fact that the surface layer is densely formed.
  • FIG. 1 is a schematic cross-sectional view showing an example of the composite anion exchange membrane of the present invention.
  • an anion exchange membrane 1 serving as a base has surface layers 2 on both sides.
  • the anion exchange membrane 1 serving as a base preferably has the surface layer 2 on both sides, but may have only one side.
  • each component which comprises the composite anion exchange membrane of this invention is demonstrated.
  • the surface layer of the composite anion exchange membrane of the present invention has an anionic functional group.
  • the anionic functional group a sulfo group, a carboxy group, and a phosphoric acid group are preferable. From the viewpoint of easily adjusting the density of the anionic functional group to 3.0 equivalent / g to 10.0 equivalent / g, sulfo group Groups are more preferred.
  • the density of the anionic functional group is from 3.0 equivalent / g to 10.0 equivalent / g, preferably from 3.0 equivalent / g to 6.0 equivalent / g, and from 3.5 equivalent / g to 6 More preferably, it is 0.0 equivalent / g.
  • the method for measuring the density of the anionic functional group is as follows. First, following the procedure for measuring the ion exchange capacity of CEM described in “194 Membrane Experimental Method (ISBN 978-4-906126-09-5)” on page 194, the amount of negative charge immobilized on the membrane per unit area was determined. taking measurement. Further, the weight of the surface layer attached to the base film per unit area is calculated from the film area, film thickness, and resin density of the measurement sample cut into a rectangle. About a film
  • ESA X-ray electron spectroscopy
  • the surface layer resin is scraped off from the surface of the dry film and pulverized, and the density is measured by a dry method using a gas displacement pycnometer. From the negative charge amount and the surface layer attached weight, (negative charge amount) / (surface layer attached weight) is defined as the density of the anionic functional group (negative charge density) (equivalent / g).
  • the surface layer used in the present invention and the base anion exchange membrane are preferably bonded via a covalent bond. According to the said aspect, peeling from the base film of a surface layer is prevented, and the composite anion exchange membrane by which the selectivity of a monovalent ion is maintained for a long time can be obtained.
  • the covalent bond includes silane coupling reaction, ene-thiol reaction, surface initiated atom transfer radical polymerization (SI-ATRP), surface initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT), dehydration condensation reaction, nucleophilic addition reaction. It is preferably a covalent bond formed by a silane coupling reaction.
  • covalent bond examples include Si—O—Si bond, Si—O—C bond, C—S—C bond, C—O—C bond, C—C bond, —NH—C ( ⁇ O).
  • —Bond —C ( ⁇ O) O— bond, —NH—C ( ⁇ O) O— bond, —NH—C ( ⁇ O) —NH— bond, and the like, and are Si—O—C bonds. It is preferable. According to the said aspect, peeling from the base film of a surface layer is prevented, and the composite anion exchange membrane by which the selectivity of a monovalent ion is maintained for a long time can be obtained. The adhesion between the surface layer and the base film can be confirmed by analyzing the spectrum corresponding to Si 2p by XPS (X-ray photoelectron spectroscopy) analysis.
  • the surface layer used in the present invention preferably has a structure represented by the following formula 1.
  • each R 1 independently represents an anionic functional group, and is preferably a sulfo group, a carboxy group, and a phosphate group, and more preferably a sulfo group.
  • i represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • L 1 represents an i + m-valent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a saturated hydrocarbon group having 1 to 10 carbon atoms.
  • L 1 represents a divalent linking group, it is preferably an alkylene group, more preferably an alkylene group having 1 to 10 carbon atoms, and still more preferably an alkylene group having 2 to 4 carbon atoms.
  • the surface layer material preferably has a structure represented by Formula 1 like the surface layer.
  • the “structure represented by formula 1” preferably forms a siloxane bond with another Si atom of “structure represented by formula 1” at the bonding position represented by *.
  • the composite anion exchange membrane excellent in the water permeability is obtained.
  • a plurality of bonding positions represented by * included in a structure in which a plurality of “structures represented by Formula 1” are bonded have at least a portion bonded to a base anion exchange membrane. preferable.
  • the composite anion exchange membrane with which the selectivity of a monovalent ion is maintained for a long time can be obtained.
  • j represents an integer of 1 to 3, preferably 2 or 3, and more preferably 3.
  • R 2 each independently represents a monovalent organic group, preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • k represents an integer of (3-j), and is preferably 0 or 1, more preferably 0.
  • m represents an integer of 1 or more, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and still more preferably an integer of 1 to 3.
  • the surface layer used in the present invention may include a structure other than the “structure represented by Formula 1”, but includes 90% by mass or more of the “structure represented by Formula 1” with respect to the total mass of the surface layer. Preferably, it is more preferably 95% by mass or more, and still more preferably 99% by mass or more. According to the said aspect, the composite anion exchange membrane excellent in the water permeability is obtained.
  • the thickness of the surface layer used in the present invention is preferably 100 to 500 nm, more preferably 100 to 400 nm, and particularly preferably 100 to 300 nm. If the thickness of the surface layer is within the above range, a composite anion exchange membrane having an excellent transport number can be obtained. The thickness can be measured with a scanning electron microscope (SEM).
  • Base anion exchange membrane As the base anion exchange membrane used in the present invention, known anion exchange membranes can be used without particular limitation. For example, hydrocarbon-based or fluorine-based anion-exchange membranes can be used. Exchange membranes are preferred, acrylic or styrene anion exchange membranes are more preferred, and acrylic anion exchange membranes are even more preferred.
  • the hydrocarbon-based anion exchange membrane in the present invention refers to an anion exchange membrane containing a hydrocarbon-containing resin.
  • the fluorine-based anion exchange membrane in the present invention represents an anion exchange membrane containing a resin containing a perfluoroalkylene group.
  • the resin examples include a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
  • the styrene anion exchange membrane in the present invention represents an anion exchange membrane containing a resin derived from a styrene compound.
  • Preferable examples of the styrene compound include styrene and divinylbenzene which may have a substituent.
  • the acrylic anion exchange membrane in the present invention represents an anion exchange membrane containing a resin derived from a compound having a (meth) acryloyl group.
  • Preferred examples of the compound having a (meth) acryloyl group include a (meth) acrylic acid ester compound and a (meth) acrylamide compound.
  • an acrylic anion exchange membrane will be described as an example of a base ion exchange membrane, but the present invention is not limited thereto.
  • the acrylic anion exchange membrane used in the present invention preferably has a resin layer supported on a porous support.
  • the film thickness of the acrylic anion exchange membrane as a composite including a porous support and a resin layer is preferably 10 to 250 ⁇ m, more preferably 30 to 200 ⁇ m, and particularly preferably 40 to 200 ⁇ m. When the film thickness is within this range, the electric resistance of the film can be kept low.
  • the acrylic anion exchange membrane used in the present invention preferably has a porous support.
  • the porous support can be constituted as a part of the film by allowing the curable composition for film formation described later to be present in the pores of the porous support.
  • Examples of the porous support as the reinforcing material include synthetic woven fabrics, nonwoven fabrics such as synthetic nonwoven fabrics, sponge-like films, and films having fine through holes.
  • the material forming the porous support in the present invention is, for example, polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polyester, polyamide and copolymers thereof, or, for example, polysulfone, polyethersulfone, polyphenylenesulfone, polyphenylene.
  • the porous support and the reinforcing material are required not to block the wavelength region of the energy ray, that is, to pass the irradiation of the wavelength used for the polymerization curing when performing the polymerization curing reaction by energy beam irradiation. .
  • the porous reinforcing material can be penetrated by the resin layer forming composition.
  • the porous support preferably has hydrophilicity.
  • general methods such as corona treatment, plasma treatment, fluorine gas treatment, ozone treatment, sulfuric acid treatment, and silane coupling agent treatment can be used.
  • the porous support in the present invention is preferably a nonwoven fabric, and among the nonwoven fabrics, a nonwoven fabric made of a composite fiber of polyethylene and polypropylene is preferred.
  • the fiber diameter of the composite fiber is preferably 0.5 to 30 ⁇ m, more preferably 1 to 25 ⁇ m, and particularly preferably 2 to 20 ⁇ m.
  • the thickness of the porous support in the present invention is preferably 10 to 250 ⁇ m, more preferably 20 to 250 ⁇ m, still more preferably 30 to 230 ⁇ m, and particularly preferably 40 to 200 ⁇ m.
  • the resin layer of the acrylic anion exchange membrane used in the present invention contains an anion exchange polymer.
  • Each of the above anion exchange polymers is a polymer containing a unit obtained from an acryloyl group which may have an alkyl group at the ⁇ -position.
  • the acryloyl group which may have an alkyl group at the ⁇ -position is preferably an acryloylamino group or acryloyloxy group which may have an alkyl group at the ⁇ -position, and may have an alkyl group at the ⁇ -position.
  • An acryloylamino group is more preferred.
  • the anion exchange polymer having an anion exchange group may be any anion exchange group as long as it contains a unit obtained from an acryloyl group which may have an alkyl group at the ⁇ -position.
  • nitrogen atoms in nitrogen-containing heterocycles such as pyridinium are cationic, quaternized nitrogen atoms, aromatic heterocycle nitrogen atoms are substituted with substituents like alkylation or arylation Or those having a quaternized amino group (ie, an onio group) are preferred.
  • an anion exchange polymer having a unit represented by the formula IA is preferable.
  • R A1 represents a hydrogen atom or an alkyl group
  • R A2 to R A4 each independently represents an alkyl group or an aryl group.
  • two or more of R A2 to R A4 may be bonded to each other to form a ring.
  • Z A1 represents —O— or —N (Ra) —.
  • Ra represents a hydrogen atom or an alkyl group.
  • L A1 represents an alkylene group.
  • X A1 ⁇ represents a halogen ion or an aliphatic or aromatic carboxylate ion.
  • the alkyl groups of R A1 , R A2 to R A4 and Ra are linear or branched alkyl groups, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, or 1 or 2 is particularly preferred and 1 is most preferred. Examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-dodecyl and i-decyl.
  • the carbon number of the aryl group of R A2 to R A4 is preferably 6 to 16, more preferably 6 to 12, and still more preferably 6 to 10.
  • Examples include phenyl and naphthyl.
  • L A1 is preferably an alkylene group having 1 to 10 carbon atoms, more preferably 2 to 10, more preferably 2 to 6, still more preferably 2 to 4, particularly preferably 2 or 3, and most preferably 3. Examples include methylene, ethylene, propylene, hexamethylene, octamethylene, decamethylene.
  • halogen ion in X A1 ⁇ examples include a fluorine ion, a chlorine ion, a bromine ion, and an iodine ion.
  • the carbon number of the aliphatic carboxylate ion in X A1- is preferably 1 to 11, more preferably 2 to 7, still more preferably 2 to 5, particularly preferably 2 or 3, and most preferably 2.
  • the aliphatic carboxylate ion may be either a saturated hydrocarbon carboxylic acid or an unsaturated hydrocarbon carboxylic acid, but is preferably a saturated hydrocarbon carboxylic acid.
  • the aromatic carboxylate ion in X A1 ⁇ is preferably an arylcarboxylate ion or a heteroarylcarboxylate ion.
  • the heteroaryl is preferably a 5- or 6-membered ring, and the ring-forming heteroatom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a nitrogen atom.
  • the carbon number of the aromatic carboxylate ion is preferably 1 to 17, more preferably 2 to 13, and still more preferably 3 to 11.
  • benzoate ion, naphthalenecarboxylate ion, nicotinate ion, and isonicotinic acid ion can be mentioned.
  • the ring formed by bonding two or more of R A2 to R A4 to each other is preferably a 5- or 6-membered monocyclic or bridged ring, and preferably has 4 to 16 carbon atoms, more preferably 4 to 10 carbon atoms. preferable. Examples include pyrrolidine ring, piperazine ring, piperidine ring, morpholine ring, thiomorpholine ring, indole ring, and quinuclidine ring.
  • R A1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • R A1 to R A4 are preferably a methyl group or an ethyl group.
  • Z A1 is preferably —N (Ra) —, and Ra is preferably a hydrogen atom.
  • X A1 is preferably a halogen atom.
  • the unit represented by the formula IA can be obtained from a compound represented by the following formula MA.
  • R A1 ⁇ R A4, Z A1, L A1 and X A1 has the same meaning as R A1 ⁇ R A4, Z A1 , L A1 and X A1 in Formula IA, and the preferred range is also the same.
  • the anion exchange polymer used in the present invention preferably has a unit obtained from a crosslinking agent in addition to the unit represented by the formula IA.
  • a polyfunctional ethylenically unsaturated compound can be used without any particular limitation.
  • the polyfunctional ethylenically unsaturated compound is preferably a bifunctional ethylenically unsaturated compound having two terminal ethylenically unsaturated groups.
  • a (meth) acryloyl group is preferable, and a (meth) acryloyloxy group or a (meth) acrylamide group is preferable.
  • the molecular weight of the polyfunctional ethylenically unsaturated compound is preferably 100 to 2,000, and more preferably 100 to 1,000.
  • Preferred polyfunctional ethylenically unsaturated compounds include N, N′-alkylenebis (meth) acrylamide, alkylene di (meth) acrylate, and poly (oxyalkylene) di (meth) acrylate.
  • the base anion exchange membrane used in the present invention has a hydroxy group.
  • the anion exchange polymer preferably has a unit having a hydroxy group in addition to the unit represented by the formula IA.
  • the anion exchange polymer has a unit having a hydroxy group, the surface layer and the base film can be easily covalently bonded.
  • it does not specifically limit as a unit which has a hydroxyl group, It is preferable to have a unit represented by the following formula IH.
  • R H1 has the same meaning as R A1 in formula IA, and the preferred range is also the same.
  • Z H1 has the same meaning as Z A1 in formula IA, and the preferred range is also the same.
  • L H1 represents a divalent linking group, preferably an alkylene group, preferably an alkylene group having 2 to 10 carbon atoms, and more preferably an alkylene group having 2 to 4 carbon atoms.
  • the unit represented by the formula IH can be obtained from a compound represented by the following formula MH.
  • R H1, Z H1, and L H1 are R H1, Z H1 in Formula the IH, and have the same meanings as L H1, and the preferred range is also the same.
  • Specific examples of the compound represented by the formula MH include hydroxyethyl (meth) acrylamide, hydroxypropyl (meth) acrylamide, hydroxybutyl (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl.
  • (meth) acrylate etc. are mentioned, this invention is not limited to these.
  • the base anion exchange membrane used in the present invention may contain other functional groups capable of covalent bonding, such as thiol groups and ethylenically unsaturated groups.
  • the anion exchange polymer preferably has units having other covalently bondable functional groups.
  • the other unit having a functional group capable of covalent bonding can be obtained from a polymerizable compound having another functional group capable of covalent bonding.
  • a compound having a (meth) acrylamide group or a (meth) acryloyloxy group is preferable.
  • the acrylic anion exchange membrane used in the present invention is, for example, by applying and / or impregnating a porous support with a resin layer forming composition containing at least a compound represented by the formula MA and a polymerization initiator, It can be produced by polymerization and curing by light irradiation and / or heating.
  • the resin layer forming composition may further contain the crosslinking agent, polymerization inhibitor, solvent, alkali metal compound, surfactant, viscosity improver, surface tension adjusting agent, and preservative.
  • Acrylic anion exchange membranes can be manufactured batch-wise (fixed) using a fixed support, but membranes are manufactured continuously (continuous) using a moving support. Also good.
  • the support may be in the form of a roll that is continuously rewound.
  • a support is placed on a belt that is continuously moved, and a coating solution that is a composition for forming a polymer functional film is continuously applied, and a film is formed by polymerization and curing. And the process of performing can be performed continuously. However, only one of the coating process and the film forming process may be performed continuously.
  • the temporary support does not need to be considered for material permeation. It does n’t matter.
  • the temporary support is peeled off from the film after forming the film by a polymerization curing reaction.
  • a temporary support does not need to consider material permeation, and may be any material as long as it can be fixed for film formation, including a metal plate such as an aluminum plate.
  • the resin layer forming composition can be prepared by various methods such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spray coating.
  • the porous support can be coated or impregnated. Multiple layers can be applied simultaneously or sequentially. For simultaneous multi-layer application, curtain coating, slide coating, slot die coating and extrusion coating are preferred.
  • the resin layer forming composition is continuously applied to the moving support, and more preferably, the resin layer forming composition application portion and the resin layer forming Manufactured by a production unit including an irradiation source for polymerizing and curing the composition, a film winding unit, and means for moving the support from the resin layer forming composition coating unit to the irradiation source and the film winding unit To do.
  • a production unit including an irradiation source for polymerizing and curing the composition, a film winding unit, and means for moving the support from the resin layer forming composition coating unit to the irradiation source and the film winding unit To do.
  • the composition application part for resin layer formation is provided in the upstream position with respect to an irradiation source, and an irradiation source is placed in the upstream position with respect to a film
  • the viscosity at 35 ° C. of the resin layer forming composition is preferably less than 4,000 mPa ⁇ s, more preferably 1 to 1,000 mPa ⁇ s. 1 to 500 mPa.s. s is most preferred.
  • the viscosity at 35 ° C. is preferably 1 to 100 mPa ⁇ s.
  • the coating liquid that is a resin layer forming composition can be applied to a moving support at a speed exceeding 15 m / min, and can also be applied at a speed exceeding 20 m / min.
  • this support is used to improve the wettability and adhesion of the support, for example, before applying the resin layer forming composition to the surface of the support.
  • the polymerization and curing of the resin layer forming composition is preferably performed within 60 seconds, more preferably within 15 seconds, particularly preferably within 5 seconds, most preferably, by applying or impregnating the resin layer forming composition to a support. Start within 3 seconds.
  • the light irradiation for polymerization curing is preferably less than 10 seconds, more preferably less than 5 seconds, particularly preferably less than 3 seconds, and most preferably less than 2 seconds.
  • irradiation is continuously performed, and the polymerization curing reaction time is determined in consideration of the speed at which the film-forming composition moves through the irradiation beam.
  • UV light ultraviolet rays
  • IR light infrared
  • Energy rays are preferably ultraviolet rays.
  • the irradiation wavelength is preferably matched with the absorption wavelength of any photopolymerization initiator included in the resin layer forming composition, for example, UV-A (400 to 320 nm), UV-B (320 to 280 nm). ), UV-C (280 to 200 nm).
  • UV sources are mercury arc lamp, carbon arc lamp, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, swirling plasma arc lamp, metal halide lamp, xenon lamp, tungsten lamp, halogen lamp, laser and ultraviolet light emitting diode.
  • Medium pressure or high pressure mercury vapor type ultraviolet light emitting lamps are preferred.
  • additives such as metal halides may be present to modify the emission spectrum of the lamp.
  • a lamp having an emission maximum at 200 to 450 nm is particularly suitable.
  • the energy output of the irradiation source is preferably 20 to 1,000 W / cm, preferably 40 to 500 W / cm, but may be higher or lower as long as a desired exposure dose can be realized. Absent.
  • the polymerization hardening of the film is adjusted according to the exposure strength.
  • the exposure dose is preferably at least 40 mJ / cm 2 or more, more preferably 100 to 2 or more, as measured by the High Energy UV Radiometer (UV Power Puck TM from EIT-Instrument Markets) in the UV-A range indicated by the apparatus. 1,000 mJ / cm 2 , most preferably 150 to 1,500 mJ / cm 2 .
  • the exposure time can be chosen freely, but is preferably short and most preferably less than 2 seconds.
  • a plurality of light sources may be used to obtain a necessary exposure dose.
  • the plurality of light sources may have the same or different exposure intensity.
  • the method for producing a composite anion exchange membrane of the present invention comprises a coating step of coating a surface layer forming coating solution containing a silane coupling agent having an anionic functional group on one side or both sides of a base anion exchange membrane, and It includes a drying step of drying the applied coating solution for forming the surface layer.
  • a coating step of coating a surface layer forming coating solution containing a silane coupling agent having an anionic functional group on one side or both sides of a base anion exchange membrane includes a drying step of drying the applied coating solution for forming the surface layer.
  • the manufacturing method of the composite anion exchange membrane of this invention includes the application
  • coating process which apply
  • coating process which apply
  • coating process which apply
  • base anion exchange membrane it is synonymous with what was demonstrated above, and its preferable range is also the same.
  • the surface layer forming coating solution used in the present invention (hereinafter also simply referred to as “surface layer forming coating solution”) is a silane coupling agent having an anionic functional group (hereinafter referred to as “specific silane coupling agent”). Contain).
  • the surface layer forming coating solution may contain a compound other than the specific silane coupling agent in the solvent, but the content of the specific silane coupling agent with respect to the total solid content of the surface layer forming coating solution is 90% by mass. Preferably, it is 95% by mass or more, more preferably 99% by mass or more, and particularly preferably 100% by mass.
  • the content of the specific silane coupling agent with respect to the total mass of the surface layer forming coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, and 0.5 to 5% by mass. Is more preferable.
  • an alkoxysilane compound is preferably exemplified, and a trialkoxysilane compound is more preferable.
  • examples of the specific silane coupling agent preferably used in the present invention include compounds represented by the following formula 2.
  • each R 21 independently represents an anionic functional group, and is preferably a sulfo group, a carboxy group, and a phosphate group, and more preferably a sulfo group.
  • i represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • L 21 represents an i + m-valent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a saturated hydrocarbon group having 1 to 10 carbon atoms.
  • L 21 represents a divalent linking group, it is preferably an alkylene group, more preferably an alkylene group having 1 to 10 carbon atoms, and still more preferably an alkylene group having 2 to 4 carbon atoms.
  • R 23 represents an alkyl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • j represents an integer of 1 to 3, preferably 2 or 3, and more preferably 3.
  • R 22 each independently represents a monovalent organic group, preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms.
  • k represents an integer of (3-j), and is preferably 0 or 1, more preferably 0.
  • m represents an integer of 1 or more, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and still more preferably an integer of 1 to 3.
  • the surface layer forming coating solution used in the present invention may contain a solvent.
  • the content of the solvent is preferably 50 to 99% by mass, more preferably 60 to 98% by mass, and still more preferably 70 to 97% by mass with respect to the total mass of the surface layer forming coating solution.
  • the solvent water or a mixed solution of a solvent having a solubility in water of 5% by mass or more and water is preferably used, and a solvent that is freely mixed with water is preferable. For this reason, the solvent selected from water and a water-soluble solvent is preferable.
  • the water-soluble solvent alcohol solvents, ether solvents that are aprotic polar solvents, amide solvents, ketone solvents, sulfoxide solvents, sulfone solvents, nitrile tolyl solvents, and organic phosphorus solvents are particularly preferable. .
  • alcohol solvent examples include methanol, ethanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and the like. These can be used alone or in combination of two or more.
  • aprotic polar solvent examples include dimethyl sulfoxide, dimethylimidazolidinone, sulfolane, N-methylpyrrolidone, dimethylformamide, acetonitrile, acetone, dioxane, tetramethylurea, hexamethylphosphoramide, hexamethylphosphorotriamide, Pyridine, propionitrile, butanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, ethylene glycol diacetate, ⁇ -butyrolactone and the like are mentioned as preferred solvents.
  • dimethyl sulfoxide N-methylpyrrolidone, dimethylformamide, dimethylimidazolidinone, sulfolane, Acetone, acetonitrile or tetrahydrofuran is preferred.
  • dimethyl sulfoxide N-methylpyrrolidone, dimethylformamide, dimethylimidazolidinone, sulfolane, Acetone, acetonitrile or tetrahydrofuran is preferred.
  • dimethyl sulfoxide N-methylpyrrolidone
  • dimethylformamide dimethylimidazolidinone
  • sulfolane sulfolane
  • Acetone acetonitrile or tetrahydrofuran
  • the coating method of the surface layer forming coating solution is not particularly limited, and a known method can be used.
  • the surface layer forming coating solution can be applied by various methods such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spray coating. It can be applied on an ion exchange membrane as a base.
  • the surface of the base film is roughened with sandpaper or the like as a pretreatment for applying the surface layer forming coating solution, or corona, plasma treatment, etc. May be applied.
  • the method for producing a composite anion exchange membrane of the present invention further includes a plasma treatment step of performing plasma treatment on the base anion exchange membrane before the coating step.
  • a plasma treatment step since a hydroxy group can be introduced to the surface of the base film, it is easy to bond the surface layer and the base film via a covalent bond.
  • the plasma treatment can be performed by using, for example, a commercially available atmospheric pressure plasma surface treatment apparatus.
  • the manufacturing method of the composite anion exchange membrane of this invention includes the drying process which dries the said coating liquid for surface layer formation. Although it does not specifically limit as a drying method, It is preferable to heat and dry.
  • the heating means is not limited as long as the solvent contained in the coating solution for forming the surface layer can be dried, and a heat drum, hot air, an infrared lamp, a heat oven, a heat plate heating, or the like can be used.
  • the drying temperature is preferably 50 ° C. or higher, more preferably 50 to 150 ° C., and still more preferably 50 to 80 ° C.
  • the drying time may be appropriately set in consideration of the layer thickness and the like, but is preferably 5 to 180 minutes, and more preferably 10 to 120 minutes.
  • the coating process and the drying process may be alternately performed to form the surface layer on each side.
  • the composite anion exchange membrane of the present invention can be produced in a batch system using a fixed base membrane, but the moving base You may prepare a film
  • the base film may have a roll shape that is continuously rewound.
  • a support is placed on a belt that is continuously moved, a base membrane is formed, and the composite anion exchange membrane of the present invention is produced by further performing the coating step and the drying step. It is also possible to perform the formation of the base film and the surface layer in a continuous manner.
  • the base film is formed, for example, by applying a resin layer forming composition and irradiating with actinic radiation.
  • the composite anion exchange membrane of the present invention can be suitably used in a modular form.
  • modules include spiral, hollow fiber, pleated, tubular, plate & frame, and stack types.
  • the ion exchange apparatus which has a means for ion-exchange or desalting
  • An example of the ion exchange apparatus of the present invention is shown in FIG.
  • An electrodialysis layer 25 having a cation exchange membrane 23 and a composite anion exchange membrane 24 of the present invention alternately is provided between the anode electrode 21 and the cathode electrode 22, and the electrode liquid tank 11 is provided on the anode electrode 21 and the cathode electrode 22.
  • the electrode solution is shared, the desalted solution is sent from the desalted solution tank 12 to the arrows 33 and 34, and the concentrated solution is sent from the concentrate tank 13 to the arrows 35 and 36. Each circulates as shown.
  • a coating solution having the composition of base film B-1 shown in Table 1 below was manually applied to an aluminum plate at a speed of about 5 m / min using a 150 ⁇ m wire winding rod. Subsequently, the coating liquid applied to the aluminum plate was brought into contact with a non-woven fabric (FO-2223-10 manufactured by Freudenberg, thickness: 100 ⁇ m) as a support, and the support was impregnated with the coating liquid. Subsequently, the excess coating liquid was removed from the nonwoven fabric using a rod on which no wire was wound. The temperature of the coating solution at the time of coating was about 50 ° C.
  • the support was impregnated with the coating solution by using a UV exposure machine (Fusion UV Systems, Model Light Hammer LH6, D-bulb, speed 10 m / min, 100% strength) to polymerize and cure the film. Produced. The exposure amount was 1,000 mJ / cm 2 in the UV-A region.
  • the obtained film was removed from the aluminum plate and stored in a 0.1 M NaCl aqueous solution for at least 12 hours to produce a 140 ⁇ m thick resin layer carried on a nonwoven fabric (support). Thereby, a base film B-1 was obtained.
  • the base film B-2 and the base film B-2 were prepared in the same manner as in the production of the base film B-1, except that the coating liquid had the composition of the base film B-2 or B-3 shown in Table 1. B-3 was produced.
  • Plasma treatment was performed at 500 W ⁇ min / m 2 by supplying nitrogen at 15 L / min and oxygen at 1.5 L / min using an atmospheric pressure plasma surface treatment apparatus. Subsequently, drying at the drying temperature and drying time described in Tables 3 to 18 was performed using an oven. Thereafter, Examples 28 to 54 and Comparative Examples 22 to 39 were immersed in a 0.01 M aqueous sodium hydroxide solution at room temperature for 2 hours after the drying as a post-process. Subsequently, it was immersed in a 0.5 M saline solution to remove sodium hydroxide in the membrane. After the surface layer forming step including the subsequent step, it was stored in a 0.1 M NaCl solution for at least 12 hours. Thus, the composite anion exchange membrane of the Example and the comparative example was produced. In all Examples, the existence of the Si—O—C structure was confirmed from the spectrum corresponding to Si 2p by XPS analysis.
  • Electrodialysis was performed using an electrodialyzer microacylator S1 manufactured by Astom Co., Ltd.
  • As the anion exchange membrane a composite anion exchange membrane (hereinafter also referred to as “AEM”) as an example or a comparative example was used, and as the cation exchange membrane (hereinafter also referred to as “CEM”), CMX ((stock) ) Manufactured by Astom).
  • AEM composite anion exchange membrane
  • CEM cation exchange membrane
  • nitrate ion and sulfate ion As raw water, an aqueous solution of sodium nitrate 0.1M and sodium sulfate 0.05M was used. As the electrode solution, a 0.5 M sodium sulfate aqueous solution was used. The raw water is supplied at a flow rate of 50 mL / min as a desalted solution and concentrated solution to an electrodialysis tank in which four CEMs and three AEMs are alternately stacked, and the current is 50 mA / min. At that point, the power supply was stopped. The ion composition of the desalting chamber was quantified by ion chromatography, and the removal rate of nitrate ion and sulfate ion was calculated by the following formula.
  • the transport number was calculated by measuring the membrane potential (V) by static membrane potential measurement. Two electrolytic cells (cells) were separated by a composite anionic exchange membrane to be measured. Prior to measurement, the composite anionic exchange membrane was equilibrated in 0.05 M NaCl aqueous solution for about 16 hours. Thereafter, NaCl aqueous solutions having different concentrations were respectively poured into the electrolytic cells on the opposite sides of the composite anionic exchange membrane to be measured. Specifically, 100 mL of 0.05 M NaCl aqueous solution was poured into one cell. Moreover, 100 mL of 0.5M NaCl aqueous solution was poured into the other cell.
  • a ′ membrane potential (V) b ′: 0.5915 log (f1c1 / f2c2) (V) f1, f2: NaCl activity coefficient of both cells c1, c2: NaCl concentration (M) of both cells
  • the surface layer resin was scraped off from the dry film surface and pulverized, and the density was measured by a dry method using a gas displacement pycnometer.
  • (Negative charge amount) / (attached weight) was defined as an anionic functional group (negative charge density) (equivalent / g). For the case where the surface layer was peeled off when immersed in water after drying, this measurement was not performed and “-” was written in the result column.
  • Elemental analysis in the thickness direction was performed by X-ray electron spectroscopy (ESCA), and the existence range of Si was defined as the film thickness.
  • ESA X-ray electron spectroscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Provided are: a composite anion exchange membrane which has excellent monovalent ion selectivity; a method for producing this composite anion exchange membrane; and an ion exchange membrane module and an ion exchanger, each of which uses this composite anion exchange membrane. This composite anion exchange membrane comprises a surface layer having anionic functional groups on one surface or both surfaces of an anion exchange membrane that serves as a base. The density of the anionic functional groups in the surface layer is from 3.0 equivalent/g to 10.0 equivalent/g.

Description

複合アニオン交換膜及びその製造方法、イオン交換膜モジュール、並びに、イオン交換装置Composite anion exchange membrane and method for producing the same, ion exchange membrane module, and ion exchange device
 本発明は、複合アニオン交換膜及びその製造方法、イオン交換膜モジュール、並びに、イオン交換装置に関する。 The present invention relates to a composite anion exchange membrane and a method for producing the same, an ion exchange membrane module, and an ion exchange device.
 イオン交換膜は、電気脱塩(EDI:Electrodeionization)、連続的な電気脱塩(CEDI:Continuous Electrodeionization)、電気透析(ED:Electrodialysis)、逆電気透析(EDR:Electrodialysis reversal)等に用いられる。
 電気脱塩(EDI)は、イオン輸送を達成するためにイオン交換膜と電位を使用して、水性液体からイオンが取り除かれる水処理プロセスである。従来のイオン交換のような他の浄水技術と異なり、酸又は苛性ソーダのような化学薬品の使用を要求せず、超純水を生産するために使用することができる。電気透析(ED)及び逆電気透析(EDR)は、水及び他の流体からイオン等を取り除く電気化学の分離プロセスである。
The ion exchange membrane is used for electrodeionization (EDI), continuous electrodeionization (CEDI), electrodialysis (ED), reverse electrodialysis (EDR), and the like.
Electrodesalting (EDI) is a water treatment process in which ions are removed from an aqueous liquid using ion exchange membranes and electrical potentials to achieve ion transport. Unlike other water purification techniques such as conventional ion exchange, it does not require the use of chemicals such as acid or caustic soda and can be used to produce ultrapure water. Electrodialysis (ED) and reverse electrodialysis (EDR) are electrochemical separation processes that remove ions and the like from water and other fluids.
 近年、地下水中の硝酸イオン濃度上昇は世界規模で問題となっており、イオン交換膜を用いた電気透析による硝酸イオン除去方法が注目されている。電気透析において、長期間の駆動時には、二価の硫酸イオンなどに起因する難溶性塩の析出(スケーリング)が発生し、効率が低下することが知られている。一般的にイオン交換膜はカチオン又はアニオンのみを選択的に透過する性質を有するが、この選択性に加えて、スケーリングの要因となりうる硫酸イオンなどの二価のアニオンを排除しつつ、一価の硝酸イオンのみを選択的に透過させ、効率よく除去することが重要である。そのため、一価イオンのみを選択的に透過させる技術の開発が盛んに行われている(例えば、特許文献1参照)。 Recently, an increase in nitrate ion concentration in groundwater has become a problem on a global scale, and a method for removing nitrate ion by electrodialysis using an ion exchange membrane has attracted attention. In electrodialysis, during long-term driving, it is known that precipitation (scaling) of sparingly soluble salts due to divalent sulfate ions and the like occurs and efficiency is lowered. In general, ion exchange membranes have the property of selectively permeating only cations or anions, but in addition to this selectivity, while eliminating divalent anions such as sulfate ions that can cause scaling, monovalent It is important to selectively permeate only nitrate ions and remove them efficiently. Therefore, development of a technique for selectively transmitting only monovalent ions has been actively performed (for example, see Patent Document 1).
 特許文献1には、硝酸イオンを含む水溶液から電気透析により硝酸イオンを除去するにあたり、陰イオン交換膜として膜表面に厚さ10オングストローム~5μmの負の電荷の薄層を有する膜を用い、上記薄層を有する側を脱塩室側にして該陰イオン交換膜を配列することを特徴とする硝酸イオンの除去方法が記載されている。 In Patent Document 1, when removing nitrate ions from an aqueous solution containing nitrate ions by electrodialysis, a membrane having a negative charge thin layer having a thickness of 10 angstroms to 5 μm on the membrane surface is used as the anion exchange membrane. A method for removing nitrate ions is described, wherein the anion exchange membrane is arranged with the side having the thin layer as the desalting chamber side.
特開平7-265863号公報JP-A-7-265863
 本発明が解決しようとする課題は、一価イオンの選択性に優れた複合アニオン交換膜、及び、その製造方法、並びに、上記複合アニオン交換膜を用いたイオン交換膜モジュール、及び、イオン交換装置を提供することである。 The problem to be solved by the present invention is a composite anion exchange membrane excellent in monovalent ion selectivity, a production method thereof, an ion exchange membrane module using the composite anion exchange membrane, and an ion exchange device Is to provide.
 本発明の上記課題は、以下の<1>、<6>、<8>又は<9>に記載の手段により解決された。好ましい実施態様である<2>~<5>及び<7>と共に以下に記載する。
 <1> アニオン性官能基を有する表面層を、ベースとなるアニオン交換膜の片面又は両面に有し、上記表面層におけるアニオン性官能基の密度が3.0当量/g~10.0当量/gであることを特徴とする複合アニオン交換膜、
 <2> 上記表面層と、上記ベースとなるアニオン交換膜とが、共有結合を介して接着している、<1>に記載の複合アニオン交換膜、
 <3> 上記アニオン性官能基が、スルホ基、カルボキシ基、又は、リン酸基である、<1>又は<2>に記載の複合アニオン交換膜、
 <4> 上記表面層に下記式1の構造を有する、<1>~<3>のいずれか1つに記載の複合アニオン交換膜、
The above-described problems of the present invention have been solved by means described in the following <1>, <6>, <8> or <9>. It is described below together with <2> to <5> and <7> which are preferred embodiments.
<1> A surface layer having an anionic functional group is provided on one side or both sides of a base anion exchange membrane, and the density of the anionic functional group in the surface layer is 3.0 eq / g to 10.0 eq / a composite anion exchange membrane characterized in that
<2> The composite anion exchange membrane according to <1>, wherein the surface layer and the base anion exchange membrane are bonded via a covalent bond,
<3> The composite anion exchange membrane according to <1> or <2>, wherein the anionic functional group is a sulfo group, a carboxy group, or a phosphate group,
<4> The composite anion exchange membrane according to any one of <1> to <3>, wherein the surface layer has a structure of the following formula 1.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式1中、R1はそれぞれ独立に、アニオン性官能基を表し、iは1~5の整数を表し、L1はi+m価の連結基を表し、*はそれぞれ独立に、ベースとなるアニオン交換膜又は表面層素材との結合位置を表し、jは1~3の整数を表し、R2はそれぞれ独立に、1価の有機基を表し、kは(3-j)の整数を表し、構造内に複数のR1及びR2が存在する場合、これらは互いに同じでも異なっていてもよく、mは1~6の整数を表す、
 <5> 上記ベースとなるアニオン交換膜が、ヒドロキシ基を有する、<2>~<4>のいずれか1つに記載の複合アニオン交換膜、
 <6> ベースとなるアニオン交換膜の片面又は両面に、アニオン性官能基を有するシランカップリング剤を含む表面層形成用塗布液を塗布する塗布工程、及び、塗布された上記表面層形成用塗布液を乾燥させる乾燥工程を含む、複合アニオン交換膜の製造方法、
 <7> 上記塗布工程の前に、ベースとなるアニオン交換膜にプラズマ処理を行うプラズマ処理工程を更に含む、<6>に記載の複合アニオン交換膜の製造方法、
 <8> <1>~<5>のいずれか1つに記載の複合アニオン交換膜を備えたイオン交換膜モジュール、
 <9> <1>~<5>のいずれか1つに記載の複合アニオン交換膜を備えたイオン交換装置。
In Formula 1, each R 1 independently represents an anionic functional group, i represents an integer of 1 to 5, L 1 represents an i + m-valent linking group, and * represents each independently anion exchange serving as a base Represents a bonding position with a film or a surface layer material, j represents an integer of 1 to 3, R 2 independently represents a monovalent organic group, k represents an integer of (3-j), When a plurality of R 1 and R 2 are present, they may be the same as or different from each other, and m represents an integer of 1 to 6,
<5> The composite anion exchange membrane according to any one of <2> to <4>, wherein the base anion exchange membrane has a hydroxy group,
<6> An application step of applying a coating solution for forming a surface layer containing a silane coupling agent having an anionic functional group on one side or both sides of the base anion exchange membrane, and the applied coating for forming the surface layer A method for producing a composite anion exchange membrane, comprising a drying step of drying the liquid;
<7> The method for producing a composite anion exchange membrane according to <6>, further including a plasma treatment step of performing plasma treatment on the base anion exchange membrane before the coating step,
<8> An ion exchange membrane module comprising the composite anion exchange membrane according to any one of <1> to <5>,
<9> An ion exchange device comprising the composite anion exchange membrane according to any one of <1> to <5>.
 本発明によれば、一価イオンの選択性に優れた複合アニオン交換膜、及び、その製造方法、並びに、上記複合アニオン交換膜を用いたイオン交換膜モジュール、及び、イオン交換装置を提供することができた。 According to the present invention, there are provided a composite anion exchange membrane excellent in monovalent ion selectivity, a production method thereof, an ion exchange membrane module using the composite anion exchange membrane, and an ion exchange device. I was able to.
本発明の複合アニオン交換膜の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the composite anion exchange membrane of this invention. 本発明の複合アニオン交換膜を使用したイオン交換装置の一例を示す概略図である。It is the schematic which shows an example of the ion exchange apparatus using the composite anion exchange membrane of this invention. 本発明の複合アニオン交換膜の選択性の経時変化の評価時に使用されるイオン交換装置の一例を示す概略図である。It is the schematic which shows an example of the ion exchange apparatus used at the time of evaluation of the time-dependent change of the selectivity of the composite anion exchange membrane of this invention.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 更に、各式における二重結合の置換様式である幾何異性体は、表示の都合上、異性体の一方を記載したとしても、特段の断りがない限り、E体であってもZ体であっても、これらの混合物であっても構わない。
 また、本明細書における化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 なお、本明細書中において、“(メタ)アクリレート”はアクリレート及びメタクリレートを表し、“(メタ)アクリル”はアクリル及びメタクリルを表し、“(メタ)アクリロイル”はアクリロイル及びメタクリロイルを表し、”(メタ)アクリルアミド”はアクリルアミド及びメタクリルアミドを表す。
 また、本発明において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 また、本発明において、好ましい態様の組み合わせは、より好ましい態様である。
Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In the notation of groups (atomic groups) in this specification, the notation that does not indicate substitution and non-substitution includes not only those having no substituent but also those having a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
Furthermore, the geometrical isomer that is the substitution pattern of the double bond in each formula may be either E-form or Z-form, unless otherwise specified, even if one of the isomers is described for the convenience of display. Or a mixture thereof.
In addition, the chemical structural formula in this specification may be expressed as a simplified structural formula in which a hydrogen atom is omitted.
In this specification, “(meth) acrylate” represents acrylate and methacrylate, “(meth) acryl” represents acryl and methacryl, “(meth) acryloyl” represents acryloyl and methacryloyl, “(meth) ) Acrylamide "refers to acrylamide and methacrylamide.
In the present invention, “mass%” and “wt%” are synonymous, and “part by mass” and “part by weight” are synonymous.
Moreover, in this invention, the combination of a preferable aspect is a more preferable aspect.
(複合アニオン交換膜)
 本発明の複合アニオン交換膜は、アニオン性官能基を有する表面層を、ベースとなるアニオン交換膜(以下、「ベース膜」ともいう。)の片面又は両面に有し、上記表面層におけるアニオン性官能基の密度が3.0当量/g~10.0当量/gであることを特徴とする。
 本発明の複合アニオン交換膜は、アニオン性官能基を有する表面層を、両面に有することが好ましい。
(Composite anion exchange membrane)
The composite anion exchange membrane of the present invention has a surface layer having an anionic functional group on one side or both sides of a base anion exchange membrane (hereinafter also referred to as “base membrane”), and an anionic property in the surface layer. The density of the functional group is 3.0 equivalent / g to 10.0 equivalent / g.
The composite anion exchange membrane of the present invention preferably has a surface layer having an anionic functional group on both sides.
 従来のアニオン性表面層を有するアニオン交換膜では、表面層中のアニオン性官能基間の距離が比較的長く、処理水中のアニオンが透過する際にクーロン力による反発力を受けにくい領域が存在していた。この領域においては種々のアニオンが比較的自由に透過できると考えられ、膜の一価イオン選択性低下の原因の一つと考えられる。本発明では、アニオン交換膜の表面にアニオン性官能基をより高密度に配置することで、アニオン性官能基間の距離が縮まり、クーロン力の影響が小さい領域が低減し、一価イオン選択性を向上させることができたと考えられる。なお、アニオン性官能基の密度が低密度であっても、その膜厚を大きくし、透過経路を長くすることによりクーロン力の影響が小さい領域を低減することができるが、この場合には輸率が悪化するという問題が生じてしまい、好ましくない。本発明者等は、本発明の構成によれば、一価イオン選択性が得られつつも輸率が維持されることを見出した。
 加えて、本発明においては透水率が低下するという優れた効果も確認されたが、これは、表面層が緻密に形成されていることに起因すると考えられる。
In an anion exchange membrane having a conventional anionic surface layer, the distance between the anionic functional groups in the surface layer is relatively long, and there is a region that is less susceptible to repulsive force due to Coulomb force when the anion in the treated water permeates. It was. In this region, various anions are considered to be able to permeate relatively freely, which is considered to be one of the causes of a decrease in monovalent ion selectivity of the membrane. In the present invention, by disposing anionic functional groups at a higher density on the surface of the anion exchange membrane, the distance between the anionic functional groups is reduced, the area where the influence of Coulomb force is small is reduced, and monovalent ion selectivity is reduced. It is thought that it was possible to improve. Even if the density of the anionic functional group is low, the area where the influence of Coulomb force is small can be reduced by increasing the film thickness and lengthening the permeation path. The problem that a rate deteriorates arises and it is not preferable. The present inventors have found that according to the configuration of the present invention, the transport number is maintained while monovalent ion selectivity is obtained.
In addition, in the present invention, an excellent effect of reducing the water permeability was also confirmed. This is considered to be caused by the fact that the surface layer is densely formed.
 本発明の複合アニオン交換膜について、図を参照しながら説明する。なお、図中、同一の符号は同一の対称を示すものとする。
 図1は、本発明の複合アニオン交換膜の一例を示す概略断面図である。
 図1では、ベースとなるアニオン交換膜1は、両面に表面層2を有している。ベースとなるアニオン交換膜1は、表面層2を両面に有していることが好ましいが、片面にのみ有していてもよい。
 以下、本発明の複合アニオン交換膜を構成する、各成分について説明する。
The composite anion exchange membrane of the present invention will be described with reference to the drawings. In the drawings, the same reference numerals indicate the same symmetry.
FIG. 1 is a schematic cross-sectional view showing an example of the composite anion exchange membrane of the present invention.
In FIG. 1, an anion exchange membrane 1 serving as a base has surface layers 2 on both sides. The anion exchange membrane 1 serving as a base preferably has the surface layer 2 on both sides, but may have only one side.
Hereinafter, each component which comprises the composite anion exchange membrane of this invention is demonstrated.
<表面層>
〔アニオン性官能基〕
 本発明の複合アニオン交換膜が有する表面層は、アニオン性官能基を有する。
 アニオン性官能基としては、スルホ基、カルボキシ基、及び、リン酸基が好ましく、アニオン性官能基の密度を3.0当量/g~10.0当量/gに調整しやすいという観点から、スルホ基がより好ましい。
 アニオン性官能基の密度は3.0当量/g~10.0当量/gであり、3.0当量/g~6.0当量/gであることが好ましく、3.5当量/g~6.0当量/gであることがより好ましい。
 アニオン性官能基の密度の測定方法は、下記の通りである。
 まず、「膜学実験法(ISBN 978-4-906126-09-5)」194頁に記載のCEMのイオン交換容量測定手順に倣い、単位面積あたりの膜に固定化されている負電荷量を測定する。また、長方形に切り出した測定サンプルの膜面積、膜厚、及び樹脂密度から、単位面積あたりのベース膜への表面層付着重量を算出する。
 膜面積については、長方形に切り出した測定サンプルの縦×横により測定する。
 膜厚については、X線電子分光(ESCA)による厚み方向の元素分析を行い、測定する。
 樹脂密度については、乾燥膜表面から表面層樹脂を削り取って粉砕し、気体置換型ピクノメーターを使用して乾式で密度測定する。
 上記負電荷量及び表面層付着重量から、(負電荷量)/(表面層付着重量)をアニオン性官能基の密度(負電荷密度)(当量/g)とする。
<Surface layer>
[Anionic functional group]
The surface layer of the composite anion exchange membrane of the present invention has an anionic functional group.
As the anionic functional group, a sulfo group, a carboxy group, and a phosphoric acid group are preferable. From the viewpoint of easily adjusting the density of the anionic functional group to 3.0 equivalent / g to 10.0 equivalent / g, sulfo group Groups are more preferred.
The density of the anionic functional group is from 3.0 equivalent / g to 10.0 equivalent / g, preferably from 3.0 equivalent / g to 6.0 equivalent / g, and from 3.5 equivalent / g to 6 More preferably, it is 0.0 equivalent / g.
The method for measuring the density of the anionic functional group is as follows.
First, following the procedure for measuring the ion exchange capacity of CEM described in “194 Membrane Experimental Method (ISBN 978-4-906126-09-5)” on page 194, the amount of negative charge immobilized on the membrane per unit area was determined. taking measurement. Further, the weight of the surface layer attached to the base film per unit area is calculated from the film area, film thickness, and resin density of the measurement sample cut into a rectangle.
About a film | membrane area, it measures by the vertical x horizontal of the measurement sample cut out to the rectangle.
The film thickness is measured by performing elemental analysis in the thickness direction by X-ray electron spectroscopy (ESCA).
Regarding the resin density, the surface layer resin is scraped off from the surface of the dry film and pulverized, and the density is measured by a dry method using a gas displacement pycnometer.
From the negative charge amount and the surface layer attached weight, (negative charge amount) / (surface layer attached weight) is defined as the density of the anionic functional group (negative charge density) (equivalent / g).
 本発明に用いられる表面層と、ベースとなるアニオン交換膜とは共有結合を介して接着していることが好ましい。
 上記態様によれば、表面層のベース膜からの剥離が防がれ、一価イオンの選択性が長時間維持される複合アニオン交換膜を得ることができる。
 上記共有結合は、シランカップリング反応、エン-チオール反応、表面開始原子移動ラジカル重合(SI-ATRP)、表面開始可逆的付加開裂連鎖移動重合(SI-RAFT)、脱水縮合反応、求核付加反応などの方法により形成でき、シランカップリング反応により形成される共有結合であることが好ましい。
 共有結合可能な基の組み合わせとしては、(シラノール基/ヒドロキシ基)、(シラノール基/シラノール基)(エチレン性不飽和基/チオール基)、(エチレン性不飽和基/エチレン性不飽和基)、(ヒドロキシ基/カルボキシ基)(イソシアナト基/ヒドロキシ基又はアミノ基)、(エポキシ基/ヒドロキシ基)等が好ましく例示され、(シラノール基/ヒドロキシ基)の組み合わせが特に好ましいが、本発明はこれらに限定されるものではない。
The surface layer used in the present invention and the base anion exchange membrane are preferably bonded via a covalent bond.
According to the said aspect, peeling from the base film of a surface layer is prevented, and the composite anion exchange membrane by which the selectivity of a monovalent ion is maintained for a long time can be obtained.
The covalent bond includes silane coupling reaction, ene-thiol reaction, surface initiated atom transfer radical polymerization (SI-ATRP), surface initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT), dehydration condensation reaction, nucleophilic addition reaction. It is preferably a covalent bond formed by a silane coupling reaction.
As a combination of groups capable of covalent bonding, (silanol group / hydroxy group), (silanol group / silanol group) (ethylenically unsaturated group / thiol group), (ethylenically unsaturated group / ethylenically unsaturated group), (Hydroxy group / carboxy group) (isocyanato group / hydroxy group or amino group), (epoxy group / hydroxy group) and the like are preferably exemplified, and the combination of (silanol group / hydroxy group) is particularly preferable. It is not limited.
 上記共有結合の具体例としては、Si-O-Si結合、Si-O-C結合、C-S-C結合、C-O-C結合、C-C結合、-NH-C(=O)-結合、-C(=O)O-結合、-NH-C(=O)O-結合、-NH-C(=O)-NH-結合等が挙げられ、Si-O-C結合であることが好ましい。
 上記態様によれば、表面層のベース膜からの剥離が防がれ、一価イオンの選択性が長時間維持される複合アニオン交換膜を得ることができる。
 表面層とベース膜が上記結合を介して接着していることは、XPS(X線光電子分光)分析によるSi 2pに相当するスペクトルの解析により確認することができる。
Specific examples of the covalent bond include Si—O—Si bond, Si—O—C bond, C—S—C bond, C—O—C bond, C—C bond, —NH—C (═O). —Bond, —C (═O) O— bond, —NH—C (═O) O— bond, —NH—C (═O) —NH— bond, and the like, and are Si—O—C bonds. It is preferable.
According to the said aspect, peeling from the base film of a surface layer is prevented, and the composite anion exchange membrane by which the selectivity of a monovalent ion is maintained for a long time can be obtained.
The adhesion between the surface layer and the base film can be confirmed by analyzing the spectrum corresponding to Si 2p by XPS (X-ray photoelectron spectroscopy) analysis.
〔式1で表される構造〕
 本発明に用いられる表面層は、下記式1で表される構造を有することが好ましい。
[Structure represented by Formula 1]
The surface layer used in the present invention preferably has a structure represented by the following formula 1.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式1中、Rはそれぞれ独立に、アニオン性官能基を表し、スルホ基、カルボキシ基、及び、リン酸基が好ましく、スルホ基がより好ましい。
 iは1~5の整数を表し、1~3であることが好ましく、1~2であることがより好ましく、1であることが更に好ましい。
 L1はi+m価の連結基を表し、炭素数1~10の炭化水素基であることが好ましく、炭素数1~10の飽和炭化水素基であることがより好ましい。L1が二価の連結基を表す場合、アルキレン基であることが好ましく、炭素数1~10のアルキレン基がより好ましく、炭素数2~4のアルキレン基が更に好ましい。
 *はそれぞれ独立に、ベースとなるアニオン交換膜又は表面層素材との結合位置を表す。上記表面層素材は、表面層と同様に式1で表される構造が好ましい。その場合、「式1で表される構造」は、*で表される結合位置において、別の「式1で表される構造」のSi原子とシロキサン結合を形成することが好ましい。上記態様によれば、透水率に優れた複合アニオン交換膜が得られる。
 複数の「式1で表される構造」が結合した構造に含まれる、複数の*で表される結合位置は、ベースとなるアニオン交換膜と結合している箇所を少なくとも有していることが好ましい。上記態様によれば、一価イオンの選択性が長時間維持される複合アニオン交換膜を得ることができる。
 jは1~3の整数を表し、2又は3であることがより好ましく、3であることがより好ましい。
 Rはそれぞれ独立に、1価の有機基を表し、アルキル基であることが好ましく、炭素数1~4のアルキル基がより好ましい。
 kは(3-j)の整数を表し、0又は1であることが好ましく、0であることがより好ましい。
 mは1以上の整数を表し、1~6の整数であることが好ましく、1~4の整数であることがより好ましく、1~3の整数であることが更に好ましい。
 構造内に複数のR及びRが存在する場合、これらは互いに同じでも異なっていてもよい。
In Formula 1, each R 1 independently represents an anionic functional group, and is preferably a sulfo group, a carboxy group, and a phosphate group, and more preferably a sulfo group.
i represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
L 1 represents an i + m-valent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a saturated hydrocarbon group having 1 to 10 carbon atoms. When L 1 represents a divalent linking group, it is preferably an alkylene group, more preferably an alkylene group having 1 to 10 carbon atoms, and still more preferably an alkylene group having 2 to 4 carbon atoms.
* Each independently represents the bonding position with the base anion exchange membrane or surface layer material. The surface layer material preferably has a structure represented by Formula 1 like the surface layer. In that case, the “structure represented by formula 1” preferably forms a siloxane bond with another Si atom of “structure represented by formula 1” at the bonding position represented by *. According to the said aspect, the composite anion exchange membrane excellent in the water permeability is obtained.
A plurality of bonding positions represented by * included in a structure in which a plurality of “structures represented by Formula 1” are bonded have at least a portion bonded to a base anion exchange membrane. preferable. According to the said aspect, the composite anion exchange membrane with which the selectivity of a monovalent ion is maintained for a long time can be obtained.
j represents an integer of 1 to 3, preferably 2 or 3, and more preferably 3.
R 2 each independently represents a monovalent organic group, preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
k represents an integer of (3-j), and is preferably 0 or 1, more preferably 0.
m represents an integer of 1 or more, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and still more preferably an integer of 1 to 3.
When a plurality of R 1 and R 2 are present in the structure, these may be the same as or different from each other.
〔その他の構造〕
 本発明に用いられる表面層は、「式1で表される構造」以外の構造を含んでもよいが、表面層の全質量に対し、「式1で表される構造」を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましく、99質量%以上含むことが更に好ましい。
 上記態様によれば、透水率に優れた複合アニオン交換膜が得られる。
[Other structures]
The surface layer used in the present invention may include a structure other than the “structure represented by Formula 1”, but includes 90% by mass or more of the “structure represented by Formula 1” with respect to the total mass of the surface layer. Preferably, it is more preferably 95% by mass or more, and still more preferably 99% by mass or more.
According to the said aspect, the composite anion exchange membrane excellent in the water permeability is obtained.
〔表面層の特性〕
 本発明に用いられる表面層の厚さは、100~500nmが好ましく、100~400nmがより好ましく、100~300nmが特に好ましい。表面層の厚さが上記範囲内であれば、輸率に優れた複合アニオン交換膜が得られる。
 また、上記厚さは、走査型電子顕微鏡(SEM)により測定することができる。
[Characteristics of surface layer]
The thickness of the surface layer used in the present invention is preferably 100 to 500 nm, more preferably 100 to 400 nm, and particularly preferably 100 to 300 nm. If the thickness of the surface layer is within the above range, a composite anion exchange membrane having an excellent transport number can be obtained.
The thickness can be measured with a scanning electron microscope (SEM).
<ベースとなるアニオン交換膜>
 本発明に用いられるベースとなるアニオン交換膜としては、特に制限なく公知のアニオン交換膜が使用でき、例えば、炭化水素系やフッ素系のアニオン交換膜を用いることができるが、炭化水素系のアニオン交換膜が好ましく、アクリル系又はスチレン系のアニオン交換膜がより好ましく、アクリル系のアニオン交換膜が更に好ましい。
 本発明における炭化水素系のアニオン交換膜とは、炭化水素を含有する樹脂を含有するアニオン交換膜を表す。
 本発明におけるフッ素系のアニオン交換膜とは、パーフルオロアルキレン基を含有する樹脂を含有するアニオン交換膜を表す。上記樹脂としては、例えば、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体等が挙げられる。
 本発明におけるスチレン系のアニオン交換膜とは、スチレン化合物に由来する樹脂を含有するアニオン交換膜を表す。スチレン化合物としては、置換基を有していてもよいスチレン、ジビニルベンゼンが好適に挙げられる。
 本発明におけるアクリル系のアニオン交換膜とは、(メタ)アクリロイル基を有する化合物に由来する樹脂を含有するアニオン交換膜を表す。(メタ)アクリロイル基を有する化合物としては、(メタ)アクリル酸エステル化合物及び(メタ)アクリルアミド化合物が好適に挙げられる。
 以下、ベースとなるイオン交換膜の例として、アクリル系のアニオン交換膜について説明するが、本発明はこれに限定されるものではない。
<Base anion exchange membrane>
As the base anion exchange membrane used in the present invention, known anion exchange membranes can be used without particular limitation. For example, hydrocarbon-based or fluorine-based anion-exchange membranes can be used. Exchange membranes are preferred, acrylic or styrene anion exchange membranes are more preferred, and acrylic anion exchange membranes are even more preferred.
The hydrocarbon-based anion exchange membrane in the present invention refers to an anion exchange membrane containing a hydrocarbon-containing resin.
The fluorine-based anion exchange membrane in the present invention represents an anion exchange membrane containing a resin containing a perfluoroalkylene group. Examples of the resin include a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer.
The styrene anion exchange membrane in the present invention represents an anion exchange membrane containing a resin derived from a styrene compound. Preferable examples of the styrene compound include styrene and divinylbenzene which may have a substituent.
The acrylic anion exchange membrane in the present invention represents an anion exchange membrane containing a resin derived from a compound having a (meth) acryloyl group. Preferred examples of the compound having a (meth) acryloyl group include a (meth) acrylic acid ester compound and a (meth) acrylamide compound.
Hereinafter, an acrylic anion exchange membrane will be described as an example of a base ion exchange membrane, but the present invention is not limited thereto.
〔アクリル系のアニオン交換膜〕
 本発明に用いられるアクリル系のアニオン交換膜は、多孔質支持体に担持された樹脂層を有することが好ましい。
 上記アクリル系のアニオン交換膜の、多孔質支持体及び樹脂層を含む複合体としての膜厚は、10~250μmが好ましく、30~200μmがより好ましく、40~200μmが特に好ましい。
 膜厚がこの範囲内にあることにより、膜の電気抵抗を低く抑えることができる。
[Acrylic anion exchange membrane]
The acrylic anion exchange membrane used in the present invention preferably has a resin layer supported on a porous support.
The film thickness of the acrylic anion exchange membrane as a composite including a porous support and a resin layer is preferably 10 to 250 μm, more preferably 30 to 200 μm, and particularly preferably 40 to 200 μm.
When the film thickness is within this range, the electric resistance of the film can be kept low.
-多孔質支持体-
 本発明に用いられるアクリル系のアニオン交換膜は、多孔質支持体を有することが好ましい。この多孔質支持体の空孔に後述の膜形成用の硬化性組成物を存在させることにより、多孔質支持体を膜の一部として構成することができる。補強材料としての多孔質支持体としては、例えば、合成織布、又は合成不織布等の不織布、スポンジ状フィルム、微細な貫通孔を有するフィルムが挙げられる。
-Porous support-
The acrylic anion exchange membrane used in the present invention preferably has a porous support. The porous support can be constituted as a part of the film by allowing the curable composition for film formation described later to be present in the pores of the porous support. Examples of the porous support as the reinforcing material include synthetic woven fabrics, nonwoven fabrics such as synthetic nonwoven fabrics, sponge-like films, and films having fine through holes.
 本発明における多孔質支持体を形成する素材は、例えば、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリ塩化ビニル、ポリエステル、ポリアミド及びそれらのコポリマーであるか、あるいは、例えばポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド、ポリイミド、ポリエーテルミド(polyethermide)、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリカーボネート、ポリアクリレート、酢酸セルロース、ポリプロピレン、ポリ(4-メチル-1-ペンテン)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリクロロトリフルオロエチレン及びそれらのコポリマーに基づく多孔質膜が挙げられる。市販の多孔質支持体は、例えば、三菱製紙(株)、ニッポン高度紙工業(株)、旭化成せんい(株)、日本バイリーン(株)、タピルス社、Freudenberg Filtration Technologies社から市販されている。
 なお、多孔質支持体及び補強材料はエネルギー線照射による重合硬化反応を行う場合は、エネルギー線の波長領域を遮らないこと、すなわち、重合硬化に用いられる波長の照射を通過させることが要求される。
The material forming the porous support in the present invention is, for example, polyethylene, polypropylene, polyacrylonitrile, polyvinyl chloride, polyester, polyamide and copolymers thereof, or, for example, polysulfone, polyethersulfone, polyphenylenesulfone, polyphenylene. Sulfide, polyimide, polyetheramide, polyamide, polyamideimide, polyacrylonitrile, polycarbonate, polyacrylate, cellulose acetate, polypropylene, poly (4-methyl-1-pentene), polyvinylidene fluoride, polytetrafluoroethylene, poly Porous membranes based on hexafluoropropylene, polychlorotrifluoroethylene and their copolymers are mentioned. Commercially available porous supports are commercially available from, for example, Mitsubishi Paper Industries Co., Ltd., Nippon Kogyo Paper Industry Co., Ltd., Asahi Kasei Fibers Co., Ltd., Japan Vilene Co., Ltd., Tapils Co., Ltd., and Freudenberg Filtration Technologies.
The porous support and the reinforcing material are required not to block the wavelength region of the energy ray, that is, to pass the irradiation of the wavelength used for the polymerization curing when performing the polymerization curing reaction by energy beam irradiation. .
 ここで、多孔質補強材料は、樹脂層形成用組成物が浸透することができるものであることが好ましい。
 また、多孔質支持体は親水性を有することが好ましい。支持体に親水性を付与するには、コロナ処理、プラズマ処理、フッ素ガス処理、オゾン処理、硫酸処理、シランカップリング剤処理などの一般的な方法を使用することができる。
Here, it is preferable that the porous reinforcing material can be penetrated by the resin layer forming composition.
The porous support preferably has hydrophilicity. In order to impart hydrophilicity to the support, general methods such as corona treatment, plasma treatment, fluorine gas treatment, ozone treatment, sulfuric acid treatment, and silane coupling agent treatment can be used.
 本発明における多孔質支持体は不織布が好ましく、不織布の中でも、ポリエチレンとポリプロピレンの複合繊維からなる不織布が好ましい。また、この複合繊維の繊維径は、0.5~30μmが好ましく、1~25μmがより好ましく、2~20μmが特に好ましい。
 本発明における多孔質支持体の厚さは、10~250μmが好ましく、20~250μmがより好ましく、30~230μmが更に好ましく、40~200μmが特に好ましい。
The porous support in the present invention is preferably a nonwoven fabric, and among the nonwoven fabrics, a nonwoven fabric made of a composite fiber of polyethylene and polypropylene is preferred. The fiber diameter of the composite fiber is preferably 0.5 to 30 μm, more preferably 1 to 25 μm, and particularly preferably 2 to 20 μm.
The thickness of the porous support in the present invention is preferably 10 to 250 μm, more preferably 20 to 250 μm, still more preferably 30 to 230 μm, and particularly preferably 40 to 200 μm.
-樹脂層-
 本発明に用いられる、アクリル系のアニオン交換膜の樹脂層は、陰イオン交換性ポリマーを含有する。
 上記陰イオン交換性ポリマーは、いずれもα位にアルキル基を有してもよいアクリロイル基から得られる単位を含むポリマーである。
 ここで、α位にアルキル基を有してもよいアクリロイル基は、α位にアルキル基を有してもよいアクリロイルアミノ基若しくはアクリロイルオキシ基が好ましく、α位にアルキル基を有してもよいアクリロイルアミノ基がより好ましい。
 本発明において、陰イオン交換基を有する陰イオン交換性ポリマーは、α位にアルキル基を有してもよいアクリロイル基から得られる単位を含むポリマーであれば、どのような陰イオン交換基でも構わないが、ピリジニウムのような含窒素ヘテロ環における窒素原子がカチオンのもの、4級化された窒素原子を有するもの、芳香族ヘテロ環の窒素原子がアルキル化若しくはアリール化のように置換基で置換されたもの、又は4級化されたアミノ基(すなわち、オニオ基)を有するものが好ましい。
 中でも、式IAで表される単位を有する陰イオン交換性ポリマーが好ましい。
-Resin layer-
The resin layer of the acrylic anion exchange membrane used in the present invention contains an anion exchange polymer.
Each of the above anion exchange polymers is a polymer containing a unit obtained from an acryloyl group which may have an alkyl group at the α-position.
Here, the acryloyl group which may have an alkyl group at the α-position is preferably an acryloylamino group or acryloyloxy group which may have an alkyl group at the α-position, and may have an alkyl group at the α-position. An acryloylamino group is more preferred.
In the present invention, the anion exchange polymer having an anion exchange group may be any anion exchange group as long as it contains a unit obtained from an acryloyl group which may have an alkyl group at the α-position. No, but nitrogen atoms in nitrogen-containing heterocycles such as pyridinium are cationic, quaternized nitrogen atoms, aromatic heterocycle nitrogen atoms are substituted with substituents like alkylation or arylation Or those having a quaternized amino group (ie, an onio group) are preferred.
Among these, an anion exchange polymer having a unit represented by the formula IA is preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式IAにおいて、RA1は水素原子又はアルキル基を表し、RA2~RA4はそれぞれ独立に、アルキル基又はアリール基を表す。ここで、RA2~RA4のうち2つ以上が互いに結合して環を形成してもよい。ZA1は-O-又は-N(Ra)-を表す。ここで、Raは水素原子又はアルキル基を表す。LA1はアルキレン基を表す。XA1-はハロゲンイオン又は脂肪族若しくは芳香族カルボン酸イオンを表す。 In the formula IA, R A1 represents a hydrogen atom or an alkyl group, and R A2 to R A4 each independently represents an alkyl group or an aryl group. Here, two or more of R A2 to R A4 may be bonded to each other to form a ring. Z A1 represents —O— or —N (Ra) —. Here, Ra represents a hydrogen atom or an alkyl group. L A1 represents an alkylene group. X A1− represents a halogen ion or an aliphatic or aromatic carboxylate ion.
 RA1、RA2~RA4及びRaのアルキル基は、直鎖若しくは分岐のアルキル基であり、炭素数は1~10が好ましく、1~6がより好ましく、1~4が更に好ましく、1又は2が特に好ましく、1が最も好ましい。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、t-ブチル、n-ヘキシル、n-オクチル、2-エチルヘキシル、n-ドデシル、i-デシルが挙げられる。 The alkyl groups of R A1 , R A2 to R A4 and Ra are linear or branched alkyl groups, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, still more preferably 1 to 4 carbon atoms, or 1 or 2 is particularly preferred and 1 is most preferred. Examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-hexyl, n-octyl, 2-ethylhexyl, n-dodecyl and i-decyl.
 RA2~RA4のアリール基の炭素数は、6~16が好ましく、6~12がより好ましく、6~10が更に好ましい。例えば、フェニル、ナフチルが挙げられる。
 LA1はアルキレン基の炭素数は、1~10が好ましく、2~10がより好ましく、2~6がより好ましく、2~4が更に好ましく、2又は3が特に好ましく、3が最も好ましい。例えば、メチレン、エチレン、プロピレン、ヘキサメチレン、オクタメチレン、デカメチレンが挙げられる。
The carbon number of the aryl group of R A2 to R A4 is preferably 6 to 16, more preferably 6 to 12, and still more preferably 6 to 10. Examples include phenyl and naphthyl.
L A1 is preferably an alkylene group having 1 to 10 carbon atoms, more preferably 2 to 10, more preferably 2 to 6, still more preferably 2 to 4, particularly preferably 2 or 3, and most preferably 3. Examples include methylene, ethylene, propylene, hexamethylene, octamethylene, decamethylene.
 XA1-におけるハロゲンイオンは、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオンが挙げられる。
 XA1-における脂肪族カルボン酸イオンの炭素数は、1~11が好ましく、2~7がより好ましく、2~5が更に好ましく、2又は3が特に好ましく、2が最も好ましい。
Examples of the halogen ion in X A1− include a fluorine ion, a chlorine ion, a bromine ion, and an iodine ion.
The carbon number of the aliphatic carboxylate ion in X A1- is preferably 1 to 11, more preferably 2 to 7, still more preferably 2 to 5, particularly preferably 2 or 3, and most preferably 2.
 脂肪族カルボン酸イオンは、飽和炭化水素のカルボン酸、不飽和炭化水素のカルボン酸のいずれでもよいが、飽和炭化水素のカルボン酸が好ましい。
 XA1-における芳香族カルボン酸イオンは、アリールカルボン酸イオン及びヘテロアリールカルボン酸イオンが好ましい。ここで、ヘテロアリールは、5又は6員環が好ましく、環構成ヘテロ原子は、窒素原子、酸素原子又は硫黄原子が好ましく、窒素原子がより好ましい。芳香族カルボン酸イオンの炭素数は、1~17が好ましく、2~13がより好ましく、3~11が更に好ましい。例えば、安息香酸イオン、ナフタレンカルボン酸イオン、ニコチン酸イオン、イソニコチン酸イオンが挙げられる。
The aliphatic carboxylate ion may be either a saturated hydrocarbon carboxylic acid or an unsaturated hydrocarbon carboxylic acid, but is preferably a saturated hydrocarbon carboxylic acid.
The aromatic carboxylate ion in X A1− is preferably an arylcarboxylate ion or a heteroarylcarboxylate ion. Here, the heteroaryl is preferably a 5- or 6-membered ring, and the ring-forming heteroatom is preferably a nitrogen atom, an oxygen atom or a sulfur atom, more preferably a nitrogen atom. The carbon number of the aromatic carboxylate ion is preferably 1 to 17, more preferably 2 to 13, and still more preferably 3 to 11. For example, benzoate ion, naphthalenecarboxylate ion, nicotinate ion, and isonicotinic acid ion can be mentioned.
 RA2~RA4のうち2つ以上が互いに結合して形成する環としては、5又は6員環の単環若しくは架橋環が好ましく、炭素数は、4~16が好ましく、4~10がより好ましい。例えば、ピロリジン環、ピペラジン環、ピペリジン環、モルホリン環、チオモルホリン環、インドール環、キヌクリジン環が挙げられる。 The ring formed by bonding two or more of R A2 to R A4 to each other is preferably a 5- or 6-membered monocyclic or bridged ring, and preferably has 4 to 16 carbon atoms, more preferably 4 to 10 carbon atoms. preferable. Examples include pyrrolidine ring, piperazine ring, piperidine ring, morpholine ring, thiomorpholine ring, indole ring, and quinuclidine ring.
 RA1は、水素原子、メチル基が好ましく、水素原子がより好ましい。RA1~RA4はメチル基、エチル基が好ましい。ZA1は、-N(Ra)-が好ましく、Raは、水素原子が好ましい。XA1は、ハロゲン原子が好ましい。 R A1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom. R A1 to R A4 are preferably a methyl group or an ethyl group. Z A1 is preferably —N (Ra) —, and Ra is preferably a hydrogen atom. X A1 is preferably a halogen atom.
 以下に、式IAで表される単位の具体例を示すが、本発明は、これらに限定されるものではない。 Specific examples of the unit represented by the formula IA are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式IAで表される単位は、下記式MAで表される化合物から得ることができる。 The unit represented by the formula IA can be obtained from a compound represented by the following formula MA.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式MAにおいて、RA1~RA4、ZA1、LA1及びXA1は、式IAにおけるRA1~RA4、ZA1、LA1及びXA1と同義であり、好ましい範囲も同じである。 In Formula MA, R A1 ~ R A4, Z A1, L A1 and X A1 has the same meaning as R A1 ~ R A4, Z A1 , L A1 and X A1 in Formula IA, and the preferred range is also the same.
 以下に、式MAで表される化合物の具体例を示すが、本発明は、これらに限定されるものではない。 Specific examples of the compound represented by the formula MA are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明に用いられる陰イオン交換性ポリマーは、上記式IAで表される単位に加えて、架橋剤から得られる単位を有することが好ましい。
 架橋剤としては、多官能エチレン性不飽和化合物を特に限定なく使用することができる。
 多官能エチレン性不飽和化合物としては、末端エチレン性不飽和基を2個有する二官能エチレン性不飽和化合物が好ましい。
 末端エチレン性不飽和基としては、(メタ)アクリロイル基が好ましく、(メタ)アクリロイルオキシ基又は(メタ)アクリルアミド基が好ましい。また、合成適性上、複数の末端エチレン性不飽和基は全て同一であることが好ましい。
 多官能エチレン性不飽和化合物の分子量は、100~2,000であることが好ましく、100~1,000であることがより好ましい。
 好ましい多官能エチレン性不飽和化合物としては、N,N’-アルキレンビス(メタ)アクリルアミドやアルキレンジ(メタ)アクリレート、ポリ(オキシアルキレン)ジ(メタ)アクリレートが例示される。
The anion exchange polymer used in the present invention preferably has a unit obtained from a crosslinking agent in addition to the unit represented by the formula IA.
As the crosslinking agent, a polyfunctional ethylenically unsaturated compound can be used without any particular limitation.
The polyfunctional ethylenically unsaturated compound is preferably a bifunctional ethylenically unsaturated compound having two terminal ethylenically unsaturated groups.
As the terminal ethylenically unsaturated group, a (meth) acryloyl group is preferable, and a (meth) acryloyloxy group or a (meth) acrylamide group is preferable. Moreover, it is preferable that all the several terminal ethylenically unsaturated groups are the same on synthetic suitability.
The molecular weight of the polyfunctional ethylenically unsaturated compound is preferably 100 to 2,000, and more preferably 100 to 1,000.
Preferred polyfunctional ethylenically unsaturated compounds include N, N′-alkylenebis (meth) acrylamide, alkylene di (meth) acrylate, and poly (oxyalkylene) di (meth) acrylate.
 本発明に用いられるベースとなるアニオン交換膜は、ヒドロキシ基を有することが好ましい。
 ベースとなるアニオン交換膜にヒドロキシ基を導入するため、上記陰イオン交換性ポリマーは、上記式IAで表される単位に加えて、ヒドロキシ基を有する単位を有することが好ましい。
 上記陰イオン交換性ポリマーがヒドロキシ基を有する単位を有することにより、表面層と、ベース膜とを共有結合させることが容易に可能となる。
 ヒドロキシ基を有する単位としては、特に限定されないが、下記式IHで表される単位を有することが好ましい。
It is preferable that the base anion exchange membrane used in the present invention has a hydroxy group.
In order to introduce a hydroxy group into the base anion exchange membrane, the anion exchange polymer preferably has a unit having a hydroxy group in addition to the unit represented by the formula IA.
When the anion exchange polymer has a unit having a hydroxy group, the surface layer and the base film can be easily covalently bonded.
Although it does not specifically limit as a unit which has a hydroxyl group, It is preferable to have a unit represented by the following formula IH.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式IH中、RH1は式IAにおけるRA1と同義であり、好ましい範囲も同じである。ZH1は式IAにおけるZA1と同義であり、好ましい範囲も同じである。
 LH1は2価の連結基を表し、アルキレン基であることが好ましく、炭素数2~10のアルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましい。
In formula IH, R H1 has the same meaning as R A1 in formula IA, and the preferred range is also the same. Z H1 has the same meaning as Z A1 in formula IA, and the preferred range is also the same.
L H1 represents a divalent linking group, preferably an alkylene group, preferably an alkylene group having 2 to 10 carbon atoms, and more preferably an alkylene group having 2 to 4 carbon atoms.
 式IHで表される単位は、下記式MHで表される化合物から得ることができる。 The unit represented by the formula IH can be obtained from a compound represented by the following formula MH.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式MHにおいて、RH1、ZH1、及び、LH1は式IHにおけるRH1、ZH1、及び、LH1と同義であり、好ましい範囲も同じである。 In the formula MH, R H1, Z H1, and L H1 are R H1, Z H1 in Formula the IH, and have the same meanings as L H1, and the preferred range is also the same.
式MHで表される化合物の具体例としては、ヒドロキシエチル(メタ)アクリルアミド、ヒドロキシプロピル(メタ)アクリルアミド、ヒドロキシブチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等が挙げられるが、本発明は、これらに限定されるものではない。 Specific examples of the compound represented by the formula MH include hydroxyethyl (meth) acrylamide, hydroxypropyl (meth) acrylamide, hydroxybutyl (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl. Although (meth) acrylate etc. are mentioned, this invention is not limited to these.
 本発明に用いられるベースとなるアニオン交換膜は、チオール基、エチレン性不飽和基等、その他の共有結合可能な官能基を含んでもよい。
 ベースとなるアニオン交換膜に、その他の共有結合可能な官能基を導入するため、上記陰イオン交換性ポリマーは、その他の共有結合可能な官能基を有する単位を有することが好ましい。
 上記その他の共有結合可能な官能基を有する単位は、その他の共有結合可能な官能基を有する重合性化合物より得ることができる。上記重合性化合物としては、(メタ)アクリルアミド基又は(メタ)アクリロイルオキシ基を有する化合物が好ましい。
The base anion exchange membrane used in the present invention may contain other functional groups capable of covalent bonding, such as thiol groups and ethylenically unsaturated groups.
In order to introduce other covalently bondable functional groups into the base anion exchange membrane, the anion exchange polymer preferably has units having other covalently bondable functional groups.
The other unit having a functional group capable of covalent bonding can be obtained from a polymerizable compound having another functional group capable of covalent bonding. As the polymerizable compound, a compound having a (meth) acrylamide group or a (meth) acryloyloxy group is preferable.
-アクリル系のアニオン交換膜の製造方法-
 本発明に用いられるアクリル系アニオン交換膜は、例えば、式MAで表される化合物、及び、重合開始剤を少なくとも含む樹脂層形成用組成物を、多孔性支持体に塗布及び/又は含浸させ、光照射及び/又は加熱により重合硬化させることにより製造することができる。
 上記樹脂層形成用組成物は、上記架橋剤、重合禁止剤、溶媒、アルカリ金属化合物、界面活性剤、粘度向上剤、表面張力調整剤、防腐剤を更に含有してもよい。
 アクリル系アニオン交換膜は、固定された支持体を用いてバッチ式(バッチ方式)で製造することが可能であるが、移動する支持体を用いて連続式で膜を製造(連続方式)してもよい。支持体は、連続的に巻き戻されるロール形状でもよい。なお、連続方式の場合、連続的に動かされるベルト上に支持体を載せ、高分子機能性膜形成用組成物である塗布液を連続的に塗布する塗布工程と、重合硬化して膜を形成する工程とを連続して行うことができる。ただし、塗布工程と膜形成工程の一方のみを連続的に行ってもよい。
 なお、仮支持体を使用する場合、この仮支持体は、物質透過を考慮する必要がなく、例えば、アルミ板等の金属板を含め、膜形成のために固定できるものであれば、どのようなものでも構わない。
 なお、樹脂層形成用組成物を支持体に浸漬させ重合硬化反応が終わるまでの間、支持体とは別に仮支持体を用いてもよい。仮支持体は、重合硬化反応により膜を形成した後、この膜から剥がされる。
 このような仮支持体は、物質透過を考慮する必要がなく、例えば、アルミ板等の金属板を含め、膜形成のために固定できるものであれば、どのようなものでも構わない。
-Manufacturing method of acrylic anion exchange membrane-
The acrylic anion exchange membrane used in the present invention is, for example, by applying and / or impregnating a porous support with a resin layer forming composition containing at least a compound represented by the formula MA and a polymerization initiator, It can be produced by polymerization and curing by light irradiation and / or heating.
The resin layer forming composition may further contain the crosslinking agent, polymerization inhibitor, solvent, alkali metal compound, surfactant, viscosity improver, surface tension adjusting agent, and preservative.
Acrylic anion exchange membranes can be manufactured batch-wise (fixed) using a fixed support, but membranes are manufactured continuously (continuous) using a moving support. Also good. The support may be in the form of a roll that is continuously rewound. In the case of the continuous method, a support is placed on a belt that is continuously moved, and a coating solution that is a composition for forming a polymer functional film is continuously applied, and a film is formed by polymerization and curing. And the process of performing can be performed continuously. However, only one of the coating process and the film forming process may be performed continuously.
In the case of using a temporary support, the temporary support does not need to be considered for material permeation. It does n’t matter.
In addition, you may use a temporary support body separately from a support body until the composition for resin layer formation is immersed in a support body and polymerization hardening reaction is complete | finished. The temporary support is peeled off from the film after forming the film by a polymerization curing reaction.
Such a temporary support does not need to consider material permeation, and may be any material as long as it can be fixed for film formation, including a metal plate such as an aluminum plate.
-塗布方法-
 樹脂層形成用組成物は、種々の方法、例えば、カーテンコーティング、押し出しコーティング、エアナイフコーティング、スライドコーティング、ニップロールコーティング、フォワードロールコーティング、リバースロールコーティング、浸漬コーティング、キスコーティング、ロッドバーコーティング又は噴霧コーティングにより、多孔質支持体に塗布若しくは含浸することができる。複数の層の塗布は、同時又は連続して行うことができる。同時重層塗布するには、カーテンコーティング、スライドコーティング、スロットダイコーティング及び押し出しコーティングが好ましい。
-Application method-
The resin layer forming composition can be prepared by various methods such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spray coating. The porous support can be coated or impregnated. Multiple layers can be applied simultaneously or sequentially. For simultaneous multi-layer application, curtain coating, slide coating, slot die coating and extrusion coating are preferred.
 アクリル系アニオン交換膜の連続方式での製造は、樹脂層形成用組成物を、移動している支持体に連続的に、より好ましくは、樹脂層形成用組成物塗布部と、樹脂層形成用組成物を重合硬化するための照射源と、膜巻取り部と、支持体を樹脂層形成用組成物塗布部から照射源及び膜巻取り部に移動させるための手段とを含む製造ユニットにより製造する。 For the production of the acrylic anion exchange membrane in a continuous manner, the resin layer forming composition is continuously applied to the moving support, and more preferably, the resin layer forming composition application portion and the resin layer forming Manufactured by a production unit including an irradiation source for polymerizing and curing the composition, a film winding unit, and means for moving the support from the resin layer forming composition coating unit to the irradiation source and the film winding unit To do.
-照射方法-
 上記製造ユニットでは、樹脂層形成用組成物塗布部は照射源に対し上流の位置に設け、照射源は膜巻き取り部に対し上流の位置に置かれる。
 高速塗布機で塗布する際に十分な流動性を有するために、樹脂層形成用組成物の35℃での粘度は、4,000mPa・s未満が好ましく、1~1,000mPa・sがより好ましく、1~500mPa.sが最も好ましい。スライドビードコーティングの場合に35℃での粘度は1~100mPa・sが好ましい。
-Irradiation method-
In the said manufacturing unit, the composition application part for resin layer formation is provided in the upstream position with respect to an irradiation source, and an irradiation source is placed in the upstream position with respect to a film | membrane winding part.
In order to have sufficient fluidity when applied with a high-speed coater, the viscosity at 35 ° C. of the resin layer forming composition is preferably less than 4,000 mPa · s, more preferably 1 to 1,000 mPa · s. 1 to 500 mPa.s. s is most preferred. In the case of slide bead coating, the viscosity at 35 ° C. is preferably 1 to 100 mPa · s.
 高速塗布機では、樹脂層形成用組成物である塗布液を、15m/分を超える速度で、移動する支持体に塗布することができ、20m/分を超える速度で塗布することもできる。 In a high-speed coating machine, the coating liquid that is a resin layer forming composition can be applied to a moving support at a speed exceeding 15 m / min, and can also be applied at a speed exceeding 20 m / min.
 特に機械的強度を高めるために支持体を使用する場合、樹脂層形成用組成物を支持体の表面に塗布する前に、例えば支持体の湿潤性及び付着力を改善するために、この支持体を、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理などに付してもよい。 In particular, when a support is used to increase the mechanical strength, this support is used to improve the wettability and adhesion of the support, for example, before applying the resin layer forming composition to the surface of the support. May be subjected to corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment and the like.
 樹脂層形成用組成物の重合硬化は、樹脂層形成用組成物を支持体に塗布若しくは含浸して、好ましくは60秒以内、より好ましくは15秒以内、特に好ましくは5秒以内、最も好ましくは3秒以内に開始する。
 重合硬化の光照射は、好ましくは10秒未満、より好ましくは5秒未満、特に好ましくは3秒未満、最も好ましくは2秒未満である。連続法では照射を連続的に行い、膜形成用組成物が照射ビームを通過して移動する速度を考慮して、重合硬化反応時間を決める。
The polymerization and curing of the resin layer forming composition is preferably performed within 60 seconds, more preferably within 15 seconds, particularly preferably within 5 seconds, most preferably, by applying or impregnating the resin layer forming composition to a support. Start within 3 seconds.
The light irradiation for polymerization curing is preferably less than 10 seconds, more preferably less than 5 seconds, particularly preferably less than 3 seconds, and most preferably less than 2 seconds. In the continuous method, irradiation is continuously performed, and the polymerization curing reaction time is determined in consideration of the speed at which the film-forming composition moves through the irradiation beam.
 強度の高い紫外線(UV光)を重合硬化反応に用いる場合、かなりの量の熱が発生するため、過熱を防ぐために、光源のランプ及び/又は支持体/膜を冷却用空気などで冷却することが好ましい。著しい線量の赤外線(IR光)がUVビームと一緒に照射される場合、IR反射性石英プレートをフィルターにしてUV光を照射する。 When high intensity ultraviolet rays (UV light) are used for the polymerization curing reaction, a considerable amount of heat is generated, and therefore the lamp of the light source and / or the support / film is cooled with cooling air or the like to prevent overheating. Is preferred. When a significant dose of infrared (IR light) is irradiated with the UV beam, the UV light is irradiated using an IR reflective quartz plate as a filter.
 エネルギー線は紫外線が好ましい。照射波長は、樹脂層形成用組成物中に包含される任意の光重合開始剤の吸収波長と波長が適合することが好ましく、例えばUV-A(400~320nm)、UV-B(320~280nm)、UV-C(280~200nm)である。 Energy rays are preferably ultraviolet rays. The irradiation wavelength is preferably matched with the absorption wavelength of any photopolymerization initiator included in the resin layer forming composition, for example, UV-A (400 to 320 nm), UV-B (320 to 280 nm). ), UV-C (280 to 200 nm).
 紫外線源は、水銀アーク灯、炭素アーク灯、低圧水銀灯、中圧水銀灯、高圧水銀灯、旋回流プラズマアーク灯、金属ハロゲン化物灯、キセノン灯、タングステン灯、ハロゲン灯、レーザー及び紫外線発光ダイオードである。中圧又は高圧水銀蒸気タイプの紫外線発光ランプが好ましい。これに加えて、ランプの発光スペクトルを改変するために、金属ハロゲン化物などの添加剤が存在していてもよい。200~450nmに発光極大を有するランプがとりわけ適している。 UV sources are mercury arc lamp, carbon arc lamp, low pressure mercury lamp, medium pressure mercury lamp, high pressure mercury lamp, swirling plasma arc lamp, metal halide lamp, xenon lamp, tungsten lamp, halogen lamp, laser and ultraviolet light emitting diode. Medium pressure or high pressure mercury vapor type ultraviolet light emitting lamps are preferred. In addition, additives such as metal halides may be present to modify the emission spectrum of the lamp. A lamp having an emission maximum at 200 to 450 nm is particularly suitable.
 照射源のエネルギー出力は、好ましくは20~1,000W/cm、好ましくは40~500W/cmであるが、所望の暴露線量を実現することができるならば、これより高くても低くても構わない。暴露強度により、膜の重合硬化を調整する。暴露線量は、High Energy UV Radiometer(EIT-Instrument Markets製のUV Power PuckTM)により、装置で示されたUV-A範囲で測定して、好ましくは少なくとも40mJ/cm2以上、より好ましくは100~2,000mJ/cm2、最も好ましくは150~1,500mJ/cm2である。暴露時間は自由に選ぶことができるが、短いことが好ましく、最も好ましくは2秒未満である。 The energy output of the irradiation source is preferably 20 to 1,000 W / cm, preferably 40 to 500 W / cm, but may be higher or lower as long as a desired exposure dose can be realized. Absent. The polymerization hardening of the film is adjusted according to the exposure strength. The exposure dose is preferably at least 40 mJ / cm 2 or more, more preferably 100 to 2 or more, as measured by the High Energy UV Radiometer (UV Power Puck ™ from EIT-Instrument Markets) in the UV-A range indicated by the apparatus. 1,000 mJ / cm 2 , most preferably 150 to 1,500 mJ / cm 2 . The exposure time can be chosen freely, but is preferably short and most preferably less than 2 seconds.
 なお、塗布速度が速い場合、必要な暴露線量を得るために、複数の光源を使用しても構わない。この場合、複数の光源は暴露強度が同じでも異なってもよい。 In addition, when the application speed is high, a plurality of light sources may be used to obtain a necessary exposure dose. In this case, the plurality of light sources may have the same or different exposure intensity.
(複合アニオン交換膜の製造方法)
 本発明の複合アニオン交換膜の製造方法は、ベースとなるアニオン交換膜の片面又は両面に、アニオン性官能基を有するシランカップリング剤を含む表面層形成用塗布液を塗布する塗布工程、及び、塗布された上記表面層形成用塗布液を乾燥させる乾燥工程を含むことを特徴とする。
 以下、各工程について説明する。
(Production method of composite anion exchange membrane)
The method for producing a composite anion exchange membrane of the present invention comprises a coating step of coating a surface layer forming coating solution containing a silane coupling agent having an anionic functional group on one side or both sides of a base anion exchange membrane, and It includes a drying step of drying the applied coating solution for forming the surface layer.
Hereinafter, each step will be described.
<塗布工程>
 本発明の複合アニオン交換膜の製造方法は、ベースとなるアニオン交換膜の片面又は両面に、アニオン性官能基を有するシランカップリング剤を含む表面層形成用塗布液を塗布する塗布工程を含む。
 ベースとなるアニオン交換膜については、上記において説明したものと同義であり、好ましい範囲も同様である。
<Application process>
The manufacturing method of the composite anion exchange membrane of this invention includes the application | coating process which apply | coats the coating liquid for surface layer formation containing the silane coupling agent which has an anionic functional group on the single side | surface or both surfaces of the base anion exchange membrane.
About the base anion exchange membrane, it is synonymous with what was demonstrated above, and its preferable range is also the same.
〔アニオン性官能基を有するシランカップリング剤を含む表面層形成用塗布液〕
 本発明に用いられる表面層形成用塗布液(以下、単に「表面層形成用塗布液」ともいう。)は、アニオン性官能基を有するシランカップリング剤(以下、「特定シランカップリング剤」ともいう。)を含有する。
 上記表面層形成用塗布液は、溶媒中に特定シランカップリング剤以外の化合物を含んでもよいが、表面層形成用塗布液の全固形分に対する特定シランカップリング剤の含有量は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、100質量%であることが特に好ましい。
 また、表面層形成用塗布液の全質量に対する特定シランカップリング剤の含有量は、0.1~10質量%が好ましく、0.2~8質量%がより好ましく、0.5~5質量%が更に好ましい。
 本発明に好ましく用いられる特定シランカップリング剤としては、アルコキシシラン化合物が好ましく挙げられ、トリアルコキシシラン化合物がより好ましい。
 また、本発明に好ましく用いられる特定シランカップリング剤としては、下記式2で表される化合物が挙げられる。
[Coating liquid for forming a surface layer containing a silane coupling agent having an anionic functional group]
The surface layer forming coating solution used in the present invention (hereinafter also simply referred to as “surface layer forming coating solution”) is a silane coupling agent having an anionic functional group (hereinafter referred to as “specific silane coupling agent”). Contain).
The surface layer forming coating solution may contain a compound other than the specific silane coupling agent in the solvent, but the content of the specific silane coupling agent with respect to the total solid content of the surface layer forming coating solution is 90% by mass. Preferably, it is 95% by mass or more, more preferably 99% by mass or more, and particularly preferably 100% by mass.
The content of the specific silane coupling agent with respect to the total mass of the surface layer forming coating solution is preferably 0.1 to 10% by mass, more preferably 0.2 to 8% by mass, and 0.5 to 5% by mass. Is more preferable.
As the specific silane coupling agent preferably used in the present invention, an alkoxysilane compound is preferably exemplified, and a trialkoxysilane compound is more preferable.
In addition, examples of the specific silane coupling agent preferably used in the present invention include compounds represented by the following formula 2.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式2中、R21はそれぞれ独立に、アニオン性官能基を表し、スルホ基、カルボキシ基、及び、リン酸基が好ましく、スルホ基がより好ましい。
 iは1~5の整数を表し、1~3であることが好ましく、1~2であることがより好ましく、1であることが更に好ましい。
 L21はi+m価の連結基を表し、炭素数1~10の炭化水素基であることが好ましく、炭素数1~10の飽和炭化水素基であることがより好ましい。L21が二価の連結基を表す場合、アルキレン基であることが好ましく、炭素数1~10のアルキレン基がより好ましく、炭素数2~4のアルキレン基が更に好ましい。
 R23はアルキル基を表し、炭素数1~10のアルキル基を表すことが好ましく、炭素数1~4のアルキル基を表すことがより好ましい。
 jは1~3の整数を表し、2又は3であることがより好ましく、3であることがより好ましい。
 R22はそれぞれ独立に、1価の有機基を表し、アルキル基であることが好ましく、炭素数1~4のアルキル基がより好ましい。
 kは(3-j)の整数を表し、0又は1であることが好ましく、0であることがより好ましい。
 mは1以上の整数を表し、1~6の整数であることが好ましく、1~4の整数であることがより好ましく、1~3の整数であることが更に好ましい。
 構造内に複数のR21、R22及びR23が存在する場合、これらは互いに同じでも異なっていてもよい。
In Formula 2, each R 21 independently represents an anionic functional group, and is preferably a sulfo group, a carboxy group, and a phosphate group, and more preferably a sulfo group.
i represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
L 21 represents an i + m-valent linking group, preferably a hydrocarbon group having 1 to 10 carbon atoms, and more preferably a saturated hydrocarbon group having 1 to 10 carbon atoms. When L 21 represents a divalent linking group, it is preferably an alkylene group, more preferably an alkylene group having 1 to 10 carbon atoms, and still more preferably an alkylene group having 2 to 4 carbon atoms.
R 23 represents an alkyl group, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms.
j represents an integer of 1 to 3, preferably 2 or 3, and more preferably 3.
R 22 each independently represents a monovalent organic group, preferably an alkyl group, more preferably an alkyl group having 1 to 4 carbon atoms.
k represents an integer of (3-j), and is preferably 0 or 1, more preferably 0.
m represents an integer of 1 or more, preferably an integer of 1 to 6, more preferably an integer of 1 to 4, and still more preferably an integer of 1 to 3.
When a plurality of R 21 , R 22 and R 23 are present in the structure, these may be the same as or different from each other.
-溶媒-
 本発明に用いられる表面層形成用塗布液は、溶媒を含んでもよい。
 溶媒の含有量は、表面層形成用塗布液の全質量に対し、50~99質量%が好ましく、60~98質量%がより好ましく、70~97質量%が更に好ましい。
-solvent-
The surface layer forming coating solution used in the present invention may contain a solvent.
The content of the solvent is preferably 50 to 99% by mass, more preferably 60 to 98% by mass, and still more preferably 70 to 97% by mass with respect to the total mass of the surface layer forming coating solution.
 溶媒は、水、又は水に対する溶解度が5質量%以上の溶媒と水との混合液が好ましく用いられ、更には水に対して自由に混合するものが好ましい。このため、水及び水溶性溶媒から選択される溶媒が好ましい。
 水溶性溶媒としては、特に、アルコール系溶媒、非プロトン性極性溶媒であるエーテル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒、スルホン系溶媒、ニトリルトリル系溶媒、有機リン系溶媒が好ましい。
 アルコール系溶媒としては、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコールなどが挙げられる。これらは1種類単独で又は2種類以上を併用して用いることができる。
 また、非プロトン性極性溶媒としては、ジメチルスルホキシド、ジメチルイミダゾリジノン、スルホラン、N-メチルピロリドン、ジメチルホルムアミド、アセトニトリル、アセトン、ジオキサン、テトラメチル尿素、ヘキサメチルホスホルアミド、ヘキサメチルホスホロトリアミド、ピリジン、プロピオニトリル、ブタノン、シクロヘキサノン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジアセテート、γ-ブチロラクトン等が好ましい溶媒として挙げられ、中でもジメチルスルホキシド、N-メチルピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、スルホラン、アセトン又はアセトニトリル、テトラヒドロフランが好ましい。これらは1種類単独で又は2種類以上を併用して用いることができる。
As the solvent, water or a mixed solution of a solvent having a solubility in water of 5% by mass or more and water is preferably used, and a solvent that is freely mixed with water is preferable. For this reason, the solvent selected from water and a water-soluble solvent is preferable.
As the water-soluble solvent, alcohol solvents, ether solvents that are aprotic polar solvents, amide solvents, ketone solvents, sulfoxide solvents, sulfone solvents, nitrile tolyl solvents, and organic phosphorus solvents are particularly preferable. .
Examples of the alcohol solvent include methanol, ethanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and the like. These can be used alone or in combination of two or more.
Examples of the aprotic polar solvent include dimethyl sulfoxide, dimethylimidazolidinone, sulfolane, N-methylpyrrolidone, dimethylformamide, acetonitrile, acetone, dioxane, tetramethylurea, hexamethylphosphoramide, hexamethylphosphorotriamide, Pyridine, propionitrile, butanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, ethylene glycol diacetate, γ-butyrolactone and the like are mentioned as preferred solvents. Among them, dimethyl sulfoxide, N-methylpyrrolidone, dimethylformamide, dimethylimidazolidinone, sulfolane, Acetone, acetonitrile or tetrahydrofuran is preferred. These can be used alone or in combination of two or more.
〔塗布方法〕
 表面層形成用塗布液の塗布方法は、特に限定されず、公知の方法を用いることができる。
 表面層形成用塗布液は、種々の方法、例えば、カーテンコーティング、押し出しコーティング、エアナイフコーティング、スライドコーティング、ニップロールコーティング、フォワードロールコーティング、リバースロールコーティング、浸漬コーティング、キスコーティング、ロッドバーコーティング又は噴霧コーティングにより、ベースとなるイオン交換膜上に塗布することができる。
 なお、ベース膜と表面層との密着性を向上させるために、表面層形成用塗布液を塗布する前処理として、ベース膜の表面をサンドペーパー等で粗面化する、あるいはコロナ、プラズマ処理等を施してもよい。
 特に、本発明の複合アニオン交換膜の製造方法は、塗布工程の前に、ベースとなるアニオン交換膜にプラズマ処理を行うプラズマ処理工程を更に含むことが好ましい。
 上記プラズマ処理工程によれば、ベース膜の表面にヒドロキシ基を導入することができるため、表面層と、ベース膜とを共有結合を介して接着することが容易となる。
 上記プラズマ処理は、例えば市販の常圧プラズマ表面処理装置を用いることにより行うことができる。
[Coating method]
The coating method of the surface layer forming coating solution is not particularly limited, and a known method can be used.
The surface layer forming coating solution can be applied by various methods such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spray coating. It can be applied on an ion exchange membrane as a base.
In order to improve the adhesion between the base film and the surface layer, the surface of the base film is roughened with sandpaper or the like as a pretreatment for applying the surface layer forming coating solution, or corona, plasma treatment, etc. May be applied.
In particular, it is preferable that the method for producing a composite anion exchange membrane of the present invention further includes a plasma treatment step of performing plasma treatment on the base anion exchange membrane before the coating step.
According to the plasma treatment step, since a hydroxy group can be introduced to the surface of the base film, it is easy to bond the surface layer and the base film via a covalent bond.
The plasma treatment can be performed by using, for example, a commercially available atmospheric pressure plasma surface treatment apparatus.
<乾燥工程>
 本発明の複合アニオン交換膜の製造方法は、上記表面層形成用塗布液を乾燥させる乾燥工程を含む。
 乾燥方法としては、特に限定されないが、熱を加えて乾燥させることが好ましい。
 加熱手段としては、表面層形成用塗布液に含まれる溶媒を乾燥させることができればよく、限定されないが、ヒートドラム、温風、赤外線ランプ、熱オーブン、ヒート版加熱などを使用することができる。
 乾燥温度は、50℃以上が好ましく、50~150℃がより好ましく、50~80℃が更に好ましい。
 乾燥時間は、層の厚さ等を考慮して適宜設定すればよいが、5~180分が好ましく、10~120分がより好ましい。
 塗布工程において、表面層形成用塗布液の塗布をベースとなるイオン交換膜の両面に行う場合、塗布工程と乾燥工程を交互に行い、片面ずつ表面層を形成してもよい。
<Drying process>
The manufacturing method of the composite anion exchange membrane of this invention includes the drying process which dries the said coating liquid for surface layer formation.
Although it does not specifically limit as a drying method, It is preferable to heat and dry.
The heating means is not limited as long as the solvent contained in the coating solution for forming the surface layer can be dried, and a heat drum, hot air, an infrared lamp, a heat oven, a heat plate heating, or the like can be used.
The drying temperature is preferably 50 ° C. or higher, more preferably 50 to 150 ° C., and still more preferably 50 to 80 ° C.
The drying time may be appropriately set in consideration of the layer thickness and the like, but is preferably 5 to 180 minutes, and more preferably 10 to 120 minutes.
In the coating process, when the surface layer forming coating solution is applied to both surfaces of the ion exchange membrane as a base, the coating process and the drying process may be alternately performed to form the surface layer on each side.
 また、本発明の複合アニオン交換膜の製造方法において、本発明の複合アニオン交換膜は、固定されたベース膜を用いてバッチ式(バッチ方式)で製造することが可能であるが、移動するベース膜を用いて連続式(連続方式)で膜を調製してもよい。ベース膜は、連続的に巻き戻されるロール形状でもよい。
 なお、連続方式の場合、連続的に動かされるベルト上に支持体を載せ、ベース膜を形成し、更に上記塗布工程、乾燥工程を連続して本発明の複合アニオン交換膜を製造する、すなわち、ベース膜の形成と表面層の形成を連続式で行うことも可能である。上記ベース膜の形成は、例えば樹脂層形成用組成物の塗布及び活性放射線の照射により行われる。
In the method for producing a composite anion exchange membrane of the present invention, the composite anion exchange membrane of the present invention can be produced in a batch system using a fixed base membrane, but the moving base You may prepare a film | membrane by a continuous type (continuous system) using a film | membrane. The base film may have a roll shape that is continuously rewound.
In the case of a continuous method, a support is placed on a belt that is continuously moved, a base membrane is formed, and the composite anion exchange membrane of the present invention is produced by further performing the coating step and the drying step. It is also possible to perform the formation of the base film and the surface layer in a continuous manner. The base film is formed, for example, by applying a resin layer forming composition and irradiating with actinic radiation.
(イオン交換膜モジュール・イオン交換装置)
 本発明の複合アニオン交換膜はモジュール化して好適に用いることができる。モジュールの例としては、スパイラル型、中空糸型、プリーツ型、管状型、プレート&フレーム型、スタック型などが挙げられる。
 また、本発明のアニオン交換膜モジュールを用いて、イオン交換又は脱塩、精製させるための手段を有するイオン交換装置とすることができる。燃料電池としても好適に用いることが可能である。
 本発明のイオン交換装置の一例を図2に示す。陽極電極21と陰極電極22の間にカチオン交換膜23と本発明の複合アニオン交換膜24を交互に有する電気透析層25を有しており、陽極電極21と陰極電極22には電極液タンク11から矢印31及び矢印32に示すように電極液が共有され、脱塩液は脱塩液タンク12から矢印33及び矢印34に示すように、濃縮液は濃縮液タンク13から矢印35及び矢印36に示すように、それぞれ循環する。
(Ion exchange membrane module / ion exchange device)
The composite anion exchange membrane of the present invention can be suitably used in a modular form. Examples of modules include spiral, hollow fiber, pleated, tubular, plate & frame, and stack types.
Moreover, it can be set as the ion exchange apparatus which has a means for ion-exchange or desalting | purifying and refine | purifying using the anion exchange membrane module of this invention. It can also be suitably used as a fuel cell.
An example of the ion exchange apparatus of the present invention is shown in FIG. An electrodialysis layer 25 having a cation exchange membrane 23 and a composite anion exchange membrane 24 of the present invention alternately is provided between the anode electrode 21 and the cathode electrode 22, and the electrode liquid tank 11 is provided on the anode electrode 21 and the cathode electrode 22. As shown by arrows 31 and 32, the electrode solution is shared, the desalted solution is sent from the desalted solution tank 12 to the arrows 33 and 34, and the concentrated solution is sent from the concentrate tank 13 to the arrows 35 and 36. Each circulates as shown.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, “part” and “%” are based on mass.
(ベース膜の製造)
 下記表1に示すベース膜B-1の組成の塗布液を、アルミ板に、150μmのワイヤ巻き棒を用いて、手動で約5m/minの速さで塗布した。続いて、アルミ板に塗布した塗布液を支持体としての不織布(Freudenberg社製 FO-2223-10、厚さ100μm)に接触させて、この支持体に塗布液を含浸させた。次いで、ワイヤの巻いていないロッドを用いて、不織布から余分な塗布液を除去した。塗布時の塗布液の温度は約50℃であった。その後、UV露光機(Fusion UV Systems社製、型式Light Hammer LH6、D-バルブ、速度10m/分、100%強度)を用いて、塗布液を含浸した支持体を重合硬化することにより、膜を作製した。露光量は、UV-A領域にて1,000mJ/cm2であった。得られた膜をアルミ板から取り外し、0.1M NaCl水溶液中で少なくとも12時間保存し、不織布(支持体)に担持された厚さ140μmの樹脂層を作製した。これにより、ベース膜B-1を得た。 塗布液の組成を表1に示すベース膜B-2又はB-3の組成の塗布液を用いた以外は同様にして、ベース膜B-1の製造と同様にして、ベース膜B-2及びB-3を製造した。
(Manufacture of base film)
A coating solution having the composition of base film B-1 shown in Table 1 below was manually applied to an aluminum plate at a speed of about 5 m / min using a 150 μm wire winding rod. Subsequently, the coating liquid applied to the aluminum plate was brought into contact with a non-woven fabric (FO-2223-10 manufactured by Freudenberg, thickness: 100 μm) as a support, and the support was impregnated with the coating liquid. Subsequently, the excess coating liquid was removed from the nonwoven fabric using a rod on which no wire was wound. The temperature of the coating solution at the time of coating was about 50 ° C. Thereafter, the support was impregnated with the coating solution by using a UV exposure machine (Fusion UV Systems, Model Light Hammer LH6, D-bulb, speed 10 m / min, 100% strength) to polymerize and cure the film. Produced. The exposure amount was 1,000 mJ / cm 2 in the UV-A region. The obtained film was removed from the aluminum plate and stored in a 0.1 M NaCl aqueous solution for at least 12 hours to produce a 140 μm thick resin layer carried on a nonwoven fabric (support). Thereby, a base film B-1 was obtained. The base film B-2 and the base film B-2 were prepared in the same manner as in the production of the base film B-1, except that the coating liquid had the composition of the base film B-2 or B-3 shown in Table 1. B-3 was produced.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1中に記載の化合物の詳細を以下に示す。なお、表1における組成物の各成分欄における数値の単位は、有効成分の質量部である。また、表中の「-」は、当該成分を含有しないことを意味する。
 ATMAC:下記構造の化合物(Kjケミカルズ(株)製)
 MBA:メチレンビスアクリルアミド(東京化成工業(株)製)
 ヒドロキシエチルアクリルアミド(Kjケミカルズ(株)製)
 ヒドロキシブチルアクリレート(日本化成(株)製)
 純水:純水(和光純薬(株)製)
 IPA:イソプロピルアルコール(和光純薬工業(株)製)
 MEHQ:ヒドロキノンモノメチルエーテル(東京化成工業(株)製)
 LiNO:硝酸リチウム(和光純薬工業(株)製)
 Tegoglide 432:ポリエーテル変性シロキサンコポリマー(エボニック社製)
 Darocur 1173:2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社製)
Details of the compounds described in Table 1 are shown below. In addition, the unit of the numerical value in each component column of the composition in Table 1 is a mass part of an active ingredient. Further, “-” in the table means that the component is not contained.
ATMAC: Compound having the following structure (manufactured by Kj Chemicals)
MBA: Methylenebisacrylamide (manufactured by Tokyo Chemical Industry Co., Ltd.)
Hydroxyethylacrylamide (manufactured by Kj Chemicals)
Hydroxybutyl acrylate (manufactured by Nippon Kasei Co., Ltd.)
Pure water: Pure water (Wako Pure Chemical Industries, Ltd.)
IPA: Isopropyl alcohol (Wako Pure Chemical Industries, Ltd.)
MEHQ: Hydroquinone monomethyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.)
LiNO 3 : Lithium nitrate (Wako Pure Chemical Industries, Ltd.)
Tegoglide 432: polyether-modified siloxane copolymer (Evonik)
Darocur 1173: 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by BASF)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(実施例1~81及び比較例1~57)
<表面層の形成>
 下記表2に示す組成に従い、表面層形成用塗布液S-1~S-10を調製した。0.1M NaCL水溶液中に保管しているベース膜を純水で洗浄し、両面を乾燥ろ紙で拭った。各実施例及び比較例において、必要に応じてプラズマ処理等の表面処理を施した後、表3~表18に記載の表面層形成用塗布液を塗布した。表3~表18中、ベース膜表面処理の欄に「プラズマ」と記載された例は、プラズマ処理による表面処理を行ったことを、「なし」と記載された例は表面処理を行わなかったことを、それぞれ示している。プラズマ処理は常圧プラズマ表面処理装置を用いて、窒素を15L/min、酸素を1.5L/minで供給し、500W・min/mで処理を行った。
 続いて、オーブンを用いて表3~表18に記載の乾燥温度及び乾燥時間の乾燥を行った。その後、実施例28~54及び比較例22~39については、後工程として、上記乾燥後に0.01M 水酸化ナトリウム水溶液に室温で2時間浸漬した。続いて、0.5M食塩水に浸漬し、膜中の水酸化ナトリウムを取り除いた。
 後工程を含む表面層形成工程後、0.1M NaCl溶液中で少なくとも12時間保存した。このようにして、実施例及び比較例の複合アニオン交換膜を作製した。
 また、全ての実施例において、XPS分析によるSi 2pに相当するスペクトルから、Si-O-Cの構造の存在を確認した。
(Examples 1 to 81 and Comparative Examples 1 to 57)
<Formation of surface layer>
According to the composition shown in Table 2 below, surface layer forming coating solutions S-1 to S-10 were prepared. The base membrane stored in a 0.1 M NaCl aqueous solution was washed with pure water, and both sides were wiped with dry filter paper. In each of the examples and comparative examples, surface treatment such as plasma treatment was performed as necessary, and then the surface layer forming coating solutions shown in Tables 3 to 18 were applied. In Tables 3 to 18, the example described as “plasma” in the column of the base film surface treatment indicates that the surface treatment was performed by the plasma treatment, and the example described as “none” did not perform the surface treatment. Each shows that. Plasma treatment was performed at 500 W · min / m 2 by supplying nitrogen at 15 L / min and oxygen at 1.5 L / min using an atmospheric pressure plasma surface treatment apparatus.
Subsequently, drying at the drying temperature and drying time described in Tables 3 to 18 was performed using an oven. Thereafter, Examples 28 to 54 and Comparative Examples 22 to 39 were immersed in a 0.01 M aqueous sodium hydroxide solution at room temperature for 2 hours after the drying as a post-process. Subsequently, it was immersed in a 0.5 M saline solution to remove sodium hydroxide in the membrane.
After the surface layer forming step including the subsequent step, it was stored in a 0.1 M NaCl solution for at least 12 hours. Thus, the composite anion exchange membrane of the Example and the comparative example was produced.
In all Examples, the existence of the Si—O—C structure was confirmed from the spectrum corresponding to Si 2p by XPS analysis.
<透過アニオン選択性の評価>
 (株)アストム製の電気透析装置マイクロアシライザーS1を用いて電気透析を行った。
 アニオン交換膜としては、実施例又は比較例となる複合アニオン交換膜(以下、「AEM」ともいう。)を用い、カチオン交換膜(以下、「CEM」ともいう。)としては、CMX((株)アストム製)を用いた。装置のフローは図2に示す。図2中の矢印31及び32は電極液の移動を、矢印33及び34は脱塩液の移動を、矢印35及び36は濃縮液の移動を、それぞれ表している。
 原水としては、硝酸ナトリウム0.1M、硫酸ナトリウム0.05Mの水溶液を用いた。電極液としては0.5M硫酸ナトリウム水溶液を用いた。4枚のCEMと3枚のAEMを交互になるよう積層した電気透析槽に脱塩液、濃縮液としてそれぞれ原水を流量50mL/分で供給し、電流値50mAで通電し、電導度が半分となったところで通電を止めた。
 脱塩室のイオン組成をイオンクロマトグラフィーにより定量し、下記の式によって硝酸イオン及び硫酸イオンの除去率を算出した。
 (除去率)=((電気透析前のイオン濃度)-(電気透析後のイオン濃度))/(電気透析前のイオン濃度)×100
 続いて、下記の式により、透過アニオン選択性を算出した。
 (透過アニオン選択性)=(硝酸イオンの除去率)/(硫酸イオンの除去率)
<Evaluation of permeation anion selectivity>
Electrodialysis was performed using an electrodialyzer microacylator S1 manufactured by Astom Co., Ltd.
As the anion exchange membrane, a composite anion exchange membrane (hereinafter also referred to as “AEM”) as an example or a comparative example was used, and as the cation exchange membrane (hereinafter also referred to as “CEM”), CMX ((stock) ) Manufactured by Astom). The flow of the apparatus is shown in FIG. In FIG. 2, arrows 31 and 32 indicate the movement of the electrode solution, arrows 33 and 34 indicate the movement of the desalting solution, and arrows 35 and 36 indicate the movement of the concentrated solution, respectively.
As raw water, an aqueous solution of sodium nitrate 0.1M and sodium sulfate 0.05M was used. As the electrode solution, a 0.5 M sodium sulfate aqueous solution was used. The raw water is supplied at a flow rate of 50 mL / min as a desalted solution and concentrated solution to an electrodialysis tank in which four CEMs and three AEMs are alternately stacked, and the current is 50 mA / min. At that point, the power supply was stopped.
The ion composition of the desalting chamber was quantified by ion chromatography, and the removal rate of nitrate ion and sulfate ion was calculated by the following formula.
(Removal rate) = ((ion concentration before electrodialysis) − (ion concentration after electrodialysis)) / (ion concentration before electrodialysis) × 100
Subsequently, permeation anion selectivity was calculated according to the following equation.
(Permeation anion selectivity) = (nitrate ion removal rate) / (sulfate ion removal rate)
<選択性の経時変化の評価>
 上記透過アニオン選択性(「通電前の選択性」ともいう。)の評価後、図3のように装置のフローを組み替えた。
 電極液を交換し、脱塩液を原水に入れ替えた。続いて、電気透析槽に脱塩液として原水を流量100mL/分で供給し、電流値50mAで5時間通電した。その後、装置を図2に示す構成に組みなおし、再度、上記透過アニオン選択性の評価と同様にして通電後の選択性を測定した。
 上記5時間通電前後での選択性の変化を以下のように評価した。
 選択性の経時変化(%)=(通電後の選択性)/(通電前の選択性)×100
 なお、上記透過アニオン選択性(「通電前の選択性」)が1.1以下の例については、透過アニオン選択性なしとして本評価は行わず、結果欄には「-」と記載した。
<Evaluation of change in selectivity over time>
After evaluating the permeation anion selectivity (also referred to as “selectivity before energization”), the flow of the apparatus was changed as shown in FIG.
The electrode solution was replaced and the desalted solution was replaced with raw water. Subsequently, raw water was supplied as a desalting solution to the electrodialysis tank at a flow rate of 100 mL / min, and energized at a current value of 50 mA for 5 hours. Thereafter, the apparatus was reassembled into the configuration shown in FIG. 2, and the selectivity after energization was measured again in the same manner as in the evaluation of the permeation anion selectivity.
The change in selectivity before and after the energization for 5 hours was evaluated as follows.
Change in selectivity over time (%) = (selectivity after energization) / (selectivity before energization) × 100
For the examples where the permeation anion selectivity (“selectivity before energization”) was 1.1 or less, this evaluation was not performed because there was no permeation anion selectivity, and “−” was described in the result column.
<複合アニオン性交換膜の輸率の測定>
 輸率は、静的膜電位測定により膜電位(V)を測定し、算出した。
 2つの電解槽(cell)を、測定対象の複合アニオン性交換膜により隔てた。測定前に、複合アニオン性交換膜を0.05M NaCl水溶液中で約16時間平衡化した。その後、異なる濃度のNaCl水溶液を、測定対象の複合アニオン性交換膜の相対する側の電解槽に、それぞれ、注いだ。具体的には、一方のcellに0.05M NaCl水溶液を100mL注いだ。また、他方のcellに0.5M NaCl水溶液を100mL注いだ。
 恒温水槽により、cell中のNaCl水溶液の温度を25℃に安定化した。次いで、両液を膜面に向かって流しながら、両電解槽とAg/AgCl参照電極(スイスのMetrohm社製)を、塩橋で接続して膜電位(V)を測定し、下記式(II)により輸率tを算出した。
 なお、複合アニオン性交換膜の有効面積は1cmであった。
 t=(a’+b’)/2b’   式(II)
 上記式(II)における各符号の詳細を以下に示す。
 a’:膜電位(V)
 b’:0.5915log(f1c1/f2c2)(V)
 f1,f2:両cellのNaCl活量係数
 c1,c2:両cellのNaCl濃度(M)
<Measurement of transport number of composite anionic exchange membrane>
The transport number was calculated by measuring the membrane potential (V) by static membrane potential measurement.
Two electrolytic cells (cells) were separated by a composite anionic exchange membrane to be measured. Prior to measurement, the composite anionic exchange membrane was equilibrated in 0.05 M NaCl aqueous solution for about 16 hours. Thereafter, NaCl aqueous solutions having different concentrations were respectively poured into the electrolytic cells on the opposite sides of the composite anionic exchange membrane to be measured. Specifically, 100 mL of 0.05 M NaCl aqueous solution was poured into one cell. Moreover, 100 mL of 0.5M NaCl aqueous solution was poured into the other cell.
The temperature of the NaCl aqueous solution in the cell was stabilized at 25 ° C. by a constant temperature water bath. Next, while flowing both solutions toward the membrane surface, both electrolytic cells and an Ag / AgCl reference electrode (manufactured by Metrohm, Switzerland) were connected with a salt bridge to measure the membrane potential (V), and the following formula (II) ) To calculate the transport number t.
The effective area of the composite anionic exchange membrane was 1 cm 2 .
t = (a ′ + b ′) / 2b ′ Formula (II)
The detail of each code | symbol in the said Formula (II) is shown below.
a ′: membrane potential (V)
b ′: 0.5915 log (f1c1 / f2c2) (V)
f1, f2: NaCl activity coefficient of both cells c1, c2: NaCl concentration (M) of both cells
<透水率WP(mL/m/Pa/hr)の測定>
 フィード溶液400mLとドロー溶液400mLとを、複合アニオン性交換膜を介して接触させ(膜接触面積18cm)、各液を、ペリスタポンプを用いて流速0.11cm/秒で流した。フィード溶液中の水が複合アニオン性交換膜を介してドロー溶液に浸透する速度を、フィード液の質量とドロー液の質量とをリアルタイムで測定することによって解析し、透水率(mL/m/Pa/hr)を求めた。
<Measurement of water permeability WP (mL / m 2 / Pa / hr)>
400 mL of the feed solution and 400 mL of the draw solution were brought into contact with each other through a composite anionic exchange membrane (membrane contact area 18 cm 2 ), and each solution was allowed to flow at a flow rate of 0.11 cm / sec using a peristaltic pump. The rate at which water in the feed solution penetrates the draw solution through the composite anionic exchange membrane is analyzed by measuring the mass of the feed solution and the mass of the draw solution in real time, and the water permeability (mL / m 2 / Pa / hr) was determined.
<表面層のアニオン性官能基の密度(負電荷密度)の測定>
 まず、「膜学実験法(ISBN 978-4-906126-09-5)」194頁に記載のCEMのイオン交換容量測定手順に倣い、単位面積あたりの複合アニオン性交換膜に固定化されている負電荷量を測定した。一方、測定サンプルの膜面積、厚み、及び樹脂密度から単位面積あたりのベース膜への表面層付着重量を得た。
 膜面積については、長方形に切り出した測定サンプルの縦×横により測定した。
 膜厚については、X線電子分光(ESCA)による厚み方向の元素分析を行い、測定した。
 樹脂密度については、乾燥膜表面から表面層樹脂を削り取って粉砕し、気体置換型ピクノメーターを使用して乾式で密度測定した。
(負電荷量)/(付着重量)をアニオン性官能基(負電荷密度)(当量/g)とした。
 乾燥後、水に浸漬した時点で表面層が剥がれ落ちてしまった例については、本測定を行わず、結果欄には「-」と記載した。
<Measurement of density (negative charge density) of anionic functional groups in surface layer>
First, following the procedure for measuring the ion exchange capacity of CEM described in “194 Membrane Experimental Method (ISBN 978-4-906126-09-5)” on page 194, it is immobilized on a composite anionic exchange membrane per unit area. The amount of negative charge was measured. On the other hand, the surface layer adhesion weight to the base film per unit area was obtained from the film area, thickness, and resin density of the measurement sample.
About the film | membrane area, it measured by the length x width of the measurement sample cut out to the rectangle.
The film thickness was measured by elemental analysis in the thickness direction by X-ray electron spectroscopy (ESCA).
Regarding the resin density, the surface layer resin was scraped off from the dry film surface and pulverized, and the density was measured by a dry method using a gas displacement pycnometer.
(Negative charge amount) / (attached weight) was defined as an anionic functional group (negative charge density) (equivalent / g).
For the case where the surface layer was peeled off when immersed in water after drying, this measurement was not performed and “-” was written in the result column.
<表面層の厚さの測定>
 X線電子分光(ESCA)による厚み方向の元素分析を行い、Siの存在範囲を膜厚とした。
 乾燥後、水に浸漬した時点で表面層が剥がれ落ちてしまった例については、本測定を行わず、結果欄には「0」と記載した。
<Measurement of surface layer thickness>
Elemental analysis in the thickness direction was performed by X-ray electron spectroscopy (ESCA), and the existence range of Si was defined as the film thickness.
For the example in which the surface layer was peeled off when immersed in water after drying, this measurement was not performed, and “0” was described in the result column.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表2中に記載の化合物の詳細を以下に示す。なお、表2における組成物の各成分欄における数値の単位は、有効成分の質量部である。また、表中の「-」は、当該成分を含有しないことを意味する。
 3-(Trihydroxysilyl)-1-Propanesulfonic Acid:(Gelest社製)
 3-(Triethoxysilyl) propylsuccinic anhydride:(Gelest社製)
 N-(Trimethoxysilylpropyl) Ethylenediamine Triacetic Acid, Trisodium Salt:(Gelest社製)
 1M HCl:(シグマアルドリッチ社製)
 ポリスチレンスルホン酸ナトリウム(数平均分子量70,000):(シグマアルドリッチ社製)
Details of the compounds described in Table 2 are shown below. In addition, the unit of the numerical value in each component column of the composition in Table 2 is a mass part of an active ingredient. Further, “-” in the table means that the component is not contained.
3- (Trihydroxysilyl) -1-Propanesulfonic Acid: (Gelest)
3- (Triethoxysilyl) propylsuccinic anhydride: (Gelest)
N- (Trimethoxysilylpropyl) Ethylenediamine Triacetic Acid, Trisodium Salt: (Gelest)
1M HCl: (manufactured by Sigma Aldrich)
Sodium polystyrene sulfonate (number average molecular weight 70,000): (manufactured by Sigma-Aldrich)
 1 ベースとなるアニオン交換膜、2 表面層、11 電極液タンク、12 脱塩液タンク、13 濃縮液タンク、21 陽極電極、22 陰極電極、23 カチオン交換膜、24 複合アニオン交換膜、25 電気透析層、31、32 電極液の移動、33、34 脱塩液の移動、35、36 濃縮液の移動 1 base anion exchange membrane, 2 surface layer, 11 electrode liquid tank, 12 desalted liquid tank, 13 concentrate tank, 21 anode electrode, 22 cathode electrode, 23 cation exchange membrane, 24 composite anion exchange membrane, 25 electrodialysis Layer, 31, 32 Electrode solution transfer, 33, 34 Desalination solution transfer, 35, 36 Concentrate transfer

Claims (9)

  1.  アニオン性官能基を有する表面層を、ベースとなるアニオン交換膜の片面又は両面に有し、
     前記表面層におけるアニオン性官能基の密度が3.0当量/g~10.0当量/gであることを特徴とする複合アニオン交換膜。
    Having a surface layer having an anionic functional group on one or both sides of the base anion exchange membrane,
    A composite anion exchange membrane wherein the density of anionic functional groups in the surface layer is 3.0 equivalent / g to 10.0 equivalent / g.
  2.  前記表面層と、前記ベースとなるアニオン交換膜とが、共有結合を介して接着している、請求項1に記載の複合アニオン交換膜。 The composite anion exchange membrane according to claim 1, wherein the surface layer and the base anion exchange membrane are bonded via a covalent bond.
  3.  前記アニオン性官能基が、スルホ基、カルボキシ基、又は、リン酸基である、請求項1又は2に記載の複合アニオン交換膜。 The composite anion exchange membrane according to claim 1 or 2, wherein the anionic functional group is a sulfo group, a carboxy group, or a phosphate group.
  4.  前記表面層に下記式1の構造を有する、請求項1~3のいずれか1項に記載の複合アニオン交換膜。
    Figure JPOXMLDOC01-appb-C000001

     式1中、Rはそれぞれ独立に、アニオン性官能基を表し、
    iは1~5の整数を表し、
    1はi+m価の連結基を表し、
    *はそれぞれ独立に、ベースとなるアニオン交換膜又は表面層素材との結合位置を表し、
    jは1~3の整数を表し、
    2はそれぞれ独立に、1価の有機基を表し、
    kは(3-j)の整数を表し、
    構造内に複数のR及びRが存在する場合、これらは互いに同じでも異なっていてもよく、
    mは1以上の整数を表す。
    The composite anion exchange membrane according to any one of claims 1 to 3, wherein the surface layer has a structure represented by the following formula 1.
    Figure JPOXMLDOC01-appb-C000001

    In Formula 1, each R 1 independently represents an anionic functional group,
    i represents an integer of 1 to 5;
    L 1 represents an i + m-valent linking group,
    * Each independently represents the bonding position with the base anion exchange membrane or surface layer material,
    j represents an integer of 1 to 3,
    Each R 2 independently represents a monovalent organic group,
    k represents an integer of (3-j),
    When a plurality of R 1 and R 2 are present in the structure, these may be the same or different from each other,
    m represents an integer of 1 or more.
  5.  前記ベースとなるアニオン交換膜が、ヒドロキシ基を有する、請求項2~4のいずれか1項に記載の複合アニオン交換膜。 The composite anion exchange membrane according to any one of claims 2 to 4, wherein the base anion exchange membrane has a hydroxy group.
  6.  ベースとなるアニオン交換膜の片面又は両面に、アニオン性官能基を有するシランカップリング剤を含む表面層形成用塗布液を塗布する塗布工程、及び、
     塗布された前記表面層形成用塗布液を乾燥させる乾燥工程、
    を含む、複合アニオン交換膜の製造方法。
    A coating step of applying a coating solution for forming a surface layer containing a silane coupling agent having an anionic functional group on one side or both sides of a base anion exchange membrane; and
    A drying step of drying the applied coating solution for forming the surface layer,
    A method for producing a composite anion exchange membrane comprising:
  7.  前記塗布工程の前に、前記ベースとなるアニオン交換膜にプラズマ処理を行うプラズマ処理工程、
    を更に含む、請求項6に記載の複合アニオン交換膜の製造方法。
    A plasma treatment step of performing a plasma treatment on the base anion exchange membrane before the coating step;
    The method for producing a composite anion exchange membrane according to claim 6, further comprising:
  8.  請求項1~5のいずれか1つに記載の複合アニオン交換膜を備えたイオン交換膜モジュール。 An ion exchange membrane module comprising the composite anion exchange membrane according to any one of claims 1 to 5.
  9.  請求項1~5のいずれか1つに記載の複合アニオン交換膜を備えたイオン交換装置。 An ion exchange apparatus comprising the composite anion exchange membrane according to any one of claims 1 to 5.
PCT/JP2015/086159 2015-01-28 2015-12-25 Composite anion exchange membrane, method for producing same, ion exchange membrane module, and ion exchanger WO2016121280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015014028A JP2018051412A (en) 2015-01-28 2015-01-28 Composite anion exchange membrane, and its manufacturing method, ion exchange membrane module, and, ion exchange equipment
JP2015-014028 2015-01-28

Publications (1)

Publication Number Publication Date
WO2016121280A1 true WO2016121280A1 (en) 2016-08-04

Family

ID=56542913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086159 WO2016121280A1 (en) 2015-01-28 2015-12-25 Composite anion exchange membrane, method for producing same, ion exchange membrane module, and ion exchanger

Country Status (2)

Country Link
JP (1) JP2018051412A (en)
WO (1) WO2016121280A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152507A (en) * 1985-12-25 1987-07-07 Sumitomo Electric Ind Ltd Porous hollow yarn composite membrane and its preparation
JPS62286503A (en) * 1986-06-03 1987-12-12 Sumitomo Electric Ind Ltd Porous hollow yarn composite membrane and its production
JPH0515743A (en) * 1991-07-12 1993-01-26 Asahi Glass Co Ltd Acid diffusion dialytic method
JPH07265863A (en) * 1994-03-30 1995-10-17 Tokuyama Corp Nitrate ion removing method
JPH08231736A (en) * 1995-02-27 1996-09-10 Tokuyama Corp Modified bipolar membrane
JPH09151260A (en) * 1995-11-30 1997-06-10 Asahi Glass Co Ltd Hydrogen ion permselective membrane and electrodialysis method
JP2002098662A (en) * 2000-09-25 2002-04-05 Daicel Chem Ind Ltd Anion selective sensitive film
JP2008295330A (en) * 2007-05-30 2008-12-11 Astom:Kk Desalting method for used seasoning liquid containing storage duration improver
JP2010158624A (en) * 2009-01-08 2010-07-22 Asahi Kasei Chemicals Corp Porous adsorption film and method for refining protein by using the same
JP2014208335A (en) * 2013-03-26 2014-11-06 富士フイルム株式会社 Polymer functional film and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152507A (en) * 1985-12-25 1987-07-07 Sumitomo Electric Ind Ltd Porous hollow yarn composite membrane and its preparation
JPS62286503A (en) * 1986-06-03 1987-12-12 Sumitomo Electric Ind Ltd Porous hollow yarn composite membrane and its production
JPH0515743A (en) * 1991-07-12 1993-01-26 Asahi Glass Co Ltd Acid diffusion dialytic method
JPH07265863A (en) * 1994-03-30 1995-10-17 Tokuyama Corp Nitrate ion removing method
JPH08231736A (en) * 1995-02-27 1996-09-10 Tokuyama Corp Modified bipolar membrane
JPH09151260A (en) * 1995-11-30 1997-06-10 Asahi Glass Co Ltd Hydrogen ion permselective membrane and electrodialysis method
JP2002098662A (en) * 2000-09-25 2002-04-05 Daicel Chem Ind Ltd Anion selective sensitive film
JP2008295330A (en) * 2007-05-30 2008-12-11 Astom:Kk Desalting method for used seasoning liquid containing storage duration improver
JP2010158624A (en) * 2009-01-08 2010-07-22 Asahi Kasei Chemicals Corp Porous adsorption film and method for refining protein by using the same
JP2014208335A (en) * 2013-03-26 2014-11-06 富士フイルム株式会社 Polymer functional film and method for producing the same

Also Published As

Publication number Publication date
JP2018051412A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6126498B2 (en) Polymer functional membrane and method for producing the same
JP5648064B2 (en) Curable composition and film
KR101950500B1 (en) Curable compositions and memebranes
KR101951380B1 (en) Curable compositions and membranes
JP6182204B2 (en) Curable composition and film
CA2946976C (en) Curable compositions and membranes
WO2014050992A1 (en) Functional polymer membrane, and method for producing same
JP2013514420A (en) Curable composition and film
JP2018510226A (en) Curable composition and film
WO2010106356A1 (en) Membranes
JP2016137455A (en) Composite ion-exchange membrane and method for producing the same, ion-exchange membrane module and ion exchange apparatus
CN105263609A (en) Curable compositions and membranes
JP5893578B2 (en) Functional composite membrane and method for producing the same, ion exchange membrane and proton conducting membrane provided with functional composite membrane
WO2015030072A1 (en) Polymer functional film and method for producing same
US10421044B2 (en) Composite anion exchange membrane, method for producing the same, ion exchange membrane module, and ion exchange device
WO2014163001A1 (en) Method for producing ion-exchange membrane
JP2016137434A (en) Polymer functional film, and production method, laminate, and device thereof
JP5907848B2 (en) Polymer functional membrane and method for producing the same
WO2016121280A1 (en) Composite anion exchange membrane, method for producing same, ion exchange membrane module, and ion exchanger
WO2017038328A1 (en) Ion exchange polymer, curable composition, cured material, member, and device
WO2017038276A1 (en) Photocurable composition, cured material, member, and device
JP2017000941A (en) Polymer functional film, module, and device
WO2016024453A1 (en) Polymeric functional membrane for removing nitrate ions, production method therefor, separation membrane module, and ion exchange device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP