WO2015030072A1 - Polymer functional film and method for producing same - Google Patents

Polymer functional film and method for producing same Download PDF

Info

Publication number
WO2015030072A1
WO2015030072A1 PCT/JP2014/072474 JP2014072474W WO2015030072A1 WO 2015030072 A1 WO2015030072 A1 WO 2015030072A1 JP 2014072474 W JP2014072474 W JP 2014072474W WO 2015030072 A1 WO2015030072 A1 WO 2015030072A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
composition
film according
polymer
membrane
Prior art date
Application number
PCT/JP2014/072474
Other languages
French (fr)
Japanese (ja)
Inventor
啓祐 小玉
和臣 井上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015030072A1 publication Critical patent/WO2015030072A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation

Definitions

  • the present invention relates to a polymer functional membrane useful for an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane, a gas separation membrane or the like, and a method for producing the same.
  • an ion exchange membrane As a polymer functional membrane, an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane, a gas separation membrane, or the like is known as a membrane having various functions.
  • ion exchange membranes can be used for electrodeionization (EDI), continuous electrodeionization (CEDI), electrodialysis (ED), electrodialysis reversal (EDR) and reverse. Used for electrodialysis (RED: Reverse Electrodialysis) and the like.
  • Electrodesalting (EDI) is a water treatment process in which ions are removed from an aqueous liquid using thin films and electrical potentials to achieve ionic transport.
  • Electrodialysis (ED) and polarity-changing electrodialysis (EDR) are electrochemical separation processes that remove ions and the like from water and other fluids.
  • styrene-based anion exchange membranes are generally obtained by thermally curing a nonionic monomer (for example, chloromethylstyrene) and a nonionic crosslinking agent (for example, divinylbenzene) and further ionizing the ionic anion exchange membrane.
  • a nonionic monomer for example, chloromethylstyrene
  • a nonionic crosslinking agent for example, divinylbenzene
  • thermosetting and ionization are slow in reaction, and particularly in thermosetting reactions, they are very long.
  • the manufacturing cost is high because time is required.
  • the reactivity of the ionization process after film formation depends on the diffusibility of the reaction reagent into the film because the reaction reagent reacts in the heat-cured film. Otherwise, the charge density is insufficient or the charge density is distributed. Therefore, an anion exchange membrane obtained by a method generally used so far has a very high membrane resistance.
  • the azo-based initiator frequently used for thermosetting generates radicals and releases nitrogen gas, so that film defects are easily caused by nitrogen gas.
  • the present invention provides a functional polymer film having a good balance of homogeneity, water permeability and film resistance, and a method for producing the same, by suppressing the production cost by light irradiation with a low exposure amount in a short time. Let it be an issue.
  • the inventors of the present invention have made it possible to produce a styrene ion exchange membrane by combining photopolymerization with a monofunctional styrene monomer combined with a styrene crosslinking agent, regardless of whether the monomer is ionic or not.
  • a photoacid generator is used as an initiator, it is possible to obtain an ion exchange membrane with excellent film homogeneity, high charge density, low membrane resistance, and low water permeability by irradiating light with a low exposure amount for a short time. I found it.
  • the present invention has been completed based on this finding.
  • R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ⁇ ).
  • n represents an integer of 1 to 10.
  • R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group.
  • R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle.
  • X 2 - represents an organic or inorganic anion.
  • ⁇ 2>-(CH 2 ) n—R is a group represented by the following general formula (ALX), and after the composition is photocured, a tertiary amine compound that is a quaternary ammonium agent is reacted.
  • X 1 represents a halogen atom.
  • n1 is synonymous with n in the general formula (HSM).
  • HSM general formula (HSM)
  • L 1 represents an alkylene group or an alkenylene group.
  • Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring.
  • n3 represents an integer of 1 to 10.
  • X 3 - and X 4 - is independently represents an organic or inorganic anion.
  • Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group.
  • X 5 - and X 6 - are each independently represents an organic or inorganic anion.
  • ⁇ 5> The polymer functional film according to any one of ⁇ 1> to ⁇ 4>, wherein the composition further contains a polymerization initiator represented by the following general formula (AI).
  • R 5 to R 8 each independently represents an alkyl group, and Y represents ⁇ O or ⁇ N—Ri.
  • Re to Ri each independently represent a hydrogen atom or an alkyl group.
  • Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
  • ⁇ 6> A styrene monomer in which R is represented by a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ⁇ ) with respect to 100 parts by mass of the total solid content of the composition,
  • ⁇ 7> The polymer functional film according to any one of ⁇ 2> to ⁇ 6>, wherein the content of the styrenic crosslinking agent is 10 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the composition.
  • ⁇ 8> The polymer functionality according to any one of ⁇ 1> to ⁇ 7>, wherein the content of the photoacid generator is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition film.
  • the composition contains a solvent.
  • the solvent is water or a water-soluble solvent.
  • ⁇ 12> The polymer functional membrane according to ⁇ 11>, wherein the support is a synthetic woven fabric or synthetic nonwoven fabric, a sponge film, or a film having fine through holes.
  • ⁇ 13> The polymer functional film according to ⁇ 11> or ⁇ 12>, wherein the support is a polyolefin.
  • ⁇ 14> The polymer functional membrane according to any one of ⁇ 1> to ⁇ 13>, wherein the polymer functional membrane is an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane, or a gas separation membrane.
  • ⁇ 15> A method for producing a functional polymer film, wherein a composition containing a styrene monomer represented by the following general formula (HSM), a styrene crosslinking agent, and a photoacid generator is photocured.
  • HSM styrene monomer represented by the following general formula
  • R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ⁇ ).
  • n represents an integer of 1 to 10.
  • R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group.
  • R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle.
  • X 2 - represents an organic or inorganic anion.
  • ⁇ 16>-(CH 2 ) nR is a group represented by the following general formula (ALX), and the composition is photocured and then reacted with a tertiary amine compound which is a quaternary ammonium agent.
  • AX general formula
  • X 1 represents a halogen atom.
  • n1 is synonymous with n in the general formula (HSM).
  • HSM general formula (HSM)
  • L 1 represents an alkylene group or an alkenylene group.
  • Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring.
  • n3 represents an integer of 1 to 10.
  • X 3 - and X 4 - is independently represents an organic or inorganic anion.
  • Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group.
  • X 5 - and X 6 - are each independently represents an organic or inorganic anion.
  • R 5 to R 8 each independently represents an alkyl group
  • Y represents ⁇ O or ⁇ N—Ri.
  • Re to Ri each independently represent a hydrogen atom or an alkyl group.
  • Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
  • the composition contains a solvent.
  • the solvent is water or a water-soluble solvent.
  • ⁇ 22> The method for producing a functional polymer film according to any one of ⁇ 15> to ⁇ 21>, wherein the composition is applied and / or impregnated on a support and then cured.
  • ⁇ 23> The method for producing a functional polymer film according to any one of ⁇ 15> to ⁇ 22>, wherein the curing reaction is a curing reaction in which the composition is polymerized by irradiation with energy rays and heating.
  • the curing reaction is a curing reaction in which the composition is heated and polymerized after irradiation with energy rays.
  • the “hole volume fraction” described later refers to the measurement of the electrical resistance of a polymer functional film (hereinafter sometimes simply referred to as “film”) using five NaCl solutions having different concentrations.
  • film The conductivity of the film when immersed in NaCl solution of each concentration is A (S / cm 2 ), the conductivity per unit film thickness of each NaCl concentration solution is B (S / cm 2 ), and A is y The value calculated by the following formula (b) when the y intercept when B is the x axis and C is the axis.
  • the vacancies in the present invention are smaller than the detection limit of a standard scanning electron microscope (SEM) and cannot be detected using a Jeol JSM-6335F field emission SEM having a detection limit of 5 nm, the average vacancy size is It is considered to be less than 5 nm.
  • this vacancy is a gap between atoms.
  • “vacancy” means to include a gap between atoms. It is considered that the pores are formed by shrinkage at the time of curing the solvent, neutralized water, salt, or composition in the composition when the composition for forming a functional polymer film is cured.
  • the voids are void portions having an arbitrary shape existing inside the polymer functional film, and include both independent holes and continuous holes.
  • Independent holes refer to holes that are independent of each other, and may be in contact with any surface of the film.
  • continuous hole means a hole in which independent holes are formed. The continuous pores may be continuous from any surface of the membrane to other surfaces in the form of passages.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • groups having the same symbol unless otherwise specified they may be the same or different from each other.
  • repetitions of a plurality of partial structures these repetitions may be the same as each other, or may be a mixture of different repetitions as long as they are within the specified range.
  • geometrical isomer which is the substitution mode of the double bond in each general formula is not limited to the E-form or the Z-form unless otherwise specified, even if one of the isomers is described for convenience of display. Or a mixture thereof.
  • the polymer functional membrane of the present invention is excellent in uniformity, water permeability and membrane resistance. Furthermore, according to the method for producing a polymer functional membrane of the present invention, a polymer functional membrane having a good balance of homogeneity, water permeability and membrane resistance can be obtained at a low production cost by short-time energy irradiation or the like. Can be manufactured.
  • FIG. 1 is a schematic view of a flow path of an apparatus for measuring the water permeability of a membrane.
  • the polymer functional membrane of the present invention can be used for ion exchange, reverse osmosis, forward osmosis, gas separation and the like.
  • a preferred embodiment of the present invention will be described taking as an example the case where the polymer functional membrane of the present invention has a function as an ion exchange membrane.
  • the polymer functional membrane of the present invention is preferably an anion exchange membrane.
  • the thickness of the membrane of the present invention is preferably 30 to 250 ⁇ m, more preferably 40 to 200 ⁇ m, particularly preferably 50 to 150 ⁇ m, including the support.
  • the polymer functional membrane of the present invention is preferably 1.5 meq / g or more based on the total dry mass of the membrane or any porous reinforcing material such as a membrane and a porous support when having a support.
  • the ion exchange capacity is preferably 2.0 meq / g or more, particularly preferably 2.5 meq / g or more.
  • the upper limit of the ion exchange capacity is not particularly limited, but is practically 7.0 meq / g or less.
  • meq is milliequivalent.
  • Film of the present invention is based on the area of the dry film, preferably 45meq / m 2 or more, more preferably 60 meq / m 2 or more, particularly preferably a 75 mEq / m 2 or more charge density.
  • the upper limit of the charge density is not particularly limited, but it is practical that it is 1,750 meq / m 2 or less.
  • Cl polymeric functional film of the present invention anion exchange membrane
  • anion exchange membrane selective permeability to anions, such as, preferably greater than 0.90, more preferably greater than 0.93, greater than 0.95, the theoretical value It is particularly preferable that the value approaches 1.0.
  • the electrical resistance of the polymer functional film of the present invention is preferably less than 2 [Omega ⁇ cm 2, more preferably less than 1.5 [Omega ⁇ cm 2, less than 1.3 ⁇ ⁇ cm 2 is particularly preferred.
  • the swelling ratio (rate of dimensional change due to swelling) of the functional polymer film of the present invention in water is preferably less than 30%, more preferably less than 15%, and particularly preferably less than 8%.
  • the swelling rate can be controlled by selecting curing conditions in the curing stage.
  • the electrical resistance, the permselectivity and the swelling ratio in water are determined by the method described in Membrane Science, 319, 217-218 (2008), Masayuki Nakagaki, Membrane Experimental Method, pages 193-195 (1984). Can be measured.
  • the water permeability of the polymer functional membrane of the present invention is preferably 15 ⁇ 10 ⁇ 5 ml / m 2 / Pa / hr or less, more preferably 10 ⁇ 10 ⁇ 5 ml / m 2 / Pa / hr or less, and 8 ⁇ 10 ⁇ 5 ml / m 2 / Pa / hr or less is particularly preferable.
  • the lower limit of the water permeability is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 5 ml / m 2 / Pa / hr or more.
  • the mass average molecular weight of the polymer constituting the polymer functional film of the present invention is several hundred thousand or more because three-dimensional crosslinking is formed, and cannot be measured substantially. Generally considered as infinite.
  • the polymer functional film of the present invention contains (A) a styrene monomer represented by the general formula (HSM), (B) a styrene crosslinking agent, and (C) a photoacid generator as essential components. Accordingly, it is formed by a curing reaction of a composition containing (D) a polymerization initiator represented by the general formula (AI), (E) a solvent and (F) a polymerization inhibitor.
  • HSM styrene monomer represented by the general formula
  • AI a polymerization initiator represented by the general formula (AI)
  • AI a polymerization initiator represented by the general formula
  • E a solvent
  • F a polymerization inhibitor
  • HSM ⁇ (A) Styrenic monomer represented by general formula (HSM)>
  • the (A) styrenic monomer used in the composition in the present invention is represented by the following general formula (HSM).
  • R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ⁇ ).
  • n represents an integer of 1 to 10.
  • R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group.
  • R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle.
  • X 2 - represents an organic or inorganic anion.
  • — (CH 2 ) n—R can be divided into a group represented by the following general formula (ALX) and a group represented by the following general formula (ALA).
  • Formula (ALX), in (ALA), X 1 represents a halogen atom
  • R 1 ⁇ R 3 and X 2 - is R 1 ⁇ in the general formula (HSM)
  • R 3 and X 2 - in the above formula, preferred
  • the range is the same.
  • n1 and n2 are both synonymous with n in the general formula (HSM), and the preferred range is also the same.
  • X 1 includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, more preferably a chlorine atom and a bromine atom, and particularly preferably a chlorine atom. preferable.
  • n in general formula (HMS) n1 in general formula (ALX), and n2 in general formula (ALA), 1 or 2 is preferable, and 1 is particularly preferable.
  • the alkyl group in R 1 to R 3 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 or 2.
  • Examples of the alkyl group include methyl, ethyl, isopropyl, n-butyl, and 2-ethylhexyl.
  • the alkyl group may have a substituent, and examples of such a substituent include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group.
  • the aryl group in R 1 to R 3 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • the aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group.
  • the aryl group is preferably a phenyl group. Of these, R 1 to R 3 are preferably alkyl groups.
  • the ring formed by combining R 1 and R 2 with each other is preferably a 5- or 6-membered ring, and examples thereof include a pyrrolidine ring, a piperidine ring, a morpholine ring, a thiomorpholine ring, and a piperazine ring.
  • Examples of the ring formed by combining R 1 , R 2 and R 3 with each other include a quinuclidine ring and a triethylenediamine ring (1,4-diazabicyclo [2.2.2] octane ring).
  • X 2 - represents an organic or inorganic anion, and an inorganic anion is preferred.
  • the organic anion include an alkyl sulfonate anion, an aryl sulfonate anion, an alkyl or aryl carboxylate anion, and examples thereof include a methane sulfonate anion, a benzene sulfonate anion, a toluene sulfonate anion, and an acetate anion.
  • inorganic anions include halogen anions, sulfate dianions, and phosphate anions, with halogen anions being preferred.
  • halogen anions a chlorine anion and a bromine anion are preferable, and a chlorine anion is particularly preferable.
  • a styrene monomer in the case where — (CH 2 ) n—R is a group represented by the general formula (ALA) may be referred to as a styrene monomer (SM).
  • SM styrene monomer
  • SM styrene monomer
  • styrene monomers may be used in combination.
  • the styrene monomer (SM) content is preferably 1 to 85 parts by mass, more preferably 10 to 80 parts by mass, with respect to 100 parts by mass of the total solid content of the composition for forming a film. ⁇ 75 parts by mass is particularly preferred.
  • — (CH 2 ) n—R represents a group represented by the general formula (ALX)
  • a tertiary amine compound which is a quaternary ammonium agent is reacted.
  • the polymer functional membrane is preferably an anion exchange membrane.
  • HSM styrene monomer
  • — (CH 2 ) n—R represents a group represented by the formula (ALX)
  • the styrene monomer is referred to as a styrene monomer (HSM).
  • HSM styrene monomer
  • the specific example of a styrene-type monomer (HSM) is shown, this invention is not limited to these.
  • the styrene monomer (HSM) content is preferably 1 to 95 parts by mass, more preferably 10 to 95 parts by mass, with respect to 100 parts by mass of the total solid content of the composition for forming a film. -95 parts by mass are particularly preferred.
  • membrane after hardening reacts by immersing a cured film in a tertiary amine compound solution.
  • the amine compound solution concentration at this time is preferably 0.01 mol / L to 5.00 mol / L, more preferably 0.05 mol / L to 3.00 mol / L, and more preferably 0.10 mol / L to 1.. 00 mol / L is particularly preferred.
  • the temperature at which the cured film is immersed in the tertiary amine compound solution is preferably 0 to 100 ° C, more preferably 10 to 80 ° C, and particularly preferably 20 to 60 ° C.
  • the time for immersing the cured film in the tertiary amine compound solution is preferably 0.5 to 24 hours, more preferably 1 to 18 hours, and particularly preferably 2 to 12 hours.
  • (B) The styrene crosslinking agent used for the polymer functional film of the present invention is not particularly limited.
  • a general crosslinking agent such as divinylstyrene or a compound represented by the following general formula (CL) is preferably used.
  • L 1 represents an alkylene group or an alkenylene group.
  • Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring.
  • n3 represents an integer of 1 to 10.
  • X 3 - and X 4 - is independently represents an organic or inorganic anion.
  • the alkylene group for L 1 preferably has 2 or 3 carbon atoms, and examples thereof include ethylene and propylene.
  • the alkylene group may have a substituent, and examples of such a substituent include an alkyl group.
  • the alkenylene group in L 1 preferably has 2 or 3 carbon atoms, more preferably 2, particularly an ethenylene group.
  • the ring formed by L 1 is preferably a piperazine ring.
  • the alkyl group and aryl group in Ra, Rb, Rc and Rd are preferably in the preferred range of the alkyl group and aryl group in R 2 to R 4 .
  • Ra, Rb, Rc and Rd are preferably alkyl groups, and methyl is particularly preferred.
  • Ra and Rb, Rc and Rd may be bonded to each other to form a ring, and a triethylenediamine ring (1,4-diazabicyclo [2.2.2] octane ring) is particularly preferable.
  • n3 is preferably 1 or 2, and 1 is particularly preferable.
  • X 3 - and X 4 - is X 2 - in the above formula, the preferred range is also the same.
  • crosslinking agent represented by the general formula (CL) are shown below, but the present invention is not limited thereto.
  • the crosslinking agent represented by the general formula (CL) can be synthesized by the method described in JP-A No. 2000-229917 or a method analogous thereto.
  • (B) two or more kinds of crosslinking agents represented by the general formula (CL) may be used in combination.
  • the content of the crosslinking agent represented by (B) the general formula (CL) is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a film, 90 parts by mass is more preferable, and 20 to 80 parts by mass is particularly preferable.
  • the molar ratio of (A) the styrenic monomer represented by the general formula (HSM) and (B) the crosslinking agent represented by the general formula (CL) is 1 /0.1 to 1/55 is preferable, 1 / 0.14 to 1/55 is more preferable, and 1 / 0.3 to 1/55 is particularly preferable.
  • the crosslink density of the polymer formed by reacting the styrene monomer represented by (A) the general formula (HSM) and the crosslinker represented by (B) the general formula (CL) is 0.4. ⁇ 2 mmol / g is preferred, 0.5 ⁇ 2 mmol / g is more preferred, and 1.0 ⁇ 2 mmol / g is particularly preferred.
  • the crosslinking density is within such a range, the membrane water content is decreased, the water permeability is decreased, and the membrane resistance is also small.
  • the photoacid generator (C) used in the polymer functional film of the present invention is not particularly limited, but a compound represented by the following general formula (PAG1) or general formula (PAG2) is preferable.
  • Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group.
  • X 5 - and X 6 - represent an organic or inorganic anion.
  • X 5 - and X 6 - is X 2 - in the above formula, the preferred range is also the same.
  • the aryl group in Ar 1 to Ar 5 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • the aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxy group, an alkylthio group, and an arylthio group.
  • the aryl group is preferably a phenyl group.
  • a photoacid generator represented by the general formula (PAG1) or the general formula (PAG2) and a photoacid generator represented by the following general formula (PAG3) can be used in combination.
  • Ar 6 and Ar 7 each independently represent a substituted or unsubstituted alkyl group or an aryl group.
  • the alkyl group for Ar 6 and Ar 7 preferably has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • Specific examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, and cyclohexyl.
  • These alkyl groups may be chain-like or cyclic (that is, cycloalkyl group), and in the case of a chain-like, they may be linear or branched.
  • the aryl group in Ar 6 and Ar 7 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms.
  • the aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group.
  • the aryl group is preferably a phenyl group.
  • the photoacid generator represented by the following general formula (PAG4) can be used alone or in combination with the photoacid generator represented by the general formula (PAG1) to the general formula (PAG3).
  • Ar 8 and Ar 9 each independently represent a substituted or unsubstituted aryl group or heteroaryl group.
  • the number of carbon atoms of the aryl group in Ar 8 and Ar 9 is preferably 4 to 12, more preferably 4 to 10, and still more preferably 4 to 8.
  • the aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group.
  • the aryl group is preferably a phenyl group.
  • the heteroaryl group in Ar 8 and Ar 9 preferably has 2 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms.
  • the heterocycle of the heteroaryl group preferably has a 5- or 6-membered feeling, and the ring-constituting heteroatoms are preferably oxygen atoms, sulfur atoms, and nitrogen atoms.
  • the heteroaryl group may be substituted with a substituent, and examples thereof include an alkyl group, a halogen-substituted alkyl group, an aryl group, and an alkoxy group.
  • Examples of the heterocycle of the heteroaryl group include a furan ring, a thiophene ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and a triazine ring.
  • a photoacid generator having the following structure can also be used.
  • the photogenerating agent content is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the total solid content of the composition for forming a film. 0.5 to 5 parts by mass is particularly preferable.
  • composition in the present invention preferably further contains (D) a polymerization initiator represented by the following general formula (AI).
  • AI a polymerization initiator represented by the following general formula (AI).
  • R 5 to R 8 each independently represents an alkyl group, and Y represents ⁇ O or ⁇ N—Ri.
  • Re to Ri each independently represent a hydrogen atom or an alkyl group.
  • Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
  • the alkyl group for R 5 to R 8 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably methyl.
  • Re to Ri are preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • the ring formed by combining Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri is preferably a 5- or 6-membered ring.
  • the ring formed by combining Re and Ri and Rg and Ri with each other is preferably an imidazoline ring, and the ring formed by combining Re and Rf and Rg and Rh with each other includes a pyrrolidine ring and a piperidine ring. Piperazine ring, morpholine ring, and thiomorpholine ring are preferable.
  • polymerization initiator represented by the general formula (AI) are shown below, but the present invention is not limited thereto.
  • the polymerization initiator represented by the general formula (AI) can be obtained from Wako Pure Chemical Industries, Ltd.
  • the exemplary compound (AI-1) is VA-061 and the exemplary compound (AI-2) is VA-044.
  • the exemplified compound (AI-3) is VA-046B
  • the exemplified compound (AI-4) is V-50
  • the exemplified compound (AI-5) is VA-067
  • the exemplified compound (AI-6) is VA-057
  • Compound (AI-7) is commercially available as VA086 (both trade names).
  • the content of the polymerization initiator represented by the general formula (AI) is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a film. 0.1 to 10 parts by mass is more preferable, and 0.5 to 5 parts by mass is particularly preferable.
  • the composition for forming the film of the present invention may contain (E) a solvent.
  • the content of the solvent (E) in the composition is preferably 5 to 60 parts by mass and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the total composition.
  • the solvent a solvent having a solubility in water of 5% by mass or more is preferably used, and a solvent that is freely mixed with water is preferable. For this reason, a solvent selected from water and a water-soluble solvent is preferred.
  • a solvent selected from water and a water-soluble solvent is preferred.
  • the water-soluble solvent alcohol solvents, ether solvents that are aprotic polar solvents, amide solvents, ketone solvents, sulfoxide solvents, sulfone solvents, nitrile solvents, and organic phosphorus solvents are particularly preferable. . Water and alcohol solvents are preferred.
  • alcohol solvents examples include methanol, ethanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and the like.
  • alcohol solvents ethanol, isopropanol, n-butanol, and ethylene glycol are more preferable, and isopropanol is particularly preferable.
  • These can be used alone or in combination of two or more. Water alone or a combination of water and a water-soluble solvent is preferred, and water alone or a combination of water and at least one alcohol solvent is more preferred.
  • 0.1 to 10% by mass of isopropanol is preferable with respect to 100% by mass of water, more preferably 0.5 to 5% by mass, and even more preferably 1.0 to 2.0% by mass. preferable.
  • aprotic polar solvents include dimethyl sulfoxide, dimethyl imidazolidinone, sulfolane, N-methylpyrrolidone, dimethylformamide, acetonitrile, acetone, dioxane, tetramethylurea, hexamethylphosphorotriamide, pyridine, propionitrile, Preferred examples of the solvent include butanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, ethylene glycol diacetate, and ⁇ -butyrolactone.
  • dimethylsulfoxide N-methylpyrrolidone, dimethylformamide, dimethylimidazolidinone, sulfolane, acetone or acetonitrile, and tetrahydrofuran are preferable. preferable. These can be used alone or in combination of two or more.
  • the composition for forming a film of the present invention preferably contains a polymerization inhibitor in order to impart stability to the coating solution used to form the film.
  • a polymerization inhibitor a known polymerization inhibitor can be used, and examples thereof include a phenol compound, a hydroquinone compound, an amine compound, a mercapto compound, and a nitroxyl radical compound.
  • the phenol compound include hindered phenol (phenol having a t-butyl group at the ortho position, typically 2,6-di-t-butyl-4-methylphenol) and bisphenol.
  • Specific examples of the hydroquinone compound include monomethyl ether hydroquinone.
  • amine compound examples include N-nitroso-N-phenylhydroxylamine, N, N-diethylhydroxylamine and the like.
  • nitroxyl radical compound examples include 4-hydroxy TEMPO (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical) and the like.
  • the content of the polymerization inhibitor is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 1 part by weight, and more preferably 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the total solid content in the composition. Part is more preferable.
  • composition for forming a film of the present invention may contain a surfactant, a polymer dispersant, an anti-crater agent and the like in addition to the components (A) to (F).
  • Various polymer compounds can be added to the composition for forming the film of the present invention in order to adjust film properties.
  • High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
  • nonionic surfactants, cationic surfactants, organic fluoro compounds, and the like can be added to adjust liquid properties.
  • the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl
  • Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol,
  • Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoteric boundaries such as alkyl betaines and amide betaines
  • the composition for forming the film of the present invention may contain a polymer dispersant.
  • the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is also preferably used.
  • Anti-crater agent is also called surface conditioner, leveling agent or slip agent, and prevents unevenness on the film surface.
  • organic modified polysiloxane mixture of polyether siloxane and polyether
  • polyether modified poly examples thereof include compounds having a structure of siloxane copolymer or silicon-modified copolymer.
  • examples of commercially available products include, for example, Tego Glide 432, 110, 110, 130, 406, 410, 411, 415, 420, 435, 440, 450, and the like manufactured by Evonik Industries. 482, A115, B1484, and ZG400 (all are trade names).
  • the crater inhibitor is preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and even more preferably 1 to 2 parts by weight with respect to 100 parts by weight of the total solid content in the composition.
  • composition for forming the film of the present invention may contain, for example, a viscosity improver and a preservative, if necessary.
  • a support can be used as the membrane reinforcing material, and a porous support can be preferably used.
  • This porous support can constitute a part of the membrane by applying and / or impregnating the composition for forming the membrane and then performing a curing reaction.
  • the porous support as the reinforcing material include a synthetic woven fabric or synthetic nonwoven fabric, a sponge film, a film having fine through holes, and the like.
  • the material forming the porous support of the present invention is, for example, polyolefin (polyethylene, polypropylene, etc.), polyacrylonitrile, polyvinyl chloride, polyester, polyamide and copolymers thereof, or, for example, polysulfone, polyethersulfone, Polyphenylene sulfone, polyphenylene sulfide, polyimide, polyetherimide, polyamide, polyamideimide, polyacrylonitrile, polycarbonate, polyacrylate, cellulose acetate, polypropylene, poly (4-methyl-1-pentene), polyvinylidene fluoride, polytetra
  • a porous membrane based on fluoroethylene, polyhexafluoropropylene, polychlorotrifluoroethylene and their copolymers Door can be.
  • porous supports and reinforcement materials are commercially available from, for example, Japan Vilene, Freudenberg Filtration Technologies (Novatex material) and Separ AG.
  • the porous reinforcing material is capable of passing irradiation of the wavelength used for curing and / or the curable composition is Those that can penetrate into the porous reinforcing material are preferred so as to be cured in the step (ii) described later.
  • the porous support has hydrophilicity.
  • general methods such as corona treatment, ozone treatment, sulfuric acid treatment, and silane coupling agent treatment can be used.
  • the method for producing a polymer functional film of the present invention comprises (A) a composition containing a styrene monomer represented by the general formula (HSM), (B) a styrene crosslinking agent, and (C) a photoacid generator. A photo-curing reaction is performed to form a film.
  • HSM styrene monomer represented by the general formula
  • B a styrene crosslinking agent
  • C a photoacid generator.
  • a photo-curing reaction is performed to form a film.
  • the membrane such that the pore volume fraction of the membrane is preferably 3% or less, more preferably 2% or less, and particularly preferably 1.5% or less.
  • the pore volume fraction of the membrane can be adjusted by the amount of the crosslinking agent and the solid content concentration. When the pore volume fraction of the membrane is within such a range, an effect that the moisture content of the membrane is lowered occurs, and salt leakage is suppressed, which is preferable.
  • the composition for forming a film preferably further contains (D) a polymerization initiator represented by the general formula (AI).
  • the composition for forming a film further contains (E) a solvent, and the content of the solvent is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the total mass of the composition.
  • the solvent (E) is preferably water or a water-soluble solvent, and is preferably subjected to a curing reaction after the composition is applied to and / or impregnated on a support.
  • the curing reaction is preferably a curing reaction in which the composition is polymerized by irradiation with energy rays and heating. Furthermore, heating is preferably performed on a film formed by energy beam irradiation.
  • the heating temperature is preferably 40 to 120 ° C, more preferably 60 to 100 ° C, and particularly preferably 75 to 90 ° C.
  • the heating time when heating after irradiation with energy rays is preferably 1 minute to 12 hours, more preferably 1 minute to 8 hours, and particularly preferably 1 minute to 6 hours.
  • the polymer functional membrane of the present embodiment can be prepared in a batch manner by fixing the support, but the membrane can also be prepared in a continuous manner by moving the support.
  • the support may be in the form of a roll that is continuously rewound.
  • a support body can be mounted on the belt moved continuously, and a film
  • a batch process can be enlarged on a large scale by combining specific processes into batch processes.
  • a temporary support body it peels a film
  • a hardening reaction is completed by immersing a composition in a porous support body separately from a support body.
  • a temporary support does not need to consider material permeation, and may be any material as long as it can be fixed for film formation including a metal plate such as a PET film or an aluminum plate.
  • the composition can be immersed in a porous support and cured without using a support other than the porous support.
  • the composition can be applied by any suitable method such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spray coating. It can be applied to the porous support layer. Multi-layer coating can be performed simultaneously or sequentially. For multilayer simultaneous coating, curtain coating, slide coating, slot die coating and extrusion coating are preferred.
  • a polymer functional film when a polymer functional film is produced continuously, it is preferably produced by a production unit comprising at least a composition application part for continuously applying the above composition while moving the support. And a production unit comprising a radiation source for curing the composition, a film collection part, and means for moving the support from the composition application part to the radiation source and the film collection part. preferable.
  • a composition for forming a film of the present invention is applied to and / or impregnated on a porous support, and (ii) the composition is irradiated with light, and if necessary, further cured by heating.
  • the polymer functional membrane of this embodiment is produced through a process of reacting and (iii) removing the membrane from the support as desired.
  • heating may be performed simultaneously with light irradiation, or may be performed on a film formed by light irradiation.
  • the composition application part is placed at a position upstream from the irradiation source in the arrangement of these facilities, and the irradiation source is the composite film. Located upstream of the collection station.
  • the viscosity of the composition of the present invention at 35 ° C. is preferably less than 4000 mPa ⁇ s, more preferably 1 to 1000 mPa ⁇ s, and more preferably 1 to 500 mPa ⁇ s. s is most preferred.
  • the viscosity at 35 ° C. is preferably 1 to 100 mPa ⁇ s.
  • compositions of the present invention can be applied at speeds exceeding 15 m / min, such as speeds exceeding 20 m / min, such as 60 m / min, 120 m / min and even up to 400 m / min. But it can be applied.
  • a support when using a support to increase the mechanical strength, support that has been subjected to corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, etc. in order to improve the wettability and adhesion of the surface of the support. It is preferable to use the body.
  • (A) in the general formula (HSM),-(CH 2 ) n-R is represented by the styrenic monomer having a group represented by the general formula (ALX) and (B) the general formula (CL).
  • the cross-linking agent is polymerized to form a polymer (film).
  • the curing reaction time for forming the film is preferably within 30 seconds.
  • Curing of the composition of the present invention is initiated within 60 seconds, more preferably within 15 seconds, especially within 5 seconds, most preferably within 3 seconds after the composition is applied to the support layer.
  • the curing light irradiation is preferably less than 10 seconds, more preferably less than 5 seconds, particularly preferably less than 3 seconds, and most preferably less than 2 seconds.
  • the curing reaction time is determined in consideration of the speed at which the composition moves through the irradiation beam.
  • UV light When a high intensity UV light is used for the curing reaction, a considerable amount of heat is generated, so that cooling air may be applied to the lamp of the light source and / or the support / film in order to prevent overheating.
  • the UV light When a significant dose of IR light is irradiated with the UV beam, the UV light is irradiated using an IR reflective quartz plate as a filter.
  • the irradiation wavelength is preferably a wavelength that can be absorbed by the photoinitiator (photoacid generator, photopolymerization initiator) contained in the composition.
  • the irradiation wavelength is preferably the same wavelength as the absorption wavelength of the photoinitiator or a wavelength overlapping with the absorption wavelength. Examples thereof include UV-A (400 to 320 nm), UV-B (320 to 280 nm), and UV-C (280 to 200 nm).
  • UV sources include mercury arc lamps, carbon arc lamps, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, swirling plasma arc lamps, metal halide lamps, xenon lamps, tungsten lamps, halogen lamps, lasers, and ultraviolet light-emitting diodes. It is done. Medium pressure or high pressure mercury vapor type UV lamps are particularly preferred. In addition, additives such as metal halides may be added to the lamp to modify the lamp's emission spectrum. A lamp having an emission maximum at 200 to 450 nm is particularly suitable.
  • the energy output of the irradiation source is preferably 20 to 1000 W / cm, more preferably 40 to 500 W / cm. However, it may be higher or lower as long as a desired exposure dose can be realized.
  • the curing of the film is adjusted according to the exposure intensity.
  • the exposure dose is preferably 40 mJ / cm 2 or more when measured in the UV-A range indicated by the apparatus using a high energy UV radiometer (UV Power Pack TM manufactured by EIT-Instrument Markets), and is preferably 100 to 2,000 mJ / cm 2. cm 2 is more preferable, and 150 to 1,500 mJ / cm 2 is most preferable.
  • the exposure time can be chosen freely but is preferably short, typically less than 2 seconds.
  • a plurality of light sources may be used to reach a desired dose. These light sources may have the same or different exposure intensity.
  • the polymer functional membrane of the present invention is mainly intended to be used in particular by ion exchange.
  • the polymer functional membrane of the present invention is not limited to ion exchange and can be suitably used for reverse osmosis and gas separation.
  • SM-1-p chloromethylstyrene
  • HSM-1-p chloromethylstyrene
  • CMS-P chloromethylstyrene
  • HSM 4- (4-bromobutyl) styrene
  • Styrene-based crosslinking agent is divinylbenzene (HCL-1) (trade name; divinylbenzene (m-, p-mixture) (including ethylvinylbenzene and diethylbenzene)) manufactured by Tokyo Chemical Industry Co., Ltd.
  • the photoacid generator is exemplified compound (PAG1-1) (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: Diphenyliodonium hexafluorophosphate), (PAG2-1) (manufactured by San Apro Co., Ltd., trade name: CPI-100P), or (PAG3-1) (Wako Pure Chemical Industries, Ltd., trade name: WPAG-145) (D)
  • the polymerization initiator represented by formula (AI) is exemplified compound (AI-3) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA-046B))
  • the polymerization initiator Darocur (registered trademark) 1173 (trade name: manufactured by BASF Japan Ltd.) is a polymerization initiator different from the polymerization initiator represented by the general formula (AI).
  • Example 1 (Creation of anion exchange membrane) A coating solution of the composition shown in Table 1 below was manually applied to an aluminum plate at a speed of about 5 m / min using a 150 ⁇ m wire winding rod, followed by a non-woven fabric (FO-2223 manufactured by Freudenberg). ⁇ 10, thickness 100 ⁇ m) was impregnated with the coating solution. Excess coating solution was removed using a rod around which no wire was wound. The temperature of the coating solution at the time of coating was about 25 ° C. (room temperature).
  • the coating liquid-impregnated support is subjected to a curing reaction, thereby anion exchange membrane.
  • the exposure amount was 1,000 mJ / cm 2 in the UV-A region.
  • the resulting membrane was removed from the aluminum plate and stored in 0.1 M NaCl solution for at least 12 hours.
  • Examples 2 to 13, 16 and Comparative Examples 3 and 4 Anion exchange membranes of Examples 2 to 13, 16 and Comparative Examples 3 and 4 were prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1 below in the preparation of the anion exchange membrane of Example 1. Was created respectively.
  • Example 14 In the production of the anion exchange membrane of Example 1, a film was formed in the same manner as in Example 1 except that the composition was changed to the composition described in Table 1 below. Subsequently, the membrane obtained by immersion in a 0.5 mol / L trimethylamine hydrochloride aqueous solution (adjusted to pH 12) at 40 ° C. for 6 hours was removed from the aluminum plate, and further stored in a 0.1 M NaCl solution for at least 12 hours.
  • Comparative Example 1 An anion exchange membrane of Comparative Example 1 was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1 below and the polymerization conditions were changed to those shown in Table 2 below.
  • Example 2 A film was formed in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1 below and the polymerization conditions were changed to those shown in Table 2 below. Subsequently, the membrane obtained by immersion in a 0.5 mol / L trimethylamine hydrochloride aqueous solution (adjusted to pH 12) at 40 ° C. for 6 hours was removed from the aluminum plate, and further stored in a 0.1 M NaCl solution for at least 12 hours.
  • Example 6 In the preparation of the anion exchange membrane of Example 1, the composition was changed to the composition described in Table 1 below, and the intensity of the UV exposure machine was changed from “60% intensity” to “100% intensity”. A film was formed in the same manner. In Table 1, a portion where no number is described means that it is not contained.
  • Electrode resistance of membrane ( ⁇ ⁇ cm 2 )] Wipe both sides of the membrane immersed in 0.6 M NaCl aqueous solution for about 2 hours with dry filter paper, and sandwich between two-chamber cell (effective membrane area 1 cm 2 , Ag / AgCl reference electrode (made by Metrohm) used as electrode) Both chambers are filled with 100 mL of the same concentration of NaCl, placed in a constant temperature water bath at 25 ° C. and allowed to reach equilibrium, and after the liquid temperature in the cell has reached 25 ° C. correctly, an AC bridge (frequency 1,000 Hz) ) To measure the electrical resistance r 1.
  • the measured NaCl concentrations were 0.6M, 0.7M, 1.5M, 3.5M, and 4.5M, and measured in order from the low concentration solution.
  • the electric resistance r 2 between the two electrodes was measured using only a 0.6 M NaCl aqueous solution, and the electric resistance r of the film was determined as r 1 -r 2 .
  • membrane electrical resistance is abbreviated as “membrane resistance”.
  • FIG. 1 represents a membrane
  • reference numerals 3 and 4 represent flow paths for a feed solution (pure water) and a draw solution (4M NaCl), respectively.
  • the arrow 2 indicates the flow of water separated from the feed solution.
  • 400 mL of the feed solution and 400 mL of the draw solution were brought into contact with each other through the membrane (membrane contact area 18 cm 2 ), and each solution was flowed at a flow rate of 0.11 cm / sec in the direction of the arrow 5 with a peristaltic pump.
  • the rate at which the water in the feed solution penetrates the draw solution through the membrane was analyzed by measuring the mass of the feed solution and the draw solution in real time, and the water permeability was determined.
  • the anion exchange membranes of Examples 1 to 18 that satisfy the provisions of the present invention have low values of product of membrane resistance and water permeability (5.0 ⁇ 10 ⁇ 5 to 7.7 ⁇ 10 ⁇ 5 ), which indicates that the membrane is a high performance anion exchange membrane.
  • the anion exchange membranes of Comparative Examples 1 to 3, 5, and 6 that do not satisfy the provisions of the present invention have particularly large membrane resistance, and the product of membrane resistance and water permeability is 1.0 ⁇ 10 ⁇ 4 to 1 .4 ⁇ 10 ⁇ 4 , both showing large values. From this, it can be said that the anion exchange membrane according to the present invention has a sufficient advantage.
  • the power generation efficiency decreases due to the high water permeability (water permeability).
  • the ion exchange membrane of the present invention has a product of membrane resistance and water permeability that is lower than that of conventional ion exchange membranes and can be suitably used as an ion conductive membrane for fuel cell applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)

Abstract

A polymer functional film which is obtained by photocuring a composition that contains a styrene monomer represented by general formula (HSM), a styrene crosslinking agent and a photoacid generator; and a method for producing the polymer functional film. In general formula (HSM), R represents a halogen atom or -N+(R1)(R2)(R3)(X1 -); n represents an integer of 1-10; each of R1-R3 represents an alkyl group or an aryl group; R1 and R2, or R1, R2 and R3 may combine together to form an aliphatic heterocyclic ring; and X1 - represents an organic or inorganic anion.)

Description

高分子機能性膜およびその製造方法Polymer functional membrane and method for producing the same
 本発明は、イオン交換膜、逆浸透膜、正浸透膜またはガス分離膜等に有用な高分子機能性膜およびその製造方法に関する。 The present invention relates to a polymer functional membrane useful for an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane, a gas separation membrane or the like, and a method for producing the same.
 高分子機能性膜として、各種の機能を有する膜として、イオン交換膜、逆浸透膜、正浸透膜またはガス分離膜等が知られている。
 例えば、イオン交換膜は、電気脱塩(EDI:Electrodeionization)、連続的な電気脱塩(CEDI:Continuous Electrodeionization)、電気透析(ED:Electrodialysis)、極性転換方式電気透析(EDR:Electrodialysis reversal)および逆電気透析(RED:Reverse Electrodialysis)等に用いられる。
 電気脱塩(EDI)は、イオン輸送を達成するために薄膜と電位を使用して、水性液体からイオンが取り除かれる水処理プロセスである。従来のイオン交換のような他の浄水技術と異なり、酸または苛性ソーダのような化学薬品の使用を要求せず、超純水を生産するために使用することができる。電気透析(ED)および極性転換方式電気透析(EDR)は、水および他の流体からイオン等を取り除く電気化学の分離プロセスである。
As a polymer functional membrane, an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane, a gas separation membrane, or the like is known as a membrane having various functions.
For example, ion exchange membranes can be used for electrodeionization (EDI), continuous electrodeionization (CEDI), electrodialysis (ED), electrodialysis reversal (EDR) and reverse. Used for electrodialysis (RED: Reverse Electrodialysis) and the like.
Electrodesalting (EDI) is a water treatment process in which ions are removed from an aqueous liquid using thin films and electrical potentials to achieve ionic transport. Unlike other water purification techniques such as conventional ion exchange, it does not require the use of chemicals such as acid or caustic soda and can be used to produce ultrapure water. Electrodialysis (ED) and polarity-changing electrodialysis (EDR) are electrochemical separation processes that remove ions and the like from water and other fluids.
 イオン交換膜のうち、スチレン系アニオン交換膜は、一般的に非イオン性モノマー(例えば、クロロメチルスチレン)と非イオン性架橋剤(例えば、ジビニルベンゼン)とを熱硬化し、さらにイオン化することで製造される(例えば、特許文献1および2を参照)。 Among ion exchange membranes, styrene-based anion exchange membranes are generally obtained by thermally curing a nonionic monomer (for example, chloromethylstyrene) and a nonionic crosslinking agent (for example, divinylbenzene) and further ionizing the ionic anion exchange membrane. Manufactured (see, for example, Patent Documents 1 and 2).
特開2000-212306号公報JP 2000-212306 A 特開2007-103372号公報JP 2007-103372 A
 本発明者らの研究によれば、特に、特許文献1、2に記載の方法では、(i)2つのステップ(熱硬化、イオン化)はいずれも反応が遅く、特に熱硬化反応では非常に長い時間を要するため製造コストが高い。(ii)製膜後のイオン化プロセスの反応性は、反応試薬が熱硬化された硬化膜中で反応するため、反応試薬の膜中への拡散性に依存することから、膜中に均一に拡散しないと電荷密度が不十分であったり、電荷密度に分布が生じたりする。従って、これまで一般的に用いられてきた方法で得られたアニオン交換膜は、膜抵抗が非常に高い。(iii)熱硬化に多用されているアゾ系開始剤がラジカルを発生して窒素ガスを放出することにより、窒素ガスにより膜欠陥を生じやすい。また、イオン化工程を省略するために、イオン性スチレンモノマーを用いると、非イオン性架橋剤との相溶性が悪く、従来の有機過酸化物による熱硬化では、架橋度が不均一になるという問題がある。
 このような問題点の解決を中心にさらに検討した。
 一方、特許文献1、2に記載の方法とは異なるアプローチとして、本発明者らによる検討でも、イオン性モノマー、イオン性架橋剤(チャージドクロスリンカー)および光ラジカル開始剤を用いた光ラジカル硬化プロセスでは、短時間で高電荷密度、低膜抵抗のイオン交換膜が得られることを見出している。しかし、この方法では、酸素阻害を受けるため、高露光量のUVによって短時間で硬化する必要がある。このため、反応条件の管理を厳密に行わないと、要求されるイオン交換膜の均質性が得られない場合がある。
According to the studies by the present inventors, in particular, in the methods described in Patent Documents 1 and 2, (i) the two steps (thermosetting and ionization) are slow in reaction, and particularly in thermosetting reactions, they are very long. The manufacturing cost is high because time is required. (Ii) The reactivity of the ionization process after film formation depends on the diffusibility of the reaction reagent into the film because the reaction reagent reacts in the heat-cured film. Otherwise, the charge density is insufficient or the charge density is distributed. Therefore, an anion exchange membrane obtained by a method generally used so far has a very high membrane resistance. (Iii) The azo-based initiator frequently used for thermosetting generates radicals and releases nitrogen gas, so that film defects are easily caused by nitrogen gas. In addition, if an ionic styrene monomer is used in order to omit the ionization step, the compatibility with the nonionic crosslinking agent is poor, and the degree of cross-linking becomes non-uniform in conventional heat curing with organic peroxides. There is.
Further investigations focused on solving these problems.
On the other hand, as an approach different from the methods described in Patent Documents 1 and 2, the photo radical curing process using an ionic monomer, an ionic crosslinker (charged crosslinker) and a photoradical initiator is also studied by the present inventors. Has found that an ion exchange membrane having a high charge density and a low membrane resistance can be obtained in a short time. However, since this method is subject to oxygen inhibition, it needs to be cured in a short time with a high exposure UV. For this reason, unless the reaction conditions are strictly managed, the required homogeneity of the ion exchange membrane may not be obtained.
 本発明は、短時間で低露光量の光照射により、製造コストを低く抑え、均質性、透水率および膜抵抗がいずれもバランス良く優れた高分子機能性膜およびその製造方法を提供することを課題とする。 The present invention provides a functional polymer film having a good balance of homogeneity, water permeability and film resistance, and a method for producing the same, by suppressing the production cost by light irradiation with a low exposure amount in a short time. Let it be an issue.
 本発明者らはさらに研究を重ねたところ、スチレン系イオン交換膜の製造では、単官能のスチレン系モノマーにスチレン系架橋剤を組み合わせた場合、モノマーがイオン性であるなしに係らず、光重合開始剤に光酸発生剤を用いると低い露光量の光を短時間照射することで、膜の均質性に優れ、高電荷密度、低膜抵抗、低透水率のイオン交換膜が得られることを見出した。本発明はこの知見に基づき完成された。 As a result of further research, the inventors of the present invention have made it possible to produce a styrene ion exchange membrane by combining photopolymerization with a monofunctional styrene monomer combined with a styrene crosslinking agent, regardless of whether the monomer is ionic or not. When a photoacid generator is used as an initiator, it is possible to obtain an ion exchange membrane with excellent film homogeneity, high charge density, low membrane resistance, and low water permeability by irradiating light with a low exposure amount for a short time. I found it. The present invention has been completed based on this finding.
 すなわち、本発明の上記課題は下記の手段により解決された。
<1>下記一般式(HSM)で表されるスチレン系モノマー、スチレン系架橋剤および光酸発生剤を含有する組成物を光硬化反応させてなる高分子機能性膜。
That is, the said subject of this invention was solved by the following means.
<1> A polymer functional film obtained by photocuring a composition containing a styrene monomer represented by the following general formula (HSM), a styrene crosslinking agent, and a photoacid generator.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(HSM)において、Rはハロゲン原子または-N(R)(R)(R)(X )を表す。nは1~10の整数を表す。ここで、R~Rは各々独立に、直鎖若しくは分岐のアルキル基またはアリール基を表す。RとR、またはR、RおよびRが互いに結合して脂肪族ヘテロ環を形成してもよい。X は有機または無機のアニオンを表す。
<2>-(CH)n-Rが下記一般式(ALX)で表される基であり、組成物を光硬化反応させた後、4級アンモニウム化剤である3級アミン化合物を反応させてなる<1>に記載の高分子機能性膜。
In the general formula (HSM), R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ). n represents an integer of 1 to 10. Here, R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group. R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle. X 2 - represents an organic or inorganic anion.
<2>-(CH 2 ) n—R is a group represented by the following general formula (ALX), and after the composition is photocured, a tertiary amine compound that is a quaternary ammonium agent is reacted. The polymer functional film according to <1>.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(ALX)において、Xはハロゲン原子を表す。n1は一般式(HSM)におけるnと同義である。
<3>スチレン系架橋剤が下記一般式(CL)で表される<1>または<2>に記載の高分子機能性膜。
In the general formula (ALX), X 1 represents a halogen atom. n1 is synonymous with n in the general formula (HSM).
<3> The polymer functional film according to <1> or <2>, wherein the styrene-based crosslinking agent is represented by the following general formula (CL).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(CL)において、Lはアルキレン基またはアルケニレン基を表す。Ra、Rb、RcおよびRdは各々独立にアルキル基またはアリール基を表し、RaとRb、または/およびRcとRdが互いに結合して環を形成してもよい。n3は1~10の整数を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
<4>光酸発生剤が下記一般式(PAG1)または(PAG2)で表される<1>~<3>のいずれか1つに記載の高分子機能性膜。
In the general formula (CL), L 1 represents an alkylene group or an alkenylene group. Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring. n3 represents an integer of 1 to 10. X 3 - and X 4 - is independently represents an organic or inorganic anion.
<4> The polymeric functional film according to any one of <1> to <3>, wherein the photoacid generator is represented by the following general formula (PAG1) or (PAG2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(PAG1)または(PAG2)において、Ar~Arは各々独立に、置換若しくは無置換のアリール基を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
<5>組成物が、さらに下記一般式(AI)で表される重合開始剤を含有する<1>~<4>のいずれか1つに記載の高分子機能性膜。
In the general formula (PAG1) or (PAG2), Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group. X 5 - and X 6 - are each independently represents an organic or inorganic anion.
<5> The polymer functional film according to any one of <1> to <4>, wherein the composition further contains a polymerization initiator represented by the following general formula (AI).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(AI)において、R~Rは各々独立に、アルキル基を表し、Yは=Oまたは=N-Riを表す。Re~Riは各々独立に水素原子またはアルキル基を表す。ReとRf、RgとRh、ReとRi、RgとRiは、各々互いに結合して環を形成してもよい。
<6>組成物の全固形分100質量部に対し、Rがハロゲン原子または-N(R)(R)(R)(X )で表されるスチレン系モノマーであって、かつこのスチレン系モノマーの含有量が、1~85質量部である<1>、<3>~<5>のいずれか1つに記載の高分子機能性膜。
<7>組成物の全固形分100質量部に対し、スチレン系架橋剤含有量が10~100質量部である<2>~<6>のいずれか1つに記載の高分子機能性膜。
<8>組成物の全固形分100質量部に対し、光酸発生剤含有量が0.1~20質量部である<1>~<7>のいずれか1つに記載の高分子機能性膜。
<9>組成物が溶媒を含有する<1>~<8>のいずれか1つに記載の高分子機能性膜。
<10>溶媒が、水または水溶性溶媒である<9>に記載の高分子機能性膜。
<11>支持体を有する<1>~<10>のいずれか1つに記載の高分子機能性膜。
<12>支持体が合成織布もしくは合成不織布、スポンジ状フィルムまたは微細な貫通孔を有するフィルムである<11>に記載の高分子機能性膜。
<13>支持体がポリオレフィンである<11>または<12>に記載の高分子機能性膜。
<14>高分子機能性膜が、イオン交換膜、逆浸透膜、正浸透膜またはガス分離膜である<1>~<13>のいずれか1つに記載の高分子機能性膜。
<15>下記一般式(HSM)で表されるスチレン系モノマー、スチレン系架橋剤および光酸発生剤を含有する組成物を光硬化反応させる高分子機能性膜の製造方法。
In the general formula (AI), R 5 to R 8 each independently represents an alkyl group, and Y represents ═O or ═N—Ri. Re to Ri each independently represent a hydrogen atom or an alkyl group. Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
<6> A styrene monomer in which R is represented by a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ) with respect to 100 parts by mass of the total solid content of the composition, The functional polymer film according to any one of <1> and <3> to <5>, wherein the content of the styrene monomer is 1 to 85 parts by mass.
<7> The polymer functional film according to any one of <2> to <6>, wherein the content of the styrenic crosslinking agent is 10 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the composition.
<8> The polymer functionality according to any one of <1> to <7>, wherein the content of the photoacid generator is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition film.
<9> The polymer functional film according to any one of <1> to <8>, wherein the composition contains a solvent.
<10> The polymer functional film according to <9>, wherein the solvent is water or a water-soluble solvent.
<11> The polymer functional film according to any one of <1> to <10>, which has a support.
<12> The polymer functional membrane according to <11>, wherein the support is a synthetic woven fabric or synthetic nonwoven fabric, a sponge film, or a film having fine through holes.
<13> The polymer functional film according to <11> or <12>, wherein the support is a polyolefin.
<14> The polymer functional membrane according to any one of <1> to <13>, wherein the polymer functional membrane is an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane, or a gas separation membrane.
<15> A method for producing a functional polymer film, wherein a composition containing a styrene monomer represented by the following general formula (HSM), a styrene crosslinking agent, and a photoacid generator is photocured.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(HSM)において、Rはハロゲン原子または-N(R)(R)(R)(X )を表す。nは1~10の整数を表す。ここで、R~Rは各々独立に、直鎖若しくは分岐のアルキル基またはアリール基を表す。RとR、またはR、RおよびRが互いに結合して脂肪族ヘテロ環を形成してもよい。X は有機または無機のアニオンを表す。
<16>-(CH)n-Rが下記一般式(ALX)で表される基であり、組成物を光硬化反応させた後、4級アンモニウム化剤である3級アミン化合物を反応させる<15>に記載の高分子機能性膜の製造方法。
In the general formula (HSM), R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ). n represents an integer of 1 to 10. Here, R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group. R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle. X 2 - represents an organic or inorganic anion.
<16>-(CH 2 ) nR is a group represented by the following general formula (ALX), and the composition is photocured and then reacted with a tertiary amine compound which is a quaternary ammonium agent. <15> The method for producing a functional polymer film according to <15>.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(ALX)において、Xはハロゲン原子を表す。n1は一般式(HSM)におけるnと同義である。
<17>スチレン系架橋剤が下記一般式(CL)で表される<15>または<16>に記載の高分子機能性膜の製造方法。
In the general formula (ALX), X 1 represents a halogen atom. n1 is synonymous with n in the general formula (HSM).
<17> The method for producing a functional polymer film according to <15> or <16>, wherein the styrene-based crosslinking agent is represented by the following general formula (CL).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(CL)において、Lはアルキレン基またはアルケニレン基を表す。Ra、Rb、RcおよびRdは各々独立にアルキル基またはアリール基を表し、RaとRb、または/およびRcとRdが互いに結合して環を形成してもよい。n3は1~10の整数を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
<18>光酸発生剤が下記一般式(PAG1)または(PAG2)で表される<15>~<18>のいずれか1つに記載の高分子機能性膜の製造方法。
In the general formula (CL), L 1 represents an alkylene group or an alkenylene group. Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring. n3 represents an integer of 1 to 10. X 3 - and X 4 - is independently represents an organic or inorganic anion.
<18> The method for producing a functional polymer film according to any one of <15> to <18>, wherein the photoacid generator is represented by the following general formula (PAG1) or (PAG2).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(PAG1)または(PAG2)において、Ar~Arは各々独立に、置換若しくは無置換のアリール基を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
<19>組成物が、さらに下記一般式(AI)で表される重合開始剤を含有する<15>~<18>のいずれか1つに記載の高分子機能性膜の製造方法。
In the general formula (PAG1) or (PAG2), Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group. X 5 - and X 6 - are each independently represents an organic or inorganic anion.
<19> The method for producing a functional polymer film according to any one of <15> to <18>, wherein the composition further contains a polymerization initiator represented by the following general formula (AI).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(AI)において、R~Rは各々独立に、アルキル基を表し、Yは=Oまたは=N-Riを表す。Re~Riは各々独立に水素原子またはアルキル基を表す。ReとRf、RgとRh、ReとRi、RgとRiは、各々互いに結合して環を形成してもよい。
<20>組成物が溶媒を含有する<15>~<19>のいずれか1つに記載の高分子機能性膜の製造方法。
<21>溶媒が、水または水溶性溶媒である<20>に記載の高分子機能性膜の製造方法。
<22>組成物を支持体に塗布および/または含浸させた後に硬化反応させる<15>~<21>のいずれか1つに記載の高分子機能性膜の製造方法。
<23>硬化反応が、組成物にエネルギー線照射および加熱して重合する硬化反応である<15>~<22>のいずれか1つに記載の高分子機能性膜の製造方法。
<24>硬化反応が、組成物にエネルギー線照射した後に加熱して重合する硬化反応である<15>~<23>いずれか1つに記載の高分子機能性膜の製造方法。
In the general formula (AI), R 5 to R 8 each independently represents an alkyl group, and Y represents ═O or ═N—Ri. Re to Ri each independently represent a hydrogen atom or an alkyl group. Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
<20> The method for producing a functional polymer film according to any one of <15> to <19>, wherein the composition contains a solvent.
<21> The method for producing a functional polymer film according to <20>, wherein the solvent is water or a water-soluble solvent.
<22> The method for producing a functional polymer film according to any one of <15> to <21>, wherein the composition is applied and / or impregnated on a support and then cured.
<23> The method for producing a functional polymer film according to any one of <15> to <22>, wherein the curing reaction is a curing reaction in which the composition is polymerized by irradiation with energy rays and heating.
<24> The method for producing a functional polymer film according to any one of <15> to <23>, wherein the curing reaction is a curing reaction in which the composition is heated and polymerized after irradiation with energy rays.
 本明細書において、後述の「空孔体積分率」とは、5つの異なる濃度のNaCl溶液で高分子機能性膜(以下、単に「膜」と称することもある。)の電気抵抗を測定し、各濃度のNaCl溶液に浸漬させた際の膜の導電率をA(S/cm)、各NaCl濃度溶液の単位膜厚あたりの導電率をB(S/cm)とし、Aをy軸に、Bをx軸とした時のy切片をCとした時、下記式(b)により算出される値をいう。 In the present specification, the “hole volume fraction” described later refers to the measurement of the electrical resistance of a polymer functional film (hereinafter sometimes simply referred to as “film”) using five NaCl solutions having different concentrations. , The conductivity of the film when immersed in NaCl solution of each concentration is A (S / cm 2 ), the conductivity per unit film thickness of each NaCl concentration solution is B (S / cm 2 ), and A is y The value calculated by the following formula (b) when the y intercept when B is the x axis and C is the axis.
   空孔体積分率=(A-C)/B   (b) Void volume fraction = (AC) / B (b)
 本発明における空孔は、標準的な走査型電子顕微鏡(SEM)の検出限界より小さく、検出限界が5nmのJeol JSM-6335F電界放射型SEMを用いても検出できないことから、平均空孔サイズは5nm未満であると考えられる。
 なお、SEMの検出限界よりも小さいことから、この空孔は原子間の隙間であることも考えられる。本明細書において、「空孔」とは、原子間の隙間をも含む意味である。
 この空孔は高分子機能性膜形成用組成物硬化時の組成物中の溶媒、中和水、塩または組成物硬化時の収縮により形成されたものであると考えられる。
Since the vacancies in the present invention are smaller than the detection limit of a standard scanning electron microscope (SEM) and cannot be detected using a Jeol JSM-6335F field emission SEM having a detection limit of 5 nm, the average vacancy size is It is considered to be less than 5 nm.
In addition, since it is smaller than the detection limit of SEM, it is considered that this vacancy is a gap between atoms. In the present specification, “vacancy” means to include a gap between atoms.
It is considered that the pores are formed by shrinkage at the time of curing the solvent, neutralized water, salt, or composition in the composition when the composition for forming a functional polymer film is cured.
 この空孔は、高分子機能性膜の内部に存在する任意の形状の空隙部分であり、独立孔および連続孔の両方を含む。「独立孔」とは、互いに独立した空孔のことをいい、膜の任意の表面と接していても良い。一方、「連続孔」とは、独立孔がつらなった空孔のことをいう。この連続孔は、膜の任意の表面から細孔が通路状に他の表面まで連続していてもよい。 The voids are void portions having an arbitrary shape existing inside the polymer functional film, and include both independent holes and continuous holes. “Independent holes” refer to holes that are independent of each other, and may be in contact with any surface of the film. On the other hand, “continuous hole” means a hole in which independent holes are formed. The continuous pores may be continuous from any surface of the membrane to other surfaces in the form of passages.
 さらに、本明細書において「~」とは、その前後に記載される数値を下限値および上限値として含む意味で使用される。
 また、各一般式において、特に断りがない限り、複数存在する同一符号の基がある場合、これらは互いに同一であっても異なってもよい。また、複数の部分構造の繰り返しがある場合は、これらの繰り返しは、互いに同一の繰り返しでも、また規定する範囲であれば、異なった繰り返しの混合であってもよい。
 さらに、各一般式における二重結合の置換様式である幾何異性体は、表示の都合上、異性体の一方を記載したとしても、特段の断りがない限り、E体であってもZ体であっても、これらの混合物であっても構わない。
Further, in the present specification, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
In each general formula, if there are a plurality of groups having the same symbol unless otherwise specified, they may be the same or different from each other. Further, when there are repetitions of a plurality of partial structures, these repetitions may be the same as each other, or may be a mixture of different repetitions as long as they are within the specified range.
Furthermore, the geometrical isomer which is the substitution mode of the double bond in each general formula is not limited to the E-form or the Z-form unless otherwise specified, even if one of the isomers is described for convenience of display. Or a mixture thereof.
 また、本明細書において「化合物」という語を末尾に付して呼ぶとき、あるいは特定の化合物をその名称や式で示すときには、化合物そのものに加え、その化学構造式中に解離性の部分構造有するのであれば、その塩、そのイオンを含む意味に用いる。また、本明細書において置換基に関して「基」という語を末尾に付して呼ぶとき、あるいは特定の化合物をその名称で呼ぶときには、その基もしくは化合物に任意の置換基を有していてもよい意味である。 Further, in this specification, when the term “compound” is added at the end, or when a specific compound is indicated by its name or formula, it has a dissociative partial structure in its chemical structural formula in addition to the compound itself. If it is, it is used in the meaning including its salt and its ion. Further, in this specification, when the term “group” is added to the end of the description, or when a specific compound is referred to by its name, the group or compound may have an arbitrary substituent. Meaning.
 本発明の高分子機能性膜は、均質性、透水率および膜抵抗がいずれもバランス良く優れる。さらに、本発明の高分子機能性膜の製造方法によれば、短時間のエネルギー照射等で、均質性、透水率および膜抵抗がいずれもバランス良く優れた高分子機能性膜を低い製造コストで製造することができる。 The polymer functional membrane of the present invention is excellent in uniformity, water permeability and membrane resistance. Furthermore, according to the method for producing a polymer functional membrane of the present invention, a polymer functional membrane having a good balance of homogeneity, water permeability and membrane resistance can be obtained at a low production cost by short-time energy irradiation or the like. Can be manufactured.
 本発明の上記および他の特徴ならびに利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
図1は、膜の透水率を測定するための装置の流路の模式図である。FIG. 1 is a schematic view of a flow path of an apparatus for measuring the water permeability of a membrane.
 本発明の高分子機能性膜は、イオン交換、逆浸透、正浸透、ガス分離等を行うために用いることができる。以下、本発明の好ましい実施形態について、本発明の高分子機能性膜がイオン交換膜としての機能を有する場合を例に挙げて説明する。 The polymer functional membrane of the present invention can be used for ion exchange, reverse osmosis, forward osmosis, gas separation and the like. Hereinafter, a preferred embodiment of the present invention will be described taking as an example the case where the polymer functional membrane of the present invention has a function as an ion exchange membrane.
 本発明の高分子機能性膜は、アニオン交換膜であることが好ましい。
 本発明の膜の厚さは、支持体を有する場合は支持体を含めて、30~250μmが好ましく、40~200μmがより好ましく、50~150μmが特に好ましい。
The polymer functional membrane of the present invention is preferably an anion exchange membrane.
In the case of having a support, the thickness of the membrane of the present invention is preferably 30 to 250 μm, more preferably 40 to 200 μm, particularly preferably 50 to 150 μm, including the support.
 本発明の高分子機能性膜は、膜または、支持体を有する場合は膜と多孔質支持体などの任意の多孔質補強材料の全乾燥質量に基づき、好ましくは1.5meq/g以上、より好ましくは2.0meq/g以上、特に好ましくは2.5meq/g以上のイオン交換容量を有する。イオン交換容量の上限に特に制限はないが、7.0meq/g以下であることが実際的である。ここで、meqはミリ当量である。 The polymer functional membrane of the present invention is preferably 1.5 meq / g or more based on the total dry mass of the membrane or any porous reinforcing material such as a membrane and a porous support when having a support. The ion exchange capacity is preferably 2.0 meq / g or more, particularly preferably 2.5 meq / g or more. The upper limit of the ion exchange capacity is not particularly limited, but is practically 7.0 meq / g or less. Here, meq is milliequivalent.
 本発明の膜は、乾燥膜の面積に基づき、好ましくは45meq/m以上、より好ましくは60meq/m以上、特に好ましくは75meq/m以上の電荷密度を有する。電荷密度の上限に特に制限はないが、1,750meq/m以下であることが実際的である。 Film of the present invention is based on the area of the dry film, preferably 45meq / m 2 or more, more preferably 60 meq / m 2 or more, particularly preferably a 75 mEq / m 2 or more charge density. The upper limit of the charge density is not particularly limited, but it is practical that it is 1,750 meq / m 2 or less.
 本発明の高分子機能性膜(アニオン交換膜)のClなどのアニオンに対する選択透過性は、好ましくは0.90を超え、より好ましくは0.93を超え、0.95を超え、理論値の1.0に近づくことが特に好ましい。 Cl polymeric functional film of the present invention (anion exchange membrane) - selective permeability to anions, such as, preferably greater than 0.90, more preferably greater than 0.93, greater than 0.95, the theoretical value It is particularly preferable that the value approaches 1.0.
 本発明の高分子機能性膜の電気抵抗(膜抵抗)は、2Ω・cm未満が好ましく、1.5Ω・cm未満がより好ましく、1.3Ω・cm未満が特に好ましい。電気抵抗は低いほど好ましく、実現できる範囲で最も低い値とすることが本発明の効果を奏する上で好ましい。電気抵抗の下限に特に制限はないが、0.1Ω・cm以上であることが実際的である。
 本発明の高分子機能性膜の水中での膨潤率(膨潤による寸法変化率)は、好ましくは30%未満、より好ましくは15%未満、特に好ましくは8%未満である。膨潤率は、硬化段階で硬化条件を選択することにより制御することができる。
The electrical resistance of the polymer functional film of the present invention (film resistor) is preferably less than 2 [Omega · cm 2, more preferably less than 1.5 [Omega · cm 2, less than 1.3Ω · cm 2 is particularly preferred. The lower the electrical resistance, the better, and the lowest value in the realizable range is preferable for achieving the effects of the present invention. Although there is no restriction | limiting in particular in the minimum of electrical resistance, it is practical that it is 0.1 ohm * cm < 2 > or more.
The swelling ratio (rate of dimensional change due to swelling) of the functional polymer film of the present invention in water is preferably less than 30%, more preferably less than 15%, and particularly preferably less than 8%. The swelling rate can be controlled by selecting curing conditions in the curing stage.
 電気抵抗、選択透過性および水中での膨潤率%は、Membrane Science,319,217~218(2008)、中垣正幸著,膜学実験法,193~195頁(1984)に記載されている方法により測定することができる。 The electrical resistance, the permselectivity and the swelling ratio in water are determined by the method described in Membrane Science, 319, 217-218 (2008), Masayuki Nakagaki, Membrane Experimental Method, pages 193-195 (1984). Can be measured.
 本発明の高分子機能性膜の透水率は、15×10-5ml/m/Pa/hr以下が好ましく、10×10-5ml/m/Pa/hr以下がより好ましく、8×10-5ml/m/Pa/hr以下が特に好ましい。透水率の下限に特に制限はないが、1×10-5ml/m/Pa/hr以上であることが実際的である。 The water permeability of the polymer functional membrane of the present invention is preferably 15 × 10 −5 ml / m 2 / Pa / hr or less, more preferably 10 × 10 −5 ml / m 2 / Pa / hr or less, and 8 × 10 −5 ml / m 2 / Pa / hr or less is particularly preferable. The lower limit of the water permeability is not particularly limited, but it is practical that it is 1 × 10 −5 ml / m 2 / Pa / hr or more.
 本発明の高分子機能性膜を構成するポリマーの質量平均分子量は、三次元架橋が形成されているため数十万以上であり、実質的に測定できない。一般的には無限大とみなされる。 The mass average molecular weight of the polymer constituting the polymer functional film of the present invention is several hundred thousand or more because three-dimensional crosslinking is formed, and cannot be measured substantially. Generally considered as infinite.
 本発明の高分子機能性膜は、(A)一般式(HSM)で表されるスチレン系モノマー、(B)スチレン系架橋剤および(C)光酸発生剤を必須成分として含有し、必要に応じて更に、(D)一般式(AI)で表される重合開始剤、(E)溶媒および(F)重合禁止剤等を含有する組成物を硬化反応して形成される。 The polymer functional film of the present invention contains (A) a styrene monomer represented by the general formula (HSM), (B) a styrene crosslinking agent, and (C) a photoacid generator as essential components. Accordingly, it is formed by a curing reaction of a composition containing (D) a polymerization initiator represented by the general formula (AI), (E) a solvent and (F) a polymerization inhibitor.
<(A)一般式(HSM)で表されるスチレン系モノマー>
 本発明における組成物に用いられる(A)スチレン系モノマーは、下記一般式(HSM)で表される。
<(A) Styrenic monomer represented by general formula (HSM)>
The (A) styrenic monomer used in the composition in the present invention is represented by the following general formula (HSM).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(HSM)において、Rはハロゲン原子または-N(R)(R)(R)(X )を表す。nは1~10の整数を表す。ここで、R~Rは各々独立に、直鎖若しくは分岐のアルキル基またはアリール基を表す。RとR、またはR、RおよびRが互いに結合して脂肪族ヘテロ環を形成してもよい。X は有機または無機のアニオンを表す。 In the general formula (HSM), R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ). n represents an integer of 1 to 10. Here, R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group. R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle. X 2 - represents an organic or inorganic anion.
 ここで、-(CH)n-Rは、下記一般式(ALX)で表される基と下記一般式(ALA)で表される基に分けることができる。 Here, — (CH 2 ) n—R can be divided into a group represented by the following general formula (ALX) and a group represented by the following general formula (ALA).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(ALX)、(ALA)において、Xはハロゲン原子を表し、R~RおよびX は一般式(HSM)におけるR~RおよびX と同義であり、好ましい範囲も同じである。n1およびn2はいずれも一般式(HSM)におけるnと同義であり好ましい範囲も同じである。 Formula (ALX), in (ALA), X 1 represents a halogen atom, R 1 ~ R 3 and X 2 - is R 1 ~ in the general formula (HSM) R 3 and X 2 - in the above formula, preferred The range is the same. n1 and n2 are both synonymous with n in the general formula (HSM), and the preferred range is also the same.
 一般式(ALX)において、Xは、フッ素原子、塩素原子、臭素原子、沃素原子が挙げられ、フッ素原子、塩素原子、臭素原子が好ましく、塩素原子、臭素原子がより好ましく、塩素原子が特に好ましい。
 一般式(HMS)におけるn、一般式(ALX)におけるn1、一般式(ALA)におけるn2は、いずれも1または2が好ましく、1が特に好ましい。
In the general formula (ALX), X 1 includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, more preferably a chlorine atom and a bromine atom, and particularly preferably a chlorine atom. preferable.
As for n in general formula (HMS), n1 in general formula (ALX), and n2 in general formula (ALA), 1 or 2 is preferable, and 1 is particularly preferable.
 一般式(HMS)、(ALA)において、R~Rにおけるアルキル基は、炭素数は1~8が好ましく、1~4がより好ましく、1または2がさらに好ましい。アルキル基としては、例えば、メチル、エチル、イソプロピル、n-ブチル、2-エチルヘキシルが挙げられる。アルキル基は置換基を有してもよく、このような置換基としては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基等が挙げられる。
 R~Rにおけるアリール基は、炭素数は6~12が好ましく、6~10がより好ましく、6~8がさらに好ましい。アリール基は置換基を有してもよく、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基等が挙げられる。アリール基は、フェニル基が好ましい。
 R~Rは、なかでもアルキル基が好ましい。
In general formulas (HMS) and (ALA), the alkyl group in R 1 to R 3 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 or 2. Examples of the alkyl group include methyl, ethyl, isopropyl, n-butyl, and 2-ethylhexyl. The alkyl group may have a substituent, and examples of such a substituent include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group.
The aryl group in R 1 to R 3 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms. The aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group. The aryl group is preferably a phenyl group.
Of these, R 1 to R 3 are preferably alkyl groups.
 RとRが互いに結合して形成する環は5または6員環が好ましく、例えば、ピロリジン環、ピペリジン環、モルホリン環、チオモルホリン環、ピペラジン環等が挙げられる。
 R、RおよびRが互いに結合して形成する環としては、キヌクリジン環、トリエチレンジアミン環(1,4-ジアザビシクロ[2.2.2]オクタン環)が挙げられる。
The ring formed by combining R 1 and R 2 with each other is preferably a 5- or 6-membered ring, and examples thereof include a pyrrolidine ring, a piperidine ring, a morpholine ring, a thiomorpholine ring, and a piperazine ring.
Examples of the ring formed by combining R 1 , R 2 and R 3 with each other include a quinuclidine ring and a triethylenediamine ring (1,4-diazabicyclo [2.2.2] octane ring).
 一般式(HMS)、(ALA)において、X は有機または無機のアニオンを表すが、無機アニオンが好ましい。
 有機アニオンとしては、アルキルスルホン酸アニオン、アリールスルホン酸アニオン、アルキルもしくはアリールカルボン酸アニオンが挙げられ、例えば、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン、酢酸アニオンが挙げられる。
 無機アニオンとしてはハロゲンアニオン、硫酸ジアニオン、リン酸アニオンが挙げられ、ハロゲンアニオンが好ましい。ハロゲンアニオンのなかでも塩素アニオン、臭素アニオンが好ましく、塩素アニオンが特に好ましい。
In the general formulas (HMS) and (ALA), X 2 - represents an organic or inorganic anion, and an inorganic anion is preferred.
Examples of the organic anion include an alkyl sulfonate anion, an aryl sulfonate anion, an alkyl or aryl carboxylate anion, and examples thereof include a methane sulfonate anion, a benzene sulfonate anion, a toluene sulfonate anion, and an acetate anion.
Examples of inorganic anions include halogen anions, sulfate dianions, and phosphate anions, with halogen anions being preferred. Among the halogen anions, a chlorine anion and a bromine anion are preferable, and a chlorine anion is particularly preferable.
 一般式(ALX)または(ALA)で表される基のうち、一般式(ALX)で表される基が好ましい。 Of the groups represented by the general formula (ALX) or (ALA), the group represented by the general formula (ALX) is preferable.
 以下、一般式(HSM)において、-(CH)n-Rが一般式(ALA)で表される基の場合のスチレン系モノマーをスチレン系モノマー(SM)と称することもある。ここで、スチレン系モノマー(SM)の具体例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, in the general formula (HSM), a styrene monomer in the case where — (CH 2 ) n—R is a group represented by the general formula (ALA) may be referred to as a styrene monomer (SM). Here, although the specific example of a styrene-type monomer (SM) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 スチレン系モノマー(SM)の化合物は、特開2000-229917号公報、特開2000-212306号公報に記載の方法もしくはこれに準じた方法で合成できる。また、シグマ-アルドリッチ社等から市販品として入手することも可能である。 The styrene monomer (SM) compound can be synthesized by the method described in JP 2000-229917 A or JP 2000-212306 A or a method analogous thereto. It can also be obtained as a commercial product from Sigma-Aldrich.
 本実施形態の高分子機能性膜には、スチレン系モノマー(SM)を2種以上組み合わせて用いてもよい。 In the polymer functional film of the present embodiment, two or more styrene monomers (SM) may be used in combination.
 本発明において、膜を形成するための組成物の全固形分100質量部に対し、スチレン系モノマー(SM)含有量は、1~85質量部が好ましく、10~80質量部がより好ましく、20~75質量部が特に好ましい。 In the present invention, the styrene monomer (SM) content is preferably 1 to 85 parts by mass, more preferably 10 to 80 parts by mass, with respect to 100 parts by mass of the total solid content of the composition for forming a film. ˜75 parts by mass is particularly preferred.
 一般式(HSM)において、-(CH)n-Rが一般式(ALX)で表される基を表す場合、光硬化反応させた後、4級アンモニウム化剤である3級アミン化合物を反応させて高分子機能性膜をアニオン交換膜とすることが好ましい。 In the general formula (HSM), when — (CH 2 ) n—R represents a group represented by the general formula (ALX), after the photocuring reaction, a tertiary amine compound which is a quaternary ammonium agent is reacted. The polymer functional membrane is preferably an anion exchange membrane.
 本明細書において、以下、一般式(HSM)において、-(CH)n-Rが式(ALX)で表される基を表す場合、スチレン系モノマーをスチレン系モノマー(HSM)と称する。ここで、スチレン系モノマー(HSM)の具体例を示すが、本発明はこれらに限定されない。 In the present specification, hereinafter, in the general formula (HSM), when — (CH 2 ) n—R represents a group represented by the formula (ALX), the styrene monomer is referred to as a styrene monomer (HSM). Here, although the specific example of a styrene-type monomer (HSM) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本発明において、膜を形成するための組成物の全固形分100質量部に対し、スチレン系モノマー(HSM)含有量は、1~95質量部が好ましく、10~95質量部がより好ましく、20~95質量部が特に好ましい。 In the present invention, the styrene monomer (HSM) content is preferably 1 to 95 parts by mass, more preferably 10 to 95 parts by mass, with respect to 100 parts by mass of the total solid content of the composition for forming a film. -95 parts by mass are particularly preferred.
 次に、4級アンモニウム化剤である3級アミン化合物の具体例を示すが、本発明はこれらに限定されるものではない。 Next, specific examples of a tertiary amine compound that is a quaternary ammonium agent will be shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 硬化後の膜に4級アンモニウム化剤である3級アミン化合物を反応させる際の反応条件に特に制限はないが、通常硬化膜を3級アミン化合物溶液に浸漬させることで反応を行う。このときのアミン化合物溶液濃度は0.01モル/L~5.00モル/Lが好ましく、0.05モル/L~3.00モル/Lがより好ましく、0.10モル/L~1.00モル/Lが特に好ましい。
 硬化した膜を3級アミン化合物溶液に浸漬させる際の温度は、0~100℃が好ましく、10~80℃がより好ましく、20~60℃が特に好ましい。
 硬化した膜を3級アミン化合物溶液に浸漬させる時間は、0.5~24時間が好ましく、1~18時間がより好ましく、2~12時間が特に好ましい。
Although there is no restriction | limiting in particular in the reaction conditions at the time of making the tertiary amine compound which is a quaternary ammonium agent react with the film | membrane after hardening, Usually, it reacts by immersing a cured film in a tertiary amine compound solution. The amine compound solution concentration at this time is preferably 0.01 mol / L to 5.00 mol / L, more preferably 0.05 mol / L to 3.00 mol / L, and more preferably 0.10 mol / L to 1.. 00 mol / L is particularly preferred.
The temperature at which the cured film is immersed in the tertiary amine compound solution is preferably 0 to 100 ° C, more preferably 10 to 80 ° C, and particularly preferably 20 to 60 ° C.
The time for immersing the cured film in the tertiary amine compound solution is preferably 0.5 to 24 hours, more preferably 1 to 18 hours, and particularly preferably 2 to 12 hours.
(B)スチレン系架橋剤
 本発明の高分子機能性膜に用いられる(B)スチレン系架橋剤は特に制限されない。本発明において、ジビニルスチレン等の一般的な架橋剤や下記一般式(CL)で表される化合物が好ましく用いられる。
(B) Styrenic crosslinking agent (B) The styrene crosslinking agent used for the polymer functional film of the present invention is not particularly limited. In the present invention, a general crosslinking agent such as divinylstyrene or a compound represented by the following general formula (CL) is preferably used.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(CL)において、Lはアルキレン基またはアルケニレン基を表す。Ra、Rb、RcおよびRdは各々独立にアルキル基またはアリール基を表し、RaとRb、または/およびRcとRdが互いに結合して環を形成してもよい。n3は1~10の整数を表す。X およびX は各々独立に、有機または無機のアニオンを表す。 In the general formula (CL), L 1 represents an alkylene group or an alkenylene group. Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring. n3 represents an integer of 1 to 10. X 3 - and X 4 - is independently represents an organic or inorganic anion.
 Lにおけるアルキレン基は、炭素数2または3が好ましく、エチレン、プロピレンが挙げられる。アルキレン基は置換基を有してもよく、このような置換基としては、アルキル基が挙げられる。
 Lにおけるアルケニレン基は炭素数2または3が好ましく、2がより好ましく、なかでもエテニレン基が好ましい。
 Lで形成される環は、ピペラジン環が好ましい。
 Ra、Rb、RcおよびRdにおけるアルキル基、アリール基はR~Rにおけるアルキル基、アリール基の好ましい範囲が好ましい。
The alkylene group for L 1 preferably has 2 or 3 carbon atoms, and examples thereof include ethylene and propylene. The alkylene group may have a substituent, and examples of such a substituent include an alkyl group.
The alkenylene group in L 1 preferably has 2 or 3 carbon atoms, more preferably 2, particularly an ethenylene group.
The ring formed by L 1 is preferably a piperazine ring.
The alkyl group and aryl group in Ra, Rb, Rc and Rd are preferably in the preferred range of the alkyl group and aryl group in R 2 to R 4 .
 Ra、Rb、RcおよびRdはなかでもアルキル基が好ましく、メチルが特に好ましい。
 RaおよびRb、RcおよびRdは各々互いに結合して環を形成してもよく、トリエチレンジアミン環(1,4-ジアザビシクロ[2.2.2]オクタン環)が特に好ましい。
Of these, Ra, Rb, Rc and Rd are preferably alkyl groups, and methyl is particularly preferred.
Ra and Rb, Rc and Rd may be bonded to each other to form a ring, and a triethylenediamine ring (1,4-diazabicyclo [2.2.2] octane ring) is particularly preferable.
 n3は1または2が好ましく、1が特に好ましい。
 X およびX はX と同義であり、好ましい範囲も同じである。
n3 is preferably 1 or 2, and 1 is particularly preferable.
X 3 - and X 4 - is X 2 - in the above formula, the preferred range is also the same.
 以下に、一般式(CL)で表される架橋剤の具体例を示すが、本発明はこれらに限定されるものではない。 Specific examples of the crosslinking agent represented by the general formula (CL) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(CL)で表される架橋剤は、特開2000-229917号公報に記載の方法もしくはこれに準じた方法で合成できる。 The crosslinking agent represented by the general formula (CL) can be synthesized by the method described in JP-A No. 2000-229917 or a method analogous thereto.
 本実施形態の高分子機能性膜には、(B)一般式(CL)で表される架橋剤を2種以上組み合わせて用いてもよい。 In the polymer functional film of the present embodiment, (B) two or more kinds of crosslinking agents represented by the general formula (CL) may be used in combination.
 本発明において、膜を形成するための組成物の全固形分100質量部に対し、(B)一般式(CL)で表される架橋剤含有量は、10~100質量部が好ましく、15~90質量部がより好ましく、20~80質量部が特に好ましい。 In the present invention, the content of the crosslinking agent represented by (B) the general formula (CL) is preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a film, 90 parts by mass is more preferable, and 20 to 80 parts by mass is particularly preferable.
 本発明の膜を形成するための組成物において、(A)一般式(HSM)で表されるスチレン系モノマーと(B)一般式(CL)で表される架橋剤とのモル比は、1/0.1~1/55が好ましく、1/0.14~1/55がより好ましく、1/0.3~1/55が特に好ましい。 In the composition for forming a film of the present invention, the molar ratio of (A) the styrenic monomer represented by the general formula (HSM) and (B) the crosslinking agent represented by the general formula (CL) is 1 /0.1 to 1/55 is preferable, 1 / 0.14 to 1/55 is more preferable, and 1 / 0.3 to 1/55 is particularly preferable.
 本発明において、(A)一般式(HSM)で表されるスチレン系モノマーと(B)一般式(CL)で表される架橋剤が反応して形成されるポリマーの架橋密度は、0.4~2mmol/gが好ましく、0.5~2mmol/gがより好ましく、1.0~2mmol/gが特に好ましい。
 架橋密度がこのような範囲内にあると、膜含水率が低下し透水率が下がり、且つ膜抵抗も小さいという点で好ましい。
In the present invention, the crosslink density of the polymer formed by reacting the styrene monomer represented by (A) the general formula (HSM) and the crosslinker represented by (B) the general formula (CL) is 0.4. ˜2 mmol / g is preferred, 0.5˜2 mmol / g is more preferred, and 1.0˜2 mmol / g is particularly preferred.
When the crosslinking density is within such a range, the membrane water content is decreased, the water permeability is decreased, and the membrane resistance is also small.
 本発明の高分子機能性膜に用いられる(C)光酸発生剤は特に制限されないが、下記一般式(PAG1)または一般式(PAG2)で表される化合物が好ましい。 The photoacid generator (C) used in the polymer functional film of the present invention is not particularly limited, but a compound represented by the following general formula (PAG1) or general formula (PAG2) is preferable.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 一般式(PAG1)、一般式(PAG2)において、Ar~Arは各々独立に、置換若しくは無置換のアリール基を表す。X およびX は有機または無機のアニオンを表す。X およびX はX と同義であり、好ましい範囲も同じである。
 Ar~Arにおけるアリール基は、炭素数は6~12が好ましく、6~10がより好ましく、6~8がさらに好ましい。アリール基は置換基を有してもよく、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基、アルキルチオ基、アリールチオ基等が挙げられる。アリール基は、フェニル基が好ましい。
In the general formulas (PAG1) and (PAG2), Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group. X 5 - and X 6 - represent an organic or inorganic anion. X 5 - and X 6 - is X 2 - in the above formula, the preferred range is also the same.
The aryl group in Ar 1 to Ar 5 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms. The aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxy group, an alkylthio group, and an arylthio group. The aryl group is preferably a phenyl group.
 以下、一般式(PAG1)または一般式(PAG2)で表される光酸発生剤の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, although the specific example of the photo-acid generator represented by general formula (PAG1) or general formula (PAG2) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 本発明の組成物において、一般式(PAG1)または一般式(PAG2)で表される光酸発生剤と下記一般式(PAG3)で表される光酸発生剤を併用することもできる。 In the composition of the present invention, a photoacid generator represented by the general formula (PAG1) or the general formula (PAG2) and a photoacid generator represented by the following general formula (PAG3) can be used in combination.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 一般式(PAG3)において、ArおよびArは各々独立に、置換若しくは無置換アルキル基又またはアリール基を表す。
 ArおよびArにおけるアルキル基は、炭素数1~10が好ましく、1~8が好ましく、1~6がさらに好ましい。アルキル基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、シクロペンチル、シクロヘキシルが挙げられる。これらのアルキル基は鎖状でも環状(すなわち、シクロアルキル基)でもよく、鎖状の場合には、直鎖でも分岐していてもよい。また、置換基を有してもよく、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基等が挙げられる。
 ArおよびArにおけるアリール基は、炭素数は6~12が好ましく、6~10がより好ましく、6~8がさらに好ましい。アリール基は置換基を有してもよく、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基等が挙げられる。アリール基は、フェニル基が好ましい。
In General Formula (PAG3), Ar 6 and Ar 7 each independently represent a substituted or unsubstituted alkyl group or an aryl group.
The alkyl group for Ar 6 and Ar 7 preferably has 1 to 10 carbon atoms, preferably 1 to 8 carbon atoms, and more preferably 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclopentyl, and cyclohexyl. These alkyl groups may be chain-like or cyclic (that is, cycloalkyl group), and in the case of a chain-like, they may be linear or branched. Moreover, you may have a substituent and a halogen atom, an alkyl group, an aryl group, an alkoxy group, a hydroxy group etc. are mentioned.
The aryl group in Ar 6 and Ar 7 preferably has 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms, and still more preferably 6 to 8 carbon atoms. The aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group. The aryl group is preferably a phenyl group.
 以下、一般式(PAG3)で表される光酸発生剤の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, although the specific example of the photo-acid generator represented by general formula (PAG3) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 また、本発明において、下記一般式(PAG4)で表される光酸発生剤を単独または一般式(PAG1)~一般式(PAG3)で表される光酸発生剤と併用することもできる。 In the present invention, the photoacid generator represented by the following general formula (PAG4) can be used alone or in combination with the photoacid generator represented by the general formula (PAG1) to the general formula (PAG3).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 一般式(PAG4)において、ArおよびArは各々独立に、置換若しくは無置換のアリール基またはヘテロアリール基を表す。
 ArおよびArにおけるアリール基の炭素数は4~12が好ましく、4~10がより好ましく、4~8がさらに好ましい。アリール基は置換基を有してもよく、ハロゲン原子、アルキル基、アリール基、アルコキシ基、ヒドロキシ基等が挙げられる。アリール基は、フェニル基が好ましい。ArおよびArにおけるヘテロアリール基の炭素数は2~12が好ましく、3~10がより好ましい。ヘテロアリール基のヘテロ環は、5または6員感が好ましく、環構成ヘテロ原子は、酸素原子、硫黄原子、窒素原子が好ましい。ヘテロアリール基は、置換基が置換してもよく、例えば、アルキル基、ハロゲン置換アルキル基、アリール基、アルコキシ基が挙げられる。ヘテロアリール基のヘテロ環としては、フラン環、チオフェン環、ピロール環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環が挙げられる。
In General Formula (PAG4), Ar 8 and Ar 9 each independently represent a substituted or unsubstituted aryl group or heteroaryl group.
The number of carbon atoms of the aryl group in Ar 8 and Ar 9 is preferably 4 to 12, more preferably 4 to 10, and still more preferably 4 to 8. The aryl group may have a substituent, and examples thereof include a halogen atom, an alkyl group, an aryl group, an alkoxy group, and a hydroxy group. The aryl group is preferably a phenyl group. The heteroaryl group in Ar 8 and Ar 9 preferably has 2 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms. The heterocycle of the heteroaryl group preferably has a 5- or 6-membered feeling, and the ring-constituting heteroatoms are preferably oxygen atoms, sulfur atoms, and nitrogen atoms. The heteroaryl group may be substituted with a substituent, and examples thereof include an alkyl group, a halogen-substituted alkyl group, an aryl group, and an alkoxy group. Examples of the heterocycle of the heteroaryl group include a furan ring, a thiophene ring, a pyrrole ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, and a triazine ring.
 以下、一般式(PAG4)で表される光酸発生剤の具体例を示すが、本発明はこれらに限定されない。 Hereinafter, although the specific example of the photo-acid generator represented with general formula (PAG4) is shown, this invention is not limited to these.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 その他、本発明において、下記構造を有する光酸発生剤も用いることができる。 In addition, in the present invention, a photoacid generator having the following structure can also be used.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 本発明において、膜を形成するための組成物の全固形分100質量部に対し、光発生剤含有量は、0.1~20質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が特に好ましい。 In the present invention, the photogenerating agent content is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the total solid content of the composition for forming a film. 0.5 to 5 parts by mass is particularly preferable.
 本発明における組成物は、さらに(D)下記一般式(AI)で表される重合開始剤を含有すうことが好ましい。 The composition in the present invention preferably further contains (D) a polymerization initiator represented by the following general formula (AI).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 一般式(AI)において、R~Rは各々独立に、アルキル基を表し、Yは=Oまたは=N-Riを表す。Re~Riは各々独立に水素原子またはアルキル基を表す。ReとRf、RgとRh、ReとRi、RgとRiは、各々互いに結合して環を形成してもよい。 In the general formula (AI), R 5 to R 8 each independently represents an alkyl group, and Y represents ═O or ═N—Ri. Re to Ri each independently represent a hydrogen atom or an alkyl group. Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
 R~Rにおけるアルキル基は、炭素数1~8が好ましく、1~4がより好ましく、メチルが特に好ましい。
 Re~Riは水素原子、炭素数1~8のアルキル基が好ましい。
 ReとRf、RgとRh、ReとRi、RgとRiが互いに結合して形成される環は、5または6員環が好ましい。
 ReとRi、RgとRiが互いに結合して形成される環は、なかでもイミダゾリン環が好ましく、ReとRf、RgとRhが互いに結合して形成される環は、なかでもピロリジン環、ピペリジン環、ピペラジン環、モルホリン環、チオモルホリン環が好ましい。
The alkyl group for R 5 to R 8 preferably has 1 to 8 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably methyl.
Re to Ri are preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
The ring formed by combining Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri is preferably a 5- or 6-membered ring.
The ring formed by combining Re and Ri and Rg and Ri with each other is preferably an imidazoline ring, and the ring formed by combining Re and Rf and Rg and Rh with each other includes a pyrrolidine ring and a piperidine ring. Piperazine ring, morpholine ring, and thiomorpholine ring are preferable.
 Yは=N-Riが好ましい。 Y is preferably = N-Ri.
 以下に、一般式(AI)で表される重合開始剤の具体例を示すが、本発明はこれらに限定されるものではない。 Specific examples of the polymerization initiator represented by the general formula (AI) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 一般式(AI)で表される重合開始剤は、和光純薬工業株式会社より入手することができ、例示化合物(AI-1)はVA-061、例示化合物(AI-2)はVA-044、例示化合物(AI-3)はVA-046B、例示化合物(AI-4)はV-50、例示化合物(AI-5)はVA-067、例示化合物(AI-6)はVA-057、例示化合物(AI-7)はVA086(いずれも商品名)として市販されている。 The polymerization initiator represented by the general formula (AI) can be obtained from Wako Pure Chemical Industries, Ltd. The exemplary compound (AI-1) is VA-061 and the exemplary compound (AI-2) is VA-044. The exemplified compound (AI-3) is VA-046B, the exemplified compound (AI-4) is V-50, the exemplified compound (AI-5) is VA-067, the exemplified compound (AI-6) is VA-057, Compound (AI-7) is commercially available as VA086 (both trade names).
 本発明において、膜を形成するための組成物の全固形分100質量部に対し、(D)一般式(AI)で表される重合開始剤含有量は、0.1~20質量部が好ましく、0.1~10質量部がより好ましく、0.5~5質量部が特に好ましい。 In the present invention, the content of the polymerization initiator represented by the general formula (AI) is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a film. 0.1 to 10 parts by mass is more preferable, and 0.5 to 5 parts by mass is particularly preferable.
(E)溶媒
 本発明の膜を形成するための組成物は(E)溶媒を含有していてもよい。
 本発明において、組成物中の(E)溶媒の含有量は、全組成物100質量部に対し、5~60質量部が好ましく、10~40質量部がより好ましい。
 溶媒の含有量をこの範囲にすることで、組成物の粘度が上昇することなく、均一な膜を製造できる。また、ピンホール(微小な欠陥穴)の発生が抑えられる。
(E) Solvent The composition for forming the film of the present invention may contain (E) a solvent.
In the present invention, the content of the solvent (E) in the composition is preferably 5 to 60 parts by mass and more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the total composition.
By setting the content of the solvent within this range, a uniform film can be produced without increasing the viscosity of the composition. In addition, the occurrence of pinholes (fine defect holes) can be suppressed.
 (E)溶媒は、水に対する溶解度が5質量%以上であるものが好ましく用いられ、さらには水に対して自由に混合するものが好ましい。このため、水および水溶性溶媒から選択される溶媒が好ましい。水溶性溶媒としては、特に、アルコール系溶媒、非プロトン性極性溶媒であるエーテル系溶媒、アミド系溶媒、ケトン系溶媒、スルホキシド系溶媒、スルホン系溶媒、二トリル系溶媒、有機リン系溶媒が好ましい。水およびアルコール系溶媒が好ましく、アルコール系溶媒としては例えばメタノール、エタノール、イソプロパノール、n-ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコールなどが挙げられる。アルコール系溶媒の中では、エタノール、イソプロパノール、n-ブタノール、エチレングリコールがより好ましく、イソプロパノールが特に好ましい。これらは1種類単独または2種類以上を併用して用いることができる。水単独または水と水溶性溶媒の併用が好ましく、水単独または水と少なくとも一つのアルコール系溶媒の併用がより好ましい。水と水溶性溶媒の併用においては、水100質量%に対し、イソプロパノール0.1~10質量%が好ましく、0.5~5質量%がより好ましく、1.0~2.0質量%がさらに好ましい。
 また、非プロトン性極性溶媒としては、ジメチルスルホキシド、ジメチルイミダゾリジノン、スルホラン、N-メチルピロリドン、ジメチルホルムアミド、アセトニトリル、アセトン、ジオキサン、テトラメチル尿素、ヘキサメチルホスホロトリアミド、ピリジン、プロピオニトリル、ブタノン、シクロヘキサノン、テトラヒドロフラン、テトラヒドロピラン、エチレングリコールジアセテート、γ-ブチロラクトン等が好ましい溶媒として挙げられ、中でもジメチルスルホキシド、N-メチルピロリドン、ジメチルホルムアミド、ジメチルイミダゾリジノン、スルホラン、アセトンまたはアセトニトリル、テトラヒドロフランが好ましい。これらは1種類単独または2種類以上を併用して用いることができる。
(E) As the solvent, a solvent having a solubility in water of 5% by mass or more is preferably used, and a solvent that is freely mixed with water is preferable. For this reason, a solvent selected from water and a water-soluble solvent is preferred. As the water-soluble solvent, alcohol solvents, ether solvents that are aprotic polar solvents, amide solvents, ketone solvents, sulfoxide solvents, sulfone solvents, nitrile solvents, and organic phosphorus solvents are particularly preferable. . Water and alcohol solvents are preferred. Examples of alcohol solvents include methanol, ethanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol and the like. Among alcohol solvents, ethanol, isopropanol, n-butanol, and ethylene glycol are more preferable, and isopropanol is particularly preferable. These can be used alone or in combination of two or more. Water alone or a combination of water and a water-soluble solvent is preferred, and water alone or a combination of water and at least one alcohol solvent is more preferred. In the combined use of water and a water-soluble solvent, 0.1 to 10% by mass of isopropanol is preferable with respect to 100% by mass of water, more preferably 0.5 to 5% by mass, and even more preferably 1.0 to 2.0% by mass. preferable.
Examples of aprotic polar solvents include dimethyl sulfoxide, dimethyl imidazolidinone, sulfolane, N-methylpyrrolidone, dimethylformamide, acetonitrile, acetone, dioxane, tetramethylurea, hexamethylphosphorotriamide, pyridine, propionitrile, Preferred examples of the solvent include butanone, cyclohexanone, tetrahydrofuran, tetrahydropyran, ethylene glycol diacetate, and γ-butyrolactone. Among them, dimethylsulfoxide, N-methylpyrrolidone, dimethylformamide, dimethylimidazolidinone, sulfolane, acetone or acetonitrile, and tetrahydrofuran are preferable. preferable. These can be used alone or in combination of two or more.
(F)重合禁止剤
 本発明の膜を形成するための組成物は、膜を形成する際の塗布液に安定性を付与するために、重合禁止剤を含むことも好ましい。
 重合禁止剤としては、公知の重合禁剤が使用でき、フェノール化合物、ハイドロキノン化合物、アミン化合物、メルカプト化合物、ニトロキシルラジカル化合物などが挙げられる。
 フェノール化合物としては、ヒンダードフェノール(オルト位にt-ブチル基を有するフェノールで、代表的には、2,6-ジ-t-ブチル-4-メチルフェノールが挙げられる)、ビスフェノールが挙げられる。ハイドロキノン化合物の具体例としては、モノメチルエーテルハイドロキノンが挙げられる。また、アミン化合物の具体例としては、N-ニトロソ―N-フェニルヒドロキシルアミン、N,N-ジエチルヒドロキシルアミン等が挙げられる。ニトロキシルラジカル化合物の具体例としては、4-ヒドロキシTEMPO(4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル フリーラジカル)などが挙げられる。
 なお、これらの重合禁止剤は、1種単独または2種以上を組み合わせて使用しても良い。
 重合禁止剤の含有量は、組成物中の全固形分100質量部に対し、0.01~5質量部か好ましく、0.01~1質量部がより好ましく、0.01~0.5質量部がさらに好ましい。
(F) Polymerization inhibitor The composition for forming a film of the present invention preferably contains a polymerization inhibitor in order to impart stability to the coating solution used to form the film.
As the polymerization inhibitor, a known polymerization inhibitor can be used, and examples thereof include a phenol compound, a hydroquinone compound, an amine compound, a mercapto compound, and a nitroxyl radical compound.
Examples of the phenol compound include hindered phenol (phenol having a t-butyl group at the ortho position, typically 2,6-di-t-butyl-4-methylphenol) and bisphenol. Specific examples of the hydroquinone compound include monomethyl ether hydroquinone. Specific examples of the amine compound include N-nitroso-N-phenylhydroxylamine, N, N-diethylhydroxylamine and the like. Specific examples of the nitroxyl radical compound include 4-hydroxy TEMPO (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical) and the like.
These polymerization inhibitors may be used singly or in combination of two or more.
The content of the polymerization inhibitor is preferably 0.01 to 5 parts by weight, more preferably 0.01 to 1 part by weight, and more preferably 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the total solid content in the composition. Part is more preferable.
〔その他の成分等〕
 本発明の膜を形成するための組成物は、成分(A)~(F)の他に、界面活性剤、高分子分散剤およびクレーター防止剤等を含んでいてもよい。
[Other ingredients]
The composition for forming a film of the present invention may contain a surfactant, a polymer dispersant, an anti-crater agent and the like in addition to the components (A) to (F).
[界面活性剤]
 本発明の膜を形成するための組成物には、膜物性を調整するため、各種高分子化合物を添加することもできる。高分子化合物としては、アクリル系重合体、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。
 また、液物性調整のためにノニオン性界面活性剤、カチオン性界面活性剤や、有機フルオロ化合物などを添加することもできる。
[Surfactant]
Various polymer compounds can be added to the composition for forming the film of the present invention in order to adjust film properties. High molecular compounds include acrylic polymers, polyurethane resins, polyamide resins, polyester resins, epoxy resins, phenol resins, polycarbonate resins, polyvinyl butyral resins, polyvinyl formal resins, shellac, vinyl resins, acrylic resins, rubber resins. Waxes and other natural resins can be used. Two or more of these may be used in combination.
Further, nonionic surfactants, cationic surfactants, organic fluoro compounds, and the like can be added to adjust liquid properties.
 界面活性剤の具体例としては、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、高級脂肪酸塩、高級脂肪酸エステルのスルホン酸塩、高級アルコールエーテルの硫酸エステル塩、高級アルコールエーテルのスルホン酸塩、高級アルキルスルホンアミドのアルキルカルボン酸塩、アルキルリン酸塩などのアニオン界面活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アセチレングリコールのエチレンオキサイド付加物、グリセリンのエチレンオキサイド付加物、ポリオキシエチレンソルビタン脂肪酸エステルなどの非イオン性界面活性剤、また、この他にもアルキルベタインやアミドベタインなどの両性界面活性剤、シリコン系界面活性剤、フッ素系界面活性剤などを含めて、従来公知である界面活性剤およびその誘導体から適宜選ぶことができる。 Specific examples of the surfactant include alkylbenzene sulfonate, alkylnaphthalene sulfonate, higher fatty acid salt, sulfonate of higher fatty acid ester, sulfate ester of higher alcohol ether, sulfonate of higher alcohol ether, higher alkyl Anionic surfactants such as alkyl carboxylates of sulfonamides, alkyl phosphates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, ethylene oxide adducts of acetylene glycol, Nonionic surfactants such as ethylene oxide adducts of glycerin and polyoxyethylene sorbitan fatty acid esters, and other amphoteric boundaries such as alkyl betaines and amide betaines Active agents, silicone surface active agent, including a fluorine-based surfactant, can be appropriately selected from surfactants and derivatives thereof are known.
[高分子分散剤]
 本発明の膜を形成するための組成物は高分子分散剤を含んでいてもよい。
 高分子分散剤として、具体的にはポリビニルピロリドン、ポリビニルアルコール、ポリビニルメチルエーテル、ポリエチレンオキシド、ポリエチレングリコール、ポリプロピレングリコール、ポリアクリルアミド等が挙げられ、中でもポリビニルピロリドンを用いることも好ましい。
[Polymer dispersant]
The composition for forming the film of the present invention may contain a polymer dispersant.
Specific examples of the polymer dispersant include polyvinyl pyrrolidone, polyvinyl alcohol, polyvinyl methyl ether, polyethylene oxide, polyethylene glycol, polypropylene glycol, and polyacrylamide. Among them, polyvinyl pyrrolidone is also preferably used.
[クレーター防止剤]
 クレーター防止剤とは、表面調整剤、レベリング剤またはスリップ剤とも称し、膜表面の凹凸を防止するものであり、例えば、有機変性ポリシロキサン(ポリエーテルシロキサンとポリエーテルの混合物)、ポリエーテル変性ポリシロキサンコポリマー、シリコン変性コポリマーの構造の化合物が挙げられる。
 市販品としては、例えば、Evonik industries社製のTego Glide 432、同110、同110、同130、同406、同410、同411、同415、同420、同435、同440、同450、同482、同A115、同B1484、同ZG400(いずれも商品名)が挙げられる。
 クレーター防止剤は、組成物中の全固形分100質量部に対し、0~10質量部が好ましく、0~5質量部がより好ましく、1~2質量部がさらに好ましい。
[Anti-crater]
Anti-crater agent is also called surface conditioner, leveling agent or slip agent, and prevents unevenness on the film surface. For example, organic modified polysiloxane (mixture of polyether siloxane and polyether), polyether modified poly Examples thereof include compounds having a structure of siloxane copolymer or silicon-modified copolymer.
Examples of commercially available products include, for example, Tego Glide 432, 110, 110, 130, 406, 410, 411, 415, 420, 435, 440, 450, and the like manufactured by Evonik Industries. 482, A115, B1484, and ZG400 (all are trade names).
The crater inhibitor is preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and even more preferably 1 to 2 parts by weight with respect to 100 parts by weight of the total solid content in the composition.
 上記以外に、本発明の膜を形成するための組成物は必要により、例えば、粘度向上剤、防腐剤を含有してもよい。 In addition to the above, the composition for forming the film of the present invention may contain, for example, a viscosity improver and a preservative, if necessary.
<支持体>
 とりわけ良好な機械的強度を有する本実施形態の膜を提供するために、多くの技術を用いることができる。例えば、膜の補強材料として支持体を用いることができ、好ましくは多孔質支持体を使用することができる。この多孔質支持体は、膜を形成するための組成物を塗布およびまたは含浸させた後硬化反応させることにより膜の一部を構成することができる。
 補強材料としての多孔質支持体としては、例えば、合成織布または合成不織布、スポンジ状フィルム、微細な貫通孔を有するフィルム等が挙げられる。本発明の多孔質支持体を形成する素材は、例えば、ポリオレフィン(ポリエチレン、ポリプロピレンなど)、ポリアクリロニトリル、ポリ塩化ビニル、ポリエステル、ポリアミドおよびそれらのコポリマーであるか、あるいは、例えばポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド、ポリイミド、ポリエーテルミド(polyethermide)、ポリアミド、ポリアミドイミド、ポリアクリロニトリル、ポリカーボネート、ポリアクリレート、酢酸セルロース、ポリプロピレン、ポリ(4-メチル-1-ペンテン)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリクロロトリフルオロエチレンおよびそれらのコポリマーに基づく多孔質膜であることができる。これらのうち、本発明では、ポリオレフィンが好ましい。
 市販の多孔質支持体および補強材料は、例えば、日本バイリーンやFreudenbergFiltration Technologies(Novatexx材料)およびSefar AGから市販されている。硬化前に多孔質補強材料を硬化性組成物に施用する態様では、多孔質補強材料が、硬化に用いられる波長の照射を通過させることができるものであり、および/または、硬化性組成物が、後述の段階(ii)で硬化されるように、多孔質補強材料に浸透することができるものが好ましい。
<Support>
Many techniques can be used to provide the membrane of this embodiment having particularly good mechanical strength. For example, a support can be used as the membrane reinforcing material, and a porous support can be preferably used. This porous support can constitute a part of the membrane by applying and / or impregnating the composition for forming the membrane and then performing a curing reaction.
Examples of the porous support as the reinforcing material include a synthetic woven fabric or synthetic nonwoven fabric, a sponge film, a film having fine through holes, and the like. The material forming the porous support of the present invention is, for example, polyolefin (polyethylene, polypropylene, etc.), polyacrylonitrile, polyvinyl chloride, polyester, polyamide and copolymers thereof, or, for example, polysulfone, polyethersulfone, Polyphenylene sulfone, polyphenylene sulfide, polyimide, polyetherimide, polyamide, polyamideimide, polyacrylonitrile, polycarbonate, polyacrylate, cellulose acetate, polypropylene, poly (4-methyl-1-pentene), polyvinylidene fluoride, polytetra A porous membrane based on fluoroethylene, polyhexafluoropropylene, polychlorotrifluoroethylene and their copolymers Door can be. Of these, polyolefins are preferred in the present invention.
Commercially available porous supports and reinforcement materials are commercially available from, for example, Japan Vilene, Freudenberg Filtration Technologies (Novatex material) and Separ AG. In an embodiment in which the porous reinforcing material is applied to the curable composition before curing, the porous reinforcing material is capable of passing irradiation of the wavelength used for curing and / or the curable composition is Those that can penetrate into the porous reinforcing material are preferred so as to be cured in the step (ii) described later.
 多孔質支持体は親水性を有することが好ましい。支持体に親水性を付与するための方法として、コロナ処理、オゾン処理、硫酸処理、シランカップリング剤処理などの一般的な方法を使用することができる。 It is preferable that the porous support has hydrophilicity. As a method for imparting hydrophilicity to the support, general methods such as corona treatment, ozone treatment, sulfuric acid treatment, and silane coupling agent treatment can be used.
[高分子機能性膜の製造方法]
 次に、本実施形態の高分子機能性膜の製造方法を説明する。
 本発明の高分子機能性膜の製造方法は、(A)一般式(HSM)で表されるスチレン系モノマー、(B)スチレン系架橋剤および(C)光酸発生剤を含有する組成物を光硬化反応させ膜を形成する。
[Method for producing polymer functional film]
Next, the manufacturing method of the polymeric functional film of this embodiment is demonstrated.
The method for producing a polymer functional film of the present invention comprises (A) a composition containing a styrene monomer represented by the general formula (HSM), (B) a styrene crosslinking agent, and (C) a photoacid generator. A photo-curing reaction is performed to form a film.
 本発明において、膜の空孔体積分率が好ましくは3%以下、より好ましくは2%以下、特に好ましくは1.5%以下となるように膜を製造することが好ましい。
 膜の空孔体積分率は架橋剤量および固形分濃度により調整することができる。
 膜の空孔体積分率がこのような範囲内にあることにより、膜の含水率が低下するという作用が生じ、塩漏れが抑制されるため好ましい。
In the present invention, it is preferable to produce the membrane such that the pore volume fraction of the membrane is preferably 3% or less, more preferably 2% or less, and particularly preferably 1.5% or less.
The pore volume fraction of the membrane can be adjusted by the amount of the crosslinking agent and the solid content concentration.
When the pore volume fraction of the membrane is within such a range, an effect that the moisture content of the membrane is lowered occurs, and salt leakage is suppressed, which is preferable.
 膜を形成するための組成物はさらに、(D)一般式(AI)で表される重合開始剤を含有することが好ましい。
 膜を形成するための組成物中に、さらに(E)溶媒を含み、組成物の全質量100質量部に対し、溶媒の含有量は5~50質量部が好ましい。
 また、(E)溶媒は、水または水溶性溶媒が好ましく、組成物を支持体に塗布および/または含浸させた後に硬化反応させることが好ましい。さらに、硬化反応は、組成物にエネルギー線照射および加熱して重合する硬化反応が好ましい。さらに、加熱はエネルギー線照射により形成した膜に行なうことが好ましい。
 本発明において加熱温度は40~120℃が好ましく、60~100℃がより好ましく、75~90℃が特に好ましい。また、エネルギー線照射後に加熱する場合の加熱時間は、1分~12時間が好ましく、1分~8時間がより好ましく、1分~6時間が特に好ましい。
The composition for forming a film preferably further contains (D) a polymerization initiator represented by the general formula (AI).
The composition for forming a film further contains (E) a solvent, and the content of the solvent is preferably 5 to 50 parts by mass with respect to 100 parts by mass of the total mass of the composition.
In addition, the solvent (E) is preferably water or a water-soluble solvent, and is preferably subjected to a curing reaction after the composition is applied to and / or impregnated on a support. Furthermore, the curing reaction is preferably a curing reaction in which the composition is polymerized by irradiation with energy rays and heating. Furthermore, heating is preferably performed on a film formed by energy beam irradiation.
In the present invention, the heating temperature is preferably 40 to 120 ° C, more preferably 60 to 100 ° C, and particularly preferably 75 to 90 ° C. The heating time when heating after irradiation with energy rays is preferably 1 minute to 12 hours, more preferably 1 minute to 8 hours, and particularly preferably 1 minute to 6 hours.
 以下、本発明の高分子機能性膜の製造方法の一例を詳細に説明する。
 本実施形態の高分子機能性膜は、支持体を固定して、バッチ式で調製することが可能であるが、支持体を移動させて、連続式で膜を調製することもできる。支持体は、連続的に巻き戻されるロール形状でもよい。なお、連続式で膜を調製する場合、連続的に動かされるベルト上に支持体を載せ、膜を調製することができる(または、これらの方法の組み合わせ)。そのような技術を用いると、本発明の上記組成物を連続式で支持体に塗布することができる。また、特定の工程をバッチ式にして組み合わせることで、バッチ式の工程を大規模にすることもできる。
 なお、支持体と別に、組成物を多孔質支持体に浸漬させ硬化反応が終わるまでの間、仮支持体(硬化反応終了後、仮支持体から膜を剥がす)を用いてもよい。
 このような仮支持体は、物質透過を考慮する必要がなく、例えば、PETフィルムやアルミ板等の金属板を含め、膜形成のために固定できるものであれば、どのようなものでも構わない。
 また、組成物を多孔質支持体に浸漬させ、多孔質支持体以外の支持体を用いずに硬化させることもできる。
Hereinafter, an example of the manufacturing method of the polymeric functional film of this invention is demonstrated in detail.
The polymer functional membrane of the present embodiment can be prepared in a batch manner by fixing the support, but the membrane can also be prepared in a continuous manner by moving the support. The support may be in the form of a roll that is continuously rewound. In addition, when preparing a film | membrane by a continuous type, a support body can be mounted on the belt moved continuously, and a film | membrane can be prepared (or combination of these methods). If such a technique is used, the said composition of this invention can be apply | coated to a support body by a continuous type. Moreover, a batch process can be enlarged on a large scale by combining specific processes into batch processes.
In addition, you may use a temporary support body (it peels a film | membrane from a temporary support body after completion | finish of hardening reaction) until a hardening reaction is completed by immersing a composition in a porous support body separately from a support body.
Such a temporary support does not need to consider material permeation, and may be any material as long as it can be fixed for film formation including a metal plate such as a PET film or an aluminum plate. .
Alternatively, the composition can be immersed in a porous support and cured without using a support other than the porous support.
 上記組成物は、任意の適した方法、例えば、カーテンコーティング、押し出しコーティング、エアナイフコーティング、スライドコーティング、ニップロールコーティング、フォワードロールコーティング、リバースロールコーティング、浸漬コーティング、キスコーティング、ロッドバーコーティングまたは噴霧コーティングにより、多孔質支持体層に施用することができる。多層のコーティングは、同時または連続して行うことができる。多層の同時コーティングには、カーテンコーティング、スライドコーティング、スロットダイコーティングおよび押し出しコーティングが好ましい。 The composition can be applied by any suitable method such as curtain coating, extrusion coating, air knife coating, slide coating, nip roll coating, forward roll coating, reverse roll coating, dip coating, kiss coating, rod bar coating or spray coating. It can be applied to the porous support layer. Multi-layer coating can be performed simultaneously or sequentially. For multilayer simultaneous coating, curtain coating, slide coating, slot die coating and extrusion coating are preferred.
 従って、連続式で高分子機能性膜を製造する場合、支持体を移動させながら、上記組成物を連続的に塗布する組成物塗布部を少なくとも含む製造ユニットにより製造するのが好ましく、組成物塗布部と、組成物を硬化するための照射源と、膜収集部と、支持体を組成物塗布部から照射源および膜収集部に移動させるための手段とを含む製造ユニットにより製造するのがより好ましい。 Therefore, when a polymer functional film is produced continuously, it is preferably produced by a production unit comprising at least a composition application part for continuously applying the above composition while moving the support. And a production unit comprising a radiation source for curing the composition, a film collection part, and means for moving the support from the composition application part to the radiation source and the film collection part. preferable.
 本製造例では、(i)本発明の膜を形成するための組成物を多孔質支持体に塗布およびまたは含浸し(ii)組成物を光照射、必要な場合これに加えてさらに加熱により硬化反応し、(iii)所望により膜を支持体から取り外す、という工程を経て本実施形態の高分子機能性膜が作成される。
 なお、(ii)において、加熱は光照射と同時に行ってもよく、また、光照射により形成後の膜に対して行なってもよい。
In this production example, (i) a composition for forming a film of the present invention is applied to and / or impregnated on a porous support, and (ii) the composition is irradiated with light, and if necessary, further cured by heating. The polymer functional membrane of this embodiment is produced through a process of reacting and (iii) removing the membrane from the support as desired.
In (ii), heating may be performed simultaneously with light irradiation, or may be performed on a film formed by light irradiation.
[エネルギー線照射]
 塗布、光照射、複合膜収集の工程順に高分子機能性膜が製造されることから、これらの設備の配置において、組成物塗布部は照射源より上流の位置に置かれ、照射源は複合膜収集ステーションに対し上流の位置に置かれる。
 高速コーティング機で塗布する際に十分な流動性を有するために、本発明の組成物の35℃での粘度は、4000mPa・s未満が好ましく、1~1000mPa・sがより好ましく、1~500mPa.sが最も好ましい。スライドビードコーティングの場合に35℃での粘度は1~100mPa・sが好ましい。
[Energy beam irradiation]
Since the functional polymer film is manufactured in the order of coating, light irradiation, and composite film collection, the composition application part is placed at a position upstream from the irradiation source in the arrangement of these facilities, and the irradiation source is the composite film. Located upstream of the collection station.
In order to have sufficient fluidity when applied with a high-speed coating machine, the viscosity of the composition of the present invention at 35 ° C. is preferably less than 4000 mPa · s, more preferably 1 to 1000 mPa · s, and more preferably 1 to 500 mPa · s. s is most preferred. In the case of slide bead coating, the viscosity at 35 ° C. is preferably 1 to 100 mPa · s.
 高速塗布技術を用いると、本発明の組成物を、15m/minを超える速度、例えば、20m/minを超える速度で塗布することができ、60m/min、120m/min、さらには最高400m/minでも塗布することができる。 Using high speed coating techniques, the compositions of the present invention can be applied at speeds exceeding 15 m / min, such as speeds exceeding 20 m / min, such as 60 m / min, 120 m / min and even up to 400 m / min. But it can be applied.
 特に機械的強度を高めるために支持体を使用する場合、支持体の表面の湿潤性および付着力を改善するために、コロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理などを行った支持体を用いるのが好ましい。 In particular, when using a support to increase the mechanical strength, support that has been subjected to corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, etc. in order to improve the wettability and adhesion of the surface of the support. It is preferable to use the body.
 硬化反応では、(A)一般式(HSM)において、-(CH)n-Rが一般式(ALX)で表される基を有するスチレン系モノマーおよび(B)一般式(CL)で表される架橋剤が重合してポリマー(膜)を形成する。膜を形成するための硬化反応時間は、30秒以内が好ましい。 In the curing reaction, (A) in the general formula (HSM),-(CH 2 ) n-R is represented by the styrenic monomer having a group represented by the general formula (ALX) and (B) the general formula (CL). The cross-linking agent is polymerized to form a polymer (film). The curing reaction time for forming the film is preferably within 30 seconds.
 本発明の組成物の硬化は、組成物を支持体層に塗布して、好ましくは60秒以内、より好ましくは15秒以内、特に5秒以内、最も好ましくは3秒以内に開始する。
 硬化の光照射は、好ましくは10秒未満、より好ましくは5秒未満、特に好ましくは3秒未満、最も好ましくは2秒未満である。連続式では、照射を連続的に行うため、組成物が照射ビームを通過して移動する速度を考慮して、硬化反応時間を決める。
Curing of the composition of the present invention is initiated within 60 seconds, more preferably within 15 seconds, especially within 5 seconds, most preferably within 3 seconds after the composition is applied to the support layer.
The curing light irradiation is preferably less than 10 seconds, more preferably less than 5 seconds, particularly preferably less than 3 seconds, and most preferably less than 2 seconds. In the continuous method, since the irradiation is continuously performed, the curing reaction time is determined in consideration of the speed at which the composition moves through the irradiation beam.
 強度の高いUV光を硬化反応に用いる場合、かなりの量の熱が発生するため、過熱を防ぐために、冷却用空気を光源のランプおよび/または支持体/膜に施用してもよい。著しい線量のIR光がUVビームと一緒に照射される場合、IR反射性石英プレートをフィルターにしてUV光を照射する。 When a high intensity UV light is used for the curing reaction, a considerable amount of heat is generated, so that cooling air may be applied to the lamp of the light source and / or the support / film in order to prevent overheating. When a significant dose of IR light is irradiated with the UV beam, the UV light is irradiated using an IR reflective quartz plate as a filter.
 硬化では紫外線を用いることが好ましい。照射波長は、組成物中に含まれる光開始剤(光酸発生剤、光重合開始剤)が吸収できる波長が好ましい。このため、照射波長は、光開始剤の吸収波長と同じ波長または吸収波長と重なる波長が好ましい。例えばUV-A(400~320nm)、UV-B(320~280nm)、UV-C(280~200nm)が挙げられる。 It is preferable to use ultraviolet rays for curing. The irradiation wavelength is preferably a wavelength that can be absorbed by the photoinitiator (photoacid generator, photopolymerization initiator) contained in the composition. For this reason, the irradiation wavelength is preferably the same wavelength as the absorption wavelength of the photoinitiator or a wavelength overlapping with the absorption wavelength. Examples thereof include UV-A (400 to 320 nm), UV-B (320 to 280 nm), and UV-C (280 to 200 nm).
 紫外線源としては、水銀アーク灯、炭素アーク灯、低圧水銀灯、中圧水銀灯、高圧水銀灯、旋回流プラズマアーク灯、金属ハロゲン化物灯、キセノン灯、タングステン灯、ハロゲン灯、レーザーおよび紫外線発光ダイオードが挙げられる。中圧または高圧水銀蒸気タイプの紫外線発光ランプがとりわけ好ましい。これに加えて、ランプの発光スペクトルを改変するために、金属ハロゲン化物などの添加剤をランプに加えてもよい。200~450nmに発光極大を有するランプがとりわけ適している。 Examples of UV sources include mercury arc lamps, carbon arc lamps, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, swirling plasma arc lamps, metal halide lamps, xenon lamps, tungsten lamps, halogen lamps, lasers, and ultraviolet light-emitting diodes. It is done. Medium pressure or high pressure mercury vapor type UV lamps are particularly preferred. In addition, additives such as metal halides may be added to the lamp to modify the lamp's emission spectrum. A lamp having an emission maximum at 200 to 450 nm is particularly suitable.
 照射源のエネルギー出力は、20~1000W/cmが好ましく、40~500W/cmがより好ましい。ただし、所望の暴露線量を実現することができるならば、これより高くても低くても構わない。暴露強度により、膜の硬化を調整する。暴露線量は、High Energy UV Radiometer(EIT-Instrument Markets製のUV Power PuckTM)により、装置で示されたUV-A範囲で測定して、40mJ/cm以上が好ましく、100~2,000mJ/cmがより好ましく、150~1,500mJ/cmが最も好ましい。暴露時間は自由に選ぶことができるが、短いことが好ましく、典型的には2秒未満である。 The energy output of the irradiation source is preferably 20 to 1000 W / cm, more preferably 40 to 500 W / cm. However, it may be higher or lower as long as a desired exposure dose can be realized. The curing of the film is adjusted according to the exposure intensity. The exposure dose is preferably 40 mJ / cm 2 or more when measured in the UV-A range indicated by the apparatus using a high energy UV radiometer (UV Power Pack manufactured by EIT-Instrument Markets), and is preferably 100 to 2,000 mJ / cm 2. cm 2 is more preferable, and 150 to 1,500 mJ / cm 2 is most preferable. The exposure time can be chosen freely but is preferably short, typically less than 2 seconds.
 高速塗布を行った場合、所望の線量に到達させるために、複数の光源を使用しても構わない。これらの光源は暴露強度が同じでも異なってもよい。 When performing high-speed coating, a plurality of light sources may be used to reach a desired dose. These light sources may have the same or different exposure intensity.
 本発明の高分子機能性膜は、特にイオン交換で使用することを主として意図している。しかしながら、本発明の高分子機能性膜はイオン交換に限定されるものではなく、逆浸透およびガス分離にも好適に用いることができると考えられる。 The polymer functional membrane of the present invention is mainly intended to be used in particular by ion exchange. However, it is considered that the polymer functional membrane of the present invention is not limited to ion exchange and can be suitably used for reverse osmosis and gas separation.
 以下、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」および「%」は質量基準である。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Unless otherwise specified, “part” and “%” are based on mass.
[(B)スチレン系架橋剤の合成]
(合成例1)
 クロロメチルスチレン321g(2.10mol、セイミケミカル製CMS-P)、2,6-ジ-tert-ブチル-4-メチルフェノール1.30g(和光純薬工業株式会社製)、アセトニトリル433gの混合溶液に対し、1,4-ジアザビシクロ[2.2.2]オクタン(1.00mol、和光純薬工業株式会社製)を加え、80℃にて15時間加熱撹拌した。
 生じた結晶を濾過し例示化合物(CL-1)の白色結晶405g(収率97%)を得た。
[(B) Synthesis of Styrenic Crosslinking Agent]
(Synthesis Example 1)
In a mixed solution of 321 g of chloromethylstyrene (2.10 mol, CMS-P manufactured by Seimi Chemical), 1.30 g of 2,6-di-tert-butyl-4-methylphenol (manufactured by Wako Pure Chemical Industries, Ltd.), and 433 g of acetonitrile On the other hand, 1,4-diazabicyclo [2.2.2] octane (1.00 mol, manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was heated and stirred at 80 ° C. for 15 hours.
The resulting crystals were filtered to obtain 405 g (yield 97%) of white crystals of exemplary compound (CL-1).
(合成例2)
 クロロメチルスチレン458g(3.00mol、セイミケミカル製CMS-P)、2,6-ジ-tert-ブチル-4-メチルフェノール1.85g(和光純薬工業株式会社製)、ニトロベンゼン1232gの混合溶液に対し、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン130g(1.00mol、東京化成工業株式会社製)を加え、80℃にて20時間加熱撹拌した。
 生じた結晶を濾過し例示化合物(CL-8)の白色結晶218g(収率50%)を得た。
(Synthesis Example 2)
To a mixed solution of 458 g of chloromethylstyrene (3.00 mol, CMS-P manufactured by Seimi Chemical), 1.85 g of 2,6-di-tert-butyl-4-methylphenol (manufactured by Wako Pure Chemical Industries, Ltd.), and 1232 g of nitrobenzene On the other hand, 130 g (1.00 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) of N, N, N ′, N′-tetramethyl-1,3-diaminopropane was added and stirred with heating at 80 ° C. for 20 hours.
The resulting crystals were filtered to obtain 218 g (yield 50%) of white crystals of the exemplified compound (CL-8).
 実施例において、下記化合物をそれぞれ使用した。
(A)一般式(SM)で表されるスチレン系モノマーは、例示モノマー(SM-1)(シグマ-アルドリッチ社製)
 一般式(HSM-1)で表されるスチレン系モノマーは、クロロメチルスチレン(HSM-1-p)(セイミケミカル製、商品名;CMS-P)、または4-(4-ブロモブチル)スチレン(HSM-8-p)(特開2000-212306号公報の製造例1に記載の方法に従い合成)
(B)スチレン系架橋剤は、ジビニルベンゼン(HCL-1)(東京化成工業製、商品名;ジビニルベンゼン(m-,p-混合物)(エチルビニルベンゼン,ジエチルベンゼン含む))、合成した例示化合物(CL-1)、(CL-8)
(C)光酸発生剤は例示化合物(PAG1-1)(東京化成工業株式会社製、商品名:Diphenyliodonium hexafluorophosphate)、(PAG2-1)(サンアプロ株式会社製、商品名:CPI-100P)、または(PAG3-1)(和光純薬工業株式会社製、商品名:WPAG-145)
(D)一般式(AI)で表される重合開始剤は例示化合物(AI-3)(和光純薬工業株式会社製、商品名;VA-046B))
 なお、重合開始剤のDarocur(登録商標) 1173(商品名:BASF・ジャパン社製)は、一般式(AI)で表される重合開始剤とは異なる重合開始剤である。
In the examples, the following compounds were used.
(A) The styrene monomer represented by the general formula (SM) is exemplified monomer (SM-1) (manufactured by Sigma-Aldrich)
The styrenic monomer represented by the general formula (HSM-1) is chloromethylstyrene (HSM-1-p) (trade name; CMS-P, manufactured by Seimi Chemical), or 4- (4-bromobutyl) styrene (HSM). -8-p) (synthesized according to the method described in Production Example 1 of JP-A-2000-212306)
(B) Styrene-based crosslinking agent is divinylbenzene (HCL-1) (trade name; divinylbenzene (m-, p-mixture) (including ethylvinylbenzene and diethylbenzene)) manufactured by Tokyo Chemical Industry Co., Ltd. CL-1), (CL-8)
(C) The photoacid generator is exemplified compound (PAG1-1) (manufactured by Tokyo Chemical Industry Co., Ltd., trade name: Diphenyliodonium hexafluorophosphate), (PAG2-1) (manufactured by San Apro Co., Ltd., trade name: CPI-100P), or (PAG3-1) (Wako Pure Chemical Industries, Ltd., trade name: WPAG-145)
(D) The polymerization initiator represented by formula (AI) is exemplified compound (AI-3) (manufactured by Wako Pure Chemical Industries, Ltd., trade name: VA-046B))
The polymerization initiator Darocur (registered trademark) 1173 (trade name: manufactured by BASF Japan Ltd.) is a polymerization initiator different from the polymerization initiator represented by the general formula (AI).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(実施例1)
(アニオン交換膜の作成)
 下記表1に示す組成の組成物の塗布液をアルミ板に、150μmのワイヤ巻き棒を用いて、手動で約5m/minの速さで塗布し、続いて、不織布(Freudenberg社製 FO-2223-10、厚さ100μm)に塗布液を含浸させた。ワイヤの巻いていないロッドを用いて余分な塗布液を除去した。塗布時の塗布液の温度は約25℃(室温)であった。UV露光機(Fusion UV Systems社製、型式Light Hammer 10、D-バルブ、コンベア速度9.5m/min、60%強度)を用いて、塗布液含浸支持体を硬化反応することにより、アニオン交換膜を調製した。露光量は、UV-A領域にて1,000mJ/cmであった。得られた膜をアルミ板から取り外し、0.1M NaCl溶液中で少なくとも12時間保存した。
Example 1
(Creation of anion exchange membrane)
A coating solution of the composition shown in Table 1 below was manually applied to an aluminum plate at a speed of about 5 m / min using a 150 μm wire winding rod, followed by a non-woven fabric (FO-2223 manufactured by Freudenberg). −10, thickness 100 μm) was impregnated with the coating solution. Excess coating solution was removed using a rod around which no wire was wound. The temperature of the coating solution at the time of coating was about 25 ° C. (room temperature). By using a UV exposure machine (Fusion UV Systems, Model Light Hammer 10, D-valve, conveyor speed 9.5 m / min, 60% strength), the coating liquid-impregnated support is subjected to a curing reaction, thereby anion exchange membrane. Was prepared. The exposure amount was 1,000 mJ / cm 2 in the UV-A region. The resulting membrane was removed from the aluminum plate and stored in 0.1 M NaCl solution for at least 12 hours.
(実施例2~13、16、比較例3、4)
 実施例1のアニオン交換膜の作成において、組成を下記表1に記載の組成に変えた以外は、実施例1と同様にして実施例2~13、16、比較例3、4のアニオン交換膜をそれぞれ作成した。
(Examples 2 to 13, 16 and Comparative Examples 3 and 4)
Anion exchange membranes of Examples 2 to 13, 16 and Comparative Examples 3 and 4 were prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1 below in the preparation of the anion exchange membrane of Example 1. Was created respectively.
(実施例14、15、17、18)
 実施例1のアニオン交換膜の作成において、組成を下記表1に記載の組成に変えた以外は、実施例1と同様にして製膜した。続いて、0.5モル/Lのトリメチルアミン塩酸塩水溶液(pH12に調製)に40℃6時間浸漬得られた膜をアルミ板から取り外し、さらに0.1M NaCl溶液中で少なくとも12時間保存した。
(Examples 14, 15, 17, 18)
In the production of the anion exchange membrane of Example 1, a film was formed in the same manner as in Example 1 except that the composition was changed to the composition described in Table 1 below. Subsequently, the membrane obtained by immersion in a 0.5 mol / L trimethylamine hydrochloride aqueous solution (adjusted to pH 12) at 40 ° C. for 6 hours was removed from the aluminum plate, and further stored in a 0.1 M NaCl solution for at least 12 hours.
(比較例1)
 組成を下記表1に記載の組成に変え、重合条件を下記表2に記載の条件にした以外は、実施例1と同様にして、比較例1のアニオン交換膜を作成した。
(Comparative Example 1)
An anion exchange membrane of Comparative Example 1 was prepared in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1 below and the polymerization conditions were changed to those shown in Table 2 below.
(比較例2)
 組成を下記表1に記載の組成に変え、重合条件を下記表2に記載の条件にした以外は、実施例1と同様にして製膜した。続いて、0.5モル/Lのトリメチルアミン塩酸塩水溶液(pH12に調製)に40℃6時間浸漬得られた膜をアルミ板から取り外し、さらに0.1M NaCl溶液中で少なくとも12時間保存した。
(Comparative Example 2)
A film was formed in the same manner as in Example 1 except that the composition was changed to the composition shown in Table 1 below and the polymerization conditions were changed to those shown in Table 2 below. Subsequently, the membrane obtained by immersion in a 0.5 mol / L trimethylamine hydrochloride aqueous solution (adjusted to pH 12) at 40 ° C. for 6 hours was removed from the aluminum plate, and further stored in a 0.1 M NaCl solution for at least 12 hours.
(比較例5)
 特開2000-212306号公報の実施例1に記載の方法に従いアニオン交換膜を製膜した。
(Comparative Example 5)
An anion exchange membrane was formed according to the method described in Example 1 of JP-A No. 2000-212306.
(比較例6)
 実施例1のアニオン交換膜の作成において、組成を下記表1に記載の組成に変え、UV露光機の強度を「60%強度」から「100%強度」に変えた以外は、実施例1と同様にして製膜した。
 なお、表1中、数字が記載されていない部分は、含有していないことを意味する。
(Comparative Example 6)
In the preparation of the anion exchange membrane of Example 1, the composition was changed to the composition described in Table 1 below, and the intensity of the UV exposure machine was changed from “60% intensity” to “100% intensity”. A film was formed in the same manner.
In Table 1, a portion where no number is described means that it is not contained.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表2の結果から、本発明の規定を満たす実施例1~18では、極めて短時間で製膜が行えたことが分かる。これに対し、本発明の規定を満たさない比較例1、2、5(熱硬化)のアニオン交換膜は、製膜に長時間を要した。また、本発明の規定を満たさない比較例3、4、6(紫外線硬化)は十分に硬化させることができず、特に比較例4は、実質的に硬化反応が起こらなかった。 From the results in Table 2, it can be seen that in Examples 1 to 18 that satisfy the provisions of the present invention, the film could be formed in an extremely short time. On the other hand, the anion exchange membranes of Comparative Examples 1, 2, and 5 (thermosetting) that did not satisfy the provisions of the present invention required a long time for film formation. Further, Comparative Examples 3, 4, and 6 (ultraviolet ray curing) that do not satisfy the provisions of the present invention could not be sufficiently cured, and in particular, Comparative Example 4 did not substantially undergo a curing reaction.
 実施例1~18および比較例1~6で作成したアニオン交換膜について、下記項目を評価した。結果を下記表3に示す。 The following items were evaluated for the anion exchange membranes prepared in Examples 1 to 18 and Comparative Examples 1 to 6. The results are shown in Table 3 below.
[含水率(%)]
 下記式により膜の含水率を算出した。
{(25℃0.5M NaCl水溶液中に15時間浸漬後の膜質量)-(浸漬後60℃の真空オーブン中で15時間乾燥後の膜質量)}÷(25℃0.5M NaCl水溶液中に15時間浸漬後の膜質量)×100
[Moisture content (%)]
The water content of the membrane was calculated according to the following formula.
{(Membrane weight after 15 hours immersion in 25 ° C. 0.5M NaCl aqueous solution) − (Membrane weight after 15 hours drying in 60 ° C. vacuum oven after immersion)} ÷ (In 25 ° C. 0.5M NaCl aqueous solution) Film mass after 15 hours immersion) x 100
[膜の電気抵抗(Ω・cm)]
 約2時間、0.6M NaCl水溶液中に浸漬した膜の両面を乾燥ろ紙で拭い、2室型セル(有効膜面積1cm、電極にはAg/AgCl参照電極(Metrohm社製を使用)に挟んだ。両室に同一濃度の NaClを100mL満たし、25℃の恒温水槽中に置いて平衡に達するまで放置し、セル中の液温が正しく25℃になってから、交流ブリッジ(周波数1,000Hz)により電気抵抗rを測定した。測定NaCl濃度は0.6M、0.7M、1.5M、3.5M、4.5Mとし、低濃度液から順番に測定した。次に膜を取り除き、0.6M NaCl水溶液のみとして両極間の電気抵抗rを測り、膜の電気抵抗rをr-rとして求めた。
[Electrical resistance of membrane (Ω · cm 2 )]
Wipe both sides of the membrane immersed in 0.6 M NaCl aqueous solution for about 2 hours with dry filter paper, and sandwich between two-chamber cell (effective membrane area 1 cm 2 , Ag / AgCl reference electrode (made by Metrohm) used as electrode) Both chambers are filled with 100 mL of the same concentration of NaCl, placed in a constant temperature water bath at 25 ° C. and allowed to reach equilibrium, and after the liquid temperature in the cell has reached 25 ° C. correctly, an AC bridge (frequency 1,000 Hz) ) To measure the electrical resistance r 1. The measured NaCl concentrations were 0.6M, 0.7M, 1.5M, 3.5M, and 4.5M, and measured in order from the low concentration solution. The electric resistance r 2 between the two electrodes was measured using only a 0.6 M NaCl aqueous solution, and the electric resistance r of the film was determined as r 1 -r 2 .
 下記表3では、「膜の電気抵抗」を「膜抵抗」と省略して記載した。 In Table 3 below, “membrane electrical resistance” is abbreviated as “membrane resistance”.
[透水率(mL/m/Pa/hr)]
 膜の透水率を図1に示す流路10を有する装置により測定した。図1において、符号1は膜を表し、符号3および4は、それぞれ、フィード溶液(純水)およびドロー溶液(4M NaCl)の流路を表す。また、符号2の矢印はフィード溶液から分離された水の流れを示表す。
 フィード溶液400mLとドロー溶液400mLとを、膜を介して接触させ(膜接触面積18cm)、各液はペリスタポンプを用いて符号5の矢印の向きに流速0.11cm/秒で流した。フィード溶液中の水が膜を介してドロー溶液に浸透する速度を、フィード液とドロー液の質量をリアルタイムで測定することによって解析し、透水率を求めた。
[Water permeability (mL / m 2 / Pa / hr)]
The water permeability of the membrane was measured by an apparatus having a flow path 10 shown in FIG. In FIG. 1, reference numeral 1 represents a membrane, and reference numerals 3 and 4 represent flow paths for a feed solution (pure water) and a draw solution (4M NaCl), respectively. The arrow 2 indicates the flow of water separated from the feed solution.
400 mL of the feed solution and 400 mL of the draw solution were brought into contact with each other through the membrane (membrane contact area 18 cm 2 ), and each solution was flowed at a flow rate of 0.11 cm / sec in the direction of the arrow 5 with a peristaltic pump. The rate at which the water in the feed solution penetrates the draw solution through the membrane was analyzed by measuring the mass of the feed solution and the draw solution in real time, and the water permeability was determined.
[ピンホール試験]
 測定用の膜を厚さ1.5nmのPtでコーティングし、以下の条件でSEM測定した。
[Pinhole test]
The film for measurement was coated with 1.5 nm thick Pt, and SEM measurement was performed under the following conditions.
 加速電圧:2kV
 作動距離:4mm
 絞り:4
 倍率:×100,000倍
 視野の傾斜:3°
Acceleration voltage: 2 kV
Working distance: 4mm
Aperture: 4
Magnification: × 100,000 times Field tilt: 3 °
 SEM画像から、以下の観点でピンホール評価を行った。 From the SEM image, pinhole evaluation was performed from the following viewpoints.
 A:欠陥、ピンホールが観測されなかった。
 B:欠陥、ピンホールが1~2個観測された。
 C:欠陥、ピンホールが3個以上観測された。
A: Defects and pinholes were not observed.
B: One or two defects and pinholes were observed.
C: Three or more defects and pinholes were observed.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
 表3の結果から、本発明の規定を満たす実施例1~18のアニオン交換膜は、膜抵抗と透水率の積がいずれも低い値(5.0×10-5~7.7×10-5)を示しており、高性能なアニオン交換膜であることが分かる。これに対し、本発明の規定を満たさない比較例1~3、5、6のアニオン交換膜は、特に膜抵抗がと大きく、膜抵抗と透水率の積は1.0×10-4~1.4×10-4であり、いずれも大きい値を示した。このことから、本発明記載のアニオン交換膜は、十分な優位性を有しているといえる。 From the results in Table 3, the anion exchange membranes of Examples 1 to 18 that satisfy the provisions of the present invention have low values of product of membrane resistance and water permeability (5.0 × 10 −5 to 7.7 × 10 − 5 ), which indicates that the membrane is a high performance anion exchange membrane. In contrast, the anion exchange membranes of Comparative Examples 1 to 3, 5, and 6 that do not satisfy the provisions of the present invention have particularly large membrane resistance, and the product of membrane resistance and water permeability is 1.0 × 10 −4 to 1 .4 × 10 −4 , both showing large values. From this, it can be said that the anion exchange membrane according to the present invention has a sufficient advantage.
 また、アルカリ型燃料電池用のヒドロキシイオン伝導膜では、水の透過率(透水率)が大きいことで発電効率が低下してしまう。上述のように、本発明のイオン交換膜は膜抵抗と透水率の積が従来のイオン交換膜よりも低く燃料電池用途のイオン伝導膜としても好適に用いることができる。 Moreover, in the hydroxy ion conductive membrane for alkaline fuel cells, the power generation efficiency decreases due to the high water permeability (water permeability). As described above, the ion exchange membrane of the present invention has a product of membrane resistance and water permeability that is lower than that of conventional ion exchange membranes and can be suitably used as an ion conductive membrane for fuel cell applications.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2013年8月30日に日本国で特許出願された特願2013-179802に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2013-179802 filed in Japan on August 30, 2013, which is hereby incorporated herein by reference. Capture as part.
1 膜
2 フィード溶液中の水が膜を介してドロー溶液に浸透することを示す矢印
3 フィード溶液の流路
4 ドロー溶液の流路
5 液体の進行方向
10 透水率測定装置の流路
DESCRIPTION OF SYMBOLS 1 Membrane 2 The arrow which shows that the water in a feed solution osmose | permeates a draw solution through a film | membrane 3 The flow path of a feed solution 4 The flow path of a draw solution 10 The flow direction of a liquid 10

Claims (24)

  1.  下記一般式(HSM)で表されるスチレン系モノマー、スチレン系架橋剤および光酸発生剤を含有する組成物を光硬化反応させてなる高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000001
     一般式(HSM)において、Rはハロゲン原子または-N(R)(R)(R)(X )を表す。nは1~10の整数を表す。ここで、R~Rは各々独立に、直鎖若しくは分岐のアルキル基またはアリール基を表す。RとR、またはR、RおよびRが互いに結合して脂肪族ヘテロ環を形成してもよい。X は有機または無機のアニオンを表す。
    A polymer functional film obtained by photocuring a composition containing a styrene monomer represented by the following general formula (HSM), a styrene crosslinking agent, and a photoacid generator.
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (HSM), R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ). n represents an integer of 1 to 10. Here, R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group. R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle. X 2 - represents an organic or inorganic anion.
  2.  前記-(CH)n-Rが下記一般式(ALX)で表される基であり、前記組成物を光硬化反応させた後、4級アンモニウム化剤である3級アミン化合物を反応させてなる請求項1に記載の高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000002
     一般式(ALX)において、Xはハロゲン原子を表す。n1は前記一般式(HSM)におけるnと同義である。
    The — (CH 2 ) n—R is a group represented by the following general formula (ALX), and the composition is subjected to a photocuring reaction, followed by reaction with a tertiary amine compound that is a quaternary ammonium agent. The polymer functional film according to claim 1.
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (ALX), X 1 represents a halogen atom. n1 has the same meaning as n in the general formula (HSM).
  3.  前記スチレン系架橋剤が下記一般式(CL)で表される請求項1または2に記載の高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000003
     一般式(CL)において、Lはアルキレン基またはアルケニレン基を表す。Ra、Rb、RcおよびRdは各々独立にアルキル基またはアリール基を表し、RaとRb、または/およびRcとRdが互いに結合して環を形成してもよい。n3は1~10の整数を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
    The polymer functional film according to claim 1, wherein the styrene-based crosslinking agent is represented by the following general formula (CL).
    Figure JPOXMLDOC01-appb-C000003
    In the general formula (CL), L 1 represents an alkylene group or an alkenylene group. Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring. n3 represents an integer of 1 to 10. X 3 - and X 4 - is independently represents an organic or inorganic anion.
  4.  前記光酸発生剤が下記一般式(PAG1)または(PAG2)で表される請求項1~3のいずれか1項に記載の高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000004
     一般式(PAG1)または(PAG2)において、Ar~Arは各々独立に、置換若しくは無置換のアリール基を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
    The polymer functional film according to any one of claims 1 to 3, wherein the photoacid generator is represented by the following general formula (PAG1) or (PAG2).
    Figure JPOXMLDOC01-appb-C000004
    In the general formula (PAG1) or (PAG2), Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group. X 5 - and X 6 - are each independently represents an organic or inorganic anion.
  5.  前記組成物が、さらに下記一般式(AI)で表される重合開始剤を含有する請求項1~4のいずれか1項に記載の高分子機能性膜。
    Figure JPOXMLDOC01-appb-C000005
     一般式(AI)において、R~Rは各々独立に、アルキル基を表し、Yは=Oまたは=N-Riを表す。Re~Riは各々独立に水素原子またはアルキル基を表す。ReとRf、RgとRh、ReとRi、RgとRiは、各々互いに結合して環を形成してもよい。
    The polymer functional film according to any one of claims 1 to 4, wherein the composition further contains a polymerization initiator represented by the following general formula (AI).
    Figure JPOXMLDOC01-appb-C000005
    In the general formula (AI), R 5 to R 8 each independently represents an alkyl group, and Y represents ═O or ═N—Ri. Re to Ri each independently represent a hydrogen atom or an alkyl group. Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
  6.  前記組成物の全固形分100質量部に対し、前記Rがハロゲン原子または-N(R)(R)(R)(X )で表されるスチレン系モノマーであって、かつ該スチレン系モノマーの含有量が、1~85質量部である請求項1、3~5のいずれか1項に記載の高分子機能性膜。 A styrene-based monomer represented by, - the total solid content 100 parts by weight of the composition, wherein R is a halogen atom or -N + (R 1) (R 2) (R 3) (X 2) 6. The polymeric functional film according to claim 1, wherein the content of the styrene monomer is 1 to 85 parts by mass.
  7.  前記組成物の全固形分100質量部に対し、前記スチレン系架橋剤含有量が10~100質量部である請求項2~6のいずれか1項に記載の高分子機能性膜。 The polymer functional film according to any one of claims 2 to 6, wherein the content of the styrenic crosslinking agent is 10 to 100 parts by mass with respect to 100 parts by mass of the total solid content of the composition.
  8.  前記組成物の全固形分100質量部に対し、前記光酸発生剤含有量が0.1~20質量部である請求項1~7のいずれか1項に記載の高分子機能性膜。 The polymer functional film according to any one of claims 1 to 7, wherein the content of the photoacid generator is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the composition.
  9.  前記組成物が溶媒を含有する請求項1~8のいずれか1項に記載の高分子機能性膜。 The polymer functional film according to any one of claims 1 to 8, wherein the composition contains a solvent.
  10.  前記溶媒が、水または水溶性溶媒である請求項9に記載の高分子機能性膜。 The polymer functional film according to claim 9, wherein the solvent is water or a water-soluble solvent.
  11.  支持体を有する請求項1~10のいずれか1項に記載の高分子機能性膜。 The polymer functional film according to any one of claims 1 to 10, which has a support.
  12.  前記支持体が合成織布もしくは合成不織布、スポンジ状フィルムまたは微細な貫通孔を有するフィルムである請求項11に記載の高分子機能性膜。 The polymer functional membrane according to claim 11, wherein the support is a synthetic woven fabric or synthetic nonwoven fabric, a sponge film, or a film having fine through holes.
  13.  前記支持体がポリオレフィンである請求項11または12に記載の高分子機能性膜。 The polymer functional film according to claim 11 or 12, wherein the support is a polyolefin.
  14.  前記高分子機能性膜が、イオン交換膜、逆浸透膜、正浸透膜またはガス分離膜である請求項1~13のいずれか1項に記載の高分子機能性膜。 The polymer functional membrane according to any one of claims 1 to 13, wherein the polymer functional membrane is an ion exchange membrane, a reverse osmosis membrane, a forward osmosis membrane or a gas separation membrane.
  15.  下記一般式(HSM)で表されるスチレン系モノマー、スチレン系架橋剤および光酸発生剤を含有する組成物を光硬化反応させる高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     一般式(HSM)において、Rはハロゲン原子または-N(R)(R)(R)(X )を表す。nは1~10の整数を表す。ここで、R~Rは各々独立に、直鎖若しくは分岐のアルキル基またはアリール基を表す。RとR、またはR、RおよびRが互いに結合して脂肪族ヘテロ環を形成してもよい。X は有機または無機のアニオンを表す。
    A method for producing a functional polymer film, wherein a composition containing a styrene monomer represented by the following general formula (HSM), a styrene crosslinking agent and a photoacid generator is photocured.
    Figure JPOXMLDOC01-appb-C000006
    In the general formula (HSM), R represents a halogen atom or —N + (R 1 ) (R 2 ) (R 3 ) (X 2 ). n represents an integer of 1 to 10. Here, R 1 to R 3 each independently represents a linear or branched alkyl group or aryl group. R 1 and R 2 , or R 1 , R 2 and R 3 may be bonded to each other to form an aliphatic heterocycle. X 2 - represents an organic or inorganic anion.
  16.  前記-(CH)n-Rが下記一般式(ALX)で表される基であり、前記組成物を光硬化反応させた後、4級アンモニウム化剤である3級アミン化合物を反応させる請求項15に記載の高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000007
     一般式(ALX)において、Xはハロゲン原子を表す。n1は前記一般式(HSM)におけるnと同義である。
    Claims wherein the — (CH 2 ) n—R is a group represented by the following general formula (ALX), and the composition is photocured and then reacted with a tertiary amine compound which is a quaternary ammonium agent. Item 16. A method for producing a functional polymer membrane according to Item 15.
    Figure JPOXMLDOC01-appb-C000007
    In the general formula (ALX), X 1 represents a halogen atom. n1 has the same meaning as n in the general formula (HSM).
  17.  前記スチレン系架橋剤が下記一般式(CL)で表される請求項15または16に記載の高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000008
     一般式(CL)において、Lはアルキレン基またはアルケニレン基を表す。Ra、Rb、RcおよびRdは各々独立にアルキル基またはアリール基を表し、RaとRb、または/およびRcとRdが互いに結合して環を形成してもよい。n3は1~10の整数を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
    The method for producing a functional polymer film according to claim 15 or 16, wherein the styrene-based crosslinking agent is represented by the following general formula (CL).
    Figure JPOXMLDOC01-appb-C000008
    In the general formula (CL), L 1 represents an alkylene group or an alkenylene group. Ra, Rb, Rc and Rd each independently represents an alkyl group or an aryl group, and Ra and Rb or / and Rc and Rd may be bonded to each other to form a ring. n3 represents an integer of 1 to 10. X 3 - and X 4 - is independently represents an organic or inorganic anion.
  18.  前記光酸発生剤が下記一般式(PAG1)または(PAG2)で表される請求項15~18のいずれか1項に記載の高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000009
     一般式(PAG1)または(PAG2)において、Ar~Arは各々独立に、置換若しくは無置換のアリール基を表す。X およびX は各々独立に、有機または無機のアニオンを表す。
    The method for producing a functional polymer film according to any one of claims 15 to 18, wherein the photoacid generator is represented by the following general formula (PAG1) or (PAG2).
    Figure JPOXMLDOC01-appb-C000009
    In the general formula (PAG1) or (PAG2), Ar 1 to Ar 5 each independently represents a substituted or unsubstituted aryl group. X 5 - and X 6 - are each independently represents an organic or inorganic anion.
  19.  前記組成物が、さらに下記一般式(AI)で表される重合開始剤を含有する請求項15~18のいずれか1項に記載の高分子機能性膜の製造方法。
    Figure JPOXMLDOC01-appb-C000010
     一般式(AI)において、R~Rは各々独立に、アルキル基を表し、Yは=Oまたは=N-Riを表す。Re~Riは各々独立に水素原子またはアルキル基を表す。ReとRf、RgとRh、ReとRi、RgとRiは、各々互いに結合して環を形成してもよい。
    The method for producing a functional polymer film according to any one of claims 15 to 18, wherein the composition further contains a polymerization initiator represented by the following general formula (AI).
    Figure JPOXMLDOC01-appb-C000010
    In the general formula (AI), R 5 to R 8 each independently represents an alkyl group, and Y represents ═O or ═N—Ri. Re to Ri each independently represent a hydrogen atom or an alkyl group. Re and Rf, Rg and Rh, Re and Ri, and Rg and Ri may be bonded to each other to form a ring.
  20.  前記組成物が溶媒を含有する請求項15~19のいずれか1項に記載の高分子機能性膜の製造方法。 The method for producing a functional polymer film according to any one of claims 15 to 19, wherein the composition contains a solvent.
  21.  前記溶媒が、水または水溶性溶媒である請求項20に記載の高分子機能性膜の製造方法。 The method for producing a functional polymer film according to claim 20, wherein the solvent is water or a water-soluble solvent.
  22.  前記組成物を支持体に塗布および/または含浸させた後に硬化反応させる請求項15~21のいずれか1項に記載の高分子機能性膜の製造方法。 The method for producing a functional polymer film according to any one of claims 15 to 21, wherein the composition is applied to and / or impregnated on a support and then cured.
  23.  前記硬化反応が、前記組成物にエネルギー線照射および加熱して重合する硬化反応である請求項15~22のいずれか1項に記載の高分子機能性膜の製造方法。 The method for producing a functional polymer film according to any one of claims 15 to 22, wherein the curing reaction is a curing reaction in which the composition is polymerized by irradiation with energy rays and heating.
  24.  前記硬化反応が、前記組成物にエネルギー線照射した後に加熱して重合する硬化反応である請求項15~23のいずれか1項に記載の高分子機能性膜の製造方法。 The method for producing a functional polymer film according to any one of claims 15 to 23, wherein the curing reaction is a curing reaction in which the composition is heated and polymerized after irradiation with energy rays.
PCT/JP2014/072474 2013-08-30 2014-08-27 Polymer functional film and method for producing same WO2015030072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179802 2013-08-30
JP2013179802A JP2015047537A (en) 2013-08-30 2013-08-30 Polymer functional film and production method of the same

Publications (1)

Publication Number Publication Date
WO2015030072A1 true WO2015030072A1 (en) 2015-03-05

Family

ID=52586622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072474 WO2015030072A1 (en) 2013-08-30 2014-08-27 Polymer functional film and method for producing same

Country Status (2)

Country Link
JP (1) JP2015047537A (en)
WO (1) WO2015030072A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027595A1 (en) * 2014-08-19 2016-02-25 富士フイルム株式会社 Composition for forming polymeric membrane, process for producing same, polymeric membrane, separation membrane module, and ion exchange device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397651B (en) * 2016-11-08 2018-10-26 华东理工大学 A kind of compound forward osmosis membrane and its preparation method and application
KR101981980B1 (en) * 2016-11-11 2019-05-27 한국에너지기술연구원 Ion exchange membrane using catechol-amine bond and method for manufacturing the same
JP2018089586A (en) * 2016-12-05 2018-06-14 大日本印刷株式会社 Manufacturing method of porous film
KR102598298B1 (en) * 2019-03-22 2023-11-03 주식회사 엘지화학 Polyolefin separator and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298223A (en) * 1991-03-25 1992-10-22 Tokuyama Soda Co Ltd Separation of nitric acid ion
JP2000117077A (en) * 1998-10-09 2000-04-25 Toray Ind Inc Semipermeable membrane and its production
JP2011110474A (en) * 2009-11-25 2011-06-09 Fujifilm Corp Filter for use in filtration, and method of producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298223A (en) * 1991-03-25 1992-10-22 Tokuyama Soda Co Ltd Separation of nitric acid ion
JP2000117077A (en) * 1998-10-09 2000-04-25 Toray Ind Inc Semipermeable membrane and its production
JP2011110474A (en) * 2009-11-25 2011-06-09 Fujifilm Corp Filter for use in filtration, and method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027595A1 (en) * 2014-08-19 2016-02-25 富士フイルム株式会社 Composition for forming polymeric membrane, process for producing same, polymeric membrane, separation membrane module, and ion exchange device

Also Published As

Publication number Publication date
JP2015047537A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP5980831B2 (en) Method for producing polymer functional membrane
JP6047079B2 (en) Ion exchange membrane, ion exchange membrane forming composition, and method for producing ion exchange membrane
JP6126498B2 (en) Polymer functional membrane and method for producing the same
JP6071957B2 (en) Ion exchange polymer and production method thereof, electrolyte membrane and production method thereof, and composition for producing ion exchange polymer
JP6241941B2 (en) Curable composition, polymer functional cured product, water-soluble acrylamide compound and method for producing the same
WO2014050992A1 (en) Functional polymer membrane, and method for producing same
WO2016027595A1 (en) Composition for forming polymeric membrane, process for producing same, polymeric membrane, separation membrane module, and ion exchange device
WO2015030072A1 (en) Polymer functional film and method for producing same
WO2015030071A1 (en) Method for producing ion-exchange membrane and ion-exchange membrane obtained thereby
JPWO2016031436A1 (en) Curable composition, polymer functional cured product, stack or apparatus provided with polymer functional film, amide compound, and method for producing the same
JP5972814B2 (en) Polymer functional membrane and method for producing the same
JP2014171951A (en) Functional composite membrane, production method of the same and ion exchange membrane and proton conductive membrane with functional composite membrane
WO2014163001A1 (en) Method for producing ion-exchange membrane
JP5905371B2 (en) Polymer functional membrane and method for producing the same
JP5907848B2 (en) Polymer functional membrane and method for producing the same
JP2016137434A (en) Polymer functional film, and production method, laminate, and device thereof
WO2017038276A1 (en) Photocurable composition, cured material, member, and device
EP3124107B1 (en) Polymeric functional film and method for producing same
JP6163123B2 (en) Ion exchange polymer, polymer functional membrane, and method for producing polymer functional membrane
JP6093729B2 (en) Styrene polymer functional film and method for producing the same
WO2016024453A1 (en) Polymeric functional membrane for removing nitrate ions, production method therefor, separation membrane module, and ion exchange device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840773

Country of ref document: EP

Kind code of ref document: A1