WO2016121150A1 - Storage battery device and internal resistance value derivation method - Google Patents

Storage battery device and internal resistance value derivation method Download PDF

Info

Publication number
WO2016121150A1
WO2016121150A1 PCT/JP2015/072684 JP2015072684W WO2016121150A1 WO 2016121150 A1 WO2016121150 A1 WO 2016121150A1 JP 2015072684 W JP2015072684 W JP 2015072684W WO 2016121150 A1 WO2016121150 A1 WO 2016121150A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
unit
internal resistance
resistance value
voltage
Prior art date
Application number
PCT/JP2015/072684
Other languages
French (fr)
Japanese (ja)
Inventor
正博 戸原
麻美 水谷
久保田 雅之
鷹箸 幸夫
小林 武則
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP2016571664A priority Critical patent/JP6470318B2/en
Publication of WO2016121150A1 publication Critical patent/WO2016121150A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to a storage battery device and an internal resistance value derivation method.
  • a power storage system that performs communication between a battery management unit (BMU: Battery Monitoring Unit) and a battery monitoring unit (CMU: Cell Monitoring Unit) using power line communication (PLC) is known. ing.
  • BMU Battery Monitoring Unit
  • CMU Battery Monitoring Unit
  • PLC power line communication
  • the internal resistance value of the storage battery cannot be derived without a dedicated communication line for communication between the battery monitoring units.
  • the problem to be solved by the present invention is to provide a storage battery device and an internal resistance value derivation method that can derive the internal resistance value of the storage battery without complicating the configuration.
  • the storage battery device of the embodiment includes a storage battery connected to a power line, a transmission unit, a reception unit, and a derivation unit.
  • the transmission unit transmits a signal to the power line.
  • a receiving part receives a signal via a power line and a storage battery.
  • the deriving unit derives the internal resistance value of the storage battery based on the voltage of the signal received by the receiving unit.
  • the block diagram of the electrical storage system containing the storage battery apparatus in 1st Embodiment The block diagram of the assembled battery unit with which the storage battery apparatus in 1st Embodiment is provided.
  • the 1st figure of the assembled battery unit provided with the resistance for calibration in 4th Embodiment.
  • the 2nd figure of the assembled battery unit provided with the resistance for a calibration in 4th Embodiment.
  • FIG. 1 is a configuration diagram of a power storage system 1 including a storage battery device according to the first embodiment.
  • FIG. 2 is a configuration diagram of the assembled battery unit 12 included in the storage battery device according to the first embodiment.
  • the power line is drawn as a solid line.
  • the communication line is drawn with a broken line.
  • the storage battery unit 10 includes storage battery devices 11-1 to 11-n. n is 16, for example.
  • the storage battery devices 11-1 to 11-n have the same configuration. Hereinafter, the configuration and function of the storage battery device 11-1 will be described on behalf of the storage battery devices 11-1 to 11-n.
  • the storage battery device 11-1 includes assembled battery units 12-1 to 12-m. For example, m is 16. The assembled battery units 12-1 to 12-m are connected in parallel.
  • the assembled battery units 12-1 to 12-m are, for example, assembled battery units each having the same configuration.
  • the assembled battery unit 12-1 includes battery modules 13-1 to 13-k. k is, for example, 22.
  • Each of the battery modules 13-1 to 13-k includes a plurality of battery cells and CMUs 14-1 to 14-k that monitor the temperature and voltage of the battery cells.
  • the battery cell is, for example, a lithium ion battery.
  • the configurations and functions of the CMUs 14-1 to 14-k will be described later.
  • Each of the battery modules 13-1 to 13-k includes a magnetic coupling unit MCT (13-1), MCR (13-1) to MCT (13-k), and MCR (13-k), and a power line. 50 is magnetically coupled.
  • the sensor unit 16 includes a magnetic coupling unit MCT (16)
  • the BMU 17 includes a magnetic coupling unit MCT (17) and MCR (17).
  • the CMU 14, the sensor unit 16, and the BMU 17 can perform communication via the power line 50 and the battery cell.
  • Each magnetic coupling part has the same structure, for example.
  • MCT indicates a magnetic coupling unit on the transmission side
  • MCR indicates a magnetic coupling unit on the reception side.
  • FIG. 3 is a diagram showing the structure of the magnetic coupling portion.
  • the magnetic coupling unit MCT includes an annular part MCT1 and a communication line MCT2.
  • the annular portion MCT1 is an annular member made of a magnetic material such as ferrite.
  • the power line 50 is passed through the hole of the annular part MCT1 so as not to contact the annular part MCT1.
  • the communication line MCT2 is wound around the annular portion MCT1 a predetermined number of times. The number of windings is determined based on a voltage or current generated in the communication line MCT2 when a signal of power line carrier communication is transmitted or received.
  • the communication line MC2 is connected to the transmission unit 141 or the reception unit 142 of the CMU 14, the measurement unit 161 of the sensor unit 16, or the transmission unit 171 or the reception unit 172 in the BMU 17.
  • a switch 15 may be provided between each battery module 13.
  • the switch 15 is used, for example, to turn off the main circuit 51 when any battery module 13 is removed for inspection.
  • the switch 15 functions as a fuse when it is also used as a disconnector (service disconnect).
  • a wiring for notifying the BMU 17 (battery management device) of the insertion / extraction state and the fuse state may be provided.
  • FIG. 4 is a configuration diagram of the battery module 13.
  • the battery module 13 includes, for example, two series connected battery cells in parallel.
  • the battery module 13 includes battery cells Cb1-1 to Cb1-p connected in series and battery cells Cb2-1 to Cb2-p connected in series.
  • p is, for example, 12.
  • the battery cells Cb1-1 to Cb1-p connected in series and the battery cells Cb2-1 to Cb2-p connected in series are connected in parallel.
  • the CMU 14 of the battery module 13 includes a control unit 140 (state measurement unit), a transmission unit 141, and a reception unit 142.
  • the CMU 14 monitors the voltage between the terminals of each battery cell Cb of the battery module 13, the temperature of each battery cell Cbj, and the temperature of the internal space of the battery module 13.
  • the CMU 14 transmits data representing the monitoring result to the BMU 17 via the transmission unit 141.
  • the transmission unit 141 transmits data representing the monitoring result to the BMU 17 by power line carrier communication via the magnetic coupling unit MCT and the power line 50.
  • the transmission unit 141 may transmit data to the CMU 14 of another battery module 13 through power line carrier communication via the magnetic coupling unit MCT and the power line 50.
  • the receiving unit 142 receives data transmitted from the BMU 17 by power line carrier communication via the power line 50 and the magnetic coupling unit MCR.
  • the receiving unit 142 may receive data transmitted from the CMU 14 of another battery module 13 through power line carrier communication via the power line 50 and the magnetic coupling unit MCR.
  • the transmitting unit 141 and the receiving unit 142 may use a common magnetic coupling unit in a time-sharing manner instead of using separate magnetic coupling units MCT and MCR, respectively.
  • the sensor unit 16 is provided, for example, between the negative-side battery module 13k and the BMU 17 in the assembled battery unit 12-1. As shown in FIG. 2, the sensor unit 16 includes a measurement unit 161.
  • the measurement unit 161 measures the value of the current flowing through the power line 50 and transmits data representing the measured current value to the BMU 17 by the power line carrier communication via the magnetic coupling unit MCT (16) and the power line 50.
  • the switch circuit 18 (contactor) includes a switch S1, a switch S2, and a resistor R.
  • the switch S1 has a resistance value lower than that of the resistance R.
  • a switch S2 having a resistor R connected in series and a switch S1 are connected in parallel.
  • the switch circuit 18 can connect the assembled battery unit 12 having its own circuit to another assembled battery unit 12. Further, the switch circuit 18 can disconnect the assembled battery unit 12 having its own circuit from other assembled battery units 12.
  • the switch circuit 18 is manually opened and closed, for example.
  • the first charge / discharge terminal 22 is a terminal on the positive electrode side of the storage battery device 11-1.
  • the first charge / discharge terminal 22 is connected to the positive terminal of the battery module 13-1 through the switch circuit 18.
  • the first charge / discharge terminal 22 is connected to the positive terminal of the circuit breaker 31-1 of the battery terminal board 30.
  • the second charge / discharge terminal 23 is a negative electrode side terminal of the storage battery device 11-1.
  • the second charge / discharge terminal 23 is connected to the negative electrode side terminal of the battery module 13-1.
  • the second charge / discharge terminal 23 is connected to the negative terminal of the circuit breaker 31-1 of the battery terminal board 30.
  • the capacitor 24 is connected in parallel with the main circuit 51 and the BMU 17. As shown in FIG. 2, the main circuit 51 is a combination of the battery modules 13-1 to 13-k, the switch 15, and the sensor unit 16.
  • the capacitor 24 is a capacitor for forming an AC loop including the main circuit 51 and the BMU 17. That is, the battery modules 13-1 to 13-k, the switch 15, the sensor unit 16, the BMU 17, and the capacitor 24 form a closed circuit.
  • the BMU 17 includes a transmission unit 171, a reception unit 172, a control unit 173, and a storage unit 174. Some or all of the transmission unit 171, the reception unit 172, and the control unit 173 function by a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit 174. Software function part. Also, some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • the transmission unit 171 superimposes a prescribed AC signal for power line carrier communication on the power line 50 with a prescribed voltage via the magnetic coupling unit MCT (17).
  • This prescribed AC signal is a signal transmitted and received in order to derive the internal resistance of the battery cell (battery module) and diagnose the state of the battery cell (battery module).
  • this prescribed AC signal is referred to as a test signal.
  • the receiving unit 172 receives a test signal that is fed back via the power line 50 and each battery module 13 via the magnetic coupling unit MCR (17).
  • the transmitting unit 171 and the receiving unit 172 may use a common magnetic coupling unit in a time-sharing manner, instead of using separate magnetic coupling units MCT and MCR, respectively.
  • the control unit 173 acquires data representing the current value from the sensor unit 16.
  • the control unit 173 transmits a test signal to the power line 50 using the transmission unit 171. Further, the control unit 173 derives the internal resistance of the battery module 13 based on the test signal received by the receiving unit 172.
  • Typical parameters that change due to deterioration of the battery cells are the capacity and internal resistance value of the battery module 13 that is a set of battery cells.
  • the control unit 173 can diagnose the deterioration of the battery module 13 based on the capacity of the battery module 13 and the internal resistance value. A case where the current value of charge / discharge by each of the battery modules 13-1 to 13-k cannot be regarded as a value 0 will be described later.
  • control unit 173 outputs a control signal for controlling the switches S1 and S2 of the switch circuit 18 to the switch circuit 18.
  • the control unit 173 communicates with another assembled battery unit 12, the gateway control device 19 (gateway device), and the measurement computer 20 via a multiple communication line such as a CAN (Control Area Network) communication line.
  • the control unit 173 may execute an opening / closing operation of the switch circuit 18 via the multiple communication line.
  • the gateway control device 19 transfers the data received from the BMU 17 to the control computer 32 of the battery terminal board 30 via the multiple communication line. Further, the gateway control device 19 transfers the data received from the control computer 32 to the BMU 17 or the like via the multiplex communication line.
  • the measurement computer 20 measures the voltage between the terminals of the battery cell Cbj of the battery module 13, the temperature, the value measured by the sensor unit 16, and the charging rate (SOC: State Of ⁇ Charge) of the battery cell Cbj measured by the CMU 14 or BMU 17. ) And the like are received from the BMU 17.
  • the measurement computer 20 may calculate the value of the internal resistance of the battery cell Cbj of the battery module 13.
  • DC power supply 21 supplies power supplied from PCS 40 (Power Conditioning System) via control computer 32 to BMU 17 and CMUs 14-1 to 14-k.
  • PCS 40 Power Conditioning System
  • the battery terminal board 30 connects the storage battery unit 10 to the PCS 40.
  • the battery terminal board 30 includes storage battery devices 11-1 to 11-n.
  • the storage battery device 11-1 corresponds to the circuit breaker 31-1.
  • the storage battery device 11-n corresponds to the circuit breaker 31-n.
  • the circuit breakers 31-1 to 31-n are manually opened and closed, for example.
  • the power line connected to the positive terminal of the circuit breaker 31-1 and the power line of the negative terminal of the circuit breaker 31-1 are shared and connected to the PCS 40.
  • the DC voltage of the shared power line is, for example, about 490 to 778 (V).
  • the breaker 31 can safely disconnect the storage battery devices 11-1 to 11-n from the power storage system 1 even when the switch circuit 18 is welded.
  • the control computer 32 includes a processor such as a CPU.
  • the control computer 32 monitors the state of the circuit breakers 31-1 to 31-n.
  • the control computer 32 transfers the data received from the PCS 40 to the storage battery unit 10.
  • the control computer 32 transfers the data received from the storage battery unit 10 to the PCS 40.
  • the PCS 40 includes a processor such as a CPU and a communication interface.
  • the PCS 40 communicates with an external controller (not shown) via this communication interface.
  • the PCS 40 generates an AC voltage from the DC voltage input from the storage battery unit 10 via the battery terminal board 30. Further, the PCS 40 converts an AC voltage input from a power generation device (not shown) into a DC voltage, and charges the battery modules 13-1 to 13-k of the storage battery unit 10. Note that the AC voltage generated by the PCS 40 may be boosted by a transformer.
  • the process of deriving the internal resistance by the transmission / reception of the test signal executed by the control unit 173 will be described.
  • the internal resistance value of the switch 15 and the sensor unit 16 are sufficiently small, the internal resistance value of the main circuit 51 can be regarded as the internal resistance values of the battery modules 13-1 to 13-k. Therefore, when the control unit 173 derives the internal resistance value of the main circuit 51 including the battery modules 13-1 to 13-k, the derived internal resistance value is the internal resistance value of the battery modules 13-1 to 13-k. Can be considered equal to the value.
  • FIG. 5 is an explanatory diagram for explaining a method of deriving the internal resistance value. Note that the capacitor 24 is not depicted in FIG. 5 because it can be considered short-circuited for power line communication.
  • a voltage V1 is a transmission voltage generated in the communication line MCT2 of the magnetic coupling unit MCT (17) by transmitting a test signal from the transmission unit 171.
  • the voltage V1 is a constant value defined in advance before transmitting a signal.
  • the voltage Vm1 is a transmission voltage generated in a part of the power line 50 by the voltage V1.
  • the part of the power line 50 is a part where the power line 50 passes through the annular part MCT1 of the magnetic coupling part MCT.
  • the internal resistance value Rm is the internal resistance value (impedance) of the main circuit 51.
  • the internal resistance value Rm of the main circuit 51 corresponds to the total value of the internal resistance values of the battery module 13.
  • Im is a current of a power line carrier communication signal superimposed on the power line 50 from the magnetic coupling unit 152-1 by the voltage V1 which is a specified constant value.
  • the voltage Vm2 is a reception voltage generated in a part of the power line 50 by the current Im of the power line carrier communication signal received by the magnetic coupling unit MCR.
  • the part of the power line 50 is a part where the power line 50 passes through the annular part MCR2 of the magnetic coupling part MCR.
  • the voltage V2 is a voltage generated in the communication line MCR2 by the voltage Vm2.
  • the voltage V2 is expressed by equation (5).
  • the voltage V1 and the voltage V2 can be directly measured.
  • the internal resistance value Rm is not determined. Therefore, for example, the BMU 17 derives the internal resistance value Rm under the reference condition (reference state) at the reference timing where the battery module 13 is not deteriorated (such as the timing when the battery module 13 is in a new state before shipment).
  • Test signal transmission / reception is executed in advance.
  • the reference conditions are, for example, a charging rate of 50% and 25 degrees Celsius. Note that the transmission / reception of the test signal at the reference timing may not be automatically performed by the BMU 17 but may be performed by a human operation. Further, the reference timing is not limited to the timing when it is in a new state before shipment, and may be arbitrarily set.
  • the BMU 17 measures the voltage V2_BOL that is generated when the test signal is received by the magnetic coupling unit MCR (17) at the reference timing.
  • the voltage V2_BOL at the reference timing is expressed by Expression (7).
  • “BOL” in mathematical expressions and the like indicates a value at the reference timing.
  • the BMU 17 performs transmission / reception of the test signal at an arbitrary diagnosis timing.
  • the BMU 17 executes transmission / reception of a test signal as a diagnosis timing when the conditions regarding the charging rate and temperature are satisfied.
  • the BMU 17 measures the voltage V2_MOL generated by receiving the test signal by the magnetic coupling unit MCR (17) at the diagnosis timing.
  • the voltage V2_MOL is expressed by Expression (8).
  • “MOL” in the mathematical expression and the like indicates a value at the diagnosis timing.
  • Equation (9) is obtained from Equation (7) and Equation (8).
  • Equation (10) is obtained from Equation (9).
  • Rm_MOL (50%, 25 degrees Celsius) shown in the equation (10) was obtained by measuring the voltage V2_MOL of the test signal received at the diagnosis timing under the conditions of the charging rate of 50% and 25 degrees Celsius. This is the internal resistance value.
  • Rm_BOL (50%, 25 degrees Celsius) is an internal resistance value obtained by measuring the voltage V2_BOL of the test signal received at the reference timing under the conditions of a charging rate of 50% and 25 degrees Celsius. .
  • the deterioration state SOH_R represented by the equation (11) is obtained by multiplying the value represented by the equation (12) by the conversion coefficient represented by the equation (13).
  • the value represented by the expression (12) is obtained by receiving the voltage of the test signal received by the receiving unit 172 under the reference condition at the timing when the battery module 13 is new, at the receiving unit 172 at an arbitrary timing thereafter. Divided by the voltage of the test signal generated.
  • the conversion coefficient represented by Expression (13) is a coefficient for converting the internal resistance value under the condition (x%, y degree Celsius) at an arbitrary timing into the internal resistance value under the reference condition (50%, 25 degree Celsius). It is.
  • the characteristic representing the correspondence between the internal resistance value and the charging rate is not significantly different between a new battery cell and a deteriorated battery cell.
  • the characteristic representing the correspondence between the internal resistance value and the temperature is not significantly different between a new battery cell and a deteriorated battery cell.
  • the conversion coefficient represented by Formula (13) is represented by Formula (14).
  • the BMU 17 measures a voltage under a plurality of conditions (x%, y degrees Celsius) with respect to a new battery module 13 (at a reference timing), and measures a reference internal resistance value Rm.
  • the storage unit 174 can store the data tables of these conversion coefficients in advance. Note that such acquisition of the data table is not necessarily performed on an actual apparatus, and a reference value obtained by an experiment or the like may be written in the storage unit 140.
  • the storage unit 174 has, for example, a non-volatile storage medium (non-temporary storage medium) such as a ROM (Read Only Memory), a flash memory, and an HDD (Hard Disk Drive).
  • the storage unit 174 includes a volatile storage medium such as a RAM (Random Access Memory) or a register.
  • the storage unit 174 stores in advance a program for operating the software function unit, a data table of conversion coefficients, and the like.
  • information indicating the deterioration state SOH_R is written in the storage unit 174 by the control unit 170.
  • FIG. 6 is a flowchart showing the flow of processing at the reference timing.
  • the control unit 173 of the BMU 17 performs charging / discharging of the battery module 13 and adjusts the charging rate (SOC) of the battery module 13 to, for example, 50 (%) (step S101).
  • control unit 173 controls an air conditioner (not shown) to set the temperature of the battery cell Cbj of the battery module 13 to 25 degrees Celsius (Step S102).
  • control unit 173 causes the transmission unit 171 to transmit the test signal at the voltage V1, and derives the internal resistance value Rm of the main circuit 51 based on the received voltage V2 of the test signal (step S103). .
  • control unit 173 measures the voltage V2_BOL (50%, 25 degrees Celsius) of the signal received by the reception unit 172, and stores a data table of conversion coefficients based on the measurement result in the storage unit 174 (step S104). ).
  • FIG. 7 is a flowchart showing the flow of processing at the diagnosis timing.
  • the BMU 17 executes the process shown in FIG. 7 periodically or at an arbitrary timing.
  • control unit 173 of the BMU 17 acquires information indicating the charging rate (SOC) of the battery module 13 from the CMUs 14-1 to 14-k (step S201).
  • control unit 173 acquires information representing the temperature of the battery cell Cbj of the battery module 13 from the CMUs 14-1 to 14-k, which is the temperature measured most recently in time (step S202).
  • control part 173 should just acquire at least one among the information showing temperature, and the information showing a charging rate.
  • the control unit 173 may derive the conversion coefficient with the temperature as a fixed value (for example, 25 degrees Celsius).
  • the control part 173 may derive
  • the transmission unit 171 transmits a test signal at the specified voltage V1 (step S203).
  • the control unit 173 measures the voltage V2_MOL (x%, y degree Celsius) of the signal received by the receiving unit 172 (step S204).
  • the control unit 173 receives the voltage V2_BOL (50%, 25 degrees Celsius) of the signal received by the receiving unit 172 under the reference condition at the reference timing and the receiving unit 172 at the timing when this flowchart is executed.
  • a conversion coefficient Ratio_V2 (x%, centigrade y degree) is derived based on the ratio of the signal V2_MOL (x%, centigrade y degree) of the received signal (step S205).
  • control unit 173 derives a conversion coefficient Ratio_Rm (x%, Celsius y degree) corresponding to the charging rate x (%) and y degree Celsius with reference to the data table of the conversion coefficient Ratio_Rm (Step S206). .
  • control unit 173 derives the deterioration state SOH_R shown in Expression (15) based on the conversion coefficient Ratio_V2 (x%, y Celsius y degree) and the conversion coefficient Ratio_Rm (x%, y Celsius y degree) ( Step S207).
  • the current value of charge / discharge by each of the battery modules 13-1 to 13-k can be regarded as a value 0.
  • the magnetic coupling between the transmission unit 171 and the reception unit 172 and the main circuit 51 approaches saturation.
  • the voltage of the received signal is lower than that in an ideal state where the charge / discharge current value can be regarded as 0.
  • the control unit 173 derives the deteriorated state SOH_R using the lowered voltage value as it is, the deteriorated state SOH_R becomes larger than the true value. That is, it seems that the internal resistance value of each of the battery modules 13-1 to 13-k is increased due to the deterioration of the battery cell.
  • the BMU 17 may execute any one of the first countermeasure to the third countermeasure in order to prevent the deterioration state SOH_R from becoming larger than the true value. In the following, the value measured by the sensor unit 16 is used as the current value.
  • the first countermeasure is that the BMU 17 transmits and receives a test signal when the current value of charge / discharge by each of the battery modules 13-1 to 13-k is equal to or less than a threshold value. This threshold has an absolute value close to the value 0.
  • the second countermeasure is that the control unit 173 corrects the deterioration state SOH_R based on the current value of charging / discharging by each of the battery modules 13-1 to 13-k.
  • the third countermeasure is that the BMU 17 transmits and receives test signals as frequently as possible regardless of the charge / discharge current values of the battery modules 13-1 to 13-k, and the control unit 173 obtains the lower limit envelope so that the deterioration state is obtained.
  • Deriving SOH_R is a diagram illustrating a change in the deterioration state derived based on the internal resistance value. The horizontal axis indicates time. The vertical axis represents SOH_R which is a deterioration state (index) derived based on the internal resistance value.
  • the control unit 173 plots the results obtained by the third countermeasure in time series.
  • the control unit 173 obtains a lower limit envelope of the deterioration state SOH_R plotted in time series, and determines that the right end value of the envelope is a deterioration state (index) close to the true value.
  • the lower limit envelope is obtained, for example, by performing regression analysis or quadratic approximation on the lower limit of the degradation state SOH_R plotted at each timing.
  • the value of the charge / discharge current of the battery cell Cbj does not permanently become 0 because the capacity of the battery cell Cbj is finite. For this reason, the polarity of the charge / discharge current of the battery cell Cbj is always reversed.
  • the lower limit envelope of the deteriorated state SOH_R can be considered as a line corresponding to the case where the charge / discharge current value of each of the battery modules 13-1 to 13-k becomes zero. Further, by obtaining an envelope by regression analysis or quadratic approximation, it becomes possible to predict a future deterioration state SOH_R.
  • the storage battery device 11 includes the battery cell Cbj connected to the power line 50, the transmission unit 171, the reception unit 172, and the control unit 173.
  • the transmission unit 171 transmits a signal to the power line 50.
  • the receiving unit 172 receives a signal via the power line 50 and the battery cell Cbj.
  • Control unit 173 derives the internal resistance value of battery cell Cbj based on the voltage of the signal received by receiving unit 172.
  • the storage battery device 11 of the first embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj without complicating the configuration.
  • the storage battery device 11 of the first embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj even without a dedicated communication line for communication between the CMUs 14.
  • the storage battery device 11 of the first embodiment need not include a charge pump between the CMUs 14 connected in a bus shape.
  • the transmission unit 141 of the CMU 14 may transmit a signal via the power line 50 instead of the transmission unit 171 of the BMU 17.
  • the receiving unit 142 of the CMU 14 may receive a signal via the power line 50 instead of the receiving unit 172 of the BMU 17.
  • the reception unit 142 of the CMU 14 may transfer information representing the voltage of the received signal to the BMU 17 via the power line 50.
  • the transmission unit 171 of the BMU 17 transmits the test signal
  • the reception unit 172 of the BMU 17 receives the test signal
  • the control unit 173 derives the internal resistance. It may be made by the functional unit.
  • the transmission unit 141 of the CMU 14 may superimpose a prescribed AC signal for power line carrier communication on the power line 50 with a prescribed voltage.
  • the receiving unit 172 may receive a prescribed AC signal for power line carrier communication transmitted from any CMU 14 via the power line 50, the magnetic coupling unit 152-2, and the communication line 154-2.
  • the prescribed AC signal is received after passing through at least one battery module 13.
  • the receiving unit 172 may receive data transmitted from any one of the CMUs 14 through the power line 50, the magnetic coupling unit 152-2, and the communication line 154-2 by power line carrier communication. Further, the receiving unit 142 of the CMU 14 may receive a prescribed AC signal for power line carrier communication instead of the receiving unit 172 of the BMU 17. The prescribed AC signal is received after passing through at least one battery module 13.
  • some battery modules can be obtained by transmitting and receiving test signals between CMUs.
  • the internal resistance can be obtained.
  • the internal resistance can be obtained for each battery cell.
  • the internal resistance value deriving method in the storage battery device 11 of the first embodiment includes a transmitting step, a receiving step, and a deriving step.
  • the transmission unit 171 transmits a signal to the power line 50 connected to the battery cell Cbj.
  • the receiving unit 172 receives a signal via the power line 50 and the battery cell Cbj.
  • the control unit 173 derives the internal resistance value of the battery cell Cbj based on the voltage of the received signal.
  • the storage battery device 11 of the first embodiment does not require dedicated hardware for diagnosing deterioration, and can easily diagnose deterioration in a short time during normal operation. Moreover, the storage battery device 11 of the first embodiment can suppress stopping the original application of the power storage system 1 in order to diagnose deterioration.
  • the storage battery device 11 of the first embodiment has few restrictions on the charging / discharging operation, and can easily diagnose deterioration in a short time. Unlike the case of diagnosing based on the degradation model, the storage battery device 11 of the first embodiment diagnoses degradation using the battery cell Cbj, so there is variation among individuals in the degradation of the battery cell Cbj. Also, the deterioration can be diagnosed.
  • the second embodiment differs from the first embodiment in that restrictions are imposed on the charging rate and temperature conditions when signals are transmitted and received. In the second embodiment, only differences from the first embodiment will be described.
  • Control part 173 concerning a 2nd embodiment performs processing which transmits and receives a test signal, when the charge rate and temperature of battery cell Cbj are in a standard range.
  • the reference range is, for example, a range of 15 to 50 degrees Celsius with respect to temperature.
  • the reference range is, for example, 20 to 80 (%) with respect to the charging rate.
  • the internal resistance value of the battery cell Cbj is highly non-linear with respect to a change in temperature. Further, the internal resistance value of the battery cell Cbj is highly non-linear with respect to the change in the charging rate. For this reason, an internal resistance value can be derived
  • the control unit 173 places restrictions on the charging rate and temperature conditions when transmitting and receiving signals. Thereby, the storage battery device 11 of the second embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj with higher accuracy without complicating the configuration.
  • the third embodiment is different from the first and second embodiments in that the voltage of a signal to be transmitted is determined so that the voltage of the received signal is within a specified range. In the third embodiment, only differences from the first and second embodiments will be described.
  • the control unit 173 adjusts the voltage (level) of the signal to be transmitted so that the voltage of the received signal is within a certain range.
  • the control unit 173 derives the increase rate of the internal resistance value based on the voltage of the signal thus received.
  • equation (16) is used instead of equation (7).
  • equation (17) is used instead of equation (8).
  • equation (18) is used instead of equation (9).
  • Expression (19) is an expression obtained by modifying Expression (18).
  • the deterioration state SOH_R is obtained by multiplying the value represented by the equation (20) by the conversion coefficient represented by the equation (21).
  • the value represented by Expression (20) is the voltage of the power line carrier communication signal transmitted from the transmission unit 171 under the reference condition at the timing when the battery module 13 is new, and the transmission unit at an arbitrary timing thereafter. This is a value obtained by dividing the voltage of the power line carrier communication signal transmitted from 171.
  • the conversion coefficient represented by Expression (21) is a coefficient for converting the internal resistance value under the condition (x%, y degree Celsius) at an arbitrary timing into the internal resistance value under the reference condition (50%, 25 degree Celsius). It is.
  • the control unit 173 determines the voltage of the signal to be transmitted so that the voltage of the received signal is within the specified range. Therefore, the storage battery device 11 of the third embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj with higher accuracy without complicating the configuration.
  • the first to third embodiments are such that the internal resistance values of the plurality of battery cells Cbj are derived based on the internal resistance value of the main circuit 51 with the calibration resistor inserted. And different. In the fourth embodiment, only differences from the first to third embodiments will be described.
  • FIG. 9 is a first view of the assembled battery unit 12 including the calibration resistor Rcal.
  • FIG. 10 is a second view of the assembled battery unit 12 including the calibration resistor Rcal.
  • the circuit including the main circuit 51 and the BMU 17 (hereinafter referred to as “AC loop”) includes a switch S3.
  • the switch S3 switching unit
  • the switch S3 is manually opened and closed, for example.
  • the switch S3 may be opened / closed by the control unit 173.
  • the control unit 173 is configured to transmit the power line carrier communication signal in a state where the calibration resistor Rcal is connected to the AC loop, and the power line carrier communication signal in a state where the calibration resistor Rcal is not connected to the AC loop.
  • the internal resistance value of the battery module 13 is derived based on the difference from the value obtained when transmitting / receiving.
  • the internal resistance value of the main circuit 51 is equal to the internal resistance value Rbat of the battery modules 13-1 to 13-k.
  • the internal resistance value of the main circuit 51 is equal to the value obtained by adding the known calibration resistance Rcal to the internal resistance value Rbat of the battery modules 13-1 to 13-k.
  • Equation (24), Equation (25), and Equation (26) are obtained from Equation (22) and Equation (23).
  • the internal resistance value Rbat of the battery modules 13-1 to 13-k at an arbitrary timing is expressed by Expression (26).
  • the control unit 173 derives the deterioration state SOH_R based on the internal resistance value Rbat, the charging rate, and the temperature conversion coefficient. In this way, data such as the internal resistance value of a new battery cell Cbj that is not deteriorated becomes unnecessary by connecting the calibration resistor Rcal to the AC loop.
  • the storage battery device 11 of the fourth embodiment described above includes the switch S3 that switches whether or not the calibration resistor Rcal is connected to the main circuit 51 including the plurality of battery modules 13.
  • the control unit 173 derives the internal resistance values of the plurality of battery modules 13 based on the internal resistance value of the main circuit 51 with the calibration resistor Rcal inserted. Thereby, the storage battery device 11 of the fourth embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj with higher accuracy without complicating the configuration.
  • a storage battery apparatus is applicable also to other uses, such as a vehicle-mounted use.
  • the storage battery device of at least one embodiment described above without having to complicate the configuration by having a derivation unit that derives the internal resistance value of the storage battery based on the voltage of the signal received by the reception unit.
  • the internal resistance value of the storage battery can be derived.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A storage battery device according to one embodiment has: a storage battery connected to a power line; a transmission unit; a reception unit; and a derivation unit. The transmission unit transmits a signal to the power line. The reception unit receives the signal via the power line and the storage battery. The derivation unit derives the internal resistance value of the storage battery on the basis of the voltage of the signal received by the reception unit.

Description

蓄電池装置、及び内部抵抗値導出方法Storage battery device and internal resistance value deriving method
 本発明の実施形態は、蓄電池装置、及び内部抵抗値導出方法に関する。 Embodiments of the present invention relate to a storage battery device and an internal resistance value derivation method.
 電力線搬送通信(PLC:Power Line Communication)を利用して、電池管理装置(BMU:Battery Monitoring Unit)と、電池監視ユニット(CMU:Cell Monitoring Unit)との間の通信を実行する蓄電システムが知られている。しかしながら、従来の技術では、電池監視ユニット同士が通信するための専用の通信線が無ければ、蓄電池の内部抵抗値を導出することができなかった。 A power storage system that performs communication between a battery management unit (BMU: Battery Monitoring Unit) and a battery monitoring unit (CMU: Cell Monitoring Unit) using power line communication (PLC) is known. ing. However, in the conventional technology, the internal resistance value of the storage battery cannot be derived without a dedicated communication line for communication between the battery monitoring units.
特開平07-72225号公報Japanese Patent Application Laid-Open No. 07-72225 特開2010-164441号公報JP 2010-164441 A 特開2013-29412号公報JP 2013-29412 A 特開平07-312233号公報Japanese Unexamined Patent Publication No. 07-31233 特開平11-318033号公報Japanese Patent Laid-Open No. 11-318033
 本発明が解決しようとする課題は、構成を複雑にすることなく、蓄電池の内部抵抗値を導出することができる蓄電池装置、及び内部抵抗値導出方法を提供することである。 The problem to be solved by the present invention is to provide a storage battery device and an internal resistance value derivation method that can derive the internal resistance value of the storage battery without complicating the configuration.
 実施形態の蓄電池装置は、電力線に接続された蓄電池と、送信部と、受信部と、導出部とを持つ。送信部は、電力線に対して信号を送信する。受信部は、電力線および蓄電池を介して信号を受信する。導出部は、受信部により受信された信号の電圧に基づいて、蓄電池の内部抵抗値を導出する。 The storage battery device of the embodiment includes a storage battery connected to a power line, a transmission unit, a reception unit, and a derivation unit. The transmission unit transmits a signal to the power line. A receiving part receives a signal via a power line and a storage battery. The deriving unit derives the internal resistance value of the storage battery based on the voltage of the signal received by the receiving unit.
第1の実施形態における、蓄電池装置を含む蓄電システムの構成図。The block diagram of the electrical storage system containing the storage battery apparatus in 1st Embodiment. 第1の実施形態における、蓄電池装置が備える組電池ユニットの構成図。The block diagram of the assembled battery unit with which the storage battery apparatus in 1st Embodiment is provided. 磁気結合部の構造を示す図。The figure which shows the structure of a magnetic coupling part. 電池モジュールの構成図。The block diagram of a battery module. 内部抵抗値を導出する方法を説明するための説明図。Explanatory drawing for demonstrating the method to derive | lead-out an internal resistance value. 基準タイミングにおける処理の流れを示すフローチャート。The flowchart which shows the flow of the process in reference | standard timing. 診断タイミングにおける処理の流れを示すフローチャート。The flowchart which shows the flow of the process in a diagnosis timing. 内部抵抗値に基づいて導出された劣化状態の変化を示す図。The figure which shows the change of the degradation state derived | led-out based on the internal resistance value. 第4の実施形態における、校正用抵抗を備える組電池ユニットの第1の図。The 1st figure of the assembled battery unit provided with the resistance for calibration in 4th Embodiment. 第4の実施形態における、校正用抵抗を備える組電池ユニットの第2の図。The 2nd figure of the assembled battery unit provided with the resistance for a calibration in 4th Embodiment.
 以下、実施形態の蓄電池装置(蓄電盤)、及び内部抵抗値導出方法を、図面を参照して説明する。
 (第1の実施形態)
 図1は、第1の実施形態における蓄電池装置を含む蓄電システム1の構成図である。図2は、第1の実施形態における蓄電池装置が備える組電池ユニット12の構成図である。
図1と図2では、電力線は実線で描かれている。また、通信線は破線で描かれている。蓄電池ユニット10は、蓄電池装置11-1~11-nを備える。nは、例えば16である。
Hereinafter, a storage battery device (power storage panel) and an internal resistance value derivation method according to an embodiment will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a configuration diagram of a power storage system 1 including a storage battery device according to the first embodiment. FIG. 2 is a configuration diagram of the assembled battery unit 12 included in the storage battery device according to the first embodiment.
In FIG. 1 and FIG. 2, the power line is drawn as a solid line. The communication line is drawn with a broken line. The storage battery unit 10 includes storage battery devices 11-1 to 11-n. n is 16, for example.
 蓄電池装置11-1~11-nは、それぞれ同じ構成を有する。以下では、蓄電池装置11-1~11-nを代表して、蓄電池装置11-1の構成および機能について説明する。蓄電池装置11-1は、組電池ユニット12-1~12-mを備える。mは、例えば16である。組電池ユニット12-1~12-mは、並列に接続されている。 The storage battery devices 11-1 to 11-n have the same configuration. Hereinafter, the configuration and function of the storage battery device 11-1 will be described on behalf of the storage battery devices 11-1 to 11-n. The storage battery device 11-1 includes assembled battery units 12-1 to 12-m. For example, m is 16. The assembled battery units 12-1 to 12-m are connected in parallel.
 組電池ユニット12-1~12-mは、例えば、それぞれが同じ構成を有する組電池ユニットである。以下では、組電池ユニット12-1~12-mを代表して、組電池ユニット12-1の構成および機能について説明する。組電池ユニット12-1は、電池モジュール13-1~13-kを備える。kは、例えば22である。 The assembled battery units 12-1 to 12-m are, for example, assembled battery units each having the same configuration. Hereinafter, the configuration and function of the assembled battery unit 12-1 will be described on behalf of the assembled battery units 12-1 to 12-m. The assembled battery unit 12-1 includes battery modules 13-1 to 13-k. k is, for example, 22.
 各電池モジュール13-1~13-kは、それぞれ、複数の電池セルと、電池セルの温度及び電圧を監視するCMU14-1~14-kを備える。電池セルは、例えばリチウムイオン電池である。各CMU14-1~14-kの構成および機能については後述する。 Each of the battery modules 13-1 to 13-k includes a plurality of battery cells and CMUs 14-1 to 14-k that monitor the temperature and voltage of the battery cells. The battery cell is, for example, a lithium ion battery. The configurations and functions of the CMUs 14-1 to 14-k will be described later.
 また、各電池モジュール13-1~13-kは、それぞれ、磁気結合部MCT(13-1)、MCR(13-1)~MCT(13-k)、MCR(13-k)を備え、電力線50と磁気的に結合されている。同様に、センサ部16は磁気結合部MCT(16)を、BMU17は磁気結合部MCT(17)、MCR(17)を備える。これによって、CMU14、センサ部16、およびBMU17は、電力線50および電池セルを介した通信を行うことができる。各磁気結合部は、例えば同じ構造を有している。なお、MCTは送信側の磁気結合部を、MCRは受信側の磁気結合部を、それぞれ示している。 Each of the battery modules 13-1 to 13-k includes a magnetic coupling unit MCT (13-1), MCR (13-1) to MCT (13-k), and MCR (13-k), and a power line. 50 is magnetically coupled. Similarly, the sensor unit 16 includes a magnetic coupling unit MCT (16), and the BMU 17 includes a magnetic coupling unit MCT (17) and MCR (17). Accordingly, the CMU 14, the sensor unit 16, and the BMU 17 can perform communication via the power line 50 and the battery cell. Each magnetic coupling part has the same structure, for example. Note that MCT indicates a magnetic coupling unit on the transmission side, and MCR indicates a magnetic coupling unit on the reception side.
 図3は、磁気結合部の構造を示す図である。図3では、送信側の磁気結合部MCTのみ記載したが、受信側については「T」を「R」と読み替えて援用することができる。磁気結合部MCTは、円環部MCT1と、通信線MCT2とを備える。円環部MCT1は、フェライトなどの磁性材料からなる円環部材である。円環部MCT1の穴部には、電力線50が円環部MCT1に接触しないように通される。また、円環部MCT1には、予め定められた回数だけ通信線MCT2が巻きつけられる。この巻きつけの回数は、電力線搬送通信の信号を送信又は受信する際に通信線MCT2に生じる電圧又は電流に基づいて定められる。 FIG. 3 is a diagram showing the structure of the magnetic coupling portion. In FIG. 3, only the magnetic coupling unit MCT on the transmission side is described, but “T” can be replaced with “R” for the reception side. The magnetic coupling unit MCT includes an annular part MCT1 and a communication line MCT2. The annular portion MCT1 is an annular member made of a magnetic material such as ferrite. The power line 50 is passed through the hole of the annular part MCT1 so as not to contact the annular part MCT1. Further, the communication line MCT2 is wound around the annular portion MCT1 a predetermined number of times. The number of windings is determined based on a voltage or current generated in the communication line MCT2 when a signal of power line carrier communication is transmitted or received.
 以下、必要に応じて、符号におけるハイフンおよびその後の添え字を省略して説明する。通信線MC2は、CMU14の送信部141又は受信部142、センサ部16の測定部161、或いはBMU17内の送信部171又は受信部172と接続されている。 Hereinafter, the description will be made by omitting the hyphen and the subscript after that as necessary. The communication line MC2 is connected to the transmission unit 141 or the reception unit 142 of the CMU 14, the measurement unit 161 of the sensor unit 16, or the transmission unit 171 or the reception unit 172 in the BMU 17.
 また、各電池モジュール13間には、スイッチ15が設けられてもよい。スイッチ15は、例えば、いずれかの電池モジュール13が点検のために取り離される場合に、主回路51をオフするために利用される。また、スイッチ15は、断路器(サービス・ディスコネクト)と兼用される場合、ヒューズとして機能する。この場合、挿抜状態やヒューズの状態をBMU17(電池管理装置)に通知するための配線が設けられてもよい。 Further, a switch 15 may be provided between each battery module 13. The switch 15 is used, for example, to turn off the main circuit 51 when any battery module 13 is removed for inspection. The switch 15 functions as a fuse when it is also used as a disconnector (service disconnect). In this case, a wiring for notifying the BMU 17 (battery management device) of the insertion / extraction state and the fuse state may be provided.
 図4は、電池モジュール13の構成図である。電池モジュール13は、例えば、直列接続された電池セルを2系統並列に備えている。電池モジュール13は、直列接続された電池セルCb1-1~Cb1-pと、直列接続された電池セルCb2-1~Cb2-pとを備える。pは、例えば12である。直列接続された電池セルCb1-1~Cb1-pと、直列接続された電池セルCb2-1~Cb2-pとは、並列に接続されている。 FIG. 4 is a configuration diagram of the battery module 13. The battery module 13 includes, for example, two series connected battery cells in parallel. The battery module 13 includes battery cells Cb1-1 to Cb1-p connected in series and battery cells Cb2-1 to Cb2-p connected in series. p is, for example, 12. The battery cells Cb1-1 to Cb1-p connected in series and the battery cells Cb2-1 to Cb2-p connected in series are connected in parallel.
 図4に示すように、電池モジュール13のCMU14は、制御部140(状態測定部)と、送信部141と、受信部142とを備える。CMU14は、電池モジュール13の各電池セルCbの端子間の電圧と、各電池セルCbjの温度と、電池モジュール13の内部空間の温度とを監視する。CMU14は、監視の結果を表すデータを、送信部141を介してBMU17に送信する。 As shown in FIG. 4, the CMU 14 of the battery module 13 includes a control unit 140 (state measurement unit), a transmission unit 141, and a reception unit 142. The CMU 14 monitors the voltage between the terminals of each battery cell Cb of the battery module 13, the temperature of each battery cell Cbj, and the temperature of the internal space of the battery module 13. The CMU 14 transmits data representing the monitoring result to the BMU 17 via the transmission unit 141.
 送信部141は、磁気結合部MCTと電力線50とを介した電力線搬送通信によって、監視の結果を表すデータをBMU17に送信する。また、送信部141は、磁気結合部MCTと電力線50とを介した電力線搬送通信によって、他の電池モジュール13のCMU14にデータを送信してもよい。 The transmission unit 141 transmits data representing the monitoring result to the BMU 17 by power line carrier communication via the magnetic coupling unit MCT and the power line 50. In addition, the transmission unit 141 may transmit data to the CMU 14 of another battery module 13 through power line carrier communication via the magnetic coupling unit MCT and the power line 50.
 受信部142は、電力線50と磁気結合部MCRとを介した電力線搬送通信によって、BMU17から送信されたデータを受信する。また、受信部142は、電力線50と磁気結合部MCRとを介した電力線搬送通信によって、他の電池モジュール13のCMU14から送信されたデータを受信してもよい。なお、送信部141と、受信部142とは、それぞれ別体の磁気結合部MCT、MCRを使用するのではなく、共通化された一つの磁気結合部を時分割して使用してもよい。 The receiving unit 142 receives data transmitted from the BMU 17 by power line carrier communication via the power line 50 and the magnetic coupling unit MCR. The receiving unit 142 may receive data transmitted from the CMU 14 of another battery module 13 through power line carrier communication via the power line 50 and the magnetic coupling unit MCR. The transmitting unit 141 and the receiving unit 142 may use a common magnetic coupling unit in a time-sharing manner instead of using separate magnetic coupling units MCT and MCR, respectively.
 センサ部16は、例えば、組電池ユニット12-1における負極側の電池モジュール13kとBMU17との間に設けられる。図2に示すように、センサ部16は、測定部161を備える。測定部161は、電力線50に流れる電流の値を測定し、測定した電流値を表すデータを、磁気結合部MCT(16)および電力線50を介した電力線搬送通信によって、BMU17に送信する。 The sensor unit 16 is provided, for example, between the negative-side battery module 13k and the BMU 17 in the assembled battery unit 12-1. As shown in FIG. 2, the sensor unit 16 includes a measurement unit 161. The measurement unit 161 measures the value of the current flowing through the power line 50 and transmits data representing the measured current value to the BMU 17 by the power line carrier communication via the magnetic coupling unit MCT (16) and the power line 50.
 スイッチ回路18(コンタクタ)は、スイッチS1と、スイッチS2と、抵抗Rとを備える。スイッチS1は、抵抗Rと比較して抵抗値が低い。スイッチ回路18では、抵抗Rが直列に接続されたスイッチS2と、スイッチS1とが、並列に接続されている。スイッチ回路18は、自回路を有する組電池ユニット12を、他の組電池ユニット12に接続することができる。また、スイッチ回路18は、自回路を有する組電池ユニット12を、他の組電池ユニット12から切り離すことができる。スイッチ回路18は、例えば手動で開閉操作される。 The switch circuit 18 (contactor) includes a switch S1, a switch S2, and a resistor R. The switch S1 has a resistance value lower than that of the resistance R. In the switch circuit 18, a switch S2 having a resistor R connected in series and a switch S1 are connected in parallel. The switch circuit 18 can connect the assembled battery unit 12 having its own circuit to another assembled battery unit 12. Further, the switch circuit 18 can disconnect the assembled battery unit 12 having its own circuit from other assembled battery units 12. The switch circuit 18 is manually opened and closed, for example.
 第1の充放電端子22は、蓄電池装置11-1の正極側の端子である。第1の充放電端子22は、スイッチ回路18を介して、電池モジュール13-1の正極側端子に接続される。また、第1の充放電端子22は、電池端子盤30の遮断機31-1の正極側端子に接続される。 The first charge / discharge terminal 22 is a terminal on the positive electrode side of the storage battery device 11-1. The first charge / discharge terminal 22 is connected to the positive terminal of the battery module 13-1 through the switch circuit 18. The first charge / discharge terminal 22 is connected to the positive terminal of the circuit breaker 31-1 of the battery terminal board 30.
 第2の充放電端子23は、蓄電池装置11-1の負極側端子である。第2の充放電端子23は、電池モジュール13-1の負極側端子に接続される。また、第2の充放電端子23は、電池端子盤30の遮断機31-1の負極側端子に接続される。 The second charge / discharge terminal 23 is a negative electrode side terminal of the storage battery device 11-1. The second charge / discharge terminal 23 is connected to the negative electrode side terminal of the battery module 13-1. The second charge / discharge terminal 23 is connected to the negative terminal of the circuit breaker 31-1 of the battery terminal board 30.
 コンデンサ24は、主回路51及びBMU17と、並列に接続される。図2に示すように、主回路51とは、電池モジュール13-1~13-kと、スイッチ15と、センサ部16とを合わせたものである。コンデンサ24は、主回路51及びBMU17を含む交流ループを形成するためのコンデンサである。つまり、電池モジュール13-1~13-kと、スイッチ15と、センサ部16と、BMU17と、コンデンサ24とは、閉回路を形成する。 The capacitor 24 is connected in parallel with the main circuit 51 and the BMU 17. As shown in FIG. 2, the main circuit 51 is a combination of the battery modules 13-1 to 13-k, the switch 15, and the sensor unit 16. The capacitor 24 is a capacitor for forming an AC loop including the main circuit 51 and the BMU 17. That is, the battery modules 13-1 to 13-k, the switch 15, the sensor unit 16, the BMU 17, and the capacitor 24 form a closed circuit.
 BMU17は、送信部171と、受信部172と、制御部173と、記憶部174とを備える。送信部171と、受信部172と、制御部173とのうち一部または全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、記憶部174に記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。 The BMU 17 includes a transmission unit 171, a reception unit 172, a control unit 173, and a storage unit 174. Some or all of the transmission unit 171, the reception unit 172, and the control unit 173 function by a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit 174. Software function part. Also, some or all of these functional units may be hardware functional units such as LSI (Large Scale Integration) and ASIC (Application Specific Integrated Circuit).
 送信部171は、磁気結合部MCT(17)を介して、電力線搬送通信の規定の交流信号を、規定の電圧によって電力線50に重畳させる。この規定の交流信号は、電池セル(電池モジュール)の内部抵抗を導出して電池セル(電池モジュール)の状態を診断するために送受信される信号である。以下、この規定の交流信号を、テスト信号と称する。受信部172は、電力線50および各電池モジュール13を介して帰還するテスト信号を、磁気結合部MCR(17)を介して受信する。なお、送信部171と受信部172は、それぞれ別体の磁気結合部MCT、MCRを使用するのではなく、共通化された一つの磁気結合部を時分割して使用してもよい。 The transmission unit 171 superimposes a prescribed AC signal for power line carrier communication on the power line 50 with a prescribed voltage via the magnetic coupling unit MCT (17). This prescribed AC signal is a signal transmitted and received in order to derive the internal resistance of the battery cell (battery module) and diagnose the state of the battery cell (battery module). Hereinafter, this prescribed AC signal is referred to as a test signal. The receiving unit 172 receives a test signal that is fed back via the power line 50 and each battery module 13 via the magnetic coupling unit MCR (17). The transmitting unit 171 and the receiving unit 172 may use a common magnetic coupling unit in a time-sharing manner, instead of using separate magnetic coupling units MCT and MCR, respectively.
 制御部173は、電流値を表すデータをセンサ部16から取得する。制御部173は、送信部171を用いて電力線50に対してテスト信号を送信させる。また、制御部173は、受信部172によって受信されたテスト信号に基づいて、電池モジュール13の内部抵抗を導出する。電池セルの劣化によって変化する代表的なパラメータは、電池セルの集合である電池モジュール13の容量と内部抵抗値である。制御部173は、電池モジュール13の容量や内部抵抗値に基づいて、電池モジュール13の劣化を診断することができる。なお、各電池モジュール13-1~13-kによる充放電の電流値が値0とみなすことができない場合については後述する。 The control unit 173 acquires data representing the current value from the sensor unit 16. The control unit 173 transmits a test signal to the power line 50 using the transmission unit 171. Further, the control unit 173 derives the internal resistance of the battery module 13 based on the test signal received by the receiving unit 172. Typical parameters that change due to deterioration of the battery cells are the capacity and internal resistance value of the battery module 13 that is a set of battery cells. The control unit 173 can diagnose the deterioration of the battery module 13 based on the capacity of the battery module 13 and the internal resistance value. A case where the current value of charge / discharge by each of the battery modules 13-1 to 13-k cannot be regarded as a value 0 will be described later.
 また、制御部173は、スイッチ回路18のスイッチS1とスイッチS2を制御するための制御信号を、スイッチ回路18に出力する。制御部173は、CAN(Control Area Network)通信線などの多重通信線を介して、他の組電池ユニット12と、関門制御装置19(ゲートウェイ装置)と、計測コンピュータ20との通信を実行する。制御部173は、多重通信線を介して、スイッチ回路18の開閉操作を実行してもよい。 Further, the control unit 173 outputs a control signal for controlling the switches S1 and S2 of the switch circuit 18 to the switch circuit 18. The control unit 173 communicates with another assembled battery unit 12, the gateway control device 19 (gateway device), and the measurement computer 20 via a multiple communication line such as a CAN (Control Area Network) communication line. The control unit 173 may execute an opening / closing operation of the switch circuit 18 via the multiple communication line.
 関門制御装置19は、BMU17から受信したデータを、多重通信線を介して、電池端子盤30の制御コンピュータ32に転送する。また、関門制御装置19は、制御コンピュータ32から受信したデータを、多重通信線を介して、BMU17などに転送する。 The gateway control device 19 transfers the data received from the BMU 17 to the control computer 32 of the battery terminal board 30 via the multiple communication line. Further, the gateway control device 19 transfers the data received from the control computer 32 to the BMU 17 or the like via the multiplex communication line.
 計測コンピュータ20は、電池モジュール13の電池セルCbjの端子間の電圧と、温度と、センサ部16が測定した値と、CMU14又はBMU17によって測定された電池セルCbjの充電率(SOC : State Of Charge)などのデータを、BMU17から受信する。計測コンピュータ20は、電池モジュール13の電池セルCbjの内部抵抗の値を算出してもよい。 The measurement computer 20 measures the voltage between the terminals of the battery cell Cbj of the battery module 13, the temperature, the value measured by the sensor unit 16, and the charging rate (SOC: State Of の Charge) of the battery cell Cbj measured by the CMU 14 or BMU 17. ) And the like are received from the BMU 17. The measurement computer 20 may calculate the value of the internal resistance of the battery cell Cbj of the battery module 13.
 直流電源装置21は、PCS40(Power Conditioning System)から制御コンピュータ32を介して供給される電力を、BMU17とCMU14-1~14-kとに供給する。 DC power supply 21 supplies power supplied from PCS 40 (Power Conditioning System) via control computer 32 to BMU 17 and CMUs 14-1 to 14-k.
 電池端子盤30は、蓄電池ユニット10をPCS40に接続する。電池端子盤30は、蓄電池装置11-1~11-nを備える。蓄電池装置11-1は、遮断機31-1に対応する。蓄電池装置11-nは、遮断機31-nに対応する。遮断機31-1~31-nは、例えば手動で開閉操作される。 The battery terminal board 30 connects the storage battery unit 10 to the PCS 40. The battery terminal board 30 includes storage battery devices 11-1 to 11-n. The storage battery device 11-1 corresponds to the circuit breaker 31-1. The storage battery device 11-n corresponds to the circuit breaker 31-n. The circuit breakers 31-1 to 31-n are manually opened and closed, for example.
 遮断機31-1の正極側の端子に接続された電力線と、遮断機31-1の負極側の端子の電力線とは、共通化されてPCS40に接続される。遮断機31-2~31-nについても同様である。この共通化された電力線の直流電圧は、例えば、490~778(V)程度である。遮断機31は、スイッチ回路18が溶着した場合でも、蓄電池装置11-1~11-nを、蓄電システム1から安全に切り離すことができる。 The power line connected to the positive terminal of the circuit breaker 31-1 and the power line of the negative terminal of the circuit breaker 31-1 are shared and connected to the PCS 40. The same applies to the circuit breakers 31-2 to 31-n. The DC voltage of the shared power line is, for example, about 490 to 778 (V). The breaker 31 can safely disconnect the storage battery devices 11-1 to 11-n from the power storage system 1 even when the switch circuit 18 is welded.
 制御コンピュータ32は、CPU等のプロセッサを備える。制御コンピュータ32は、遮断機31-1~31-nの状態を監視する。制御コンピュータ32は、PCS40から受信したデータを、蓄電池ユニット10に転送する。制御コンピュータ32は、蓄電池ユニット10から受信したデータを、PCS40に転送する。 The control computer 32 includes a processor such as a CPU. The control computer 32 monitors the state of the circuit breakers 31-1 to 31-n. The control computer 32 transfers the data received from the PCS 40 to the storage battery unit 10. The control computer 32 transfers the data received from the storage battery unit 10 to the PCS 40.
 PCS40は、CPU等のプロセッサと、通信インターフェースとを備える。PCS40は、この通信インターフェースを介して、外部の制御コントローラ(不図示)と通信する。PCS40は、蓄電池ユニット10から電池端子盤30を介して入力された直流電圧から、交流電圧を生成する。また、PCS40は、発電装置(不図示)から入力される交流電圧を直流電圧に変換し、蓄電池ユニット10の電池モジュール13-1~13-kに充電する。なお、PCS40によって生成された交流電圧は、トランスによって昇圧されてもよい。 The PCS 40 includes a processor such as a CPU and a communication interface. The PCS 40 communicates with an external controller (not shown) via this communication interface. The PCS 40 generates an AC voltage from the DC voltage input from the storage battery unit 10 via the battery terminal board 30. Further, the PCS 40 converts an AC voltage input from a power generation device (not shown) into a DC voltage, and charges the battery modules 13-1 to 13-k of the storage battery unit 10. Note that the AC voltage generated by the PCS 40 may be boosted by a transformer.
 以下、制御部173により実行される、テスト信号の送受信による内部抵抗の導出処理について説明する。まず、スイッチ15とセンサ部16の内部抵抗値が充分に小さいので、主回路51の内部抵抗値は、電池モジュール13-1~13-kの内部抵抗値とみなすことができる。したがって、電池モジュール13-1~13-kを含む主回路51の内部抵抗値を制御部173が導出した場合、この導出された内部抵抗値は、電池モジュール13-1~13-kの内部抵抗値と等しいとみなすことができる。 Hereinafter, the process of deriving the internal resistance by the transmission / reception of the test signal executed by the control unit 173 will be described. First, since the internal resistance values of the switch 15 and the sensor unit 16 are sufficiently small, the internal resistance value of the main circuit 51 can be regarded as the internal resistance values of the battery modules 13-1 to 13-k. Therefore, when the control unit 173 derives the internal resistance value of the main circuit 51 including the battery modules 13-1 to 13-k, the derived internal resistance value is the internal resistance value of the battery modules 13-1 to 13-k. Can be considered equal to the value.
 図5は、内部抵抗値を導出する方法を説明するための説明図である。なお、コンデンサ24は、電力線搬送通信に関しては短絡しているとみなすことができるので、図5には描かれていない。図中、電圧V1は、送信部171からテスト信号を送信することによって、磁気結合部MCT(17)の通信線MCT2に生じる送信電圧である。電圧V1は、信号を送信する前に予め規定された一定値である。電圧Vm1は、電圧V1によって電力線50の一部に生じる送信電圧である。この電力線50の一部とは、磁気結合部MCTの円環部MCT1を電力線50が通過している部分である。 FIG. 5 is an explanatory diagram for explaining a method of deriving the internal resistance value. Note that the capacitor 24 is not depicted in FIG. 5 because it can be considered short-circuited for power line communication. In the figure, a voltage V1 is a transmission voltage generated in the communication line MCT2 of the magnetic coupling unit MCT (17) by transmitting a test signal from the transmission unit 171. The voltage V1 is a constant value defined in advance before transmitting a signal. The voltage Vm1 is a transmission voltage generated in a part of the power line 50 by the voltage V1. The part of the power line 50 is a part where the power line 50 passes through the annular part MCT1 of the magnetic coupling part MCT.
 また、内部抵抗値Rmは、主回路51の内部抵抗値(インピーダンス)である。主回路51の内部抵抗値Rmは、電池モジュール13の内部抵抗値の合計値に相当する。Imは、規定された一定値である電圧V1によって磁気結合部152-1から電力線50に重畳される電力線搬送通信の信号の電流である。電圧Vm2は、磁気結合部MCRにより受信された電力線搬送通信の信号の電流Imによって、電力線50の一部に生じる受信電圧である。この電力線50の一部とは、磁気結合部MCRの円環部MCR2を電力線50が通過している部分である。電圧V2は、電圧Vm2によって通信線MCR2に生じる電圧である。上記において、式(1)~(4)が成立する。式(1)~(4)において、k1とk2とk3とは係数である。 The internal resistance value Rm is the internal resistance value (impedance) of the main circuit 51. The internal resistance value Rm of the main circuit 51 corresponds to the total value of the internal resistance values of the battery module 13. Im is a current of a power line carrier communication signal superimposed on the power line 50 from the magnetic coupling unit 152-1 by the voltage V1 which is a specified constant value. The voltage Vm2 is a reception voltage generated in a part of the power line 50 by the current Im of the power line carrier communication signal received by the magnetic coupling unit MCR. The part of the power line 50 is a part where the power line 50 passes through the annular part MCR2 of the magnetic coupling part MCR. The voltage V2 is a voltage generated in the communication line MCR2 by the voltage Vm2. In the above, equations (1) to (4) are established. In equations (1) to (4), k1, k2, and k3 are coefficients.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 電圧V2は、式(5)によって表される。 The voltage V2 is expressed by equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 電圧V2は、「k1・k2・k3」を「k」と置き換えた場合、式(6)が成立する。 For the voltage V2, when “k1, k2, k3” is replaced with “k”, equation (6) is established.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)において、電圧V1と電圧V2は、直接測定することが可能である。また、係数kが定まっていない場合、内部抵抗値Rmは定まらない。そこで、BMU17は、例えば、電池モジュール13が劣化していない基準タイミング(出荷前の新品の状態であるタイミングなど)において、基準条件(基準状態)の下で、内部抵抗値Rmを導出するためのテスト信号の送受信を予め実行しておく。この基準条件は、例えば、充電率50%と、摂氏25度という条件である。なお、基準タイミングにおけるテスト信号の送受信は、BMU17により自動的に行われるのではなく、人の操作によって行われてもよい。また、基準タイミングは、出荷前の新品の状態であるタイミングに限らず、任意に設定されてよい。 In Equation (6), the voltage V1 and the voltage V2 can be directly measured. When the coefficient k is not determined, the internal resistance value Rm is not determined. Therefore, for example, the BMU 17 derives the internal resistance value Rm under the reference condition (reference state) at the reference timing where the battery module 13 is not deteriorated (such as the timing when the battery module 13 is in a new state before shipment). Test signal transmission / reception is executed in advance. The reference conditions are, for example, a charging rate of 50% and 25 degrees Celsius. Note that the transmission / reception of the test signal at the reference timing may not be automatically performed by the BMU 17 but may be performed by a human operation. Further, the reference timing is not limited to the timing when it is in a new state before shipment, and may be arbitrarily set.
 BMU17は、基準タイミングにおいてテスト信号が磁気結合部MCR(17)により受信されることで生じる電圧V2_BOLを測定する。基準タイミングにおける電圧V2_BOLは、式(7)によって表される。以下、数式等における「BOL」は、基準タイミングにおける値であることを示すものとする。 The BMU 17 measures the voltage V2_BOL that is generated when the test signal is received by the magnetic coupling unit MCR (17) at the reference timing. The voltage V2_BOL at the reference timing is expressed by Expression (7). Hereinafter, “BOL” in mathematical expressions and the like indicates a value at the reference timing.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 その後、BMU17は、テスト信号の送受信を、任意の診断タイミングで実行する。BMU17は、充電率や温度に関する条件を満たす場合に、診断タイミングとしてのテスト信号の送受信を実行する。BMU17は、診断タイミングにおいてテスト信号が磁気結合部MCR(17)により受信されることで生じる電圧V2_MOLを測定する。電圧V2_MOLは、式(8)によって表される。以下、数式等における「MOL」は、診断タイミングにおける値であることを示すものとする。 Thereafter, the BMU 17 performs transmission / reception of the test signal at an arbitrary diagnosis timing. The BMU 17 executes transmission / reception of a test signal as a diagnosis timing when the conditions regarding the charging rate and temperature are satisfied. The BMU 17 measures the voltage V2_MOL generated by receiving the test signal by the magnetic coupling unit MCR (17) at the diagnosis timing. The voltage V2_MOL is expressed by Expression (8). Hereinafter, “MOL” in the mathematical expression and the like indicates a value at the diagnosis timing.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(7)と式(8)から、式(9)が得られる。 Equation (9) is obtained from Equation (7) and Equation (8).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 式(9)から式(10)が得られる。 Equation (10) is obtained from Equation (9).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)に示す、Rm_MOL(50%、摂氏25度)は、充電率50%と摂氏25度の条件の下で、診断タイミングにおいて受信されたテスト信号の電圧V2_MOLを測定して得られた内部抵抗値である。また、Rm_BOL(50%、摂氏25度)は、充電率50%と摂氏25度の条件の下で、基準タイミングにおいて受信されたテスト信号の電圧V2_BOLを測定して得られた内部抵抗値である。 Rm_MOL (50%, 25 degrees Celsius) shown in the equation (10) was obtained by measuring the voltage V2_MOL of the test signal received at the diagnosis timing under the conditions of the charging rate of 50% and 25 degrees Celsius. This is the internal resistance value. Rm_BOL (50%, 25 degrees Celsius) is an internal resistance value obtained by measuring the voltage V2_BOL of the test signal received at the reference timing under the conditions of a charging rate of 50% and 25 degrees Celsius. .
 式(10)に示す、「(Rm_MOL(50%、摂氏25度))/(Rm_BOL(50%、摂氏25度))」は、内部抵抗値に基づいて導出された劣化状態SOH(State ofHealth)である。内部抵抗値に基づいて導出された劣化状態SOH_Rは、式(11)によって表される。 “(Rm_MOL (50%, 25 degrees Celsius)) / (Rm_BOL (50%, 25 degrees Celsius))” shown in Expression (10) is a deterioration state SOH (State ofHealth) derived based on the internal resistance value. It is. The deterioration state SOH_R derived based on the internal resistance value is represented by Expression (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(11)に表される劣化状態SOH_Rは、式(12)に表される値に、式(13)に表される換算係数を乗算することによって得られる。式(12)に表される値は、電池モジュール13が新品であるタイミングで基準条件の下で受信部172に受信されたテスト信号の電圧を、それ以降の任意のタイミングで受信部172に受信されたテスト信号の電圧で除算した値である。式(13)に表される換算係数は、任意のタイミングでの条件(x%、摂氏y度)における内部抵抗値を、基準条件(50%、摂氏25度)における内部抵抗値に換算する係数である。 The deterioration state SOH_R represented by the equation (11) is obtained by multiplying the value represented by the equation (12) by the conversion coefficient represented by the equation (13). The value represented by the expression (12) is obtained by receiving the voltage of the test signal received by the receiving unit 172 under the reference condition at the timing when the battery module 13 is new, at the receiving unit 172 at an arbitrary timing thereafter. Divided by the voltage of the test signal generated. The conversion coefficient represented by Expression (13) is a coefficient for converting the internal resistance value under the condition (x%, y degree Celsius) at an arbitrary timing into the internal resistance value under the reference condition (50%, 25 degree Celsius). It is.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 内部抵抗値と充電率との対応を表す特性は、新品の電池セルと、劣化品の電池セルとでは有意な差がない。また、内部抵抗値と温度との対応を表す特性も、新品の電池セル、劣化品の電池セルとでは有意な差がない。このため、式(13)に表される換算係数は、式(14)によって表される。 The characteristic representing the correspondence between the internal resistance value and the charging rate is not significantly different between a new battery cell and a deteriorated battery cell. In addition, the characteristic representing the correspondence between the internal resistance value and the temperature is not significantly different between a new battery cell and a deteriorated battery cell. For this reason, the conversion coefficient represented by Formula (13) is represented by Formula (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 BMU17は、例えば、新品の電池モジュール13に対して(基準タイミングにおいて)複数の条件(x%、摂氏y度)の下で電圧の測定し、基準となる内部抵抗値Rmを測定する。複数の充電率と温度情報と内部抵抗値Rmとに基づく換算係数のデータテーブルを得ておくことにより、記憶部174は、これらの換算係数のデータテーブルを予め記憶しておくことができる。なお、このようなデータテーブルの取得は、必ずしも実際の装置上で行われる必要はなく、実験等により得られた基準値が記憶部140に書き込まれてもよい。 For example, the BMU 17 measures a voltage under a plurality of conditions (x%, y degrees Celsius) with respect to a new battery module 13 (at a reference timing), and measures a reference internal resistance value Rm. By obtaining a data table of conversion coefficients based on a plurality of charging rates, temperature information, and internal resistance value Rm, the storage unit 174 can store the data tables of these conversion coefficients in advance. Note that such acquisition of the data table is not necessarily performed on an actual apparatus, and a reference value obtained by an experiment or the like may be written in the storage unit 140.
 数(13)に表された換算係数Ratio_Rm(x,y)と、数(14)に表された換算係数Ratio_Rm(x,y)とを、式(15)に代入することによって、劣化状態SOH_Rが得られる。なお、テーブルデータに含まれていない換算係数は、補間処理によって導出されてよい。 By substituting the conversion coefficient Ratio_Rm (x, y) expressed in the equation (13) and the conversion coefficient Ratio_Rm (x, y) expressed in the equation (14) into the equation (15), the deterioration state SOH_R Is obtained. Note that conversion factors not included in the table data may be derived by interpolation processing.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 記憶部174は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)などの不揮発性の記憶媒体(非一時的な記憶媒体)を有する。また、記憶部174は、例えば、RAM(Random Access Memory)やレジスタなどの揮発性の記憶媒体を有する。記憶部174は、ソフトウェア機能部を動作させるためのプログラム、換算係数のデータテーブルなどを、予め記憶する。また、記憶部174には、制御部170によって、劣化状態SOH_Rを表す情報が書き込まれる。 The storage unit 174 has, for example, a non-volatile storage medium (non-temporary storage medium) such as a ROM (Read Only Memory), a flash memory, and an HDD (Hard Disk Drive). The storage unit 174 includes a volatile storage medium such as a RAM (Random Access Memory) or a register. The storage unit 174 stores in advance a program for operating the software function unit, a data table of conversion coefficients, and the like. In addition, information indicating the deterioration state SOH_R is written in the storage unit 174 by the control unit 170.
 次に、BMU17による処理の流れについて説明する。
 図6は、基準タイミングにおける処理の流れを示すフローチャートである。
 まず、BMU17の制御部173は、電池モジュール13の充放電を実行し、電池モジュール13の充電率(SOC)を例えば50(%)に調整する(ステップS101)。
Next, the flow of processing by the BMU 17 will be described.
FIG. 6 is a flowchart showing the flow of processing at the reference timing.
First, the control unit 173 of the BMU 17 performs charging / discharging of the battery module 13 and adjusts the charging rate (SOC) of the battery module 13 to, for example, 50 (%) (step S101).
 次に、制御部173は、図示しない空調機器を制御して、電池モジュール13の電池セルCbjの温度を摂氏25度にする(ステップS102)。 Next, the control unit 173 controls an air conditioner (not shown) to set the temperature of the battery cell Cbj of the battery module 13 to 25 degrees Celsius (Step S102).
 次に、制御部173は、送信部171を用いてテスト信号を電圧V1で送信させ、受信されたテスト信号の電圧V2に基づいて、主回路51の内部抵抗値Rmを導出する(ステップS103)。 Next, the control unit 173 causes the transmission unit 171 to transmit the test signal at the voltage V1, and derives the internal resistance value Rm of the main circuit 51 based on the received voltage V2 of the test signal (step S103). .
 次に、制御部173は、受信部172が受信した信号の電圧V2_BOL(50%, 摂氏25度)を測定し、測定結果に基づく換算係数のデータテーブルを、記憶部174に記憶させる(ステップS104)。 Next, the control unit 173 measures the voltage V2_BOL (50%, 25 degrees Celsius) of the signal received by the reception unit 172, and stores a data table of conversion coefficients based on the measurement result in the storage unit 174 (step S104). ).
 図7は、診断タイミングにおける処理の流れを示すフローチャートである。BMU17は、図7に示す処理を、定期的又は任意のタイミングで実行する。 FIG. 7 is a flowchart showing the flow of processing at the diagnosis timing. The BMU 17 executes the process shown in FIG. 7 periodically or at an arbitrary timing.
 まず、BMU17の制御部173は、電池モジュール13の充電率(SOC)を表す情報を、CMU14-1~14-kから取得する(ステップS201)。
 次に、制御部173は、時間的に直近に測定された温度であって、電池モジュール13の電池セルCbjの温度を表す情報を、CMU14-1~14-kから取得する(ステップS202)。
First, the control unit 173 of the BMU 17 acquires information indicating the charging rate (SOC) of the battery module 13 from the CMUs 14-1 to 14-k (step S201).
Next, the control unit 173 acquires information representing the temperature of the battery cell Cbj of the battery module 13 from the CMUs 14-1 to 14-k, which is the temperature measured most recently in time (step S202).
 なお、制御部173は、温度を表す情報と、充電率を表す情報とのうち少なくとも一つを取得すればよい。温度を表す情報を取得しない場合、制御部173は、温度を固定値(例えば、摂氏25度)として換算係数を導出してもよい。また、充電率を表す情報を取得しない場合、制御部173は、充電率を固定値(例えば、50%)として換算係数を導出してもよい。 In addition, the control part 173 should just acquire at least one among the information showing temperature, and the information showing a charging rate. When the information indicating the temperature is not acquired, the control unit 173 may derive the conversion coefficient with the temperature as a fixed value (for example, 25 degrees Celsius). Moreover, when not acquiring the information showing a charging rate, the control part 173 may derive | lead a conversion factor by making a charging rate into a fixed value (for example, 50%).
 次に、制御部173は、送信部171は、規定の電圧V1で、テスト信号を送信する(ステップS203)。次に、制御部173は、受信部172が受信した信号の電圧V2_MOL(x%,摂氏y度)を測定する(ステップS204)。 Next, in the control unit 173, the transmission unit 171 transmits a test signal at the specified voltage V1 (step S203). Next, the control unit 173 measures the voltage V2_MOL (x%, y degree Celsius) of the signal received by the receiving unit 172 (step S204).
 次に、制御部173は、基準タイミングにおいて基準条件の下で受信部172により受信された信号の電圧V2_BOL(50%, 摂氏25度)と、このフローチャートが実行されたタイミングで受信部172により受信された信号の電圧V2_MOL(x%, 摂氏y度)との比に基づいて、換算係数Ratio_V2(x%, 摂氏y度)を導出する(ステップS205)。 Next, the control unit 173 receives the voltage V2_BOL (50%, 25 degrees Celsius) of the signal received by the receiving unit 172 under the reference condition at the reference timing and the receiving unit 172 at the timing when this flowchart is executed. A conversion coefficient Ratio_V2 (x%, centigrade y degree) is derived based on the ratio of the signal V2_MOL (x%, centigrade y degree) of the received signal (step S205).
 次に、制御部173は、換算係数Ratio_Rmのデータテーブルを参照して、充電率x(%)と摂氏y度に対応した換算係数Ratio_Rm(x%, 摂氏y度)を導出する(ステップS206)。 Next, the control unit 173 derives a conversion coefficient Ratio_Rm (x%, Celsius y degree) corresponding to the charging rate x (%) and y degree Celsius with reference to the data table of the conversion coefficient Ratio_Rm (Step S206). .
 次に、制御部173は、換算係数Ratio_V2(x%, 摂氏y度)と、換算係数Ratio_Rm(x%, 摂氏y度)とに基づいて、式(15)に示す劣化状態SOH_Rを導出する(ステップS207)。 Next, the control unit 173 derives the deterioration state SOH_R shown in Expression (15) based on the conversion coefficient Ratio_V2 (x%, y Celsius y degree) and the conversion coefficient Ratio_Rm (x%, y Celsius y degree) ( Step S207).
 以上の説明では、各電池モジュール13-1~13-kによる充放電の電流値が値0とみなすことができることを前提とした。各電池モジュール13-1~13-kによる充放電の電流値が値0とみなすことができない場合、送信部171及び受信部172と、主回路51との磁気結合は、飽和に近づくため、受信した信号の電圧は、充放電の電流値が値0とみなすことができる理想状態の場合に比較して、低下することになる。 In the above description, it is assumed that the current value of charge / discharge by each of the battery modules 13-1 to 13-k can be regarded as a value 0. When the current value of charging / discharging by each of the battery modules 13-1 to 13-k cannot be regarded as 0, the magnetic coupling between the transmission unit 171 and the reception unit 172 and the main circuit 51 approaches saturation. The voltage of the received signal is lower than that in an ideal state where the charge / discharge current value can be regarded as 0.
 低下した電圧値をそのまま利用して制御部173が劣化状態SOH_Rを導出した場合、劣化状態SOH_Rは、真の値よりも大きくなってしまう。すなわち、電池セルの劣化が進んで各電池モジュール13-1~13-kの内部抵抗値が増加したようにみえてしまう。BMU17は、劣化状態SOH_Rが真の値よりも大きくなってしまうことを防止するため、第1の対策から第3の対策のいずれかを実行してもよい。なお、以下において電流値はセンサ部16により測定された値を用いるものとする。 When the control unit 173 derives the deteriorated state SOH_R using the lowered voltage value as it is, the deteriorated state SOH_R becomes larger than the true value. That is, it seems that the internal resistance value of each of the battery modules 13-1 to 13-k is increased due to the deterioration of the battery cell. The BMU 17 may execute any one of the first countermeasure to the third countermeasure in order to prevent the deterioration state SOH_R from becoming larger than the true value. In the following, the value measured by the sensor unit 16 is used as the current value.
 第1の対策は、BMU17が、テスト信号の送受信を、各電池モジュール13-1~13-kによる充放電の電流値が閾値以下である場合に行うことである。この閾値は、値0に近い絶対値を有する。
 第2の対策は、制御部173が、各電池モジュール13-1~13-kによる充放電の電流値に基づいて、劣化状態SOH_Rを補正することである。
The first countermeasure is that the BMU 17 transmits and receives a test signal when the current value of charge / discharge by each of the battery modules 13-1 to 13-k is equal to or less than a threshold value. This threshold has an absolute value close to the value 0.
The second countermeasure is that the control unit 173 corrects the deterioration state SOH_R based on the current value of charging / discharging by each of the battery modules 13-1 to 13-k.
 第3の対策は、各電池モジュール13-1~13-kによる充放電の電流値にかかわらず、テスト信号をBMU17が極力頻繁に送受信し、制御部173が下限包絡線を求めることで劣化状態SOH_Rを導出することである。図8は、内部抵抗値に基づいて導出された劣化状態の変化を示す図である。横軸は時間を示す。縦軸は内部抵抗値に基づいて導出された劣化状態(指標)であるSOH_Rを示す。制御部173は、第3の対策によって得られた結果を、時系列にプロットする。制御部173は、時系列にプロットされた劣化状態SOH_Rの下限の包絡線を求め、包絡線の例えば右端値が、真値に近い劣化状態(指標)であると判定する。下限の包絡線は、例えば、各タイミングでプロットされた劣化状態SOH_Rの下限に対して、回帰分析や二次近似を行うことにより求められる。電池セルCbjの充放電の電流の値は、電池セルCbjの容量が有限であるため、永続的に値0とはならない。このため、電池セルCbjの充放電の電流の極性は、必ず反転することになる。この結果、電池セルCbjの充放電の電流の値は、少なくとも反転するタイミングにおいて、短時間である可能性はあるものの、値0となる機会がある。つまり、劣化状態SOH_Rの下限の包絡線は、各電池モジュール13-1~13-kによる充放電の電流値が0となった場合に対応する線と考えることができる。また、回帰分析や二次近似により包絡線を求めることで、将来の劣化状態SOH_Rを予想することも可能となる。 The third countermeasure is that the BMU 17 transmits and receives test signals as frequently as possible regardless of the charge / discharge current values of the battery modules 13-1 to 13-k, and the control unit 173 obtains the lower limit envelope so that the deterioration state is obtained. Deriving SOH_R. FIG. 8 is a diagram illustrating a change in the deterioration state derived based on the internal resistance value. The horizontal axis indicates time. The vertical axis represents SOH_R which is a deterioration state (index) derived based on the internal resistance value. The control unit 173 plots the results obtained by the third countermeasure in time series. The control unit 173 obtains a lower limit envelope of the deterioration state SOH_R plotted in time series, and determines that the right end value of the envelope is a deterioration state (index) close to the true value. The lower limit envelope is obtained, for example, by performing regression analysis or quadratic approximation on the lower limit of the degradation state SOH_R plotted at each timing. The value of the charge / discharge current of the battery cell Cbj does not permanently become 0 because the capacity of the battery cell Cbj is finite. For this reason, the polarity of the charge / discharge current of the battery cell Cbj is always reversed. As a result, there is an opportunity that the value of the charge / discharge current of the battery cell Cbj becomes 0 at least at the timing of reversal, although there is a possibility that the current is short. That is, the lower limit envelope of the deteriorated state SOH_R can be considered as a line corresponding to the case where the charge / discharge current value of each of the battery modules 13-1 to 13-k becomes zero. Further, by obtaining an envelope by regression analysis or quadratic approximation, it becomes possible to predict a future deterioration state SOH_R.
 以上のように、第1の実施形態の蓄電池装置11は、電力線50に接続された電池セルCbjと、送信部171と、受信部172と、制御部173とを備える。送信部171は、電力線50に対して信号を送信する。受信部172は、電力線50および電池セルCbjを介して信号を受信する。制御部173は、受信部172により受信された信号の電圧に基づいて、電池セルCbjの内部抵抗値を導出する。 As described above, the storage battery device 11 according to the first embodiment includes the battery cell Cbj connected to the power line 50, the transmission unit 171, the reception unit 172, and the control unit 173. The transmission unit 171 transmits a signal to the power line 50. The receiving unit 172 receives a signal via the power line 50 and the battery cell Cbj. Control unit 173 derives the internal resistance value of battery cell Cbj based on the voltage of the signal received by receiving unit 172.
 この構成によって、第1の実施形態の蓄電池装置11は、構成を複雑にすることなく、複数の電池モジュール13又は電池セルCbjの内部抵抗値を導出することができる。例えば、第1の実施形態の蓄電池装置11は、CMU14同士が通信するための専用の通信線が無くても、複数の電池モジュール13又は電池セルCbjの内部抵抗値を導出することができる。 With this configuration, the storage battery device 11 of the first embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj without complicating the configuration. For example, the storage battery device 11 of the first embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj even without a dedicated communication line for communication between the CMUs 14.
 従来の蓄電池装置では、デイジーチェーン型(数珠つなぎ型)で接続されたCMU同士の電位差を吸収するために、CMU同士の間にチャージポンプを備える必要があった。第1の実施形態の蓄電池装置11は、バス型で接続されたCMU14同士の間に、チャージポンプを備える必要はない。 In the conventional storage battery device, it is necessary to provide a charge pump between the CMUs in order to absorb the potential difference between the CMUs connected in a daisy chain type (a daisy chain type). The storage battery device 11 of the first embodiment need not include a charge pump between the CMUs 14 connected in a bus shape.
 なお、CMU14の送信部141は、BMU17の送信部171の代わりに、電力線50を介して信号を送信してもよい。CMU14の受信部142は、BMU17の受信部172の代わりに、電力線50を介して信号を受信してもよい。この場合、CMU14の受信部142は、受信した信号の電圧を表す情報を、電力線50を介してBMU17に転送してもよい。 Note that the transmission unit 141 of the CMU 14 may transmit a signal via the power line 50 instead of the transmission unit 171 of the BMU 17. The receiving unit 142 of the CMU 14 may receive a signal via the power line 50 instead of the receiving unit 172 of the BMU 17. In this case, the reception unit 142 of the CMU 14 may transfer information representing the voltage of the received signal to the BMU 17 via the power line 50.
 上記説明した実施形態では、BMU17の送信部171がテスト信号を送信し、BMU17の受信部172がテスト信号を受信し、制御部173が内部抵抗を導出するものとしたが、その役割は、他の機能部によってなされてもよい。 In the embodiment described above, the transmission unit 171 of the BMU 17 transmits the test signal, the reception unit 172 of the BMU 17 receives the test signal, and the control unit 173 derives the internal resistance. It may be made by the functional unit.
 例えば、CMU14の送信部141は、BMU17の送信部171の代わりに、電力線搬送通信の規定の交流信号を、規定の電圧で電力線50に重畳してもよい。受信部172は、電力線50と磁気結合部152-2と通信線154-2とを介して、いずれかのCMU14から送信された電力線搬送通信の規定の交流信号を受信してもよい。なお、この規定の交流信号は、少なくとも一つの電池モジュール13を通過してから受信される。 For example, instead of the transmission unit 171 of the BMU 17, the transmission unit 141 of the CMU 14 may superimpose a prescribed AC signal for power line carrier communication on the power line 50 with a prescribed voltage. The receiving unit 172 may receive a prescribed AC signal for power line carrier communication transmitted from any CMU 14 via the power line 50, the magnetic coupling unit 152-2, and the communication line 154-2. The prescribed AC signal is received after passing through at least one battery module 13.
 また、例えば、受信部172は、電力線50と磁気結合部152-2と通信線154-2とを介して、いずれかのCMU14から送信されたデータを、電力線搬送通信によって受信してもよい。また、CMU14の受信部142は、BMU17の受信部172の代わりに、電力線搬送通信の規定の交流信号を受信してもよい。なお、この規定の交流信号は、少なくとも一つの電池モジュール13を通過してから受信される。 Further, for example, the receiving unit 172 may receive data transmitted from any one of the CMUs 14 through the power line 50, the magnetic coupling unit 152-2, and the communication line 154-2 by power line carrier communication. Further, the receiving unit 142 of the CMU 14 may receive a prescribed AC signal for power line carrier communication instead of the receiving unit 172 of the BMU 17. The prescribed AC signal is received after passing through at least one battery module 13.
 すなわち、上記各実施形態では、電池セルが直列に接続された電池モジュール13の集合について内部抵抗値を求めることについて説明したが、例えばCMU間でテスト信号を送受信することで、一部の電池モジュールについて内部抵抗を求めることができる。また、同じような仕組みを電池モジュール内に備えることで、電池セル単位で内部抵抗を求めることもできる。 That is, in each of the above embodiments, the description has been given of obtaining the internal resistance value for a set of battery modules 13 in which battery cells are connected in series. For example, some battery modules can be obtained by transmitting and receiving test signals between CMUs. The internal resistance can be obtained. In addition, by providing a similar mechanism in the battery module, the internal resistance can be obtained for each battery cell.
 第1の実施形態の蓄電池装置11における内部抵抗値導出方法は、送信するステップと、受信するステップと、導出するステップとを含む。送信するステップでは、送信部171は、電池セルCbjに接続された電力線50に対して信号を送信する。受信するステップでは、受信部172は、電力線50および電池セルCbjを介して信号を受信する。導出するステップでは、制御部173は、受信された信号の電圧に基づいて、電池セルCbjの内部抵抗値を導出する。 The internal resistance value deriving method in the storage battery device 11 of the first embodiment includes a transmitting step, a receiving step, and a deriving step. In the transmitting step, the transmission unit 171 transmits a signal to the power line 50 connected to the battery cell Cbj. In the receiving step, the receiving unit 172 receives a signal via the power line 50 and the battery cell Cbj. In the deriving step, the control unit 173 derives the internal resistance value of the battery cell Cbj based on the voltage of the received signal.
 第1の実施形態の蓄電池装置11は、劣化を診断するための専用のハードウェアを必要とせず、通常動作時に、短時間で容易に劣化を診断することができる。また、第1の実施形態の蓄電池装置11は、劣化を診断するために蓄電システム1の本来のアプリケーションを停止させることを抑制することができる。 The storage battery device 11 of the first embodiment does not require dedicated hardware for diagnosing deterioration, and can easily diagnose deterioration in a short time during normal operation. Moreover, the storage battery device 11 of the first embodiment can suppress stopping the original application of the power storage system 1 in order to diagnose deterioration.
 第1の実施形態の蓄電池装置11は、充放電の動作に対する制約が少なく、短時間で容易に劣化を診断することができる。第1の実施形態の蓄電池装置11は、劣化のモデルに基づいて診断する場合とは異なり、電池セルCbjを利用して劣化を診断するので、電池セルCbjの劣化に個体間のばらつきがあっても、劣化を診断することができる。 The storage battery device 11 of the first embodiment has few restrictions on the charging / discharging operation, and can easily diagnose deterioration in a short time. Unlike the case of diagnosing based on the degradation model, the storage battery device 11 of the first embodiment diagnoses degradation using the battery cell Cbj, so there is variation among individuals in the degradation of the battery cell Cbj. Also, the deterioration can be diagnosed.
 (第2の実施形態)
 以下、第2の実施形態について説明する。第2の実施形態では、信号を送受信する際の充電率と温度の条件に制約を加える点が、第1の実施形態と相違する。第2の実施形態では、第1の実施形態との相違点についてのみ説明する。
(Second Embodiment)
Hereinafter, the second embodiment will be described. The second embodiment differs from the first embodiment in that restrictions are imposed on the charging rate and temperature conditions when signals are transmitted and received. In the second embodiment, only differences from the first embodiment will be described.
 電池セルCbjの充電率と温度は、受信されるテスト信号の電圧に影響する。第2の実施形態に係る制御部173は、電池セルCbjの充電率と温度が基準範囲内にある場合に、テスト信号を送受信する処理を行う。基準範囲とは、温度に関しては、例えば、摂氏15~50度の範囲である。また、基準範囲とは、充電率に関しては、例えば、20~80(%)である。 The charge rate and temperature of the battery cell Cbj affect the voltage of the received test signal. Control part 173 concerning a 2nd embodiment performs processing which transmits and receives a test signal, when the charge rate and temperature of battery cell Cbj are in a standard range. The reference range is, for example, a range of 15 to 50 degrees Celsius with respect to temperature. The reference range is, for example, 20 to 80 (%) with respect to the charging rate.
 ここで、電池セルCbjの内部抵抗値は、温度の変化に対して非直線性が強い。また、電池セルCbjの内部抵抗値は、充電率の変化に対しても非直線性が強い。このため、電力線搬送通信の信号を送受信する際の電池セルCbjの充電率と温度に制約を設けることで、より正確に内部抵抗値を導出することができる。また、制御部173は、テスト信号を送受信する際の充放電の電流の値の条件に制約を加えてもよい。電流の値の制約は、例えば、±10(A)の範囲である。 Here, the internal resistance value of the battery cell Cbj is highly non-linear with respect to a change in temperature. Further, the internal resistance value of the battery cell Cbj is highly non-linear with respect to the change in the charging rate. For this reason, an internal resistance value can be derived | led-out more correctly by providing restrictions in the charging rate and temperature of battery cell Cbj at the time of transmitting / receiving the signal of power line carrier communication. Further, the control unit 173 may add a restriction to the condition of the charge / discharge current value when the test signal is transmitted and received. The restriction on the current value is, for example, in a range of ± 10 (A).
 以上説明した第2の実施形態の蓄電池装置11によれば、制御部173は、信号を送受信する際の充電率と温度の条件に制約を加える。これによって、第2の実施形態の蓄電池装置11は、構成を複雑にすることなく、複数の電池モジュール13又は電池セルCbjの内部抵抗値を、より精度良く導出することができる。 According to the storage battery device 11 of the second embodiment described above, the control unit 173 places restrictions on the charging rate and temperature conditions when transmitting and receiving signals. Thereby, the storage battery device 11 of the second embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj with higher accuracy without complicating the configuration.
 (第3の実施形態)
 以下、第3の実施形態について説明する。第3の実施形態では、受信された信号の電圧が規定範囲内となるように、送信する信号の電圧を決定する点が、第1及び第2の実施形態と相違する。第3の実施形態では、第1及び第2の実施形態との相違点についてのみ説明する。
(Third embodiment)
Hereinafter, a third embodiment will be described. The third embodiment is different from the first and second embodiments in that the voltage of a signal to be transmitted is determined so that the voltage of the received signal is within a specified range. In the third embodiment, only differences from the first and second embodiments will be described.
 制御部173は、受信される信号の電圧が一定範囲に収まるように、送信する信号の電圧(レベル)を調整する。制御部173は、そのようにして受信された信号の電圧に基づいて、内部抵抗値の増加率を導出する。この場合、式(7)の代わりに、式(16)が用いられる。また、式(8)の代わりに、式(17)が用いられる。 The control unit 173 adjusts the voltage (level) of the signal to be transmitted so that the voltage of the received signal is within a certain range. The control unit 173 derives the increase rate of the internal resistance value based on the voltage of the signal thus received. In this case, equation (16) is used instead of equation (7). Also, equation (17) is used instead of equation (8).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 したがって、式(9)の代わりに、式(18)が用いられる。式(19)は、式(18)を変形した式である。 Therefore, equation (18) is used instead of equation (9). Expression (19) is an expression obtained by modifying Expression (18).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 劣化状態SOH_Rは、式(20)に表される値に、式(21)に表される換算係数を乗算することによって得られる。式(20)に表される値は、電池モジュール13が新品であるタイミングで基準条件の下で送信部171から送信された電力線搬送通信の信号の電圧で、それ以降の任意のタイミングで送信部171から送信された電力線搬送通信の信号の電圧を除算した値である。式(21)に表される換算係数は、任意のタイミングでの条件(x%、摂氏y度)における内部抵抗値を、基準条件(50%、摂氏25度)における内部抵抗値に換算する係数である。 The deterioration state SOH_R is obtained by multiplying the value represented by the equation (20) by the conversion coefficient represented by the equation (21). The value represented by Expression (20) is the voltage of the power line carrier communication signal transmitted from the transmission unit 171 under the reference condition at the timing when the battery module 13 is new, and the transmission unit at an arbitrary timing thereafter. This is a value obtained by dividing the voltage of the power line carrier communication signal transmitted from 171. The conversion coefficient represented by Expression (21) is a coefficient for converting the internal resistance value under the condition (x%, y degree Celsius) at an arbitrary timing into the internal resistance value under the reference condition (50%, 25 degree Celsius). It is.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 以上説明した第3の実施形態の蓄電池装置11によれば、制御部173は、受信された信号の電圧が規定範囲内となるように、送信する信号の電圧を決定する。これによって、第3の実施形態の蓄電池装置11は、構成を複雑にすることなく、複数の電池モジュール13又は電池セルCbjの内部抵抗値を、より精度良く導出することができる。 According to the storage battery device 11 of the third embodiment described above, the control unit 173 determines the voltage of the signal to be transmitted so that the voltage of the received signal is within the specified range. Thereby, the storage battery device 11 of the third embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj with higher accuracy without complicating the configuration.
 (第4の実施形態)
 以下、第4の実施形態について説明する。第4の実施形態では、校正用抵抗を挿入した状態での主回路51の内部抵抗値に基づいて、複数の電池セルCbjの内部抵抗値を導出する点が、第1~第3の実施形態と相違する。第4の実施形態では、第1~第3の実施形態との相違点についてのみ説明する。
(Fourth embodiment)
Hereinafter, a fourth embodiment will be described. In the fourth embodiment, the first to third embodiments are such that the internal resistance values of the plurality of battery cells Cbj are derived based on the internal resistance value of the main circuit 51 with the calibration resistor inserted. And different. In the fourth embodiment, only differences from the first to third embodiments will be described.
 図9は、校正用抵抗Rcalを備える組電池ユニット12の第1の図である。また、図10は、校正用抵抗Rcalを備える組電池ユニット12の第2の図である。主回路51及びBMU17を含む回路(以下、「交流ループ」という。)は、スイッチS3を備える。スイッチS3(切換部)は、交流ループに校正用抵抗Rcalを接続するか否かを、開閉操作に応じて切り換える。スイッチS3は、例えば手動で開閉操作される。スイッチS3は、制御部173によって開閉操作されてもよい。制御部173は、交流ループに校正用抵抗Rcalを接続した状態で電力線搬送通信の信号を送受信した場合に得られた値と、交流ループに校正用抵抗Rcalを接続しない状態で電力線搬送通信の信号を送受信した場合に得られた値との差に基づいて、電池モジュール13の内部抵抗値を導出する。 FIG. 9 is a first view of the assembled battery unit 12 including the calibration resistor Rcal. FIG. 10 is a second view of the assembled battery unit 12 including the calibration resistor Rcal. The circuit including the main circuit 51 and the BMU 17 (hereinafter referred to as “AC loop”) includes a switch S3. The switch S3 (switching unit) switches whether to connect the calibration resistor Rcal to the AC loop according to the opening / closing operation. The switch S3 is manually opened and closed, for example. The switch S3 may be opened / closed by the control unit 173. The control unit 173 is configured to transmit the power line carrier communication signal in a state where the calibration resistor Rcal is connected to the AC loop, and the power line carrier communication signal in a state where the calibration resistor Rcal is not connected to the AC loop. The internal resistance value of the battery module 13 is derived based on the difference from the value obtained when transmitting / receiving.
 スイッチS3が閉じている場合、主回路51の内部抵抗値は、電池モジュール13-1~13-kの内部抵抗値Rbatに等しい。また、スイッチS3が開いている場合、主回路51の内部抵抗値は、電池モジュール13-1~13-kの内部抵抗値Rbatに、既知の校正用抵抗Rcalを加算した値に等しい。 When the switch S3 is closed, the internal resistance value of the main circuit 51 is equal to the internal resistance value Rbat of the battery modules 13-1 to 13-k. When the switch S3 is open, the internal resistance value of the main circuit 51 is equal to the value obtained by adding the known calibration resistance Rcal to the internal resistance value Rbat of the battery modules 13-1 to 13-k.
 交流ループに校正用抵抗Rcalが接続されている場合、電圧V2は、式(22)によって表される。 When the calibration resistor Rcal is connected to the AC loop, the voltage V2 is expressed by Expression (22).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 交流ループに校正用抵抗Rcalが接続されていない場合、校正用抵抗Rcalに生じる電圧V2cは、式(23)によって表される。 When the calibration resistor Rcal is not connected to the AC loop, the voltage V2c generated in the calibration resistor Rcal is expressed by Expression (23).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 式(22)と式(23)から、式(24)と式(25)と式(26)とが得られる。 Equation (24), Equation (25), and Equation (26) are obtained from Equation (22) and Equation (23).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 任意のタイミングでの電池モジュール13-1~13-kの内部抵抗値Rbatは、式(26)によって表される。制御部173は、内部抵抗値Rbatと充電率と温度の換算係数とに基づいて、劣化状態SOH_Rを導出する。
 このように、劣化していない新品の電池セルCbjの内部抵抗値等のデータは、校正用抵抗Rcalを交流ループに接続することによって不要となる。
The internal resistance value Rbat of the battery modules 13-1 to 13-k at an arbitrary timing is expressed by Expression (26). The control unit 173 derives the deterioration state SOH_R based on the internal resistance value Rbat, the charging rate, and the temperature conversion coefficient.
In this way, data such as the internal resistance value of a new battery cell Cbj that is not deteriorated becomes unnecessary by connecting the calibration resistor Rcal to the AC loop.
 以上説明した第4の実施形態の蓄電池装置11は、複数の電池モジュール13を含む主回路51に校正用抵抗Rcalを接続するか否かを切り換えるスイッチS3を備える。制御部173は、校正用抵抗Rcalを挿入した状態での主回路51の内部抵抗値に基づいて、複数の電池モジュール13の内部抵抗値を導出する。
 これによって、第4の実施形態の蓄電池装置11は、構成を複雑にすることなく、複数の電池モジュール13又は電池セルCbjの内部抵抗値を、より精度良く導出することができる。
The storage battery device 11 of the fourth embodiment described above includes the switch S3 that switches whether or not the calibration resistor Rcal is connected to the main circuit 51 including the plurality of battery modules 13. The control unit 173 derives the internal resistance values of the plurality of battery modules 13 based on the internal resistance value of the main circuit 51 with the calibration resistor Rcal inserted.
Thereby, the storage battery device 11 of the fourth embodiment can derive the internal resistance values of the plurality of battery modules 13 or the battery cells Cbj with higher accuracy without complicating the configuration.
 なお、上記各実施形態は、大規模蓄電システムに適用される例について説明したものであるが、蓄電池装置は、車載用途など、他の用途にも適用することができる。 In addition, although each said embodiment demonstrated the example applied to a large-scale electrical storage system, a storage battery apparatus is applicable also to other uses, such as a vehicle-mounted use.
 以上述べた少なくともひとつの実施形態の蓄電池装置によれば、受信部により受信された信号の電圧に基づいて、蓄電池の内部抵抗値を導出する導出部を持つことにより、構成を複雑にすることなく、蓄電池の内部抵抗値を導出することができる。 According to the storage battery device of at least one embodiment described above, without having to complicate the configuration by having a derivation unit that derives the internal resistance value of the storage battery based on the voltage of the signal received by the reception unit. The internal resistance value of the storage battery can be derived.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

Claims (11)

  1.  電力線に接続された蓄電池と、
     前記電力線に対して信号を送信する送信部と、
     前記電力線および前記蓄電池を介して前記信号を受信する受信部と、
     前記受信部により受信された前記信号の電圧に基づいて、前記蓄電池の内部抵抗値を導出する導出部と、
     を備える蓄電池装置。
    A storage battery connected to the power line;
    A transmitter for transmitting a signal to the power line;
    A receiving unit for receiving the signal via the power line and the storage battery;
    A deriving unit for deriving an internal resistance value of the storage battery based on the voltage of the signal received by the receiving unit;
    A storage battery device comprising:
  2.  前記蓄電池の状態を測定する測定部を更に備え、
     前記導出部は、測定された前記蓄電池の状態を基準状態に換算する換算係数に基づいて、前記蓄電池の内部抵抗値を導出する、
     請求項1に記載の蓄電池装置。
    It further comprises a measuring unit that measures the state of the storage battery,
    The derivation unit derives an internal resistance value of the storage battery based on a conversion coefficient that converts the measured state of the storage battery into a reference state.
    The storage battery device according to claim 1.
  3.  前記導出部は、前記送信部が送信した前記信号の電圧を、前記受信部が受信した前記信号の電圧で除算した値に、前記換算係数を乗算した結果に基づいて、前記蓄電池の内部抵抗値を導出する、
     請求項2に記載の蓄電池装置。
    The deriving unit is based on a result obtained by multiplying a value obtained by dividing the voltage of the signal transmitted by the transmitting unit by the voltage of the signal received by the receiving unit by the conversion coefficient, and the internal resistance value of the storage battery. Deriving,
    The storage battery device according to claim 2.
  4.  前記測定部は、前記蓄電池の状態として、前記蓄電池が充放電する電流値と、前記蓄電池の温度と、前記蓄電池の充電率とのうち少なくとも一つを測定する、
     請求項2又は請求項3に記載の蓄電池装置。
    The measurement unit measures at least one of a current value charged and discharged by the storage battery, a temperature of the storage battery, and a charge rate of the storage battery as the state of the storage battery.
    The storage battery device according to claim 2 or claim 3.
  5.  前記導出部は、前記内部抵抗値を複数回導出した結果に対して回帰分析を実行することにより、前記蓄電池の内部抵抗値を導出する、
     請求項1に記載の蓄電池装置。
    The derivation unit derives the internal resistance value of the storage battery by performing regression analysis on the result of deriving the internal resistance value multiple times.
    The storage battery device according to claim 1.
  6.  前記蓄電池と並列に接続されたコンデンサを更に備える、
     請求項1に記載の蓄電池装置。
    A capacitor connected in parallel with the storage battery;
    The storage battery device according to claim 1.
  7.  前記導出部は、基準タイミングにおいて前記受信部により受信された前記信号の電圧と、前記基準タイミングよりも後に前記受信部により受信された前記信号の電圧に補正を加えた電圧との比に基づいて、前記基準タイミングよりも後の診断タイミングにおける前記蓄電池の内部抵抗値を導出する、
     請求項1に記載の蓄電池装置。
    The deriving unit is based on a ratio between a voltage of the signal received by the receiving unit at a reference timing and a voltage obtained by correcting the voltage of the signal received by the receiving unit after the reference timing. , To derive an internal resistance value of the storage battery at a diagnosis timing later than the reference timing,
    The storage battery device according to claim 1.
  8.  前記導出部は、前記蓄電池の状態を表す値が基準範囲にある場合、前記蓄電池の内部抵抗値を導出する、
     請求項1に記載の蓄電池装置。
    The derivation unit derives an internal resistance value of the storage battery when a value representing the state of the storage battery is in a reference range.
    The storage battery device according to claim 1.
  9.  前記導出部は、前記蓄電池の内部抵抗値に基づいて、前記送信部が送信する前記信号の電圧を決定する、
     請求項1に記載の蓄電池装置。
    The derivation unit determines a voltage of the signal transmitted by the transmission unit based on an internal resistance value of the storage battery.
    The storage battery device according to claim 1.
  10.  前記蓄電池と直列に校正用抵抗を接続するか否かを切り換える切換部
     を備え、
     前記導出部は、前記校正用抵抗を挿入した状態で、前記蓄電池の内部抵抗値を導出する、
     請求項1に記載の蓄電池装置。
    A switching unit for switching whether or not to connect a calibration resistor in series with the storage battery,
    The derivation unit derives an internal resistance value of the storage battery with the calibration resistor inserted.
    The storage battery device according to claim 1.
  11.  蓄電池装置における内部抵抗値導出方法であって、
     蓄電池に接続された電力線に対して信号を送信するステップと、
     前記電力線および前記蓄電池を介して前記信号を受信するステップと、
     前記受信された信号の電圧に基づいて、前記蓄電池の内部抵抗値を導出するステップと、
     を含む内部抵抗値導出方法。
    A method for deriving an internal resistance value in a storage battery device,
    Transmitting a signal to a power line connected to the storage battery;
    Receiving the signal via the power line and the storage battery;
    Deriving an internal resistance value of the storage battery based on the voltage of the received signal;
    A method for deriving an internal resistance value.
PCT/JP2015/072684 2015-01-30 2015-08-10 Storage battery device and internal resistance value derivation method WO2016121150A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016571664A JP6470318B2 (en) 2015-01-30 2015-08-10 Storage battery device and internal resistance value deriving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-017535 2015-01-30
JP2015017535 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121150A1 true WO2016121150A1 (en) 2016-08-04

Family

ID=56542789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072684 WO2016121150A1 (en) 2015-01-30 2015-08-10 Storage battery device and internal resistance value derivation method

Country Status (2)

Country Link
JP (1) JP6470318B2 (en)
WO (1) WO2016121150A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283277B2 (en) 2017-10-13 2022-03-22 Panasonic Intellectual Property Management Co., Ltd. Battery system
JP7090949B1 (en) 2021-05-19 2022-06-27 東洋システム株式会社 Battery status determination method and battery status determination device
JP2022179391A (en) * 2021-05-19 2022-12-02 東洋システム株式会社 Battery status determination method and battery status determination device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332950A (en) * 2002-05-15 2003-11-21 Mitsubishi Electric Corp Power distribution line carrier
JP2014169966A (en) * 2013-03-05 2014-09-18 Ntt Facilities Inc Assembled battery monitoring system and assembled battery system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769111B2 (en) * 1997-09-30 2006-04-19 富士重工業株式会社 Battery remaining capacity meter and method for measuring remaining capacity of multiple batteries
JPH11318033A (en) * 1998-05-06 1999-11-16 Internix Kk Centralized management system for battery using power line carrier-current communication function
JP2009089453A (en) * 2007-09-27 2009-04-23 Sharp Corp Battery monitoring circuit and battery control system
JP2011133418A (en) * 2009-12-25 2011-07-07 Toyota Industries Corp Battery-pack monitoring circuit and battery cell unit
US9851412B2 (en) * 2010-11-09 2017-12-26 International Business Machines Corporation Analyzing and controlling performance in a composite battery module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332950A (en) * 2002-05-15 2003-11-21 Mitsubishi Electric Corp Power distribution line carrier
JP2014169966A (en) * 2013-03-05 2014-09-18 Ntt Facilities Inc Assembled battery monitoring system and assembled battery system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11283277B2 (en) 2017-10-13 2022-03-22 Panasonic Intellectual Property Management Co., Ltd. Battery system
JP7090949B1 (en) 2021-05-19 2022-06-27 東洋システム株式会社 Battery status determination method and battery status determination device
WO2022244378A1 (en) * 2021-05-19 2022-11-24 東洋システム株式会社 Battery state determination method, and battery state determination apparatus
JP2022179391A (en) * 2021-05-19 2022-12-02 東洋システム株式会社 Battery status determination method and battery status determination device
JP2022178209A (en) * 2021-05-19 2022-12-02 東洋システム株式会社 Battery status determination method and battery status determination device
JP7297339B2 (en) 2021-05-19 2023-06-26 東洋システム株式会社 BATTERY STATE DETERMINATION METHOD AND BATTERY STATE DETERMINATION DEVICE

Also Published As

Publication number Publication date
JP6470318B2 (en) 2019-02-13
JPWO2016121150A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
US12074465B2 (en) Control device, electric storage device, electric storage system, and computer-readable medium
KR101732854B1 (en) Storage battery device and storage battery system
US11221367B2 (en) Evaluation device, energy storage system, evaluation method and non-transitory computer readable medium
EP2412581B1 (en) Battery system for vehicle
EP1798839B1 (en) Battery management system and method
US9291681B2 (en) Monitoring apparatus and method of battery contact point in charge/discharge system with batteries connected in series
US10775443B2 (en) Secondary battery degradation determination device
EP3379278A1 (en) Battery energy store
CN107179505A (en) Cell health state detection means and method
CN113054706A (en) Balance monitoring control system and method for power battery
US20140184236A1 (en) Battery control apparatus and battery system
US11054475B2 (en) Electric storage capacity estimation apparatus and method for operating the same
US10236542B2 (en) Method for the switching of a number of battery cells in a battery and battery system with a battery comprising a number of battery cell units, each comprised of a battery cell and a battery cell monitoring module associated with said battery cell
EP3667343B1 (en) Apparatus and method for measuring voltage
US8305084B2 (en) Voltage measuring apparatus for assembled battery
JP6470318B2 (en) Storage battery device and internal resistance value deriving method
US10124694B2 (en) Battery management apparatus
JP6419941B2 (en) Storage battery management apparatus, method and program
JP2012220344A (en) Cell voltage measurement device
US20190004117A1 (en) Integrated standard-compliant data acquisition device
KR20190072764A (en) Sensing circuit for battery cell voltage
JP2017027857A (en) Battery connection control device, battery connection control method, and program
KR20210051539A (en) Apparatus for diagnosing isolation of battery
WO2017158727A1 (en) Battery-capacity estimating device and program
WO2022201913A1 (en) Battery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571664

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880044

Country of ref document: EP

Kind code of ref document: A1