WO2016121059A1 - Optical interconnection device - Google Patents

Optical interconnection device Download PDF

Info

Publication number
WO2016121059A1
WO2016121059A1 PCT/JP2015/052555 JP2015052555W WO2016121059A1 WO 2016121059 A1 WO2016121059 A1 WO 2016121059A1 JP 2015052555 W JP2015052555 W JP 2015052555W WO 2016121059 A1 WO2016121059 A1 WO 2016121059A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
plane
connector
sub
main plane
Prior art date
Application number
PCT/JP2015/052555
Other languages
French (fr)
Japanese (ja)
Inventor
福井 一夫
昭男 出居
孝之 尾野
満 高平
暁 後藤
輝 副田
加藤 誠司
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/052555 priority Critical patent/WO2016121059A1/en
Publication of WO2016121059A1 publication Critical patent/WO2016121059A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication

Definitions

  • the present invention relates to the technology of an optical wiring device.
  • the amount of information distributed through the communication network is increasing due to the broadband communication network. For this reason, improvement of the processing speed in information devices, such as a router apparatus and a server apparatus, is calculated
  • one of the factors hindering the improvement of the processing speed in the information equipment is the limit of the transmission speed of the copper wiring in the electric board constituting the information equipment.
  • Patent Document 1 communication between print boards in an information device is performed using an optical signal.
  • multiple printed boards such as signal I / O boards and switch boards are inserted at right angles to the main surface of the optical backplane with optical fibers (optical wiring) laid. Is done.
  • the electrical signal on the print board is converted into an optical signal by the photoelectric conversion module and sent to the optical backplane.
  • the sent optical signal propagates through the optical backplane, is converted again to an electrical signal, and is sent to another print board.
  • One way to connect multiple printed boards through optical fibers is midplane connection.
  • optical connectors are arranged on one side and the other side of a midplane which is a kind of substrate.
  • the optical connector on one side and the optical connector on the other side are optically connected by an optical fiber.
  • a plurality of print boards are respectively connected to the plurality of optical connectors on one side of the midplane, and a plurality of print boards are also connected to the plurality of optical connectors on the other side of the midplane.
  • the optical fiber connecting the optical connectors is large so as to rise from the midplane on one side and the other side of the midplane. It needs to be wired to draw an arc. That is, a sufficient space for bending the optical fiber at a predetermined allowable bending radius or more is required on both the one surface side and the other surface side of the midplane. This hinders downsizing of the optical wiring device.
  • An object of the present invention is to reduce the size of an optical wiring device.
  • the optical wiring device includes an optical plane.
  • the optical plane includes a main plane, a subplane, a first optical connector, and an optical fiber. At least a part of the sub-plane overlaps with the main plane in plan view, and there is a gap between one surface of the main plane facing the sub-plane and one surface of the sub-plane facing one surface of the main plane.
  • a first optical connector is disposed in a first opening provided at a predetermined position of the sub-plane, and an optical fiber joined to the first optical connector passes through the first opening provided in the sub-plane through the first opening of the main plane. It is drawn into the accommodation space formed by the gap between one surface and one surface of the sub-plane.
  • the optical plane on which the optical connector and the optical fiber are arranged can be reduced in size.
  • FIG. 1 is a perspective view showing a configuration example of an optical wiring device.
  • FIG. 2 is a side view (sectional view) showing a configuration example of the optical wiring device.
  • the optical wiring device 10 includes a frame 11 that houses a plurality of circuit boards (printed boards) 22 and 23 and an optical plane 31.
  • FIG. 1 shows a state in which a part of the outer wall of the frame 11 is removed.
  • the frame 11 may be a rectangular tube having a hollow inside.
  • the frame 11 may be a part of a rack in which a large number of optical wiring devices 10 are stacked and accommodated.
  • the frame 11 may be formed of a metal plate.
  • the optical plane 31 has a main plane 32 and a sub-plane 33.
  • the main plane 32 may be composed of an insulating plate member, an electric circuit board and a sheet metal, or a combination thereof.
  • the optical plane 31 may be disposed in the center portion of the frame 11 so as to be parallel to the opening surfaces on both sides of the rectangular tube-shaped frame 11. That is, the optical plane 31 may be disposed at a position that substantially bisects the internal space of the frame 11.
  • the optical plane 31 arranged in this way may be called a midplane.
  • the space extending to the one surface (one main surface) 32 a side of the main plane 32 is the first space E 1 and the other surface (the other main surface) 32 b side of the main plane 32.
  • the space that spreads out is sometimes referred to as a second space E2.
  • a sub-plane 33 is attached to the one surface 32 a side of the main plane 32.
  • the sub-plane 33 may be arranged so that at least a part of the sub-plane 33 overlaps the one surface 32a of the main plane 32 when viewed from the one surface 32a side of the main plane 32.
  • the sub-plane 33 may be arranged such that the other surface 33 b (see FIG. 4) facing the one surface 32 a of the main plane 32 is parallel to the one surface 32 a of the main plane 32.
  • the other surface 33b of the sub plane 33 may be smaller than the one surface 32a of the main plane 32.
  • the first optical connector 35 may be attached to one surface 33a of the subplane 33.
  • the 1st optical connector 35 is attached so that it may fit with the 2nd optical connector 24 which the 1st circuit board 22 mentioned later has.
  • a through hole 36 for drawing the optical fiber 42 bonded to the first optical connector 35 toward the other surface 33b of the subplane 33 may be formed in a portion of the subplane 33 to which the first optical connector 35 is attached.
  • the through hole 36 may be formed so that the first optical connector 35 is fitted into the sub-plane 33.
  • the sub-plane 33 may be attached to the main plane 32 by a single or a plurality of legs 34 connecting the other surface 33b and the one surface 32a of the main plane 32.
  • a space (gap) extending at a predetermined interval t is formed between the one surface 32 a of the main plane 32 and the other surface 33 b of the sub-plane 33 by the length of the leg portion 34.
  • This space is called an accommodation space.
  • An optical fiber 42 described later is accommodated in this accommodation space.
  • the minimum value of the predetermined interval t may be calculated based on the allowable bending radius of the optical fiber 42 drawn into the accommodation space. This is because if the interval t is too narrow, the optical fiber 42 drawn into the accommodation space will be bent smaller than the allowable bending radius.
  • the optical fiber 42 is represented by a single solid line, but may actually be a plurality of optical fiber strands or a bundle of a plurality of optical fiber strands.
  • the optical fiber may be a bundle of 24 or 48 optical fibers.
  • the number of the leg portions 34 may be any number as long as a predetermined interval t can be secured between the main plane 32 and the sub plane 33.
  • a peripheral wall 49 that forms a predetermined interval t may be provided between the other surface 33 b of the sub-plane 33 and the one surface 32 a of the main plane 32.
  • the subplane 33 may be fixed to the main plane 32 by the peripheral wall 49 instead of the leg portion 34.
  • the peripheral wall 49 may be formed over the entire periphery of the sub-plane 33, or may be formed only on a part of the periphery of the sub-plane 33.
  • An opening for drawing out the optical fiber 42 from the inside of the housing space to the outside of the housing space may be provided in a part of the peripheral wall 49.
  • the optical fiber 42 drawn out of the accommodation space from the opening may be joined to a third optical connector 38 described later.
  • the optical fiber 42 may be joined to the third optical connector 38 through a predetermined conduit provided outside the accommodation space of the one surface 32 a of the main plane 32.
  • the predetermined conduit may be formed by the side wall 70 and the top wall 50.
  • the side wall 70 may be obtained by extending the peripheral wall 49.
  • the upper wall 50 may be obtained by extending the sub-plane 33 or may be configured by a member different from the sub-plane 33.
  • a third optical connector 38 may be provided on the other surface 32 b side of the main plane 32.
  • the third optical connector 38 is fitted and optically connected to a fourth optical connector 25 attached to the second circuit board 23 described later.
  • the main plane 32 according to the present embodiment has four third optical connectors 38.
  • a portion of the main plane 32 where the third optical connector 38 is provided is provided with a through hole 39 for drawing out the optical fiber 42 joined to the third optical connector 38 to the one surface 32a side of the main plane 32.
  • a plurality (two in this embodiment) of first circuit boards 22 may be accommodated in the first space E1 of the frame 11, that is, on the one surface 32a side of the main plane 32.
  • the first circuit board 22 may be provided with a photoelectric conversion unit 51 for converting an electrical signal into an optical signal or conversely converting an optical signal into an electrical signal.
  • the photoelectric conversion unit 51 may include a light emitting diode 52 that outputs an electrical signal as an optical signal.
  • One end surface of the optical fiber 42 may face the light emitting diode 52.
  • Each first circuit board 22 may be accommodated in a casing 29 having a hollow inside.
  • the first circuit board 22 is housed in the housing 29 so that the main surface 22a of the first circuit board 22 is perpendicular to one surface 32a of the main plane 32 (or one surface 33a of the sub-plane 33). May be inserted into the frame 11.
  • the plurality of housings 29 may be arranged in parallel in the frame 11.
  • the housing 29 containing the first circuit board 22 may be detachable from the frame 11.
  • the second optical connector 24 of the first circuit board 22 and the first optical connector 35 of the sub-plane 33 are fitted together. Further, the second optical connector 24 of the first circuit board 22 is fitted.
  • the electrical connector 26 and the first electrical connector 37 of the sub-plane 33 may also be fitted.
  • the second optical connector 24 may be provided at one end of the main surface 22a of the first circuit board 22.
  • a ferrule 41 may be built in the second optical connector 24.
  • the other end surface of the optical fiber 42 may penetrate the ferrule 41 and be exposed at the end of the ferrule 41.
  • the second optical connector 24 is fitted with the first optical connector 35 provided on the one surface 33 a of the sub-plane 33.
  • the ferrule 41 through which the optical fiber 42 penetrates is also built in the first optical connector 35, and the ferrules 41, 41 are brought into contact with each other by fitting the second optical connector 24 and the first optical connector 35. Thereby, the end surfaces of both optical fibers 42 and 42 are joined and optically connected.
  • the side of the first circuit board 22 facing the main plane 32 may have a shape in which a portion other than the portion facing the sub-plane 33 protrudes toward the main plane 32.
  • the 2nd electrical connector 26 may be attached to this protrusion part.
  • a first electrical connector 37 that fits and is electrically connected to the second electrical connector 26 of the first circuit board 22 may be provided on a portion of the one surface 32 a of the main plane 32 that does not overlap the sub-plane 33. .
  • a guide pin 61 may be provided on one surface 32 a of the main plane 32 or one surface 33 a of the sub-plane 33, and a guide pin receiver 62 that is paired with the guide pin 61 may be provided on the main plane 32 side of the first circuit board 22.
  • the guide pin 61 and the guide pin receiver 62 By providing the guide pin 61 and the guide pin receiver 62, the first circuit board 22 can be easily inserted and fitted at an appropriate position.
  • the first optical connector 35 may be attached to the through hole 36 of the sub-plane 33 with some play. That is, a predetermined gap is provided between the through hole 36 of the sub-plane 33 and the first optical connector 35, and the first optical connector 35 is movable within the range of the gap between the through hole 36. May be attached. Thereby, even when the guide pin 61 and the guide pin receiver 62 are provided, the first optical connector 35 and the second optical connector 24, and the first electrical connector 37 and the second electrical connector 26 are easily fitted. Can be made.
  • a plurality (two in this embodiment) of second circuit boards 23 may be accommodated in the second space E2 of the frame 11, that is, the other surface 32b side of the main plane 32.
  • the second circuit board 23 may be provided with a photoelectric conversion unit 53 for converting an electrical signal into an optical signal or conversely converting an optical signal into an electrical signal.
  • the photoelectric conversion unit 53 may include a photodiode 54 that outputs an optical signal as an electrical signal.
  • One end surface of the optical fiber 42 may face the photodiode 54.
  • Each of the second circuit boards 23 may be accommodated in a casing 28 having a hollow inside.
  • the second circuit board 23 is inserted into the frame 11 with the main surface 23 a of the second circuit board 23 being accommodated in the housing 28 so as to be perpendicular to the other surface 32 b of the main plane 32.
  • the plurality of housings 28 may be arranged in parallel in the frame 11.
  • the frame 11 may be provided with a partition wall for partitioning the casings 28 inserted adjacent to each other, or a rail member for holding an end of the casing 28.
  • the housing 28 containing the second circuit board 23 may be detachable from the frame 11. When the housing 28 is inserted into the frame, the fourth optical connector 25 of the second circuit board 23 and the third optical connector 38 of the main plane 32 are fitted accordingly.
  • a fourth optical connector 25 may be provided at one end of the main surface 23 a of each second circuit board 23.
  • two fourth optical connectors 25, 25 are provided for one second circuit board 23.
  • a ferrule 41 may be built in the fourth optical connector 25.
  • the other end surface of the optical fiber 42 may penetrate the ferrule 41 and be exposed at the end of the ferrule 41.
  • the fourth optical connector 25 is fitted with a third optical connector 38 provided on the other surface 32 b of the main plane 32.
  • the third optical connector 38 also has a built-in ferrule 41 through which the optical fiber 42 penetrates.
  • both ferrules 41 and 41 are brought into contact with each other. . Thereby, the end surfaces of both optical fibers 42 and 42 are joined and optically connected.
  • the optical fiber 42 may be covered with a tubular protective member 45.
  • a second electrical connector 65 may be provided on the second circuit board 23.
  • the third electrical connector 65 of the second circuit board 23 may be fitted with the fourth electrical connector 66 provided on the other surface 32b of the main plane 32.
  • a guide pin 63 may be provided on the other surface 32 b of the main plane 32, and a guide pin receiver 64 paired with the guide pin 63 may be provided on the main plane 32 side of the second circuit board 23.
  • the guide pins 61 and 64 and the guide pin receivers 62 and 63 are described as single components.
  • the guide pins and the components corresponding to the guide pin receivers are electrical connectors, optical connectors, or the like. It may be incorporated (becomes an integral part).
  • the first circuit board 22 and the second circuit board 23 can communicate with each other through the optical plane 31 using an optical signal.
  • an electric pulse signal generated in the first circuit board 22 is converted into an optical pulse signal by the light emitting diode 52 of the photoelectric conversion unit 51.
  • the optical pulse signal generated by the light emitting diode 52 propagates through the optical fiber 42 and reaches the second optical connector 24.
  • the optical pulse signal propagates through the optical fiber 42 joined to the first optical connector 35 fitted with the second optical connector 24 and reaches the third optical connector 38.
  • the optical pulse signal propagates through the optical fiber 42 joined to the fourth optical connector 25 fitted with the third optical connector 38, and constitutes the photoelectric conversion unit 53 of the second circuit board 23. 54.
  • the optical pulse signal input to the photodiode 54 is converted into an electric pulse signal.
  • FIG. 3 is a front view showing a connection configuration example of optical fibers in the optical wiring device 10.
  • a ferrule 41 may be accommodated in 38 and the fourth optical connector 25 provided at one end of the second circuit board 23.
  • the ferrule 41 there is an MT (Mechanically Transferable) ferrule (MT type optical connector; F12 type optical connector established in JIS C 5981).
  • the optical fiber 41 may be a single optical fiber core wire or an optical fiber strand, or may be a bundle of a plurality of single optical fiber core wires (or optical fiber strands). Good.
  • the second optical connector 24A of the first circuit board 22A is fitted to the first optical connector 35A on the one surface 33a of the sub-plane 33.
  • the ferrule 41A of the first optical connector 35A and the ferrule 41J of the third optical connector 38A are connected by an optical fiber 42A.
  • the ferrule 41A of the first optical connector 35A and the ferrule 41F of the third optical connector 38B are connected by an optical fiber 42B.
  • the third optical connectors 38A and 38B are fitted to the fourth optical connectors 25A and 25B provided on the second circuit board 23A, respectively.
  • the ferrule 41B of the first optical connector 35A and the ferrule 41G of the third optical connector 38D are connected by an optical fiber 42C.
  • the ferrule 41B of the first optical connector 35A and the ferrule 41L of the third optical connector 38C are connected by an optical fiber 42D.
  • the third optical connectors 38C and 38D are fitted with the fourth optical connectors 25C and 25D attached to the second circuit board 23B, respectively.
  • the second optical connector 24B of the first circuit board 22B is fitted to the first optical connector 35B on the one surface 33a of the sub-plane 33.
  • the ferrule 41C of the first optical connector 35B and the ferrule 41K of the third optical connector 38A are connected by an optical fiber 42E.
  • the ferrule 41C of the first optical connector 35B and the ferrule 41E of the third optical connector 38B are connected by an optical fiber 42F.
  • the ferrule 41D of the first optical connector 35B and the ferrule 41H of the third optical connector 38D are connected by an optical fiber 42G.
  • the ferrule 41D of the first optical connector 35B and the ferrule 41M of the third optical connector 38C are connected by an optical fiber 42H.
  • the optical fiber of the second optical connector 24A of the first circuit board 22A is connected to the two fourth optical connectors 25A and 25B provided on the second circuit board 23A. Sorted. The optical fiber of the second optical connector 24B of the first circuit board 22B is distributed to two fourth optical connectors 25C and 25D provided on the second circuit board 23B.
  • each optical fiber 42 includes ferrules 41 ⁇ / b> A and 41 ⁇ / b> C of the first circuit board 22 positioned above the optical wiring device 10, and ferrules 41 ⁇ / b> E and 2 ⁇ / b> E of the second circuit board 23 positioned above the optical wiring device 10.
  • 41F, 41J, and 41K are connected.
  • Each optical fiber 42 includes ferrules 41B and 41D of the first circuit board 22 located under the optical wiring device 10 and ferrules 41G, 41H, and 2nd of the second circuit board 23 located under the optical wiring device 10. 41L and 41M are connected.
  • the optical fiber 42 can be arranged in an orderly manner. That is, the entanglement of the optical fiber 42 can be reduced in the accommodation space.
  • FIG. 4 is a front view showing a configuration example of an optical plane.
  • FIG. 5 is a side view (sectional view) showing a configuration example of an optical plane.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • the optical fiber 42 drawn from the first optical connector 35 provided on the one surface 33a of the sub-plane 33 has an allowable bending radius or more within the accommodation space (gap) formed between the main plane 32 and the sub-plane 33. It may be curved.
  • the optical fiber 42 drawn out from the third optical connector 38 provided on the other surface 32b of the main plane 32 may be bent at an allowable bending radius or more in the accommodation space (gap).
  • the optical fiber 42 drawn out from the first optical connector 35 or the third optical connector 38 may be accommodated in an accommodation space formed by the main plane 32, the sub plane 33, and the peripheral wall 49.
  • FIG. 6 is a perspective view showing a configuration example of the optical plane 31.
  • the optical fibers 42A to 42G on the optical plane 31 of FIG. 3 the optical fibers 42A, 42B, 42D, 42E, and 42F extending outside the accommodation space (gap) formed between the main plane 32 and the subplane 33.
  • 42H may be covered with a conduit formed by sidewall 70 and top wall 50 as shown in FIG.
  • the optical fiber 42 may be covered with a protective member 45.
  • the protective member 45 may be a substantially cylindrical tube material that bundles a plurality of optical fiber strands 46 that respectively constitute the optical fibers 42A, 42D, 42E, and 42H.
  • a terminal member 48 for binding the optical fiber 46 may be attached to the end of the protection member 45.
  • An opening 47 for drawing out the optical fibers 42A, 42B, 42D, 42E, 42F, and 42H covered with the protective member 45 may be formed in a part of the side wall 70 and the upper wall 50.
  • the opening 47 may be equal to or larger than the diameter of the protection member 45.
  • optical fibers 42 ⁇ / b> C and 42 ⁇ / b> G whose wiring is completed only in the housing space may be wired with the optical fiber 46 being exposed without being covered with the protective member 45. Further, the portions in the accommodation spaces of the optical fibers 42A, 42B, 42D, 42E, 42F, and 42H may not be covered with the protective member 45 and may be wired in a state where the optical fiber 46 is exposed. It may be covered with 45 and wired.
  • the optical wiring device 10 according to the present embodiment has the following effects, for example.
  • the optical plane 31 may be composed of a main plane 32 and a sub-plane 33 arranged in parallel with a predetermined interval with respect to one surface 32a of the main plane 32. Accordingly, at least a part of the optical fiber 42 wired on the main plane 32 is accommodated in an accommodation space (gap) formed between the main plane 32 and the sub-plane 33, so that the optical fiber 42 is It is possible to prevent the wiring from rising from the one surface 32a of the main plane 32. That is, since the space occupied by the optical plane 31 is reduced, the optical wiring device 10 can be reduced in size. Further, it is possible to prevent a mistake that the optical fiber 42 that is floating when the first circuit board 22 is attached to and detached from the frame 11 is caught.
  • a conduit is formed outside the sub-plane 33 using the side wall 70 and the upper wall 50 (protective member 45 if necessary), and an optical fiber is wired in the conduit.
  • the space occupied can be reduced.
  • the optical connection device 10 may be configured not to include the second circuit board 23.
  • An optical plane 31 (back plane) having a main plane 32 and a sub-plane 33 is arranged so as to be shifted toward one end in the frame 11, and a plurality of circuit boards are connected to only one side of the optical plane 31. It may be configured (so-called backplane connection).
  • the number of the first circuit boards 22 and the second circuit boards 23 that can be accommodated in the frame 11 may be any number.
  • the number of the first circuit boards 22 and the second circuit boards 23 that can be accommodated in the frame 11 may be different.
  • the sub-plane 33 may have any size or shape as long as it does not exceed the size of the main plane 32.
  • the sub plane 33 may be attached so as to cover more than half of one surface of the main plane 32.
  • the sub plane 33 may be attached so as to cover the entire surface of the main plane 32. In this case, all the protective members that cover the optical fiber may be omitted.
  • the first circuit board 22 or the second circuit board 23 may be directly housed in the frame 11 without being housed in the housing 29 or 28, respectively.
  • a groove or the like that fits with the peripheral edge (edge) of each circuit board may be formed on the inner wall surface of the frame 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An optical interconnection device comprises an optical plane having a main plane, a sub-plane, a first optical connector, and an optical fiber. At least part of the sub-plane overlaps the main plane in plan view. A gap is provided between one surface of the main plane and one surface of the sub-plane, the one surface of the main plane facing the sub-plane and the one surface of the sub-plane facing the one surface of the main plane. The first optical connector is disposed in a first opening provided in a predetermined position of the sub-plane. The optical fiber joined to the first optical connector is drawn into a housing space formed by the gap between the one surface of the main plane and the one surface of the sub-plane through the first opening provided in the sub-plane.

Description

光配線装置Optical wiring device
 本発明は、光配線装置の技術に関する。 The present invention relates to the technology of an optical wiring device.
 通信ネットワークの広帯域化により、通信ネットワークを流通する情報量が増大している。このため、ルータ装置及びサーバ装置等の情報機器における処理速度の向上が求められている。ここで、情報機器における処理速度の向上を妨げる要因の一つに、情報機器を構成する電気基板における銅配線の伝送速度の限界がある。 The amount of information distributed through the communication network is increasing due to the broadband communication network. For this reason, improvement of the processing speed in information devices, such as a router apparatus and a server apparatus, is calculated | required. Here, one of the factors hindering the improvement of the processing speed in the information equipment is the limit of the transmission speed of the copper wiring in the electric board constituting the information equipment.
 そこで、特許文献1では、情報機器内におけるプリントボード間の通信を光信号で行っている。情報機器内における光相互接続では、信号入出力ボードやスイッチボード等の複数のプリントボードが、光ファイバ(光配線)を敷線した光バックプレーンの主面に対して、直角に挿入されて接続される。プリントボード上の電気信号は、光電変換モジュールによって光信号に変換され、光バックプレーンに送られる。その送られた光信号は、光バックプレーンを伝搬して再度電気信号に変換され、他のプリントボードに送られる。 Therefore, in Patent Document 1, communication between print boards in an information device is performed using an optical signal. In optical interconnection within information equipment, multiple printed boards such as signal I / O boards and switch boards are inserted at right angles to the main surface of the optical backplane with optical fibers (optical wiring) laid. Is done. The electrical signal on the print board is converted into an optical signal by the photoelectric conversion module and sent to the optical backplane. The sent optical signal propagates through the optical backplane, is converted again to an electrical signal, and is sent to another print board.
 光ファイバを介して複数のプリントボード同士を接続する形態の一つとして、ミッドプレーン接続がある。従来のミッドプレーン接続では、基板の一種であるミッドプレーンの一面及び他面のそれぞれに光コネクタが配置される。ミッドプレーンにおいて、一面側の光コネクタと他面側の光コネクタとは、光ファイバで光学的に結線される。ミッドプレーンの一面側の複数の光コネクタにはそれぞれ複数のプリントボードが接続され、ミッドプレーンの他面側の複数の光コネクタにもそれぞれ複数のプリントボードが接続される。これにより、ミッドプレーンの一面側の光コネクタに接続されたプリントボードと、ミッドプレーンの他面側の光コネクタに接続されたプリントボードとが、ミッドプレーンの光ファイバを通じて通信可能となる。 One way to connect multiple printed boards through optical fibers is midplane connection. In the conventional midplane connection, optical connectors are arranged on one side and the other side of a midplane which is a kind of substrate. In the midplane, the optical connector on one side and the optical connector on the other side are optically connected by an optical fiber. A plurality of print boards are respectively connected to the plurality of optical connectors on one side of the midplane, and a plurality of print boards are also connected to the plurality of optical connectors on the other side of the midplane. As a result, the print board connected to the optical connector on one side of the midplane and the print board connected to the optical connector on the other side of the midplane can communicate via the optical fiber of the midplane.
特開2007-104487号公報JP 2007-104487 A
 上記のような従来のミッドプレーン接続では、ミッドプレーンの一面側の光コネクタと他面側の光コネクタとを結線する光ファイバを配線するためには、ミッドプレーンの周辺に十分な空間が必要となる。従来、ミッドプレーンの一面側に配置された光コネクタに接合された光ファイバは、この光コネクタの背後に設けられた貫通穴を通じてミッドプレーンの他面側に引き出され、今度は別な貫通穴を通じてミッドプレーンの一面側に引き出される。そして、そのミッドプレーンの一面側に引き出された光ファイバは、次にミッドプレーンの他面側に配置された光コネクタの背後の貫通穴を通じてこの光コネクタに接合される。このように、従来のミッドプレーンにおいて、2つの光コネクタを光ファイバで接続するためには、ミッドプレーンに3つの貫通穴が必要となる。そして、光ファイバは例えば所定の許容曲げ半径以上で使用される必要があるため、光コネクタ同士を接続する光ファイバは、ミッドプレーンの一面側と他面側とにおいて、ミッドプレーンから盛り上がるように大きく弧を描くように配線される必要がある。すなわち、ミッドプレーンの一面側と他面側の両方において、光ファイバを所定の許容曲げ半径以上で湾曲させるための十分な空間が必要となる。これは、光配線装置の小型化の妨げになる。 In the conventional midplane connection as described above, sufficient space is required around the midplane to route the optical fiber connecting the optical connector on one side of the midplane and the optical connector on the other side. Become. Conventionally, an optical fiber bonded to an optical connector arranged on one side of the midplane is drawn out to the other side of the midplane through a through hole provided behind the optical connector, and this time through another through hole. Pulled out to one side of the midplane. Then, the optical fiber drawn to one side of the midplane is then joined to the optical connector through a through hole behind the optical connector arranged on the other side of the midplane. Thus, in order to connect two optical connectors with an optical fiber in the conventional midplane, three through holes are required in the midplane. For example, since the optical fiber needs to be used with a predetermined allowable bending radius or more, the optical fiber connecting the optical connectors is large so as to rise from the midplane on one side and the other side of the midplane. It needs to be wired to draw an arc. That is, a sufficient space for bending the optical fiber at a predetermined allowable bending radius or more is required on both the one surface side and the other surface side of the midplane. This hinders downsizing of the optical wiring device.
 本発明の目的は、光配線装置を小型化することにある。 An object of the present invention is to reduce the size of an optical wiring device.
 一実施形態に係る光配線装置は、光プレーンを備える。光プレーンは、主プレーンと副プレーンと第1光コネクタと光ファイバとを有する。副プレーンの少なくとも一部が平面視において主プレーンと重なり、副プレーンに対向する主プレーンの一面とその主プレーンの一面に対向する副プレーンの一面との間に隙間を有する。副プレーンの所定位置に設けられた第1開口部に第1光コネクタが配置され、第1光コネクタに接合されている光ファイバが、副プレーンに設けられた第1開口部を通じて、主プレーンの一面と副プレーンの一面との間の隙間によって形成される収容空間内に引き込まれる。 The optical wiring device according to an embodiment includes an optical plane. The optical plane includes a main plane, a subplane, a first optical connector, and an optical fiber. At least a part of the sub-plane overlaps with the main plane in plan view, and there is a gap between one surface of the main plane facing the sub-plane and one surface of the sub-plane facing one surface of the main plane. A first optical connector is disposed in a first opening provided at a predetermined position of the sub-plane, and an optical fiber joined to the first optical connector passes through the first opening provided in the sub-plane through the first opening of the main plane. It is drawn into the accommodation space formed by the gap between one surface and one surface of the sub-plane.
 本発明によれば、光コネクタ及び光ファイバの配置された光プレーンを小型化することができる。 According to the present invention, the optical plane on which the optical connector and the optical fiber are arranged can be reduced in size.
一実施形態に係る光配線装置の構成例を示す斜視図である。It is a perspective view which shows the structural example of the optical wiring apparatus which concerns on one Embodiment. 光配線装置の構成例を示す側面図である。It is a side view which shows the structural example of an optical wiring apparatus. 光配線装置における光ファイバの接続構成例を示す正面図である。It is a front view which shows the example of a connection structure of the optical fiber in an optical wiring apparatus. 光プレーンの構成例を示す正面図である。It is a front view which shows the structural example of an optical plane. 光プレーンの構成例を示す側面図(断面図)である。It is a side view (sectional view) showing a configuration example of an optical plane. 光プレーンの構成例を示す斜視図である。It is a perspective view which shows the structural example of an optical plane.
 以下、図面を参照しながら、光配線装置の一実施形態について説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際に同じであるとは限らない。 Hereinafter, an embodiment of an optical wiring device will be described with reference to the drawings. In the drawings used in the following description, in order to make the characteristics of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for the sake of convenience, and the dimensional ratio of each component is actually the same. Not necessarily.
 図1は、光配線装置の構成例を示す斜視図である。図2は、光配線装置の構成例を示す側面図(断面図)である。 FIG. 1 is a perspective view showing a configuration example of an optical wiring device. FIG. 2 is a side view (sectional view) showing a configuration example of the optical wiring device.
 光配線装置10は、複数の回路基板(プリント基板)22,23と光プレーン31と、を収容するフレーム11を備える。図1は、フレーム11の外壁の一部を取り除いた状態を示す。フレーム11は、内部が空洞の角筒状であってよい。フレーム11は、多数の光配線装置10を積層して収容するラックの一部であってよい。フレーム11は、金属板によって形成されてよい。 The optical wiring device 10 includes a frame 11 that houses a plurality of circuit boards (printed boards) 22 and 23 and an optical plane 31. FIG. 1 shows a state in which a part of the outer wall of the frame 11 is removed. The frame 11 may be a rectangular tube having a hollow inside. The frame 11 may be a part of a rack in which a large number of optical wiring devices 10 are stacked and accommodated. The frame 11 may be formed of a metal plate.
 光プレーン31は、主プレーン32と副プレーン33とを有する。主プレーン32は、絶縁性の板部材、電気回路基板及び板金、若しくは、これらの組合せなどから構成されてよい。光プレーン31は、角筒状のフレーム11の両側の開口面と並行になるようにフレーム11の中央部分に配置されてよい。すなわち、光プレーン31は、フレーム11の内部空間をほぼ二分する位置に配置されてよい。このように配置される光プレーン31を、ミッドプレーンといってもよい。以下の説明において、フレーム11の内部空間のうち、主プレーン32の一面(一方の主面)32a側に広がる空間を第1空間E1と、主プレーン32の他面(他方の主面)32b側に広がる空間を第2空間E2という場合がある。 The optical plane 31 has a main plane 32 and a sub-plane 33. The main plane 32 may be composed of an insulating plate member, an electric circuit board and a sheet metal, or a combination thereof. The optical plane 31 may be disposed in the center portion of the frame 11 so as to be parallel to the opening surfaces on both sides of the rectangular tube-shaped frame 11. That is, the optical plane 31 may be disposed at a position that substantially bisects the internal space of the frame 11. The optical plane 31 arranged in this way may be called a midplane. In the following description, of the internal space of the frame 11, the space extending to the one surface (one main surface) 32 a side of the main plane 32 is the first space E 1 and the other surface (the other main surface) 32 b side of the main plane 32. The space that spreads out is sometimes referred to as a second space E2.
 主プレーン32の一面32a側には、副プレーン33が取り付けられる。副プレーン33は、主プレーン32の一面32a側から見た場合に、この主プレーン32の一面32aに対して少なくとも一部が重なるように配置されてよい。副プレーン33は、主プレーン32の一面32aと対向する他面33b(図4参照)が主プレーン32の一面32aに対して平行になるように配置されてよい。副プレーン33の他面33bは、主プレーン32の一面32aよりも小さい形状であってよい。 A sub-plane 33 is attached to the one surface 32 a side of the main plane 32. The sub-plane 33 may be arranged so that at least a part of the sub-plane 33 overlaps the one surface 32a of the main plane 32 when viewed from the one surface 32a side of the main plane 32. The sub-plane 33 may be arranged such that the other surface 33 b (see FIG. 4) facing the one surface 32 a of the main plane 32 is parallel to the one surface 32 a of the main plane 32. The other surface 33b of the sub plane 33 may be smaller than the one surface 32a of the main plane 32.
 副プレーン33の一面33aには、第1光コネクタ35が取り付けられてよい。第1光コネクタ35は、後述する第1回路基板22の有する第2光コネクタ24と嵌合するように取り付けられる。副プレーン33の第1光コネクタ35が取り付けられた部分には、第1光コネクタ35に接合する光ファイバ42を副プレーン33の他面33b側に引き込むための貫通穴36が形成されてよい。この貫通穴36は、第1光コネクタ35が副プレーン33に嵌め込まれるように形成されてもよい。 The first optical connector 35 may be attached to one surface 33a of the subplane 33. The 1st optical connector 35 is attached so that it may fit with the 2nd optical connector 24 which the 1st circuit board 22 mentioned later has. A through hole 36 for drawing the optical fiber 42 bonded to the first optical connector 35 toward the other surface 33b of the subplane 33 may be formed in a portion of the subplane 33 to which the first optical connector 35 is attached. The through hole 36 may be formed so that the first optical connector 35 is fitted into the sub-plane 33.
 副プレーン33は、他面33bと主プレーン32の一面32aとを繋ぐ単一又は複数の脚部34によって、主プレーン32に取り付けられてよい。この脚部34の長さの分、主プレーン32の一面32aと副プレーン33の他面33bとの間には、所定の間隔tで広がる空間(隙間)が形成される。この空間を収容空間という。この収容空間に、後述する光ファイバ42が収容される。所定の間隔tの最小値は、この収容空間に引き込まれる光ファイバ42の許容曲げ半径に基づいて算出されてよい。なぜなら、間隔tを狭くし過ぎてしまうと、収容空間に引き込まれる光ファイバ42が許容曲げ半径よりも小さく湾曲してしまうからである。図1乃至図3において、光ファイバ42は1本の実線で表現されているが、実際には複数の光ファイバ素線、又は、複数の光ファイバ素線を束ねたものであってよい。光ファイバ素線は、24本又は48本等の光ファイバが束ねられたものであってよい。脚部34の個数は、主プレーン32と副プレーン33との間に所定の間隔tを確保できる限り幾つであってもよい。 The sub-plane 33 may be attached to the main plane 32 by a single or a plurality of legs 34 connecting the other surface 33b and the one surface 32a of the main plane 32. A space (gap) extending at a predetermined interval t is formed between the one surface 32 a of the main plane 32 and the other surface 33 b of the sub-plane 33 by the length of the leg portion 34. This space is called an accommodation space. An optical fiber 42 described later is accommodated in this accommodation space. The minimum value of the predetermined interval t may be calculated based on the allowable bending radius of the optical fiber 42 drawn into the accommodation space. This is because if the interval t is too narrow, the optical fiber 42 drawn into the accommodation space will be bent smaller than the allowable bending radius. 1 to 3, the optical fiber 42 is represented by a single solid line, but may actually be a plurality of optical fiber strands or a bundle of a plurality of optical fiber strands. The optical fiber may be a bundle of 24 or 48 optical fibers. The number of the leg portions 34 may be any number as long as a predetermined interval t can be secured between the main plane 32 and the sub plane 33.
 副プレーン33の他面33bと主プレーン32の一面32aとの間に、所定の間隔tを形成する周壁49が設けられてもよい。脚部34に代えて周壁49によって副プレーン33を主プレーン32に固定してもよい。周壁49は、副プレーン33の周縁全体に渡って形成されてもよいし、副プレーン33の周縁の一部にだけ形成されてもよい。周壁49の一部に収容空間内から収容空間外へ光ファイバ42を引き出すための開口部が設けられてよい。その開口部から収容空間外へ引き出された光ファイバ42は、後述する第3光コネクタ38に接合されてよい。その光ファイバ42は、主プレーン32の一面32aの収容空間外に設けられた所定の導管内を通って、第3光コネクタ38に接合されてよい。所定の導管は、側壁70及び上壁50によって形成されてよい。側壁70は、周壁49を伸張させたものであってよい。上壁50は、副プレーン33を伸張したものであってもよいし、副プレーン33とは別の部材で構成されてもよい。 A peripheral wall 49 that forms a predetermined interval t may be provided between the other surface 33 b of the sub-plane 33 and the one surface 32 a of the main plane 32. The subplane 33 may be fixed to the main plane 32 by the peripheral wall 49 instead of the leg portion 34. The peripheral wall 49 may be formed over the entire periphery of the sub-plane 33, or may be formed only on a part of the periphery of the sub-plane 33. An opening for drawing out the optical fiber 42 from the inside of the housing space to the outside of the housing space may be provided in a part of the peripheral wall 49. The optical fiber 42 drawn out of the accommodation space from the opening may be joined to a third optical connector 38 described later. The optical fiber 42 may be joined to the third optical connector 38 through a predetermined conduit provided outside the accommodation space of the one surface 32 a of the main plane 32. The predetermined conduit may be formed by the side wall 70 and the top wall 50. The side wall 70 may be obtained by extending the peripheral wall 49. The upper wall 50 may be obtained by extending the sub-plane 33 or may be configured by a member different from the sub-plane 33.
 主プレーン32の他面32b側に、第3光コネクタ38が設けられてよい。第3光コネクタ38は、後述する第2回路基板23に取り付けられた第4光コネクタ25と嵌合し、光学的に接続される。本実施形態に係る主プレーン32は、4つの第3光コネクタ38を有する。主プレーン32の第3光コネクタ38が設けられた部分には、それぞれ、第3光コネクタ38に接合する光ファイバ42を主プレーン32の一面32a側に引き出すための貫通穴39が設けられる。 A third optical connector 38 may be provided on the other surface 32 b side of the main plane 32. The third optical connector 38 is fitted and optically connected to a fourth optical connector 25 attached to the second circuit board 23 described later. The main plane 32 according to the present embodiment has four third optical connectors 38. A portion of the main plane 32 where the third optical connector 38 is provided is provided with a through hole 39 for drawing out the optical fiber 42 joined to the third optical connector 38 to the one surface 32a side of the main plane 32.
 フレーム11の第1空間E1、すなわち、主プレーン32の一面32a側には、複数(本実施形態では2つ)の第1回路基板22が収容されてよい。第1回路基板22に、電気信号を光信号に変換したり、逆に光信号を電気信号に変換したりするための光電変換ユニット51が設けられてよい。光電変換ユニット51に、電気信号を光信号として出力する発光ダイオード52が内蔵されてよい。発光ダイオード52には、光ファイバ42の一端面が対向してよい。 A plurality (two in this embodiment) of first circuit boards 22 may be accommodated in the first space E1 of the frame 11, that is, on the one surface 32a side of the main plane 32. The first circuit board 22 may be provided with a photoelectric conversion unit 51 for converting an electrical signal into an optical signal or conversely converting an optical signal into an electrical signal. The photoelectric conversion unit 51 may include a light emitting diode 52 that outputs an electrical signal as an optical signal. One end surface of the optical fiber 42 may face the light emitting diode 52.
 それぞれの第1回路基板22は、内部が空洞の筐体29に収容されてよい。第1回路基板22は、その第1回路基板22の主面22aが主プレーン32の一面32a(又は副プレーン33の一面33a)に対して垂直になるように筐体29に収容された状態で、フレーム11内に挿入されてよい。複数の筐体29は、フレーム11内で並列に配置されてよい。 Each first circuit board 22 may be accommodated in a casing 29 having a hollow inside. The first circuit board 22 is housed in the housing 29 so that the main surface 22a of the first circuit board 22 is perpendicular to one surface 32a of the main plane 32 (or one surface 33a of the sub-plane 33). May be inserted into the frame 11. The plurality of housings 29 may be arranged in parallel in the frame 11.
 第1回路基板22を収容した筐体29は、フレーム11に対して着脱自在であってよい。筐体29をフレーム11に挿入すると、それに伴って、第1回路基板22の第2光コネクタ24と副プレーン33の第1光コネクタ35が嵌合され、さらに、第1回路基板22の第2電気コネクタ26と副プレーン33の第1電気コネクタ37も嵌合されてよい。 The housing 29 containing the first circuit board 22 may be detachable from the frame 11. When the housing 29 is inserted into the frame 11, the second optical connector 24 of the first circuit board 22 and the first optical connector 35 of the sub-plane 33 are fitted together. Further, the second optical connector 24 of the first circuit board 22 is fitted. The electrical connector 26 and the first electrical connector 37 of the sub-plane 33 may also be fitted.
 第1回路基板22の主面22aの一端に、第2光コネクタ24が設けられてよい。第2光コネクタ24には、フェルール41が内蔵されてよい。光ファイバ42の他端面は、フェルール41を貫通し、フェルール41の端部で露出してよい。第2光コネクタ24は、副プレーン33の一面33aに設けられた第1光コネクタ35と嵌合する。第1光コネクタ35にも光ファイバ42が貫通したフェルール41が内蔵されており、第2光コネクタ24と第1光コネクタ35との嵌合によって、双方のフェルール41,41同士が突き合わされる。これにより、双方の光ファイバ42,42の端面同士が接合し、光学的に接続される。 The second optical connector 24 may be provided at one end of the main surface 22a of the first circuit board 22. A ferrule 41 may be built in the second optical connector 24. The other end surface of the optical fiber 42 may penetrate the ferrule 41 and be exposed at the end of the ferrule 41. The second optical connector 24 is fitted with the first optical connector 35 provided on the one surface 33 a of the sub-plane 33. The ferrule 41 through which the optical fiber 42 penetrates is also built in the first optical connector 35, and the ferrules 41, 41 are brought into contact with each other by fitting the second optical connector 24 and the first optical connector 35. Thereby, the end surfaces of both optical fibers 42 and 42 are joined and optically connected.
 第1回路基板22における主プレーン32と対面する側の側辺は、副プレーン33と対向する部分以外の部分が主プレーン32に向かって突出している形状であってよい。この突出部分に、第2電気コネクタ26が取り付けられてよい。 The side of the first circuit board 22 facing the main plane 32 may have a shape in which a portion other than the portion facing the sub-plane 33 protrudes toward the main plane 32. The 2nd electrical connector 26 may be attached to this protrusion part.
 主プレーン32の一面32aのうちの副プレーン33と重ならない部分に、第1回路基板22の第2電気コネクタ26と嵌合して電気的に接続される第1電気コネクタ37が設けられてよい。 A first electrical connector 37 that fits and is electrically connected to the second electrical connector 26 of the first circuit board 22 may be provided on a portion of the one surface 32 a of the main plane 32 that does not overlap the sub-plane 33. .
 主プレーン32の一面32a又は副プレーン33の一面33aにガイドピン61が設けられ、第1回路基板22の主プレーン32側に、ガイドピン61と対となるガイドピン受け62が設けられてよい。ガイドピン61及びガイドピン受け62を設けることにより、第1回路基板22を適切な位置に容易に挿入及び嵌合することができる。 A guide pin 61 may be provided on one surface 32 a of the main plane 32 or one surface 33 a of the sub-plane 33, and a guide pin receiver 62 that is paired with the guide pin 61 may be provided on the main plane 32 side of the first circuit board 22. By providing the guide pin 61 and the guide pin receiver 62, the first circuit board 22 can be easily inserted and fitted at an appropriate position.
 第1光コネクタ35は、多少の遊びをもって副プレーン33の貫通穴36に取り付けられてよい。すなわち、副プレーン33の貫通穴36と第1光コネクタ35との間には所定の隙間が設けられており、第1光コネクタ35は貫通穴36との間の隙間の範囲内で移動可能に取り付けられてよい。これにより、ガイドピン61及びガイドピン受け62を設けた場合であっても、第1光コネクタ35と第2光コネクタ24、及び、第1電気コネクタ37及び第2電気コネクタ26を容易に嵌合させることができる。 The first optical connector 35 may be attached to the through hole 36 of the sub-plane 33 with some play. That is, a predetermined gap is provided between the through hole 36 of the sub-plane 33 and the first optical connector 35, and the first optical connector 35 is movable within the range of the gap between the through hole 36. May be attached. Thereby, even when the guide pin 61 and the guide pin receiver 62 are provided, the first optical connector 35 and the second optical connector 24, and the first electrical connector 37 and the second electrical connector 26 are easily fitted. Can be made.
 フレーム11の第2空間E2、すなわち、主プレーン32の他面32b側には、複数(本実施形態では2つ)の第2回路基板23が収容されてよい。第2回路基板23に、電気信号を光信号に変換したり、逆に光信号を電気信号に変換したりするための光電変換ユニット53が設けられてよい。光電変換ユニット53には、光信号を電気信号として出力するフォトダイオード54が内蔵されてよい。フォトダイオード54には、光ファイバ42の一端面が対向してよい。 A plurality (two in this embodiment) of second circuit boards 23 may be accommodated in the second space E2 of the frame 11, that is, the other surface 32b side of the main plane 32. The second circuit board 23 may be provided with a photoelectric conversion unit 53 for converting an electrical signal into an optical signal or conversely converting an optical signal into an electrical signal. The photoelectric conversion unit 53 may include a photodiode 54 that outputs an optical signal as an electrical signal. One end surface of the optical fiber 42 may face the photodiode 54.
 それぞれの第2回路基板23は、内部が空洞の筐体28に収容されてよい。第2回路基板23は、その第2回路基板23の主面23aが主プレーン32の他面32bに対して垂直になるように筐体28に収容された状態で、フレーム11内に挿入されてよい。複数の筐体28は、フレーム11内で並列に配置されてよい。フレーム11には、互いに隣接して挿入される筐体28同士を仕切るための仕切壁、又は、筐体28の端部を保持するレール部材などが設けられてよい。 Each of the second circuit boards 23 may be accommodated in a casing 28 having a hollow inside. The second circuit board 23 is inserted into the frame 11 with the main surface 23 a of the second circuit board 23 being accommodated in the housing 28 so as to be perpendicular to the other surface 32 b of the main plane 32. Good. The plurality of housings 28 may be arranged in parallel in the frame 11. The frame 11 may be provided with a partition wall for partitioning the casings 28 inserted adjacent to each other, or a rail member for holding an end of the casing 28.
 第2回路基板23を収容した筐体28は、フレーム11に対して着脱自在であってよい。筐体28をフレームに挿入すると、それに伴って、第2回路基板23の第4光コネクタ25と主プレーン32の第3光コネクタ38が嵌合される。 The housing 28 containing the second circuit board 23 may be detachable from the frame 11. When the housing 28 is inserted into the frame, the fourth optical connector 25 of the second circuit board 23 and the third optical connector 38 of the main plane 32 are fitted accordingly.
 それぞれの第2回路基板23の主面23aの一端には、第4光コネクタ25が設けられてよい。本実施形態においては、1つの第2回路基板23に対して2つの第4光コネクタ25,25が設けられている。第4光コネクタ25には、フェルール41が内蔵されてよい。光ファイバ42の他端面はフェルール41を貫通し、フェルール41の端部で露出してよい。第4光コネクタ25は、主プレーン32の他面32bに設けられた第3光コネクタ38と嵌合する。第3光コネクタ38にも、光ファイバ42が貫通したフェルール41が内蔵されており、第3光コネクタ38と第4光コネクタ25との嵌合によって、双方のフェルール41,41同士が突き合わされる。これにより、双方の光ファイバ42,42の端面同士が接合し、光学的に接続される。光ファイバ42は、チューブ状の保護部材45によって覆われてよい。 A fourth optical connector 25 may be provided at one end of the main surface 23 a of each second circuit board 23. In the present embodiment, two fourth optical connectors 25, 25 are provided for one second circuit board 23. A ferrule 41 may be built in the fourth optical connector 25. The other end surface of the optical fiber 42 may penetrate the ferrule 41 and be exposed at the end of the ferrule 41. The fourth optical connector 25 is fitted with a third optical connector 38 provided on the other surface 32 b of the main plane 32. The third optical connector 38 also has a built-in ferrule 41 through which the optical fiber 42 penetrates. By fitting the third optical connector 38 and the fourth optical connector 25, both ferrules 41 and 41 are brought into contact with each other. . Thereby, the end surfaces of both optical fibers 42 and 42 are joined and optically connected. The optical fiber 42 may be covered with a tubular protective member 45.
 第2回路基板23には、第3電気コネクタ65が設けられてよい。そして、第2回路基板23の第3電気コネクタ65は、主プレーン32の他面32bに設けられた第4電気コネクタ66と嵌合してよい。 A second electrical connector 65 may be provided on the second circuit board 23. The third electrical connector 65 of the second circuit board 23 may be fitted with the fourth electrical connector 66 provided on the other surface 32b of the main plane 32.
 上記同様、主プレーン32の他面32bにガイドピン63が設けられ、第2回路基板23の主プレーン32側に、ガイドピン63と対となるガイドピン受け64が設けられてよい。ガイドピン63及びガイドピン受け64を設けることにより、第2回路基板23を適切な位置に容易に挿入及び嵌合することができる。 Similarly to the above, a guide pin 63 may be provided on the other surface 32 b of the main plane 32, and a guide pin receiver 64 paired with the guide pin 63 may be provided on the main plane 32 side of the second circuit board 23. By providing the guide pin 63 and the guide pin receiver 64, the second circuit board 23 can be easily inserted and fitted at an appropriate position.
 なお、本実施形態では、ガイドピン61、64、及び、ガイドピン受け62、63を単体の部品として説明しているが、ガイドピン及びガイドピン受けに相当する部品が電気コネクタ又は光コネクタ等に組み込まれて(一体の部品となっていて)もよい。 In this embodiment, the guide pins 61 and 64 and the guide pin receivers 62 and 63 are described as single components. However, the guide pins and the components corresponding to the guide pin receivers are electrical connectors, optical connectors, or the like. It may be incorporated (becomes an integral part).
 以上の構成によって、第1回路基板22と第2回路基板23とは、光プレーン31を介して、光信号による通信が可能となる。例えば、第1回路基板22で発生した電気パルス信号は、光電変換ユニット51の発光ダイオード52によって光パルス信号に変換される。発光ダイオード52で生じた光パルス信号は、光ファイバ42を伝搬して第2光コネクタ24に達する。そして、その光パルス信号は、第2光コネクタ24と嵌合している第1光コネクタ35に接合する光ファイバ42を伝搬して第3光コネクタ38に到達する。そして、その光パルス信号は、第3光コネクタ38と嵌合している第4光コネクタ25に接合する光ファイバ42を伝搬して、第2回路基板23の光電変換ユニット53を構成するフォトダイオード54に入力される。フォトダイオード54に入力した光パルス信号は、電気パルス信号に変換される。このように、第1回路基板22と第2回路基板23との間の通信に光信号を利用することによって、電気信号を利用する場合よりも高速に通信を行うことができる。 With the above configuration, the first circuit board 22 and the second circuit board 23 can communicate with each other through the optical plane 31 using an optical signal. For example, an electric pulse signal generated in the first circuit board 22 is converted into an optical pulse signal by the light emitting diode 52 of the photoelectric conversion unit 51. The optical pulse signal generated by the light emitting diode 52 propagates through the optical fiber 42 and reaches the second optical connector 24. Then, the optical pulse signal propagates through the optical fiber 42 joined to the first optical connector 35 fitted with the second optical connector 24 and reaches the third optical connector 38. Then, the optical pulse signal propagates through the optical fiber 42 joined to the fourth optical connector 25 fitted with the third optical connector 38, and constitutes the photoelectric conversion unit 53 of the second circuit board 23. 54. The optical pulse signal input to the photodiode 54 is converted into an electric pulse signal. Thus, by using an optical signal for communication between the first circuit board 22 and the second circuit board 23, communication can be performed at a higher speed than when an electric signal is used.
 図3は、光配線装置10における光ファイバの接続構成例を示す正面図である。 FIG. 3 is a front view showing a connection configuration example of optical fibers in the optical wiring device 10.
 第1回路基板22の一端に設けられた第2光コネクタ24と、副プレーン33の一面33aに設けられた第1光コネクタ35と、主プレーン32の他面32bに設けられた第3光コネクタ38と、第2回路基板23の一端に設けられた第4光コネクタ25とには、フェルール41が収容されてよい。フェルール41の一例としては、MT(Mechanically Transferable)フェルール(MT形光コネクタ。JIS C 5981に制定されるF12形光コネクタ)などがある。 A second optical connector 24 provided at one end of the first circuit board 22, a first optical connector 35 provided on one surface 33 a of the sub-plane 33, and a third optical connector provided on the other surface 32 b of the main plane 32. A ferrule 41 may be accommodated in 38 and the fourth optical connector 25 provided at one end of the second circuit board 23. As an example of the ferrule 41, there is an MT (Mechanically Transferable) ferrule (MT type optical connector; F12 type optical connector established in JIS C 5981).
 それぞれのフェルール41には、光ファイバ42の先端部が内挿固定されている。光ファイバ41は、単心の光ファイバ心線、又は、光ファイバ素線であってもよいし、単心の光ファイバ心線(又は光ファイバ素線)を複数本束ねたものであってもよい。 In each ferrule 41, the tip portion of the optical fiber 42 is inserted and fixed. The optical fiber 41 may be a single optical fiber core wire or an optical fiber strand, or may be a bundle of a plurality of single optical fiber core wires (or optical fiber strands). Good.
 第1回路基板22Aの第2光コネクタ24Aは、副プレーン33の一面33aの第1光コネクタ35Aに嵌合する。 The second optical connector 24A of the first circuit board 22A is fitted to the first optical connector 35A on the one surface 33a of the sub-plane 33.
 第1光コネクタ35Aのフェルール41Aと、第3光コネクタ38Aのフェルール41Jとは、光ファイバ42Aによって結線される。第1光コネクタ35Aのフェルール41Aと、第3光コネクタ38Bのフェルール41Fとは、光ファイバ42Bによって結線される。第3光コネクタ38A及び38Bは、それぞれ、第2回路基板23Aに設けられた第4光コネクタ25A及び25Bと嵌合する。 The ferrule 41A of the first optical connector 35A and the ferrule 41J of the third optical connector 38A are connected by an optical fiber 42A. The ferrule 41A of the first optical connector 35A and the ferrule 41F of the third optical connector 38B are connected by an optical fiber 42B. The third optical connectors 38A and 38B are fitted to the fourth optical connectors 25A and 25B provided on the second circuit board 23A, respectively.
 第1光コネクタ35Aのフェルール41Bと、第3光コネクタ38Dのフェルール41Gとは、光ファイバ42Cによって結線される。第1光コネクタ35Aのフェルール41Bと、第3光コネクタ38Cのフェルール41Lとは、光ファイバ42Dによって結線される。第3光コネクタ38C及び38Dは、それぞれ、第2回路基板23Bに取り付けられた第4光コネクタ25C及び25Dと嵌合する。 The ferrule 41B of the first optical connector 35A and the ferrule 41G of the third optical connector 38D are connected by an optical fiber 42C. The ferrule 41B of the first optical connector 35A and the ferrule 41L of the third optical connector 38C are connected by an optical fiber 42D. The third optical connectors 38C and 38D are fitted with the fourth optical connectors 25C and 25D attached to the second circuit board 23B, respectively.
 第1回路基板22Bの第2光コネクタ24Bは、副プレーン33の一面33aの第1光コネクタ35Bに嵌合する。 The second optical connector 24B of the first circuit board 22B is fitted to the first optical connector 35B on the one surface 33a of the sub-plane 33.
 第1光コネクタ35Bのフェルール41Cと、第3光コネクタ38Aのフェルール41Kとは、光ファイバ42Eによって結線される。第1光コネクタ35Bのフェルール41Cと、第3光コネクタ38Bのフェルール41Eとは、光ファイバ42Fによって結線される。 The ferrule 41C of the first optical connector 35B and the ferrule 41K of the third optical connector 38A are connected by an optical fiber 42E. The ferrule 41C of the first optical connector 35B and the ferrule 41E of the third optical connector 38B are connected by an optical fiber 42F.
 第1光コネクタ35Bのフェルール41Dと、第3光コネクタ38Dのフェルール41Hとは、光ファイバ42Gによって結線される。第1光コネクタ35Bのフェルール41Dと、第3光コネクタ38Cのフェルール41Mとは、光ファイバ42Hによって結線される。 The ferrule 41D of the first optical connector 35B and the ferrule 41H of the third optical connector 38D are connected by an optical fiber 42G. The ferrule 41D of the first optical connector 35B and the ferrule 41M of the third optical connector 38C are connected by an optical fiber 42H.
 このような光プレーン31に形成された光ファイバ42によって、第1回路基板22Aの第2光コネクタ24Aの光ファイバは、第2回路基板23Aに設けられた2つの第4光コネクタ25A,25Bに振り分けられる。また、第1回路基板22Bの第2光コネクタ24Bの光ファイバは、第2回路基板23Bに設けられた2つの第4光コネクタ25C,25Dに振り分けられる。 With the optical fiber 42 formed on the optical plane 31, the optical fiber of the second optical connector 24A of the first circuit board 22A is connected to the two fourth optical connectors 25A and 25B provided on the second circuit board 23A. Sorted. The optical fiber of the second optical connector 24B of the first circuit board 22B is distributed to two fourth optical connectors 25C and 25D provided on the second circuit board 23B.
 図3において、それぞれの光ファイバ42は、光配線装置10の上部に位置する第1回路基板22のフェルール41A,41Cと、光配線装置10の上部に位置する第2回路基板23のフェルール41E,41F,41J,41Kと、を結線する。また、それぞれの光ファイバ42は、光配線装置10の下部に位置する第1回路基板22のフェルール41B,41Dと、光配線装置10の下部に位置する第2回路基板23のフェルール41G,41H,41L,41Mと、を結線する。このように、光ファイバ42を、光配線装置10の上部に位置するフェルール41同士を結線する光ファイバと、下部に位置するフェルール41同士を結線する光ファイバと、に分けて配置することにより、光プレーン31における光ファイバ42が収容される収容空間内において、光ファイバ42を整然と配線することができる。すなわち、収容空間内において、光ファイバ42の絡み合いを少なくすることができる。 In FIG. 3, each optical fiber 42 includes ferrules 41 </ b> A and 41 </ b> C of the first circuit board 22 positioned above the optical wiring device 10, and ferrules 41 </ b> E and 2 </ b> E of the second circuit board 23 positioned above the optical wiring device 10. 41F, 41J, and 41K are connected. Each optical fiber 42 includes ferrules 41B and 41D of the first circuit board 22 located under the optical wiring device 10 and ferrules 41G, 41H, and 2nd of the second circuit board 23 located under the optical wiring device 10. 41L and 41M are connected. In this way, by arranging the optical fiber 42 separately for the optical fiber that connects the ferrules 41 located at the upper part of the optical wiring device 10 and the optical fiber that connects the ferrules 41 located at the lower part, In the accommodation space in which the optical fiber 42 is accommodated in the optical plane 31, the optical fiber 42 can be arranged in an orderly manner. That is, the entanglement of the optical fiber 42 can be reduced in the accommodation space.
 図4は、光プレーンの構成例を示す正面図である。図5は、光プレーンの構成例を示す側面図(断面図)である。図5は、図4におけるA-A断面図である。 FIG. 4 is a front view showing a configuration example of an optical plane. FIG. 5 is a side view (sectional view) showing a configuration example of an optical plane. FIG. 5 is a cross-sectional view taken along the line AA in FIG.
 副プレーン33の一面33aに設けられた第1光コネクタ35から引き出された光ファイバ42は、主プレーン32と副プレーン33との間に形成される収容空間(隙間)内で許容曲げ半径以上で湾曲されてよい。主プレーン32の他面32bに設けられた第3光コネクタ38から引き出された光ファイバ42も同様に、収容空間(隙間)内で許容曲げ半径以上で湾曲されてよい。そして、これら第1光コネクタ35又は第3光コネクタ38から引き出された光ファイバ42は、主プレーン32と副プレーン33と周壁49とによって形成される収容空間内に収容されてよい。 The optical fiber 42 drawn from the first optical connector 35 provided on the one surface 33a of the sub-plane 33 has an allowable bending radius or more within the accommodation space (gap) formed between the main plane 32 and the sub-plane 33. It may be curved. Similarly, the optical fiber 42 drawn out from the third optical connector 38 provided on the other surface 32b of the main plane 32 may be bent at an allowable bending radius or more in the accommodation space (gap). The optical fiber 42 drawn out from the first optical connector 35 or the third optical connector 38 may be accommodated in an accommodation space formed by the main plane 32, the sub plane 33, and the peripheral wall 49.
 図6は、光プレーン31の構成例を示す斜視図である。 FIG. 6 is a perspective view showing a configuration example of the optical plane 31.
 図3の光プレーン31上の光ファイバ42A~42Gのうち、主プレーン32と副プレーン33との間に形成される収容空間(隙間)の外部に延びる光ファイバ42A,42B,42D,42E,42F、42Hは、図5に示すように、側壁70及び上壁50によって形成された導管で覆われてよい。光ファイバ42は、保護部材45によって被覆されてよい。保護部材45は、光ファイバ42A,42D,42E,42Hをそれぞれ構成する複数本の光ファイバ素線46を束ねる略円筒形のチューブ材料であってよい。保護部材45の端部には、光ファイバ素線46を結束する終端部材48が取り付けられてよい。 Of the optical fibers 42A to 42G on the optical plane 31 of FIG. 3, the optical fibers 42A, 42B, 42D, 42E, and 42F extending outside the accommodation space (gap) formed between the main plane 32 and the subplane 33. , 42H may be covered with a conduit formed by sidewall 70 and top wall 50 as shown in FIG. The optical fiber 42 may be covered with a protective member 45. The protective member 45 may be a substantially cylindrical tube material that bundles a plurality of optical fiber strands 46 that respectively constitute the optical fibers 42A, 42D, 42E, and 42H. A terminal member 48 for binding the optical fiber 46 may be attached to the end of the protection member 45.
 側壁70及び上壁50の一部に、保護部材45で被覆された光ファイバ42A,42B,42D,42E,42F、42Hを引き出すための開口部47が形成されてよい。開口部47は、保護部材45の直径と同等以上であってよい。導管が第3光コネクタ38の位置まで配置されている場合、保護部材45は使用されなくてもよい。 An opening 47 for drawing out the optical fibers 42A, 42B, 42D, 42E, 42F, and 42H covered with the protective member 45 may be formed in a part of the side wall 70 and the upper wall 50. The opening 47 may be equal to or larger than the diameter of the protection member 45. When the conduit is disposed up to the position of the third optical connector 38, the protective member 45 may not be used.
 収容空間内だけで配線が完結している光ファイバ42C,42Gは、保護部材45で被覆されず、光ファイバ素線46が露出した状態で配線されてよい。また、光ファイバ42A,42B,42D,42E,42F、42Hの収容空間内の部分は、保護部材45で被覆されず、光ファイバ素線46が露出した状態で配線されてもよいし、保護部材45で被覆されて配線されてもよい。 The optical fibers 42 </ b> C and 42 </ b> G whose wiring is completed only in the housing space may be wired with the optical fiber 46 being exposed without being covered with the protective member 45. Further, the portions in the accommodation spaces of the optical fibers 42A, 42B, 42D, 42E, 42F, and 42H may not be covered with the protective member 45 and may be wired in a state where the optical fiber 46 is exposed. It may be covered with 45 and wired.
 本実施形態に係る光配線装置10は、例えば、以下の作用効果を奏する。 The optical wiring device 10 according to the present embodiment has the following effects, for example.
 (1)本実施形態に係る光プレーン31は、主プレーン32と、この主プレーン32の一面32aに対して所定の間隔を開けて平行に配した副プレーン33と、から構成されてよい。これにより、主プレーン32上に配線される光ファイバ42の少なくとも一部は、主プレーン32と副プレーン33との間に形成される収容空間(隙間)内に収容されるので、光ファイバ42が主プレーン32の一面32aから浮き上がって配線されることを防ぐことができる。つまり、光プレーン31の占めるスペースが小さくなるので、光配線装置10を小型化することができる。また、第1回路基板22をフレーム11から着脱する際に浮き上がっている光ファイバ42を引っ掛けてしまうようなミスを防止することもできる。 (1) The optical plane 31 according to the present embodiment may be composed of a main plane 32 and a sub-plane 33 arranged in parallel with a predetermined interval with respect to one surface 32a of the main plane 32. Accordingly, at least a part of the optical fiber 42 wired on the main plane 32 is accommodated in an accommodation space (gap) formed between the main plane 32 and the sub-plane 33, so that the optical fiber 42 is It is possible to prevent the wiring from rising from the one surface 32a of the main plane 32. That is, since the space occupied by the optical plane 31 is reduced, the optical wiring device 10 can be reduced in size. Further, it is possible to prevent a mistake that the optical fiber 42 that is floating when the first circuit board 22 is attached to and detached from the frame 11 is caught.
 (2)副プレーン33の外部に、側壁70及び上壁50(必要に応じて保護部材45)等を用いて導管を形成し、その導管内に光ファイバを配線することにより、光プレーン31の占めるスペースを小さくすることができる。 (2) A conduit is formed outside the sub-plane 33 using the side wall 70 and the upper wall 50 (protective member 45 if necessary), and an optical fiber is wired in the conduit. The space occupied can be reduced.
 (3)多数の光ファイバ42が、主プレーン32と副プレーン33との間に形成される収容空間(隙間)内に収容されるので、光ファイバが乱雑に配線されている部分が隠蔽され、整然とした外観が保たれ、美観の向上を図ることができる。 (3) Since a large number of optical fibers 42 are accommodated in an accommodating space (gap) formed between the main plane 32 and the sub-plane 33, a portion where the optical fibers are randomly arranged is concealed, An orderly appearance is maintained, and the appearance can be improved.
 (4)主プレーン32上に配線される光ファイバ42の導管及び収容空間の外側に露出する部分を保護部材45で被覆することにより、光ファイバ42の配線上の美観の向上を図ることができる。また、光ファイバ42が主プレーン32の一面32aから浮き上がって配線されることを防ぐことができる。 (4) By covering the conduit of the optical fiber 42 wired on the main plane 32 and the portion exposed to the outside of the accommodation space with the protective member 45, the aesthetic appearance on the wiring of the optical fiber 42 can be improved. . Further, it is possible to prevent the optical fiber 42 from being floated and wired from the one surface 32a of the main plane 32.
 以上、一実施形態を説明したが、これらは本発明の説明のための例示であって、本発明の範囲をこれらの実施例にのみ限定する趣旨ではない。本発明は、他の種々の形態でも実行することが可能である。 As mentioned above, although one embodiment was described, these are illustrations for explaining the present invention, and the scope of the present invention is not intended to be limited only to these examples. The present invention can be implemented in various other forms.
 光接続装置10は、第2回路基板23を備えない構成であってもよい。主プレーン32及び副プレーン33を有する光プレーン31(バックプレーン)を、フレーム11内の一方の端の方に片寄せて配置し、この光プレーン31の一方の側だけに複数の回路基板を接続(いわゆるバックプレーン接続)する構成であってもよい。 The optical connection device 10 may be configured not to include the second circuit board 23. An optical plane 31 (back plane) having a main plane 32 and a sub-plane 33 is arranged so as to be shifted toward one end in the frame 11, and a plurality of circuit boards are connected to only one side of the optical plane 31. It may be configured (so-called backplane connection).
 フレーム11内に収容可能な第1回路基板22及び第2回路基板23の数は幾つであってもよい。フレーム11内に収容可能な第1回路基板22と第2回路基板23とは、異なる数であってもよい。 The number of the first circuit boards 22 and the second circuit boards 23 that can be accommodated in the frame 11 may be any number. The number of the first circuit boards 22 and the second circuit boards 23 that can be accommodated in the frame 11 may be different.
 副プレーン33は、主プレーン32の大きさを超えない限り、どのような大きさ又は形状であってもよい。例えば、主プレーン32の一面の半分以上を覆うように副プレーン33を取り付けてもよい。例えば、主プレーン32の一面全体を覆うように副プレーン33を取り付けてもよい。この場合において、光ファイバを覆う保護部材を全て省略してもよい。 The sub-plane 33 may have any size or shape as long as it does not exceed the size of the main plane 32. For example, the sub plane 33 may be attached so as to cover more than half of one surface of the main plane 32. For example, the sub plane 33 may be attached so as to cover the entire surface of the main plane 32. In this case, all the protective members that cover the optical fiber may be omitted.
 第1回路基板22又は第2回路基板23は、それぞれ、筐体29又は28に収容されず、直接フレーム11に収容されてよい。この場合、それぞれの回路基板の周縁(エッジ)と嵌合する溝などが、フレーム11の内壁面に形成されてよい。 The first circuit board 22 or the second circuit board 23 may be directly housed in the frame 11 without being housed in the housing 29 or 28, respectively. In this case, a groove or the like that fits with the peripheral edge (edge) of each circuit board may be formed on the inner wall surface of the frame 11.
 10…光接続装置、11…フレーム、22…第1回路基板、23…第2回路基板、24…第2光コネクタ、35…第1光コネクタ、31…光プレーン、32…主プレーン、33…副プレーン、42…光ファイバ、45…保護部材
 

 
DESCRIPTION OF SYMBOLS 10 ... Optical connection apparatus, 11 ... Frame, 22 ... 1st circuit board, 23 ... 2nd circuit board, 24 ... 2nd optical connector, 35 ... 1st optical connector, 31 ... Optical plane, 32 ... Main plane, 33 ... Sub-plane, 42 ... optical fiber, 45 ... protective member

Claims (12)

  1.  光プレーンを備える光配線装置であって、
     前記光プレーンは、主プレーンと副プレーンと第1光コネクタと光ファイバとを有し、
     前記副プレーンの少なくとも一部が平面視において前記主プレーンと重なり、
     前記副プレーンに対向する前記主プレーンの一面と、前記主プレーンの一面に対向する前記副プレーンの一面との間に隙間を有し、
     前記副プレーンの所定位置に設けられた第1開口部に前記第1光コネクタが配置され、
     前記第1光コネクタに接合されている光ファイバが、前記副プレーンに設けられた前記第1開口部を通じて、前記主プレーンの一面と前記副プレーンの一面との間の隙間によって形成される収容空間内に引き込まれる
    光配線装置。
    An optical wiring device comprising an optical plane,
    The optical plane has a main plane, a sub-plane, a first optical connector, and an optical fiber,
    At least a portion of the sub-plane overlaps the main plane in plan view;
    There is a gap between one surface of the main plane facing the sub-plane and one surface of the sub-plane facing the one surface of the main plane,
    The first optical connector is disposed in a first opening provided at a predetermined position of the sub-plane,
    An accommodation space in which an optical fiber joined to the first optical connector is formed by a gap between one surface of the main plane and one surface of the sub-plane through the first opening provided in the sub-plane. An optical wiring device that is pulled in.
  2.  前記主プレーンの一面と前記副プレーンの一面との間の隙間の最小値は、前記収容空間内に引き込まれる光ファイバの許容曲げ半径に基づく
    請求項1に記載の光配線装置。
    The optical wiring device according to claim 1, wherein a minimum value of a gap between one surface of the main plane and one surface of the sub-plane is based on an allowable bending radius of an optical fiber drawn into the accommodation space.
  3.  前記光プレーンは、前記主プレーンの一面側の前記副プレーンと重ならない部分に第1電気コネクタを更に有し、
     前記光プレーンに装着可能であって、前記光プレーンに装着したときに、前記光プレーンの前記第1光コネクタ及び前記第1電気コネクタにそれぞれ嵌合する前記第2光コネクタ及び前記第2電気コネクタを有する前記第1回路基板、を更に備える
    請求項2に記載の光配線装置。
    The optical plane further includes a first electrical connector in a portion that does not overlap the subplane on one side of the main plane,
    The second optical connector and the second electrical connector that are attachable to the optical plane and are respectively fitted to the first optical connector and the first electrical connector of the optical plane when attached to the optical plane. The optical wiring device according to claim 2, further comprising: the first circuit board including:
  4.  前記光プレーンは、
      第3光コネクタと、
      前記主プレーンの一面と前記副プレーンの一面との間に位置し、前記副プレーンを前記主プレーンに固定すると共に前記収容空間を形成する周壁と
     を更に有し、
     前記主プレーンの一面と反対の他面に、前記第3光コネクタが配置され、
     前記周壁には、前記収容空間内に引き込まれた光ファイバを前記収容空間外に引き出すための第2開口部が設けられ、
     前記周壁の前記第2開口部から引き出された前記光ファイバは、前記主プレーンの一面に固定されている所定の導管内を通り、前記主プレーンに設けられた貫通穴を通じて、前記第3光コネクタに接合される
    請求項3に記載の光配線装置。
    The optical plane is
    A third optical connector;
    A peripheral wall located between one surface of the main plane and one surface of the sub-plane, and fixing the sub-plane to the main plane and forming the accommodating space;
    The third optical connector is disposed on the other surface opposite to the one surface of the main plane,
    The peripheral wall is provided with a second opening for drawing the optical fiber drawn into the housing space out of the housing space,
    The optical fiber drawn out from the second opening of the peripheral wall passes through a predetermined conduit fixed to one surface of the main plane, and passes through a through hole provided in the main plane, thereby the third optical connector. The optical wiring device according to claim 3, wherein the optical wiring device is joined to the optical wiring device.
  5.  前記主プレーンの一面から前記導管の上壁までの距離が、前記主プレーンの一面から前記副プレーンの一面までの距離以下である
    請求項4に記載の光配線装置。
    The optical wiring device according to claim 4, wherein a distance from one surface of the main plane to an upper wall of the conduit is equal to or less than a distance from one surface of the main plane to one surface of the sub-plane.
  6.  前記光ファイバにおいて、前記収容空間及び前記導管の外部の少なくとも一部が保護部材で被覆され、前記収容空間又は前記導管の内部の少なくとも一部が前記保護部材で被覆されない
    請求項4に記載の光配線装置。
    5. The light according to claim 4, wherein in the optical fiber, at least a part of the housing space and the outside of the conduit is covered with a protective member, and at least a part of the housing space or the inside of the conduit is not covered with the protective member. Wiring device.
  7.  前記光プレーンに装着可能であって、前記光プレーンに装着したときに、前記光プレーンの前記第3光コネクタと嵌合する第4光コネクタを有する第2回路基板、を更に備える
    請求項4に記載の光配線装置。
    5. The second circuit board further comprising a fourth optical connector that can be mounted on the optical plane and has a fourth optical connector that fits with the third optical connector of the optical plane when mounted on the optical plane. The optical wiring apparatus as described.
  8.  前記光プレーンは、前記主プレーンの他面に第4電気コネクタを更に有し、
     前記第2回路基板は、前記光プレーンに装着したときに、前記光プレーンの前記第4電気コネクタに嵌合する第3電気コネクタを更に有する
    請求項7に記載の光配線装置。
    The optical plane further includes a fourth electrical connector on the other surface of the main plane,
    The optical wiring device according to claim 7, wherein the second circuit board further includes a third electrical connector that fits into the fourth electrical connector of the optical plane when mounted on the optical plane.
  9.  前記主プレーンの他面には、第5光コネクタが更に配置され、
     前記第1光コネクタに接合されている光ファイバは複数であり、当該複数の光ファイバの内の少なくとも1つは、前記主プレーンの前記収容空間に通ずる所定位置に設けられた第3開口部を通じて、前記第5光コネクタに接合され、
     前記第2回路基板は、前記光プレーンに装着したときに、前記光プレーンの前記第5光コネクタと嵌合する第6光コネクタを更に有する
    請求項8記載の光配線装置。
    A fifth optical connector is further disposed on the other surface of the main plane,
    There are a plurality of optical fibers joined to the first optical connector, and at least one of the plurality of optical fibers passes through a third opening provided at a predetermined position leading to the accommodation space of the main plane. , Joined to the fifth optical connector,
    The optical wiring device according to claim 8, wherein the second circuit board further includes a sixth optical connector that fits with the fifth optical connector of the optical plane when mounted on the optical plane.
  10.  前記光プレーン及び前記第1回路基板は、前記光プレーンに対して前記第1回路基板を垂直に装着するためのガイド機構をそれぞれ有し、
     前記副プレーンの前記第1開口部と前記第1光コネクタとの間には隙間が設けられ、前記第1光コネクタは、前記第1開口部との間の隙間の範囲内で移動可能である
    請求項3に記載の光配線装置。
    The optical plane and the first circuit board each have a guide mechanism for mounting the first circuit board perpendicular to the optical plane,
    A gap is provided between the first opening of the sub-plane and the first optical connector, and the first optical connector is movable within the range of the gap between the first opening. The optical wiring device according to claim 3.
  11.  前記光プレーンは、前記主プレーンの一面の前記副プレーンと重ならない部分に第1電気コネクタを更に有し、
     前記光プレーンに装着可能であって、前記光プレーンに装着したときに、前記光プレーンの前記第1光コネクタ及び前記第1電気コネクタにそれぞれ嵌合する前記第2光コネクタ及び前記第2電気コネクタを有する前記第1回路基板、を更に備える
    請求項1に記載の光配線装置。
    The optical plane further includes a first electrical connector on a portion of the main plane that does not overlap the subplane.
    The second optical connector and the second electrical connector that are attachable to the optical plane and are respectively fitted to the first optical connector and the first electrical connector of the optical plane when attached to the optical plane. The optical wiring device according to claim 1, further comprising: the first circuit board including:
  12.  前記光プレーンは、
      第3光コネクタと、
      前記主プレーンの一面と前記副プレーンの一面との間に位置し、前記副プレーンを前記主プレーンに固定すると共に前記収容空間を形成する周壁と
     を更に有し、
     前記主プレーンの一面と反対の他面に、前記第3光コネクタが配置され、
     前記周壁には、前記収容空間内に引き込まれた光ファイバを前記収容空間の外部に引き出すための第2開口部が設けられ、
     前記周壁の前記第2開口部から引き出された前記光ファイバは、前記主プレーンの一面に固定されている所定の導管内を通り、前記主プレーンの所定位置に設けられた貫通穴を通じて、前記第3光コネクタに接合される
    請求項1に記載の光配線装置。

     
    The optical plane is
    A third optical connector;
    A peripheral wall located between one surface of the main plane and one surface of the sub-plane, and fixing the sub-plane to the main plane and forming the accommodating space;
    The third optical connector is disposed on the other surface opposite to the one surface of the main plane,
    The peripheral wall is provided with a second opening for drawing the optical fiber drawn into the housing space to the outside of the housing space,
    The optical fiber drawn from the second opening of the peripheral wall passes through a predetermined conduit fixed to one surface of the main plane, and passes through a through hole provided at a predetermined position of the main plane. The optical wiring device according to claim 1, wherein the optical wiring device is joined to a three-optical connector.

PCT/JP2015/052555 2015-01-29 2015-01-29 Optical interconnection device WO2016121059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052555 WO2016121059A1 (en) 2015-01-29 2015-01-29 Optical interconnection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052555 WO2016121059A1 (en) 2015-01-29 2015-01-29 Optical interconnection device

Publications (1)

Publication Number Publication Date
WO2016121059A1 true WO2016121059A1 (en) 2016-08-04

Family

ID=56542711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052555 WO2016121059A1 (en) 2015-01-29 2015-01-29 Optical interconnection device

Country Status (1)

Country Link
WO (1) WO2016121059A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228368A (en) * 1999-12-07 2001-08-24 Molex Inc Aligning device for fitting electrical connector
JP2003121697A (en) * 2001-10-17 2003-04-23 Ntt Advanced Technology Corp Mounting structure of opto-electric composite device
JP2014112162A (en) * 2012-12-05 2014-06-19 Fujitsu Component Ltd Optical connector, optical connector system, and optical backplane apparatus
WO2014157363A1 (en) * 2013-03-27 2014-10-02 京セラ株式会社 Optical transmission module, photoelectric composite transmission module, and optical connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228368A (en) * 1999-12-07 2001-08-24 Molex Inc Aligning device for fitting electrical connector
JP2003121697A (en) * 2001-10-17 2003-04-23 Ntt Advanced Technology Corp Mounting structure of opto-electric composite device
JP2014112162A (en) * 2012-12-05 2014-06-19 Fujitsu Component Ltd Optical connector, optical connector system, and optical backplane apparatus
WO2014157363A1 (en) * 2013-03-27 2014-10-02 京セラ株式会社 Optical transmission module, photoelectric composite transmission module, and optical connector

Similar Documents

Publication Publication Date Title
CN102969601B (en) Cover and connector cover shell for jack assemblies
JP5214149B2 (en) outlet
JP2017074257A (en) Endoscope
JP2009198603A (en) Optical terminating device
JP4523771B2 (en) Twisted pair cable
JP5439682B2 (en) Optical active connector
JP2011215427A (en) Optical transceiver, substrate for optical communication, and optical communication equipment
JP2008224998A (en) Closure for optical cable connection and optical wiring system
WO2016121059A1 (en) Optical interconnection device
US7360955B2 (en) Board-mounted optical connector
JP2017187678A (en) Optical wiring member
JP2019091832A (en) Branching device and intercom system
JP4614864B2 (en) Communication equipment
JP5515377B2 (en) Composite harness and manufacturing method thereof
JP2008300100A (en) Shielded connector
JP5108730B2 (en) Splitter module
CN1996798A (en) Data link module
JP2008176108A (en) Outlet
JP4962954B2 (en) Optical receiver
JP5653660B2 (en) Optical line housing structure
JP4597872B2 (en) Optical connection box
JP5653661B2 (en) Optical line housing structure
CN219394333U (en) Cable wiring device
US20230204880A1 (en) Connector member, optical transmission system, and assembly method for same
JP2011100004A (en) Two-core optical plug socket

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP