WO2016120915A1 - High-strength plated steel sheet and production method for same - Google Patents

High-strength plated steel sheet and production method for same Download PDF

Info

Publication number
WO2016120915A1
WO2016120915A1 PCT/JP2015/004174 JP2015004174W WO2016120915A1 WO 2016120915 A1 WO2016120915 A1 WO 2016120915A1 JP 2015004174 W JP2015004174 W JP 2015004174W WO 2016120915 A1 WO2016120915 A1 WO 2016120915A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
phase
plated steel
martensite
Prior art date
Application number
PCT/JP2015/004174
Other languages
French (fr)
Japanese (ja)
Inventor
典晃 ▲高▼坂
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580074947.XA priority Critical patent/CN107208235B/en
Priority to JP2015561779A priority patent/JP5979325B1/en
Priority to KR1020177020494A priority patent/KR101968434B1/en
Priority to MX2017009745A priority patent/MX2017009745A/en
Publication of WO2016120915A1 publication Critical patent/WO2016120915A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a high-strength plated steel sheet and a method for producing the same.
  • the high-strength plated steel sheet of the present invention has a high tensile strength (TS): 780 MPa or more and excellent formability. For this reason, the high-strength plated steel sheet of the present invention is suitable as a material for an automobile skeleton member (structural parts for automotive).
  • Patent Document 1 in a hot-dip galvanized steel sheet provided with a hot-dip galvanized layer on the surface of the steel sheet, by mass%, C: more than 0.02% and 0.20% or less, Si: 0.01 to 2.0 %, Mn: 0.1 to 3.0%, P: 0.003 to 0.10%, S: 0.020% or less, Al: 0.001 to 1.0%, N: 0.0004 to 0 0.15%, Ti: 0.03 to 0.2%, or even Nb: 0.1% or less, etc., and the balance is Fe and impurities, and the ferrite has an area ratio of 30 to 95%.
  • the remaining second phase is composed of one or more of martensite, bainite, pearlite, cementite, and retained austenite, and when martensite is contained, the martensite area ratio is 0 to 50%.
  • Steel structure m
  • the steel sheet contains Ti carbonitrides with a grain size of 2 to 30 nm with an average interparticle distance of 30 to 300 nm, and crystallized TiN with a grain size of 3 ⁇ m or more has an average interparticle distance of 50 to 500 ⁇ m. It is said that a high-yield ratio high-strength steel sheet excellent in bending workability and notch fatigue resistance with a tensile strength of 620 MPa or more is obtained.
  • Patent Document 2 by mass%, C: 0.05 to 0.20%, Si: 0.01 to less than 0.6%, Mn: 1.6 to 3.5%, P: 0.05% or less , S: 0.01% or less, sol.
  • a steel sheet containing Al: 1.5% or less, N: 0.01% or less, the balance being iron and inevitable impurities, having a polygonal ferrite structure and a low temperature transformation structure, and a low temperature transformation structure Includes at least bainite, and may further contain martensite.
  • a plate surface having a depth of 0.1 mm from the surface of the steel plate is changed in the plate width direction, and a total of 20 visual fields are observed with a microscope, and 50 ⁇ m in each visual field.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength plated steel sheet having a tensile strength of 780 MPa or more and good workability, and a method for producing the same.
  • the present inventors diligently studied the requirements for a steel sheet having a tensile strength of 780 MPa and good workability.
  • a high-strength steel sheet we focused on reducing the soft ferrite phase as much as possible and utilizing a low-temperature transformation phase such as a bainite phase or a martensite phase.
  • a low-temperature transformation phase such as a bainite phase or a martensite phase.
  • the conventional technology if the ferrite phase rich in formability is reduced, good formability cannot be obtained. Therefore, a means for improving the formability of a steel sheet not containing much ferrite phase was studied.
  • the fine granular martensite is the martensite phase dispersed in the bainite phase, the uniform deformation of the bainite phase is promoted, and as a result, the workability is increased and the formability is improved. .
  • it is effective to finely disperse cementite in the structure before the annealing process and to suppress coarsening of the austenite grain size during annealing. I found out.
  • the austenite grain interfacial area which becomes the nucleation site of ferrite transformation, increases with the reduction of the austenite grain size during annealing, the ferrite phase is easily produced.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • a high-strength plated steel plate having a steel plate and a plating layer formed on the steel plate, wherein the component composition of the steel plate is% by mass, C: 0.06% to 0.18%, Si : Less than 0.50%, Mn: 1.9% to 3.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.006% B: 0.0002% or more and 0.0030% or less, Nb: 0.007% or more and 0.030% or less, and Ti containing so as to satisfy the following formula (1), the balance being Fe and inevitable impurities
  • the steel structure of the steel sheet has a ferrite phase area ratio of 20% or less (including 0%), a bainite phase area ratio of 35% to 90%, and a martensite phase area ratio of 10% to 65%.
  • the component composition further includes, by mass%, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.3% % Or less, Mo: 0.001% or more and 0.3% or less, W: 0.001% or more and 0.2% or less, Hf: 0.001% or more and 0.3% or less.
  • the component composition further contains, in mass%, one or more of REM, Mg, and Ca in a total of 0.0002% to 0.01% [1] or The high strength plated steel sheet according to [2].
  • the plating layer contains, by mass%, Fe: 5.0 to 20.0%, Al: 0.001% to 1.0%, and Pb, Sb, Si, Sn, Mg, Contains one or more selected from Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM in a total of 0 to 3.5%, with the balance being Zn and inevitable impurities
  • the high-strength plated steel sheet according to any one of [1] to [3],
  • a steel material having the component composition according to any one of [1] to [3] is heated at 1000 ° C. or more and 1200 ° C. or less, and after finishing rolling at a finish rolling temperature of 800 ° C. or more, finish rolling temperature To 560 ° C. at an average cooling rate of 30 ° C./s or higher, and a hot rolling step of winding at an Ms point or higher and 560 ° C. or lower, and cold rolling to cold-roll hot-rolled plates after the hot rolling step And the cold-rolled sheet after the cold rolling step is heated under the condition that the average heating rate from 100 ° C. to the highest attained temperature of (Ac 3 points ⁇ 10) ° C. or higher is 3.0 ° C./s or higher.
  • the cold-rolled sheet heated to the ultimate temperature is cooled under the condition that the average cooling rate up to 560 ° C. is 15 ° C./s or more, and the cold-rolled sheet stays at (Ac 3 points ⁇ 10) ° C. or more in the heating and cooling.
  • the cooling time is set to 60 seconds or less, and 440 ° C. or more in the cooling Having an annealing step in which a cold-rolled plate stays at 30 ° C. or less for 20 seconds or more and 180 seconds or less, and a plating step for performing plating after the annealing step to form a plating layer on the annealed plate.
  • a method for producing a high strength plated steel sheet is cooled under the condition that the average cooling rate up to 560 ° C. is 15 ° C./s or more, and the cold-rolled sheet stays at (Ac 3 points ⁇ 10) ° C. or more in the heating and cooling.
  • the cooling time is set to 60 seconds or less, and 440 ° C. or more in
  • the plating layer contains, by mass%, Fe: 5.0 to 20.0%, Al: 0.001% to 1.0%, and Pb, Sb, Si, Sn, Mg, Contains one or more selected from Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM in a total of 0 to 3.5%, with the balance being Zn and inevitable impurities [6]
  • the high-strength plated steel sheet of the present invention has high tensile strength (TS): 780 MPa or more and excellent formability. If the high-strength plated steel sheet of the present invention is applied to automobile parts, further weight reduction of the automobile parts can be realized.
  • TS tensile strength
  • the high-strength plated steel sheet of the present invention has a steel sheet and a plating layer formed on the steel sheet. It demonstrates in order of a steel plate and a plating layer.
  • the component composition of the steel sheet is mass%, C: 0.06% to 0.18%, Si: less than 0.50%, Mn: 1.9% to 3.2%, P: 0.03% S: 0.005% or less, Al: 0.08% or less, N: 0.006% or less, B: 0.0002% or more and 0.0030% or less, Nb: 0.007% or more and 0.030%
  • the component composition contains Ti so as to satisfy the following and the above expression (1).
  • % representing the content of a component means “mass%”.
  • C 0.06% or more and 0.18% or less C has a hardenability which increases the hardness of martensite and suppresses ferrite transformation.
  • the C content is set to 0.06% or more and 0.18% or less. Desirably, it is 0.07% or more and 0.18% or less.
  • Si Less than 0.50% Si is an element contributing to high strength by solid solution strengthening. On the other hand, since Si raises the transformation point (Ac 3 point) from the ferrite phase to the austenite phase, it makes it difficult to remove the ferrite phase during annealing. Furthermore, since Si reduces the wettability between the plating layer and the steel sheet surface, excessive inclusion of Si causes defects such as non-plating. In this invention, Si content is accept
  • Mn not less than 1.9% and not more than 3.2% Mn contributes to high strength by solid solution strengthening, and lowers the Ac 3 transformation point to facilitate removal of the ferrite phase during annealing. It also has the effect of improving the hardenability of the steel sheet.
  • the Mn content needs to be 1.9% or more.
  • the bainite transformation does not proceed, and as a result, the area ratio of the martensite phase exceeds 65%.
  • the upper limit of the Mn content is set to 3.2%.
  • a preferable range of the Mn content is 2.0% or more and 3.0% or less.
  • P 0.03% or less
  • P is an element that has an adverse effect on formability because it segregates at grain boundaries and becomes the starting point of cracking during molding. Therefore, it is preferable to reduce the P content as much as possible.
  • the P content is set to 0.03% or less. Preferably it is 0.02% or less. Although it is desirable to reduce it as much as possible, 0.002% may be inevitably mixed in manufacturing.
  • S 0.005% or less S exists in the state which became inclusions, such as MnS, in steel. This inclusion becomes wedge-shaped by hot rolling and cold rolling. In such a form, it tends to be a starting point for void generation, and the moldability is also adversely affected. Therefore, in the present invention, it is preferable to reduce the S content as much as possible, and set it to 0.005% or less. Preferably it is 0.003% or less. It is desirable to reduce the S content as much as possible, but 0.0005% may be inevitably mixed in production.
  • Al 0.08% or less
  • Al 0.02% or more
  • the Al content is 0.08% or less.
  • it is 0.07% or less.
  • N 0.006% or less
  • N combines with Ti and precipitates as coarse Ti-based nitride. Since this coarse Ti-based nitride serves as a nucleation site for ferrite transformation, the N content needs to be reduced as much as possible, and the upper limit is made 0.006%.
  • a preferable N content is 0.005% or less. Although it is desirable to reduce the N content as much as possible, 0.0005% may be inevitably mixed in production.
  • B 0.0002% or more and 0.0030% or less B has an effect of segregating at the grain boundary of the austenite before transformation to significantly delay the nucleation of the ferrite phase and to suppress the formation of the ferrite phase.
  • the B content needs to be 0.0002% or more.
  • the B content is set to 0.0002% or more and 0.0030% or less. Desirably, it is 0.0005% or more and 0.0020% or less.
  • Nb 0.007% or more and 0.030% or less
  • Nb is an important element for suppressing coarsening of austenite grains during annealing.
  • Nb content When the Nb content is excessive, coarse carbonitrides containing Nb (generic names for carbides, nitrides, and carbonitrides; hereinafter the same applies to the present invention) are precipitated, and the area ratio of the ferrite phase increases.
  • the Nb content needs to be 0.007% or more.
  • the Nb content exceeds 0.030%, coarse Nb-based carbonitrides precipitate under the production conditions specified in the present invention. Therefore, the upper limit of Nb content is 0.030%.
  • a preferable Nb content is 0.012% or more and 0.027% or less.
  • the high-strength plated steel sheet of the present invention is, in mass%, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.00%. 1% or more of 3% or less, Mo: 0.001% or more and 0.3% or less, W: 0.001% or more and 0.2% or less, Hf: 0.001% or more and 0.3% or less You may contain.
  • Cr, Ni, V, Mo, W and Hf have the effect of delaying the start of ferrite transformation. If there is an effect of these elements in addition to the effect of hardenability by B, it becomes easy to stably obtain a desired steel structure. On the other hand, if the Cr content exceeds 0.9%, the plating property is adversely affected. Further, when Ni is 0.5%, V is 0.3%, Mo is 0.3%, W is 0.2%, and Hf exceeds 0.3%, the effect of hardenability is saturated. From the above, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.3%, Mo: 0.001% to 0 .3% or less, W: 0.001% to 0.2%, and Hf: 0.001% to 0.3%.
  • the high-strength plated steel sheet of the present invention may further contain 0.0002% or more and 0.01% or less of REM, Mg, or Ca in total by mass%.
  • REM lanthanoid element having atomic number 57 to 71
  • Mg and Ca spheroidize cementite precipitated in bainite.
  • the stress concentration around the cementite is reduced, and the formability is improved.
  • the total content of REM, Mg, and Ca exceeds 0.01%, the effect of changing the shape of cementite is saturated and the ductility is adversely affected.
  • one or more of REM, Mg, and Ca is 0.0005% or more and 0.005% or less in total.
  • Components other than the above components are Fe and inevitable impurities.
  • the steel structure of the high-strength plated steel sheet of the present invention has a ferrite phase area ratio of 20% or less (including 0%), a bainite phase area ratio of 35% or more and 90% or less, and a martensite phase area ratio of 10%.
  • the number density of inclusions containing 65% or less and having an equivalent circle diameter exceeding 5.0 ⁇ m contains 400 pieces / mm 2 or less.
  • the average particle diameter of the granular martensite which comprises the said martensite phase is 3.0 micrometers or less, and the maximum length between martensites is 5.0 micrometers or less.
  • the ferrite phase is a soft structure, and when the content of the ferrite phase exceeds 20%, the tensile strength is less than 780 MPa.
  • the ferrite phase has a low element solubility, if the ferrite phase content is excessive, the arrangement of cementite finely dispersed in the structure before annealing is changed, and a fine martensite phase cannot be obtained. Therefore, it is desirable to reduce the content of the ferrite phase as much as possible.
  • the content of the ferrite phase needs to be suppressed to 20% or less (including 0%). Desirably, it is 15% or less.
  • Bainite phase The bainite phase is higher in hardness than the ferrite phase and is effective for finely forming the martensite phase.
  • the content of the bainite phase needs to be 35% or more.
  • the maximum length (maximum distance) between the martensites exceeds 5.0 ⁇ m, and good moldability cannot be obtained.
  • the preferred bainite phase content is 40% or more and 80% or less in terms of area ratio.
  • Martensite phase The content of the martensite phase and the form of the martensite phase have a great influence on the strength and formability.
  • the content of the martensite phase is less than 10% in terms of area ratio, the tensile strength is less than 780 MPa.
  • the content of the martensite phase exceeds 65% by area ratio, ductility and formability are lost.
  • the preferred martensite phase content is 20% or more and 55% or less in terms of area ratio.
  • the martensite phase is composed of granular martensite.
  • the average particle size of martensite exceeds 3.0 ⁇ m, deformation in the vicinity of coarse martensite is constrained, and the steel sheet deforms unevenly during forming. In this case, cracks are likely to occur in the preferentially deformed portion, and good moldability cannot be obtained.
  • the average particle size of martensite is preferably 2.0 ⁇ m or less.
  • the lower limit of the average particle size of martensite is not particularly limited, but the average particle size is preferably 0.5 ⁇ m or more from the viewpoint of stably obtaining a martensite fraction of 10% or more.
  • the maximum length of the interval between martensites is 5.0 ⁇ m or less. If the maximum length of the interval between martensites is within this range, many bainite phases are in contact with the martensite phase. The bainite phase in contact with the martensite phase is liable to cause dislocations and work hardening. As a result, the work hardening index (work hardening exponent) increases and deforms uniformly, so that good moldability is obtained.
  • the maximum distance between martensites (maximum length) is preferably 4.0 ⁇ m or less.
  • the lower limit of the maximum distance between martensites is not particularly limited, but when the distance between martensites is too close, dislocations are introduced near the martensite due to transformation strain caused by the occurrence of martensite transformation. By doing so, the occurrence of new dislocations between martensites is hindered, and work hardening becomes difficult. Therefore, the maximum interval length is preferably 1.0 ⁇ m or more.
  • the number density of inclusions having an equivalent circle diameter and a particle size exceeding 5.0 ⁇ m is 400 pieces / mm 2 or less. Inclusions having a particle size exceeding 5.0 ⁇ m are likely to become nucleation sites of the ferrite phase, and the content of the ferrite phase in the area ratio is not in the desired range.
  • the inclusions exceeding 5.0 ⁇ m include oxides containing Al or Ti, nitrides containing Ti, and carbonitrides containing Nb.
  • the components constituting the plating layer are not particularly limited and may be general components.
  • the plating layer contains Fe: 5.0 to 20.0% and Al: 0.001% to 1.0% by mass%, and Pb, Sb, Si, Sn, Mg, Mn, One or two or more selected from Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM are contained in a total of 0 to 3.5%, and the balance is made of Zn and inevitable impurities.
  • the plating layer may be an alloyed plating layer (a plating layer mainly containing an Fe—Zn alloy formed by diffusing Fe in steel during galvanization by an alloying reaction).
  • the manufacturing method of the high strength plated steel sheet of the present invention includes a hot rolling process, a cold rolling process, an annealing process, and a plating process. Moreover, you may have an alloying process after a plating process as needed.
  • the temperature is the surface temperature unless otherwise specified.
  • the average heating rate is ((surface temperature after heating ⁇ surface temperature before heating) / heating time), and the average cooling rate is ((surface temperature before cooling ⁇ surface temperature after cooling) / cooling time).
  • the hot rolling step is to heat the steel material having the above composition at 1000 ° C. or more and 1200 ° C. or less, finish the finish rolling at a finish rolling temperature of 800 ° C. or more, and finish the average cooling rate from the finish rolling temperature to 560 ° C. Is a step of cooling at 30 ° C./s or higher and winding at an Ms point or higher and 560 ° C. or lower.
  • the melting method for producing the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Then, it is preferable to use a slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Further, the slab may be formed by a known casting method such as ingot-casting rolling and thin slab continuous casting.
  • Heating temperature of steel material 1000 ° C. or more and 1200 ° C. or less
  • it is necessary to heat the steel material prior to rough rolling so that the steel structure of the steel material becomes a substantially homogeneous austenite phase.
  • the heating temperature exceeds 1200 ° C. the formation of particularly nitrides containing Ti is promoted, and the number density of inclusions exceeding 5.0 ⁇ m increases. Therefore, the heating temperature of the steel material is set to 1000 ° C. or more and 1200 ° C. or less. Desirably, it is 1020 degreeC or more and 1150 degreeC or less. In addition, it does not specifically limit about the rough rolling conditions of the rough rolling after the said heating.
  • Finishing rolling temperature 800 ° C. or more
  • the finish rolling temperature is 800 ° C. or higher.
  • the finish rolling temperature is 820 degreeC or more.
  • the surface quality is preferably lowered to 940 ° C. or less because the surface properties are deteriorated due to the biting of the scale.
  • the average cooling rate from the finish rolling temperature to 560 ° C. is 30 ° C./s or more.
  • the average cooling rate from the finish rolling temperature to 560 ° C. is lower than 30 ° C./s, a ferrite phase is generated, and a structure in which cementite is finely dispersed is not formed. Therefore, the average cooling rate from the finish rolling temperature to 560 ° C. is set to 30 ° C./s or more.
  • the average cooling rate from 560 ° C. to the cooling stop temperature may be 30 ° C./s or more or less than 30 ° C./s.
  • Winding temperature Ms point or more and 560 ° C. or less
  • the winding temperature exceeds 560 ° C.
  • ferrite transformation proceeds, so that a structure in which cementite is finely dispersed is not formed.
  • cementite is not sufficiently precipitated at a coiling temperature lower than the martensitic transformation start temperature (Ms point). Therefore, the coiling temperature needs to be Ms point or higher and 560 ° C. or lower. Preferably, it is (Ms point + 50) ° C. or higher and 540 ° C. or lower.
  • the value measured using the thermal expansion measuring apparatus is employ
  • the subsequent cold rolling step is a step of cold rolling the hot-rolled sheet after the hot rolling step.
  • it is necessary to cold-roll the hot-rolled sheet after the hot rolling process.
  • the cold rolling rate shall be 30% or more and 80% or less from the restriction
  • the subsequent annealing step means that the cold-rolled sheet after the cold rolling step is subjected to an average heating rate of 3.0 ° C./s or higher from 100 ° C. to a maximum temperature of (Ac 3 points ⁇ 10) ° C. or higher.
  • the cold-rolled sheet heated to the maximum temperature is cooled under the condition that the average cooling rate up to 560 ° C. is 15 ° C./s or more, and is cooled to (Ac 3 points ⁇ 10) ° C. or more in the heating and cooling.
  • the time for which the rolled sheet is retained is set to 60 seconds or less, and the time during which the cold-rolled sheet is retained at 440 ° C. to 530 ° C. is set to 20 seconds to 180 seconds.
  • Ac 3 point is a value measured by using a thermal expansion measuring apparatus.
  • Average heating rate from 100 ° C. to the highest temperature: 3.0 ° C./s or more 100 ° C. is a temperature at which C begins to diffuse, and an average heating rate of 100 ° C. or more at which C or Fe diffuses is 3.0 ° C. /
  • finely dispersed cementite becomes coarse.
  • Cementite becomes a martensite formation site, but fine cementite cannot be obtained when cementite is coarsened.
  • austenite is coarsened and a desired average diameter of the martensite phase cannot be obtained.
  • the average heating rate from 100 ° C. to the highest temperature reached 3.0 ° C./s or higher.
  • a preferable heating rate is 4.0 ° C./s or more.
  • the maximum temperature reached is (Ac 3 points ⁇ 10) ° C. or higher.
  • the area ratio of the ferrite phase does not become 20% or less unless it is heated to at least (Ac 3 points ⁇ 10) ° C.
  • a preferable maximum temperature is Ac 3 point or higher.
  • piece is temperature when it becomes an austenite single phase area
  • Average cooling rate from the highest temperature to 560 ° C . 15 ° C./s or more
  • the cooling rate to 560 ° C. is slow, ferrite transformation starts in the cooling process, and an excessive ferrite phase is generated.
  • the cooling stop temperature in this cooling is not particularly limited, but the cooling stop temperature is usually 460 to 540 ° C.
  • the cooling rate to the cooling stop temperature after reaching 560 ° C. is not particularly limited, and may be 15 ° C./s or more and less than 15 ° C./s.
  • Time of residence in a temperature range of 440 ° C. or more and 530 ° C. or less 20 seconds or more and 180 seconds or less.
  • cooling is performed at a temperature of 440 ° C. or more and 530 ° C. or less. It is necessary to retain the cold-rolled plate in the region for 20 seconds or more.
  • the preferred residence time is 25 seconds or more and 150 seconds or less.
  • the subsequent plating step is a step of performing plating after the annealing step and forming a plating layer on the annealed plate.
  • the above annealing is performed in a continuous hot dipping plating line, followed by cooling after annealing and dipping in a hot dipping bath, and a plating layer on the surface. May be formed.
  • a steel material having a thickness of 250 mm having the composition shown in Table 1 is subjected to a hot rolling process under the hot rolling conditions shown in Table 2 to form a hot rolled sheet, and then subjected to a cold rolling process under the cold rolling conditions shown in Table 2. Then, a cold rolled sheet was used, and annealing under the conditions shown in Table 2 was performed on a continuous hot dipping line. Then, the plating process and the alloying process were performed as needed.
  • the temperature of the plating bath (plating composition: Zn—0.13 mass% Al) immersed in the continuous hot dipping line is 460 ° C.
  • the amount of coating is GI (hot dip plated steel), GA (alloyed)
  • Both the hot-dip galvanized steel sheets) were 45 to 65 g / m 2 per side, and the amount of Fe contained in the plating layer was in the range of 6 to 14% by mass.
  • the Ac 3 point and Ms point were measured using a thermal expansion measuring device.
  • the measurement conditions for Ac 3 points were set to an average heating rate of 5 ° C./s, and the measurement conditions for the Ms point were heated to (Ac 3 +10) ° C. at an average heating rate of 5 ° C./s and held for 30 seconds, and then (Ac 3 +10)
  • the average cooling rate from °C to 300 °C was set to 30 °C / s or more.
  • Specimens were collected from the hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet obtained as described above and evaluated by the following method.
  • the ferrite phase is a structure having a form in which corrosion marks and cementite are not observed in the grains
  • the bainite phase is a structure in which corrosion marks and large carbides are recognized in the grains.
  • the martensite phase is a structure in which no carbide is observed in the grains and is observed with white contrast.
  • the bainite phase, bainite phase and martensite phase were separated from each other by image analysis, and the area ratio relative to the observation field was obtained.
  • the average diameter of the martensite phase the area occupied by each grain of the martensite phase was determined by image analysis, and an equivalent circular diameter equal to the area was determined.
  • the martensite connected to the portions is regarded as two, and the respective equivalent circle diameters were determined.
  • the maximum distance between the martensites was determined by taking the longest portion in 10 fields as the maximum length.
  • interval means the distance of the part where the outer periphery of a martensite and the outer periphery of a martensite are the nearest.
  • the work hardening index is a value determined according to the method defined in JIS Z 2253 (1996), and the true strain range was determined from 0.02 to 0.05. This is because this region is the most sensitive region regarding the crack generation phenomenon due to the effect of work hardening in press working.
  • a steel sheet having a tensile strength TS of 780 MPa or more and a high work hardening index was obtained.
  • a comparative example out of the scope of the present invention particularly a steel sheet in which a desired ferrite area ratio has not been obtained, has a low tensile strength.
  • the work hardening index was low.
  • the hardness of the steel sheet surface was almost the same as that inside the steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Provided is a high-strength hot-dip-plated steel sheet that has a tensile strength of 780 MPa or more and that has favorable workability. Also provided is a production method for the high-strength hot-dip-plated steel sheet. A high-strength hot-dip-plated steel sheet that has a steel sheet and a plating layer that is formed upon the steel sheet. The high-strength hot-dip-plated steel sheet is characterized in that the steel sheet comprises a specific component composition and in that the steel structure of the steel sheet contains, by area ratio, 20% or less (including 0%) of a ferrite phase, 35%-90% of a bainite phase, and 10%-65% of a martensite phase and contains, by number density per mm2, 400 or fewer inclusions that have an equivalent circle diameter of more than 5.0 μm, the granular martensite that constitutes the martensite phase having an average grain size of 3.0 μm or less, and the maximum distance between adjacent martensite being 5.0 μm or less.

Description

高強度めっき鋼板およびその製造方法High strength plated steel sheet and method for producing the same
 本発明は、高強度めっき鋼板およびその製造方法に関する。本発明の高強度めっき鋼板は、引張強さ(TS):780MPa以上の高強度と、優れた成形性(formability)を兼ね備える。このため、本発明の高強度めっき鋼板は、自動車用骨格部材(structural parts for automotive)の素材に適する。 The present invention relates to a high-strength plated steel sheet and a method for producing the same. The high-strength plated steel sheet of the present invention has a high tensile strength (TS): 780 MPa or more and excellent formability. For this reason, the high-strength plated steel sheet of the present invention is suitable as a material for an automobile skeleton member (structural parts for automotive).
 近年地球環境保全の観点から、CO排出量の低減を目的として、自動車業界全体で自動車の燃費改善が指向されている。自動車の燃費改善には、使用部品の薄肉化による自動車の軽量化が最も有効である。このため、近年、自動車部品用素材として、高強度鋼板の使用量が増加しつつある。 In recent years, from the viewpoint of protecting the global environment, the automobile industry as a whole has been directed to improving the fuel consumption of automobiles for the purpose of reducing CO 2 emissions. The most effective way to improve automobile fuel efficiency is to reduce the weight of automobiles by reducing the thickness of parts used. For this reason, in recent years, the usage amount of high-strength steel sheets is increasing as a material for automobile parts.
 一方、一般に鋼板は高強度化にともない成形性が低下し、加工が困難となる。このため、自動車部品等を軽量化するうえで、鋼板は高強度に加えて良好な加工性を兼ね備えることが求められる。 On the other hand, generally, the formability of steel sheets decreases with increasing strength, making it difficult to process. For this reason, in order to reduce the weight of automobile parts and the like, the steel sheet is required to have good workability in addition to high strength.
 以上から、高強度と曲げ性(bendability)(加工性、成形性ともいう)とを兼備した鋼板開発が求められ、これまでにも加工性に着目した高強度冷延鋼板および溶融めっき鋼板について、様々な技術が提案されている。 From the above, steel sheet development that combines high strength and bendability (also called workability and formability) is required. About high-strength cold-rolled steel sheets and hot-dip plated steel sheets that have focused on workability, Various techniques have been proposed.
 例えば、特許文献1では、鋼板の表面に溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板において、質量%で、C:0.02%を超え0.20%以下、Si:0.01~2.0%、Mn:0.1~3.0%、P:0.003~0.10%、S:0.020%以下、Al:0.001~1.0%、N:0.0004~0.015%、Ti:0.03~0.2%あるいはさらにNb:0.1%以下等を含有し、残部がFeおよび不純物である成分組成を有するとともに、フェライトを面積率で30~95%含有し、残部の第2相がマルテンサイト、ベイナイト、パーライト、セメンタイトおよび残留オーステナイトのうちの1種または2種以上からなり、かつマルテンサイトを含有するときのマルテンサイトの面積率は0~50%である鋼組織(microstructure)を有し、鋼板が粒径2~30nmのTi系炭窒化析出物を平均粒子間距離30~300nmで含有し、かつ粒径3μm以上の晶出系TiNを平均粒子間距離50~500μmで含有することで、引張強度が実績で620MPa以上の曲げ加工性および耐切り欠き疲労特性に優れた高降伏比高強度鋼板が得られるとしている。 For example, in Patent Document 1, in a hot-dip galvanized steel sheet provided with a hot-dip galvanized layer on the surface of the steel sheet, by mass%, C: more than 0.02% and 0.20% or less, Si: 0.01 to 2.0 %, Mn: 0.1 to 3.0%, P: 0.003 to 0.10%, S: 0.020% or less, Al: 0.001 to 1.0%, N: 0.0004 to 0 0.15%, Ti: 0.03 to 0.2%, or even Nb: 0.1% or less, etc., and the balance is Fe and impurities, and the ferrite has an area ratio of 30 to 95%. And the remaining second phase is composed of one or more of martensite, bainite, pearlite, cementite, and retained austenite, and when martensite is contained, the martensite area ratio is 0 to 50%. Steel structure (m The steel sheet contains Ti carbonitrides with a grain size of 2 to 30 nm with an average interparticle distance of 30 to 300 nm, and crystallized TiN with a grain size of 3 μm or more has an average interparticle distance of 50 to 500 μm. It is said that a high-yield ratio high-strength steel sheet excellent in bending workability and notch fatigue resistance with a tensile strength of 620 MPa or more is obtained.
 特許文献2では、質量%で、C:0.05~0.20%、Si:0.01~0.6%未満、Mn:1.6~3.5%、P:0.05%以下、S:0.01%以下、sol.Al:1.5%以下、N:0.01%以下を含有し、残部が鉄および不可避的不純物からなる鋼板であって、ポリゴナルフェライト組織および低温変態生成組織を有し、低温変態生成組織は少なくともベイナイトを含み、マルテンサイトを更に含んでいてもよく、鋼板の表面から0.1mm深さの板面について、板幅方向位置を変えて合計20視野を顕微鏡で観察し、各視野における50μm×50μmの領域について画像解析を行ったとき、ポリゴナルフェライトの面積率の最大値と最小値およびマルテンサイトの面積率の最大値を定めることで曲げ加工性および疲労強度に優れた引張強さ780MPa以上の溶融亜鉛めっき鋼板が得られるとしている。 In Patent Document 2, by mass%, C: 0.05 to 0.20%, Si: 0.01 to less than 0.6%, Mn: 1.6 to 3.5%, P: 0.05% or less , S: 0.01% or less, sol. A steel sheet containing Al: 1.5% or less, N: 0.01% or less, the balance being iron and inevitable impurities, having a polygonal ferrite structure and a low temperature transformation structure, and a low temperature transformation structure Includes at least bainite, and may further contain martensite. A plate surface having a depth of 0.1 mm from the surface of the steel plate is changed in the plate width direction, and a total of 20 visual fields are observed with a microscope, and 50 μm in each visual field. When image analysis is performed on a region of × 50 μm, the maximum and minimum values of the area ratio of polygonal ferrite and the maximum value of the area ratio of martensite are determined, whereby a tensile strength of 780 MPa excellent in bending workability and fatigue strength. The above hot-dip galvanized steel sheet is obtained.
特開2006-063360号公報JP 2006-063360 A 特開2010-209428号公報JP 2010-209428 A
 特許文献1で提案された技術では、成分組成が鋼組織にどのような影響を与えるかについては実施例でなんら開示されておらず、鋼組織を考慮することによる改善が不十分であり、全体として改善が十分とはいえない。 In the technique proposed in Patent Document 1, the influence of the component composition on the steel structure is not disclosed in the examples, and the improvement by considering the steel structure is insufficient. However, the improvement is not enough.
 また、特許文献2で提案された技術でも、本発明で求めるような高い加工硬化能(strain hardenability)による成形性向上を実現するために考慮すべき因子が充分把握されていない。 In addition, even the technique proposed in Patent Document 2 does not sufficiently grasp factors to be considered in order to realize improvement in formability by high work hardenability as required in the present invention.
 本発明はかかる事情に鑑みてなされたものであって、引張強さ:780MPa以上を有し、かつ加工性が良好な高強度めっき鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a high-strength plated steel sheet having a tensile strength of 780 MPa or more and good workability, and a method for producing the same.
 本発明者らは上記課題を解決するために、引張強さ780MPaかつ良好な加工性を有する鋼板の要件について鋭意検討した。その結果、高強度の鋼板を得るには軟質なフェライト相を可能な限り少なくし、ベイナイト相やマルテンサイト相といった低温変態相を活用することに着目した。一方で、従来の技術では成形性に富むフェライト相を低減すると、良好な成形性は得られなくなる。そこで、フェライト相を多くは含まない鋼板の成形性を向上させる手段について検討した。その結果、微細な粒状のマルテンサイトがベイナイト相に分散したマルテンサイト相とすると、ベイナイト相の均一変形が促され、その結果、加工硬化能が上昇することにより成形性が向上することを見出した。微細なマルテンサイトをベイナイト相へ分散させるには、焼鈍工程前組織でセメンタイトを微細に分散させたうえで、焼鈍中のオーステナイト粒径の粗大化(coarsening)を抑制することが有効であることを知見した。一方で、焼鈍中のオーステナイト粒径の微細化にともないフェライト変態の核生成サイトとなるオーステナイト粒界面積が増大するため、フェライト相が出やすくなる。マルテンサイト相を微細化したうえで、フェライト変態を抑制するには適切な元素添加により鋼板の焼入性を向上させたうえでフェライト核生成サイトとなる5.0μm以上の介在物密度を低減することが重要であることが判明した。 In order to solve the above-mentioned problems, the present inventors diligently studied the requirements for a steel sheet having a tensile strength of 780 MPa and good workability. As a result, in order to obtain a high-strength steel sheet, we focused on reducing the soft ferrite phase as much as possible and utilizing a low-temperature transformation phase such as a bainite phase or a martensite phase. On the other hand, in the conventional technology, if the ferrite phase rich in formability is reduced, good formability cannot be obtained. Therefore, a means for improving the formability of a steel sheet not containing much ferrite phase was studied. As a result, when the fine granular martensite is the martensite phase dispersed in the bainite phase, the uniform deformation of the bainite phase is promoted, and as a result, the workability is increased and the formability is improved. . In order to disperse fine martensite into the bainite phase, it is effective to finely disperse cementite in the structure before the annealing process and to suppress coarsening of the austenite grain size during annealing. I found out. On the other hand, since the austenite grain interfacial area, which becomes the nucleation site of ferrite transformation, increases with the reduction of the austenite grain size during annealing, the ferrite phase is easily produced. In order to suppress ferrite transformation after refining the martensite phase, improve the hardenability of the steel sheet by adding appropriate elements, and reduce the inclusion density of 5.0 μm or more that becomes ferrite nucleation sites It turned out to be important.
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。 The present invention has been completed based on the above findings, and the gist thereof is as follows.
 [1]鋼板と該鋼板上に形成されためっき層とを有する高強度めっき鋼板であって、前記鋼板の成分組成は、質量%で、C:0.06%以上0.18%以下、Si:0.50%未満、Mn:1.9%以上3.2%以下、P:0.03%以下、S:0.005%以下、Al:0.08%以下、N:0.006%以下、B:0.0002%以上0.0030%以下、Nb:0.007%以上0.030%以下、および下記(1)式を満たすようにTiを含有し、残部がFeおよび不可避的不純物からなり、前記鋼板の鋼組織は、フェライト相を面積率で20%以下(0%を含む)、ベイナイト相を面積率で35%以上90%以下、マルテンサイト相を面積率で10%以上65%以下含有し、かつ円相当径が5.0μmを超える介在物を個数密度で400個/mm以下含有し、前記マルテンサイト相を構成する粒状のマルテンサイトの平均粒径が3.0μm以下、マルテンサイト間の最大長さが5.0μm以下であることを特徴とする高強度めっき鋼板。
[%N]-14[%Ti]/48≦0   (1)
(1)式における[%N]はN含有量、[%Ti]はTi含有量を意味する。
[1] A high-strength plated steel plate having a steel plate and a plating layer formed on the steel plate, wherein the component composition of the steel plate is% by mass, C: 0.06% to 0.18%, Si : Less than 0.50%, Mn: 1.9% to 3.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.08% or less, N: 0.006% B: 0.0002% or more and 0.0030% or less, Nb: 0.007% or more and 0.030% or less, and Ti containing so as to satisfy the following formula (1), the balance being Fe and inevitable impurities The steel structure of the steel sheet has a ferrite phase area ratio of 20% or less (including 0%), a bainite phase area ratio of 35% to 90%, and a martensite phase area ratio of 10% to 65%. % Inclusions with an equivalent circle diameter exceeding 5.0 μm in number density 00 pieces / mm 2 contained less, the average particle size of the martensite particulate constituting the martensite phase 3.0μm or less, the maximum length between martensite and equal to or less than 5.0μm high Strength plated steel sheet.
[% N] -14 [% Ti] / 48 ≦ 0 (1)
In the formula (1), [% N] means N content, and [% Ti] means Ti content.
 [2]前記成分組成は、さらに、質量%で、Cr:0.001%以上0.9%以下、Ni:0.001%以上0.5%以下、V:0.001%以上0.3%以下、Mo:0.001%以上0.3%以下、W:0.001%以上0.2%以下、Hf:0.001%以上0.3%以下の1種または2種以上を含有する成分組成であることを特徴とする[1]に記載の高強度めっき鋼板。 [2] The component composition further includes, by mass%, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.3% % Or less, Mo: 0.001% or more and 0.3% or less, W: 0.001% or more and 0.2% or less, Hf: 0.001% or more and 0.3% or less The high-strength plated steel sheet according to [1], wherein the high-strength plated steel sheet has a component composition.
 [3]前記成分組成は、さらに、質量%で、REM、Mg、Caの1種または2種以上を合計で0.0002%以上0.01%以下含有することを特徴とする[1]または[2]に記載の高強度めっき鋼板。 [3] The component composition further contains, in mass%, one or more of REM, Mg, and Ca in a total of 0.0002% to 0.01% [1] or The high strength plated steel sheet according to [2].
 [4]前記めっき層は、質量%で、Fe:5.0~20.0%、Al:0.001%~1.0%を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0~3.5%含有し、残部がZn及び不可避的不純物からなることを特徴とする[1]~[3]のいずれかに記載の高強度めっき鋼板。 [4] The plating layer contains, by mass%, Fe: 5.0 to 20.0%, Al: 0.001% to 1.0%, and Pb, Sb, Si, Sn, Mg, Contains one or more selected from Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM in a total of 0 to 3.5%, with the balance being Zn and inevitable impurities The high-strength plated steel sheet according to any one of [1] to [3],
 [5]前記めっき層が合金化めっき層であることを特徴とする[1]~[4]のいずれかに記載の高強度めっき鋼板。 [5] The high-strength plated steel sheet according to any one of [1] to [4], wherein the plating layer is an alloying plating layer.
 [6][1]から[3]のいずれかに記載の成分組成を有する鋼素材を、1000℃以上1200℃以下で加熱し、800℃以上の仕上げ圧延温度で仕上げ圧延終了後、仕上げ圧延温度から560℃までの平均冷却速度が30℃/s以上で冷却し、Ms点以上560℃以下で巻き取る熱間圧延工程と、前記熱間圧延工程後に熱延板を冷間圧延する冷間圧延工程と、前記冷間圧延工程後の冷延板を100℃から(Ac点-10)℃以上の最高到達温度までの平均加熱速度が3.0℃/s以上の条件で加熱し、最高到達温度まで加熱された冷延板を560℃までの平均冷却速度が15℃/s以上の条件で冷却し、該加熱及び該冷却において(Ac点-10)℃以上に冷延板が滞留される時間を60秒以下とし、該冷却において440℃以上530℃以下に冷延板が滞留される時間を20秒以上180秒以下とする焼鈍工程と、前記焼鈍工程後にめっきを施し、焼鈍板上にめっき層を形成するめっき工程と、を有することを特徴とする高強度めっき鋼板の製造方法。 [6] A steel material having the component composition according to any one of [1] to [3] is heated at 1000 ° C. or more and 1200 ° C. or less, and after finishing rolling at a finish rolling temperature of 800 ° C. or more, finish rolling temperature To 560 ° C. at an average cooling rate of 30 ° C./s or higher, and a hot rolling step of winding at an Ms point or higher and 560 ° C. or lower, and cold rolling to cold-roll hot-rolled plates after the hot rolling step And the cold-rolled sheet after the cold rolling step is heated under the condition that the average heating rate from 100 ° C. to the highest attained temperature of (Ac 3 points−10) ° C. or higher is 3.0 ° C./s or higher. The cold-rolled sheet heated to the ultimate temperature is cooled under the condition that the average cooling rate up to 560 ° C. is 15 ° C./s or more, and the cold-rolled sheet stays at (Ac 3 points−10) ° C. or more in the heating and cooling. The cooling time is set to 60 seconds or less, and 440 ° C. or more in the cooling Having an annealing step in which a cold-rolled plate stays at 30 ° C. or less for 20 seconds or more and 180 seconds or less, and a plating step for performing plating after the annealing step to form a plating layer on the annealed plate. A method for producing a high strength plated steel sheet.
 [7]前記めっき層は、質量%で、Fe:5.0~20.0%、Al:0.001%~1.0%を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0~3.5%含有し、残部がZn及び不可避的不純物からなることを特徴とする[6]に記載の高強度めっき鋼板の製造方法。 [7] The plating layer contains, by mass%, Fe: 5.0 to 20.0%, Al: 0.001% to 1.0%, and Pb, Sb, Si, Sn, Mg, Contains one or more selected from Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM in a total of 0 to 3.5%, with the balance being Zn and inevitable impurities [6] The method for producing a high-strength plated steel sheet according to [6].
 [8]前記めっき工程後に、前記めっき層を合金化する合金化工程を有することを特徴とする[6]又は[7]に記載の高強度めっき鋼板の製造方法。 [8] The method for producing a high-strength plated steel sheet according to [6] or [7], further comprising an alloying step of alloying the plating layer after the plating step.
 本発明によると、本発明の高強度めっき鋼板は、引張強さ(TS):780MPa以上の高強度と、優れた成形性を兼ね備える。本発明の高強度めっき鋼板を自動車部品に適用すれば、自動車部品のさらなる軽量化が実現される。 According to the present invention, the high-strength plated steel sheet of the present invention has high tensile strength (TS): 780 MPa or more and excellent formability. If the high-strength plated steel sheet of the present invention is applied to automobile parts, further weight reduction of the automobile parts can be realized.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
 <高強度めっき鋼板>
 本発明の高強度めっき鋼板は、鋼板と、該鋼板上に形成されるめっき層とを有する。鋼板、めっき層の順で説明する。
<High strength plated steel plate>
The high-strength plated steel sheet of the present invention has a steel sheet and a plating layer formed on the steel sheet. It demonstrates in order of a steel plate and a plating layer.
 鋼板の成分組成は、質量%で、C:0.06%以上0.18%以下、Si:0.50%未満、Mn:1.9%以上3.2%以下、P:0.03%以下、S:0.005%以下、Al:0.08%以下、N:0.006%以下、B:0.0002%以上0.0030%以下、Nb:0.007%以上0.030%以下、および上記(1)式を満たすようにTiを含有する成分組成である。以下の各成分を説明する。以下の説明において、成分の含有量を表す「%」は「質量%」を意味する。 The component composition of the steel sheet is mass%, C: 0.06% to 0.18%, Si: less than 0.50%, Mn: 1.9% to 3.2%, P: 0.03% S: 0.005% or less, Al: 0.08% or less, N: 0.006% or less, B: 0.0002% or more and 0.0030% or less, Nb: 0.007% or more and 0.030% The component composition contains Ti so as to satisfy the following and the above expression (1). The following components will be described. In the following description, “%” representing the content of a component means “mass%”.
 C:0.06%以上0.18%以下
 Cはマルテンサイトの硬さを上昇させ、フェライト変態を抑制する焼入性を持つ。引張強さが780MPa以上の鋼板を得るには少なくともC含有量を0.06%以上にすることが必要である。一方、C含有量が0.18%を上回るとマルテンサイト相の面積率が65%を上回り延性および成形性が失われる。そこで、C含有量は0.06%以上0.18%以下とする。望ましくは0.07%以上0.18%以下である。
C: 0.06% or more and 0.18% or less C has a hardenability which increases the hardness of martensite and suppresses ferrite transformation. In order to obtain a steel sheet having a tensile strength of 780 MPa or more, it is necessary that at least the C content is 0.06% or more. On the other hand, when the C content exceeds 0.18%, the area ratio of the martensite phase exceeds 65% and the ductility and formability are lost. Therefore, the C content is set to 0.06% or more and 0.18% or less. Desirably, it is 0.07% or more and 0.18% or less.
 Si:0.50%未満
 Siは、固溶強化により高強度化に寄与する元素である。一方で、Siはフェライト相からオーステナイト相への変態点(Ac点)を上昇させるため、焼鈍時でのフェライト相を除去しにくくする。さらにSiはめっき層と鋼板表面との濡れ性を低下させるので、Siの過剰な含有は、不めっき等の欠陥の原因となる。本発明においてSi含有量は0.50%未満の範囲であれば許容される。望ましくは0.30%未満である。下限は特に定めないが、0.01%のSiは不可避的に鋼中に混入する場合がある。
Si: Less than 0.50% Si is an element contributing to high strength by solid solution strengthening. On the other hand, since Si raises the transformation point (Ac 3 point) from the ferrite phase to the austenite phase, it makes it difficult to remove the ferrite phase during annealing. Furthermore, since Si reduces the wettability between the plating layer and the steel sheet surface, excessive inclusion of Si causes defects such as non-plating. In this invention, Si content is accept | permitted if it is less than 0.50% of range. Desirably, it is less than 0.30%. Although the lower limit is not particularly defined, 0.01% Si may inevitably be mixed into the steel.
 Mn:1.9%以上3.2%以下
 Mnは、固溶強化(solid solution strengthening)により高強度化に寄与するうえ、Ac変態点を低下させ焼鈍中におけるフェライト相を除去しやすくさせ、また鋼板の焼入性を向上させる効果がある。目的の鋼組織を得るにはMn含有量を1.9%以上とする必要がある。一方、Mn含有量が3.2%を上回るとベイナイト変態が進行せず結果的にマルテンサイト相の面積率が65%を上回る。このため、Mn含有量の上限を3.2%とする。好ましいMn含有量の範囲は2.0%以上3.0%以下である。
Mn: not less than 1.9% and not more than 3.2% Mn contributes to high strength by solid solution strengthening, and lowers the Ac 3 transformation point to facilitate removal of the ferrite phase during annealing. It also has the effect of improving the hardenability of the steel sheet. In order to obtain the target steel structure, the Mn content needs to be 1.9% or more. On the other hand, when the Mn content exceeds 3.2%, the bainite transformation does not proceed, and as a result, the area ratio of the martensite phase exceeds 65%. For this reason, the upper limit of the Mn content is set to 3.2%. A preferable range of the Mn content is 2.0% or more and 3.0% or less.
 P:0.03%以下
 Pは、粒界に偏析して成形時の割れの起点となるため成形性に悪影響をもたらす元素である。したがって、P含有量は極力低減することが好ましい。本発明では上記問題を回避すべく、P含有量を0.03%以下とする。好ましくは0.02%以下である。極力低減する方が望ましいが、製造上、0.002%は不可避的に混入する場合がある。
P: 0.03% or less P is an element that has an adverse effect on formability because it segregates at grain boundaries and becomes the starting point of cracking during molding. Therefore, it is preferable to reduce the P content as much as possible. In the present invention, in order to avoid the above problem, the P content is set to 0.03% or less. Preferably it is 0.02% or less. Although it is desirable to reduce it as much as possible, 0.002% may be inevitably mixed in manufacturing.
 S:0.005%以下
 Sは、鋼中でMnSなどの介在物となった状態で存在する。この介在物は、熱間圧延および冷間圧延により楔状の形態となる。このような形態であると、ボイド生成の起点となりやすく、成形性にも悪影響がある。したがって、本発明では、S含有量を極力低減することが好ましく、0.005%以下とする。好ましくは0.003%以下である。S含有量は極力低減する方が望ましいが、製造上、0.0005%は不可避的に混入する場合がある。
S: 0.005% or less S exists in the state which became inclusions, such as MnS, in steel. This inclusion becomes wedge-shaped by hot rolling and cold rolling. In such a form, it tends to be a starting point for void generation, and the moldability is also adversely affected. Therefore, in the present invention, it is preferable to reduce the S content as much as possible, and set it to 0.005% or less. Preferably it is 0.003% or less. It is desirable to reduce the S content as much as possible, but 0.0005% may be inevitably mixed in production.
 Al:0.08%以下
 Alを製鋼の段階で脱酸剤として添加する場合、Alを0.02%以上含有することが好ましい。一方で、Al含有量が0.08%を超えるとアルミナなどの介在物の影響でフェライト変態が促進され引張強さが780MPaを下回る。したがって、Al含有量は0.08%以下とする。好ましくは0.07%以下である。
Al: 0.08% or less When Al is added as a deoxidizer in the steelmaking stage, it is preferable to contain Al in an amount of 0.02% or more. On the other hand, if the Al content exceeds 0.08%, the ferrite transformation is promoted by the influence of inclusions such as alumina, and the tensile strength is less than 780 MPa. Therefore, the Al content is 0.08% or less. Preferably it is 0.07% or less.
 N:0.006%以下
 本発明においてNは、Tiと結合し粗大なTi系窒化物として析出する。この粗大なTi系窒化物はフェライト変態の核生成サイト(nucleation site)となるため、N含有量は極力低減する必要があり、上限を0.006%とする。好ましいN含有量は0.005%以下である。N含有量は極力低減する方が望ましいが、製造上、0.0005%は不可避的に混入する場合がある。
N: 0.006% or less In the present invention, N combines with Ti and precipitates as coarse Ti-based nitride. Since this coarse Ti-based nitride serves as a nucleation site for ferrite transformation, the N content needs to be reduced as much as possible, and the upper limit is made 0.006%. A preferable N content is 0.005% or less. Although it is desirable to reduce the N content as much as possible, 0.0005% may be inevitably mixed in production.
 B:0.0002%以上0.0030%以下
 Bは、変態前のオーステナイトの粒界に偏析しフェライト相の核生成を著しく遅延させる効果がありフェライト相の生成を抑える効果がある。この効果を得るには、B含有量を0.0002%以上にする必要がある。一方、B含有量が0.0030%を上回ると、焼入性の効果が飽和するばかりか、延性に悪影響がでる。以上から、B含有量は0.0002%以上0.0030%以下とする。望ましくは、0.0005%以上0.0020%以下である。
B: 0.0002% or more and 0.0030% or less B has an effect of segregating at the grain boundary of the austenite before transformation to significantly delay the nucleation of the ferrite phase and to suppress the formation of the ferrite phase. In order to obtain this effect, the B content needs to be 0.0002% or more. On the other hand, if the B content exceeds 0.0030%, not only the hardenability effect is saturated, but also the ductility is adversely affected. From the above, the B content is set to 0.0002% or more and 0.0030% or less. Desirably, it is 0.0005% or more and 0.0020% or less.
 Nb:0.007%以上0.030%以下
 Nbは焼鈍中のオーステナイト粒の粗大化を抑制するため重要な元素である。Nb含有量が過剰になると、Nbを含む粗大な炭窒化物(炭化物、窒化物、炭窒化物の総称。以下この発明に置いて同じ)が析出するためフェライト相の面積率が増大する。オーステナイト粒の粗大化抑制のためには、Nb含有量を0.007%以上にする必要がある。一方、Nb含有量が0.030%を超えると、本発明で規定する製造条件では粗大なNb系炭窒化物が析出する。そこで、Nb含有量の上限を0.030%とする。好ましいNb含有量は、0.012%以上0.027%以下である。
Nb: 0.007% or more and 0.030% or less Nb is an important element for suppressing coarsening of austenite grains during annealing. When the Nb content is excessive, coarse carbonitrides containing Nb (generic names for carbides, nitrides, and carbonitrides; hereinafter the same applies to the present invention) are precipitated, and the area ratio of the ferrite phase increases. In order to suppress the austenite grain coarsening, the Nb content needs to be 0.007% or more. On the other hand, when the Nb content exceeds 0.030%, coarse Nb-based carbonitrides precipitate under the production conditions specified in the present invention. Therefore, the upper limit of Nb content is 0.030%. A preferable Nb content is 0.012% or more and 0.027% or less.
 Ti:[%N]-14[%Ti]/48≦0
 Ti含有量が上記不等式を満たさず[%N]-14[%Ti]/48>0となる場合、NはBと結合するため焼入性が低下し、フェライト相の面積率が20%を上回ることとなる。[%N]-14[%Ti]/48≦0の範囲であれば、NはTiと結合した状態であるため、鋼板の焼入性は失われない。一方、過度にTiを含有させるとCと結合することによって炭化物を形成する。この炭化物は転位上に析出し、転位の運動を著しく阻害するため成形性が低下する要因となる。この観点から、(1)式左辺は-0.010以上であることが好ましい。より好ましくは-0.006以上である。
Ti: [% N] -14 [% Ti] / 48 ≦ 0
When the Ti content does not satisfy the above inequality and [% N] -14 [% Ti] / 48> 0, N binds to B, so that the hardenability is lowered and the area ratio of the ferrite phase is 20%. It will exceed. If [% N] -14 [% Ti] / 48 ≦ 0, N is in a state of being bonded to Ti, so the hardenability of the steel sheet is not lost. On the other hand, if Ti is excessively contained, carbides are formed by combining with C. This carbide precipitates on the dislocations and significantly inhibits the movement of the dislocations, which causes a decrease in moldability. From this viewpoint, it is preferable that the left side of the formula (1) is −0.010 or more. More preferably, it is -0.006 or more.
 本発明の高強度めっき鋼板は、さらに、質量%で、Cr:0.001%以上0.9%以下、Ni:0.001%以上0.5%以下、V:0.001%以上0.3%以下、Mo:0.001%以上0.3%以下、W:0.001%以上0.2%以下、Hf:0.001%以上0.3%以下の1種または2種以上を含有してもよい。 Further, the high-strength plated steel sheet of the present invention is, in mass%, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.00%. 1% or more of 3% or less, Mo: 0.001% or more and 0.3% or less, W: 0.001% or more and 0.2% or less, Hf: 0.001% or more and 0.3% or less You may contain.
 Cr、Ni、V、Mo、WおよびHfはフェライト変態の開始を遅延させる効果がある。Bによる焼入性の効果に加え、これらの元素による効果があれば、安定的に所望の鋼組織を得られやすくなる。一方で、Cr含有量が0.9%を上回るとめっき性に悪影響をおよぼす。また、Niが0.5%、Vが0.3%、Moが0.3%、Wが0.2%およびHfが0.3%を上回ると、焼入性の効果が飽和する。以上から、Cr:0.001%以上0.9%以下、Ni:0.001%以上0.5%以下、V:0.001%以上0.3%以下、Mo:0.001%以上0.3%以下、W:0.001%以上0.2%以下、Hf:0.001%以上0.3%以下とした。 Cr, Ni, V, Mo, W and Hf have the effect of delaying the start of ferrite transformation. If there is an effect of these elements in addition to the effect of hardenability by B, it becomes easy to stably obtain a desired steel structure. On the other hand, if the Cr content exceeds 0.9%, the plating property is adversely affected. Further, when Ni is 0.5%, V is 0.3%, Mo is 0.3%, W is 0.2%, and Hf exceeds 0.3%, the effect of hardenability is saturated. From the above, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.3%, Mo: 0.001% to 0 .3% or less, W: 0.001% to 0.2%, and Hf: 0.001% to 0.3%.
 本発明の高強度めっき鋼板は、さらに、質量%で、REM、Mg、Caの1種または2種以上を合計で0.0002%以上0.01%以下含有してもよい。 The high-strength plated steel sheet of the present invention may further contain 0.0002% or more and 0.01% or less of REM, Mg, or Ca in total by mass%.
 REM(REM:原子番号57から71までのランタノイド元素)、MgおよびCaはベイナイト中に析出するセメンタイトを球状化させる。その結果、セメンタイト周りでの応力集中が低下し、成形性が改善する。一方で、REM、MgおよびCaの合計含有量が、0.01%を超えるとセメンタイトの形態変化の効果が飽和するうえ、延性に悪影響をもたらす。以上から、これらを含有する場合には、REM、Mg、Caの1種または2種以上を合計で0.0002%以上0.01%以下含むことが好ましい。望ましくは、REM、MgおよびCaの1種または2種以上を合計で0.0005%以上0.005%以下である。 REM (REM: lanthanoid element having atomic number 57 to 71), Mg and Ca spheroidize cementite precipitated in bainite. As a result, the stress concentration around the cementite is reduced, and the formability is improved. On the other hand, when the total content of REM, Mg, and Ca exceeds 0.01%, the effect of changing the shape of cementite is saturated and the ductility is adversely affected. As mentioned above, when these are contained, it is preferable to contain 0.0002% or more and 0.01% or less of REM, Mg, and Ca in total. Desirably, one or more of REM, Mg, and Ca is 0.0005% or more and 0.005% or less in total.
 上記成分以外の成分は、Feおよび不可避的不純物である。 Components other than the above components are Fe and inevitable impurities.
 続いて、本発明の高強度めっき鋼板の鋼組織について説明する。本発明の高強度めっき鋼板の鋼組織は、フェライト相を面積率で20%以下(0%を含む)、ベイナイト相を面積率で35%以上90%以下、マルテンサイト相を面積率で10%以上65%以下含有し、かつ円相当径が5.0μmを超える介在物の個数密度が400個/mm以下を含有する。そして、上記マルテンサイト相を構成する粒状のマルテンサイトの平均粒径が3.0μm以下、マルテンサイト間の最大長さが5.0μm以下である。 Next, the steel structure of the high strength plated steel sheet of the present invention will be described. The steel structure of the high-strength plated steel sheet of the present invention has a ferrite phase area ratio of 20% or less (including 0%), a bainite phase area ratio of 35% or more and 90% or less, and a martensite phase area ratio of 10%. The number density of inclusions containing 65% or less and having an equivalent circle diameter exceeding 5.0 μm contains 400 pieces / mm 2 or less. And the average particle diameter of the granular martensite which comprises the said martensite phase is 3.0 micrometers or less, and the maximum length between martensites is 5.0 micrometers or less.
 フェライト相
 フェライト相は軟質な組織であり、フェライト相の含有量が20%を超えると、引張強さが780MPaを下回る。また、フェライト相は元素の溶解度が小さいため、フェライト相の含有量が過剰になると、焼鈍前組織で微細分散させたセメンタイトの配置を変えてしまい微細なマルテンサイト相も得られなくなる。したがって、フェライト相の含有量は極力低減することが望ましく、本発明においてフェライト相の含有量は20%以下(0%を含む)に抑制する必要がある。望ましくは15%以下である。
Ferrite phase The ferrite phase is a soft structure, and when the content of the ferrite phase exceeds 20%, the tensile strength is less than 780 MPa. In addition, since the ferrite phase has a low element solubility, if the ferrite phase content is excessive, the arrangement of cementite finely dispersed in the structure before annealing is changed, and a fine martensite phase cannot be obtained. Therefore, it is desirable to reduce the content of the ferrite phase as much as possible. In the present invention, the content of the ferrite phase needs to be suppressed to 20% or less (including 0%). Desirably, it is 15% or less.
 ベイナイト相
 ベイナイト相はフェライト相よりも硬度が高いうえ、マルテンサイト相を微細に生成させるために有効である。所望の鋼組織を得るために、ベイナイト相の含有量を35%以上とする必要がある。一方、ベイナイト相の含有量が90%を上回るとマルテンサイト間の間隔の最大長さ(最大距離)が5.0μmを上回り、良好な成形性が得られなくなる。好ましいベイナイト相の含有量は面積率で40%以上80%以下である。
Bainite phase The bainite phase is higher in hardness than the ferrite phase and is effective for finely forming the martensite phase. In order to obtain a desired steel structure, the content of the bainite phase needs to be 35% or more. On the other hand, if the content of the bainite phase exceeds 90%, the maximum length (maximum distance) between the martensites exceeds 5.0 μm, and good moldability cannot be obtained. The preferred bainite phase content is 40% or more and 80% or less in terms of area ratio.
 マルテンサイト相
 マルテンサイト相の含有量およびマルテンサイト相の形態は、強度および成形性に大きな影響を与える。マルテンサイト相の含有量が面積率で10%を下回ると引張強さが780MPaを下回る。一方、マルテンサイト相の含有量が面積率で65%を上回ると延性および成形性が失われる。好ましいマルテンサイト相の含有量は、面積率で20%以上55%以下である。
Martensite phase The content of the martensite phase and the form of the martensite phase have a great influence on the strength and formability. When the content of the martensite phase is less than 10% in terms of area ratio, the tensile strength is less than 780 MPa. On the other hand, when the content of the martensite phase exceeds 65% by area ratio, ductility and formability are lost. The preferred martensite phase content is 20% or more and 55% or less in terms of area ratio.
 また、本発明の高強度めっき鋼板において、マルテンサイト相は粒状のマルテンサイトから構成される。マルテンサイトの平均粒径が3.0μmを上回ると、粗大なマルテンサイト近傍での変形が拘束され成形中に鋼板が不均一に変形する。この場合、優先的に変形した部分で亀裂が発生しやすく良好な成形性が得られなくなる。マルテンサイトの平均粒径は好ましくは2.0μm以下である。なお、マルテンサイトの平均粒径の下限値は特に限定されないが、安定的に10%以上のマルテンサイト分率とする観点から上記平均粒径は0.5μm以上が好ましい。 In the high-strength plated steel sheet of the present invention, the martensite phase is composed of granular martensite. When the average particle size of martensite exceeds 3.0 μm, deformation in the vicinity of coarse martensite is constrained, and the steel sheet deforms unevenly during forming. In this case, cracks are likely to occur in the preferentially deformed portion, and good moldability cannot be obtained. The average particle size of martensite is preferably 2.0 μm or less. The lower limit of the average particle size of martensite is not particularly limited, but the average particle size is preferably 0.5 μm or more from the viewpoint of stably obtaining a martensite fraction of 10% or more.
 また、マルテンサイト間の間隔の最大長さは5.0μm以下である。マルテンサイト間の間隔の最大長さが、この範囲にあれば、多くのベイナイト相がマルテンサイト相と接する状態となる。マルテンサイト相と接したベイナイト相は転位が発生しやすく加工硬化しやすくなる。結果として加工硬化指数(work hardening exponent)が増大し均一に変形するため、良好な成形性が得られる。マルテンサイト間の最大間隔長さ(最大長さ)は好ましくは4.0μm以下である。なお、マルテンサイト間の最大間隔長さ(最大長さ)の下限値は特に限定されないが、マルテンサイト間の距離が近すぎる場合はマルテンサイト変態発生で生じる変態ひずみによりマルテンサイト近傍に転位が導入されることで、マルテンサイト間の新たな転位の発生を阻害し、加工硬化しにくくなるため、上記最大間隔長さは1.0μm以上が好ましい。 Moreover, the maximum length of the interval between martensites is 5.0 μm or less. If the maximum length of the interval between martensites is within this range, many bainite phases are in contact with the martensite phase. The bainite phase in contact with the martensite phase is liable to cause dislocations and work hardening. As a result, the work hardening index (work hardening exponent) increases and deforms uniformly, so that good moldability is obtained. The maximum distance between martensites (maximum length) is preferably 4.0 μm or less. The lower limit of the maximum distance between martensites (maximum length) is not particularly limited, but when the distance between martensites is too close, dislocations are introduced near the martensite due to transformation strain caused by the occurrence of martensite transformation. By doing so, the occurrence of new dislocations between martensites is hindered, and work hardening becomes difficult. Therefore, the maximum interval length is preferably 1.0 μm or more.
 介在物
 本発明の高強度めっき鋼板の鋼組織では、円相当径で粒径が5.0μmを超える介在物の個数密度:400個/mm以下である。粒径が5.0μmを超える介在物はフェライト相の核生成サイトとなりやすく、フェライト相の面積率での含有量が所望の範囲にならなくなる。ここで、5.0μmを超える介在物としては、AlもしくはTiを含む酸化物、Tiを含む窒化物、Nbを含む炭窒化物が挙げられる。
Inclusions In the steel structure of the high-strength plated steel sheet of the present invention, the number density of inclusions having an equivalent circle diameter and a particle size exceeding 5.0 μm is 400 pieces / mm 2 or less. Inclusions having a particle size exceeding 5.0 μm are likely to become nucleation sites of the ferrite phase, and the content of the ferrite phase in the area ratio is not in the desired range. Here, the inclusions exceeding 5.0 μm include oxides containing Al or Ti, nitrides containing Ti, and carbonitrides containing Nb.
 続いて、めっき層について説明する。本発明の高強度めっき鋼板において、めっき層を構成する成分は特に限定されず、一般的な成分であればよい。例えば、めっき層は、質量%で、Fe:5.0~20.0%、Al:0.001%~1.0%を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0~3.5%含有し、残部がZn及び不可避的不純物からなる。また、めっき層は、合金化されためっき層(合金化反応によって亜鉛めっき中に鋼中のFeが拡散してできたFe-Zn合金を、主体として含むめっき層)であってもよい。 Subsequently, the plating layer will be described. In the high-strength plated steel sheet of the present invention, the components constituting the plating layer are not particularly limited and may be general components. For example, the plating layer contains Fe: 5.0 to 20.0% and Al: 0.001% to 1.0% by mass%, and Pb, Sb, Si, Sn, Mg, Mn, One or two or more selected from Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM are contained in a total of 0 to 3.5%, and the balance is made of Zn and inevitable impurities. The plating layer may be an alloyed plating layer (a plating layer mainly containing an Fe—Zn alloy formed by diffusing Fe in steel during galvanization by an alloying reaction).
 次に、本発明の高強度めっき鋼板の製造方法について説明する。本発明の高強度めっき鋼板の製造方法は、熱間圧延工程と、冷間圧延工程と、焼鈍工程と、めっき工程と、を有する。また、必要に応じて、めっき工程後に合金化工程を有してもよい。以下、各工程について説明する。なお、以下の説明において、温度は特に断らない限り表面温度とする。また、平均加熱速度は((加熱後の表面温度-加熱前の表面温度)/加熱時間)、平均冷却速度は((冷却前の表面温度-冷却後の表面温度)/冷却時間)とする。 Next, a method for producing the high strength plated steel sheet of the present invention will be described. The manufacturing method of the high strength plated steel sheet of the present invention includes a hot rolling process, a cold rolling process, an annealing process, and a plating process. Moreover, you may have an alloying process after a plating process as needed. Hereinafter, each step will be described. In the following description, the temperature is the surface temperature unless otherwise specified. The average heating rate is ((surface temperature after heating−surface temperature before heating) / heating time), and the average cooling rate is ((surface temperature before cooling−surface temperature after cooling) / cooling time).
 熱間圧延工程とは、上記成分組成を有する鋼素材を、1000℃以上1200℃以下で加熱し、800℃以上の仕上げ圧延温度で仕上げ圧延終了後、仕上げ圧延温度から560℃までの平均冷却速度が30℃/s以上で冷却し、Ms点以上560℃以下で巻き取る工程である。 The hot rolling step is to heat the steel material having the above composition at 1000 ° C. or more and 1200 ° C. or less, finish the finish rolling at a finish rolling temperature of 800 ° C. or more, and finish the average cooling rate from the finish rolling temperature to 560 ° C. Is a step of cooling at 30 ° C./s or higher and winding at an Ms point or higher and 560 ° C. or lower.
 上記鋼素材製造のための、溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その後、生産性や品質上の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましい。また、造塊-分塊圧延法(ingot casting and blooming)、薄スラブ連鋳法等、公知の鋳造方法でスラブとしてもよい。 The melting method for producing the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. Further, secondary refining may be performed in a vacuum degassing furnace. Then, it is preferable to use a slab (steel material) by a continuous casting method from the viewpoint of productivity and quality. Further, the slab may be formed by a known casting method such as ingot-casting rolling and thin slab continuous casting.
 鋼素材の加熱温度:1000℃以上1200℃以下
 本発明においては、粗圧延に先立ち鋼素材を加熱して、鋼素材の鋼組織を実質的に均質なオーステナイト相とする必要がある。また、粗大な介在物の生成を抑制するためには加熱温度の制御が重要となる。加熱温度が1000℃を下回ると仕上げ圧延温度が800℃以上で熱間圧延を完了させることができない。一方、加熱温度が1200℃を上回ると、特に粗大なTiを含む窒化物の生成が促進され、5.0μmを超える介在物の個数密度が増大する。そのため、鋼素材の加熱温度は1000℃以上1200℃以下とした。望ましくは1020℃以上1150℃以下である。なお、上記加熱後の粗圧延の粗圧延条件については特に限定されない。
Heating temperature of steel material: 1000 ° C. or more and 1200 ° C. or less In the present invention, it is necessary to heat the steel material prior to rough rolling so that the steel structure of the steel material becomes a substantially homogeneous austenite phase. Moreover, in order to suppress the formation of coarse inclusions, it is important to control the heating temperature. If the heating temperature is lower than 1000 ° C, the hot rolling cannot be completed at a finish rolling temperature of 800 ° C or higher. On the other hand, when the heating temperature exceeds 1200 ° C., the formation of particularly nitrides containing Ti is promoted, and the number density of inclusions exceeding 5.0 μm increases. Therefore, the heating temperature of the steel material is set to 1000 ° C. or more and 1200 ° C. or less. Desirably, it is 1020 degreeC or more and 1150 degreeC or less. In addition, it does not specifically limit about the rough rolling conditions of the rough rolling after the said heating.
 仕上げ圧延温度:800℃以上
 仕上げ圧延温度が800℃を下回ると、仕上げ圧延中にフェライト変態が開始してフェライト粒が伸展された組織となるうえ、部分的にフェライト粒が成長した混粒組織(duplex grain microstructure)となる。このため、冷間圧延時の板厚精度に悪影響をもたらし、焼鈍前の鋼組織でセメンタイトが微細に分散した形態とならない。したがって、仕上げ圧延温度は800℃以上とする。好ましくは820℃以上である。また、仕上げ圧延温度は過剰に高いとスケールの噛み混みにより表面性状が劣化するという理由で940℃以下が好ましい。
Finishing rolling temperature: 800 ° C. or more When the finishing rolling temperature is lower than 800 ° C., the ferrite transformation starts during finishing rolling, and a structure in which ferrite grains are expanded and a mixed grain structure in which ferrite grains partially grow ( duplex grain microstructure). For this reason, the thickness accuracy at the time of cold rolling is adversely affected, and cementite is not finely dispersed in the steel structure before annealing. Accordingly, the finish rolling temperature is 800 ° C. or higher. Preferably it is 820 degreeC or more. Further, if the finish rolling temperature is excessively high, the surface quality is preferably lowered to 940 ° C. or less because the surface properties are deteriorated due to the biting of the scale.
 仕上げ圧延温度から560℃までの平均冷却速度が30℃/s以上
 焼鈍前にセメンタイトを微細分散させるには、オーステナイト相をベイナイト変態させる必要がある。本発明において仕上げ圧延温度から560℃までの平均冷却速度が30℃/sを下回るとフェライト相が生成し、セメンタイトが微細分散した組織とならない。したがって、仕上げ圧延温度から560℃までの平均冷却速度は30℃/s以上とする。なお、巻取温度が560℃未満の場合、560℃~冷却停止温度までの平均冷却速度は30℃/s以上でも30℃/s未満でもよい。
The average cooling rate from the finish rolling temperature to 560 ° C. is 30 ° C./s or more. In order to finely disperse cementite before annealing, it is necessary to transform the austenite phase to bainite. In the present invention, when the average cooling rate from the finish rolling temperature to 560 ° C. is lower than 30 ° C./s, a ferrite phase is generated, and a structure in which cementite is finely dispersed is not formed. Therefore, the average cooling rate from the finish rolling temperature to 560 ° C. is set to 30 ° C./s or more. When the coiling temperature is less than 560 ° C., the average cooling rate from 560 ° C. to the cooling stop temperature may be 30 ° C./s or more or less than 30 ° C./s.
 巻取温度:Ms点以上560℃以下
 巻取温度が560℃を上回るとフェライト変態が進行するため、セメンタイトが微細分散した組織とならない。一方、マルテンサイト変態開始温度(Ms点)を下回る巻取温度ではセメンタイトが十分に析出されない。したがって、巻取温度はMs点以上560℃以下とする必要がある。好ましくは、(Ms点+50)℃以上540℃以下である。なお、Ms点は熱膨張測定装置を用いて測定した値を採用する。
Winding temperature: Ms point or more and 560 ° C. or less When the winding temperature exceeds 560 ° C., ferrite transformation proceeds, so that a structure in which cementite is finely dispersed is not formed. On the other hand, cementite is not sufficiently precipitated at a coiling temperature lower than the martensitic transformation start temperature (Ms point). Therefore, the coiling temperature needs to be Ms point or higher and 560 ° C. or lower. Preferably, it is (Ms point + 50) ° C. or higher and 540 ° C. or lower. In addition, the value measured using the thermal expansion measuring apparatus is employ | adopted for Ms point.
 続いて行う冷間圧延工程とは、上記熱間圧延工程後に熱延板を冷間圧延する工程である。所望の板厚を得るため、熱間圧延工程後の熱延板に冷間圧延を施す必要がある。冷間圧延率に制約はないが、製造ラインの制約から、冷間圧延率は30%以上80%以下とされる。 The subsequent cold rolling step is a step of cold rolling the hot-rolled sheet after the hot rolling step. In order to obtain a desired sheet thickness, it is necessary to cold-roll the hot-rolled sheet after the hot rolling process. Although there is no restriction | limiting in a cold rolling rate, the cold rolling rate shall be 30% or more and 80% or less from the restriction | limiting of a production line.
 続いて行う焼鈍工程とは、冷間圧延工程後の冷延板を100℃から(Ac点-10)℃以上の最高到達温度までの平均加熱速度が3.0℃/s以上の条件で加熱し、最高到達温度まで加熱された冷延板を560℃までの平均冷却速度が15℃/s以上の条件で冷却し、該加熱及び該冷却において(Ac点-10)℃以上に冷延板が滞留される時間を60秒以下とし、該冷却において440℃以上530℃以下に冷延板が滞留される時間を20秒以上180秒以下とする工程である。なお、Ac点は熱膨張測定装置を用いて測定した値を採用する。 The subsequent annealing step means that the cold-rolled sheet after the cold rolling step is subjected to an average heating rate of 3.0 ° C./s or higher from 100 ° C. to a maximum temperature of (Ac 3 points−10) ° C. or higher. The cold-rolled sheet heated to the maximum temperature is cooled under the condition that the average cooling rate up to 560 ° C. is 15 ° C./s or more, and is cooled to (Ac 3 points−10) ° C. or more in the heating and cooling. In this step, the time for which the rolled sheet is retained is set to 60 seconds or less, and the time during which the cold-rolled sheet is retained at 440 ° C. to 530 ° C. is set to 20 seconds to 180 seconds. Incidentally, Ac 3 point is a value measured by using a thermal expansion measuring apparatus.
 100℃から最高到達温度までの平均加熱速度:3.0℃/s以上
 100℃はCの拡散し始める温度であり、CもしくはFeが拡散する100℃以上の平均加熱速度が3.0℃/sを下回る加熱条件では、微細分散したセメンタイトが粗大化する。セメンタイトはマルテンサイト生成サイトとなるがセメンタイトが粗大化した状態では、微細なマルテンサイトを得ることができなくなる。さらに微細なマルテンサイトを得るには焼鈍中のオーステナイトの粗大化も抑制する必要がある。平均加熱速度が3.0℃/sを下回ると、オーステナイトが粗大化し所望のマルテンサイト相の平均径が得られなくなる。以上の通り、100℃から最高到達温度までの平均加熱速度が3.0℃/s以上とした。好ましい加熱速度は4.0℃/s以上である。ここで、最高到達温度は(Ac点-10)℃以上である。少なくとも(Ac点-10)℃まで加熱しなければ、フェライト相の面積率が20%以下とならない。好ましい最高到達温度はAc点以上である。なお、Ac点は、フェライトおよびオーステナイトの二相域からオーステナイト単相域となるときの温度である。
Average heating rate from 100 ° C. to the highest temperature: 3.0 ° C./s or more 100 ° C. is a temperature at which C begins to diffuse, and an average heating rate of 100 ° C. or more at which C or Fe diffuses is 3.0 ° C. / Under heating conditions below s, finely dispersed cementite becomes coarse. Cementite becomes a martensite formation site, but fine cementite cannot be obtained when cementite is coarsened. In order to obtain finer martensite, it is necessary to suppress austenite coarsening during annealing. When the average heating rate is less than 3.0 ° C./s, austenite is coarsened and a desired average diameter of the martensite phase cannot be obtained. As described above, the average heating rate from 100 ° C. to the highest temperature reached 3.0 ° C./s or higher. A preferable heating rate is 4.0 ° C./s or more. Here, the maximum temperature reached is (Ac 3 points−10) ° C. or higher. The area ratio of the ferrite phase does not become 20% or less unless it is heated to at least (Ac 3 points−10) ° C. A preferable maximum temperature is Ac 3 point or higher. In addition, Ac 3 point | piece is temperature when it becomes an austenite single phase area | region from the two-phase area | region of a ferrite and austenite.
 最高到達温度から560℃までの平均冷却速度:15℃/s以上
 上記加熱後の冷却において、560℃までの冷却速度が遅い場合、冷却過程でフェライト変態が開始し、過度にフェライト相が生成される。これを回避するには、560℃までの平均冷却速度を15℃/s以上にする必要がある。また、この冷却での冷却停止温度は特に限定されないが、通常、冷却停止温度は460~540℃になる。また、560℃になった以降の冷却停止温度までの冷却速度は特に限定されず、15℃/s以上でも15℃/s未満でもよい。
Average cooling rate from the highest temperature to 560 ° C .: 15 ° C./s or more In the cooling after the above heating, if the cooling rate to 560 ° C. is slow, ferrite transformation starts in the cooling process, and an excessive ferrite phase is generated. The In order to avoid this, the average cooling rate up to 560 ° C. needs to be 15 ° C./s or more. Further, the cooling stop temperature in this cooling is not particularly limited, but the cooling stop temperature is usually 460 to 540 ° C. The cooling rate to the cooling stop temperature after reaching 560 ° C. is not particularly limited, and may be 15 ° C./s or more and less than 15 ° C./s.
 (Ac点-10)℃以上に温度域に滞留される時間:60秒以下
 加熱及び冷却において(Ac点-10)℃以上の温度域に冷延板が滞留される時間を60秒超えとすると、焼鈍中のオーステナイトが粗大化し微細なマルテンサイトが得られなくなる。以上の観点から、(Ac点-10)℃以上の温度域に滞留される時間は60秒以下とし、50秒以下とすることが好ましい。
(Ac 3 point-10) Time to stay in the temperature range above 60 ° C: 60 seconds or less Heating and cooling (Ac 3 point-10) Over 60 seconds to stay the cold rolled plate in the temperature range above ° C As a result, the austenite during annealing becomes coarse and fine martensite cannot be obtained. From the above point of view, the time of staying in the temperature range of (Ac 3 points−10) ° C. or higher is 60 seconds or less, and preferably 50 seconds or less.
 440℃以上530℃以下の温度域に滞留される時間:20秒以上180秒以下
 ベイナイト変態を促進させ、微細なマルテンサイトを含むベイナイト組織を得るには、冷却において440℃以上530℃以下の温度域に冷延板を20秒以上滞留させる必要がある。一方で、滞留時間が180秒を超えると、過度にベイナイト相が生成され、マルテンサイト相に接しないベイナイト相が多くなる。好ましい滞留時間は25秒以上150秒以下である。
Time of residence in a temperature range of 440 ° C. or more and 530 ° C. or less: 20 seconds or more and 180 seconds or less To promote bainite transformation and obtain a bainite structure containing fine martensite, cooling is performed at a temperature of 440 ° C. or more and 530 ° C. or less. It is necessary to retain the cold-rolled plate in the region for 20 seconds or more. On the other hand, when the residence time exceeds 180 seconds, a bainite phase is excessively generated, and the bainite phase not in contact with the martensite phase increases. The preferred residence time is 25 seconds or more and 150 seconds or less.
 続いて行うめっき工程とは、上記焼鈍工程後にめっきを施し、焼鈍板上にめっき層を形成する工程である。例えば、めっき処理として、自動車用鋼板に多用される溶融めっきを行う場合には、上記焼鈍を連続溶融めっきラインで行い、焼鈍後の冷却に引き続いて溶融めっき浴に浸漬して、表面にめっき層を形成すればよい。また、上記めっき工程後に、必要に応じて、めっき層の合金化処理を行う合金化工程を設けてもよい。 The subsequent plating step is a step of performing plating after the annealing step and forming a plating layer on the annealed plate. For example, in the case of performing hot dipping that is frequently used for automotive steel plates as the plating treatment, the above annealing is performed in a continuous hot dipping plating line, followed by cooling after annealing and dipping in a hot dipping bath, and a plating layer on the surface. May be formed. Moreover, you may provide the alloying process which performs the alloying process of a plating layer as needed after the said plating process.
 表1に示す成分組成を有する肉厚250mmの鋼素材に、表2に示す熱延条件で熱間圧延工程を施して熱延板とし、表2に示す冷延条件で冷間圧延工程を施して冷延板とし、表2に示す条件の焼鈍を連続溶融めっきラインで施した。その後、めっき処理、必要に応じて合金化処理を施した。ここで、連続溶融めっきラインで浸漬するめっき浴(めっき組成:Zn-0.13質量%Al)の温度は460℃であり、めっき付着量はGI材(溶融めっき鋼板)、GA材(合金化溶融めっき鋼板)ともに片面当たり45~65g/mとし、めっき層中に含有するFe量は6~14質量%の範囲とした。Ac点およびMs点は熱膨張測定装置を用いて測定した。Ac点の測定条件は平均加熱速度5℃/sとし、Ms点の測定条件は平均加熱速度5℃/sで(Ac+10)℃まで加熱、30秒保持した後、(Ac+10)℃から300℃までの平均冷却速度が30℃/s以上とした。 A steel material having a thickness of 250 mm having the composition shown in Table 1 is subjected to a hot rolling process under the hot rolling conditions shown in Table 2 to form a hot rolled sheet, and then subjected to a cold rolling process under the cold rolling conditions shown in Table 2. Then, a cold rolled sheet was used, and annealing under the conditions shown in Table 2 was performed on a continuous hot dipping line. Then, the plating process and the alloying process were performed as needed. Here, the temperature of the plating bath (plating composition: Zn—0.13 mass% Al) immersed in the continuous hot dipping line is 460 ° C., and the amount of coating is GI (hot dip plated steel), GA (alloyed) Both the hot-dip galvanized steel sheets) were 45 to 65 g / m 2 per side, and the amount of Fe contained in the plating layer was in the range of 6 to 14% by mass. The Ac 3 point and Ms point were measured using a thermal expansion measuring device. The measurement conditions for Ac 3 points were set to an average heating rate of 5 ° C./s, and the measurement conditions for the Ms point were heated to (Ac 3 +10) ° C. at an average heating rate of 5 ° C./s and held for 30 seconds, and then (Ac 3 +10) The average cooling rate from ℃ to 300 ℃ was set to 30 ℃ / s or more.
 上記により得られた溶融めっき鋼板もしくは合金化溶融めっき鋼板から試験片を採取し、以下の手法で評価した。 Specimens were collected from the hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet obtained as described above and evaluated by the following method.
 (i)組織観察像
 各相の面積率は以下の手法により評価した。鋼板から、圧延方向に平行な断面(鋼板を置いた場合の鉛直かつ圧延方向に対し平行となる断面)が観察面となるよう切り出し、板厚中心部を1%ナイタール(nital)で腐食現出し、走査型電子顕微鏡で2000倍に拡大して板厚1/4位置を10視野分撮影した。フェライト相は粒内に腐食痕やセメンタイトが観察されない形態を有する組織であり、ベイナイト相は粒内に腐食痕や大きな炭化物が認められる組織である。マルテンサイト相は粒内に炭化物が認められず、白いコントラストで観察される組織である。これらを画像解析によりベイナイト相、ベイナイト相およびマルテンサイト相を分離し、観察視野に対する面積率を求めた。マルテンサイト相の平均径も画像解析によってマルテンサイト相の各粒が占める面積を求め、その面積と等しい相当円直径を求めた。マルテンサイト相が長さ0.5μm以下で連結した部分に対しては、その部分に連結するマルテンサイトをふたつと見なして、それぞれの相当円直径を求めた。マルテンサイト間の最大間隔長さは10視野で最も長い部分を最大長さとして求めた。上記間隔は、マルテンサイトの外周とマルテンサイトの外周とが最も近い部分の距離を意味する。
(I) Structure observation image The area ratio of each phase was evaluated by the following method. Cut out from the steel plate so that the cross section parallel to the rolling direction (the cross section perpendicular to the rolling direction when the steel plate is placed and parallel to the rolling direction) becomes the observation surface, and the center of the plate thickness is corroded with 1% nital. Then, the image was magnified 2000 times with a scanning electron microscope, and 10 positions of the 1/4 thickness were photographed. The ferrite phase is a structure having a form in which corrosion marks and cementite are not observed in the grains, and the bainite phase is a structure in which corrosion marks and large carbides are recognized in the grains. The martensite phase is a structure in which no carbide is observed in the grains and is observed with white contrast. The bainite phase, bainite phase and martensite phase were separated from each other by image analysis, and the area ratio relative to the observation field was obtained. As for the average diameter of the martensite phase, the area occupied by each grain of the martensite phase was determined by image analysis, and an equivalent circular diameter equal to the area was determined. For the portions where the martensite phases are connected with a length of 0.5 μm or less, the martensite connected to the portions is regarded as two, and the respective equivalent circle diameters were determined. The maximum distance between the martensites was determined by taking the longest portion in 10 fields as the maximum length. The said space | interval means the distance of the part where the outer periphery of a martensite and the outer periphery of a martensite are the nearest.
 (ii)引張試験
 得られた鋼板から圧延方向に対して垂直方向(直角方向)にJIS5号引張試験片を作製し、JIS Z 2241(2011)の規定に準拠した引張試験を5回行い、平均の降伏強度(YS)、引張強さ(TS)、全伸び(El)を求めた。引張試験のクロスヘッドスピードは10mm/minとした。表3において、引張強さ:780MPa以上、加工硬化指数(n値):0.16以上を本発明鋼で求める鋼板の機械的性質とした。ここで、加工硬化指数はJIS Z 2253(1996)で定める方法に従って求められる値であり、真ひずみ域が0.02から0.05から求めた。この領域はプレス加工において加工硬化の影響による亀裂発生現象に関して最も感受性が高い領域であるためである。
(Ii) Tensile test A JIS No. 5 tensile test piece was produced from the obtained steel sheet in a direction perpendicular to the rolling direction (perpendicular direction), and a tensile test in accordance with the provisions of JIS Z 2241 (2011) was performed five times. Yield strength (YS), tensile strength (TS), and total elongation (El). The crosshead speed in the tensile test was 10 mm / min. In Table 3, the tensile strength: 780 MPa or more and the work hardening index (n value): 0.16 or more were set as the mechanical properties of the steel sheet required for the steel of the present invention. Here, the work hardening index is a value determined according to the method defined in JIS Z 2253 (1996), and the true strain range was determined from 0.02 to 0.05. This is because this region is the most sensitive region regarding the crack generation phenomenon due to the effect of work hardening in press working.
 以上により得られた結果を表3に示す。 Table 3 shows the results obtained as described above.
 本発明例はいずれも、引張強さTS:780MPa以上であり高い加工硬化指数を有する鋼板が得られたことがわかる。一方、本発明の範囲を外れる比較例、特に所望のフェライト面積率が得られていなかった鋼板は引張強さが低い。マルテンサイト相の面積率および形態が所望のものでなかった場合は、加工硬化指数が低かった。さらに、巻取温度もしくは連続焼鈍ラインで本発明で定める範囲を満たしていない場合の一部は、鋼板表面の硬さは鋼板内部とほぼ変わらない結果であった。 It can be seen that in all of the inventive examples, a steel sheet having a tensile strength TS of 780 MPa or more and a high work hardening index was obtained. On the other hand, a comparative example out of the scope of the present invention, particularly a steel sheet in which a desired ferrite area ratio has not been obtained, has a low tensile strength. When the area ratio and form of the martensite phase were not desired, the work hardening index was low. Further, in some cases where the coiling temperature or the continuous annealing line did not satisfy the range defined by the present invention, the hardness of the steel sheet surface was almost the same as that inside the steel sheet.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (8)

  1.  鋼板と該鋼板上に形成されためっき層とを有する高強度めっき鋼板であって、
     前記鋼板の成分組成は、質量%で、C:0.06%以上0.18%以下、Si:0.50%未満、Mn:1.9%以上3.2%以下、P:0.03%以下、S:0.005%以下、Al:0.08%以下、N:0.006%以下、B:0.0002%以上0.0030%以下、Nb:0.007%以上0.030%以下、および下記(1)式を満たすようにTiを含有し、残部がFeおよび不可避的不純物からなり、
     前記鋼板の鋼組織は、フェライト相を面積率で20%以下(0%を含む)、ベイナイト相を面積率で35%以上90%以下、マルテンサイト相を面積率で10%以上65%以下含有し、かつ円相当径が5.0μmを超える介在物を個数密度で400個/mm以下含有し、
     前記マルテンサイト相を構成する粒状のマルテンサイトの平均粒径が3.0μm以下、マルテンサイト間の最大長さが5.0μm以下であることを特徴とする高強度めっき鋼板。
    [%N]-14[%Ti]/48≦0   (1)
    (1)式における[%N]はN含有量、[%Ti]はTi含有量を意味する。
    A high-strength plated steel sheet having a steel sheet and a plating layer formed on the steel sheet,
    The composition of the steel sheet is, by mass, C: 0.06% to 0.18%, Si: less than 0.50%, Mn: 1.9% to 3.2%, P: 0.03. %: S: 0.005% or less, Al: 0.08% or less, N: 0.006% or less, B: 0.0002% or more and 0.0030% or less, Nb: 0.007% or more and 0.030 %, And so as to satisfy the following formula (1), the balance is Fe and inevitable impurities,
    The steel structure of the steel sheet contains a ferrite phase in an area ratio of 20% or less (including 0%), a bainite phase in an area ratio of 35% to 90%, and a martensite phase in an area ratio of 10% to 65%. And inclusions with an equivalent circle diameter exceeding 5.0 μm in number density of 400 / mm 2 or less,
    A high-strength plated steel sheet, wherein an average particle diameter of granular martensite constituting the martensite phase is 3.0 μm or less and a maximum length between martensites is 5.0 μm or less.
    [% N] -14 [% Ti] / 48 ≦ 0 (1)
    In the formula (1), [% N] means N content, and [% Ti] means Ti content.
  2.  前記成分組成は、さらに、質量%で、Cr:0.001%以上0.9%以下、Ni:0.001%以上0.5%以下、V:0.001%以上0.3%以下、Mo:0.001%以上0.3%以下、W:0.001%以上0.2%以下、Hf:0.001%以上0.3%以下の1種または2種以上を含有する成分組成であることを特徴とする請求項1に記載の高強度めっき鋼板。 The component composition is further, in mass%, Cr: 0.001% to 0.9%, Ni: 0.001% to 0.5%, V: 0.001% to 0.3%, Component composition containing one or more of Mo: 0.001% to 0.3%, W: 0.001% to 0.2%, Hf: 0.001% to 0.3% The high-strength plated steel sheet according to claim 1, wherein
  3.  前記成分組成は、さらに、質量%で、REM、Mg、Caの1種または2種以上を合計で0.0002%以上0.01%以下含有することを特徴とする請求項1または2に記載の高強度めっき鋼板。 3. The component composition according to claim 1, further comprising, by mass%, one or more of REM, Mg, and Ca in total of 0.0002% to 0.01%. High strength plated steel sheet.
  4.  前記めっき層は、質量%で、Fe:5.0~20.0%、Al:0.001%~1.0%を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0~3.5%含有し、残部がZn及び不可避的不純物からなることを特徴とする請求項1~3のいずれかに記載の高強度めっき鋼板。 The plating layer contains Fe: 5.0 to 20.0% and Al: 0.001% to 1.0% by mass%, and Pb, Sb, Si, Sn, Mg, Mn, Ni , Cr, Co, Ca, Cu, Li, Ti, Be, Bi, REM, containing a total of 0 to 3.5% of one or more selected from Zn and unavoidable impurities. The high-strength plated steel sheet according to any one of claims 1 to 3.
  5.  前記めっき層が溶融めっき層、合金化溶融めっき層のいずれかであることを特徴とする請求項1~4のいずれかに記載の高強度めっき鋼板。 The high-strength plated steel sheet according to any one of claims 1 to 4, wherein the plated layer is either a hot-dip plated layer or an alloyed hot-dip plated layer.
  6.  請求項1から3のいずれかに記載の成分組成を有する鋼素材を、1000℃以上1200℃以下で加熱し、800℃以上の仕上げ圧延温度で仕上げ圧延終了後、仕上げ圧延温度から560℃までの平均冷却速度が30℃/s以上で冷却し、Ms点以上560℃以下で巻き取る熱間圧延工程と、
     前記熱間圧延工程後に熱延板を冷間圧延する冷間圧延工程と、
     前記冷間圧延工程後の冷延板を100℃から(Ac点-10)℃以上の最高到達温度までの平均加熱速度が3.0℃/s以上の条件で加熱し、最高到達温度まで加熱された冷延板を560℃までの平均冷却速度が15℃/s以上の条件で冷却し、該加熱及び該冷却において(Ac点-10)℃以上に冷延板が滞留される時間を60秒以下とし、該冷却において440℃以上530℃以下に冷延板が滞留される時間を20秒以上180秒以下とする焼鈍工程と、
     前記焼鈍工程後にめっきを施し、焼鈍板上にめっき層を形成するめっき工程と、を有することを特徴とする高強度めっき鋼板の製造方法。
    The steel material having the component composition according to any one of claims 1 to 3 is heated at 1000 ° C. or more and 1200 ° C. or less, and after finish rolling is finished at a finish rolling temperature of 800 ° C. or more, from the finish rolling temperature to 560 ° C. A hot rolling step of cooling at an average cooling rate of 30 ° C./s or more and winding at an Ms point or more and 560 ° C. or less;
    A cold rolling step of cold rolling the hot-rolled sheet after the hot rolling step;
    The cold-rolled sheet after the cold rolling step is heated under the condition that the average heating rate from 100 ° C. to (Ac 3 points−10) ° C. or higher and the highest temperature reached 3.0 ° C./s or higher. The heated cold-rolled sheet is cooled under the condition that the average cooling rate up to 560 ° C. is 15 ° C./s or more, and the time during which the cold-rolled sheet stays at (Ac 3 points−10) ° C. or higher in the heating and cooling. An annealing step in which the time during which the cold-rolled sheet is retained at 440 ° C. or more and 530 ° C. or less in the cooling is 20 seconds or more and 180 seconds or less,
    And a plating step of forming a plating layer on the annealed plate by performing plating after the annealing step.
  7.  前記めっき層は、質量%で、Fe:5.0~20.0%、Al:0.001%~1.0%を含有し、さらに、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、REMから選択する1種または2種以上を合計で0~3.5%含有し、残部がZn及び不可避的不純物からなることを特徴とする請求項6に記載の高強度めっき鋼板の製造方法。 The plating layer contains Fe: 5.0 to 20.0% and Al: 0.001% to 1.0% by mass%, and Pb, Sb, Si, Sn, Mg, Mn, Ni , Cr, Co, Ca, Cu, Li, Ti, Be, Bi, REM, containing a total of 0 to 3.5% of one or more selected from Zn and unavoidable impurities. The manufacturing method of the high intensity | strength plating steel plate of Claim 6 characterized by the above-mentioned.
  8.  前記めっき工程後に、前記めっき層を合金化する合金化工程を有することを特徴とする請求項6又は7に記載の高強度めっき鋼板の製造方法。 The method for producing a high-strength plated steel sheet according to claim 6 or 7, further comprising an alloying step of alloying the plating layer after the plating step.
PCT/JP2015/004174 2015-01-30 2015-08-20 High-strength plated steel sheet and production method for same WO2016120915A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580074947.XA CN107208235B (en) 2015-01-30 2015-08-20 High-intensitive coated steel sheet and its manufacturing method
JP2015561779A JP5979325B1 (en) 2015-01-30 2015-08-20 High strength plated steel sheet and method for producing the same
KR1020177020494A KR101968434B1 (en) 2015-01-30 2015-08-20 High-strength coated steel sheet and method for producing the same
MX2017009745A MX2017009745A (en) 2015-01-30 2015-08-20 High-strength plated steel sheet and production method for same.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-016212 2015-01-30
JP2015016212 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016120915A1 true WO2016120915A1 (en) 2016-08-04

Family

ID=56542583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004174 WO2016120915A1 (en) 2015-01-30 2015-08-20 High-strength plated steel sheet and production method for same

Country Status (5)

Country Link
JP (1) JP5979325B1 (en)
KR (1) KR101968434B1 (en)
CN (1) CN107208235B (en)
MX (1) MX2017009745A (en)
WO (1) WO2016120915A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021031703A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 Thin steel plate and production method thereof
JP2022513964A (en) * 2018-12-18 2022-02-09 ポスコ Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP2012219342A (en) * 2011-04-11 2012-11-12 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and method for producing the same
JP2013147736A (en) * 2011-12-19 2013-08-01 Kobe Steel Ltd High yield ratio and high strength steel sheet excellent in workability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966485B2 (en) 2004-08-25 2012-07-04 住友金属工業株式会社 High tensile hot dip galvanized steel sheet and its manufacturing method
JP5194878B2 (en) * 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP5418168B2 (en) * 2008-11-28 2014-02-19 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in formability, high-strength hot-dip galvanized steel sheet, and production method thereof
JP5374193B2 (en) 2009-03-11 2013-12-25 株式会社神戸製鋼所 Hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet with excellent bending workability and fatigue strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025042A1 (en) * 2009-08-31 2011-03-03 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet and process for producing same
JP2012219342A (en) * 2011-04-11 2012-11-12 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and method for producing the same
JP2013147736A (en) * 2011-12-19 2013-08-01 Kobe Steel Ltd High yield ratio and high strength steel sheet excellent in workability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022513964A (en) * 2018-12-18 2022-02-09 ポスコ Cold-rolled steel sheets with excellent workability, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP2021031703A (en) * 2019-08-20 2021-03-01 日本製鉄株式会社 Thin steel plate and production method thereof
JP7389322B2 (en) 2019-08-20 2023-11-30 日本製鉄株式会社 Thin steel plate and its manufacturing method

Also Published As

Publication number Publication date
CN107208235B (en) 2019-05-07
JP5979325B1 (en) 2016-08-24
MX2017009745A (en) 2017-10-27
KR101968434B1 (en) 2019-04-11
JPWO2016120915A1 (en) 2017-04-27
CN107208235A (en) 2017-09-26
KR20170101259A (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP6354919B1 (en) Thin steel plate and manufacturing method thereof
WO2019181950A1 (en) High-strength cold-rolled steel sheet and manufacturing method therefor
KR101913530B1 (en) High-strength galvanized steel sheets and methods for manufacturing the same
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
JP5979326B1 (en) High strength plated steel sheet and method for producing the same
JP5471837B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same
JPWO2017168962A1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
WO2016031165A1 (en) High-strength hot-dip galvanized steel sheet having superb stretch-flangeability, in-plane stability of stretch-flangeability, and bendability, and method for producing same
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
WO2015194571A1 (en) Steel sheet for hot pressing, hot-press-molded article in which said steel sheet is used, and method for manufacturing said article
KR102177591B1 (en) High-strength steel sheet and its manufacturing method
WO2017168958A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP5958668B1 (en) High strength steel plate and manufacturing method thereof
KR20200101980A (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet and their manufacturing method
KR102119017B1 (en) High strength cold rolled thin steel sheet and method for manufacturing the same
JP6264506B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JPWO2016113781A1 (en) High strength steel plate and manufacturing method thereof
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP5979325B1 (en) High strength plated steel sheet and method for producing the same
JP5988000B1 (en) High strength steel plate and manufacturing method thereof
JP5987999B1 (en) High strength steel plate and manufacturing method thereof
JP2004307992A (en) Dual-phase cold-rolled steel sheet superior in surface distortion resistance and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015561779

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177020494

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009745

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879816

Country of ref document: EP

Kind code of ref document: A1