WO2016120129A1 - Batteriezelle und batteriesystem - Google Patents

Batteriezelle und batteriesystem Download PDF

Info

Publication number
WO2016120129A1
WO2016120129A1 PCT/EP2016/051057 EP2016051057W WO2016120129A1 WO 2016120129 A1 WO2016120129 A1 WO 2016120129A1 EP 2016051057 W EP2016051057 W EP 2016051057W WO 2016120129 A1 WO2016120129 A1 WO 2016120129A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cell
battery cell
cathode
anode
Prior art date
Application number
PCT/EP2016/051057
Other languages
English (en)
French (fr)
Inventor
Martin Gerlach
Holger Reinshagen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201680007863.9A priority Critical patent/CN107278339B/zh
Publication of WO2016120129A1 publication Critical patent/WO2016120129A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery cell, comprising a prismatic cell housing having a top surface, on which a negative terminal and a positive terminal are arranged, and at least one arranged within the cell housing electrode winding having a cathode which has a cathode terminal region, and with an anode, which has an anode terminal region.
  • the invention also relates to a
  • Battery system comprising at least one battery cell according to the invention.
  • Electric vehicles are designed as well as electronic devices, such as laptops or cell phones, new battery systems will be used, are placed on the very high demands in terms of reliability, safety, performance and service life.
  • Lithium-ion battery cells have a positive and a negative electrode on which lithium ions can reversibly store in a charging process and during a discharge process and outsource again. Such a process is also called intercalation or deintercalation.
  • a battery cell usually comprises one or more electrode units, which are designed in the form of a winding.
  • An electrode unit has two foil-like electrodes, namely an anode and a cathode.
  • the electrodes are with the interposition of a separator to a Electrode winding, which is also referred to as a jelly roll, wound.
  • the two electrodes of the electrode coil are electrically connected by means of collectors with poles of the battery cell, which are also referred to as terminals.
  • a battery cell further comprises a cell housing, which consists for example of aluminum.
  • the cell housing is usually prismatic, in particular cuboid, designed and pressure-resistant. After connecting the electrodes to the terminals, an electrolyte solution is filled in the cell case.
  • Collectors are substantially perpendicular to the winding axes of the electrode winding and connect the anodes and the cathodes to the terminals of the battery cell.
  • Lithium-ion battery cells are relatively sensitive to
  • the mentioned cell housing offers protection against said environmental influences.
  • Several such battery cells can be combined to form a battery system, which is also referred to as a battery pack.
  • a battery cell which comprises a prismatic cell housing with a cover surface on which a positive terminal and a negative terminal are arranged.
  • the battery cell further comprises at least one electrode coil disposed within the cell case having an anode having an anode terminal portion and a cathode having a cathode terminal portion.
  • the cathode connection region and the anode connection region of the at least one electrode winding extend
  • the cathode connection regions and the anode connection regions of the at least two electrode windings extend side by side from the electrode windings to exactly the end face of the cell housing, which extends at right angles to the cover surface.
  • the at least two electrode windings are advantageously arranged inside the cell housing such that the anode terminal areas of the two electrode windings face one another, or that the
  • Cathode terminal portions of the two electrode coils facing each other Preferably, the cathode terminal region or the
  • Anode terminal region of the at least one electrode coil is electrically connected to a first collector, which extends between the electrode coil and the end face of the cell housing on the top surface of the cell housing and is connected to one of the terminals.
  • the at least two electrode windings are preferably electrically connected in each case to a first collector, wherein the first collectors between the electrode windings and the end face of the
  • the first collector is at least largely made of copper.
  • the first collector is connected to the anode terminal region of the anode and to the negative terminal.
  • the cell housing is cuboid-shaped and has six surfaces with three different sized surface contents, wherein each two of the six surfaces with the same surface area are opposite to each other. The face on which the anode connection areas and the
  • cathode terminal region adjacent to the top surface and has, as well as the opposite end face, a smallest
  • Anodenan gleich Society or the cathode terminal portion of the at least one electrode coil is electrically connected to a second collector, which extends between the electrode coil and a front surface of the
  • the front surfaces have a largest
  • the second collector is also electrically connected to one of the terminals.
  • each electrically connected to a second collector wherein the second collectors extend between the electrode coils and in each case a front surface of the cell housing.
  • the front surfaces have a largest surface area of the surfaces of the cell housing.
  • the second collector is at least largely made of aluminum.
  • the second collector is doing with the
  • an insulating film is provided, which extends to the end face of the cell housing.
  • the cathode and the anode are at least one intermediate layer
  • the insulating film is formed by the at least one separator.
  • a battery system is also proposed which comprises at least one battery cell according to the invention.
  • a battery cell according to the invention advantageously finds use in an electric vehicle (EV), in a hybrid vehicle (HEV), or in a plug-in hybrid vehicle (PH EV).
  • EV electric vehicle
  • HEV hybrid vehicle
  • PH EV plug-in hybrid vehicle
  • a battery cell according to the invention requires a smaller space requirement for the collectors within its cell housing.
  • the volume saved within the cell housing can be used to increase the volume of the electrode coil. As a result, the capacity of the battery cell increases with the same dimensions of the cell housing.
  • two electrode coils are to be arranged in a cell housing.
  • the collectors of the anodes run from the terminal regions of the anodes along the same end face, which has the smallest surface area of the surfaces of a cuboid cell housing, to the negative terminal.
  • these two collectors require the lowest possible volume.
  • the collectors of the cathodes are routed around the two electrode windings to the other terminal. These collectors are made relatively thin and thus also claim only a small volume.
  • Figure 1 is a schematic, perspective view of a
  • Figure 2 is a schematic perspective view of a cover plate with
  • FIG. 3 shows a schematic perspective view of a battery cell without cell housing
  • Figure 4 is a schematic frontal view of the battery cell of Figure 3 and
  • Figure 5 is a schematic, perspective, semi-transparent representation of a battery cell without collectors.
  • a battery cell 2 shown in FIG. 5 comprises a cell housing 3 which is prismatic, in the present case cuboidal.
  • the cell housing 3 is designed to be electrically conductive and, for example, made of aluminum. It is also conceivable that the cell housing 3 is not electrically conductive, in particular made of an electrically insulating material, for example
  • Plastic is made or coated with an electrically insulating material.
  • the battery cell 2 comprises a negative terminal 11 and a positive terminal 12. Via the terminals 11, 12, a voltage provided by the battery cell 2 can be tapped off. Furthermore, the battery cell 2 can also be charged via the terminals 11, 12.
  • the parallelepiped-shaped cell housing 3 of the battery cell 2 has six surfaces with three differently sized surface areas, wherein in each case two surfaces with the same surface area are opposite each other.
  • the areas with the largest area contents will be the first Front surface 33 and second front surface 34 denotes.
  • the surfaces with the smallest surface contents are referred to below as first end face 35 and second end face 36.
  • top surface 31 and bottom surface 32 Medium-sized surface contents are referred to below as the top surface 31 and bottom surface 32.
  • the top surface 31 of the cell housing 3 is formed by a cover plate 23.
  • the terminals 11, 12 are spaced from each other on the cover plate 23 of the cell case 3.
  • the negative terminal 11 is adjacent to the first end face 35
  • the positive terminal 12 is adjacent to the second end face 36.
  • the bottom surface 32 is disposed opposite the top surface 31.
  • FIG. 1 schematically shows an electrode winding 10 for a battery cell 2.
  • two such electrode windings 10 are arranged in the present case, each having two electrodes, namely a cathode 14 and an anode 16.
  • the cathode 14 and the anode 16 of the electrode coil 10 are each designed like a film and wound with the interposition of a separator about a winding axis, not shown, to each of the electrode winding 10.
  • an electrolyte is also present.
  • the film-like cathode 14 of the electrode coil 10 comprises a foil-like current conductor, which is provided with a cathodic
  • the foil-like current conductor of the cathode 14 is in the present case made of aluminum.
  • an uncoated edge of the current collector of the cathode 14 protrudes from the electrode winding 10, an uncoated edge of the current collector of the cathode 14 protrudes.
  • the uncoated edge of the current collector of the cathode 14 forms a cathode connection region 24, which is electrically connected to the positive terminal 12 of the battery cell 2.
  • the film-like anode 16 of the electrode coil 10 comprises a foil-like current conductor, which with anodic Active material is coated.
  • the foil-like current conductor of the anode 16 is made of copper in the present case.
  • an uncoated edge of the current collector of the anode 16 protrudes.
  • This uncoated edge of the current collector of the anode 16 forms an anode terminal region 26, which is electrically connected to the negative terminal 11 of the battery cell 2.
  • the anode terminal region 26 and the cathode terminal region 24 thus protrude out of the electrode winding 10 side by side on the same end face.
  • the insulating film 21 is part of the separator, which are provided between the anode 16 and the cathode 14 of the electrode coil 10.
  • FIG. 2 shows a schematic perspective view of a cover plate 23 with collectors 41, 51 for a battery cell 2.
  • the unit shown in FIG. 2 serves to receive two electrode windings 10.
  • FIG. 3 shows a perspective view of a battery cell 2 without cell housing 3.
  • the battery cell 2 in the present case comprises two electrode windings 10, but it is also conceivable that only one electrode winding 10 is provided.
  • each anode terminal region 26 of the anodes 16 of the two electrode windings 10 is connected to one of the first collectors 41, in the present case welded.
  • the first collectors 41 are made of copper in the present case.
  • the first collectors 41 run from the anode terminal regions 26 initially parallel to the first end face 35 and close to the first end face 35 on the cover plate 23.
  • the first collectors 41 are connected to the negative terminal 11.
  • the first collectors 41 are made of copper in the present case.
  • the first collectors 41 are designed here as separate parts.
  • the first collectors 41 may also be integrally formed. In this case, the anode terminal portions 26 of both electrode coils 10 are connected to the same, single first collector 41.
  • the second collectors 51 are in this case made of aluminum.
  • the second collectors 51 each have a first region 52 which runs parallel to the first end face 35 near the first end face 35 and which is connected to one of the cathode connection regions 24 of the electrode winding 10. Furthermore, each second collector 51 has a second area 53, which is connected to the positive terminal 12.
  • the second collectors 51 also each have a central region 55, which is connected to the first region 52 and to the second region 53.
  • the central regions 55 of the second collectors 51 extend parallel to the front surfaces 33, 34.
  • the central region 55 of one of the second collectors 51 is arranged between one of the electrode windings 10 and the first front surface 33, and the central region 55 of the other second collector 51 is disposed between the other electrode coil 10 and the second front surface 34.
  • the central areas 55 of the second collectors 51 are thus arranged on both sides of the two electrode windings 10.
  • the second collectors 51 are in the present case designed as separate parts.
  • the second collectors 51 may also be integrally formed. For this purpose, in each case the second regions 53 of the two second collectors 51 are connected to one another.
  • the two electrode coils 10 of the battery cell 2 are electrically connected in parallel in the present case. Insulators, not shown, are provided between the first collectors 41 and the cell housing 3 of the battery cell 2, which isolate the anodes 16 and the first collectors 41 electrically from the cell housing 3. Between the second collectors 51 and the cell housing 3 of the battery cell 2 are also not shown electrical insulators
  • FIG. 1 A frontal view of the battery cell 2 without cell housing 3 of Figure 3 is shown in Figure 4.
  • the cell housing 3 of the battery cell 2 can also be made of an electrically insulating material, for example plastic. Likewise, the cell housing 3 of the battery cell 2 may be coated with an electrically insulating material. In these cases, no insulators are required between the first collectors 41 and the cell case 3 and between the second collectors 51 and the cell case 3.

Abstract

Die Erfindung betrifft eine Batteriezelle (2), umfassend ein prismatisch ausgebildetes Zellengehäuse mit einer Deckfläche, an welcher ein negatives Terminal (11) und ein positives Terminal (12) angeordnet sind, und mindestens einen innerhalb des Zellengehäuses angeordneten Elektrodenwickel (10) mit einer Kathode, welche einen Kathodenanschlussbereich aufweist, und mit einer Anode, welche einen Anodenanschlussbereich aufweist. Der Kathodenanschlussbereich und der Anodenanschlussbereich des mindestens einen Elektrodenwickels (10) erstrecken sich nebeneinander von dem Elektrodenwickel (10) auf genau eine Stirnfläche des Zellengehäuses zu, welche rechtwinklig zu der Deckfläche (31) des Zellengehäuses verläuft. Die Erfindung betrifft auch ein Batteriesystem, welches mindestens eine erfindungsgemäße Batteriezelle (2) umfasst.

Description

Batteriezelle und Batteriesystem
Die vorliegende Erfindung betrifft eine Batteriezelle, umfassend ein prismatisch ausgebildetes Zellengehäuse mit einer Deckfläche, an welcher ein negatives Terminal und ein positives Terminal angeordnet sind, und mindestens einen innerhalb des Zellengehäuses angeordneten Elektrodenwickel mit einer Kathode welche einen Kathodenanschlussbereich aufweist, und mit einer Anode, welche einen Anodenanschlussbereich aufweist. Die Erfindung betrifft auch ein
Batteriesystem, welches mindestens eine erfindungsgemäße Batteriezelle umfasst.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie Windkraftanlagen, in Kraftfahrzeugen, die als Hybridfahrzeuge oder
Elektrokraftfahrzeuge ausgelegt sind, als auch bei Elektronikgeräten, wie Laptops oder Mobiltelefonen, neue Batteriesysteme zum Einsatz kommen werden, an die sehr hohe Anforderungen bezüglich Zuverlässigkeit, Sicherheit, Leistungsfähigkeit und Lebensdauer gestellt werden.
Hierbei finden insbesondere sogenannte Lithium-Ionen-Batteriezellen
Verwendung. Diese zeichnen sich unter anderem durch hohe Energiedichten, thermische Stabilität und eine äußerst geringe Selbstentladung aus. Lithium- Ionen- Batteriezellen weisen eine positive und eine negative Elektrode auf, an denen Lithium-Ionen bei einem Ladevorgang sowie bei einem Entladevorgang reversibel einlagern sowie wieder auslagern können. Ein solcher Vorgang wird auch als Interkalation, beziehungsweise Deinterkalation bezeichnet.
Eine Batteriezelle umfasst in der Regel eine oder mehrere Elektrodeneinheiten, welche in Form einer Wicklung ausgestaltet sind. Eine Elektrodeneinheit weist zwei folienartig ausgebildete Elektroden auf, nämlich eine Anode und eine Kathode. Die Elektroden sind unter Zwischenlage eines Separators zu einem Elektrodenwickel, welcher auch als Jelly-Roll bezeichnet wird, gewunden. Die beiden Elektroden des Elektrodenwickels werden mittels Kollektoren elektrisch mit Polen der Batteriezelle, welche auch als Terminals bezeichnet werden, verbunden.
Eine Batteriezelle weist ferner ein Zellengehäuse auf, welches beispielsweise aus Aluminium besteht. Das Zellengehäuse ist in der Regel prismatisch, insbesondere quaderförmig, ausgestaltet und druckfest ausgebildet. Nach dem Verbinden der Elektroden mit den Terminals wird eine Elektrolytlösung in das Zellengehäuse gefüllt.
Aus der EP 2 675 000 AI ist eine gattungsgemäße Batteriezelle mit mehreren Elektrodenwickeln bekannt. Die Anode und die Kathode ragen dabei jeweils an entgegengesetzten Seiten parallel zu den Wickelachsen aus den
Elektrodenwickeln heraus und sind an Kollektoren angeschlossen. Die
Kollektoren verlaufen im Wesentlichen senkrecht zu den Wickelachsen der Elektrodenwickel und verbinden die Anoden und die Kathoden mit den Terminals der Batteriezelle.
Lithium-Ionen-Batteriezellen sind verhältnismäßig empfindlich gegen
Umwelteinflüsse, insbesondere gegen Luft und Feuchtigkeit. Das erwähnte Zellengehäuse bietet Schutz gegen besagte Umwelteinflüsse. Mehrere solcher Batteriezellen können zu einem Batteriesystem, welches auch als Batteriepack bezeichnet wird, zusammengefasst werden.
Offenbarung der Erfindung
Es wird eine Batteriezelle vorgeschlagen, welche ein prismatisch ausgebildetes Zellengehäuse mit einer Deckfläche, an welcher ein positives Terminal und ein negatives Terminal angeordnet sind, umfasst. Die Batteriezelle umfasst ferner mindestens einen innerhalb des Zellengehäuses angeordneten Elektrodenwickel mit einer Anode, welche einen Anodenanschlussbereich aufweist, und mit einer Kathode, welche einen Kathodenanschlussbereich aufweist. Erfindungsgemäß erstrecken sich der Kathodenanschlussbereich und der Anodenanschlussbereich des mindestens einen Elektrodenwickels
nebeneinander von dem Elektrodenwickel auf genau eine Stirnfläche des Zellengehäuses zu, welche rechtwinklig zu der Deckfläche verläuft.
Es ist auch denkbar, mindestens zwei Elektrodenwickel mit jeweils einer Anode, welche einen Anodenanschlussbereich aufweist, und mit jeweils einer Kathode, welche einen Kathodenanschlussbereich aufweist, innerhalb des Zellengehäuses anzuordnen. Dabei erstrecken sich die Kathodenanschlussbereiche und die Anodenanschlussbereiche der mindestens zwei Elektrodenwickel nebeneinander von den Elektrodenwickeln auf genau die Stirnfläche des Zellengehäuses zu, welche rechtwinklig zu der Deckfläche verläuft.
Die mindestens zwei Elektrodenwickel sind dabei vorteilhaft derart innerhalb des Zellengehäuses angeordnet, dass die Anodenanschlussbereiche der beiden Elektrodenwickel einander zugewandt sind, oder dass die
Kathodenanschlussbereiche der beiden Elektrodenwickel einander zugewandt sind. Vorzugsweise ist der Kathodenanschlussbereich oder der
Anodenanschlussbereich des mindestens einen Elektrodenwickels elektrisch mit einem ersten Kollektor verbunden, welcher sich zwischen dem Elektrodenwickel und der Stirnfläche des Zellengehäuses auf die Deckfläche des Zellengehäuses zu erstreckt und mit einem der Terminals verbunden ist.
Wenn mindestens zwei Elektrodenwickel innerhalb des Zellengehäuses angeordnet sind, so sind die Kathodenanschlussbereiche oder die
Anodenanschlussbereiche der mindestens zwei Elektrodenwickel vorzugsweise elektrisch jeweils mit einem ersten Kollektor verbunden, wobei die ersten Kollektoren sich zwischen den Elektrodenwickeln und der Stirnfläche des
Zellengehäuses auf die Deckfläche des Zellengehäuses zu erstrecken.
Vorzugsweise ist der erste Kollektor zumindest weitgehend aus Kupfer gefertigt. Insbesondere ist der erste Kollektor dabei mit dem Anodenanschlussbereich der Anode sowie mit dem negativen Terminal verbunden. Vorzugsweise ist das Zellengehäuse quaderförmig ausgebildet und weist sechs Flächen mit drei verschieden großen Flächeninhalten auf, wobei jeweils zwei der sechs Flächen mit gleich großen Flächeninhalten einander gegenüber liegen. Die Stirnfläche, auf die sich die Anodenanschlussbereiche und die
Kathodenanschlussbereich zu erstrecken, grenzt dabei an die Deckfläche an und weist, ebenso wie die gegenüberliegende Stirnfläche, einen kleinsten
Flächeninhalt der Flächen des Zellengehäuses auf.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist der
Anodenanschlussbereich oder der Kathodenanschlussbereich des mindestens einen Elektrodenwickels elektrisch mit einem zweiten Kollektor verbunden, welcher sich zwischen dem Elektrodenwickel und einer Frontfläche des
Zellengehäuses erstreckt. Die Frontflächen weisen dabei einen größten
Flächeninhalt der Flächen des Zellengehäuses auf. Der zweite Kollektor ist dabei auch mit einem der Terminals elektrisch verbunden.
Wenn mindestens zwei Elektrodenwickel innerhalb des Zellengehäuses angeordnet sind, so sind die Anodenanschlussbereiche oder die
Kathodenanschlussbereiche der mindestens zwei Elektrodenwickel
vorzugsweise elektrisch jeweils mit einem zweiten Kollektor verbunden, wobei die zweiten Kollektoren sich zwischen den Elektrodenwickeln und jeweils einer Frontfläche des Zellengehäuses erstrecken. Die Frontflächen weisen dabei einen größten Flächeninhalt der Flächen des Zellengehäuses auf.
Vorzugsweise ist der zweite Kollektor zumindest weitgehend aus Aluminium gefertigt. Insbesondere ist der zweite Kollektor dabei mit dem
Kathodenanschlussbereich der Kathode sowie mit dem positiven Terminal verbunden.
Gemäß einer weiteren Ausgestaltung der Erfindung ist zwischen dem
Kathodenanschlussbereich und dem Anodenanschlussbereich des mindestens einen Elektrodenwickels eine Isolationsfolie vorgesehen, welche sich auf die Stirnfläche des Zellengehäuses zu erstreckt. Die Kathode und die Anode sind unter Zwischenlage mindestens eines
Separators zu dem Elektrodenwickel gewickelt. Vorteilhaft ist die Isolationsfolie dabei durch den mindestens einen Separator gebildet.
Es wird auch ein Batteriesystem vorgeschlagen, welches mindestens eine erfindungsgemäße Batteriezelle umfasst.
Eine erfindungsgemäße Batteriezelle findet vorteilhaft Verwendung in einem Elektrofahrzeug (EV), in einem Hybridfahrzeug (HEV), oder in einem Plug-In- Hybridfahrzeug (PH EV).
Vorteile der Erfindung
Eine erfindungsgemäße Batteriezelle benötigt innerhalb ihres Zellengehäuses einen geringeren Raumbedarf für die Kollektoren. Das eingesparte Volumen innerhalb des Zellengehäuses kann zu einer Vergrößerung des Volumens des Elektrodenwickels genutzt werden. Dadurch steigt die Kapazität der Batteriezelle bei gleichen Abmessungen des Zellengehäuses.
Vorteilhaft sind auch zwei Elektrodenwickel in einem Zellengehäuse anzuordnen. Die Kollektoren der Anoden verlaufen dabei von den Anschlussbereichen der Anoden an derselben Stirnfläche entlang, welche den kleinsten Flächeninhalt der Flächen eines quaderförmigen Zellengehäuses aufweist, zu dem negativen Terminal. Damit benötigen diese beiden Kollektoren das geringstmögliche Volumen. Die Kollektoren der Kathoden sind um die beiden Elektrodenwickel herum zu dem anderen Terminal geführt. Dabei sind diese Kollektoren verhältnismäßig dünn ausgeführt und beanspruchen somit ebenfalls nur ein geringes Volumen.
Kurze Beschreibung der Zeichnungen
Ausführungsformen der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert.
Es zeigen: Figur 1 eine schematische, perspektivische Darstellung eines
Elektrodenwickels für eine Batteriezelle,
Figur 2 eine schematische, perspektivische, Darstellung einer Deckplatte mit
Kollektoren für eine Batteriezelle,
Figur 3 eine schematische, perspektivische, Darstellung einer Batteriezelle ohne Zellengehäuse,
Figur 4 eine schematische Frontalansicht auf die Batteriezelle aus Figur 3 und
Figur 5 eine schematische, perspektivische, halbtransparente Darstellung einer Batteriezelle ohne Kollektoren.
Ausführungsformen der Erfindung
Eine in Figur 5 dargestellte Batteriezelle 2 umfasst ein Zellengehäuse 3, welches prismatisch, vorliegend quaderförmig, ausgebildet ist. Das Zellengehäuse 3 ist vorliegend elektrisch leitend ausgeführt und beispielsweise aus Aluminium gefertigt. Es auch denkbar, dass das Zellengehäuse 3 elektrisch nicht leitend, insbesondere aus einem elektrisch isolierenden Material, beispielsweise
Kunststoff, gefertigt ist oder mit einem elektrisch isolierenden Material beschichtet ist.
Die Batteriezelle 2 umfasst ein negatives Terminal 11 und ein positives Terminal 12. Über die Terminals 11, 12 kann eine von der Batteriezelle 2 zur Verfügung gestellte Spannung abgegriffen werden. Ferner kann die Batteriezelle 2 über die Terminals 11, 12 auch geladen werden.
Das quaderförmig ausgebildete Zellengehäuse 3 der Batteriezelle 2 weist sechs Flächen mit drei verschieden großen Flächeninhalten auf, wobei jeweils zwei Flächen mit gleich großen Flächeninhalten einander gegenüber liegen. Die Flächen mit den größten Flächeninhalten werden im Folgenden als erste Frontfläche 33 und zweite Frontfläche 34 bezeichnet. Die Flächen mit den kleinsten Flächeninhalten werden im Folgenden als erste Stirnfläche 35 und zweite Stirnfläche 36 bezeichnet. Die verbleibenden Flächen mit den
mittelgroßen Flächeninhalten werden im Folgenden als Deckfläche 31 und als Bodenfläche 32 bezeichnet.
Die Deckfläche 31 des Zellengehäuses 3 ist von einer Deckplatte 23 gebildet. Die Terminals 11, 12 sind beabstandet voneinander an der Deckplatte 23 des Zellengehäuses 3 angeordnet. Dabei liegt das negative Terminal 11 benachbart zu der ersten Stirnfläche 35, und das positive Terminal 12 liegt benachbart zu der zweiten Stirnfläche 36. Die Bodenfläche 32 ist der Deckfläche 31 gegenüber liegend angeordnet.
In Figur 1 ist ein Elektrodenwickel 10 für eine Batteriezelle 2 schematisch dargestellt. Innerhalb des Zellengehäuses 3 der Batteriezelle 2 sind vorliegend zwei derartige Elektrodenwickel 10 angeordnet, welche jeweils zwei Elektroden, nämlich eine Kathode 14 und eine Anode 16, aufweisen. Es ist aber auch denkbar, dass nur ein Elektrodenwickel 10 in dem Zellengehäuse 3 angeordnet ist. Die Kathode 14 und die Anode 16 des Elektrodenwickels 10 sind jeweils folienartig ausgeführt und unter Zwischenlage eines Separators um eine nicht dargestellte Wickelachse zu je dem Elektrodenwickel 10 gewickelt. Innerhalb des Zellengehäuses 3 ist ferner ein Elektrolyt vorhanden.
Die folienartig ausgebildete Kathode 14 des Elektrodenwickels 10 umfasst einen folienartig ausgebildeten Stromableiter, welcher mit einem kathodischen
Aktivmaterial beschichtet ist. Der folienartig ausgebildete Stromableiter der Kathode 14 ist vorliegend aus Aluminium gefertigt.
Aus dem Elektrodenwickel 10 ragt ein unbeschichteter Rand des Stromableiters der Kathode 14 heraus. Der unbeschichtete Rand des Stromableiters der Kathode 14 bildet einen Kathodenanschlussbereich 24, welcher elektrisch mit dem positiven Terminal 12 der Batteriezelle 2 verbunden ist.
Die folienartig ausgebildete Anode 16 des Elektrodenwickels 10 umfasst folienartig ausgebildeten Stromableiter, welcher mit einem anodischen Aktivmaterial beschichtet ist. Der folienartig ausgebildete Stromableiter der Anode 16 ist vorliegend aus Kupfer gefertigt.
Aus dem Elektrodenwickel 10 ragt ein unbeschichteter Rand des Stromableiters der Anode 16 heraus. Dieser unbeschichtete Rand des Stromableiters der Anode 16 bildet einen Anodenanschlussbereich 26, welcher elektrisch mit dem negativen Terminal 11 der Batteriezelle 2 verbunden ist.
Der Anodenanschlussbereich 26 und der Kathodenanschlussbereich 24 ragen somit nebeneinander an derselben Stirnseite aus dem Elektrodenwickel 10 heraus. Innerhalb des Zellengehäuses 3 erstrecken sich der
Anodenanschlussbereich 26 und der Kathodenanschlussbereich 24 von dem Elektrodenwickel 10 auf die erste Stirnfläche 35 des Zellengehäuses 3 zu.
Zwischen dem Anodenanschlussbereiche 26 und dem
Kathodenanschlussbereiche 24 des Elektrodenwickels 10 ist eine Isolationsfolie 21 angeordnet, welche den Anodenanschlussbereich 26 von dem
Kathodenanschlussbereich 24 elektrisch isoliert. Vorliegend ist die Isolationsfolie 21 Teil des Separators, welcher zwischen der Anode 16 und der Kathode 14 des Elektrodenwickels 10 vorgesehen sind.
In Figur 2 ist eine schematische, perspektivische, Darstellung einer Deckplatte 23 mit Kollektoren 41, 51 für eine Batteriezelle 2 gezeigt. Die in Figur 2 gezeigte Einheit dient zur Aufnahme von zwei Elektrodenwickeln 10.
In Figur 3 ist eine Batteriezelle 2 ohne Zellengehäuse 3 perspektivisch dargestellt. Die Batteriezelle 2 umfasst vorliegend zwei Elektrodenwickel 10, es ist aber auch denkbar, dass nur ein Elektrodenwickel 10 vorgesehen ist.
Zur elektrischen Verbindung der Anoden 16 mit dem negativen Terminal 11 sind zwei erste Kollektoren 41 vorgesehen. Dabei ist jeder Anodenanschlussbereich 26 der Anoden 16 der beiden Elektrodenwickel 10 mit je einem der ersten Kollektoren 41 verbunden, vorliegend verschweißt. Die ersten Kollektoren 41 sind vorliegend aus Kupfer gefertigt. Die ersten Kollektoren 41 verlaufen von den Anodenanschlussbereichen 26 zunächst parallel zu der ersten Stirnfläche 35 und nahe der ersten Stirnfläche 35 auf die Deckplatte 23 zu. Die ersten Kollektoren 41 sind mit dem negativen Terminal 11 verbunden. Die ersten Kollektoren 41 sind vorliegend aus Kupfer gefertigt.
Die ersten Kollektoren 41 sind vorliegend als separate Teile ausgestaltet. Die ersten Kollektoren 41 können auch einstückig ausgebildet sein. In diesem Fall sind die Anodenanschlussbereiche 26 beider Elektrodenwickel 10 mit dem gleichen, einzigen ersten Kollektor 41 verbunden.
Zur elektrischen Verbindung der Kathoden 14 mit dem positiven Terminal 12 sind zwei zweite Kollektoren 51 vorgesehen. Dabei ist jeder
Kathodenanschlussbereich 24 der Kathoden 14 der beiden Elektrodenwickel 10 mit je einem der zweiten Kollektoren 51 verbunden, vorliegend verschweißt. Die zweiten Kollektoren 51 sind vorliegend aus Aluminium gefertigt.
Die zweiten Kollektoren 51 weisen jeweils einen ersten Bereich 52 auf, welcher parallel zu der ersten Stirnfläche 35 nahe der ersten Stirnfläche 35 verläuft, und welcher mit je einem der Kathodenanschlussbereiche 24 der Elektrodenwickel 10 verbunden ist. Ferner weist jeder zweite Kollektor 51 einen zweiten Bereich 53 auf, welcher mit dem positiven Terminal 12 verbunden ist.
Die zweiten Kollektoren 51 weisen auch jeweils einen mittigen Bereich 55 auf, welcher mit dem ersten Bereich 52 und mit dem zweiten Bereich 53 verbunden ist. Die mittigen Bereiche 55 der zweiten Kollektoren 51 erstrecken sich dabei parallel zu den Frontflächen 33, 34. Dabei ist der mittige Bereich 55 von einem der zweiten Kollektoren 51 zwischen einem der Elektrodenwickel 10 und der ersten Frontfläche 33 angeordnet, und der mittige Bereich 55 des anderen zweiten Kollektors 51 ist zwischen dem anderen Elektrodenwickel 10 und der zweiten Frontfläche 34 angeordnet. Somit sind die mittigen Bereiche 55 der zweiten Kollektoren 51 also beidseitig der beiden Elektrodenwickel 10 angeordnet. Die zweiten Kollektoren 51 sind vorliegend als separate Teile ausgestaltet. Die zweiten Kollektoren 51 können auch einstückig ausgebildet sein. Dazu sind jeweils die zweiten Bereiche 53 der beiden zweiten Kollektoren 51 miteinander verbunden.
Die beiden Elektrodenwickel 10 der Batteriezelle 2 sind vorliegend elektrisch parallel geschaltet. Zwischen den ersten Kollektoren 41 und dem Zellengehäuse 3 der Batteriezelle 2 sind nicht dargestellte Isolatoren vorgesehen, welche die Anoden 16 und die ersten Kollektoren 41 elektrisch von dem Zellengehäuse 3 isolieren. Zwischen den zweiten Kollektoren 51 und dem Zellengehäuse 3 der Batteriezelle 2 sind ebenfalls nicht dargestellte elektrische Isolatoren
vorgesehen, welche die Kathoden 14 und die zweiten Kollektoren 51 elektrisch von dem Zellengehäuse 3 isolieren.
Eine Frontalansicht auf die Batteriezelle 2 ohne Zellengehäuse 3 aus Figur 3 ist in Figur 4 dargestellt.
Das Zellengehäuse 3 der Batteriezelle 2 kann auch aus einem elektrisch isolierenden Material, beispielsweise Kunststoff, gefertigt sein. Ebenfalls kann das Zellengehäuse 3 der Batteriezelle 2 mit einem elektrisch isolierenden Material beschichtet sein. In diesen Fällen sind keine Isolatoren zwischen den ersten Kollektoren 41 und dem Zellengehäuse 3 sowie zwischen den zweiten Kollektoren 51 und dem Zellengehäuse 3 erforderlich.
Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele und die darin hervor gehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche angegebenen Bereichs eine Vielzahl von Abwandlungen möglich, die im Rahmen des fachmännischen Handelns liegen.

Claims

Ansprüche
1. Batteriezelle (2), umfassend ein prismatisch ausgebildetes
Zellengehäuse (3) mit einer Deckfläche (31), an welcher ein negatives Terminal (11) und ein positives Terminal (12) angeordnet sind, und mindestens einen innerhalb des Zellengehäuses (3) angeordneten Elektrodenwickel (10) mit einer Kathode (14), welche einen
Kathodenanschlussbereich (24) aufweist, und mit einer Anode (16), welche einen Anodenanschlussbereich (26) aufweist,
dadurch gekennzeichnet, dass
der Kathodenanschlussbereich (24) und der Anodenanschlussbereich (26) des mindestens einen Elektrodenwickels (10) sich nebeneinander von dem Elektrodenwickel (10) auf genau eine Stirnfläche (35, 36) des Zellengehäuses (3) zu erstrecken, welche rechtwinklig zu der
Deckfläche (31) verläuft.
2. Batteriezelle (2) nach Anspruch 1, dadurch gekennzeichnet, dass
mindestens zwei Elektrodenwickel (10) derart innerhalb des
Zellengehäuses (3) angeordnet sind, dass die
Anodenanschlussbereiche (26) einander zugewandt sind, oder dass die Kathodenanschlussbereiche (24) einander zugewandt sind.
3. Batteriezelle (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Kathodenanschlussbereich (24) oder der Anodenanschlussbereich (26) des mindestens einen Elektrodenwickels (10) elektrisch mit einem ersten Kollektor (41) verbunden ist, welcher sich zwischen dem Elektrodenwickel (10) und der Stirnfläche (35, 36) auf die Deckfläche (31) zu erstreckt.
Batteriezelle (2) nach Anspruch 3, dadurch gekennzeichnet, dass mindestens zwei Elektrodenwickel (10) innerhalb des Zellengehäuses (3) angeordnet sind, und dass die Kathodenanschlussbereiche (24) oder die Anodenanschlussbereiche (26) der mindestens zwei
Elektrodenwickel (10) elektrisch jeweils mit einem ersten Kollektor (41) verbunden sind, wobei die ersten Kollektoren (41) sich zwischen den Elektrodenwickeln (10) und der Stirnfläche (35, 36) auf die Deckfläche (31) zu erstrecken.
Batteriezelle (2) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der erste Kollektor (41) zumindest weitgehend aus Kupfer gefertigt ist.
Batteriezelle (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Zellengehäuse (3) quaderförmig ausgebildet ist und sechs Flächen (31, 32, 33, 34, 35, 36) mit drei verschieden großen Flächeninhalten aufweist, wobei jeweils zwei Flächen (31, 32, 33, 34, 35, 36) mit gleich großen Flächeninhalten einander gegenüber liegen, und wobei die Stirnfläche (35, 36) einen kleinsten Flächeninhalt der Flächen (31, 32, 33, 34, 35, 36) des Zellengehäuses (3) aufweist.
Batteriezelle (2) nach Anspruch 6, dadurch gekennzeichnet, dass der Kathodenanschlussbereich (24) oder der Anodenanschlussbereich (26) des mindestens einen Elektrodenwickels (10) elektrisch mit einem zweiten Kollektor (51) verbunden ist, welcher sich zwischen dem
Elektrodenwickel (10) und einer Frontfläche (33, 34) erstreckt, wobei die Frontflächen (33, 34) einen größten Flächeninhalt der Flächen (31, 32, 33, 34, 35, 36) des Zellengehäuses (3) aufweisen.
Batteriezelle (2) nach Anspruch 7, dadurch gekennzeichnet, dass mindestens zwei Elektrodenwickel (10) innerhalb des Zellengehäuses (3) angeordnet sind, und dass die Kathodenanschlussbereiche (24) oder die Anodenanschlussbereiche (26) der mindestens zwei
Elektrodenwickel (10) elektrisch mit jeweils einem zweiten Kollektor (51) verbunden sind, wobei die zweiten Kollektoren (51) sich zwischen den Elektrodenwickeln (10) und jeweils einer Frontfläche (33, 34) erstrecken, wobei die Frontflächen (33, 34) einen größten Flächeninhalt der Flächen (31, 32, 33, 34, 35, 36) des Zellengehäuses (3) aufweisen.
9. Batteriezelle (2) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der zweite Kollektor (51) zumindest weitgehend aus Aluminium gefertigt ist.
10. Batteriezelle (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Kathodenanschlussbereich (24) und dem Anodenanschlussbereich (26) des mindestens einen
Elektrodenwickels (10) eine Isolationsfolie (21) vorgesehen ist, welche sich auf die Stirnfläche (35, 36) des Zellengehäuses (3) zu erstreckt.
11. Batteriesystem, umfassend mindestens eine Batteriezelle (2) nach
einem der vorstehenden Ansprüche.
12. Verwendung einer Batteriezelle (2) nach einem der Ansprüche 1 bis 10 in einem Elektrofahrzeug (EV), in einem Hybridfahrzeug (HEV), oder in einem Plug-In-Hybridfahrzeug (PH EV).
PCT/EP2016/051057 2015-01-30 2016-01-20 Batteriezelle und batteriesystem WO2016120129A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680007863.9A CN107278339B (zh) 2015-01-30 2016-01-20 电池单池和电池系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015201646.3A DE102015201646A1 (de) 2015-01-30 2015-01-30 Batteriezelle und Batteriesystem
DE102015201646.3 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016120129A1 true WO2016120129A1 (de) 2016-08-04

Family

ID=55177956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/051057 WO2016120129A1 (de) 2015-01-30 2016-01-20 Batteriezelle und batteriesystem

Country Status (3)

Country Link
CN (1) CN107278339B (de)
DE (1) DE102015201646A1 (de)
WO (1) WO2016120129A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221573A1 (de) * 2016-11-03 2018-05-03 Robert Bosch Gmbh Batteriezelle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093402A (ja) * 2000-09-14 2002-03-29 Yuasa Corp 密閉形電池
US20100279170A1 (en) * 2009-08-27 2010-11-04 Donghyun Lee Rechargeable secondary battery having improved safety against puncture and collapse
EP2538467A1 (de) * 2010-02-17 2012-12-26 Kabushiki Kaisha Toshiba Batterie und verfahren zu ihrer herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779633B2 (ja) * 2005-12-16 2011-09-28 ソニー株式会社 二次電池
US9287550B2 (en) 2012-06-11 2016-03-15 Samsung Sdi Co., Ltd. Rechargeable battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093402A (ja) * 2000-09-14 2002-03-29 Yuasa Corp 密閉形電池
US20100279170A1 (en) * 2009-08-27 2010-11-04 Donghyun Lee Rechargeable secondary battery having improved safety against puncture and collapse
EP2538467A1 (de) * 2010-02-17 2012-12-26 Kabushiki Kaisha Toshiba Batterie und verfahren zu ihrer herstellung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221573A1 (de) * 2016-11-03 2018-05-03 Robert Bosch Gmbh Batteriezelle

Also Published As

Publication number Publication date
DE102015201646A1 (de) 2016-08-04
CN107278339B (zh) 2020-10-09
CN107278339A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
EP2596540B1 (de) Batterie mit quaderförmigen zellen welche eine bipolare elektrode enthalten
EP3363059B1 (de) Zellmodul zur speicherung elektrischer energie, batterie und gehäuse
DE102016203918A1 (de) Verfahren zur Herstellung eines Elektrodenstapels, Elektrodenstapel und Batteriezelle
DE102016205160A1 (de) Batteriezelle
DE102011082288B4 (de) Energiespeichervorrichtung mit mehreren integrierten elektrischen Energiespeichern
EP3093905B1 (de) Batteriezelle und verfahren zur steuerung eines ionenflusses innerhalb der batteriezelle
WO2016120358A1 (de) Batteriezelle und batteriesystem
DE102016213221A1 (de) Batteriezelle und Verfahren zur Herstellung einer Batteriezelle
DE102016221562A1 (de) Batteriezelle und Verfahren zur Herstellung einer Batteriezelle
WO2016120359A1 (de) Batteriezelle und batteriesystem
DE102015204111A1 (de) Batteriezelle, Zellverbinder und Batteriemodul
WO2016120129A1 (de) Batteriezelle und batteriesystem
EP3096371A1 (de) Batteriezelle
DE102016221539A1 (de) Batteriezelle
EP3157077B1 (de) Batteriezelle
DE102018201288A1 (de) Batteriezelle
DE102017210326A1 (de) Batteriezelle
DE102022105602A1 (de) Batterie mit Wärmeleiter
DE102021210943A1 (de) Verfahren zur Herstellung einer Batteriezelle
DE102015205625A1 (de) Batteriezelle
WO2016120372A1 (de) Batteriezelle, verfahren zum herstellen eines elektrodenwickels für eine batteriezelle und batteriesystem
DE102021116742A1 (de) Batteriezellenanordnung und Verfahren zur Herstellung einer Batteriezellenanordnung
DE102019211927A1 (de) Batteriemodul und Verfahren zur Herstellung eines Batteriemoduls
DE102018212816A1 (de) Batteriezelle
DE102011110702A1 (de) Verfahren zur Herstellung einer elektrochemischen Zelle, eine elektrochemische Zelle und eine Energiespeichervorrichtung mit elektrochemischen Zellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16701027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16701027

Country of ref document: EP

Kind code of ref document: A1