WO2016119748A1 - 手持式动力工具及其操作方法 - Google Patents

手持式动力工具及其操作方法 Download PDF

Info

Publication number
WO2016119748A1
WO2016119748A1 PCT/CN2016/072835 CN2016072835W WO2016119748A1 WO 2016119748 A1 WO2016119748 A1 WO 2016119748A1 CN 2016072835 W CN2016072835 W CN 2016072835W WO 2016119748 A1 WO2016119748 A1 WO 2016119748A1
Authority
WO
WIPO (PCT)
Prior art keywords
working
hand
power tool
motor
held power
Prior art date
Application number
PCT/CN2016/072835
Other languages
English (en)
French (fr)
Inventor
钟红风
谢明健
张士松
庞晓丽
吴建
张锦平
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to US15/547,119 priority Critical patent/US10682750B2/en
Priority to EP16742810.1A priority patent/EP3251802A4/en
Publication of WO2016119748A1 publication Critical patent/WO2016119748A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F3/00Associations of tools for different working operations with one portable power-drive means; Adapters therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B45/00Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor
    • B23B45/02Hand-held or like portable drilling machines, e.g. drill guns; Equipment therefor driven by electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles

Definitions

  • the present invention relates to a hand-held power tool, and more particularly to a hand-held power tool having at least two work chucks, and a method of operating the hand-held power tool.
  • the working head utilized is a drill bit; for example, a screwdriver, which can be used for tightening or loosening a screw, and the working head utilized is a screwdriver head.
  • the spindle of such a hand-held power tool is usually fitted with a working collet for holding a type of work head required for work, which can have different specifications.
  • a three-jaw type chuck is used for holding a drill bit, the work chuck is made of metal, and the structure is complicated, so the weight is large; and the other work chuck is used for clamping the screwdriver bit, in the screwdriver Torque adjustment is required when the head performs the screwing operation.
  • a mechanical control mechanism is provided at the output end of the fuselage near the output shaft for torque adjustment.
  • the present invention provides a hand-held power tool that is easy to operate and has good maneuverability.
  • a hand-held power tool includes a housing including a handle grip; a motor disposed within the housing; an output shaft that is driven to rotate by the motor; and a working assembly including at least two a working chuck; a switch disposed at the handle grip for controlling the motor; at least two working chucks respectively include a working shaft, the hand-held power tool further comprising a control mechanism for locking the working assembly relative to the housing position, the control mechanism comprising Adjacent to the control member of the switch, the control member is moved relative to the housing, and the control member moves away from the working assembly to unlock the position of the working assembly and control the output shaft to be disengaged from one of the working shafts.
  • the working assembly is movably coupled to the housing such that each of the at least two working collets is switchable between a working position and a non-working position, one of the at least two working collets being in the working position
  • the working shaft of the working chuck is axially matched with the output shaft, and the remaining working chucks of the at least two working chucks are in a non-working position, and the working axes of the remaining working chucks are disposed at an angle to the output shaft.
  • the working shaft is provided with a hexagonal receiving hole for mating the working head.
  • the axes of the working axes are coplanar.
  • the axes of the working shafts are angularly disposed between 60 degrees and 130 degrees.
  • the working assembly is pivotally disposed relative to the housing, the pivot axis of the working assembly being coplanar with the output shaft axis and both being angularly disposed.
  • At least two working collets are fixedly coupled and symmetrically disposed relative to a pivot axis of the working assembly.
  • control mechanism includes a locking member disposed in linkage with the control member, the locking member being selectively detachable or mating with the working assembly.
  • control mechanism further includes an elastic member abutting the control member, the elastic member providing an elastic force for the control member to move the locking member adjacent to the working assembly.
  • the hand-held power tool further includes a clutch device disposed in linkage with the locking member, the clutch device being movably coupled to the output shaft at one end and selectively disengaging and mating with one of the working shafts at the other end.
  • the control mechanism further includes a connection member connecting the locking member and the clutch device, and a return spring is disposed between the clutch device and the output shaft.
  • the housing comprises a longitudinally extending main housing
  • the working assembly is coupled to one end of the main housing
  • the motor is disposed in the main housing away from the working assembly
  • the handle grip is disposed at an angle to the main housing
  • the hand-held power tool further includes a battery pack that is coupled to the handle and disposed away from the main housing, and the center of gravity of the hand-held power tool is located at the handle grip.
  • the main housing includes a main body portion for housing the reduction gear box, and a front end portion adjacent to the working assembly, the distance from the longitudinal axis of the main housing to the top of the front end portion being less than the distance from the top of the main body portion.
  • the distance from the longitudinal axis of the main housing to the top of the working collet when at least one of the two working collets is in the working position Less than the distance to the top of the front end.
  • the hand-held power tool further includes an in-position prompting mechanism, the in-position prompting mechanism has an engaged state and a separated state, wherein one of the at least two working chucks reaches a working position when the meshing state is At least two work chucks leave the working position.
  • the in-position prompting mechanism includes a positioning pin disposed on one of the housing and the working component, a positioning groove disposed on the other of the housing and the working component, and an elastic member abutting the positioning pin, the positioning pin may be Optionally mating or disengaging the positioning slot.
  • the control component of the hand-held power tool is adjacent to the switch and is movably disposed relative to the housing, and the control member is moved away from the working component to realize the positional locking of the working component, and the output shaft and the working shaft are controlled to be disconnected. Therefore, the control member realizes two actions with one key operation, and the operation is convenient. Moreover, the operation of the control member is consistent with the moving direction of the switch, and fits the user's operating habits, so that the operation of the hand-held power tool is controlled and the operation is safer. Since the center of gravity of the hand-held power tool is located at the grip portion of the handle, the user does not generate torque due to uneven weight distribution of the tool during operation, thereby saving labor.
  • the housing comprises a longitudinally extending main housing
  • the working component is connected to one end of the main housing
  • the motor is disposed in the main housing away from the working component
  • the handle grip is disposed at an angle to the main housing
  • the hand-held power tool is further
  • the battery pack is included, and the battery pack is connected to the handle and disposed away from the main casing, and the center of gravity of the hand-held power tool is located at the handle grip.
  • the center of gravity of the hand-held power tool is projected on the longitudinal axis of the main housing, away from the working collet and between five tenths and tenths of the longitudinal length of the main housing; preferably the center of gravity of the hand-held power tool
  • the projection on the longitudinal axis of the main housing is remote from the working collet and is located at seven tenths of the longitudinal length of the main housing.
  • control mechanism comprises a control member, a locking member, and a clutching device, the locking member being selectively engageable or disengageable from the working assembly, the clutching device being selectively engageable or disengageable from one of the working shafts; the locking member The working assembly is mated to lock the working assembly relative to the housing; the locking member is disengaged from the working assembly and the clutch device is disengaged from the working shaft, allowing the working assembly to move relative to the housing.
  • the axis of the output shaft coincides with the axis of the motor shaft.
  • the locking member extends in the direction of the output shaft.
  • the housing includes a main body portion that houses the reduction gear box, and a front end portion that houses the output shaft, the locking member includes a first end that can be mated with the working assembly, and a second end that can be mated with the reduction gear box.
  • the first end has a U-shaped end face.
  • the working assembly is provided with a groove that can be mated with the U-shaped end face.
  • the projection of the locking member in the axial direction of the output shaft at least partially overlaps the output shaft.
  • Locking piece A pair of side plates extending axially along the output shaft and interconnected are included.
  • a connector is located on an inner side of the locking member, and the connector includes a pair of side arms that are parallel to the side plates.
  • the clutch device includes a clutch sleeve slidably sleeved on the output shaft, the clutch sleeve being axially moved to mate or disengage one of the working shafts.
  • the power tool further includes a guiding device for guiding the movement of the locking member, the guiding device being disposed on the reduction gear box adjacent to the front end portion.
  • the guiding device includes a guide plate extending axially along the output shaft and a pair of guiding posts.
  • the hand-held power tool further includes an electronic torque control device for operatively adjusting the output torque of the at least one working shaft.
  • the electronic control device includes a control board and a control button electrically connected to the control board, and the control button is operable to adjust the torque output of the at least one working chuck within a preset range.
  • the control knob is placed at the end of the handle away from the working component.
  • the control board includes a resistor or capacitor that operatively controls the change in resistance or capacitance value to control the torque output of the at least one working chuck.
  • One embodiment of the present invention discloses a control method for controlling a torque output of a working shaft.
  • the handheld power tool includes a motor and a controller, and the controller outputs a first driving signal to control the motor.
  • the control method includes a first working stage and a first Second working phase: in the first working phase, the motor is operated at a predetermined value of the rotational speed to detect a motor parameter when the motor is stopped, and the controller sets a current threshold according to the motor parameter; in the second working phase, The motor is started and the motor current is detected in real time. When the motor current reaches the current threshold, the control motor current is not greater than the current threshold.
  • the handheld power tool has a work phase switch that operates the work phase switch to control the hand power tool to enter the first work phase or the second work phase.
  • the motor current is detected, and the controller calculates a voltage required to maintain the predetermined value of the rotation speed according to the detected motor current and the predetermined value of the rotation speed, and adjusts the actual voltage of the motor to the calculation.
  • the controller uses the calculated voltage as a reference voltage, and detects the actual voltage of the motor in real time, and adjusts the first driving signal output by the controller according to the difference between the actual voltage of the motor and the reference voltage.
  • the controller calculates a torque when the motor current is a current when the motor is stopped and the motor speed is a predetermined value of the rotation speed, and then calculates a torque corresponding to the torque and the motor rotation speed is 0.
  • Zero speed motor current and the zero speed motor current is determined as the current threshold.
  • the handheld power tool includes a comparator that compares the detected motor current with the current threshold, outputs a conduction signal when the motor current is less than a current threshold, and outputs a shutdown when the motor current is greater than or equal to a current threshold. And transmitting a turn-on/turn-off signal to the first drive signal output by the controller to maintain the motor current value as the current threshold.
  • the motor speed is maintained as a predetermined value of the rotating speed, and the motor current is detected.
  • the controller controls the motor to stop, thereby controlling the motor current. Greater than the current threshold.
  • the present invention also provides a current threshold setting method for a hand-held power tool, the hand-held power tool comprising a motor and a controller, the current threshold setting method comprising the steps of: maintaining a motor speed as a predetermined value of the speed; detecting the The motor current when the motor is stopped; the controller calculates the motor current as the current when the motor is stopped and the motor speed is the predetermined value of the speed; and then calculates the zero-speed motor current corresponding to the torque and the motor speed is 0, and The zero speed motor current is set to a current threshold.
  • the present invention also provides a hand-held power tool comprising: a housing; a working assembly movably coupled to the housing, comprising at least two working collets; a control mechanism for locking or releasing the working assembly relative to the housing position; a motor driven by the motor and a control circuit for controlling the motor; wherein the control circuit comprises: a motor switch, the motor is stopped when the motor switch is turned off; and a current detecting unit is used for Detecting a motor current; a controller connected to the current detecting unit, the controller setting a current threshold according to a motor current when the motor is stopped; and a storage unit connected to the controller, configured to store the current a current threshold; an electronic switch connected to the motor, the controller outputs a first driving signal to the electronic switch; a current limiting unit connected to the current detecting unit and the controller, the current limiting unit is in the motor When the current reaches the current threshold, the control motor current is not greater than the current threshold.
  • the hand-held power tool has a work phase switch connected to the controller, and the work phase switch is operated to control the hand-held power tool to enter a first work phase or a second work phase, in the first work phase,
  • the controller sets a current threshold according to the motor current that is stopped. In the second working phase, when the motor current reaches a current threshold, the current limiting unit controls the motor current to be no greater than the current threshold.
  • control circuit further includes a voltage detecting unit for detecting a voltage of the motor.
  • the controller calculates the maintaining rotation according to the detected motor current and the predetermined value of the rotating speed.
  • the voltage required for the predetermined value is used as a reference voltage, and the first driving signal is adjusted according to the difference between the detected actual voltage and the reference voltage.
  • the storage unit pre-stores a data relationship between the motor current, the torque, and the motor speed.
  • the controller calculates that the motor current is the current when the motor is stopped and the motor speed is a predetermined value of the rotation speed. Torque, then calculate the zero-speed motor current corresponding to the torque and the motor speed is 0, and determine the zero-speed motor current as the current threshold.
  • the current limiting unit has a comparator connected to the current detecting unit and the controller.
  • the comparator compares the detected motor current and current threshold, and the motor current is less than the current threshold. And outputting a turn-on signal, outputting a turn-off signal when the motor current is greater than or equal to a current threshold, and the comparator loads the turn-on/off signal into the first drive signal.
  • the hand-held power tool of the present invention and its torque control method have a first working phase and a second working phase.
  • the parameter threshold is set according to the first motor parameter during the stop; in the second working phase, when the second motor parameter reaches the parameter threshold, the second motor parameter is controlled not to be greater than the parameter threshold, so that the workpiece is consistent.
  • the depth allows for less experienced users to operate handheld power tools.
  • Another embodiment of the present invention discloses a hand-held power tool that can be operated by one hand and a method of operating the same.
  • a hand-held power tool includes: a housing; a driving mechanism disposed in the housing for driving the working head to rotate, including an output shaft and a motor, wherein the motor is coupled to the output shaft for driving the An output shaft is rotated; a switch is disposed on the housing for controlling operation of the driving mechanism; and a working assembly includes at least two working chucks for fixing the working head, the working assembly is movably coupled to the housing Each of the working chucks is switchable between a working position and a non-working position, the hand-held power tool further comprising a control mechanism for locking/releasing the working assembly relative to the housing position, the control mechanism including the locking member and the control
  • the locking member has a first position and a second position; when the locking member is in the first position, the locking member locks the position of the working assembly and mates the output shaft with the working assembly; the control member is operatively Moving to thereby control the locking member to move from the first position to the second position; when the locking member is in the second position, the locking member releases the positional
  • the control member has a third position and a fourth position; the control member moves from the third position to the fourth position
  • the control lock is moved from the first position to the second position while the control member is allowed to be reset from the fourth position to the third position when the lock member is in the second position.
  • control member is movably disposed relative to the locking member.
  • a reserved space is disposed between the control member and the locking member, and the control member can automatically reset from the fourth position to the third position by using the reserved space.
  • the locking member includes a receiving opening
  • the control member has a convex portion movable in the receiving opening, the convex portion cooperating with an edge of the receiving opening to drive the locking member to move from the first position Go to the second position.
  • the receiving opening is a notch disposed at an edge of the locking member.
  • the gap is U-shaped.
  • the locking member includes a limiting portion, and the corresponding position of the working member and the limiting portion has a limiting groove, and the limiting portion is located in the limiting groove through the limiting portion to work The component position is locked.
  • the hand-held power tool can utilize the reserved space of the locking member, so that the control member can automatically reset by using the reserved space, without being affected by whether the working chuck is switched to the preset position, thereby avoiding the output of the worker due to the electric drill.
  • the shaft is not fully engaged with the working shaft of the working head, so that the above-mentioned hand-held power tool cannot be reset due to the unlocking switch, which causes the operator to have a misunderstanding that the working head does not switch to the preset position.
  • a method of operating a hand-held power tool comprising: a housing having a handle grip; a drive mechanism; an output shaft driven to rotate by a drive mechanism; a working assembly comprising at least two work chucks; a switch Provided in the handle grip; the at least two work chucks respectively include a work shaft, the hand-held power tool further comprising a control mechanism for locking/releasing the work assembly relative to the housing position, the control mechanism comprising a control device of the movable setting; the operating method of the hand-held power tool comprises the steps of: moving the control member to allow the working assembly to move relative to the housing; rotating the working assembly to lock the working collet relative to the housing; releasing the control member The control moves and resets.
  • the method further comprises the step of: after the control member is released, the trigger switch activates the drive mechanism to mate one of the working shafts with the output shaft.
  • control member of the embodiment can be freely reset, even if a working chuck of the working assembly is rotated to a preset position during actual operation, the working shaft and the output shaft of the driving mechanism are not completely engaged, resulting in locking. The piece cannot be reset, and it will not affect the reset of the control part. This will not give the staff a misunderstanding that the working head does not switch to the preset position. As long as the worker controls the output shaft of the drive mechanism to rotate by the switch, the output shaft will be output. It will engage the working shaft of the working chuck at the working position without affecting the normal operation of the tool.
  • the embodiment of the invention also provides a hand-held power tool with better accessibility.
  • a hand-held power tool comprising: a main housing extending longitudinally; a motor disposed on the main housing; an output shaft driven by the motor; and a working assembly movably disposed relative to the main housing Including at least two working chucks, the working chucks respectively include a working shaft, the working shafts being selectively at a position engageable with the output shaft; the power tool sequentially includes a first region accommodating the motor in the longitudinal direction a second zone accommodating the output shaft, and a third zone accommodating the working axis, wherein the first zone and the second zone have a height difference to form a first step, and the second zone and the third zone have a height difference to form a second ladder.
  • the height of the third zone is smaller than the height of the second zone, and the height of the second zone is smaller than the height of the first zone.
  • the embodiment of the invention further provides a hand-held power tool, which is comfortable to operate, labor-saving, and balanced, and meets the requirements of humanized operation.
  • a hand-held power tool comprising: a main housing extending longitudinally; a motor disposed on the main housing; an output shaft driven by the motor; and a working assembly movably disposed relative to the main housing Including at least two working chucks, the working chucks respectively include a working shaft, the working shafts being selectively at a position engageable with the output shaft; the power tool sequentially includes a first region accommodating the motor in the longitudinal direction a second zone accommodating the output shaft, and a third zone accommodating the working axis, wherein the length ratio of the second zone to the first zone is between 2:5 and 3:5, and the third zone and the second zone The length ratio is less than 3:5.
  • the hand-held power tool of the embodiment of the invention has good overall coordination and light weight, and most effectively saves and utilizes the dimension in the width direction when packaging.
  • a hand-held power tool comprising: a longitudinal extension; a handle angularly connected to the extension; a motor disposed at the extension; and an output shaft driven by the motor a working assembly comprising at least two working collets, the working collets respectively comprising a working shaft, the working shaft being alternatively at a position engageable with the output shaft; the aspect ratio of the extension is Between 3 and 4.5.
  • FIG. 1 is a front elevational view of a hand-held power tool in accordance with an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the handheld power tool of FIG. 1 in a front view.
  • FIG. 3 is a perspective exploded view of the hand-held power tool of FIG. 1.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 5 is a perspective exploded view of the rack device of Figure 3.
  • FIG. 6 is a partial cross-sectional view showing the front view of the hand-held power tool of FIG. 1.
  • FIG. 7 to 9 are schematic cross-sectional views showing states of the hand-held power tool control member of FIG. 6 when moved to different positions.
  • Figure 10 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 11 is a cross-sectional view taken along line C-C of Figure 2;
  • Figure 12 is a front elevational view of a hand-held power tool in accordance with a second embodiment of the present invention.
  • Figure 13 is a front elevational view showing the internal structure of the hand-held power tool of Figure 12 with the half-shell removed.
  • FIG. 14 is a cross-sectional view showing the front view of the hand-held power tool of FIG.
  • Figure 15 is an exploded perspective view of the hand-held power tool of Figure 12;
  • Figure 16 is a perspective vertical view of the slip assembly of Figure 15.
  • Figure 17 is a schematic view showing the structure of the sliding sleeve of Figure 16 after being flattened.
  • 18 to 22 are schematic views showing a state in which the control unit of the hand-held power tool is moved to different positions according to the second embodiment of the present invention.
  • Figure 23 is a perspective view of a hand-held power tool according to a third embodiment of the present invention.
  • Figure 24 is a front elevational view of the hand-held power tool of Figure 23 with the working head removed.
  • Figure 25 is a partial left side elevational view of the hand held power tool of Figure 24.
  • Figure 26 is a front elevational cross-sectional view of the hand-held power tool of Figure 23;
  • Figure 27 is a perspective exploded view of the hand-held power tool of Figure 23 after the housing is removed.
  • Figure 28 is a top plan view of the hand-held power tool of Figure 23 with the housing removed, with the control member in the locked position.
  • Figure 29 is a cross-sectional view taken along line D1-D1 of Figure 28.
  • Figure 30 is a cross-sectional view taken along line E1-E1 of Figure 28.
  • Figure 31 is a top plan view of the hand-held power tool of Figure 23 with the housing removed, with the control member in the unlocked position.
  • Figure 32 is a cross-sectional view taken along line D2-D2 of Figure 31.
  • Figure 33 is a cross-sectional view taken along line E2-E2 of Figure 31.
  • Figure 34 is a schematic view showing the internal structure of a hand-held power tool according to a fourth embodiment of the present invention.
  • Figure 35 is a perspective exploded view of the control mechanism of Figure 34;
  • Figure 36 is a side elevational view of the control mechanism of Figure 34;
  • Figure 37 is a cross-sectional structural view of the control mechanism of Figure 36 taken along F-F;
  • Figure 38 is a cross-sectional view showing the first state of the control mechanism of Figure 36 taken along line G-G;
  • Figure 39 is a cross-sectional view showing the second state of the control mechanism of Figure 36 taken along line G-G.
  • Figure 40 is a schematic illustration of a hand-held power tool in accordance with a fifth embodiment of the present invention.
  • 41 is a circuit diagram of the hand-held power tool of FIG.
  • FIG. 43 is a graph showing the relationship between the motor current, the motor voltage, and the motor speed of the hand-held power tool of FIG.
  • FIG. 44 is a circuit diagram of a first preferred embodiment of the manual mode of the hand-held power tool of FIG.
  • 45 is a circuit diagram of a second preferred embodiment of the manual mode of the hand held power tool of FIG.
  • Figure 46 is a circuit diagram of the automatic mode of the hand-held power tool of Figure 40.
  • Figure 47 is a flow chart showing a first preferred embodiment of the manual mode of the control method of the hand-held power tool of Figure 40.
  • Figure 48 is a schematic diagram showing the first preferred embodiment of the manual mode of the control method of the hand-held power tool of Figure 40.
  • 49 is a flow chart of a second preferred embodiment of the manual mode of the control method of the hand-held power tool of FIG.
  • Figure 50 is a schematic diagram showing a second preferred embodiment of the manual mode of the control method of the hand-held power tool of Figure 40.
  • Figure 51 is a graphical illustration of the first stage of operation of the automatic mode of the hand held power tool of Figure 40.
  • Figure 52 is a graphical illustration of the second stage of operation of the automatic mode of the hand held power tool of Figure 40.
  • Figure 53 is a partial schematic view of a hand-held power tool in accordance with a sixth embodiment of the present invention.
  • Figure 54 is a schematic view showing the internal structure of the hand-held power tool of Figure 53 after moving the partial housing in the front view direction.
  • Figure 55 is a partial schematic view showing the front view of the hand-held power tool according to the seventh embodiment of the present invention.
  • Figure 56 is a partial plan view showing the hand-held power tool of Figure 55 in a plan view.
  • the hand-held power tool 100 of the present invention is provided with a housing 10 in which the housing 10 is composed of two haval-type half-shells 10a.
  • the power system includes a motor 8 housed in the casing 10.
  • the motor 8 of the present embodiment uses an electric motor, and may be replaced by other types of motors, such as a pneumatic motor, a fuel motor, and the like.
  • the housing 10 includes a main housing 12 that houses a motor 8, and a handle 14 that is coupled to the main housing 12, the main housing 12 extending in a longitudinal direction, and the handle 14 being disposed at an angle to the main housing 12.
  • the main casing 12 of the multi-function electric drill 100 is disposed substantially perpendicular to the handle 14.
  • An end of the handle 14 away from the motor 8 is provided with an energy unit for supplying energy to the motor 8.
  • the energy unit in this embodiment uses a battery pack 18, and the battery pack 18 is detachably connected to the handle 14.
  • the battery pack 18 includes a plurality of
  • the rechargeable battery housed in the battery pack case 18a is preferably a lithium battery.
  • a switch 4 and a commutation trigger 2 for manually controlling the motor 8 are provided on the handle 14 adjacent to the main casing 12.
  • the motor 8 of the present embodiment can also be selectively disposed on the handle 14.
  • An output shaft 6 driven by the motor 8 is disposed in the main casing 12.
  • the output shaft axis X1 extends longitudinally along the main casing 12, and the output shaft axis X1 coincides with the motor axis; in other alternatives The output axis X1 and the motor axis may be arranged in parallel or at an angle.
  • a transmission device 30 for decelerating is disposed between the output shaft 6 and the motor 8.
  • the reduction transmission device 30 is housed in the reduction gear box 32.
  • the reduction transmission device 30 is a gear mechanism, preferably a planetary gear mechanism.
  • the hand-held power tool 100 includes a working assembly 20 movably coupled to the housing 10; in the present embodiment, the working assembly 20 is located on the main housing 12 away from the end of the motor 8, and the working assembly 20 is pivotally disposed relative to the main housing 12, wherein
  • the pivot axis Y1 of the assembly 20 is disposed at an angle a between the output shaft axis X1 and the pivot axis Y1 is constantly in a coplanar state with the output shaft axis X1.
  • the angle ⁇ is an acute angle
  • the angular range is set between 30 degrees and 65 degrees
  • the angle ⁇ is preferably employed in the range of 45 degrees to 65 degrees.
  • the working assembly 20 includes two working collets 22, 24 that are fixedly coupled to the working collet 24 and symmetrically disposed on either side of the pivot axis Y1, the working collets 22, 24 being respectively provided with a working shaft 22a, 24a, the axes of the working shafts 22a, 24a are arranged at an angle ⁇ which is twice the angle ⁇ .
  • the axes of the working shafts 22a, 24a are in the same plane as the pivot axis Y1 and the output shaft axis X1.
  • One end of the working shafts 22a, 24a is selectively mated with the output shaft 6, and the other end is used to connect the working head.
  • the working assembly 20 When the working assembly 20 is disposed such that it pivots relative to the housing 10, at least one of the working collet 22 and the working collet 24 can be rotated to a position where its working shaft is mated with the output shaft 6, thereby being output
  • the shaft 6 drives the working shaft of the working chuck to rotate.
  • the working assembly 20 is opposite to the housing 10 about the pivot axis Y1.
  • the reciprocating rotation causes the working collet 22 and the working shaft of the working collet 24 to be selectively or alternately coupled with the output shaft 6, thereby causing the output shaft 6 to selectively drive the work of the working collets 22, 24.
  • the head is rotated.
  • One of the working collet 22 and the working collet 24 is provided for gripping the drill bit 220, and the other working collet can be designed according to actual needs, for example, can be set for clamping the screwdriver bit, or can be used for Hold a small grinding head for sanding, etc.
  • one of the working collet 22 and the working collet 24 is configured to hold the screwdriver bit 240, and the other working collet can be designed according to the actual working object.
  • the working chuck 22 is used to hold the drill bit 220
  • the working chuck 24 is used to clamp the screwdriver bit 240.
  • the multi-function drill 100 includes a control member 40 movably disposed relative to the housing 10, and a drive train disposed between the control member 40 and the working assembly 20, the movement of the control member 40 operatively driving the two working chucks through the drive train 22, 24 are interchanged between the working position and the receiving position, that is, the movement of the control member 40 operatively selectively mating the output shaft 6 with the working collets 22, 24.
  • the control member 40 is disposed on the outer side of the main casing 12.
  • the control member 40 of the present embodiment is linearly movable in the axial direction of the output shaft with respect to the housing 10, and is operatively moved to the top of the main casing 12 in the form of a slide cover. It can be used to cover a movement structure at least partially located in the housing 10.
  • those skilled in the art can also set the control member into other forms such as an operation button.
  • the drive train includes a first transmission mechanism and a second transmission mechanism.
  • the linear motion of the control member 40 operatively controls one of the working collets 22, 24 to be mated or separated from the output shaft 6 by the first transmission mechanism, and at the same time, the control member The linear motion operatively controls the pivoting of the working assembly relative to the housing 10 by a second transmission.
  • the first transmission mechanism is used to selectively control the working chucks 22, 24 to be mated or disengaged from the output shaft 6, and the second transmission mechanism is used to control the rotation of the working assembly 20 relative to the housing 10.
  • the first transmission mechanism includes a driving member 50 that is driven to rotate by the control member 40, a passive member 60 driven by the driving member, and a coupling member 28 driven by the passive member 60.
  • One end of the coupling member 28 is connected to the output shaft 6, and the other end is selectively One or the other of the working jaws 22, 24 is mated or disengaged, that is, one end of the coupling member 28 is coupled to the output shaft 6, and the other end is selectively mated or disengaged from one of the working shafts 22a, 24a.
  • the control member 40 is provided with a first driving portion
  • the driving member 50 is provided with a transmission portion that is coupled to the first driving portion.
  • the first driving portion is a groove 42 (refer to FIG. 4) disposed on the inner surface of the control member 40.
  • the driving member 50 can rotate forward or reverse around a fixed pivot axis, and the driving member is 50-position.
  • the driving member of the embodiment adopts a cam 50.
  • the cam 50 is disposed in the guide post 53 of the reduction gear box 32 by the rotation of the screw 51.
  • the cam 50 is pivoted with the center line of the guide post 53. Turn axis.
  • the transmission portion is a first connecting pin 52 disposed on the first end surface of the control member 40 on the cam 50.
  • the first connecting pin 52 is engaged with the groove 42 and the second end surface of the cam 50 opposite to the first end surface.
  • a connecting pin 54 is provided, and the connecting pin 54 and the connecting pin 52 extend in opposite directions.
  • the passive member 60 is disposed between the reduction box 32 and the main housing 12, and the first end of the passive member 60 adjacent to the cam 50 is provided with a first connecting portion that is coupled to the connecting pin 54, and the first connecting portion is configured to receive the connecting pin 54.
  • the form of the insertion hole 62 is inserted.
  • the passive member 60 is provided with a second connecting portion which is configured in the form of a card slot 64.
  • the coupling member 28 is disposed between the working assembly 20 and the output shaft 6 and is axially movable along the output shaft 6.
  • the coupling member includes a main body portion 28a and a snap portion 27 coupled to the main body portion 28a.
  • the main body portion 28a is sleeved. The form is slip-fitted to one end of the output shaft 6, and the other end is mated with the working shafts 22a, 24a of the working chucks 22, 24.
  • An elastic member is disposed on the outer periphery of the main body portion 28a.
  • the elastic member of the embodiment is provided with a compression spring 29; the engaging portion 27 is coupled to the end of the main body portion 28a adjacent to the output shaft 6 for mating with the card slot 64 of the passive member 60.
  • the connecting portion 27 is movably sleeved on the outer peripheral surface of the main body portion 28a, and the end portion of the main body portion 28a is provided with a collar (not shown) for limiting, and the engaging portion 27 can be defined on the main body portion 28a.
  • the main body portion 28a is not separated from the main body portion 28a; when the main body portion 28a is at the initial position, the engaging portion 27 abuts against the collar by the elastic member 29.
  • the recess 42 of the inner side of the control member 40, the connecting pin 52 is slidably engaged within the recess 42.
  • the groove 42 of the present embodiment is disposed as a groove in the direction in which the main casing 12 extends, and the groove includes a lateral groove portion 44 at the center and a groove portion 46a, 46b symmetrically distributed at both ends of the groove portion 44. .
  • the groove 42 houses a connecting pin 52 slidable in the groove. In the initial state, the connecting pin 52 is located at the blind end of the chute portions 46a, 46b and abuts against the groove wall.
  • the movement of the passive member 60 causes the engaging portion 27 that is engaged with the slot 64 to drive the main body portion 28a to move with the passive member 60, so that one end of the main body portion 28a that is originally engaged with the working shaft 22a of the working collet 22 is separated from the working shaft 22a. open.
  • the working assembly 20 can be allowed to pivot relative to the housing 10; when the chute portion 46a moves, the connecting pin 52 descends from the top of the chute portion 46a to the lateral groove portion 44, and the connecting pin
  • the stroke a that has passed 52 is the unlocking stroke of the control member 40.
  • the second transmission mechanism includes a rack device driven by the control member 40, a gear assembly 70 coupled to the rack device, and a transmission assembly 80 driven by the gear assembly 70 for driving the working assembly 20 relative to the housing 10. Pivot.
  • the control member 40 is further provided with a second driving portion.
  • the second driving portion of the embodiment is a driving arm 41 provided on the control member 40
  • the rack device 34 is disposed on the control member and decelerates.
  • the rack device 34 includes a retaining assembly that mates with the drive arm 41, and a rack 36 for supporting the motion device.
  • the retaining assembly has a locked state and a released state, and when the retaining assembly is in the released state, the drive arm 41
  • the drive rack device moves axially along the output shaft, and when the retaining assembly is in the locked state, the drive arm 41 cannot drive the rack device to move axially along the output shaft.
  • the retaining assembly of the present embodiment includes a pair of latch members 35, 37 rotatably disposed on the rack 36.
  • the hook members 35, 37 are axially distributed along the output shaft, and the drive arm 41 is operatively axially movable along the output shaft.
  • the hook members 35, 37 have a locking position and a release position.
  • the control member 4 drives the rack device 34 through the driving arm 41 to move parallel to the output shaft axis, when the hook member 35, One of the 37 is in the locked position, and the control member 4 cannot drive the rack device 34 to move by the driving arm 41.
  • the end of the rack 36 is formed with a notch 36a along the extending direction of the rack.
  • the two side walls 36b of the notch 36a are respectively provided with an opening 36c, and the hook members 35, 37 are opened through the rack side wall 36b.
  • the pivot 38 of the 36c is rotatably disposed in the notch 36a at one end of the rack 36.
  • the hook members 35 and 37 are respectively provided with elastic members, and the elastic members of the embodiment are provided with torsion springs 39.
  • the driving arm 41 is disposed on the inner side surface of the control member 40 and protrudes toward the inside of the casing 10.
  • the hook members 35, 37 have a pre-stress that protrudes from the control member 40 toward the notch 36a by the torsion spring 39.
  • the hook portion 35a of the first hook member 35 is driven
  • the abutting action of the boom 41 is rotated inwardly against the urging force of the torsion spring 39 to the projecting notch 36a.
  • the first and second hook members 35, 37 are supported on the support surface 32a of the reduction gear box 32, and the driving arm 41 acts on the first and second hook members 35. Between 37, the rack device 34 is driven to move in the direction indicated by the arrow M as a whole.
  • the control member 40 moves relative to the housing 10, and when the connecting pin 52 moves into the position intersecting the lateral groove portion 44 in the first oblique groove portion 46a, the unlocking stroke a is completed, and the working assembly 20 allows the opposing housing 10 to pivot.
  • the current position of the control member 40 in Fig. 7 is the initial position at which the drive arm 41 begins to drive the overall movement of the rack device 34. At this time, the control member 40 is further moved in the direction indicated by the arrow M, and the driving arm 41 approaches the second hook member 37.
  • the connecting pin 52 starts to move in the lateral groove portion 44 at a position where the first oblique groove portion 46a intersects the lateral groove portion 44, and abuts against the second oblique groove portion 46b, and the connecting pin 52 is horizontally
  • the movement stroke b of the groove portion 44 is the switching stroke of the control member 40, and the working assembly 20 is rotated relative to the housing 10 about the pivot axis Y1.
  • the driving arm 41 presses against the second hook member 37 such that the hook portion 37a protrudes toward the inner side of the rack slot 36a against the elastic force, and the hook portion 37a is disengaged from the supporting surface 32a.
  • the control member 40 drives the arm 41 to be disengaged from the hook portion 37a, and the control member 40 is no longer driven to move the rack device 34 as a whole.
  • the movement stroke b of the connecting pin 52 at the lateral groove portion 44 does not cause further rotation of the cam 50 about the center line of the guide post 53 and further movement of the moving member 60, and the working assembly 20 is rotated 180 degrees with respect to the housing 10.
  • the connecting pin 52 drives the cam 50 around the center line of the guiding post 53.
  • R2 side Turn to the direction.
  • the rotation of the cam 50 causes the passive member 60 to move in the opposite direction to the movement of the control member 40.
  • the passive member 60 pushes the engaging portion 27 against the force of the compression spring 29 and drives the main body portion 28a to move closer to the working collet, so that the main body portion 28a is restored from the position of the working shaft 22a of the working collet 22 to be disengaged.
  • the compression spring 29 of the present embodiment functions as a return spring at the same time. Since the main body portion 28a is coupled to the working shaft 24a to perform the function of transmitting torque, the mating end of the working shaft is usually set as a spline tooth, and the main body portion The mating end of the 28a is correspondingly arranged to receive the spline groove of the spline tooth (refer to FIG. 11). When the main body portion 28a is returned to the working shaft 24a, the spline tooth is due to manufacturing tolerances and the like.
  • the spline groove may have an angular misalignment, that is, the mating end spline teeth of the working shaft 24a are not received in the spline groove of the main body portion 28a, but at the main body portion 28a at the force of the spring 29, the mating end thereof The spline groove abuts against the working shaft spline tooth.
  • the control member 40 is moved from the initial position to the extreme position in the moving direction such that the output shaft 6 is disengaged from one of the at least two working collets 22, 24 and the other of the at least two working collets 22, 24 is pivoted to The position at which the output shaft 6 is mated.
  • the output shaft 6 is first disengaged from one of the at least two working collets 22, 24, and then the working assembly 20 is pivoted relative to the housing 10, and finally the output shaft 6 mating with the other of the at least two work chucks 22, 24.
  • control member 40 completes a complete one-way slip relative to the housing 20 along arrow M, i.e., completes at least two of the working collet 22 and the working collet 24 at different positions.
  • the control member 40 is moved from an initial position near the working assembly 20 to an extreme position away from the working assembly 20 in a direction parallel to the output shaft such that the output shaft 6 is disengaged from one of the at least two working collets 22, 24.
  • the other of the at least two working collets 22, 24 is pivoted to a position that mates with the output shaft 6.
  • the output shaft 6 is disengaged from one of the at least two working collets 22, 24, and then the working assembly 20 is pivoted relative to the housing 10, and finally the output shaft 6 is The other of the at least two work chucks 22, 24 is mated.
  • control member 40 If the control member 40 is reversely moved in the direction parallel to the axis of the output shaft as indicated by the arrow M, a complete slip is completed, and the working chuck 22 and the working chuck 24 can be made through the first transmission mechanism and the second transmission mechanism.
  • the position is again switched, that is, replaced by the work collet 24 to be driven by the output collet 22 to be coupled to the output shaft 6 and rotated by the output shaft 6, which will not be described herein.
  • the gear assembly 70 is disposed within the main housing 12, and the transmission assembly 80 is disposed between the main housing 12 and the working assembly 20.
  • the gear assembly 70 includes a large gear 72 that meshes with the rack 36, and a pinion 74 that is coaxially fixed to the large gear 72 via a connecting shaft 71.
  • the pinion 74 of the present embodiment is provided as a helical gear.
  • the transmission assembly 80 includes a transmission gear 82 that meshes with the pinion gear 74, and a transmission arm 84 that is coupled to the transmission gear 82.
  • the transmission gear 82 is also disposed as a helical gear, and the helix angles of the pinion gear 74 and the transmission gear 82 are set to 45 degrees to achieve space staggered shaft drive.
  • the transmission arm 84 is coupled to the working assembly 20 such that when the rack 36 drives the large gear 72 to rotate, the pinion 74 produces a corresponding rotation, thereby driving the transmission gear 82 to rotate about its axis, and the transmission gear 82 rotates to drive the transmission arm 84.
  • the working assembly 20 is rotated about the axis of the transmission gear 82.
  • the axis of the transmission gear 82 is coaxial with the pivot axis Y1 of the working assembly 20, and the transmission arm 84 is provided as a transmission hook.
  • the hand-held power tool 200 of the second embodiment of the present invention has a similar structure to that of the first embodiment, and the same structure is not described repeatedly.
  • the different structures are specifically described below.
  • the hand-held power tool 200 has a housing 210, which is composed of two Hough-type half-shells 210a.
  • the motor 208 is received in the main housing 212.
  • One end of the handle portion 214 is disposed at an angle to the main housing 212, and the angle is about 90 degrees.
  • the battery pack 218 is detachably connected to the other end of the handle portion 214, and the battery pack 218 includes a plurality of rechargeable batteries.
  • the switch 204 and the reverse trigger for manually controlling the motor 208 are disposed on the handle portion 214 near the main housing 212. 202.
  • An output shaft 206 driven by a motor 208 is disposed within the main housing 220, and the output shaft axis X2 coincides with the motor axis.
  • the output shaft 206 and the motor 208 are provided with a transmission 230 for deceleration, and the transmission 230 is housed in the reduction box 232.
  • the hand-held power tool 200 includes a working assembly 20' movably coupled to the housing 210; the working assembly 20' is pivotally disposed relative to the main housing 212.
  • the pivot axis Y2 of the working assembly 20' is disposed at an angle a between the output shaft axis X2.
  • the two working collets 22, 24 of the working assembly 20' are fixedly connected and symmetrically disposed on either side of the pivot axis Y2, and the working collets 22, 24 are respectively provided with working shafts 22a, 24a, respectively, on which the working shafts 22a, 24a are
  • the center line in the extension direction is set at an angle ⁇ .
  • Working chuck 22 For holding the drill bit 220, the work chuck 24 is used to clamp the screwdriver bit 240.
  • the main housing 212 is provided with a slip assembly including a control member movably disposed outside the main housing 212 and a sliding member disposed inside the main housing 212.
  • a drive train is disposed between the control member and the work assembly 20'. Through the drive train, the movement of the control member operatively drives the work assembly 20' to pivot, thereby enabling the two work chucks 22, 24 to be mutually interchangeable.
  • the drive train includes a slide member driven by the control member, and a rotary member driven to rotate by the slide member.
  • One end of the slide member is coupled to the output shaft 206, and the other end is selectively detachable or mated with one of the work chucks.
  • the rotating member is used to drive the working assembly 20' to pivot relative to the housing.
  • the control member 250 of the present embodiment is also movably disposed at the top of the main casing 212 in the form of a slide, and the slidable member is movably disposed inside the main casing 212 in the form of a sleeve 252.
  • the rotating member 260 is driven to rotate by a sleeve 252, wherein the sleeve 252 is fixedly coupled to the control member 250 via the connecting portion 251.
  • the sleeve 252 is circumferentially provided with a guide groove 254 that is clearance-fitted with the output shaft 206 such that the sleeve 252 does not rotate with the output shaft 206 when the output shaft 206 is rotated by the motor 208.
  • the output shaft 206 of the embodiment includes a first shaft 2061 and a second shaft 2062.
  • the first shaft 2061 is provided with a slot 206a
  • the second shaft 2062 is provided with a key 206b.
  • the second shaft 2062 is movably coupled to the second shaft 2062.
  • the first shaft 2061 rotates to rotate the second shaft 2062 together, and the second shaft 2062 linearly moves relative to the first shaft 2061 along the output shaft axis X2.
  • the first shaft 2061 and the second shaft 2062 are respectively provided with convex shaft portions 2061a and 2062a protruding in the radial direction at substantially intermediate positions in the extending direction, and the rotating member 260 is sleeved on the outer side of the convex shaft portions 2061a and 2062a of the output shaft and
  • the output shaft 206 is clearance-fitted, and the rotation of the output shaft 206 does not drive the rotating member 260 to rotate.
  • the rotating member 260 includes a gear portion 263 and a supporting sleeve 264 fixedly coupled to the gear portion 263.
  • the outer surface of the supporting sleeve 264 is provided with a positioning rib 265 protruding radially outward.
  • the outer periphery of the support sleeve 264 is further provided with a pair of supporting bearing bearings 268.
  • the positioning bearing 268 is engaged with the main housing 212 so that the positioning bearing 268 can rotate relative to the main housing 212 but cannot move relative to the main housing 212.
  • 268 is disposed on the same side of the positioning rib 265.
  • One of the positioning bearings 268 abuts the positioning rib 265 to restrict the movement of the rotating member 260 relative to the main housing 212, but the rotating member 260 is rotatable relative to the main housing 212.
  • the gear portion 263 is disposed in a ring shape, the gear portion 263 is sleeved on the end of the support sleeve 264, and the support sleeve 264 and the ring gear portion 263 are fixedly connected by a pin 267. One end of the pin 267 extends into the annular hole 266 of the gear portion 263 and The guide grooves 254 of the sleeve 252 are engaged.
  • the sleeve 252 is coupled to the connecting portion 2062b of the second shaft 2062 by the collar 256, that is, The sleeve 252 is fixed between the convex shaft portion 2062a of the second shaft 2062 and the collar 256; when the control member 250 is in the initial position, the sleeve 252 is mated with one of the working shafts 22a, 24a of the working chuck, so that Motor 208 can drive a working collet that mates with sleeve 252. When the control member 250 drives the sleeve 252 to move from the initial position, the sleeve 252 moves together with the second shaft 2062 relative to the first shaft 2061.
  • the sleeve 252 is first disengaged from one of the working shafts 22a, 24a. Further, the control member 250 is further moved to pivot the rotating member 260 relative to the main housing 212 about the output shaft axis X2. Since the working assembly 20' is correspondingly provided with a gear portion (not shown) that meshes with the gear portion 263, such a structure causes the rotating member 260 to rotate about the output shaft axis X2 to drive the working assembly 20' about the pivot axis. Y2 rotates.
  • the convex shaft portion 2062a of the output shaft second shaft 2062 is provided with an annular groove 208 which functions as a connecting portion 2061b of the first shaft 2061 when the second shaft 2062 moves relative to the first shaft 2061 and approaches.
  • the utility model can extend into the annular groove 2062c, and the design can reduce the extension length of the main casing 212, the overall volume becomes smaller, the weight becomes lighter, and the hand-held power tool is lighter in operation.
  • annular guide groove 213 is disposed on a portion of the main casing 212 adjacent to the working component 20'.
  • the working component 20' is provided with a mounting plate 26 engaged with the guide groove 213.
  • the mounting disk 26 rotates within the annular guide groove 213, such a structure makes the rotation more flexible.
  • the guide groove 254 of the present embodiment is composed of two Y-shaped grooves 2540, 2550 which are juxtaposed and connected in series.
  • the first Y-shaped groove 2540 includes a linear groove 2541, and a diagonal groove 2542, 2543 extending from the linear groove 2541 to the both sides.
  • the second Y-shaped groove 2550 includes a linear groove 2551, and the linear groove 2551 is opposite to the sides. Extended diagonal slots 2552, 2553.
  • the extended end of the oblique groove 2542 is in communication with the extended end of the oblique groove 2552, and the extended end of the oblique groove 2553 is in communication with the extended end of the inclined groove 2543.
  • control member 250 is further moved to the limit position in the direction indicated by the arrow M1, and the pin 267 is slid into the oblique groove 2542 at the end of the linear groove 2541, and is approached to the end of the oblique groove 2542.
  • the sleeve 252 drives the rotating member 260 to rotate about the output shaft axis X2.
  • the rotating member 260 drives the working assembly 20' to rotate about the pivot axis Y2 through the gear portion 263, in the process, the working assembly 20' is pivoted about the pivot axis Y2 is rotated through 90 degrees, and control member 250 has now moved to a preset extreme position that is movable relative to main housing 212.
  • the cylinder 252 drives the rotating member 260 to further rotate about the output shaft axis X2, and the working assembly 20' is rotated 90 degrees again about the pivot axis Y2, that is, the working assembly 20' is rotated 180 degrees around the pivot axis Y2, and the working chuck 22 is rotated to work location.
  • control member 250 reciprocates in a direction parallel to the axis of the output shaft, and at least two of the working heads of the working assembly 20' are switched at different positions. It will be appreciated by those skilled in the art that the control member 250 is moved to the extreme position in an initial position parallel to the output shaft axis and moved from the extreme position in the opposite direction to the initial position such that the output shaft 206 and the at least two working collets 22, 24 One of the disengagements, the other of the at least two working collets 22, 24 pivots to a position engageable with the output shaft 206.
  • the output shaft 206 is disengaged from one of the at least two working collets 22, 24, and then the working assembly 20 is pivoted relative to the housing 10; the control member 250 During movement to the initial position in the extreme position, the working assembly 20 pivots relative to the housing 10, and then the output shaft 206 mates with the other of the at least two working collets 22, 24.
  • a hand-held power tool 300 is another variation of the first embodiment.
  • the same structures are denoted by the same reference numerals and will not be described repeatedly, and the different structures will be described in detail below.
  • the hand-held power tool 300 includes a control mechanism 330 for locking the position of the working assembly 20 relative to the housing 310. Only when the control mechanism 330 releases the locking of the working assembly 20, the working assembly 20 can be rotated relative to the housing 310 about the pivot axis Y3, thereby allowing the working collets 22, 24 to be switched between the working position and the inoperative position, respectively.
  • the other of the working collets 22, 24 is in an inoperative position at an angle to the axial direction of the output shaft.
  • the housing 310 includes a main housing 312 extending longitudinally, the working assembly 20 is movably disposed at one end of the main housing 312, the motor 8 is disposed within the main housing 312 remote from the working assembly 20, and the output shaft 316 extends longitudinally from the main housing Within body 312, output shaft axis X1 coincides with the motor axis.
  • the hand-held power tool 300 is further provided with a work light 320.
  • the work light 320 of the embodiment of the present invention is disposed at a portion of the main casing 312 near the working component 20, and the work light 320 can be used for illuminating under insufficient lighting conditions.
  • the work area in front of the hand-held power tool 300 preferably uses an LED light.
  • the work light 320 is controlled by the switch 4; of course, the work light 320 can be independently controlled in other ways, and selectively turned on according to the working conditions.
  • the work chucks 22, 24 are respectively provided with working shafts 22a, 24a.
  • the working shafts 22a, 24a are respectively provided with hexagonal receiving holes for fitting the working head (only the receiving holes 24b of the working shaft 24a are shown), so that the screwdriver bits and the drill bits with the hexagonal shank are provided. It can be quickly installed or disassembled, eliminating the need for a lock-up or release operation such as a three-jaw work chuck.
  • the structural improvement of the working chucks 22, 24 makes the overall structure of the working assembly 20 more compact.
  • the handle 14 has a center line extending in the extending direction thereof, and the angle ⁇ between the handle center line and the output shaft axis X1 is substantially the same as ⁇ , that is, the working axis of the working chuck 22 in the inoperative position is substantially the center of the handle.
  • the lines are parallel. This arrangement makes the hand-held power tool more reasonable in gravity and more compact in structure.
  • the free end of the working collet 22 when in the working position is the starting position of the whole length of the hand-held power tool 300, and the end position of the housing 310 away from the working collet 22 as the end position of the whole length L1 is hand-held.
  • the distance from the center of gravity G of the power tool 300 to the free end of the working chuck 22 is L2, which is about 5/10 to 8/10 of the length L1 of the whole machine.
  • the distance L2 is about 7 of the length L1 of the whole machine.
  • the position of the center of gravity G of the hand-held power tool 300 is disposed near the grip portion of the handle 14, so that the hand tool can avoid the operator's wrist due to the center of gravity approaching the work assembly 20 during operation. Produces torque and reduces operating fatigue.
  • This embodiment The hand-held electric power tool 300 is light in weight and easy to carry.
  • the longitudinal axis of the main casing 312 coincides with the output shaft axis X1
  • the main casing 312 includes a main body portion accommodating the motor 8 and the reduction gear box 32 in the longitudinal extension direction thereof, and is disposed adjacent to the working assembly 20 and used for The front end portion of the control mechanism 330 is housed.
  • the distance from the longitudinal axis to the top of the main body portion of the main casing 312 is H1; the distance from the longitudinal axis to the top of the front end portion of the main casing 312 is H2; when one of the working collets of the working assembly 20 is in the working position, the longitudinal axis is at that The distance from the top of the working chuck at the working position is H3; in this embodiment, the distance H3 is smaller than the distance H2, and the distance H2 is smaller than the distance H1.
  • the height of the housing of the main housing 312 is such that when the working head housed in the working chuck performs work in a narrow space or a special angular position, the accessibility of the working head to the workpiece is good, and the working head is prevented from being affected by the volume of the main housing. Or the shape is limited and cannot enter the space.
  • a control knob 318 for controlling the torque is disposed near the end of the handle 14 of the battery pack 18.
  • the collet head 240 is clamped in the working collet 24 for performing the screwing operation.
  • the adjustment control button 318 adjusts the output torque required for the screwdriver bit 240 to perform the work.
  • control button 318 is electrically connected to the control board 317 disposed in the handle 14.
  • the control board 317 is integrated with an adjustable resistor or capacitor.
  • the operation control button 318 can change the resistance or capacitance value, and the control board 317 can be realized.
  • Torque adjustment is performed electronically. Compared with the conventional arrangement, that is, the mechanical device is disposed in the main casing and the torque is mechanically adjusted, the electronic mode of the present embodiment controls the torque in a small manner, so that the structure is more compact and the weight of the tool is reduced; The internal space makes the tool body smaller and more flexible.
  • the control mechanism 330 includes a control member 301 disposed on the handle 14 for manual operation, an elastic member 302 disposed between the control member 301 and the housing 310, wherein the elastic member 302 and the control member 301 The elastic abutment causes the control member 301 to remain in the locked position under normal conditions.
  • the control member 301 is disposed adjacent to the switch 4 and moved relative to the housing 310. Specifically, the moving direction of the control member 301 is parallel to the output shaft axis X1.
  • the control member 301 includes an unlocking button 301a exposed to the housing 310, and a mating portion extending into the housing 310. The mating portion includes a pair of connecting posts 301b.
  • the mating portion is located between the switch 4 and the reduction box 32.
  • the control member 301 is moved away from the working assembly 20 to effect positional locking of the disengaged assembly 20 and to control the output shaft 306 to be disengaged from one of the working shafts 22a, 24a.
  • the control member 301 is arranged in such a manner that the operator can simultaneously perform the movement of the grip handle 14 and the control control member 301 with the hand holding the handle 14, and also performs the operation of the switch 4 with the same hand.
  • the operator's other hand can perform other tasks such as position conversion of the work chucks 22, 24 without Frequent replacement of your hands.
  • the moving direction when the control member 301 is unlocked conforms to the user's operating habits, that is, the control member 301 is moved away from the working component 20, the positional locking of the working component 20 relative to the housing 310 is released, and the control member 301 approaches the working component.
  • the 20 direction moves to lock the position of the working assembly 20 relative to the housing 310.
  • the control mechanism 330 also includes a locking member 303 that is driven by the control member 301, and a connector 305 that is driven by the locking member 303.
  • the locking member 303 of the present embodiment is provided as a double-head locking plate, and an end surface of the double-head locking plate adjacent to the working assembly 20 is disposed in an inverted U shape, and the double-head locking plate includes a pair of sides extending in the direction of the output shaft and connected to each other Board 304.
  • the inverted U-shaped end surface is selectively mated or disengaged from the working assembly 20, and when the U-shaped end surface is mated with the working assembly 20, the working assembly 30 is locked to the casing 310; when the U-shaped end surface is disengaged from the working assembly 20
  • the elastic member 302 provides the elastic force of the control member 301 to move the locking member 303 near the working assembly 20, the working assembly 30 is released from the locking position; thereby the position of the working chuck can be rotated relative to the housing 310 about the pivot axis Y3.
  • a clutch device that is coupled to the connecting member 305 is disposed between the working assembly 20 and the output shaft 316.
  • the clutch device of the present embodiment is disposed to be a sleeve 307 that is movably sleeved on the output shaft 316.
  • One end of the clutch sleeve 307 adjacent to the output shaft 316 is provided with a return spring 308, and one end of the clutch sleeve 307 remote from the output shaft 316 can be axially mated or disengaged from one of the working shafts 22a, 24a.
  • Each of the side plates 304 has a receiving groove 304a.
  • the receiving groove 304a is oppositely disposed to be respectively engaged with the connecting post 301b of the control member 301.
  • the side plate 304 is also provided with a pair of oppositely disposed card slots 304b.
  • the connecting member 305 is received in the space formed by the locking member 303 and mated with the locking member 303.
  • the connector 305 includes a pair of side arms 306, and a cross arm connecting the side arms 306; wherein the side arms 306 are located inside the pair of side panels 304 and are parallel to the side panels 304, the cross arms being substantially perpendicular to the side arms 306,
  • the cross arm is provided with a U-shaped notch 306b that is engaged with the clutch sleeve 307, and the side arm 306 is provided with a latching portion 306a protruding laterally outwardly for mating with the side plate 304 slot 304b.
  • the control member 301, the locking member 303, the connecting member 305, and the clutch sleeve 307 of the control mechanism 330 are connected such that when the operator overcomes the force of the elastic member 302 and the return spring 308, the control member 301 is pushed away from the working assembly 20.
  • the control member 301 drives the double-head lock plate to move parallel to the output shaft 316, and the double-head lock plate moves to move the connecting member 305 in the same direction, thereby driving the clutch sleeve 307 away from the output shaft 316.
  • the direction of the working assembly 30 slips to disengage from one of the working shafts 22a, 24a.
  • the operator can release the control member 310.
  • the control member 310 automatically returns to the locked position under the action of the elastic member 302;
  • the clutch sleeve 307 automatically returns to a position mated with one of the working shafts 22a, 24a under the force of the return spring 308, so that the working assembly 20 is locked with respect to the position of the casing 310.
  • the motor is operated by the trigger switch 4. Drive the work head to perform the corresponding work.
  • the control mechanism 330 is disposed such that when the control member 301 is in the locked position, the output shaft 316 and one of the working shafts 22a, 24a are not only mated, but the locking member 303 locks the position of the working assembly 20 relative to the housing 310. Therefore, when the working head performs the specific drilling or screwing operation, the working component 20 is prevented from shaking relative to the housing 310, and the work is more stable and more precise.
  • the hand-held power tool 300 is also provided with an in-position prompting mechanism.
  • the in-position prompting mechanism of this embodiment is disposed between the working component 20 and the housing 310.
  • the in-position prompting mechanism has an engaged state and a separated state. When the meshing state, one of the at least two working chucks is in the working position, and in the separated state, at least two working chucks are in the inoperative position.
  • the in-position prompting mechanism includes a positioning pin 309 disposed on the housing, an elastic member 311 abutting the positioning pin 309, and a positioning groove 26a disposed in the mounting plate 26 of the working assembly 20.
  • the positioning pin 309 always maintains a tendency to bias the mounting disk 26 under the action of the elastic member 311.
  • the locating pin 309 is automatically slid from the mounting disc 26 into the locating slot 26a so that the locating pin 309 and the locating slot 26a are engaged.
  • the working collets 22, 24 have a basic position relative to the position of the casing 310.
  • the positioning pin 309 of the present embodiment is made of a metal material, and the working component 20 is made of a plastic material. Therefore, when the positioning pin 309 slides into the positioning groove 26a when the force of the elastic member 311 is slid, the crisp click sound can be heard.
  • the operator is given a reminder to switch into place, and there is also a hand feeling that is converted into place, that is, the operator can feel that the pivoting force applied to the working assembly 20 is subjected to the reaction force of the position prompting mechanism.
  • the positions of the positioning pin 309 and the positioning groove 26a in this embodiment are not limited by the embodiment but may be interchangeably provided.
  • the position of the working assembly 20 relative to the housing 310 is automatically locked by the control mechanism 330.
  • the unlocking button 301a is moved to the unlocked position, the positional locking of the working assembly 20 with respect to the housing 310 is released, and the output shaft 306 is disengaged from one of the working shafts.
  • the force of the positioning pin 309 is disengaged from the positioning groove 26a, and the working assembly 20 is pivotable relative to the housing 310 to realize Work position conversion.
  • the positioning pin 308 and the working component 20 of the present embodiment are not limited to the materials referred to, and may be replaced with other materials.
  • the number of positioning slots 26a can also be matched to the number of working collets so that the first working collet can be positioned when it is switched to the working position.
  • the positional setting of the positioning groove 26a may correspond to the position of the work chucks 22, 24, or may be set according to a specific structure.
  • a guiding device that is, a guiding device, is disposed on the reduction box 32 near one end of the working assembly 20 It is provided at the front end of the reduction gear box 32.
  • the guiding device includes a guiding plate 313 extending in the axial direction, and a pair of guiding columns 315 extending in parallel with the guiding plate 313; a gap is disposed between the guiding plate 313 and the guiding column 315, and the guiding plate 313 and the guiding column 315 are located at the output shaft 316.
  • the upper side of the guide post 315 is respectively provided with a groove 319 (only one shown in FIG. 25) for absorbing the side arm 306 of the connecting member 305.
  • the locking member 303 is located at the lower front side of the guide plate 313.
  • the control member 301 is operable to drive the locking member 303 to move within the gap while causing the connector 305 to slide within the recess 319. This arrangement makes the structure of the control mechanism 330 more reliable and stable.
  • the mounting plate 26 is provided with a lock groove 26b, and when the control member 301 is in the locked position, the lock member 303 is engaged with the lock groove 26b.
  • the ends of the pair of parallel side plates 304 of the double-head lock plate are respectively engaged in the lock groove 26b, thereby locking the working assembly 20 to the housing 310; effectively utilizing space for reducing the volume of the mechanism, the lock
  • the acting surface of the groove 26b and the locking member 303 is disposed above the control member 301 and below the output shaft axis X1.
  • the operator converts the positions of the working chucks 22, 24 by pivoting the working assembly 20 relative to the casing 310.
  • the in-place prompting mechanism will give a crisp click or a sense of being transferred into place. Release control member 310, control member 310 will automatically return to the locked position under the action of elastic member 302.
  • the hand-held power tool 400 disclosed in the fourth embodiment of the present invention is an electric drill.
  • the housing 810 includes a handle 811 and a main housing 812.
  • the handle 811 is disposed at an angle to the main housing 812.
  • the handle 811 in this embodiment is disposed substantially perpendicular to the main housing 812, but the invention is not limited thereto.
  • the drive mechanism 820 includes a motor and an output shaft 821, and the motor drives the work assembly 840 through the output shaft 821 to operate.
  • the switch 830 is used to control the operation of the motor, and the switch 830 can be disposed at a position close to the handle 811, so that the operator can control the rotation of the motor through the switch 830 while holding the handle.
  • the working assembly 840 is located at one end of the main housing 812, and the working assembly 840 is pivotally disposed relative to the main housing 812.
  • the working assembly 840 includes at least two working collets 841 for fixing the working head, and the working assembly 840 Pivoting can be performed relative to the housing 810 to effect a transition of each of the working collets 841 between a working position and an inoperative position.
  • the working chuck 841 may include a working shaft 8411. When one of the working chucks 841 is in the working position, generally, as shown in FIGS.
  • the working shaft 8411 located in the working chuck 841 is By mating with the output shaft 821 of the drive mechanism 820, the motor rotates the working shaft 8411 through the output shaft 821, thereby controlling the working head fixed to the work chuck 841 to rotate.
  • the control mechanism 850 can lock the relative position between the working component 840 and the housing 810.
  • the control mechanism 850 includes a locking member 851 and a control member 852, wherein the locking member 851 has a first position and a second position, and the control member 852 has a The three-position and the fourth position, when the locking member is in the first position, the locking member 851 locks the position of the working component, and the output shaft is mated with the working component, and the worker can move away from the working component through the control member 852.
  • the control member 852 is displaced from the third position to the fourth position, thereby driving the locking member 851 in the first position to move away from the working assembly.
  • the locking member 851 releases the working assembly 840.
  • the position is locked and the output shaft is disengaged from the working assembly; after the locking member 851 is locked in the position of the working assembly 840, the working assembly 840 is rotatable relative to the housing 810, and the working assembly 840 is rotated to After the preset position, the locking member 851 can be automatically reset from the second position to the first position, again locking the position of the working assembly 840.
  • the locking member 851 includes a "U" shaped notch 8511 and a limiting portion 8512, wherein The gap 8511 is generally disposed at an edge position of the locking member 851.
  • the control member 852 has a convex portion 8521 located in the notch 8511 of the locking member 851, and the staff control control member 852 translates to make the gap.
  • the inner convex portion 8521 of the 8511 cooperates with the edge of the notch 8511 to displace the control member 852 from the third position to the fourth position, thereby driving the locking member 851 located at the first position to move away from the working component to the first position.
  • the second position wherein the limiting portion 8512 is used to restrict the rotation of the working component 840 relative to the housing 810.
  • the moving direction of the control member 852 is parallel to the output shaft, and more specifically, the working component has at least one limiting groove. 842, corresponding to the position of the limiting portion 8512, when one of the working jaws 841 of the working component 840 is in the working position, the limiting portion 8512 of the locking member 851 in the first position is located in the limiting recess 842, The position of the working component 840 is locked.
  • the working shaft of the working chuck 841 located at the working position can also be matched with the output shaft of the driving mechanism 820, so that the motor of the driving mechanism 820 can pass.
  • An output shaft driving the working shaft is located in the working collet 841 is rotated, thereby bringing the working head is connected to the work chuck 841 is operated.
  • the boss portion 8521 located in the notch 8511 facilitates the engagement of the edge of the notch 8511 to drive the locking in the first position.
  • the member moves away from the working component to the second position, and the limiting portion 8512 is disengaged from the limiting groove 842, so that the working component 840 can be rotated relative to the housing, and at the same time, the output shaft of the driving mechanism 820 It is also disengaged from the working shaft in the working chuck 841, and the motor cannot drive the working shaft to rotate through the output shaft.
  • the mechanism 850 also includes a first resilient member 853 coupled to the control member 852 for providing resilient force to the control member 852 for resetting. There is a reserved space between the boss portion 8521 located in the notch 8511 and the notch 8511, which is sufficient for the control member 852 located at the fourth position to be freely reset to the third position without being restricted by the locking member 851.
  • the worker can control the working assembly 840 to rotate relative to the housing 810.
  • One of the working chucks 841 of the working assembly 840 Before the rotation to the preset position, since the limiting portion 8512 cannot be aligned with the limiting groove 842, the locking member 851 in the second position cannot be reset to the first position, but the control member 852 has a reservation with the notch 8511. Space, the control member 852 can be free from the fourth position to the third position without being restricted by the locking member 851.
  • the limiting portion 8512 is aligned with the limiting groove 842, and the locking member 851 utilizes the elasticity coupled to the second elastic member 854.
  • the locking member 851 in the second position is reset to the first position, so that the limiting portion 8512 is located in the limiting recess 842, thereby achieving position locking again.
  • the driving mechanism 820 The output shaft 821 is engaged with the working shaft 8411 of the working chuck 841 at the working position.
  • the driving structure 820 can drive the working shaft to rotate through the output shaft, thereby working the working head fixed on the working chuck 841.
  • the working shaft 8411 of the working chuck 841 and the output shaft of the driving mechanism 820 821 just can't be engaged due to interference, which will cause the locking member 851 in the second position to not be reset to the first position, but even then, the control member 852 can be reset from the fourth position to the third position, and the staff only
  • the output shaft of the driving mechanism 820 is controlled to be rotated by the switch 830, and the output shaft automatically engages with the working shaft of the working chuck 841 to make the electric drill 400 in a normal working state.
  • the locking member 851 is configured to cooperate with the control member through the notch 8511 to move the control member to control the locking member.
  • the locking member 851 can be provided with a sliding slot on one side, and the convex portion 8521 of the control member 852 is located in the sliding slot.
  • the convex portion 8521 cooperates with the edge of the sliding groove to pull the locking member 851 to move.
  • the control member can be automatically reset by sliding the convex portion 8521 in the sliding groove.
  • the substance is sufficient, and the implementation thereof is not limited to this.
  • control member 852 can be freely reset, even if one of the fixing portions 841 of the working assembly 840 is rotated to the preset position during the actual operation, the working shaft of the fixing portion 841 is not completely meshed with the output shaft of the driving mechanism 820. As a result, the locking member cannot be reset, and the control member 850 is not reset, so that the worker is not misunderstood that the working head is not switched to the preset position.
  • the output shaft 821 is engaged with the working shaft of the fixed portion 841 at the working position, Will affect the normal operation of the drill.
  • This arrangement of the control member 852 of the present embodiment allows the operator to operate the hand-held power tool with only one hand. That is to say, the operator uses the one hand holding the handle 811 to simultaneously perform the movement operation of the control member 852 to unlock, and then uses other parts of the body or external equipment to realize the position conversion work of the two working chucks 841 on the working assembly 841. Positioning the working assembly 840 relative to the housing 810, even if the working shaft and the output shaft are not mated, that is, the working shaft 8411 and the output shaft 821 are disengaged at this time, and the force of the control member 852 at the elastic member is It can also be reset automatically.
  • the working component is easily rotated to lock relative to the housing position, but it is also prone to that the working shaft and the output shaft are not mated to the position.
  • the control member 852 cannot be normally reset, and requires the operator to repeatedly operate until the rotation of the working shaft and the output shaft is coupled to the position, which is cumbersome.
  • the operator first unlocks the control member 852 with one hand holding the handle 811, and then slams the working assembly 841 on its leg or external device to make the working assembly 841 opposite the housing.
  • the control member 852 is released, and when the operator re-triggers the switch to rotate the output shaft 821, the output shaft 821 is engaged with the working shaft of the fixed portion 841 at the working position, and the control member 852 Will be automatically reset.
  • a hand-held power tool 400' of a fifth embodiment of the present invention such as an electric drill or a screwdriver, has a structure similar to that of the foregoing embodiment.
  • a hand-held power tool 400' of a fifth embodiment of the present invention such as an electric drill or a screwdriver
  • the same structures are not described repeatedly, and different structures will be described in detail below.
  • a general electric drill or screwdriver has a mechanical overload clutch between the tool carrier and the motor to limit the output torque.
  • the mechanical overload clutch is bulky and the torque adjustment accuracy is low.
  • the hand-held power tool 400' includes a housing 910, a motor 920 disposed in the housing 910, a transmission 930 coupled to the motor 920, a clamp 940 that is driven by the transmission 930, and a power supply module for powering the motor 920. 950, a control circuit 960 for controlling the motor 920.
  • the clamp 940 in this embodiment includes a first collet 940a and a second collet 940b, wherein the first collet 940a and the second collet 940b respectively include a working shaft, which is selectively driven to rotate by the transmission 930.
  • the first collet 940a and the second collet 940b can be used to hold different types of working heads to perform work in different working conditions.
  • the first collet 940a can be used to hold the drill bit and the second collet 940b can be used to grip the screwdriver bit.
  • Such an arrangement results in different torque outputs required for the different operating conditions of the first collet 940a and the second collet 940b.
  • the twist rejection output of the working shaft can be controlled by electronic control.
  • the control circuit 960 has a controller 961, an electronic switch S1, a motor switch S2, a mode selection switch S3, a working phase switch S4, a resistor R1, a switch detecting unit 962, a storage unit 963, and a first current threshold setting.
  • the positive pole of the motor 920 is connected to the positive pole of the power supply module 950 through the motor switch S2, and the negative pole is connected to the first end of the electronic switch S1.
  • the second end of the electronic switch S1 is connected to the first end of the controller 61, and the third end is connected to the negative pole of the power supply module 950 through the resistor R1.
  • the second end of the controller 961 is connected to the node between the motor switch S2 and the motor 20, the third end is connected to the positive pole of the motor 920 through the voltage detecting unit 968, and the fourth end is passed through the current limiting unit 966 and the electronic switch S1.
  • the second end is connected, the fifth end is connected to the third end of the electronic switch S1 through the current detecting unit 967, the sixth end is connected to the first current threshold setting unit 964, and the seventh end is connected to the second current threshold setting unit 965.
  • the eighth end is connected to the mode selection switch S3, the ninth end is connected to the work phase changeover switch S4, and the tenth end is connected to the storage unit 963.
  • the controller 61 is an MCU that outputs a first driving signal to the electronic switch S1.
  • the current limiting unit 966 is also connected to the current detecting unit 967.
  • the first end of the switch detecting unit 962 is connected to the positive terminal of the power supply module 950, and the second end is connected to the second end of the controller 961.
  • the hand held power tool 400' of the present invention can selectively operate in a manual mode or an automatic mode.
  • the manual mode the user can obtain high precision by performing torque adjustment by the first current threshold setting unit 964; in the automatic mode, the handheld power tool 400' has a first working phase of automatically setting a current threshold, and The second stage of the torque limitation based on the set current threshold facilitates less experienced users to operate the hand-held power tool 400' and achieve a consistent depth of the workpiece.
  • the user can operate the mode selection switch S3 as needed to switch to the manual mode or the automatic mode.
  • the work phase changeover switch S4 can be operated to switch to the first work phase or the second work phase of the automatic mode.
  • the mode selection switch S3, the working phase changeover switch S4, and the first current threshold setting unit 964 can be triggered by the same triggering member, and the triggering component is a toggle switch.
  • the toggle switch When the toggle switch is toggled to a different position, different operating modes, working phases or different current thresholds are triggered.
  • the relationship between the output torque T of the motor 920 and the motor current and the motor speed N is: when the motor current is constant, the higher the motor speed N, the smaller the torque T; when the motor speed N is constant When the motor current is larger, the torque T is larger; when the torque T is constant, the motor current is larger, and the motor speed N is higher. Therefore, in the case where the motor rotation speed N is determined, the torque T has a corresponding relationship with the motor current, and by limiting the motor current to limit the torque T of the motor 920, the accuracy of the torque adjustment is greatly improved.
  • the control circuit 960 has a controller 961, an electronic switch S1, a motor switch S2, a resistor R1, and a voltage detecting unit 968.
  • Motor 920 is controlled by controller 961 and electronic switch S1.
  • the user operates the first current threshold setting unit 964 to manually set the first current threshold I1.
  • the second current threshold setting unit 965 sets a second current threshold I2 that is lower than the first current threshold I1.
  • the storage unit 963 stores a plurality of predetermined constants, each predetermined constant corresponding to a different first current threshold, the second current threshold setting unit 965 is a separate subtractor, and the second current threshold is set.
  • Unit 65 subtracts the first current threshold I1 by a predetermined constant to obtain a second current threshold I2.
  • the second current threshold I2 can also be calculated by means of software, that is, the controller 961 has the function of the second current threshold setting unit 965, and the second current threshold I2 is calculated. In other embodiments, the user can also directly operate the second current threshold setting unit 65 to manually set the second current threshold I2.
  • the storage unit 963 stores the first current threshold I1 and the second current threshold I2.
  • Motor switch S2 is a trigger and the user presses the trigger of hand held power tool 400' to activate motor 920.
  • the current detecting unit 967 detects the motor current.
  • the controller 61 compares the detected motor current with the second current threshold I2. When the motor current reaches the second current threshold I2, the controller 961 controls the rotational speed of the motor 920 to remain at the rotational speed predetermined value N1.
  • the predetermined value of the rotational speed N1 is lower than the rotational speed of the motor in the normal operating state, so that the motor can react quickly in subsequent control.
  • the motor speed N is related to the motor voltage and the motor current I, and the load increases, the motor current I also increases accordingly. If the motor speed N needs to be maintained, the corresponding motor voltage needs to be increased. Therefore, the voltage value required to maintain the predetermined value N1 of the rotational speed can be calculated based on the detected motor current I, and the actual voltage of the motor 920 can be adjusted to the calculated voltage value to maintain the motor rotational speed N as the rotational speed predetermined value N1.
  • the storage unit 963 stores a predetermined value of the rotational speed N1
  • the current detecting unit 967 detects the motor current
  • the controller 961 calculates the voltage required to maintain the predetermined value N1 according to the predetermined value N1 of the rotational speed and the detected motor current. value.
  • the controller 961 uses the calculated voltage value as a reference voltage.
  • the voltage detecting unit 968 detects the actual voltage of the motor 920 in real time, and the controller 961 adjusts the first driving signal output by the controller 961 according to the difference between the detected actual voltage and the reference voltage, thereby maintaining the motor speed.
  • the first driving signal is a pulse width modulation signal
  • the controller 961 decreases the duty ratio of the first driving signal; if the actual voltage of the motor 920 is less than the reference voltage
  • the controller 961 increases the duty ratio of the first drive signal.
  • the controller 961 While maintaining the motor speed, the controller 961 continues to detect the motor current through the current detecting unit 967, and compares the detected motor current with the first current threshold I1. When the motor current reaches the first current threshold I1, the controller The 961 stops outputting the first drive signal to control the motor 920 to stop.
  • the control circuit 60 has a controller 961, an electronic switch S1, a motor switch S2, a resistor R1, and a voltage detecting unit 968.
  • the second current threshold setting unit 965 sets a second current threshold I2 that is lower than the first current threshold I1.
  • the storage unit 963 stores a plurality of predetermined constants, each predetermined constant corresponding to a different first current threshold, the second current threshold setting unit 965 is a separate subtractor, and the second current threshold is set.
  • Unit 965 subtracts the first current threshold I1 by a predetermined constant to obtain a second current threshold I2.
  • the second current threshold I2 can also be calculated by means of software, that is, the controller 61 has the function of the second current threshold setting unit 965, and the second current threshold I2 is calculated.
  • the user can also directly operate the second current threshold setting unit 965 to manually set the second current threshold I2.
  • the storage unit 963 stores the first current threshold I1 and the second current threshold I2.
  • Motor switch S2 is a trigger and the user presses the trigger of hand held power tool 400' to activate motor 920.
  • the current detecting unit 967 detects the motor current.
  • the current limiting unit 966 compares the detected motor current with the second current threshold I2. When the motor current reaches the second current threshold I2, the current limiting unit 966 controls the motor current to remain at the second current threshold I2, at which time the speed of the motor 920 It will fall.
  • the current limiting unit 966 has a comparator that outputs a turn-on signal when the detected motor current is less than the second current threshold I2, and outputs a turn-off signal when the detected motor current is greater than or equal to the second current threshold I2.
  • the on/off signal is fed back to the first drive signal output by the controller 961 to obtain a second drive signal to maintain the motor current value at the second current threshold I2.
  • the controller 961 determines the rotational speed of the motor 920 and controls the rotational speed of the motor 920 to maintain the rotational speed predetermined value N1 when the motor rotational speed drops to the rotational speed predetermined value N1.
  • the predetermined value of the rotational speed N1 is lower than the rotational speed of the motor in the normal operating state, so that the motor can react quickly in subsequent control.
  • the controller 961 detects the actual voltage of the motor 920 through the voltage detecting unit 968, thereby determining the motor speed.
  • the storage unit 963 stores a predetermined value of the rotational speed N1.
  • the controller 961 calculates the motor voltage when the motor speed is N1 and the motor current is I2.
  • the voltage detecting unit 968 detects the actual voltage of the motor 920. When the actual voltage of the motor 920 drops to When the controller 961 calculates the motor voltage value, the controller 961 controls the rotation speed of the motor 920 to be maintained at the rotation speed predetermined value N1.
  • the controller 961 calculates a voltage value required to maintain the predetermined value of the rotational speed N1 based on the predetermined value of the rotational speed N1 and the detected motor current, and the voltage value required to maintain the predetermined value N1 of the rotational speed is the reference voltage.
  • the controller 961 detects the actual voltage of the motor 920 through the voltage detecting unit 968, and adjusts the first driving signal outputted by the controller 961 according to the difference between the detected actual voltage and the reference voltage, thereby maintaining the motor speed.
  • the controller 961 While maintaining the motor speed, the controller 961 continues to detect the motor current through the current detecting unit 967, and compares the detected motor current with the first current threshold I1, when the detected motor current reaches the first current threshold I1. The controller 961 stops outputting the first drive signal to control the motor 920 to stop.
  • the control circuit 960 has a controller 961, an electronic switch S1, a motor switch S2, a resistor R1, a working phase switch S4, a voltage detecting unit 968, a current detecting unit 967, The storage unit 963, the current limiting unit 966, and the switch detecting unit 962.
  • Motor 920 is controlled by controller 961 and electronic switch S1.
  • the operating stage switching switch S4 can switch the hand-held power tool 400' to the first working phase, at which time the hand-held power tool 400' is operated by an experienced user, and the controller 961 controls the speed of the motor 920 to be maintained at the predetermined speed value N1.
  • the storage unit 963 stores a predetermined value of the rotational speed N1
  • the current detecting unit 967 detects the motor current
  • the controller 961 calculates a voltage value required to maintain the predetermined value N1 according to the predetermined value of the rotational speed N1 and the detected motor current.
  • the voltage required to maintain the predetermined value N1 of the rotational speed is the reference voltage.
  • the controller 961 detects the actual voltage of the motor 920 through the voltage detecting unit 968, and adjusts the first driving signal outputted by the controller 961 according to the difference between the detected actual voltage and the reference voltage, thereby maintaining the motor speed.
  • the switch detecting unit 962 detects the state of the motor switch S2 and transmits a corresponding signal to the controller 961.
  • the controller 961 records the motor current Ia at this time through the current detecting unit 967, and automatically sets the current threshold Ib according to the motor current Ia at the stop, the current threshold Ib corresponds to The corresponding target torque.
  • the controller 961 calculates the torque T1 when the motor current is Ia and the motor speed is the predetermined value of the speed N1 according to the data relationship between the motor current, the torque T and the motor speed N in FIG. 41, and then calculates the torque. It is the motor current when T1 and the motor speed is 0, and the motor current is determined as the current threshold Ib.
  • the current detecting unit 967 detects the motor current.
  • the current limiting unit 966 compares the detected motor current with the current threshold Ib. When the detected motor current reaches the current threshold Ib, the current limiting unit 966 controls the motor current to remain at the current threshold Ib, thereby controlling the motor current to be no greater than the current. Threshold Ib, at which time the motor speed drops.
  • the current limiting unit 966 has a comparator that outputs a turn-on signal when the detected motor current is less than the current threshold Ib, and outputs a turn-off signal when the detected motor current is greater than or equal to the current threshold Ib, and is turned on.
  • the /off signal is fed back into the first drive signal to obtain a second drive signal, thereby maintaining the motor current value as the current threshold Ib.
  • the controller 961 determines the rotational speed of the motor 20 and controls the motor 920 to stop when the motor speed drops to a fixed value. Since the motor current is constant, the smaller the motor voltage is, the lower the motor speed is, so the motor speed can be judged by detecting the motor voltage.
  • the controller 961 detects the duty ratio of the second driving signal. When the duty ratio of the second driving signal is lower than 0.1, it indicates that the motor voltage is lower than a predetermined value, further indicating that the motor speed is lower than a predetermined value. At this time, the controller 961 stops outputting the first drive signal, thereby controlling the motor 920 to stop.
  • the present invention also provides methods of controlling two handheld power tools 400': a manual mode and an automatic mode.
  • the first preferred embodiment of the manual mode includes the following steps:
  • Step S1 The first current threshold I1 is manually set, and the user can set a current threshold corresponding to the target torque by operating the first current threshold setting unit 964 on the hand-held power tool 400'.
  • Step S2 manually setting or automatically calculating the second current threshold I2, and the second current threshold I2 is lower than the first current threshold I1, the first current threshold I1 being equal to the sum of the second current threshold I2 and a predetermined constant.
  • the second current threshold I2 is calculated by the controller 961 in the hand-held power tool 400'.
  • Step S3 The user presses the trigger of the hand power tool 400' to start the motor 920.
  • Step S4 detecting the motor current in real time.
  • Step S5 determining whether the motor current reaches the second current threshold I2, if yes, proceeding to step S6, otherwise returning to step S4.
  • Step S6 When the motor current reaches the second current threshold I2, the rotation speed of the control motor 920 is maintained at the rotation speed predetermined value N1.
  • the predetermined rotational speed value N1 is lower than the rotational speed of the motor in the normal operating state.
  • Step S7 determining whether the motor current reaches the first current threshold I1, if yes, proceeding to step S8, otherwise returning to step S6.
  • Step S8 When the motor current reaches the first current threshold I1, the control motor 920 is stopped.
  • the motor speed N rises rapidly, and the motor current I rises steadily; during the time t1-t2, the motor current I continues to increase as the load increases;
  • the control motor speed N is rapidly decreased to the predetermined speed value N1; during the time t3-t4, the motor speed N is maintained at the predetermined speed value N1, and the motor current I continues to rise; at time t4, the motor current I reaches the first current threshold I1 and controls the motor 920 to stop.
  • the controller 961 stops outputting the first driving signal, thereby controlling the motor 920 to stop.
  • the motor speed N is related to the motor voltage and the motor current I, and the load increases, the motor current I also increases accordingly. If the motor speed N needs to be maintained, the corresponding motor voltage needs to be increased. Therefore, the voltage value required to maintain the predetermined value N1 of the rotational speed can be calculated based on the detected motor current I, and the motor speed N can be maintained as the rotational speed predetermined value N1 by adjusting the motor voltage.
  • the storage unit 963 stores a predetermined value of the rotational speed N1
  • the current detecting unit 967 detects the motor current
  • the controller 961 calculates the voltage required to maintain the predetermined value N1 according to the predetermined value N1 of the rotational speed and the detected motor current. value.
  • the voltage value required by the controller 961 to maintain the predetermined value N1 of the rotational speed is the reference voltage.
  • the controller 961 detects the actual voltage of the motor 920 in real time through the voltage detecting unit 968, and adjusts the first driving signal output by the controller 961 according to the difference between the detected actual voltage and the reference voltage, thereby maintaining the motor speed.
  • the second current threshold I2 is used as a reference threshold, and the current threshold is maintained for a period of time, and then the motor speed is maintained to complete the fastening of the workpiece.
  • the sudden change of the motor current is prevented before the workpiece is fastened, and the motor 920 is effectively protected.
  • the second preferred embodiment of the manual mode includes the following steps:
  • Step S1 Manually setting the first current threshold I1.
  • Step S2 manually setting or automatically calculating the second current threshold I2, and the second current threshold I2 is lower than the first current threshold I1, the first current threshold I1 being equal to the sum of the second current threshold I2 and a predetermined constant.
  • Step S3 The user presses the trigger of the hand power tool 400' to start the motor 920.
  • Step S4 detecting the motor current in real time.
  • Step S5 determining whether the motor current reaches the second current threshold I2, if yes, proceeding to step S6, otherwise returning to step S4.
  • Step S6 When the motor current reaches the second current threshold I2, the motor current is maintained as the second current threshold I2.
  • Step S7 It is judged whether the motor rotation speed has decreased to the rotation speed predetermined value N1, if yes, the process proceeds to step S8, otherwise, the process returns to step S6.
  • the predetermined rotational speed value N1 is lower than the rotational speed of the motor in the normal operating state.
  • Step S8 The rotation speed of the control motor 920 is maintained at the rotation speed predetermined value N1.
  • Step S9 determining whether the motor current reaches the first current threshold I1, if yes, proceeding to step S10, otherwise returning to step S8.
  • Step S10 When the motor current reaches the first current threshold I1, the control motor 920 is stopped.
  • the motor speed N rises rapidly.
  • the motor current I rises steadily; during the time t1-t2, the motor current I continues to increase as the load increases; during the time t2-t3, the motor current reaches the second current threshold I2, and the motor is controlled to maintain the motor current.
  • the second current threshold I2 while the motor speed decreases; during the time t3-t4, the motor speed N is maintained at the predetermined speed value N1, while the motor current I continues to rise; at time t4, the motor current I reaches the first current threshold I1, Control motor 920 is shut down.
  • the control motor speed N is constant.
  • the control motor 920 is stopped, thereby limiting the motor current I, further limiting the output of the motor 920.
  • the torque T makes the accuracy of the torque adjustment much higher.
  • the automatic mode has a first working phase and a second working phase.
  • the handheld power tool 400' In the first working phase, the handheld power tool 400' automatically sets a parameter threshold, and in the second working phase, the handheld power tool 400' performs torque limitation according to the set parameter threshold. .
  • the hand-held power tool 400' is operated by an experienced user, and the user disconnects the motor switch S2 to control the motor 920 to stop according to working conditions, such as the workpiece reaching a desired depth, position, and the like. Automatically detecting at least one motor parameter during shutdown, and automatically setting a parameter threshold according to the motor parameter, the parameter threshold corresponding to the corresponding target torque.
  • the motor 920 is restarted, and the hand-held power tool 400' is operated by a less experienced user to detect the corresponding motor parameters in real time, and the detected motor parameters are compared with the above-mentioned parameter thresholds, when the motor parameters are When the above parameter threshold is reached, the control motor parameter is not greater than the parameter threshold, such that the torque is not greater than the target torque, so that the workpiece reaches a depth consistent with the first working phase, which facilitates the operation of less experienced users.
  • the motor parameter is the motor current
  • the motor current Ia at the time of the stop is recorded in the first working phase
  • the current threshold Ib is set according to the motor current Ia.
  • the motor speed N is constant
  • the motor current is larger and the torque T is larger. Therefore, the motor speed is maintained in the first working phase, so that the parameter threshold set according to the motor current at the time of the stop is more accurate.
  • the motor rotation speed in the first working phase is maintained at the rotation speed predetermined value N1.
  • the motor rotation speed is maintained at the rotation speed predetermined value N1 by adjusting the motor voltage, and the specific method is the same as step S6 in the first preferred embodiment of the manual mode.
  • the controller 961 calculates the torque T1 when the motor current is Ia, the motor rotation speed is the predetermined rotation speed value N1, and then calculates the torque T1 and the motor rotation speed as The motor current at time 0 and the motor current is determined as the current threshold Ib.
  • the current value of the motor 920 is maintained at the current threshold Ib, thereby controlling the motor current to be no greater than the current threshold Ib.
  • the motor 920 starts instantaneously, the motor speed rises rapidly, and the motor current rises steadily; during the time t1-t2, the motor current continues to increase as the load increases; at time t2- In t3, after the motor current reaches the current threshold Ib, the control motor current is maintained at the current threshold Ib, and the motor speed is decreased. At time t3, the motor 920 is stopped when the motor speed drops to a certain value (e.g., the speed is zero).
  • the first current threshold I1 is the current threshold Ib automatically set in the first working phase.
  • the hand-held power tool 400' in this embodiment has a manual mode and an automatic mode.
  • the manual mode the first and second current thresholds are manually set, the motor speed is maintained when the motor current reaches the second current threshold, and the motor 920 is stopped when the motor current reaches the second current threshold, thereby improving the accuracy of the torque adjustment. degree.
  • the experienced user controls the motor 920 to stop according to the working condition, and sets the parameter threshold according to the motor parameter at the time of stopping. When the motor parameter reaches the parameter threshold, the control motor parameter is not greater than the parameter threshold. The workpiece is brought to a consistent depth, which facilitates the less experienced user to operate the hand-held power tool 400'.
  • the present embodiment is a modification of the third embodiment, and the same structure is not described repeatedly.
  • the work light 320' of the hand-held power tool 300' is fixedly disposed relative to the work assembly 20, and the number of work lights 320' coincides with the number of work chucks.
  • the two work lights 320' correspond to the positions of the work chucks 22, 24, respectively, and each work light 320' is disposed on the same side of the work chucks 22, 24.
  • the work light 320' When one of the working collets 22, 24 is shifted to the working position, the work light 320' near the working collets 22, 24 provides working illumination for the working collets 22, 24 of the current working position, that is, illuminating the hand-held power The processing area in front of the tool 300'.
  • the work light 320' is preferably an LED lamp that is energy-saving and has a good illumination effect. Of course, those skilled in the art can use other similar lighting devices for replacement, which is not limited in this embodiment.
  • the work light 320' is controlled by the switch 4 to provide electrical energy from a battery pack (not shown); of course, the work light 320 can be independently controlled in other ways, selectively opening depending on operating conditions.
  • a main body housing 312 is provided with a positive electrode contact piece 970a and a negative electrode contact piece 970b.
  • the corresponding working chucks 22 and 24 in the working assembly 20 are respectively provided with a pair for the positive electrode contact piece 970a.
  • the other working chuck in the non-working position, the corresponding chuck positive contact piece 972a and the chuck negative contact piece 972b are respectively staggered from the positions of the positive electrode contact piece 970a and the negative electrode contact piece 970b, and cannot be electrically connected.
  • the work light 320' corresponding to the work chuck does not work. Such an arrangement facilitates the work of the work light 320' to be more energy efficient; at the same time, it ensures that the work chuck and its work light 320' in the working position can work simultaneously.
  • the main housing 312 includes three portions along the longitudinal axis X1 of the main housing.
  • the first part accommodates the motor 8 and the reduction box 32, which is called the A area;
  • the second part houses the output shaft 316 and at least part of the control mechanism 330, which is called the B area;
  • the third part is for accommodating the working shaft, that is, extending from the mounting plate 26
  • the working chuck portion is called the C zone.
  • the length of the A zone along the longitudinal axis X1 of the main casing is represented by L3, the length of the B zone is represented by L4, and the length of the C zone is represented by L5.
  • the three zones A, B, and C are formed with two steps along the longitudinal direction of the longitudinal axis X1, which are formed by the height difference of H1, H2, and H3 shown in FIG.
  • the heights of the three zones A, B, and C are set such that the height of zone A is the shortest, the height of zone B is second, and the height of zone C is equivalent to the height of ordinary drills; that is, the work chuck at the current working position. It can work in a narrow working area; the height of Zone B is relatively small relative to Zone A, which makes handheld power tools more accessible.
  • the B zone of the present embodiment is actually the function conversion zone of the work chucks 22, 24.
  • the control mechanism 330 of the hand-held power tool 300a is basically disposed in the B zone, and includes a control member 301, and a locking member 303 driven by the control member 301. , the connector 305 and the clutch sleeve 307, these functional components extend axially along the output shaft 316, and the projection in the axial direction of the output shaft at least partially overlaps the output shaft 316, so that the length of the B zone can be made shorter, thereby The overall body size is smaller and the structure is more compact.
  • the length of the B zone ranges from 50 to 70 cm, preferably 61 cm; and the preferred length of the length L1 of the A zone is 125 cm, wherein the ratio of the length of the B zone to the length of the A zone ranges from 2:5 to 3:5.
  • the length of the C zone ranges from 0 to 34 cm, preferably 27 cm, and the length ratio of the length of the C zone to the length of the B zone is less than 3:5.
  • the total length L1 of the housing 312 is between 175 cm and 229 cm, preferably 213 cm.
  • the B zone and the C zone are arranged such that the length ratios of the three parts of the main casing are coordinated, which facilitates the movement of the center of gravity of the whole machine to be close to the grip of the handle, thereby making the operator's wrist torque small, comfortable and stable operation, and good balance.
  • the height of the C zone that is, the outer diameter d of the working chuck is between 0 and 26 cm, and the maximum height of the B zone, that is, the height W of the mounting disk is approximately 48 cm; the height ratio of the B zone to the C zone is less than 1:2.
  • the width D2 of the B region does not exceed the width D1 of the main casing 312.
  • the maximum width of the B region that is, the width of the mounting disk 26 is substantially the same as the width D1 of the A region, and the maximum of the B region.
  • the width is preferably 51 cm; in addition, the minimum width of the width D2 of the B zone is between 30 cm and 40 cm, preferably 40 cm.
  • the width D of the C zone that is, the diameters of the working chucks 22, 23 are smaller than D2 and D3, respectively.
  • the main casing 312 has an aspect ratio L1/D1 of between 3 and 4.5, preferably 4. This arrangement allows the overall body to be well coordinated, lightweight, and most efficient in saving and utilizing the width dimension when packaging.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Portable Power Tools In General (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

一种手持式动力工具及其操作方法,手持式动力工具(100)包括壳体(10)、手柄(14)、开关(4)、马达(8)、输出轴(6)、以及工作组件(20),工作组件(20)包括至少两个工作夹头(22、24),至少两个工作夹头(22、24)分别包括工作轴(22a、24a),手持式动力工具(100)还包括将工作组件(20)相对壳体(10)位置锁定的控制机构,控制机构包括邻近开关(4)且相对壳体移动设置的控制件(40),控制件(40)可操作地解除工作组件(20)的位置锁定和控制输出轴(6)与工作轴(22a、24a)之一脱开配接;工作夹头(22、24)的位置转换可借助操作者的身体其它部位,通过单手操作即可完成,操作方便、可靠。

Description

手持式动力工具及其操作方法 技术领域
本发明涉及一种手持式动力工具,尤其涉及一种具有至少两个工作夹头的手持式动力工具,以及该手持式动力工具的操作方法。
背景技术
作为一种手持式动力工具,例如电钻,用于对工件例如木板等进行钻孔,其利用的工作头是钻头;例如螺丝批,可用于拧紧或拧松螺钉,其利用的工作头是螺丝批头。此类手持式动力工具的主轴通常安装有一个工作夹头,用于夹持工作所需要用的一类工作头,该类工作头可具有不同规格。当需要更换工作头进行其它工作时,需要先拆卸下原来的工作头,替换以不同的工作头。这种工作头替换操作的过程非常繁琐。
目前,市场上出现了一些带有双工作夹头的枪钻类工具,根据需要可以在两种工作夹头之间选择或转换使用。现有技术中采用三爪式夹头用于夹持钻头,该工作夹头采用金属制成,且结构复杂,因此重量大;而另一个工作夹头用于夹持螺丝批头,在螺丝批头执行拧螺钉工作时需要扭矩调节,通常在机身靠近输出轴的输出端设置有机械控制机构用于实现扭矩调节,当这些构造复杂、重量大的功能部件应用于该双工作夹头的枪钻工具上时,使整机的重心偏向工作夹头一侧,重心与手柄握持部之间尚有一段水平距离,从而使操作者在执行操作过程中其手腕承受转矩,容易产生疲劳。
另外,工作夹头在转换位置之前需先要解除工作夹头与输出轴之间的配接或者工作夹头与壳体的锁定,现有技术中,操作者需要利用一个手操作解除锁定,通常这种操作件需要保持按压动作,直到工作夹头位置转换完成,这对于需要手动进行工作夹头位置转换的工具而言,操作者必须以原本握持手柄的手去完成转换动作,这样,操作者会频繁地换手操作,操作极不方便,对于特定工作场所,例如高空,这样的操作也不安全。
发明内容
为解决以上技术的技术问题,本发明提供一种操作省力、操控性好的手持式动力工具。
本发明是这样实现的:一种手持式动力工具包括壳体,包括手柄握持部;马达,设置于壳体内;输出轴,由马达驱动旋转;工作组件,包括至少两个 工作夹头;开关,设置于手柄握持部,用于控制马达;至少两个工作夹头分别包括工作轴,手持式动力工具还包括将工作组件相对壳体位置锁定的控制机构,控制机构包括邻近所述开关的控制件,控制件相对壳体移动设置,控制件沿远离工作组件方向移动实现解除工作组件的位置锁定和控制输出轴与工作轴之一脱开配接。
优选地,工作组件活动连接于壳体从而所述至少两个工作夹头中的每一个工作夹头可在工作位置和非工作位置之间转换,至少两个工作夹头其中之一处于工作位置,该工作夹头之工作轴与输出轴轴向配接,至少两个工作夹头中其余工作夹头处于非工作位置,该其余工作夹头之工作轴与输出轴呈角度设置。
优选地,工作轴设有用于配接工作头的六边形收容孔。
优选地,工作轴的轴线共面设置。工作轴的轴线之间呈角度设置,所述角度在60度至130度范围内。
优选地,工作组件相对壳体枢转设置,工作组件的枢转轴线与输出轴轴线共面且两者呈角度设置。至少两个工作夹头固定连接且相对于工作组件的枢转轴线对称设置。
优选地,控制件的移动方向平行于输出轴。控制机构包括与控制件联动设置的锁定件,所述锁定件可选择地与工作组件脱开或配接。
优选地,控制机构还包括与控制件抵接的弹性件,所述弹性件提供控制件带动锁定件靠近工作组件移动的弹性力。
优选地,手持式动力工具还包括与锁定件联动设置的离合装置,所述离合装置一端移动地配接于输出轴,另一端可选择地与工作轴之一脱开和配接。控制机构还包括连接锁定件与离合装置的连接件,所述离合装置与输出轴之间设置有复位弹簧。
优选地,壳体包括纵向延伸的主壳体,所述工作组件连接于主壳体的一端,所述马达远离工作组件设置于主壳体内,所述手柄握持部与主壳体呈角度设置,手持式动力工具还包括电池包,电池包连接于手柄且远离主壳体设置,手持式动力工具的重心位于手柄握持部。
优选地,主壳体包括用于收容减速箱的主体部,以及靠近工作组件的前端部,主壳体纵轴线至前端部顶部的距离小于至主体部顶部的距离。至少两个工作夹头其中之一处于工作位置时,主壳体纵轴线至该工作夹头顶部的距离 小于至前端部顶部的距离。
优选地,手持式动力工具还包括到位提示机构,所述到位提示机构具有啮合状态和分离状态,啮合状态时,所述至少两个工作夹头其中之一到达工作位置,分离状态时,所述至少两个工作夹头离开工作位置。到位提示机构包括设置于壳体与工作组件两者之一的定位销,设置于壳体与工作组件两者之另一个的定位槽,以及与定位销抵接的弹性件,所述定位销可选择地与所述定位槽配接或脱开。
手持式动力工具的控制件邻近开关且相对壳体可移动设置,且控制件沿远离工作组件方向移动即能实现解除工作组件的位置锁定,又能控制输出轴与工作轴之一脱开配接,因此,控制件一键操作实现两个动作,操作方便。且控制件的操作与开关移动方向一致,贴合了用户的操作习惯,使手持式动力工具的操控制好,操作也更安全。由于手持式动力工具的重心位于手柄的握持部,使得用户在操作时手腕不会由于工具重量分配不匀而产生转矩,从而操作省力。
优选地,壳体包括纵向延伸的主壳体,工作组件连接于主壳体的一端,马达远离工作组件设置于主壳体内,手柄握持部与主壳体呈角度设置,手持式动力工具还包括电池包,电池包连接于手柄且远离主壳体设置,手持式动力工具的重心位于手柄握持部。
优选地,手持式动力工具的重心在主壳体纵轴线上的投影,远离工作夹头且位于主壳体纵向长度的十分之五至十分之八之间;优选手持式动力工具的重心在主壳体纵轴线上的投影,远离工作夹头且位于主壳体纵向长度的十分之七处。
优选地,控制机构包括控制件、锁定件、以及离合装置,锁定件可选择地与工作组件配接或脱开,离合装置可选择地与所述工作轴之一配接或脱开;锁定件与工作组件配接以使工作组件相对壳体锁定;锁定件与工作组件脱开并且离合装置与所述工作轴脱开,允许工作组件相对壳体运动。
优选地,输出轴的轴线与马达轴的轴线重合。锁定件沿输出轴方向延伸。壳体包括收容减速箱的主体部,以及收容输出轴的前端部,锁定件包括能够与工作组件配接的第一端,以及能够与减速箱配接的第二端。第一端具有呈U形的端面。工作组件设置有能够与U形端面配接的凹槽。
优选地,锁定件沿输出轴轴向上的投影与输出轴至少部分重叠。锁定件 包括一对沿输出轴轴向延伸且相互连接的侧板。连接件位于所述锁定件的内侧,连接件包括一对与侧板相互平行的侧臂。
优选地,离合装置包括滑动地套设于输出轴的离合套,所述离合套轴向移动从而与所述工作轴之一配接或者脱开。
优选地,动力工具还包括引导锁定件移动的导向装置,所述导向装置设置于靠近所述前端部的减速箱上。导向装置包括沿输出轴轴向延伸的导向板与一对导向柱。
优选地,手持式动力工具还包括电子扭矩控制装置,用于可操作地调节至少一个工作轴的输出扭矩。电子控制装置包括控制板、与控制板电性连接的控制钮,控制钮可操作地在预设范围调节所述至少一个工作夹头的扭矩输出。控制钮设置在手柄远离工作组件一端。控制板包括电阻或电容,所述控制钮可操作地控制所述电阻或电容值变化,从而控制至少一个工作夹头的扭矩输出。
本发明一个实施例公开了一种控制工作轴扭矩输出的控制方法,手持电动工具包括电机及控制器,控制器输出第一驱动信号控制所述电机,所述控制方法包括第一工作阶段及第二工作阶段:第一工作阶段中,以转速预定值运行电机,侦测所述电机停机时的一个电机参数,所述控制器根据所述电机参数设定电流阈值;第二工作阶段中,重新启动电机,并实时侦测电机电流,当电机电流达到所述电流阈值时,控制电机电流不大于所述电流阈值。
进一步地,所述手持电动工具具有工作阶段切换开关,操作该工作阶段切换开关,以控制手持电动工具进入第一工作阶段或第二工作阶段。
进一步地,在第一工作阶段中,侦测电机电流,所述控制器根据侦测的电机电流与转速预定值计算维持转速预定值所需的电压,并将所述电机的实际电压调节到计算得到的电压。
更进一步地,所述控制器以计算得到的电压为基准电压,并实时侦测电机的实际电压,根据电机的实际电压与基准电压之差调节所述控制器输出的第一驱动信号。
进一步地,侦测所述电机停机时的电流,所述控制器计算电机电流为电机停机时的电流且电机转速为转速预定值时的扭矩,再计算对应于该扭矩且电机转速为0时的零速电机电流,并将所述零速电机电流确定为电流阈值。
进一步地,在第二工作阶段中,维持所述电机的电流值为所述电流阈值, 从而控制电机电流不大于所述电流阈值。
更进一步地,所述手持电动工具包括比较器,比较器比较侦测的电机电流与所述电流阈值,在电机电流小于电流阈值时输出导通信号,在电机电流大于等于电流阈值时输出关断信号,并将导通/关断信号加载到所述控制器输出的第一驱动信号中,从而维持电机电流值为所述电流阈值。
进一步地,在第二工作阶段中,维持所述电机转速为转速预定值,侦测电机电流,当电机电流达到所述电流阈值时,所述控制器控制所述电机停机,从而控制电机电流不大于所述电流阈值。
本发明还提供一种手持电动工具的电流阈值设定方法,所述手持电动工具包括电机及控制器,所述电流阈值设定方法包括以下步骤:维持电机转速为转速预定值;侦测所述电机停机时的电机电流;所述控制器计算电机电流为电机停机时的电流且电机转速为转速预定值时的扭矩;再计算对应于该扭矩且电机转速为0时的零速电机电流,并将所述零速电机电流设定为电流阈值。
本发明还提供一种手持电动工具,包括:壳体;工作组件,活动地连接于壳体,包括至少两个工作夹头;控制机构,将工作组件相对壳体位置锁定或释放;位于壳体内的电机;由电机驱动的传动机构以及用于控制电机的控制电路;其特征在于,所述控制电路包括:电机开关,断开所述电机开关时所述电机停机;电流侦测单元,用于侦测电机电流;与所述电流侦测单元相连的控制器,所述控制器根据所述电机停机时的电机电流设定电流阈值;与所述控制器相连的存储单元,用于存储所述电流阈值;与所述电机相连的电子开关,所述控制器输出第一驱动信号给所述电子开关;与所述电流侦测单元及控制器相连的限流单元,所述限流单元在电机电流达到电流阈值时,控制电机电流不大于所述电流阈值。
进一步地,所述手持电动工具具有与所述控制器相连的工作阶段切换开关,操作该工作阶段切换开关以控制手持电动工具进入第一工作阶段或第二工作阶段,在第一工作阶段,所述控制器根据停机的电机电流设定电流阈值,在第二工作阶段,在电机电流达到电流阈值时,所述限流单元控制电机电流不大于所述电流阈值。
更进一步地,所述控制电路还包括用于侦测电机电压的电压侦测单元,在第一工作阶段,所述控制器根据侦测的电机电流及转速预定值计算维持转 速预定值所需的电压,以计算得到的电压为基准电压,并根据侦测的实际电压与基准电压之差调节所述第一驱动信号。
更进一步地,所述存储单元预先存储电机电流、扭矩及电机转速之间的数据关系,在第一工作阶段,所述控制器计算电机电流为停机时的电流且电机转速为转速预定值时的扭矩,再计算对应于该扭矩且电机转速为0时的零速电机电流,并将所述零速该电机电流确定为电流阈值。
更进一步地,所述限流单元具有与电流侦测单元及控制器相连的比较器,在第二工作阶段,所述比较器比较侦测的电机电流与电流阈值,并在电机电流小于电流阈值时输出导通信号,在电机电流大于等于电流阈值时输出关断信号,所述比较器将所述导通信号/关断信号加载到所述第一驱动信号中。
本发明手持电动工具及其扭矩控制方法具有第一工作阶段及第二工作阶段。第一工作阶段中,根据停机时的第一电机参数设定参数阈值;第二工作阶段中,当第二电机参数达到参数阈值时,控制第二电机参数不大于该参数阈值,使工件达到一致的深度,方便了经验较少的使用者操作手持电动工具。
本发明另一实施例公开了一种可单手操作的手持式动力工具以及其操作方法。
一种手持式动力工具,包括:壳体;驱动机构,设置于所述壳体内,用于驱动工作头旋转,包括输出轴及电机,所述电机与所述输出轴连接,用于驱动所述输出轴旋转;开关,设置于所述壳体上,用于控制所述驱动机构工作;工作组件,包括至少两个用于固定工作头的工作夹头,所述工作组件活动连接于所述壳体,每一所述工作夹头能够在工作位置与非工作位置之间转换,所述手持式动力工具还包括将工作组件相对壳体位置锁定/释放的控制机构,控制机构包括锁定件以及控制件;所述锁定件具有第一位置和第二位置;当锁定件位于第一位置时,锁定件将工作组件的位置锁定,并使输出轴与所述工作组件配接;控制件可操作地移动从而控制锁定件从第一位置移动到第二位置;当锁定件位于第二位置时,锁定件解除工作组件的位置锁定,并使输出轴与所述工作组件脱开配接,所述控制件能够移动复位。
所述控制件具有第三位置和第四位置;控制件从第三位置移动到第四位 置的同时控制锁定件从第一位置移动到第二位置;当锁定件位于第二位置时,所述控制件能允许从第四位置复位到第三位置。
优选地,所述控制件相对锁定件活动设置。
优选地,所述控制件与锁定件之间设置有预留空间,所述控制件可利用所述预留空间从第四位置自动复位至第三位置。
优选地,所述锁定件包括容纳口,所述控制件具有可在容纳口内移动的凸起部,所述凸起部与容纳口的边缘相配合,从而带动所述锁定件从第一位置移动到第二位置。
优选地,所述容纳口为一缺口,设置于所述锁定件的边缘。
优选地,所述缺口呈U型。
优选地,所述锁定件包括限位部,所述工作部件与所述限位部对应位置具有限位凹槽,所述限位部通过限位部位于所述限位凹槽内,使工作组件位置锁定。
上述手持式电动工具可利用锁定件的预留空间,使控制件能够利用该预留空间自动复位,而不受工作夹头是否转换到预设位置的影响,避免了给工作人员因电钻的输出轴与工作头的工作轴没有完全啮合,使上述手持式动力工具因解锁开关无法复位,给操作人员造成工作头没有转换到预设位置的误解的问题。
一种手持式动力工具的操作方法,所述手持式动力工具包括壳体,具有手柄握持部;驱动机构;输出轴,由驱动机构驱动旋转;工作组件,包括至少两个工作夹头;开关,设置于所述手柄握持部;所述至少两个工作夹头分别包括工作轴,所述手持式动力工具还包括将工作组件相对壳体位置锁定/释放的控制机构,所述控制机构包括活动设置的控制件;所述手持式动力工具的操作方法包括如下步骤:移动控制件以允许工作组件相对壳体进行移动;转动工作组件使所述工作夹头相对壳体锁定;释放控制件使控制件移动复位。
优选地,还包括以下步骤:在释放控制件之后,触发开关启动驱动机构,使所述工作轴之一与输出轴配接。
本实施例的控制件由于能够自由进行复位,即使在实际操作过程中碰到工作组件中的一个工作夹头转动到预设位置后,其工作轴与驱动机构的输出轴没有完全啮合,导致锁定件无法复位,也不会影响控制件进行复位,这样便不会给工作人员带来工作头没有转换到预设位置的误解,只要工作人员通过开关控制驱动机构的输出轴转动,其输出轴便会与位于工作位置的工作夹头的工作轴相啮合,不会影响工具的正常工作。
本发明实施例还提供一种手持式动力工具,具有较好的可接近性。
本发明是这样实现的:一种手持式动力工具,包括:主壳体,沿纵向延伸;马达,设置于主壳体;输出轴,由马达驱动旋转;工作组件,相对主壳体活动设置,包括至少两个工作夹头,所述工作夹头分别包括工作轴,所述工作轴可择一地处于可与输出轴配接的位置;所述动力工具沿纵向依次包括收容马达的第一区,收容输出轴的第二区,以及收容工作轴的第三区,所述第一区与第二区具有高度差形成第一阶梯,所述第二区与第三区具有高度差形成第二阶梯。第三区的高度小于第二区高度,第二区的高度小于第一区的高度。
本发明实施例的还提供一种手持式动力工具,操作舒适、省力、平衡性好,符合人性化操作的需求。
本发明是这样实现的:一种手持式动力工具,包括:主壳体,沿纵向延伸;马达,设置于主壳体;输出轴,由马达驱动旋转;工作组件,相对主壳体活动设置,包括至少两个工作夹头,所述工作夹头分别包括工作轴,所述工作轴可择一地处于可与输出轴配接的位置;所述动力工具沿纵向依次包括收容马达的第一区,收容输出轴的第二区,以及收容工作轴的第三区,所述第二区与第一区的长度比范围2:5至3:5之间,所述第三区与第二区的长度比小于3:5。
本发明实施例的手持式动力工具,机身整体协调性好,操作轻巧,并且在包装时,最有效地节省和利用宽度方向的尺寸。
本发明是这样实现的:一种手持式动力工具,包括:纵长延伸部;手柄,与所述延伸部呈角度的连接;马达,设置于延伸部;输出轴,由马达驱动旋 转;工作组件,包括至少两个工作夹头,所述工作夹头分别包括工作轴,所述工作轴可择一地处于可与输出轴配接的位置;所述延伸部的长宽比在3至4.5之间。
附图说明
下面结合附图对本发明做进一步详细的描述。
图1为本发明的实施例手持式动力工具的主视图。
图2为图1所示手持式动力工具主视方向剖视图。
图3为图1所示手持式动力工具的立体分解示意图。
图4为沿图2中A-A方向的剖视示意图。
图5为图3中齿条装置的立体分解示意图。
图6为图1所示手持式动力工具主视方向的局部剖视示意图。
图7至图9为图6中手持式动力工具控制件移动至不同位置时各状态的剖视示意图。
图10为沿图2中B-B方向的剖视示意图。
图11为沿图2中C-C方向的剖视示意图。
图12为本发明第二实施例手持式动力工具的主视图。
图13为图12中手持式动力工具移去半壳后显示内部结构的主视示意图。
图14为图12所示手持式动力工具主视方向的剖视示意图。
图15为图12中手持式动力工具的立体分解图。
图16为图15中滑移组件的立体立示意。
图17为图16中滑套平展后的结构示意图。
图18至图22为本发明第二实施例手持式动力工具控制件移动至不同位置的状态示意图。
图23为本发明第三实施例手持式动力工具的立体示意图。
图24为图23中手持式动力工具移去工作头后的主视图。
图25为图24中手持式动力工具的局部左视图。
图26为图23中手持式动力工具的主视方向剖示图。
图27为图23中手持式动力工具移去壳体后的立体分解示意图。
图28为图23中手持式动力工具移去壳体后的俯视图,此时控制件处于锁定位置。
图29为图28中D1-D1方向的剖视图。
图30为图28中E1-E1方向的剖视图。
图31为图23中手持式动力工具移去壳体后的俯视图,此时控制件处于解锁位置。
图32为图31中D2-D2方向的剖视图。
图33为图31中E2-E2方向的剖视图。
图34为本发明第四实施例的手持式动力工具内部结构示意图;
图35为图34中控制机构的立体分解示意图;
图36为图34中控制机构的侧视示意图;
图37为图36中控制机构沿F-F的剖视结构图;
图38为图36中控制机构沿G-G的剖视第一状态结构图;
图39为图36中控制机构沿G-G的剖视第二状态结构图。
图40是本发明第五实施例的手持式动力工具的示意图。
图41是图40中手持式电动工具的电路示意图。
图42是图40中手持式电动工具的扭矩、电机电流及电机转速的关系曲线图。
图43是图40中手持式电动工具的电机电流、电机电压及电机转速的关系曲线图。
图44是图40中手持式电动工具的人工模式的第一较佳实施方式的电路示意图。
图45是图40中手持式电动工具的人工模式的第二较佳实施方式的电路示意图。
图46是图40中手持式电动工具的自动模式的电路示意图。
图47是图40中手持式电动工具的控制方法的人工模式的第一较佳实施方式的流程图。
图48是图40中手持式电动工具的控制方法的人工模式的第一较佳实施方式的曲线示意图。
图49是图40中手持式电动工具的控制方法的人工模式的第二较佳实施方式的流程图。
图50是图40中手持电动工具的控制方法的人工模式的第二较佳实施方式的曲线示意图。
图51是图40中手持电动工具的自动模式的第一工作阶段的曲线示意图。
图52是图40中手持电动工具的自动模式的第二工作阶段的曲线示意图。
图53是本发明第六实施例的手持式动力工具局部示意图。
图54是图53的手持式动力工具主视方向移动部分壳体后的内部结构示意图。
图55是本发明第七实施例的手持式动力工具主视方向局部示意图。
图56是图55中的手持式动力工具俯视方向局部示意图。
图中:
100-动力工具          2540-Y形槽               318-控制钮
10-壳体               2541-直线槽              319-凹槽
10a-半壳              2542、2543-斜线槽        320、320’-工作灯
12-主壳体             2550-Y形槽               32-减速箱
14-手柄               2551-直线槽              32a-支撑面
18-电池包             2552、2553-斜线槽        330-控制机构
18a-电池包壳体18a     256-卡圈                 34-齿条装置
2-换向扳机            26-安装盘                35-卡勾件
200-动力工具          26b-锁槽                 35a-卡勾部
20、20’-工作组件     260-转动件               36-齿条
202-换向扳机          263-齿轮部               36a-齿条槽口
204-开关              264-支撑套               36b-齿条侧壁
206-输出轴            265-定位筋               36c-开孔
206a-槽孔             266-环形孔               36d-槽口端壁
206b-键齿             267-销                   37-卡勾件
2061-第一轴           268-定位轴承             37a-卡勾部
2061a-凸轴部          27-卡接件                38-枢轴
2061b-连接部          28-联接件                39-扭簧
2062-第二轴           28a-主体件               4-开关
2062a-凸轴部          29-压簧                  40-控制件
2062-连接部           30-传动装置              41-驱动臂
2062c-环形槽          300(’)、300a-动力工具   400、400’-电钻
208-马达              301-控制件               42-凹槽
210-壳体              301a-解锁钮              44-横槽部
210a-半壳             301b-连接柱              46a、46b-斜槽部
212-主壳体            302-弹性件               50-凸轮
213-环形导槽          303-锁定件               51-螺钉
214-手柄              304-侧板                 52-连接销
218-电池包            304a-收容槽              53-导向柱
22-工作夹头           304b-卡槽                54-连接销
220-钻头              305-连接件               6-输出轴
22a-工作轴            306-侧臂                 60-被动件
230-传动装置          307-离合套               62-连接孔
232-减速箱            308-复位弹簧             64-开口
24-工作夹头           309-定位销               70-齿轮组件
24a-工作轴            310-机壳                 71-连接轴
24b-收容孔            311-弹性件               72-大齿轮
240-螺丝批头          312-主壳体               8-马达
250-控制件            313-导向板               80-传动组件
251-连接部            315-导向柱               82-传动齿轮
252-套筒              316-输出轴               84-传动臂
254-导向凹槽          317-控制板               810-壳体
811-手柄              812-主机壳               820-驱动机构
821-输出轴            830-开关                 840-工作组件
841-工作夹头          842-凹槽                 8411-工作轴
850-控制结构          851-锁定件               8511-缺口
8512-限位部           852-控制件               8521-凸起部
853-第一弹性部件      910-壳体                 920-电机
930-传动装置          940-夹具                 940a-第一夹头
940b-第二夹头         950-供电模组             960-控制电路
961-控制器            962-开关检测单元         963-存储单元
964-电流阈值设定单元  965-电流阈值设定单元     966-限流单元
967-电流侦测单元      968-电压侦测单元         970a-正极触片
970b-负极触片         972a-夹头正极触片        972-夹头负极触片
具体实施方式
参照图1至图3所示,本发明手持式动力工具100设有壳体10,其中壳体10由两个哈夫式半壳10a连接组成。动力系统,包括收容于壳体10内的马达8,本实施例的马达8采用电动马达,也可以其它类型的马达,例如气动马达、燃油马达等替代。壳体10包括收容马达8的主壳体12,以及与主壳体12连接的手柄14,主壳体12沿纵向方向延伸,手柄14与主壳体12呈角度设置。本实施例中多功能电钻100的主壳体12与手柄14大致垂直设置。手柄14上远离马达8的一端设置有为马达8提供能量的能量单元,本实施例中的能量单元采用的是电池包18,电池包18与手柄14可拆卸地连接,电池包18包括多个收容于电池包壳体18a的可充电式电池,电池优选采用锂电池。手柄14上靠近主壳体12设有用于手动控制马达8的开关4和换向扳机2。本实施例的马达8也可以选择设置于手柄14。
主壳体12内设置由马达8驱动旋转的输出轴6,本实施例中,输出轴轴线X1沿主壳体12纵向延伸,且输出轴轴线X1与马达轴线重合;在其它可选择的方案中,输出轴线X1与马达轴线可以平行或呈角度设置。输出轴6与马达8之间设置有用于减速的传动装置30,减速传动装置30收容于减速箱32内;本实施例中减速传动装置30是齿轮机构,优选采用行星轮机构。
手持式动力工具100包括活动连接于壳体10的工作组件20;本实施例中,工作组件20位于主壳体12上远离马达8一端,工作组件20相对主壳体12枢转设置,其中工作组件20的枢转轴线Y1与输出轴轴线X1之间呈角度α设置,并且枢转轴线Y1与输出轴轴线X1恒定地处于共面状态。其中该角度α为锐角,角度范围设置在30度与65度之间,优选采用的角度α范围为45度至65度。工作组件20包括两个工作夹头22、24,工作夹头22与工作夹头24固定连接并且对称地设置于枢轴轴线Y1的两侧,工作夹头22、24分别设置有工作轴22a、24a,工作轴22a、24a的轴线之间呈角度β设置,该角度β是角度α的2倍。当工作夹头22、24之一处于工作位置时,工作轴22a、24a轴线与枢转轴线Y1、输出轴轴线X1处于同一平面。工作轴22a、24a一端与输出轴6可选择地配接,另一端用于连接工作头。工作组件20如此设置使得其相对壳体10枢转时,工作夹头22与工作夹头24中的至少一个工作夹头可转动至使其工作轴与输出轴6配接的位置,从而由输出轴6驱动工作夹头的工作轴旋转。本实施例中工作组件20绕枢转轴线Y1相对壳体10 作往复转动,致使工作夹头22与工作夹头24的工作轴可选择地或者轮换地与输出轴6配接,从而使输出轴6择一地驱动夹持于工作夹头22、24的工作头进行旋转工作。
工作夹头22与工作夹头24其中之一设置成用于夹持钻头220,另一个工作夹头可根据实际需要进行设计,例如可以设置成用于夹持螺丝批头,也可以是用于夹持用于砂磨的小磨头等。另一种可选择的方案中,工作夹头22与工作夹头24其中之一设置成用于夹持螺丝批头240,另一工作夹头可根据实际的工作对象进行设计。本实施例中,工作夹头22用于夹持钻头220,工作夹头24用于夹持螺丝批头240。
多功能电钻100包括相对壳体10活动设置的控制件40,以及设置于控制件40与工作组件20之间的传动系,通过传动系,控制件40的运动可操作地驱动两个工作夹头22、24实现在工作位置与收容位置间互换,也就是说,控制件40的运动可操作地使输出轴6与工作夹头22、24选择性配接。控制件40设置于主壳体12的外侧,本实施例的控制件40可相对壳体10沿输出轴轴向作线性运动,且以滑盖的形式可操作地移动于主壳体12的顶部,可用于覆盖至少部分位于壳体10的机芯结构。当然,本领域技术人员可以将控制件也可设置成操作钮等其它形式。
传动系包括第一传动机构以及第二传动机构,控制件40的线性运动通过第一传动机构可操作地控制工作夹头22、24之一与输出轴6进行配接或者分离,同时,控制件的线性运动通过第二传动机构可操作地控制工作组件相对壳体10枢转。
第一传动机构用于择一地控制工作夹头22、24与输出轴6进行配接或者分离,第二传动机构用于控制工作组件20相对壳体10转动。
第一传动机构包括由控制件40驱动旋转的驱动件50,由驱动件驱动的被动件60,由被动件60驱动的联接件28,联接件28一端与输出轴6连接,另一端可选择地与工作夹头22、24之一配接或者脱开,也就是说,联接件28一端与输出轴6连接,另一端可选择地与工作轴22a、24a之一配接或者脱开。
参照图3所示,控制件40上设置有第一驱动部,驱动件50上设置有与第一驱动部配接的传动部。第一驱动部为设置于控制件40内表面的凹槽42(参照图4),驱动件50可绕一固定枢转轴线正向或反向旋转,驱动件50位 于控制件40与减速箱32之间,本实施例的驱动件采用凸轮50,凸轮50通过螺钉51转动的设置于减速箱32的导向柱53内,凸轮50以导向柱53的中心线作为枢转轴线。其中传动部为设置于凸轮50上靠近控制件40的第一端面上的第一连接销52,第一连接销52与凹槽42啮合配接,凸轮50上与第一端面相对的第二端面设置有连接销54,连接销54与连接销52沿相反方向延伸。
被动件60设置于减速箱32与主壳体12之间,被动件60上靠近凸轮50的一端设置有与连接销54配接的第一连接部,该第一连接部构造成接收连接销54插入的连接孔62的形式。被动件60上设置有第二连接部,该第二连接部构造成卡槽64的形式。通过连接销54,驱动件的旋转运动能转换为被动件沿平行于输出轴轴线的移动。驱动件正向转动驱动被动件沿输出轴轴向远离工作组件20运动,驱动件反向转动驱动被动件沿输出轴轴向靠近工作组件20运动。
联接件28设置于工作组件20与输出轴6之间,且可沿输出轴6轴向移动,联接件包括主体部28a以及配接于主体部28a的卡接部27,主体部28a以套管的形式与输出轴6一端滑移配接,另一端与可择一地与工作夹头22、24的工作轴22a、24a配接。主体部28a的外围设置有弹性件,本实施例的弹性件采用压簧29;卡接部27连接于主体部28a上靠近输出轴6的一端用于与被动件60卡槽64配接,卡接部27可移动地套接于主体部28a的外围面上,主体部28a端部设置卡圈(图中未示出)用于限位,可将卡接部27限定于主体部28a上而不至于脱离主体部28a;主体部28a处于初始位置时,卡接部27在弹性件29的作用下抵接于卡圈。
参照图2、图4所示,控制件40内侧面的凹槽42,连接销52可滑移地啮合于凹槽42内。本实施例的凹槽42设置成沿主壳体12延伸方向的︺型槽,︺型槽包括位于中央的横槽部44以及位于横槽部44两端且对称分布的斜槽部46a、46b。凹槽42中收容有可在凹槽内滑移的连接销52,初始状态时,连接销52位于斜槽部46a、46b的盲端且与槽壁抵靠。
当控制件40于初始位置沿主壳体12按箭头M所示的平行于输出轴轴线方向移动时,啮合于凹槽42的连接销52沿凹槽42的斜槽部46a移动,连接销52经过移动行程a,凸轮50绕导向柱53轴线按箭头R1所示方向枢转,连接销54随凸轮5相应的转动,连接销54的转动带动与其配接的被动件60 沿输出轴轴向向远离工作组件20移动;本实施例中,被动件60与控制件40移动方向一致。被动件60的移动致使与卡槽64配接的卡接部27带动主体部28a随被动件60移动,导致原本与工作夹头22的工作轴22a配接的主体部28a一端与工作轴22a脱开。一旦主体部28a与工作轴22a分离,可允许工作组件20相对壳体10进行枢转;连接销52于斜槽部46a移动时,由斜槽部46a的顶部下降至横槽部44,连接销52走过的行程a即是控制件40的解锁行程。当啮合于凹槽42的连接销52沿凹槽42的横槽部44移动,凸轮5不转动。当啮合于凹槽42的连接销52沿凹槽42的斜槽部46b移动,连接销52自横槽部44上升至斜槽部46b的顶部,此时凸轮5沿箭头R2所示方向反向转动。
第二传动机构包括由控制件40驱动的齿条装置,与齿条装置连接的齿轮组件70,以及由齿轮组件70驱动旋转的传动组件80,传动组件80用于驱动工作组件20相对壳体10枢转。
参照图5、图6所示,控制件40上还设置有第二驱动部,本实施例的第二驱动部为设置于控制件40的驱动臂41,齿条装置34设置于控制件与减速箱32之间,齿条装置34包括与驱动臂41配接的保持组件,以及用于支撑运动装置的齿条36,保持组件具有锁定状态和释放状态,当保持组件处于释放状态,驱动臂41驱动齿条装置沿输出轴轴向移动,当保持组件处于锁定状态,驱动臂41不能驱动齿条装置沿输出轴轴向移动。本实施例的保持组件包括一对转动地设置于齿条36的卡勾件35、37,卡勾件35、37沿输出轴轴向分布,驱动臂41可操作地沿输出轴轴向运动。
卡勾件35、37具有锁定位置和释放位置,当卡勾件35、37处于释放位置,控制件4通过驱动臂41驱动齿条装置34沿平行于输出轴轴线移动,当卡勾件35、37其中之一处于锁定位置,控制件4通过驱动臂41不能驱动齿条装置34运动。齿条36的端部形成有沿齿条延伸方向的槽口36a,槽口36a的两侧壁36b分别设置有开孔36c,卡勾件35、37通过穿设于齿条侧壁36b开孔36c的枢轴38转动地设置于齿条36一端的槽口36a内。卡勾件35、37上分别设置有弹性件,本实施例弹性件采用扭簧39。
参照图6所示,驱动臂41设置于控制件40的内侧面且向壳体10内部凸出。卡勾件35、37在扭簧39的作用下具有向控制件40方向凸出于槽口36a的预应力。当控制件40处于初始状态时,第一卡勾件35的卡勾部35a受驱 动臂41的抵接作用克服扭簧39作用力向内侧转动至伸出槽口36a。
参照图4至图7所示,当控制件40按箭头M所示的平行于输出轴轴线方向相对壳体10移动时,驱动臂41随控制件40一起移动,驱动臂41相对齿条装置34移动的过程中,对第一卡勾件35的抵压力越来越小,直至第一卡勾件35的卡勾部35a在扭簧39作用力下回转至槽口36a内且与齿条槽口36a的端壁36d啮合卡接。此时,进一步沿箭头M所示方向移动控制件40,第一、第二卡勾件35,37支撑于减速箱32支撑面32a上,驱动臂41作用于第一、第二卡勾件35,37之间从而带动齿条装置34整体沿箭头M所示方向移动。如前所述,控制件40相对壳体10移动,当连接销52于第一斜槽部46a内移动至与横槽部44相交位置时,解锁行程a完成,工作组件20可允许相对壳体10进行枢转。图7中控制件40的当前位置即是驱动臂41开始带动齿条装置34整体移动的初始位置。此时,进一步沿箭头M所示方向移动控制件40,驱动臂41向第二卡勾件37靠近。
参照图4、图8所示,连接销52在第一斜槽部46a与横槽部44相交的位置开始在横槽部44内移动并靠向第二斜槽部46b,连接销52于横槽部44的移动行程b即为控制件40的切换行程,工作组件20相对壳体10绕枢转轴线Y1转动。当控制件40沿箭头M所示方向进一步移动,驱动臂41抵压第二卡勾件37使其卡勾部37a克服弹性力凸向齿条槽口36a内侧,卡勾部37a脱离支撑面32a。当连接销52到达横槽部44与第二斜槽部46b相交位置,控制件40驱动臂41与卡勾部37a脱开,控制件40称动不再带动齿条装置34整体移动。连接销52于横槽部44的移动行程b,并不导致凸轮50绕导向柱53中心线进一步旋转以及移动件60的进一步移动,而工作组件20相对壳体10转过180度。
参照图4、图9所示,当工作组件20旋转致使其工作夹头24转动至工作位置,此时工作轴24a旋转至与主体部28a基本对齐的位置。进一步沿箭头M所示方向移动控制件40至移动方向的极限位置,连接销52由横槽部44与第二斜槽部46b相交位置滑移进入第二斜槽部46b并抵靠第二斜槽部46b的端壁,连接销52于第二斜槽部46b的移动行程c即是控制件40的加锁行程,该移动行程c中,控制件40不再带动齿条装置34移动。由于第二斜槽部46b与第一斜槽部46a关于横槽部44对称设置,因此连接销52于第二斜槽部46b内移动时,连接销52带动凸轮50绕导向柱53中心线沿R2方 向回转。凸轮50的回转带动被动件60沿与控制件40移动的相反方向移动。被动件60推动卡接部27克服压簧29作用力且带动主体部28a一起向靠近工作夹头方向移动,从而使得主体部28a由之前与工作夹头22的工作轴22a脱开位置回复至将输出轴6与工作夹头24的工作轴24a配接的位置。一旦输出轴6与工作轴24a配接到位,即完成一次工作夹头22、24之间的位置转换,输出轴6驱动与之配接的工作夹头24旋转。而工作夹头22由于转动至非工作位置,因而无法由输出轴6驱动旋转。
本实施例的压簧29同时又起着复位弹簧的作用,由于主体部28a与工作轴24a配接后承担传递扭矩的功能,因此工作轴的配接端通常设置成花键齿,而主体部28a的配接端则相应的设置成收容花键齿的花键槽(参照图11),当主体部28a在回复至与工作轴24a配接的过程中,由于制造公差等原因,花键齿与花键槽有可能会有角度错位,也就是说,工作轴24a的配接端花键齿没有收容于主体部28a的花键槽内,但在主体部28a在弹簧29的作用力,其配接端花键槽紧抵靠着工作轴花键齿,一旦启动马达8,输出轴6带动主体部28a旋转,主体部28a的花键槽则相对花键齿转过一个角度,主体部28a在弹簧29的弹性力作用下使花键槽与花键齿啮合,也就是说,主体部28a自动地复位至与工作轴24a配接的位置。
控制件40沿移动方向从初始位置移动至极限位置,从而使得输出轴6与至少两个工作夹头22、24之一脱开,至少两个工作夹头22、24之另一个枢转至与输出轴6配接的位置。其中,控制件40由初始位置移动至极限位置过程中,输出轴6与所述至少两个工作夹头22、24之一先脱开,然后工作组件20相对壳体10枢转,最后输出轴6与至少两个工作夹头22、24之另一个进行配接。
本领域技术人员可以设想,控制件40相对壳体20在沿箭头M完成一次完整的单向滑移,即完成至少两个工作夹头22与工作夹头24在不同位置转换。控制件40沿平行于输出轴的方向从靠近工作组件20的初始位置移动至远离工作组件20的极限位置,从而使得输出轴6与所述至少两个工作夹头22、24之一脱开,至少两个工作夹头22、24之另一个枢转至与输出轴6配接的位置。控制件40由初始位置移动至极限位置过程中,输出轴6与所述至少两个工作夹头22、24之一先脱开,然后工作组件20相对壳体10枢转,最后输出轴6与所述至少两个工作夹头22、24之另一个进行配接。
如按箭头M所示的平行于输出轴轴线方向反向移动控制件40,完成一次完整的滑移,通过第一传动机构及第二传动机构,能使工作夹头22与工作夹头24的位置再次转换,即由工作夹头24更换为由工作夹头22与输出轴6配接由输出轴6驱动旋转,此处不作赘述。
参照图3、图10、图11所示,齿轮组件70设置于主壳体12内,传动组件80设置于主壳体12与工作组件20之间。齿轮组件70包括与齿条36啮合传动的大齿轮72,以及通过连接轴71与大齿轮72同轴固定设置的小齿轮74,本实施例的小齿轮74设置成斜齿轮。其中传动组件80包括与小齿轮74啮合传动的传动齿轮82、以及与传动齿轮82连接的传动臂84,其中传动齿轮82也设置成斜齿轮,小齿轮74和传动齿轮82的螺旋角均设置成45度,以实现空间交错轴传动。传动臂84与工作组件20连接,以至于当齿条36驱动大齿轮72转动时,小齿轮74产生相应的转动,从而驱动传动齿轮82绕其轴心线转动,传动齿轮82转动带动传动臂84与工作组件20绕传动齿轮82的轴心线转动,本实施例中传动齿轮82的轴心线与工作组件20的枢转轴线Y1共轴线,传动臂84设置成传动钩。
参照图12至图15所示,本发明第二实施例的手持式动力工具200与第一实施例具有类似结构,为表述方便,相同的结构不作重复赘述,不同的结构在下文作具体描述。
手持式动力工具200具有壳体210,由两个哈夫式半壳210a组成,马达208收容于主壳体212,手柄部214一端与主壳体212呈角度设置,该角度在90度左右;手柄部214另一端可拆卸地连接有电池包218,电池包218包括多个可充电式电池;手柄部214上靠近主壳体212的部位设置用于手动控制马达208的开关204和换向扳机202。
主壳体220内设置有由马达208驱动的输出轴206,输出轴轴线X2与马达轴线重合。输出轴206与马达208设置有用于减速的传动装置230,传动装置230收容于减速箱232内。
手持式动力工具200包括活动连接于壳体210的工作组件20’;工作组件20’相对主壳体212枢转设置。工作组件20’的枢转轴线Y2与输出轴轴线X2之间呈角度α设置。工作组件20’的两个工作夹头22、24固定连接并且对称地设置于枢轴轴线Y2的两侧,工作夹头22、24分别设置有工作轴22a、24a,工作轴22a、24a于其延伸方向上的中心线呈角度β设置。工作夹头22 用于夹持钻头220,工作夹头24用于夹持螺丝批头240。
主壳体212上设置有滑移组件,滑移组件包括活动设置于主壳体212外部的控制件以及设置于主壳体212内部的滑移件。控制件与工作组件20’之间设置有传动系,通过传动系,控制件的运动可操作地驱动工作组件20’枢转,实现两个工作夹头22、24位置相互转换。
传动系包括由控制件驱动的滑移件,以及由滑移件驱动旋转的转动件,滑移件一端与输出轴206配接,另一端可选择地与工作夹头之一脱开或配接,转动件用于驱动工作组件20’相对壳体枢转。
本实施例的控制件250也是以滑盖形式可移动地设置于主壳体212的顶部,滑移件以套筒252的形式可移动地设置于主壳体212内部。转动件260由套筒252驱动旋转,其中套筒252通过连接部251与控制件250固定连接。套筒252沿周向设置有导向凹槽254,套筒252与输出轴206间隙配合,以至于当输出轴206由马达208驱动旋转时,套筒252不随输出轴206旋转。
本实施例的输出轴206包括第一轴2061和第二轴2062,第一轴2061设置有槽孔206a,第二轴2062上设置键齿206b,通过键齿206b与槽孔206a,第一轴2061与第二轴2062活动配接在一起,第一轴2061旋转带动第二轴2062一起旋转,第二轴2062沿输出轴轴线X2可相对第一轴2061线性移动。第一轴2061和第二轴2062分别于延伸方向的大致中间位置设置有沿径向凸出的凸轴部2061a、2062a,转动件260套设置于输出轴的凸轴部2061a、2062a外侧且与输出轴206间隙配合,输出轴206旋转并不能带动转动件260旋转。
转动件260包括齿轮部263、以及与齿轮部263固定配接的支撑套264,支撑套264外围面上设有径向向外凸出的定位筋265。支撑套264的外围进一步设置有一对起支撑作用的定位轴承268,定位轴承268与主壳体212相啮合以至于定位轴承268可相对主壳体212转动但不能相对主壳体212移动,定位轴承268设置于定位筋265的同侧,其中一个定位轴承268与定位筋265抵接,从而限制转动件260相对主壳体212移动,但是转动件260可相对主壳体212转动。
齿轮部263设置成环形,齿轮部263套设于支撑套264的端部,并通过销267将支撑套264及环形齿轮部263进行固定连接,销267一端伸入齿轮部263的环形孔266与套筒252的导向凹槽254相啮合。
套筒252通过卡圈256配接于第二轴2062的连接部2062b上,也就是说, 套筒252固定于第二轴2062的凸轴部2062a与卡圈256之间;当控制件250处于初始位置时,套筒252与工作夹头的工作轴22a、24a之一配接,以至于马达208能驱动与套筒252配接的工作夹头。当控制件250带动套筒252由初始位置开始移动,套筒252带着第二轴2062一起相对第一轴2061移动,移动的结果是套筒252与工作轴22a、24a之一首先脱开配接,控制件250进一步移动能使转动件260相对主壳体212绕输出轴轴线X2枢转。由于工作组件20’上相应地设置有与齿轮部263啮合传动的齿轮部(图中未示出),这样的结构使得转动件260绕输出轴轴线X2旋转时驱动工作组件20’绕枢轴轴线Y2旋转。
参照图14,输出轴第二轴2062的凸轴部2062a设置有环形槽208,该环形槽的作用是当第二轴2062相对第一轴2061移动并靠近时,第一轴2061的连接部2061b能伸入该环形槽2062c中,这样的设计可以缩小主壳体212的延伸长度,整体体积变小、重量变轻、手持式动力工具操作更轻巧。
参照图14、图15,主壳体212上靠近工作组件20’的部位设置有环形导槽213,工作组件20’上设置有啮合卡接于导槽213内的安装盘26,当工作组件20’绕枢轴轴线Y2旋转时,安装盘26于环形导槽213内转动,这样的结构使得转动更灵活。
参照图16、17所示,本实施例的导向凹槽254由两个并列且连通设置的Y形槽2540、2550组成。其中第一个Y形槽2540包括直线槽2541,以及由直线槽2541向两侧延伸的斜线槽2542、2543,第两个Y形槽2550包括直线槽2551,以及由直线槽2551向两侧延伸的斜线槽2552、2553。其中斜线槽2542的延伸末端与斜线槽2552的延伸末端相连通,斜线槽2553的延伸末端与斜线槽2543的延伸末端相连通。
参照图17、图18所示,当控制件250处于初始位置时,销267啮合于直线槽2541的始端,此时工作夹头24处于工作位置,即套筒252与工作夹头24的工作轴24a配接(参照图14)。
参照图17、图19所示,当控制件250按箭头M1所示的平行于输出轴轴线方向移动时,带动套筒252随之移动,销267于直线槽2541的始端向直线槽2541的终端滑移,当销267滑移至直线槽2541的终端时,套筒252与工作夹头24的工作轴24a脱开配接,此过程中被动件260相对主壳体212则保持静止。
参照图17、图20所示,控制件250进一步沿箭头M1所示方向移动至极限位置,销267于直线槽2541的终端滑移进入斜线槽2542,并向斜线槽2542的终端靠近,此过程中,套筒252驱动转动件260绕输出轴轴线X2旋转。由于套筒252与工作组件20’的工作轴24a脱开配接,因此转动件260通过齿轮部263驱动工作组件20’绕枢转轴线Y2旋转,此过程中,工作组件20’绕枢转轴线Y2转过90度,而控制件250此时已移动至预设的能相对主壳体212移动的极限位置。
参照图17至图21所示,为了能工作夹头22旋转至工作位置,需要进一步使工作组件20’绕枢转轴线Y2旋过90度。此时沿与箭头M1所示的反向即箭头M2所示方向移动控制件250,销267于斜线槽2542的终端滑移进入斜线槽2550,并向斜线槽2550的终端靠近,套筒252驱动转动件260绕输出轴轴线X2进一步旋转,工作组件20’绕枢转轴线Y2再次转过90度,即工作组件20’绕枢转轴线Y2一共转动180度,工作夹头22旋转至工作位置。
参照图17、图22所示,按箭头M2所示的平行于输出轴轴线方向移动时移动控制件250回复至初始位置,销267于斜线槽2550的终端滑移进入直线槽2551,并靠近直线槽2551终端,此时套筒252随控制件250移动至初始位置,套筒252与工作夹头22的工作轴实现配接,此过程中被动件260相对主壳体212则保持静止。
综上所述,控制件250沿平行于输出轴轴线方向往复移动一次,工作组件20’的至少两个工作头在不同的位置转换。本领域技术人员可以设想,控制件250沿平行于输出轴轴线于初始位置移动至极限位置并从极限位置沿相反方向移动到初始位置,从而使得输出轴206与至少两个工作夹头22、24之一脱开,至少两个工作夹头22、24之另一个枢转至可与输出轴206配接的位置。控制件250于初始位置移动至极限位置移动的过程中,输出轴206与所述至少两个工作夹头22、24之一先脱开,然后工作组件20相对壳体10枢转;控制件250于极限位置移动到初始位置的过程中,工作组件20相对壳体10枢转,然后输出轴206与所述至少两个工作夹头22、24之另一个进行配接。
参照图23至图33,本发明第三实施例的手持式动力工具300是第一实施例的另一种变形。为表述方便,相同的结构以相同的编号表示且不作重复赘述,不同的结构将在下文作详细描述。
参照图23至图26所示,手持式动力工具300包括控制机构330,用于将工作组件20相对壳体310位置进行锁定。只有当控制机构330解除了对工作组件20的锁定,工作组件20才能绕枢转轴线Y3相对壳体310转动,从而使工作夹头22、24可分别在工作位置和非工作位置之间转换,工作夹头22、24之一处于与输出轴316轴向配接的工作位置时,工作夹头中22、24之另一个处于与输出轴轴向呈角度的非工作位置。
壳体310包括沿纵向延伸的主壳体312,工作组件20活动地设置于主壳体312的一端,马达8设置于远离工作组件20的主壳体312内,输出轴316纵向延伸于主壳体312内,输出轴轴线X1与马达轴线重合。手持式动力工具300还设置有工作灯320,本发明实施例的工作灯320设置于主壳体312的顶部靠近工作组件20的部位,工作灯320可在照明条件不足的情况下用于照亮手持式动力工具300前方的工作区域,工作灯优选采用LED灯。本实施中,工作灯320由开关4控制工作;当然工作灯320也可以其它方式独立控制,根据工作条件选择性的进行开启。
手柄14一端与主壳体312连接,另一端连接电池包18。工作夹头22、24分别设置有工作轴22a、24a。参照图25,工作轴22a、24a分别设有用于配接工作头的六边形收容孔(图中仅示出工作轴24a的收容孔24b),以至于设有六方柄的螺丝批头、钻头能快速地安装或者拆卸,免去了诸如三爪式工作夹头的锁紧或释放操作的繁锁过程。工作夹头22、24的结构改良,使得工作组件20整体结构更加紧凑。
手柄14延其延伸方向具有中心线,手柄中心线与输出轴轴线X1之间的夹角γ大致与β相同,也就是说,处于非工作位置的工作夹头22的工作轴轴线大致与手柄中心线相平行。这样的设置,使得手持式动力工具的重力配比更合理、结构也更紧凑。
以处于工作位置时的工作夹头22自由末端为手持式动力工具300整机长度的起始位置,以壳体310上远离工作夹头22的尾部作为整机长度L1的终端位置,则手持式动力工具300的重心G至工作夹头22的自由末端的距离为L2,该距离L2约占整机长度L1的5/10至8/10之间,优选距离L2约占整机长度L1的7/10,也就是说,手持式动力工具300的重心G的位置设置于手柄14的握持部位附近,从而使手持式工具在作业过程中能避免由于重心靠近工作组件20而对操作者手腕部产生转矩,减少操作疲劳度。而本实施例 的手持式电动力工具300操作轻巧、携带方便。
本实施方式中,主壳体312的纵轴线与输出轴轴线X1重合,主壳体312在其纵向延伸方向上包括收容马达8及减速箱32的主体部,以及靠近工作组件20设置且用于收容控制机构330的前端部。纵轴线至主壳体312的主体部顶部的距离为H1;纵轴线至主壳体312的前端部顶部的距离H2;工作组件20的工作夹头之一处于工作位置时,纵轴线至该处于工作位置的工作夹头顶部的距离为H3;则本实施例中距离H3小于距离H2,距离H2小于距离H1。主壳体312的壳体高度如此设置,使得收容于工作夹头的工作头在狭小空间或者特殊角度位置执行工作时,工作头相对工件的可接近性好,避免工作头由于受主机壳的体积或形状的限制而无法进入该空间。
靠近电池包18的手柄14端部设置有控制扭矩的控制钮318,当工作夹头24转换至工作位置时,工作夹头24中夹持有螺丝批头240用于执行拧螺钉工作,可通过调节控制钮318调整螺丝批头240执行工作所需的输出扭矩。
参照图27,控制钮318与设置于手柄14内的控制板317电性连接,控制板317内集成有可调电阻或电容,操作控制钮318能使电阻或电容值改变,控制板317即实现了电子方式进行扭矩调节。相对于常规设置,也就是在主壳体内设置机械装置并以机械方式进行扭矩调整,本实施例的电子方式控制扭矩的方式由于零部件少,因而结构更紧凑,工具重量减轻;通过有效利用工具的内部空间,使工具体体积更小,操作更加灵活。
参照图27至图30所示,控制机构330包括设置于手柄14上供手动操作的控制件301,设置于控制件301与壳体310之间的弹性件302,其中弹性件302与控制件301弹性抵接,使得控制件301在正常状态下保持于锁定位置。控制件301邻近开关4且相对壳体310移动设置,具体地,控制件301的移动方向平行于输出轴轴线X1。控制件301包括外露于壳体310的解锁钮301a,以及延伸入壳体310内的配接部,配接部包括一对连接柱301b。具体地,配接部位于开关4和减速箱32之间。控制件301沿远离工作组件20方向移动,实现解除工作组件20的位置锁定和控制输出轴306与工作轴22a、24a之一脱开配接。
控制件301这样的设置方式,使得操作者能以握持手柄14的手同时实现握持手柄14和控制控制件301的运动,也是以同一手进行开关4的操作。而操作者的另一手可以执行工作夹头22、24的位置转换等其它工作,而不需要 双手频繁的更换操作。另外,控制件301解锁时的移动方向符合用户的操作习惯,也就是说,向远离工作组件20方向移动控制件301,解除工作组件20相对壳体310的位置锁定,控制件301向靠近工作组件20方向移动,使工作组件20相对壳体310的位置进行锁定。
控制机构330还包括由控制件301驱动的锁定件303,由锁定件303驱动的连接件305。本实施例的锁定件303设置成双头锁板,双头锁板上靠近工作组件20的一个端面设置成倒置的U形,双头锁板包括一对沿输出轴方向延伸且相互连接的侧板304。该倒置的U形端面可选择地与工作组件20配接或者脱开,当U形端面与工作组件20配接时,工作组件30锁定于机壳310;当U形端面与工作组件20脱开时,弹性件302提供控制件301带动锁定件303靠近工作组件20移动的弹性力,工作组件30从锁定位置上释放;从而可相对机壳310绕枢轴轴线Y3旋转进行工作夹头的位置转换。工作组件20与输出轴316之间设置有与连接件305联动配接的离合装置;本实施例的离合装置设置成移动地套接于输出轴316上的离合套307。离合套307上靠近输出轴316的一端设置有复位弹簧308,离合套307远离输出轴316的一端可选择与工作轴22a、24a之一轴向配接或者脱开。
侧板304上分别具有收容槽304a,收容槽304a相对设置用于分别与控制件301的连接柱301b配接。侧板304还设有一对相对设置的卡槽304b。连接件305收容于锁定件303形成的空间内并与锁定件303配接在一起。具体地,连接件305包括一对侧臂306,以及连接侧臂306的横臂;其中侧臂306位于一对侧板304内侧且与侧板304相互平行,横臂与侧臂306大致垂直,横臂上设置有与离合套307配接的U形槽口306b,侧臂306上分别设置横向向外侧凸出的卡接部306a,用于与侧板304卡槽304b配接。
控制机构330的控制件301、锁定件303、连接件305以及离合套307如此连接,使得当操作者克服弹性件302、复位弹簧308的作用力推动控制件301使之向远离工作组件20的方向滑移至解锁位置时,控制件301带动双头锁板平行于输出轴316移动,双头锁板移动的同时带动连接件305沿相同方向移动,从而带动离合套307于输出轴316上向远离工作组件30的方向滑移至与工作轴22a、24a之一脱开配接。当离合套307滑移至与工作轴22a、24a之一脱开的位置时,锁定件303相应地移动至与工作组件20脱开的位置。此时操作者通过相对机壳310枢转工作组件20,对工作夹头22、24位置进 行转换。
一旦工作夹头22、24位置开始转换,操作者即可释放控制件310,当工作夹头22、24位置转换完成,控制件310在弹性件302的作用下会自动回复至锁定位置;此时,离合套307在复位弹簧308的作用力下,自动回复至与工作轴22a、24a之一配接的位置,使工作组件20相对机壳310位置进行锁定,此时通过触发开关4使马达运转带动工作头执行相应工作。
控制机构330如此设置,使得控制件301处于锁定位置时,输出轴316与工作轴22a、24a之一不仅实现了配接,而且锁定件303将工作组件20相对壳体310的位置进行了锁定,从而使得工作头在执行具体的钻孔或拧螺钉工作时,避免工作组件20相对壳体310产生晃动,工作更稳定、更精准。
为了能快换地实现工作夹头22、24位置转换,并且在位置转换到位时有一个准确的判断,手持式动力工具300还设置有到位提示机构。本实施例到位提示机构设置于在工作组件20与壳体310之间。到位提示机构具有啮合状态和分离状态,啮合状态时,至少两个工作夹头其中之一处于工作位置,分离状态时,至少两个工作夹头均处于非工作位置。到位提示机构包括设置于壳体的定位销309,与定位销309抵接的弹性件311,以及设置于工作组件20的安装盘26的定位槽26a。定位销309在弹性件311的作用下始终保持向安装盘26偏压的趋势。当工作组件20相对壳体310枢转时,一旦工作夹头22、24的位置转换到位,定位销309则自动地从安装盘26滑入定位槽26a中,从而定位销309与定位槽26a进行了配接,此时工作夹头22、24相对机壳310的位置有了一个基本定位。本实施方式的定位销309采用金属材料制成,工作组件20采用塑料材料制成,因此当定位销309在弹性件311的作用力下滑入定位槽26a时能听到清脆的卡合声,以给操作者一个转换到位的提醒,同时也有转换到位的手感,即操作者能感觉到施与工作组件20的枢转力会受到到位提示机构的反作用力。本实施方式中的定位销309与定位槽26a的位置不受本实施例的限定而是可以互换设置。
通过释放控制件301的解锁钮301a,工作组件20相对壳体310的位置在控制机构330的作用下进行了自动锁定。当移动解锁钮301a至解锁位置,工作组件20相对壳体310的位置锁定进行了解除,同时输出轴306与工作轴之一脱开,此时,只要操作者施于工作组件20克服到位提示机构的作用力,使定位销309从定位槽26a中脱开,工作组件20可相对壳体310枢转以实现 工作位置转换。当然,本实施例的定位销308及工作组件20并不限于所指材料,可以用其它材料替换。定位槽26a的数量设置也可与工作夹头的数量相匹配,这样使得第一个工作夹头转换到工作位置时都能起到定位作用。定位槽26a的位置设置可与工作夹头22、24的位置相对应,也可以根据具体结构设定。
为了使控制件301在移动过程中带动锁定件303及连接件305稳定地同步移动,同时为了有效地利用壳体内部空间,在减速箱32上靠近工作组件20一端设置有导向装置,即导向装置设置于减速箱32的前端。导向装置包括沿轴向延伸的导向板313,以及一对与导向板313平行延伸的导向柱315;导向板313与导向柱315之间设置有间隙,导向板313与导向柱315位于输出轴316的上方;导向柱315的外侧分别设置有收容连接件305的侧臂306滑移的凹槽319(图25仅示出一个)。控制件301处于锁定位置时,锁定件303位于导向板313的下前方。控制件301可操作地带动锁定件303在该间隙内移动的同时带动连接件305在该凹槽319内滑移。这样设置使得控制机构330的结构更加可靠、稳定。
参照图28所示,安装盘26上设置有锁槽26b,当控制件301处于锁定位置时,锁定件303与锁槽26b配合锁定。本实施例中,双头锁板的一对平行侧板304的端部分别啮合于锁槽26b内,从而将工作组件20锁定于壳体310;为减小机构体积而有效地利用空间,锁槽26b与锁定件303的作用面设置于控制件301的上方,输出轴轴线X1的下方。
参照图30至图33所示,当沿箭头M’所示的平行于输出轴316的方向克服弹性件302和复位弹性308作用力推动控制件301,控制件301可滑移至解锁位置,此时锁定件303移动至导向板313的正下方。控制件301的移动带动锁定件303和连接件305沿相应方向移动,从而导致离合套307与工作轴22a、24a之一脱开配接,同时锁定件303与工作组件20脱开配接,具体地,双头锁板的一对平行侧板304与锁槽26b脱开啮合。此时操作者通过相对机壳310枢转工作组件20,对工作夹头22、24位置进行转换。一旦工作夹头22、24位置转换完成,到位提示机构会发出清脆的卡合声或者有转换到位的手感。释放控制件310,控制件310会在弹性件302的作用下会自动回复至锁定位置。
本发明第四实施例公开的手持式动力工具400为一种电钻,参阅图34及图35,包括壳体810、驱动机构820、开关830、工作组件840及控制结构850,驱动机构820设置在壳体810内,其中该壳体810包括手柄811及主机壳812,该手柄811与主机壳812呈角度设置,本实施例中的手柄811与主机壳812大致垂直设置,但本发明不限于此。上述驱动机构820包括电机及输出轴821,电机通过输出轴821驱动工作组件840进行工作。开关830用于控制电机进行工作,且上述开关830可设置在接近手柄811的位置,这样利于操作人员再握住手柄的同时通过开关830控制电机转动。
工作组件840位于主机壳812的一端,工作组件840相对于主机壳812枢转设置,该工作组件840包括至少两个工作夹头841,该工作夹头841用于固定工作头,上述工作组件840可相对于壳体810进行枢转,以实现每一个工作夹头841在工作位置与非工作位置的转换。具体地,上述工作夹头841可包括工作轴8411,当其中一个工作夹头841位于工作位置时,一般地,如图36及图37所示,位于该工作夹头841内的工作轴8411便通过与上述驱动机构820的输出轴821配接,使电机通过输出轴821带动工作轴8411旋转,进而控制固定于工作夹头841的工作头进行旋转。
控制机构850可将工作组件840与壳体810之间相对位置进行锁定,上述控制机构850包括锁定件851及控制件852,其中锁定件851具有第一位置与第二位置,控制件852具有第三位置和第四位置,当锁定件位于第一位置时,锁定件851将工作组件的位置锁定,并使输出轴与工作组件配接,工作人员可通过控制件852沿远离工作组件方向移动,使控制件852从第三位置位移至第四位置,进而带动位于第一位置的锁定件851也向远离工作组件方向移动,当锁定件851位移至第二位置时,锁定件851解除工作组件840的位置锁定,并使输出轴与所述工作组件脱开配接;上述锁定件851在解除工作组件840的位置锁定后,工作组件840可相对于壳体810进行旋转,待工作组件840转动到预设位置后,锁定件851可自动从第二位置复位至第一位置,再一次的对工作组件840进行位置锁定。
详细地说,上述锁定件851包括“U”型缺口8511与限位部8512,其中, 该缺口8511一般设置在锁定件851的边缘位置,对应于该缺口,其控制件852具有凸起部8521,位于该锁定件851的缺口8511内,工作人员控制控制件852进行平移,使位于缺口8511的内的凸起部8521与该缺口8511的边缘相配合,使控制件852从第三位置位移至第四位置,进而带动位于第一位置的锁定件851沿远离工作组件的方向移动至第二位置,其中,限位部8512用于限制工作组件840相对于壳体810转动,一般地,控制件852的移动方向平行于输出轴,更具体地说,工作组件具有至少一个限位凹槽842,与限位部8512的位置对应设置,当工作组件840的其中一个工作夹头841位于工作位置时,位于第一位置的锁定件851的限位部8512便位于限位凹槽842内,使工作组件840的位置锁定,此时,位于工作位置的工作夹头841的工作轴也可与驱动机构820的输出轴相配接,使驱动机构820的电机可通过输出轴驱动位于工作夹头841内的工作轴旋转,进而带动连接与工作夹头841的工作头进行工作。当工作人员控制位于第三位置的控制件852向远离工作组件的方向移动至第四位置时,位于缺口8511内的凸起部8521便于该缺口8511的边缘相配合,带动位于第一位置的锁定件沿远离工作组件的方向移动至第二位置,使限位部8512从限位凹槽842内脱离,进而使工作组件840可相对于壳体进行转动,于此同时,驱动机构820的输出轴也与工作夹头841内的工作轴脱开配接,电机无法通过输出轴驱动工作轴旋转。
接着,待限位部8512从限位凹槽842内脱离后,工作人员便不对控制件852进行控制,位于第四位置的控制件852可自动进行复位到原来的第三位置,具体地,控制机构850还包括第一弹性部件853,与控制件852连接,用于给控制件852复位提供弹力。位于缺口8511内的凸起部8521与缺口8511之间具有预留空间,该预留空间足以使位于第四位置的控制件852能够自由复位至第三位置,而不受锁定件851的限制。这样,控制件852将锁定件851的限位部8512从限位凹槽842内脱离后,工作人员可控制工作组件840相对于壳体810进行转动,在工作组件840的其中一个工作夹头841转动到预设位置之前,由于有限位部8512无法与限位凹槽842对准,位于第二位置的锁定件851无法复位到第一位置,但控制件852由于与缺口8511之间具有预留 空间,该控制件852可不受锁定件851的限制,能够自由从第四位置复位到第三位置。
最后,当工作组件840的其中一个工作夹头841转动到预设的工作位置时,限位部8512与限位凹槽842对准,并且,锁定件851利用连接于第二弹性部件854的弹性,使位于第二位置的锁定件851复位到第一位置,进而使限位部8512位于限位凹槽842内,进而再一次实现位置锁定,此时,如图38所示,驱动机构820的输出轴821与位于工作位置的工作夹头841的工作轴8411进行啮合,驱动结构820可通过输出轴带动工作轴转动,进而使固定在工作夹头841上的工作头工作。
但在实际操作的过程中,即使工作组件840的其中一个工作夹头841转动到预设的工作位置,如图38所示,由于该工作夹头841的工作轴8411与驱动机构820的输出轴821恰好因干涉无法啮合,这样便会导致位于第二位置的锁定件851也无法复位至第一位置,但即便这样,控制件852也可从第四位置复位到第三位置,工作人员也只需按照原有的步骤,通过开关830控制驱动机构820的输出轴转动,输出轴自动便会与工作夹头841的工作轴相啮合,使电钻400处于正常的工作状态。
当然,上述锁定件851除了通过缺口8511与控制件相配合,使控制件控制锁定件移动,上述锁定件851可在一侧设置滑动槽,控制件852的凸起部8521位于该滑动槽内,凸起部8521与滑动槽的边缘相配合,拉动锁定件851移动,在解除工作组件840的位置锁定后,控制件利用凸起部8521可在滑动槽内滑动自动复位,上述只要实现本发明的实质内容即可,其实现方式并不限于此。
上述控制件852由于能够自由进行复位,即使在实际操作过程中碰到工作组件840其中一个固定部841转动到预设位置后,其固定部841中工作轴与驱动机构820的输出轴没有完全啮合,导致锁定件无法复位,也不会影响控制件850进行复位,这样便不会给工作人员带来工作头没有转换到预设位置的误解。参照图39,只要工作人员通过开关控制驱动机构820的输出轴821转动,其输出轴821便会与位于工作位置的固定部841的工作轴相啮合,不 会影响电钻的正常工作。
本实施例的控制件852的这种设置方式,使得操作者只需要单手就能操作该手持式动力工具。也就是说,操作者使用握持手柄811的一个手同时进行控制件852的移动操作实现解锁,再利用身体其它部位或者外部装装备,实现工作组件841上两个工作夹头841的位置转换工作,使得工作组件840相对壳体810位置锁定,即使工作轴与输出轴没有配接到位,也就是说,工作轴8411与输出轴821此时脱开配接,控制件852在弹性件的作用力下也能自动复位。相对于现有技术而言,工作组件上两个工作夹头的位置转换过程中,工作组件容易转动到相对壳体位置锁定,但是也容易出现工作轴与输出轴没有配接到位,此时,控制件852无法正常复位,需要操作者反复操作,直至转动到工作轴与输出轴配接到位,这样的操作比较繁琐。
本实施中动力工具的操作过程中,操作者先用握持手柄811的一手进行控制件852的解锁,再将工作组件841在其腿部或外部装备上蹭一下,使工作组件841相对壳体810位置转动至锁定位置,即可释放控制件852,而当操作者重新触发开关使输出轴821旋转时,输出轴821便会与位于工作位置的固定部841的工作轴相啮合,控制件852会自动复位。
参照图40,本发明第五实施例的手持式电动工具400’,如电钻或螺丝批,具有与前述实施例类似的结构。为表述方便,相同的结构不作重复赘述,不同的结构将在下文作详细描述。
对于手持式电动工具,如电钻或螺丝批,通常需要对其输出的扭矩进行限制,以防止损坏工件或烧毁电机。
业界一般的电钻或螺丝批在刀具携动件与电机之间设有机械式过载离合器,以限制输出扭矩。然而,机械式过载离合器的体积较大,扭矩调节的精确度较低。
还有一些电钻或螺丝批采用电子的方式限制输出扭矩,由于永磁激励的直流电机的扭矩大致与电机电流成比例,通过限制电机电流基本上可以限制相应的扭矩。此种方式比起机械式过载离合器体积减小,精确度有所提高。然而对于经验较少的使用者,不同的工况下不清楚如何设定适当的目标扭矩,往往设定的目标扭矩过大或者过小。若设定的目标扭矩过大则会损坏工件,若设定的目标扭矩过小,则工件到达不到预期的位置或深度,因此有必要对现有的手持电动工具进行改进。
手持式电动工具400’包括壳体910,设置于壳体910内的电机920,与电机920相连的传动装置930,由传动装置930驱动工作的夹具940,用于给电机920供电的供电模组950,用于对电机920进行控制的控制电路960。本实施例中的夹具940包括第一夹头940a及第二夹头940b,其中第一夹头940a及第二夹头940b分别包括工作轴,该工作轴可择一由传动装置930驱动旋转。其中第一夹头940a和第二夹头940b可用于夹持不同类型的工作头,以执行不同工况的工作。例如第一夹头940a可用于夹持钻头,第二夹头940b可用于夹持螺丝批头。这样的设置使得第一夹头940a和第二夹头940b所对应不同工况所需的扭矩输出也不同。本实施例的第一夹头头940a或第二夹头940b处于工作位置时,可通过电子控制方式控制工作轴的扭拒输出。
请参考图41,控制电路960具有控制器961、电子开关S1、电机开关S2、模式选择开关S3、工作阶段切换开关S4、电阻R1、开关检测单元962、存储单元963、第一电流阈值设定单元964、第二电流阈值设定单元965、限流单元966、电流侦测单元967及电压侦测单元968。
电机920的正极通过电机开关S2与供电模组950的正极相连,负极与电子开关S1的第一端相连。电子开关S1的第二端与控制器61的第一端相连,第三端通过电阻R1与供电模组950的负极相连。
控制器961的第二端连接于电机开关S2与电机20之间的节点,第三端通过电压侦测单元968与电机920的正极相连,第四端通过限流单元966与电子开关S1的第二端相连,第五端通过电流侦测单元967与电子开关S1的第三端相连,第六端与第一电流阈值设定单元964相连,第七端与第二电流阈值设定单元965相连,第八端与模式选择开关S3相连,第九端与工作阶段切换开关S4相连,第十端与存储单元963相连。本实施方式中,控制器61为MCU,其输出第一驱动信号给电子开关S1。
限流单元966还与电流侦测单元967相连。开关检测单元962的第一端与供电模组950的正极相连,第二端与控制器961的第二端相连。
本发明手持电动工具400’可以选择性地工作在人工模式或自动模式下。在人工模式下,使用者通过第一电流阈值设定单元964进行扭矩调节能获得很高的精确度;在自动模式下,手持电动工具400’具有自动设定电流阈值的第一工作阶段,及根据设定的电流阈值进行扭矩限制的第二工作阶段,方便经验较少的使用者操作手持电动工具400’,并使得工件达到一致的深度。
用户可根据需要操作模式选择开关S3以切换到人工模式或自动模式。在自动模式中,可操作工作阶段切换开关S4以切换到自动模式的第一工作阶段或第二工作阶段。
本实施方式中,模式选择开关S3、工作阶段切换开关S4及第一电流阈值设定单元964可由同一触发件触发,该触发件为拨动开关。当拨动开关拨动到不同位置时,触发不同的工作模式、工作阶段或不同的电流阈值。
下面结合附图分别对本发明手持电动工具400’的人工模式及自动模式进行说明。
请参考图42,电机920的输出扭矩T与电机电流及电机转速N之间的关系为:当电机电流为定值时,电机转速N越高,扭矩T越小;当电机转速N为定值时,电机电流越大,扭矩T越大;当扭矩T为定值时,电机电流越大,电机转速N越高。因此在电机转速N确定的情况下,扭矩T与电机电流存在对应关系,通过限制电机电流来限制电机920的扭矩T,将大大提高扭矩调节的精确度。
请参考图44,在本发明手持电动工具400’的人工模式的第一较佳实施方式中,控制电路960具有控制器961、电子开关S1、电机开关S2、电阻R1、电压侦测单元968、电流侦测单元967、第一电流阈值设定单元964、第二电流阈值设定单元965及存储单元963。电机920由控制器961及电子开关S1控制。
用户操作第一电流阈值设定单元964以人工设定第一电流阈值I1。
第二电流阈值设定单元965设定低于第一电流阈值I1的第二电流阈值I2。本实施方式中,存储单元963中存储有若干预定的常数,每一预定的常数与不同的第一电流阈值对应,第二电流阈值设定单元965为单独的减法器,第二电流阈值设定单元65将第一电流阈值I1减去预定的常数,得到第二电流阈值I2。第二电流阈值I2也可通过软件的方式计算得到,即控制器961兼具第二电流阈值设定单元965的功能,计算得到第二电流阈值I2。其他实施方式中,使用者也可直接操作第二电流阈值设定单元65以手动设定第二电流阈值I2。
存储单元963保存第一电流阈值I1及第二电流阈值I2。
电机开关S2为扳机,使用者按下手持电动工具400’的扳机以启动电机920。
电流侦测单元967侦测电机电流。控制器61将侦测的电机电流与第二电流阈值I2比较,当电机电流达到第二电流阈值I2时,控制器961控制电机920的转速保持在转速预定值N1。所述转速预定值N1低于一般工作状态时的电机转速,如此在后续的控制中电机能够快速地做出反应。
请参考图43,由于电机转速N与电机电压及电机电流I有关,且在负载增大时,电机电流I也相应的增大,若需维持电机转速N,则需要增大对应的电机电压。因此可以根据侦测的电机电流I计算维持转速预定值N1所需的电压值,再将电机920的实际电压调节到计算得到的电压值以维持电机转速N为转速预定值N1。
本实施方式中,存储单元963中存储有转速预定值N1,电流侦测单元967侦测电机电流,控制器961根据转速预定值N1及侦测的电机电流计算维持转速预定值N1所需的电压值。控制器961以计算得到的电压值为基准电压。电压侦测单元968实时侦测电机920的实际电压,控制器961根据侦测的实际电压与基准电压之差调节控制器961输出的第一驱动信号,从而维持电机转速。
本实施方式中,第一驱动信号为脉宽调制信号,若电机920的实际电压超过基准电压时,控制器961减小第一驱动信号的占空比;若电机920的实际电压小于基准电压时,控制器961增大第一驱动信号的占空比。
在维持电机转速的同时,控制器961通过电流侦测单元967继续侦测电机电流,并将侦测的电机电流与第一电流阈值I1比较,当电机电流达到第一电流阈值I1时,控制器961停止输出第一驱动信号,以控制电机920停机。
请参考图45,在本发明手持电动工具400’的人工模式的第二较佳实施方式中,控制电路60具有控制器961、电子开关S1、电机开关S2、电阻R1、电压侦测单元968、电流侦测单元967、限流单元966、第一电流阈值设定单元964、第二电流阈值设定单元965及存储单元963。
第二电流阈值设定单元965设定低于第一电流阈值I1的第二电流阈值I2。本实施方式中,存储单元963中存储有若干预定的常数,每一预定的常数与不同的第一电流阈值对应,第二电流阈值设定单元965为单独的减法器,第二电流阈值设定单元965将第一电流阈值I1减去预定的常数,得到第二电流阈值I2。第二电流阈值I2也可通过软件的方式计算得到,即控制器61兼具第二电流阈值设定单元965的功能,计算得到第二电流阈值I2。其他实施 方式中,使用者也可直接操作第二电流阈值设定单元965以手动设定第二电流阈值I2。
存储单元963保存第一电流阈值I1及第二电流阈值I2。
电机开关S2为扳机,使用者按下手持电动工具400’的扳机以启动电机920。
电流侦测单元967侦测电机电流。限流单元966将侦测的电机电流与第二电流阈值I2比较,当电机电流达到第二电流阈值I2时,限流单元966控制电机电流保持在第二电流阈值I2,此时电机920的转速随之下降。
具体地,限流单元966具有比较器,比较器在侦测的电机电流小于第二电流阈值I2时输出导通信号,在侦测的电机电流大于等于第二电流阈值I2时输出关断信号。导通/关断信号被反馈到控制器961输出的第一驱动信号中,得到第二驱动信号,从而将电机电流值维持在第二电流阈值I2。
在维持电机电流的同时,控制器961判断电机920的转速并在电机转速下降到转速预定值N1时,控制器961控制电机920的转速保持在转速预定值N1。所述转速预定值N1低于一般工作状态时的电机转速,如此在后续的控制中电机能够快速地做出反应。
请再次参考图43,当电机电流恒定时,电机电压越小,电机转速越低,控制器961通过电压侦测单元968侦测电机920的实际电压,从而判断电机转速。
存储单元963中存储有转速预定值N1,控制器961计算电机转速为N1、电机电流为I2时的电机电压,电压侦测单元968侦测电机920的实际电压,当电机920的实际电压下降到控制器961计算的电机电压值时,控制器961控制电机920的转速保持在转速预定值N1。
控制器961根据转速预定值N1及侦测的电机电流计算维持转速预定值N1所需的电压值,并以维持转速预定值N1所需的电压值为基准电压。控制器961通过电压侦测单元968侦测电机920的实际电压,根据侦测的实际电压与基准电压之差调节控制器961输出的第一驱动信号,从而维持电机转速。
在维持电机转速的同时,控制器961通过电流侦测单元967继续侦测电机电流,并将侦测的电机电流与第一电流阈值I1比较,当侦测的电机电流达到第一电流阈值I1时,控制器961停止输出第一驱动信号,以控制电机920停机。
在本发明手持电动工具400’的自动模式中,控制电路960具有控制器961、电子开关S1、电机开关S2、电阻R1、工作阶段切换开关S4、电压侦测单元968、电流侦测单元967、存储单元963、限流单元966及开关检测单元962。电机920由控制器961及电子开关S1控制。
操作工作阶段切换开关S4可将手持电动工具400’切换到第一工作阶段,此时由经验丰富的使用者操作手持电动工具400’,控制器961控制电机920的转速保持在转速预定值N1。
具体地,存储单元963中存储有转速预定值N1,电流侦测单元967侦测电机电流,控制器961根据转速预定值N1及侦测的电机电流计算维持转速预定值N1所需的电压值,并以维持转速预定值N1所需的电压值为基准电压。控制器961通过电压侦测单元968侦测电机920的实际电压,根据侦测的实际电压与基准电压之差调节控制器961输出的第一驱动信号,从而维持电机转速。
在维持电机转速的同时,使用者根据工况,如工件达到期望的深度、位置等,断开电机开关S2以控制电机920停机。开关检测单元962检测该电机开关S2的状态,并发送相应的信号给控制器961。
当开关检测单元962检测到电机开关S2关闭时,控制器961通过电流侦测单元967记录此时的电机电流Ia,并根据停机时的电机电流Ia自动设定电流阈值Ib,该电流阈值Ib对应相应的目标扭矩。
具体地,所述控制器961根据图41中电机电流、扭矩T及电机转速N之间的数据关系,计算当电机电流为Ia、电机转速为转速预定值N1时的扭矩T1,再计算当扭矩为T1、电机转速为0时的电机电流,并将该电机电流确定为电流阈值Ib。
在自动模式的在第二工作阶段中,电流侦测单元967侦测电机电流。限流单元966将侦测的电机电流与电流阈值Ib比较,当侦测的电机电流达到电流阈值Ib时,限流单元966控制电机电流保持在电流阈值Ib,从而控制电机电流不大于所述电流阈值Ib,此时电机转速下降。
具体地,限流单元966具有比较器,比较器在侦测的电机电流小于电流阈值Ib时输出导通信号,在侦测的电机电流大于等于电流阈值Ib时输出关断信号,并将导通/关断信号反馈到第一驱动信号中,得到第二驱动信号,从而维持电机电流值为所述电流阈值Ib。
在维持电机电流的同时,控制器961判断电机20的转速并在电机转速下降到定值时,控制器961控制电机920停机。由于电机电流恒定时,电机电压越小,电机转速越低,因此可通过侦测电机电压来判断电机转速。
本实施方式中,控制器961侦测第二驱动信号的占空比,当第二驱动信号的占空比低于0.1时,表示电机电压低于预定值,进一步表示电机转速低于定值,此时控制器961停止输出第一驱动信号,从而控制电机920停机。
本发明还提供了两种手持电动工具400’的控制方法:人工模式及自动模式。
请参考图47,所述人工模式的第一较佳实施方式包括以下步骤:
步骤S1:人工设定第一电流阈值I1,使用者可通过操作手持电动工具400’上的第一电流阈值设定单元964设定与目标扭矩对应的电流阈值。
步骤S2:人工设定或自动计算第二电流阈值I2,且第二电流阈值I2低于第一电流阈值I1,第一电流阈值I1等于第二电流阈值I2与预定的常数之和。本实施方式中,第二电流阈值I2由手持电动工具400’中的控制器961计算得到。
步骤S3:使用者按下手持电动工具400’的扳机以启动电机920。
步骤S4:实时侦测电机电流。
步骤S5:判断电机电流是否达到第二电流阈值I2,是则进入步骤S6,否则返回步骤S4。
步骤S6:当电机电流达到第二电流阈值I2时,控制电机920的转速保持在转速预定值N1。所述转速预定值N1低于一般工作状态时的电机转速。
步骤S7:判断电机电流是否达到第一电流阈值I1,是则进入步骤S8,否则返回步骤S6。
步骤S8:当电机电流达到第一电流阈值I1时,控制电机920停机。
如图48所示,在时间t1内,电机920启动瞬间,电机转速N快速上升,电机电流I稳定上升;在时间t1-t2内,随着负载的增大,电机电流I继续增大;在时间t2-t3内,控制电机转速N快速下降至转速预定值N1;在时间t3-t4内,电机转速N被维持在转速预定值N1,同时电机电流I继续上升;在时间t4时,电机电流I达到第一电流阈值I1,控制电机920停机。本实施方式中,当电机电流I达到第一电流阈值I1时,控制器961停止输出第一驱动信号,从而控制电机920停机。
请参考图43,由于电机转速N与电机电压及电机电流I有关,且在负载增大时,电机电流I也相应的增大,若需维持电机转速N,则需要增大对应的电机电压。因此可以根据侦测的电机电流I计算维持转速预定值N1所需的电压值,再通过调节电机电压以维持电机转速N为转速预定值N1。
本实施方式中,存储单元963中存储有转速预定值N1,电流侦测单元967侦测电机电流,控制器961根据转速预定值N1及侦测的电机电流计算维持转速预定值N1所需的电压值。控制器961以维持转速预定值N1所需的电压值为基准电压。控制器961通过电压侦测单元968实时侦测电机920的实际电压,并根据侦测的实际电压与基准电压之差调节控制器961输出的第一驱动信号,从而维持电机转速。
请参考图49,在所述人工模式的第二较佳实施方式中,先以第二电流阈值I2为参考阈值,并维持该电流阈值一段时间,然后维持电机转速,以完成工件的紧固。如此在工件紧固前防止了电机电流的突变,有效地保护了电机920。具体地,所述人工模式的第二较佳实施方式包括以下步骤:
步骤S1:人工设定第一电流阈值I1。
步骤S2:人工设定或自动计算第二电流阈值I2,且第二电流阈值I2低于第一电流阈值I1,第一电流阈值I1等于第二电流阈值I2与预定的常数之和。
步骤S3:使用者按下手持电动工具400’的扳机以启动电机920。
步骤S4:实时侦测电机电流。
步骤S5:判断电机电流是否达到第二电流阈值I2,是则进入步骤S6,否则返回步骤S4。
步骤S6:当电机电流达到第二电流阈值I2时,维持电机电流为第二电流阈值I2。
步骤S7:判断电机转速是否下降到转速预定值N1,是则进入步骤S8,否则返回步骤S6。所述转速预定值N1低于一般工作状态时的电机转速。
步骤S8:控制电机920的转速保持在转速预定值N1。
步骤S9:判断电机电流是否达到第一电流阈值I1,是则进入步骤S10,否则返回步骤S8。
步骤S10:当电机电流达到第一电流阈值I1时,控制电机920停机。
如图50所示,在时间t1内,电机920启动瞬间,电机转速N快速上升, 电机电流I稳定上升;在时间t1-t2内,随着负载的增大,电机电流I继续增大;在时间t2-t3内,电机电流达到第二电流阈值I2,控制电机维持电机电流为第二电流阈值I2,同时电机转速下降;在时间t3-t4内,电机转速N被维持在转速预定值N1,同时电机电流I继续上升;在时间t4时,电机电流I达到第一电流阈值I1,控制电机920停机。
在人工模式下,当电机电流达到第二电流阈值I2时,控制电机转速N恒定,当电机电流达到第一电流阈值I1时,控制电机920停机,从而限制电机电流I,进一步限制电机920的输出扭矩T,使得扭矩调节的精确度大大提高。
所述自动模式具有第一工作阶段及第二工作阶段,第一工作阶段时手持电动工具400’自动设定参数阈值,第二工作阶段时手持电动工具400’根据设定的参数阈值进行扭矩限制。
请参考图51,在第一工作阶段,由经验丰富的使用者操作手持电动工具400’,使用者根据工况,如工件达到期望的深度、位置等,断开电机开关S2以控制电机920停机,自动侦测停机时的至少一个电机参数,并根据该电机参数自动设定参数阈值,该参数阈值对应相应的目标扭矩。
在第二工作阶段,重新启动电机920,由经验较少的使用者操作手持电动工具400’,实时侦测相应的电机参数,并将侦测的电机参数与上述参数阈值相比较,当电机参数达到上述参数阈值时,控制电机参数不大于该参数阈值,如此使得扭矩不大于目标扭矩,使得工件达到与第一工作阶段时一致的深度,方便了经验较少的使用者的操作。
本实施方式中,该电机参数为电机电流,第一工作阶段中记录停机时的电机电流Ia,并根据电机电流Ia设定电流阈值Ib。请再次参考图42,由于电机转速N为定值时,电机电流越大,扭矩T越大,因此在第一工作阶段中维持电机转速,使得根据停机时的电机电流设定的参数阈值更为精确。为了方便设计,本实施方式中,第一工作阶段中的电机转速维持在转速预定值N1。
本实施方式中,通过调节电机电压维持电机转速为转速预定值N1,具体方法与人工模式的第一较佳实施方式中的步骤S6相同。
根据图42中电机电流、扭矩T及电机转速N之间的数据关系,所述控制器961计算电机电流为Ia、电机转速为转速预定值N1时的扭矩T1,再计算扭矩T1、电机转速为0时的电机电流,并将该电机电流确定为电流阈值Ib。
在第二工作阶段中,当电机电流达到电流阈值Ib时,维持电机920的电流值为所述电流阈值Ib,从而控制电机电流不大于所述电流阈值Ib。
如图52所示,在时间t1内,电机920启动瞬间,电机转速快速上升,电机电流稳定上升;在时间t1-t2内,随着负载的增大,电机电流继续增大;在时间t2-t3内,电机电流达到电流阈值Ib后,控制电机电流维持在电流阈值Ib,同时电机转速下降。在时间t3时,电机转速下降到一定值(如转速为零)时控制电机920停机。
其他实施方式中,第二工作阶段中也可采用其他扭矩限制的方式,如图48所示,此时第一电流阈值I1即为第一工作阶段中自动设定的电流阈值Ib。
本实施例中的手持电动工具400’的具有人工模式及自动模式。在人工模式下,人工设定第一及第二电流阈值,当电机电流达到第二电流阈值时维持电机转速,当电机电流达到第二电流阈值时控制电机920停机,从而提高了扭矩调节的精确度。在自动模式的第一工作阶段时,经验丰富的使用者根据工况控制电机920停机,根据停机时的电机参数设定参数阈值,当电机参数达到参数阈值时,控制电机参数不大于该参数阈值,使工件达到一致的深度,方便了经验较少的使用者操作手持电动工具400’。
参照图53、图54所示,本实施例是第三实施例的一种变形,为表述方便,相同的结构不作重复赘述。手持式动力工具300’的工作灯320’相对工作组件20固定设置,工作灯320’的数量与工作夹头数量相一致。本实施例中两个工作灯320’分别与工作夹头22,24的位置相对应,每一个工作灯320’均设置于工作夹头22、24的同一侧。当工作夹头22,24之一转换至工作位置时,靠近该工作夹头22,24的工作灯320’为当前工作位置的工作夹头22,24提供工作照明,也就是照亮手持式动力工具300’前方的加工区域。工作灯320’优选采用节能且照明效果好的LED灯,当然本领域技术人员可以采用其它类似的照明设备进行替换,本实施例并不进行限定。工作灯320’由开关4控制工作,由电池包(未示出)提供电能;当然工作灯320也可以其它方式独立控制,根据工作条件选择性的进行开启。
参照图54所示,主壳体312内设置有正极触片970a和负极触片970b,工作组件20内对应工作夹头22、24分别设置有一对用于与正极触片970a 接触的夹头正极触片972a以及夹头负极触片972b。当工作夹头22、24之一转换至工作位置,对应的夹头正极触片972a与正极触片970a电性通导,对应的夹头负极触片972b与负极触片970b电性导通,从而使该工作夹头一侧的工作灯320’进行工作。而另一处于非工作位置的工作夹头,其对应的夹头正极触片972a及夹头负极触片972b分别与正极触片970a和负极触片970b的位置错开而无法电性导通,因此该工作夹头对应的工作灯320’不工作。这样的设置利于工作灯320’择一工作,从而更节能;同时保证了处于工作位置的工作夹头及其工作灯320’能同时工作。
参照图55,结合参照图24、图27,本实施例是对第三实施例中手持式动力工具结构的进一步细化。为表述方便,相同的结构不作重复赘述。主壳体312沿主壳体纵轴线X1方向包括三个部分。第一部分收容马达8及减速箱32,称为A区;第二部分收容输出轴316以及至少部分控制机构330,称为B区;第三部分用于收容工作轴,即由安装盘26上延伸的工作夹头部分,称为C区。其中A区沿主壳体纵轴线X1的长度以L3表示,B区的长度以L4表示,C区的长度以L5表示。其中A区、B、C区这三个区沿纵轴线X1的长度方向看形成有两个阶梯,是图27所示的H1、H2、H3的高度差形成的。A区、B、C区这三个区的高度如此设置,使得A区高度最矮,B区高度次之,C区高度与普通电钻高度相当;也就是说,处于当前工作位置的工作夹头能够伸入狭窄的工作区域进行工作;而B区相对A区的高度较小,而使得手持式动力工具具有更好的可接近性。
本实施例的B区实则上是工作夹头22、24的功能转换区,手持式动力工具300a的控制机构330基本上设置于B区,包括控制件301,由控制件301驱动的锁定件303、连接件305以及离合套307,这些功能部件沿输出轴316轴向延伸,并且于输出轴轴向上的投影与输出轴316至少部分重叠,从而使得B区长度能够变得更短,从而使得整机身尺寸更小,结构更紧凑。B区的长度范围为50至70cm,优选为61cm;而A区长度L1的优选长度为125cm,其中B区长度与A区长度之比范围在2:5至3:5之间。C区的长度范围为0至34cm,优选为27cm,C区长度与B区长度比小于3:5。主 壳体312的总长度L1在175cm至229cm之间,优选采用213cm。B区、C区这样设置,使得主壳体三个部分的长度比例协调,利于整机重心后移至靠近手柄握持部,从而使操作者手腕扭力小,操作舒适稳定、平衡性好,符合人性化操作的需求。
参照图55所示,C区的高度,即工作夹头的外径d在0至26cm之间,B区的最大高度即安装盘的高度W大致为48cm;B区与C区的高度比例小于1:2。
进一步参照图56所示,B区的宽度D2不超出主壳体312的宽度D1,本实施例中B区的最大宽度,即安装盘26的宽度与A区宽度D1基本相同,B区的最大宽度优选采用51cm;另外B区宽度D2的最小宽度为30cm至40cm之间,优选采用40cm。C区宽度D3,即工作夹头22、23的直径即分别小于D2及D3。主壳体312的长宽比L1/D1在3至4.5之间,优选采用4。这样的设置使得机身整体协调性好,操作轻巧,并且在包装时,最有效地节省和利用宽度方向的尺寸。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (22)

  1. 一种手持式动力工具,包括:
    壳体;
    马达,设置于所述壳体内;
    输出轴,由马达驱动旋转;
    工作组件,包括至少两个工作夹头;
    开关,用于控制马达;
    其特征在于:所述至少两个工作夹头分别包括工作轴,所述手持式动力工具还包括将工作组件相对壳体位置锁定/释放的控制机构,所述控制机构包括邻近所述开关的控制件,所述控制件相对壳体可移动的设置,控制件沿远离工作组件方向移动以解除工作组件的位置锁定和控制输出轴与工作轴之一脱开配接。
  2. 根据权利要求1所述的手持式动力工具,其特征在于:所述工作轴设有用于配接工作头的六边形收容孔。
  3. 根据权利要求1所述的手持式动力工具,其特征在于:工作轴的轴线共面设置。
  4. 根据权利要求3所述的手持式动力工具,其特征在于:工作轴的轴线之间呈角度设置,所述角度在60度至130度范围内。
  5. 根据权利要求1所述的手持式动力工具,其特征在于:工作组件相对壳体枢转设置,工作组件的枢转轴线与输出轴轴线共面且两者呈角度设置。
  6. 根据权利要求5所述的手持式动力工具,其特征在于:所述至少两个工作夹头固定连接且相对于工作组件的枢转轴线对称设置。
  7. 根据权利要求1所述的手持式动力工具,其特征在于:所述控制件的移动方向平行于输出轴。
  8. 根据权利要求1所述的手持式动力工具,其特征在于:所述控制机构包括与控制件联动设置的锁定件,所述锁定件可选择地与工作组件脱开或配接。
  9. 根据权利要求8所述的手持式动力工具,其特征在于:所述控制机构还包括与控制件抵接的弹性件,所述弹性件提供控制件带动锁定件靠近工作组件移动的弹性力。
  10. 根据权利要求8所述的手持式动力工具,其特征在于:所述手持式动力 工具还包括与锁定件联动设置的离合装置,所述离合装置一端移动地配接于输出轴,另一端可选择地与工作轴之一脱开和配接。
  11. 根据权利要求10所述的手持式动力工具,其特征在于:所述控制机构还包括连接锁定件与离合装置的连接件,所述离合装置与输出轴之间设置有复位弹簧。
  12. 根据权利要求1所述的手持式动力工具,其特征在于:所述壳体包括纵向延伸的主壳体,所述工作组件连接于主壳体的一端,所述马达远离工作组件设置于主壳体内,所述手柄握持部与主壳体呈角度设置,手持式动力工具还包括电池包,电池包连接于手柄且远离主壳体设置,手持式动力工具的重心位于手柄握持部。
  13. 根据权利要求12所述的手持式动力工具,其特征在于:所述主壳体包括用于收容减速箱的主体部,以及靠近工作组件的前端部,主壳体纵轴线至前端部顶部的距离小于至主体部顶部的距离。
  14. 根据权利要求13所述的手持式动力工具,其特征在于:所述至少两个工作夹头其中之一处于工作位置时,主壳体纵轴线至该工作夹头顶部的距离小于至前端部顶部的距离。
  15. 根据权利要求1所述的手持式动力工具,其特征在于:所述手持式动力工具还包括电子扭矩控制装置,用于可操作地调节至少一个工作轴的输出扭矩。
  16. 根据权利要求1所述的手持式动力工具,其特征在于:所述手持式动力工具还包括到位提示机构,所述到位提示机构具有啮合状态和分离状态,啮合状态时,所述至少两个工作夹头其中之一到达工作位置,分离状态时,所述至少两个工作夹头离开工作位置。
  17. 根据权利要求16所述的手持式动力工具,其特征在于:所述到位提示机构包括设置于壳体与工作组件两者之一的定位销,设置于壳体与工作组件两者之另一个的定位槽,以及与定位销抵接的弹性件,所述定位销可选择地与所述定位槽配接或脱开,从而使到位提示机构处于啮合状态或分离状态。
  18. 根据权利要求1所述的手持式动力工具,其特征在于:所述工作组件活动连接于壳体从而所述至少两个工作夹头中的每一个工作夹头可在工作位置和非工作位置之间转换,所述至少两个工作夹头其中之一处于工作位置,该工作夹头之工作轴与输出轴轴向配接,所述至少两个工作夹头中其余工作夹 头处于非工作位置,该其余工作夹头之工作轴与输出轴呈角度设置。
  19. 一种手持式动力工具,包括:
    壳体;
    马达,设置于所述壳体内;
    输出轴,由马达驱动旋转;
    工作组件,包括两个工作夹头;
    开关,用于控制马达;
    其特征在于:所述两个工作夹头分别包括工作轴,所述手持式动力工具还包括将工作组件相对壳体位置锁定/释放的控制机构,所述控制机构包括邻近所述开关的控制件,所述控制件相对壳体可移动的设置,控制件沿远离工作组件方向移动以解除工作组件的位置锁定和控制输出轴与工作轴之一脱开配接。
  20. 根据权利要求19所述的手持式动力工具,其特征在于:所述工作组件活动连接于壳体从而所述两个工作夹头中的每一个工作夹头可在工作位置和非工作位置之间转换,所述两个工作夹头其中之一处于工作位置,该工作夹头之工作轴与输出轴轴向配接,所述两个工作夹头中其余工作夹头处于非工作位置,该其余工作夹头之工作轴与输出轴呈角度设置。
  21. 一种手持式动力工具的操作方法,其特征在于:所述手持式动力工具如权利要求1所述,所述操作方法包括以下步骤:移动控制件以允许工作组件相对壳体进行移动;转动工作组件使所述工作夹头相对壳体锁定;释放控制件使控制件移动复位。
  22. 如权利要求21所述的手持式动力工具的操作方法,其特征在于:还包括以下步骤:在释放控制件之后,触发开关启动驱动机构,使所述工作轴之一与输出轴配接。
PCT/CN2016/072835 2015-01-29 2016-01-29 手持式动力工具及其操作方法 WO2016119748A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/547,119 US10682750B2 (en) 2015-01-29 2016-01-29 Hand-held power tool and operating method thereof
EP16742810.1A EP3251802A4 (en) 2015-01-29 2016-01-29 Hand-held power tool and operating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510044644.5 2015-01-29
CN201510044644.5 2015-01-29

Publications (1)

Publication Number Publication Date
WO2016119748A1 true WO2016119748A1 (zh) 2016-08-04

Family

ID=56542469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072835 WO2016119748A1 (zh) 2015-01-29 2016-01-29 手持式动力工具及其操作方法

Country Status (4)

Country Link
US (1) US10682750B2 (zh)
EP (1) EP3251802A4 (zh)
CN (1) CN105835009A (zh)
WO (1) WO2016119748A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126833A (ja) * 2017-02-09 2018-08-16 株式会社マキタ 電動工具

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703417B2 (ja) * 2016-02-19 2020-06-03 株式会社マキタ 作業工具
DE202016105458U1 (de) * 2016-09-30 2018-01-03 Robert Bosch Gmbh Handwerkzeugmaschine
DE102016224226A1 (de) * 2016-12-06 2018-06-07 Robert Bosch Gmbh Handwerkzeugmaschine mit einer Spindellockvorrichtung
US10987795B2 (en) * 2017-03-28 2021-04-27 Black & Decker Inc. Drill with screw holder
IT201700043567A1 (it) * 2017-04-20 2018-10-20 N&W Global Vending S P A Distributore di contenitori monouso per la preparazione di bevande
TWI614098B (zh) * 2017-05-11 2018-02-11 有祿企業股份有限公司 手工具之轉折鎖定結構
EP3501747A1 (de) * 2017-12-21 2019-06-26 HILTI Aktiengesellschaft Eintreibvorrichtung
CN108838929B (zh) * 2018-06-12 2021-05-14 国网山东省电力公司烟台供电公司 一种绝缘电动扳手
TWI660806B (zh) * 2018-07-09 2019-06-01 愛烙達股份有限公司 手持工具
WO2020048529A1 (zh) * 2018-09-06 2020-03-12 苏州宝时得电动工具有限公司 手持式动力工具及其控制方法和操作方法
CA3112228C (en) 2018-09-12 2024-05-21 Stopak India Pvt. Ltd. Inflator with automatic shut-off functionality
CN109014326B (zh) * 2018-09-12 2020-09-08 李文刚 一种可移动的路桥施工用金属钻孔装置
USD904461S1 (en) 2018-09-21 2020-12-08 Stopak India Pvt. Ltd. Inflator
US11235454B2 (en) * 2019-01-14 2022-02-01 Dynabrade, Inc. Spring loaded adjustable head
DE102019120363B4 (de) * 2019-04-26 2020-11-12 Defond Components Limited Eine verbesserte abzugsvorrichtung mit einer schutzabdeckung
CN113727795B (zh) * 2019-05-02 2024-06-18 费斯托工具有限责任公司 用于手持式工具机器的附加仪器
CN112706044A (zh) * 2019-10-25 2021-04-27 南京德朔实业有限公司 电动工具
US11407098B2 (en) * 2019-11-26 2022-08-09 Stmicroelectronics S.R.L. Smart push button device utilizing MEMS sensors
CN111421492B (zh) * 2020-04-27 2022-08-05 深圳市威富智能设备有限公司 电批及其分段控制方法、存储介质
CN113608576B (zh) 2020-05-05 2024-06-25 意法半导体股份有限公司 电子装置控制方法、其电子装置和软件产品
IT202000009937A1 (it) 2020-05-05 2021-11-05 St Microelectronics Srl Metodo di controllo di un apparecchio elettronico eseguito tramite il calcolo di un angolo di apertura, relativo apparecchio elettronico e prodotto software
WO2022001744A1 (zh) * 2020-07-03 2022-01-06 南京德朔实业有限公司 电动工具
CN114310802B (zh) * 2020-09-29 2024-06-04 莱克电气绿能科技(苏州)有限公司 一种手持式工具机及具有该工具机的手持式电动工具
USD947636S1 (en) 2020-10-14 2022-04-05 Black & Decker Inc. Impact tool
USD956501S1 (en) 2020-11-06 2022-07-05 Black & Decker Inc. Impact tool
TWI762220B (zh) * 2021-02-26 2022-04-21 力肯實業股份有限公司 可調整操作角度的氣動手工具
CN115139257B (zh) * 2022-09-05 2023-03-24 江苏华频电子科技有限公司 一种离线测试分选设备用多功能电动工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506002B1 (en) * 1999-09-10 2003-01-14 Richard D. Cummins Turret hand drill
US20030165365A1 (en) * 2000-09-28 2003-09-04 Eriksen Steen Mandsfelt Hand-held turret drill
CN1942276A (zh) * 2005-04-11 2007-04-04 怀特霍特解决方案公司 利用转动回转头自动更换卡盘
CN201086279Y (zh) * 2007-09-07 2008-07-16 张勤业 一种多头电钻工作头快速转换锁定装置
CN101460275A (zh) * 2006-03-01 2009-06-17 罗巴提有限公司 回转头手持钻孔机械/驱动器
CN101511544A (zh) * 2006-09-04 2009-08-19 罗伯特·博世有限公司 手持式电动工具机
CN204603478U (zh) * 2014-09-19 2015-09-02 苏州宝时得电动工具有限公司 手持式动力工具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432152A (en) * 1966-03-25 1969-03-11 Frank B Sweeney Fuel injection system
DE3839840A1 (de) * 1988-11-25 1990-05-31 Proxxon Werkzeug Gmbh Elektrisches handwerksgeraet
JPH03202283A (ja) * 1989-12-28 1991-09-04 Makita Corp 電動工具
US5140754A (en) * 1991-09-24 1992-08-25 Textron Inc. Power tool protective hood positioning system and method of manufacturing the same
WO2005049281A1 (en) * 2003-11-24 2005-06-02 Whitehot Solutions Pty Ltd Twin chuck drill with one drive shaft
US7367757B2 (en) * 2004-12-31 2008-05-06 Sean Peter Phillips Electric drill with modified bit gripping assembly
AU2007229276B2 (en) * 2006-03-23 2012-12-20 Demain Technology Pty Ltd A power tool guard
CN101195176B (zh) * 2007-04-25 2010-12-01 宁波市海联电动工具有限公司 自动换头多头充电钻
EP2212043B1 (en) * 2007-10-19 2018-03-14 Whitehot Solutions Pty Ltd Multiple chuck hand tool
JP5182562B2 (ja) * 2008-02-29 2013-04-17 日立工機株式会社 電動工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6506002B1 (en) * 1999-09-10 2003-01-14 Richard D. Cummins Turret hand drill
US20030165365A1 (en) * 2000-09-28 2003-09-04 Eriksen Steen Mandsfelt Hand-held turret drill
CN1942276A (zh) * 2005-04-11 2007-04-04 怀特霍特解决方案公司 利用转动回转头自动更换卡盘
CN101460275A (zh) * 2006-03-01 2009-06-17 罗巴提有限公司 回转头手持钻孔机械/驱动器
CN101511544A (zh) * 2006-09-04 2009-08-19 罗伯特·博世有限公司 手持式电动工具机
CN201086279Y (zh) * 2007-09-07 2008-07-16 张勤业 一种多头电钻工作头快速转换锁定装置
CN204603478U (zh) * 2014-09-19 2015-09-02 苏州宝时得电动工具有限公司 手持式动力工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3251802A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018126833A (ja) * 2017-02-09 2018-08-16 株式会社マキタ 電動工具

Also Published As

Publication number Publication date
EP3251802A4 (en) 2018-09-26
US10682750B2 (en) 2020-06-16
EP3251802A1 (en) 2017-12-06
US20190009398A1 (en) 2019-01-10
CN105835009A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016119748A1 (zh) 手持式动力工具及其操作方法
JP6324607B1 (ja) 動力工具並びに作業用付属品を迅速に締付け及び解除する操作方法
US10894310B2 (en) Power tool having interchangeable tool heads with an independent accessory switch
US6938706B2 (en) Power tool provided with a locking mechanism
JP2660100B2 (ja) 調節自在レンチ
US9937568B2 (en) Router
JP5498424B2 (ja) 電動式ケーブルカッター
EP1919646A4 (en) POWERED TOOL
US10315292B2 (en) Power tool
US7900661B2 (en) Plunge router and kit
CN105983946B (zh) 手持式动力工具及其操作方法
CN104668615A (zh) 多功能钻类工具系统及用于该多功能钻类工具系统的辅助附件
CN107020603B (zh) 手持式动力工具及其操作方法
CN205630516U (zh) 手持式动力工具
KR101623010B1 (ko) 동력 공구
CN204603478U (zh) 手持式动力工具
JP2004505811A (ja) 電動工具
WO2022247813A1 (zh) 电动工具及其控制方法
CN210025851U (zh) 干墙开槽机
WO2018082717A1 (zh) 动力工具及动力工具的操作方法
CN217596059U (zh) 电圆锯
CN105500293B (zh) 手持式动力工具
WO2014121728A1 (zh) 动力工具及夹紧装置
CN215932014U (zh) 一种弱电调试专用工具
AU2005203434A1 (en) Drill with Two Chuck Assemblage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742810

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016742810

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE