WO2016119730A1 - 天线、天线系统和通信设备 - Google Patents

天线、天线系统和通信设备 Download PDF

Info

Publication number
WO2016119730A1
WO2016119730A1 PCT/CN2016/072681 CN2016072681W WO2016119730A1 WO 2016119730 A1 WO2016119730 A1 WO 2016119730A1 CN 2016072681 W CN2016072681 W CN 2016072681W WO 2016119730 A1 WO2016119730 A1 WO 2016119730A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
sheet
power feeding
antenna
radiation
Prior art date
Application number
PCT/CN2016/072681
Other languages
English (en)
French (fr)
Inventor
刘若鹏
梁智荣
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510055653.4A external-priority patent/CN105990671A/zh
Priority claimed from CN201510050872.3A external-priority patent/CN105990657A/zh
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2016119730A1 publication Critical patent/WO2016119730A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to an antenna, and an antenna system and a communication device using the same.
  • An antenna is an electronic device for transmitting or receiving electromagnetic waves.
  • Antennas are used in systems such as radio and television, point-to-point radio communications, radar and space exploration.
  • systems such as radio and television, point-to-point radio communications, radar and space exploration.
  • the field of antenna technology is becoming more and more extensive.
  • the requirements for antenna performance are also increasing.
  • modern communications as the integration of communication systems increases, the required antennas are characterized by high gain, wide band or multi-band, circular polarization, miniaturization, and wide coverage.
  • an antenna including a first substrate, a second substrate, a first radiating sheet, and a second radiating sheet, the first radiating sheet being disposed on the first substrate, the first The second substrate is disposed on the first radiation sheet, the second radiation sheet is disposed on the second substrate, and one of the first radiation sheet and the second radiation sheet has a horizontal symmetry axis and a vertical symmetry respectively located on the radiation sheet a first feeding portion and a second feeding portion on the shaft, the other of the first radiating sheet and the second radiating sheet having a third feeding portion and a fourth feeding portion on a horizontal symmetry axis of the radiating sheet And an electric portion, and further having a fifth feeding portion and a sixth feeding portion on
  • the first radiating sheet is circular, and the second radiating sheet is rectangular.
  • the first radiating sheet is shown as being rectangular, and the second radiating sheet is circular.
  • the size of the second radiating sheet is smaller than the size of the second substrate.
  • the size of the first radiating sheet is smaller than the size of the first substrate.
  • the size of the first radiating sheet is larger than the size of the second radiating sheet.
  • the third power feeding portion and the fourth power feeding portion are symmetric with respect to a vertical symmetry axis of the radiating piece, and the fifth power feeding portion and the sixth power feeding portion are horizontally symmetric with respect to the radiation piece. Axisymmetric.
  • the first power feeding portion, the second power feeding portion, the third power feeding portion, the fourth power feeding portion, the fifth power feeding portion, and the sixth power feeding portion It is a coaxial feed unit.
  • each of the feeds is electrically insulated.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are all planar shapes.
  • a projection of a center point of the second radiation sheet on the first radiation sheet coincides with a center point of the first radiation sheet.
  • the projections of the horizontal symmetry axis and the vertical symmetry axis of the second radiation sheet on the first radiation sheet coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet, respectively.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are both convex shapes
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are both concave shapes [0019] In an example, the curvatures of the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are the same
  • the first substrate and the second substrate are both rectangular.
  • the thickness of the first substrate is less than the thickness of the second substrate.
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the first substrate.
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the second substrate.
  • the shape of the artificial microstructure includes an I-shape, or a cross, or a snowflake shape, or a broken mouth shape.
  • an antenna system including a power feeding port, an antenna, a combiner, and a first power splitter and a second power splitter, the antenna being the antenna described above, a first end of the combiner is connected to the feed port, a second end of the combiner is connected to the first end of the first splitter, and a third end of the combiner is connected to the second splitter One end, the second end of the first power splitter is connected to the first power feeding part, the third end of the first power splitter is connected to the second power feeding part through a 90° phase shifter, and the second power The second end of the splitter is connected to the third feed portion, and the third end of the second splitter is connected to the fifth feed portion through a 90° phase shifter, and the fourth end of the second splitter passes through 180
  • the phase shifter is connected to the fourth power feeding unit, and the fifth end of the second power splitter is connected to the sixth power feeding unit through a 270° phase shifter.
  • the 90° phase shifter, the 180° phase shifter, and the 270° phase shifter each achieve 90° phase shift, 180° phase shift, and 270° phase shift by adjusting the length of the transmission line.
  • a communication device including the above antenna system is provided.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • the antenna of the present invention separately designs different plurality of feeding portions on the horizontal symmetry axis and the vertical symmetry axis of each of the radiation sheets, and then is respectively connected through two sets of power dividers and 90°, 180°, 270° phase shifters.
  • the plurality of feeding portions can make each of the radiating sheets individually circularly polarized.
  • the single antenna of the present invention can realize the circular polarization technical solution, and has the advantages of low cost and simple structural design compared to the prior art, where multiple antennas are required to cooperate together to realize circular polarization. , does not require complex structural design of multiple antennas.
  • the invention combines various technical means such as a phase shifter and a power splitter, so that the antenna can realize multi-band, circular polarization, miniaturization, wide coverage and the like.
  • an antenna including a first substrate and a second substrate.
  • a first radiation piece disposed on the first substrate
  • the second substrate is disposed on the first radiation piece
  • the second radiation piece is disposed on the second substrate
  • the first radiation piece and the second radiation piece are both circular
  • one of the first radiation piece and the second radiation piece has a first feeding part respectively located on a horizontal symmetry axis and a vertical symmetry axis of the radiation piece
  • a second power feeding portion the other of the first radiation piece and the second radiation piece having a third power feeding portion and a fourth power feeding portion located on a horizontal symmetry axis of the radiation piece, and having the same a fifth feed portion and a sixth feed portion on a vertical axis of symmetry of the radiation sheet.
  • the size of the second radiating sheet is smaller than the size of the second substrate.
  • the size of the first radiating sheet is smaller than the size of the first substrate.
  • the size of the first radiating sheet is larger than the size of the second radiating sheet.
  • the third power feeding portion and the fourth power feeding portion are symmetric with respect to a vertical symmetry axis of the radiating piece, and the fifth power feeding portion and the sixth power feeding portion are horizontally symmetric with respect to the radiation piece. Axisymmetric.
  • the first power feeding portion, the second power feeding portion, the third power feeding portion, the fourth power feeding portion, the fifth power feeding portion, and the sixth power feeding portion It is a coaxial feed unit.
  • each of the feeds is electrically insulated.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are all planar shapes.
  • a projection of a center point of the second radiation sheet on the first radiation sheet coincides with a center point of the first radiation sheet.
  • the projections of the horizontal symmetry axis and the vertical symmetry axis of the second radiation sheet on the first radiation sheet coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet, respectively.
  • the first substrate, the second substrate, the first radiation sheet, and the second radiation sheet are both convex shapes.
  • the first substrate, the second substrate, and the first radiation The sheet and the second radiating sheet are both concave in shape
  • the first substrate, the second substrate, the first radiating sheet, and the second radiating sheet have the same curvature
  • the first substrate and the second substrate are both rectangular. [0043] In an example, the thickness of the first substrate is less than the thickness of the second substrate.
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the first substrate.
  • an artificial microstructure is placed in the horizontal or vertical direction of the interior of the second substrate.
  • the shape of the artificial microstructure includes an I-shape, or a cross, or a snowflake shape, or a broken mouth shape.
  • an antenna system including a power feeding port, an antenna, a combiner, and a first power splitter and a second power splitter, the antenna being the antenna described above, a first end of the combiner is connected to the feed port, a second end of the combiner is connected to the first end of the first splitter, and a third end of the combiner is connected to the second splitter One end, the second end of the first power splitter is connected to the first power feeding part, the third end of the first power splitter is connected to the second power feeding part through a 90° phase shifter, and the second power The second end of the splitter is connected to the third feed portion, and the third end of the second splitter is connected to the fifth feed portion through a 90° phase shifter, and the fourth end of the second splitter passes through 180
  • the phase shifter is connected to the fourth power feeding unit, and the fifth end of the second power splitter is connected to the sixth power feeding unit through a 270° phase shifter.
  • the 90° phase shifter, the 180° phase shifter, and the 270° phase shifter each achieve 90° phase shift, 180° phase shift, and 270° phase shift by the length of the transmission line.
  • a communication device including the above antenna system is provided.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • the antenna of the present invention separately designs different plurality of feeding portions on the horizontal symmetry axis and the vertical symmetry axis of each of the radiation sheets, and then is respectively connected through two sets of power dividers and 90°, 180°, 270° phase shifters.
  • the plurality of feeding portions can make each of the radiating sheets individually circularly polarized.
  • the single antenna of the present invention can realize the circular polarization technical solution, and has the advantages of low cost and simple structural design compared to the prior art, where multiple antennas are required to cooperate together to realize circular polarization. , does not require complex structural design of multiple antennas.
  • the invention combines various technical means such as a phase shifter and a power splitter, so that the antenna can realize multi-band, circular polarization, miniaturization, wide coverage and the like.
  • FIG. 1 shows a schematic plan view of an antenna according to an embodiment of the present invention
  • FIG. 2 is a top plan view showing an antenna according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a power feeding portion of an antenna according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an antenna system according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a voltage standing wave ratio of an antenna according to an embodiment of the present invention.
  • FIG. 6 shows a gain graph of an antenna according to an embodiment of the present invention
  • FIG. 7 is a graph showing an axial ratio of an antenna according to an embodiment of the present invention.
  • first substrate 12 second substrate 13: first radiation sheet 14: second radiation sheet
  • First power feeding unit 16 Second power feeding unit 17a: Third power feeding unit 17b: Fourth power feeding unit
  • FIG. 8 shows a schematic plan view of an antenna according to another embodiment of the present invention.
  • FIG. 9 is a top plan view showing an antenna according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a power feeding portion of an antenna according to another embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an antenna system according to another embodiment of the present invention.
  • FIG. 12 is a graph showing a voltage standing wave ratio of an antenna according to another embodiment of the present invention. [0069] FIG.
  • FIG. 13 shows a gain graph of an antenna according to another embodiment of the present invention.
  • FIG. 14 is a graph showing an axial ratio of an antenna according to another embodiment of the present invention.
  • first substrate 12 second substrate 13: first radiation sheet 14: second radiation sheet
  • the antenna 10 of the present embodiment may include a first substrate 11, a second substrate 12, a first radiating sheet 13, and a second radiating sheet 14.
  • the first radiation sheet 13 is disposed on the first substrate 11.
  • the second radiating sheet 14 is disposed on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are made of a dielectric substrate.
  • the first radiating sheet 13 and the second radiating sheet 14 are made of a conductive material such as metal.
  • the radiation sheet may be in the form of a patch or a photolithographically etched layer.
  • Such a combination unit of each of the radiation sheets and their corresponding substrates constitutes a receiving and transmitting path.
  • the two combined units are further combined into an antenna in a stacked manner.
  • the second substrate 12 is disposed on the first radiation sheet 13.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet to reduce the size and size of the antenna.
  • a combination of a doubly-fed method and a four-feed method is employed.
  • the doubly-fed method feeds two radiating strips with two equal amplitudes and 90° phase difference, and excites two orthogonal working modes to achieve circular polarization working conditions.
  • the four-feed method compensates each other by using four different feeds with different phase shifts, thereby increasing the impedance bandwidth and circular polarization bandwidth, suppressing cross-polarization, and improving shaft ratio performance.
  • a combination of a doubly-fed method and a four-fed method is employed. That is, either one of the first radiating sheet 13 and the second radiating sheet 14 employs a doubly-fed method, and the other uses a four-feed method.
  • the first radiation sheet 13 is a doubly-fed method
  • the second radiation sheet 14 is a four-feed method
  • the first radiation sheet 13 is a four-feed method
  • the second radiation sheet 14 is a double-fed method.
  • the first radiating sheet 13 adopts a doubly-fed method, thereby having a first feed respectively located on the horizontal symmetry axis and the vertical symmetry axis of the first radiating sheet 13.
  • the electric portion 15 and the second feeding portion 16 and the second radiating sheet 14 adopt a four-feed method to have third feeding portions 17a and fourth feeding portions respectively located on the horizontal symmetry axis of the second radiating sheet 14. 17b and a fifth power feeding portion 18a and a sixth power feeding portion 18b on the vertical symmetry axis.
  • FIG. 3 is a schematic diagram of a power feeding portion of an antenna according to an embodiment of the present invention.
  • the first power feeding unit 15 and the second power feeding unit 16 may input a signal to be transmitted or output a received signal.
  • the third power feeding portion 17a, the fourth power feeding portion 17b, the fifth power feeding portion 18a, and the sixth power feeding portion 18b can input a signal to be transmitted, or output a received signal.
  • the first radiating sheet 13 has a horizontal symmetry axis XI and a vertical symmetry axis Y1
  • the second radiating sheet 14 has a horizontal symmetry axis ⁇ 2 and a vertical symmetry axis ⁇ 2.
  • the horizontal symmetry axes ⁇ 1, ⁇ 2 are on the same straight line
  • the vertical symmetry axes ⁇ 1 and ⁇ 2 are on the same line.
  • the projection of the center point of the second radiation sheet 14 on the first radiation sheet 13 coincides with the center point of the first radiation sheet 13, and the horizontal symmetry axis and the vertical symmetry axis of the second radiation sheet 14 are on the first radiation sheet 13
  • the upper projections coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet 13, respectively.
  • the first feeding portion 15 and the second feeding portion 16 need one of them on the horizontal symmetry axis XI and the other on the vertical symmetry axis Y1, as shown in FIG. .
  • the third feeding portion 17a and the fourth feeding portion 17b need to be located on the horizontal symmetry axis X2 or the vertical symmetry axis Y2, and the fifth feeding portion 18a and the sixth feeding portion 18b are required. Located on another axis of symmetry orthogonal.
  • FIG. 3 shows that the third power feeding portion 17a and the fourth power feeding portion 17b are located on the horizontal symmetry axis X2, and the fifth power feeding portion 18a and the sixth power feeding portion 18b are located on the vertical symmetry axis Y2.
  • the third power feeding portion 17a and the fourth power feeding portion 17b need to be symmetrical about the vertical symmetry axis Y2
  • the fifth power feeding portion 18a and the sixth power feeding portion 18b need to be symmetrical about the horizontal symmetry axis X2.
  • the third power feeding portion 17a and the fourth power feeding portion 17b are located on the vertical symmetry axis Y2 and the fifth power feeding portion 18a and the sixth power feeding portion 18b are located on the horizontal symmetry axis X2, the third power feeding portion 17a, the fourth power feeding portion 17b needs to be symmetrical about the horizontal symmetry axis X2, and the fifth power feeding portion 18a and the sixth power feeding portion 18b need to be symmetrical about the vertical symmetry axis Y2.
  • the third power feeding portion 17a, the fifth power feeding portion 18a, the fourth power feeding portion 17b, and the sixth power feeding portion 18b complete circular polarization by sequentially exciting signals of phases of 90 degrees.
  • the first substrate 11 and the second substrate 12 are preferably rectangular, and of course, other shapes are also possible.
  • the first radiating sheet 13 is preferably circular, and the second radiating sheet 14 is preferably rectangular. It will of course be understood that the first radiating sheet 13 and the second radiating sheet 14 may also have other shapes.
  • the first radiation sheet 13 is preferably rectangular, and the second radiation sheet 14 is preferably circular.
  • the size of the first radiating sheet 13 is smaller than the size of the first substrate 11, and the size of the second radiating sheet 14 is smaller than the size of the second substrate 12.
  • the size of the first radiating sheet 13 is preferably larger than the size of the second radiating sheet 14, as shown, thereby ensuring that the signal radiated from the first radiating sheet 13 is not blocked by the second radiating sheet 14 located thereon.
  • the first substrate 11 and the second substrate 12 may have artificial microstructures, such as conductive microstructures.
  • the artificial microstructure within the substrate can be a planar or steric structure having a certain geometry and can be placed horizontally and/or vertically within the substrate, also referred to as a metamaterial microstructure.
  • the dielectric constant of the substrate can be changed, thereby being suitable for providing substrates having different dielectric constants.
  • the shape of the artificial microstructure may include an I-shape, a cross shape, a snowflake shape, or a broken mouth shape.
  • the thickness of the first substrate 11 may be smaller than the thickness of the second substrate 12.
  • the antenna of the present embodiment is designed to have dual frequency transmission and reception capabilities.
  • the first to sixth power feeders are each electrically insulated to respectively input the frequency band signals to be transmitted into the respective combination units, or to output the received signals from the respective combination units.
  • the first power feeding portion 15 and the second power feeding portion 16 are coaxial power feeding portions.
  • the third power feeding portion 17a, the fourth power feeding portion 17b, the fifth power feeding portion 18a, and the sixth power feeding portion 18b are preferably coaxial power feeding portions.
  • the use of the same-axis feed reduces the interference of the feed structure.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a flat surface.
  • the present invention is not limited thereto, and in other embodiments, the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a curved surface, such as a convex shape or a concave shape.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have the same curvature, so that the structural layers 11-14 are attached due to their similar three-dimensional shapes.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have a conformal concave shape or a convex shape, so that the antenna design can be made more compact.
  • the conformal design of the curved surface can also increase the radiation area of the antenna, concentrate the radiation energy, and thereby increase the gain of the antenna and widen the coverage.
  • FIG. 5 is a graph showing a voltage standing wave ratio of the antenna of FIG. 1.
  • Fig. 6 is a graph showing the gain curve of the antenna of Fig. 1.
  • Fig. 7 is a graph showing the axial ratio of the antenna of Fig. 1. Referring to Fig. 7, the antenna of the embodiment of the present invention can achieve an axial ratio of 6 or less in a range of ⁇ 50°. 5 to 7, it can be seen that the antenna of the present invention can generate two circularly polarized frequency bands.
  • the antenna system of this embodiment includes the antenna 10, the combiner 20, the first power splitter 22, the second power splitter 24, and the feed port 30 of the embodiment shown in FIG. 1.
  • the first end of the combiner 20 is connected to the feed port 30, the second end of the combiner 20 is connected to the first end of the first splitter 22, and the third end of the combiner 20 is connected to the second splitter 24.
  • the first end, the second end of the first power splitter 22 is connected to the first feeding portion 15 of the radiation sheet 10a, and the third end of the first power divider 22 is connected to the second feed of the radiation sheet 10a through a 90° phase shifter. Electric part 16.
  • the second end of the second power splitter 24 is connected to the third power feeding portion 17a of the radiation sheet 10b, and the third end of the second power splitter 24 is connected to the fifth power feeding portion 18a of the radiation sheet 10b through a 90° phase shifter.
  • the fourth end of the second power splitter 24 is connected to the fourth power feeding portion 17b of the radiation sheet 10b through a 180° phase shifter, and the fifth end of the second power splitter 24 is connected to the radiation sheet 10b through a 270° phase shifter.
  • the radiation sheet 10a in FIG. 4 corresponds to the one in FIGS. 1-3.
  • the first radiating sheet 13 and the radiating sheet 10b are for the second radiating sheet 14 in FIGS. 1-3. It is easy to understand that in the embodiment in which the first radiation piece 13 adopts the four-feed method and the second radiation piece 14 adopts the double-fed method, the radiation piece 10a in FIG. 4 corresponds to the second radiation piece 14 in FIGS. 1-3.
  • the radiation sheet 10b is for the first radiation sheet 13 in Figs. 1-3.
  • the combiner 20 is a signal that divides the input excitation signal into multiple frequency bands and outputs them to the corresponding power splitters 22, 24, respectively.
  • the combiner can also be referred to as a splitter, and accordingly, the antenna system is in a state of transmitting a signal.
  • the combiner 20, on the other hand, combines the received signals of the multi-band to a feed port, which is in the state of receiving the signal.
  • the combiner 20 is responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power splitter 22, and outputting the second frequency band of the excitation signal to the second power splitter. 24.
  • the combiner 20 is on the other hand responsible for combining the signals from the respective splitter 22 and 24 bands and outputting them to the feed port 30.
  • the frequency of the second frequency band can be higher than the first frequency band to form a combination of high frequency and low frequency.
  • the first power divider 22 is responsible for splitting the signal of one frequency band into two paths, one path is outputted to the first power feeding portion 15 of the antenna 10 through the transmission line, and the other is output to the second signal of the antenna 10 through the 90° phase shifter. Electric part 16.
  • the second power splitter 24 is responsible for dividing the signal of the other frequency band into four paths, one path is output to the third power feeding portion 17a of the antenna 10 through the transmission line, and the other three paths are respectively output through the 90°, 180°, and 270° phase shifters.
  • the fifth power feeding portion 18a, the fourth power feeding portion 17b, and the sixth power feeding portion 18b of the antenna 10 are provided.
  • the excitation signal enters the first end of the combiner 20 from a feeding port 30 (this is the input end), and after the combiner 20, is divided into two signals, one of which is combined
  • the second end of the router 20 (which is the output) is supplied to the first splitter 22, and the other signal is supplied to the second split through the third end of the combiner 20 (which is the output). 24.
  • two channels of the same frequency received signal are separately transmitted from the first power feeding portion 15 and the second power feeding portion 16 to the second end of the first power splitter 22 (here, the input terminal) and the third
  • the terminal (here, the input terminal) is output from the first end of the first splitter 22 (here, the output end), and then combined via the second end of the combiner 20 (this is the input end) Into a first frequency band signal.
  • the other four channels of the same frequency are transmitted from the third power feeding unit 17a, the fourth power feeding unit 17b, the fifth power feeding unit 18a, and the sixth power feeding unit 18b to the second end of the second power splitter 24 (this It is the input terminal), the third terminal (this is the input terminal), the fourth terminal (here, it is the input terminal), the fifth terminal (this is the input terminal), and the second power divider 24
  • the first end (which is the output) is output, and then combined with the third end of the combiner 20 (which is the input) to synthesize a second band signal signal.
  • the signals of the two different frequency bands are output from the first end of the combiner 20 (which is the output end) to the feed port 30, which is processed by the subsequent receiving circuit.
  • the 90° phase shifter, the 180° phase shifter, and the 270° phase shifter can be implemented by adjusting the length of the transmission line.
  • transmission lines of different lengths from each other are disposed such that the phase delay caused by the difference in length is exactly 90, 180 or 270.
  • the present invention requires only one feed port output, and can use only one set of signal processing devices, which greatly simplifies the structure of the antenna and reduces the cost.
  • the circularly polarized antenna and antenna system of the above-described embodiments of the present invention can be incorporated in a communication device.
  • the antenna Due to its low profile, light weight, small size, easy conformalization and mass production, the antenna can be widely used in various fields of measurement and communication.
  • the circularly polarized antenna of the embodiment of the invention has a wider application range and can be applied to the fields of mobile communication, satellite navigation and the like.
  • the main advantages of circularly polarized antennas in practical applications are:
  • Any polarized electromagnetic wave can be decomposed into two circularly polarized waves with opposite directions of rotation, for example, for a linearly polarized wave, it can be decomposed into two circularly polarized waves of opposite equal amplitude. Therefore, any polarized electromagnetic wave can be rounded
  • the polarized antenna is received, and the electromagnetic wave emitted by the circularly polarized antenna can be received by the antenna with arbitrary polarization. Therefore, a circularly polarized antenna is generally used in electronic reconnaissance and interference;
  • the circularly polarized wave is incident on a symmetric target (such as a plane, a spherical surface, etc.), and the circularly polarized antenna suppresses rain and fog interference and multipath reflection in the fields of mobile communication and satellite navigation.
  • a symmetric target such as a plane, a spherical surface, etc.
  • FIG. 8 is a schematic plan view showing an antenna according to still another embodiment of the present invention.
  • Fig. 9 is a top plan view showing an antenna according to still another embodiment of the present invention.
  • an antenna 10 according to still another embodiment of the present invention may include a first substrate 11, a second substrate 12, a first radiating sheet 13, and a second radiating sheet 14.
  • the first radiation sheet 13 is disposed on the first substrate 11.
  • the second radiating sheet 14 is disposed on the second substrate 12.
  • the first substrate 11 and the second substrate 12 are made of a dielectric substrate.
  • the first radiating sheet 13 and the second radiating sheet 14 are made of a conductive material such as metal.
  • the radiation sheet may be in the form of a patch or a photolithographically etched coating.
  • each radiating patch and its corresponding substrate constitutes a receiving and transmitting path.
  • the two combined units are further combined into an antenna in a stacked manner.
  • the second substrate 12 is disposed on the first radiation sheet 13.
  • the antenna of the present invention employs a laminated first radiating sheet and a second radiating sheet, which can reduce the size and size of the antenna.
  • a combination of a doubly-fed method and a four-feed method is employed.
  • the doubly-fed method feeds two radiating strips with two equal amplitudes and 90° phase difference, and excites two orthogonal working modes to achieve circular polarization working conditions.
  • the four-feed method compensates each other by using four different feeds with different phase shifts, thereby increasing the impedance bandwidth and circular polarization bandwidth, suppressing cross-polarization, and improving shaft ratio performance.
  • a combination of a doubly-fed method and a four-fed method is employed. That is, either one of the first radiating sheet 13 and the second radiating sheet 14 employs a doubly-fed method, and the other uses a four-feed method.
  • the first radiation sheet 13 is a doubly-fed method
  • the second radiation sheet 14 is a four-feed method
  • the first radiation sheet 13 is a four-feed method
  • the second radiation sheet 14 is a double-fed method.
  • the first radiating sheet 13 adopts a doubly-fed method, thereby having a first feed respectively located on the horizontal symmetry axis and the vertical symmetry axis of the first radiating sheet 13.
  • the electric portion 15 and the second feeding portion 16 and the second radiating sheet 14 adopt a four-feed method so as to have horizontal symmetry respectively located on the second radiating sheet 14.
  • FIG. 10 is a schematic diagram of a power feeding portion of an antenna according to still another embodiment of the present invention.
  • the first power feeding unit 15 and the second power feeding unit 16 may input a signal to be transmitted or output a received signal.
  • the third power feeding portion 17a, the fourth power feeding portion 17b, the fifth power feeding portion 18a, and the sixth power feeding portion 18b can input a signal to be transmitted or output a received signal.
  • the first radiating sheet 13 has a horizontal symmetry axis XI and a vertical symmetry axis Y1
  • the second radiating sheet 14 has a horizontal symmetry axis ⁇ 2 and a vertical symmetry axis ⁇ 2.
  • the horizontal symmetry axes ⁇ 1, ⁇ 2 are on the same straight line
  • the vertical symmetry axes ⁇ 1 and ⁇ 2 are on the same straight line.
  • the projection of the center point of the second radiation sheet 14 on the first radiation sheet 13 coincides with the center point of the first radiation sheet 13, and the horizontal symmetry axis and the vertical symmetry axis of the second radiation sheet 14 are on the first radiation sheet 13
  • the upper projections coincide with the horizontal symmetry axis and the vertical symmetry axis of the first radiation sheet 13, respectively.
  • the first feeding portion 15 and the second feeding portion 16 need to have one of them on the horizontal symmetry axis XI and the other on the vertical symmetry axis Y1, as shown in FIG. .
  • the third feeding portion 17a and the fourth feeding portion 17b need to be located on the horizontal symmetry axis X2 or the vertical symmetry axis Y2, and the fifth feeding portion 18a and the sixth feeding portion 18b are required. Located on another axis of symmetry orthogonal. Fig.
  • the third power feeding portion 17a and the fourth power feeding portion 17b are located on the horizontal symmetry axis X2, and the fifth power feeding portion 18a and the sixth power feeding portion 18b are located on the vertical symmetry axis Y2.
  • the third power feeding portion 17a and the fourth power feeding portion 17b need to be symmetrical about the vertical symmetry axis Y2
  • the fifth power feeding portion 18a and the sixth power feeding portion 18b need to be symmetrical about the horizontal symmetry axis X2.
  • the third power feeding portion 17a and the fourth power feeding portion 17b are located on the vertical symmetry axis Y2 and the fifth power feeding portion 18a and the sixth power feeding portion 18b are located on the horizontal symmetry axis X2, the third power feeding portion 17a, the fourth power feeding portion 17b needs to be symmetrical about the horizontal symmetry axis X2, and the fifth power feeding portion 18a and the sixth power feeding portion 18b need to be symmetrical about the vertical symmetry axis Y2.
  • the third power feeding portion 17a, the fifth power feeding portion 18a, the fourth power feeding portion 17b, and the sixth power feeding portion 18b complete circular polarization by sequentially exciting signals having phases of 90 degrees.
  • the first substrate 11 and the second substrate 12 are preferably rectangular, and of course, other shapes are also possible.
  • the first radiating sheet 13 and the second radiating sheet 14 are preferably circular. It will of course be understood that the first radiating sheet 13 and the second radiating sheet 14 may also have other shapes. However, the first radiating sheet 13 and the second radiating sheet 14 are preferably the same shape.
  • the size of the first radiating sheet 13 is smaller than the size of the first substrate 11, and the second radiation
  • the size of the sheet 14 is smaller than the size of the second substrate 12.
  • the size of the first radiating sheet 13 is preferably larger than the size of the second radiating sheet 14, and FIG. 8 shows an example in which the size of the first radiating sheet 13 is larger than the size of the second radiating sheet 14, thereby ensuring radiation of the first radiating sheet 13.
  • the outgoing signal is not obscured by the second radiating sheet 14 located thereon.
  • the first substrate 11 and the second substrate 12 may have an artificial microstructure, such as a conductive microstructure.
  • the artificial microstructure within the substrate can be a planar or steric structure having a certain geometry and can be placed horizontally and/or vertically within the substrate, also known as a metamaterial microstructure.
  • the dielectric constant of the substrate can be changed, thereby being suitable for providing substrates having different dielectric constants.
  • the shape of the artificial microstructure may include an I-shape, a cross shape, a snowflake shape, or a broken mouth shape.
  • the thickness of the first substrate 11 may be smaller than the thickness of the second substrate 12 in terms of size.
  • An antenna of still another embodiment of the present invention is designed to have dual frequency transmission and reception capabilities.
  • the first to sixth feed units are each electrically insulated to respectively input the band signals to be transmitted into the respective combination units, or to output the received signals from the respective combination units.
  • the first power feeding portion 15 and the second power feeding portion 16 are coaxial power feeding portions.
  • the third power feeding portion 17a, the fourth power feeding portion 17b, the fifth power feeding portion 18a, and the sixth power feeding portion 18b are preferably coaxial power feeding portions.
  • the use of the same-axis feed reduces the interference of the feed structure.
  • the first substrate 11, the second substrate 12, the first radiation sheet 13, and the second radiation sheet 14 may all be planar.
  • the present invention is not limited thereto, and in other embodiments, the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may each be a curved surface, such as a convex shape or a concave shape.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have the same curvature, so that the structural layers 11-14 are attached due to their similar three-dimensional shapes.
  • the first substrate 11, the second substrate 12, the first radiating sheet 13, and the second radiating sheet 14 may have a conformal concave shape or a convex shape, so that the antenna design can be made more compact.
  • the conformal design of the curved surface can also increase the radiation area of the antenna, concentrate the radiation energy, and thereby increase the gain of the antenna and widen the coverage.
  • FIG. 12 is a graph showing a voltage standing wave ratio of the antenna of FIG. 8.
  • FIG. 13 shows a gain graph of the antenna of FIG.
  • Fig. 14 is a graph showing the axial ratio of the antenna of Fig. 8.
  • the antenna of still another embodiment of the present invention can achieve an axial ratio of 6 or less within a range of ⁇ 50°. 12 to 14, it can be seen that the antenna of the present invention can generate two circularly polarized frequency bands.
  • two antennas or even more antennas are needed to form a dual-band or multi-band circularly polarized antenna. Therefore, in the back-end signal processing, two or even more sets of signals are usually required. The processing device separately processes the signals, which obviously increases the size, weight and cost of the device.
  • a single radiation sheet can achieve a circular polarization effect, and also has dual frequency bands, high gain, and good axial ratio performance. advantage.
  • an antenna system according to still another embodiment of the present invention includes an antenna 10, a combiner 20, a first splitter 22, a second splitter 24, and a feed port 30 of the embodiment shown in Fig. 8.
  • the first end of the combiner 20 is connected to the feed port 30, the second end of the combiner 20 is connected to the first end of the first splitter 22, and the third end of the combiner 20 is connected to the second splitter 24.
  • the first end of the first power splitter 22 is connected to the first feeding portion 15 of the radiation sheet 10a, and the third end of the first power divider 22 is connected to the second portion of the radiation sheet 10a through the 90° phase shifter.
  • Feeder unit 16 is connected to the first feeding portion 15 of the radiation sheet 10a, and the third end of the first power divider 22 is connected to the second portion of the radiation sheet 10a through the 90° phase shifter.
  • the second end of the second power splitter 24 is connected to the third power feeding portion 17a of the radiation sheet 10b, and the third end of the second power splitter 24 is connected to the fifth power feeding portion 18a of the radiation sheet 10b through a 90° phase shifter.
  • the fourth end of the second power splitter 24 is connected to the fourth power feeding portion 17b of the radiation sheet 10b through a 180° phase shifter, and the fifth end of the second power splitter 24 is connected to the radiation sheet 10b through a 270° phase shifter.
  • the sixth power feeder 18b is connected to the third power feeding portion 17a of the radiation sheet 10b, and the third end of the second power splitter 24 is connected to the fifth power feeding portion 18a of the radiation sheet 10b through a 90° phase shifter.
  • the fourth end of the second power splitter 24 is connected to the fourth power feeding portion 17b of the radiation sheet 10b through a 180° phase shifter, and the fifth end of the second power splitter 24 is connected to the radiation sheet 10b through a 270° phase shift
  • the radiation sheet 10a in FIG. 11 corresponds to the one in FIGS. 8-10.
  • the first radiating sheet 13 and the radiating sheet 10b are for the second radiating sheet 14 in Figs. It is easy to understand that in the embodiment in which the first radiation sheet 13 adopts the four-feed method and the second radiation sheet 14 uses the double-fed method, the radiation sheet 10a in FIG. 11 corresponds to the second radiation sheet 14 in FIGS. 8-10.
  • the radiation sheet 10b is for the first radiation sheet 13 in FIGS. 8-10.
  • the combiner 20 is a signal that divides the input excitation signal into multiple frequency bands and outputs them to the corresponding power splitters 22 and 24, respectively.
  • the combiner can also be referred to as a splitter, and accordingly, the antenna system is in a state of transmitting a signal.
  • the combiner 20, on the other hand, combines the received signals of the multi-band to a feed port, which is in the state of receiving the signal.
  • the combiner 20 is responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power splitter 22, and outputting the second frequency band of the excitation signal to the first frequency band.
  • Two power splitters 24 are responsible for outputting the first frequency band of the excitation signal provided by the feed port 30 to the first power splitter 22, and outputting the second frequency band of the excitation signal to the first frequency band.
  • the combiner 20 is on the other hand responsible for combining the signals from the respective power dividers 22 and 24, respectively, and outputting them to the feed port 30.
  • the frequency can be higher than the first frequency band to form a combination of high frequency and low frequency.
  • the first power divider 22 is responsible for splitting the signal of one frequency band into two paths, one path is outputted to the first power feeding portion 15 of the antenna 10 through the transmission line, and the other is output to the second signal of the antenna 10 through the 90° phase shifter. Electric part 16.
  • the second power splitter 24 is responsible for splitting the signal of the other frequency band into four paths, one through the transmission line to the third power feeding portion 17a of the antenna 10, and the other three paths are respectively shifted by 90°, 180°, and 270°.
  • the device outputs to the fifth power feeding portion 18a, the fourth power feeding portion 17b, and the sixth power feeding portion 18b of the antenna 10.
  • the excitation signal enters the first end of the combiner 20 from a feeding port 30 (this is the input end), and after the combiner 20, is divided into two signals, one of which is combined
  • the second end of the router 20 (which is the output) is supplied to the first splitter 22, and the other signal is supplied to the second split through the third end of the combiner 20 (which is the output). 24.
  • two channels of the same frequency received signal are separately transmitted from the first power feeding portion 15 and the second power feeding portion 16 to the second end of the first power splitter 22 (here, the input terminal) and the third
  • the terminal (here, the input terminal) is output from the first end of the first splitter 22 (here, the output end), and then combined via the second end of the combiner 20 (this is the input end) Into a first frequency band signal.
  • the other four channels of the same frequency are transmitted from the third power feeding unit 17a, the fourth power feeding unit 17b, the fifth power feeding unit 18a, and the sixth power feeding unit 18b to the second end of the second power splitter 24 (this It is the input terminal), the third terminal (this is the input terminal), the fourth terminal (here, it is the input terminal), the fifth terminal (this is the input terminal), and the second power divider 24
  • the first end (which is the output) is output, and then combined with the third end of the combiner 20 (which is the input) to synthesize a second band signal signal.
  • the signals of the two different frequency bands are output from the first end of the combiner 20 (which is the output end) to the feed port 30, which is processed by the subsequent receiving circuit.
  • the 90° phase shifter, the 180° phase shifter, and the 270° phase shifter can be implemented by adjusting the length of the transmission line. Specifically, transmission lines of different lengths from each other are disposed such that the phase delay caused by the difference in length is just 90°, 180° or 270°.
  • the present invention requires only one feed port output, and only one set of signal processing devices can be used, which greatly simplifies the structure of the antenna and reduces the cost.
  • the circularly polarized antenna and the antenna system of the above-described embodiments of the present invention can be incorporated in a communication device.
  • the antenna can be widely used in various fields of measurement and communication.
  • the circularly polarized antenna according to another embodiment of the present invention has a wider application range and can be applied to fields such as mobile communication and satellite navigation.
  • the main purpose of circularly polarized antennas in practical applications The advantages are:
  • Any polarized electromagnetic wave can be decomposed into two circularly polarized waves with opposite directions of rotation, for example, for linearly polarized waves, it can be decomposed into two circularly polarized waves of opposite equal amplitude. Therefore, the arbitrarily polarized electromagnetic wave can be received by the circularly polarized antenna, and the electromagnetic wave emitted by the circularly polarized antenna can be received by the arbitrarily polarized antenna, so the circularly polarized antenna is generally used in electronic reconnaissance and interference;
  • the circularly polarized wave is incident on a symmetric target (such as a plane, a spherical surface, etc.), and the circularly polarized antenna suppresses rain and fog interference and multipath reflection in the fields of mobile communication and satellite navigation.
  • a symmetric target such as a plane, a spherical surface, etc.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种天线,包括第一基板、第二基板、第一辐射片和第二辐射片,该第一辐射片设置在该第一基板上,该第二基板设置在该第一辐射片上,该第二辐射片设置在该第二基板上,该第一辐射片和该第二辐射片中的一个具有分别位于所在辐射片的水平对称轴和垂直对称轴上的第一馈电部和第二馈电部,该第一辐射片和该第二辐射片中的另一个具有位于所在辐射片的水平对称轴上的第三馈电部和第四馈电部,以及还具有位于所在辐射片的垂直对称轴上的第五馈电部和第六馈电部,该第一辐射片和该第二辐射片中二者之一为圆形。

Description

说明书 发明名称:天线、 天线系统和通信设备 技术领域
[0001] 本发明涉及无线通信领域, 尤其是涉及一种天线, 以及使用该天线的天线系统 和通信设备。
背景技术
[0002] 天线是一种用来发射或接收电磁波的电子器件。 天线应用于广播和电视、 点对 点无线电通信、 雷达和太空探索等系统。 随着无线通信技术的飞速发展, 天线 技术所涉及的领域越来越广泛。 在许多特殊应用中, 对于天线性能的要求也越 来越高。 在现代通信中, 随着通信系统集成度的提高, 要求使用的天线具有高 增益、 宽频带或多频段、 圆极化、 小型化、 宽覆盖等特点。
技术问题
[0003] 但是, 目前的现有技术中, 当需要多频段 (例如, 双频段) 天线或者多频段圆 极化天线吋, 通常是通过多个馈电端口和多个天线来分别实现不同的频段, 在 这种情况下, 通常一个馈电端口的输出需要后续一整套信号处理装置来进行处 理, 还需要多个天线来响应不同频段的天线信号, 这样一来, 现有技术中如果 要实现多频段、 高增益以及圆极化就势必增加天线的数量, 但是如果增加天线 的数量就会导致多个天线之间的相互干扰增强进而影响圆极化的性能, 同吋还 会导致多个天线之间的结构设计复杂化, 进而导致最终的天线尺寸变大, 因此 , 如何实现使天线具有多频段、 圆极化、 小型化、 宽覆盖等优点一直是业界亟 需解决的问题。
问题的解决方案
技术解决方案
[0004] 以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。 此概述不 是所有构想到的方面的详尽综览, 并且既非旨在指认出所有方面的关键性或决 定性要素亦非试图界定任何或所有方面的范围。 其唯一的目的是要以简化形式 给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。 [0005] 根据本发明的一方面, 提供了一种天线, 包括第一基板、 第二基板、 第一辐射 片和第二辐射片, 该第一辐射片设置在该第一基板上, 该第二基板设置在该第 一辐射片上, 该第二辐射片设置在该第二基板上, 该第一辐射片和该第二辐射 片中的一个具有分别位于所在辐射片的水平对称轴和垂直对称轴上的第一馈电 部和第二馈电部, 该第一辐射片和该第二辐射片中的另一个具有位于所在辐射 片的水平对称轴上的第三馈电部和第四馈电部, 以及还具有位于所在辐射片的 垂直对称轴上的第五馈电部和第六馈电部, 该第一辐射片和该第二辐射片中二 者之一为圆形。
[0006] 在一实例中, 该第一辐射片为圆形, 以及该第二辐射片为矩形。
[0007] 在一实例中, 所示第一辐射片为矩形, 以及该第二辐射片为圆形。
[0008] 在一实例中, 该第二辐射片的尺寸小于该第二基板的尺寸。
[0009] 在一实例中, 该第一辐射片的尺寸小于该第一基板的尺寸。
[0010] 在一实例中, 该第一辐射片的尺寸大于该第二辐射片的尺寸。
[0011] 在一实例中, 该第三馈电部和第四馈电部关于所在辐射片的垂直对称轴对称, 而该第五馈电部和第六馈电部关于所在辐射片的水平对称轴对称。
[0012] 在一实例中, 该第一馈电部、 该第二馈电部、 该第三馈电部、 该第四馈电部、 该第五馈电部、 以及该第六馈电部为同轴馈电部。
[0013] 在一实例中, 各馈电部电性绝缘。
[0014] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为平面形状
[0015] 在一实例中, 该第二辐射片的中心点在该第一辐射片上的投影与该第一辐射片 的中心点重合。
[0016] 在一实例中, 该第二辐射片的水平对称轴和垂直对称轴在该第一辐射片上的投 影分别与该第一辐射片的水平对称轴和垂直对称轴重合。
[0017] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为凸面形状
[0018] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为凹面形状 [0019] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同
[0020] 在一实例中, 该第一基板与该第二基板均为矩形。
[0021] 在一实例中, 该第一基板的厚度小于该第二基板的厚度。
[0022] 在一实例中, 在该第一基板的内部水平方向或者竖直方向放置有人造微结构。
[0023] 在一实例中, 在该第二基板的内部水平方向或者竖直方向放置有人造微结构。
[0024] 在一实例中, 该人造微结构的形状包括工字形、 或者十字形、 或者雪花形、 或 者断幵的口字型。
[0025] 根据本发明的另一方面, 提供了一种天线系统, 包括馈电端口、 天线、 合路器 、 以及第一功分器和第二功分器, 该天线是上述的天线, 该合路器的第一端连 接该馈电端口, 该合路器的第二端连接该第一功分器的第一端, 该合路器的第 三端连接该第二功分器的第一端, 该第一功分器的第二端连接该第一馈电部, 该第一功分器的第三端通过 90°移相器连接该第二馈电部, 以及该第二功分器的 第二端连接该第三馈电部, 该第二功分器的第三端通过 90°移相器连接该第五馈 电部, 该第二功分器的第四端通过 180°移相器连接该第四馈电部, 该第二功分器 的第五端通过 270°移相器连接该第六馈电部。
[0026] 在一实例中, 该 90°移相器、 180°移相器、 270°移相器均通过调节传输线的长度 来分别实现 90°移相、 180°移相、 270°移相。
[0027] 根据本发明的再一方面, 提供了包括上述天线系统的一种通信设备。
[0028] 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺 寸。 本发明的天线通过在每一个辐射片的水平对称轴和垂直对称轴上分别设计 不同的多个馈电部, 然后通过两组功分器以及 90°、 180°、 270°移相器分别连接 这多个馈电部, 可以使得每一个辐射片能单独实现圆极化。 本发明的这种单个 天线就能实现圆极化的技术方案, 相比于现有技术中需要多个天线共同配合来 实现圆极化来说, 很明显具有低成本的优势, 而且结构设计简单, 不需要多个 天线的复杂结构设计。 同吋, 本发明借助移相器、 功分器等多种技术手段相结 合, 可以使得该天线能实现多频段、 圆极化、 小型化、 宽覆盖等。
[0029] 另外, 根据本发明的另一方面, 还提供了一种天线, 包括第一基板、 第二基板 、 第一辐射片和第二辐射片, 该第一辐射片设置在该第一基板上, 该第二基板 设置在该第一辐射片上, 该第二辐射片设置在该第二基板上, 该第一辐射片和 该第二辐射片皆为圆形, 该第一辐射片和该第二辐射片中的一个具有分别位于 所在辐射片的水平对称轴和垂直对称轴上的第一馈电部和第二馈电部, 该第一 辐射片和该第二辐射片中的另一个具有位于所在辐射片的水平对称轴上的第三 馈电部和第四馈电部, 以及还具有位于所在辐射片的垂直对称轴上的第五馈电 部和第六馈电部。
[0030] 在一实例中, 该第二辐射片的尺寸小于该第二基板的尺寸。
[0031] 在一实例中, 该第一辐射片的尺寸小于该第一基板的尺寸。
[0032] 在一实例中, 该第一辐射片的尺寸大于该第二辐射片的尺寸。
[0033] 在一实例中, 该第三馈电部和第四馈电部关于所在辐射片的垂直对称轴对称, 而该第五馈电部和第六馈电部关于所在辐射片的水平对称轴对称。
[0034] 在一实例中, 该第一馈电部、 该第二馈电部、 该第三馈电部、 该第四馈电部、 该第五馈电部、 以及该第六馈电部为同轴馈电部。
[0035] 在一实例中, 各馈电部电性绝缘。
[0036] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为平面形状
[0037] 在一实例中, 该第二辐射片的中心点在该第一辐射片上的投影与该第一辐射片 的中心点重合。
[0038] 在一实例中, 该第二辐射片的水平对称轴和垂直对称轴在该第一辐射片上的投 影分别与该第一辐射片的水平对称轴和垂直对称轴重合。
[0039] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为凸面形状 [0040] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片均为凹面形状 [0041] 在一实例中, 该第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同
[0042] 在一实例中, 该第一基板与该第二基板均为矩形。 [0043] 在一实例中, 该第一基板的厚度小于该第二基板的厚度。
[0044] 在一实例中, 在该第一基板的内部水平方向或者竖直方向放置有人造微结构。
[0045] 在一实例中, 在该第二基板的内部水平方向或者竖直方向放置有人造微结构。
[0046] 在一实例中, 该人造微结构的形状包括工字形、 或者十字形、 或者雪花形、 或 者断幵的口字型。
[0047] 根据本发明的另一方面, 提供了一种天线系统, 包括馈电端口、 天线、 合路器 、 以及第一功分器和第二功分器, 该天线是上述的天线, 该合路器的第一端连 接该馈电端口, 该合路器的第二端连接该第一功分器的第一端, 该合路器的第 三端连接该第二功分器的第一端, 该第一功分器的第二端连接该第一馈电部, 该第一功分器的第三端通过 90°移相器连接该第二馈电部, 以及该第二功分器的 第二端连接该第三馈电部, 该第二功分器的第三端通过 90°移相器连接该第五馈 电部, 该第二功分器的第四端通过 180°移相器连接该第四馈电部, 该第二功分器 的第五端通过 270°移相器连接该第六馈电部。
[0048] 在一实例中, 该 90°移相器、 180°移相器、 270°移相器均通过传输线的长度来分 别实现 90°移相、 180°移相、 270°移相。
[0049] 根据本发明的再一方面, 提供了包括上述天线系统的一种通信设备。
发明的有益效果
有益效果
[0050] 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺 寸。 本发明的天线通过在每一个辐射片的水平对称轴和垂直对称轴上分别设计 不同的多个馈电部, 然后通过两组功分器以及 90°、 180°、 270°移相器分别连接 这多个馈电部, 可以使得每一个辐射片能单独实现圆极化。 本发明的这种单个 天线就能实现圆极化的技术方案, 相比于现有技术中需要多个天线共同配合来 实现圆极化来说, 很明显具有低成本的优势, 而且结构设计简单, 不需要多个 天线的复杂结构设计。 同吋, 本发明借助移相器、 功分器等多种技术手段相结 合, 可以使得该天线能实现多频段、 圆极化、 小型化、 宽覆盖等。
对附图的简要说明
附图说明 [0051] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[0052] 图 1示出本发明一实施例的天线的平视示意图;
[0053] 图 2示出本发明一实施例的天线的俯视示意图;
[0054] 图 3示出本发明一实施例的天线的馈电部示意图;
[0055] 图 4示出本发明一实施例的天线系统的结构示意图;
[0056] 图 5示出本发明一实施例的天线的电压驻波比曲线图;
[0057] 图 6示出本发明一实施例的天线的增益曲线图;
[0058] 图 7示出本发明一实施例的天线的轴比曲线图。
[0059] 为清楚起见, 以下给出本发明一实施例的附图标记的简要说明:
[0060] 10: 天线 10a、 10b: 辐射片
[0061] 11: 第一基板 12: 第二基板 13: 第一辐射片 14: 第二辐射片
[0062] 15: 第一馈电部 16: 第二馈电部 17a: 第三馈电部 17b: 第四馈电部
[0063] 18a: 第五馈电部 18b: 第六馈电部
[0064] 20: 合路器 30: 馈电端口 22: 第一功分器 24: 第二功分器
[0065] 图 8示出本发明另一实施例的天线的平视示意图;
[0066] 图 9示出本发明另一实施例的天线的俯视示意图;
[0067] 图 10示出本发明另一实施例的天线的馈电部示意图;
[0068] 图 11示出本发明另一实施例的天线系统的结构示意图;
[0069] 图 12示出本发明另一实施例的天线的电压驻波比曲线图;
[0070] 图 13示出本发明另一实施例的天线的增益曲线图;
[0071] 图 14示出本发明另一实施例的天线的轴比曲线图。
[0072] 为清楚起见, 以下给出本发明另一实施例的附图标记的简要说明:
[0073] 10: 天线 10a、 10b: 辐射片
[0074] 11: 第一基板 12: 第二基板 13: 第一辐射片 14: 第二辐射片
[0075] 15: 第一馈电部 16: 第二馈电部 17a: 第三馈电部
[0076] 17b: 第四馈电部 18a: 第五馈电部 18b: 第六馈电部
[0077] 20: 合路器 30: 馈电端口 22: 第一功分器 24: 第二功分器。 本发明的实施方式
[0078] 以下结合附图和具体实施例对本发明作详细描述。 注意, 以下结合附图和具体 实施例描述的诸方面仅是示例性的, 而不应被理解为对本发明的保护范围进行 任何限制。
[0079] 图 1示出本发明一实施例的天线的平视示意图。 图 2示出本发明一实施例的天线 的俯视示意图。 参考图 1和图 2所示, 本实施例的天线 10可包括第一基板 11、 第 二基板 12、 第一辐射片 13和第二辐射片 14。 第一辐射片 13设置在第一基板 11上 。 第二辐射片 14设置在第二基板 12上。 第一基板 11和第二基板 12由电介质基材 制成。 第一辐射片 13和第二辐射片 14由导电材料, 例如金属制成。 辐射片可以 是贴片形式, 也可以是经光刻刻蚀的镀层。 每个辐射片及其对应的基板这种组 合单元构成一个接收和发送路径。 在本实施例中, 两个组合单元进一步以叠合 的方式组合成天线。 换言之, 第二基板 12设置在第一辐射片 13上。 本发明的天 线采用层叠的第一辐射片和第二辐射片, 可以减小天线的体积和尺寸。
[0080] 在本实施方式中, 为了实现天线的圆极化, 采用双馈法和四馈法相结合来实施 。 双馈法通过输出两个幅度相等, 相位相差 90°的两支路对辐射片馈电, 激发两 个正交工作模式, 达到圆极化工作条件。 四馈法通过四个馈电采用不同的相移 进行相互补偿, 从而可以提高阻抗带宽和圆极化带宽, 抑制交叉极化, 提高轴 比性能。
[0081] 根据本发明的实施例, 采用了双馈法和四馈法相结合的方式来实施。 即, 第一 辐射片 13和第二辐射片 14中的任意一个采用双馈法, 而另一个采用四馈法。 例 如, 第一辐射片 13采用双馈法, 第二辐射片 14采用四馈法, 或者第一辐射片 13 采用四馈法, 第二辐射片 14采用双馈法。
[0082] 在图 1、 2、 3所示的实施例中, 第一辐射片 13采用了双馈法, 从而具有分别位 于第一辐射片 13的水平对称轴和垂直对称轴上的第一馈电部 15、 第二馈电部 16 , 而第二辐射片 14采用了四馈法, 从而具有分别位于第二辐射片 14的水平对称 轴上的第三馈电部 17a、 第四馈电部 17b和位于垂直对称轴上的第五馈电部 18a和 第六馈电部 18b。 具体地, 参考图 3, 图 3示出本发明一实施例的天线的馈电部示 意图。 [0083] 第一馈电部 15、 第二馈电部 16可输入待发送的信号, 或者输出已接收的信号。 同样地, 第三馈电部 17a、 第四馈电部 17b、 第五馈电部 18a和第六馈电部 18b可输 入待发送的信号, 或者输出已接收的信号。
[0084] 如图 3中所示, 第一辐射片 13具有水平对称轴 XI和垂直对称轴 Yl, 第二辐射片 14具有水平对称轴 Χ2和垂直对称轴 Υ2。 参考图 3所示, 作为特定实例, 水平对称 轴 Χ1,Χ2位于同一直线上, 且垂直对称轴 Υ1,Υ2位于同一直线上。 换言之, 第二 辐射片 14的中心点在第一辐射片 13上的投影与第一辐射片 13的中心点重合, 并 且第二辐射片 14的水平对称轴和垂直对称轴在第一辐射片 13上的投影分别与第 一辐射片 13的水平对称轴和垂直对称轴重合。
[0085] 对于第一辐射片 13而言, 第一馈电部 15和第二馈电部 16需要其中一个位于水平 对称轴 XI上, 而另一个位于垂直对称轴 Y1上, 如图 3所示。 对于第二辐射片 14而 言, 第三馈电部 17a、 第四馈电部 17b需要位于水平对称轴 X2或垂直对称轴 Y2上 , 而第五馈电部 18a、 第六馈电部 18b需要位于正交的另一对称轴上。 图 3示出了 第三馈电部 17a、 第四馈电部 17b位于水平对称轴 X2上, 而第五馈电部 18a、 第六 馈电部 18b位于垂直对称轴 Y2上。 特别地, 第三馈电部 17a、 第四馈电部 17b需要 关于垂直对称轴 Y2对称, 而第五馈电部 18a、 第六馈电部 18b需要关于水平对称 轴 X2对称。 当然, 如果第三馈电部 17a、 第四馈电部 17b位于垂直对称轴 Y2上, 而第五馈电部 18a、 第六馈电部 18b位于水平对称轴 X2上, 则第三馈电部 17a、 第 四馈电部 17b需要关于水平对称轴 X2对称, 而第五馈电部 18a、 第六馈电部 18b需 要关于垂直对称轴 Y2对称。 第三馈电部 17a、 第五馈电部 18a、 第四馈电部 17b、 第六馈电部 18b通过依次相差 90°相位的激励信号完成圆极化。
[0086] 在形状设计上, 第一基板 11和第二基板 12优选为矩形, 当然, 也可以是其它形 状。 第一辐射片 13优选为圆形, 第二辐射片 14优选为矩形。 当然可以理解, 第 一辐射片 13和第二辐射片 14还可以是其他形状。 例如第一辐射片 13优选为矩形 , 第二辐射片 14优选为圆形。 较优地, 第一辐射片 13的尺寸小于第一基板 11的 尺寸, 第二辐射片 14的尺寸小于第二基板 12的尺寸。 不过, 第一辐射片 13的尺 寸最好大于第二辐射片 14的尺寸, 如图所示, 从而以确保第一辐射片 13辐射出 的信号不被位于其上的第二辐射片 14所遮挡。 [0087] 进一步, 第一基板 11和第二基板 12内可具有人造微结构, 例如导电微结构。 基 板内的人造微结构可以是具有一定几何图形的平面或立体结构, 且可以水平和 / 或竖直地放置在基材内, 也称为超材料微结构。 通过在基板内设置人造微结构 , 可以改变基板的介电常数, 从而适合提供具有不同介电常数的基板。 作为特 定实例, 人造微结构的形状可包括工字形、 十字形、 雪花形、 或者断幵的口字 型。 在尺寸上, 第一基板 11的厚度可小于第二基板 12的厚度。
[0088] 本实施例的天线被设计为具有双频发送和接收能力。 为此, 第一至第六馈电部 各自电性绝缘, 以分别将待发送的频段信号输入到各自的组合单元中, 或者将 已接收的信号从各自的组合单元中输出。
[0089] 优选地, 第一馈电部 15、 第二馈电部 16是同轴馈电部。 类似地, 第三馈电部 17 a、 第四馈电部 17b、 第五馈电部 18a、 第六馈电部 18b优选为同轴馈电部。 采用同 轴馈电的方式, 降低了馈电结构的干扰。
[0090] 在本实施例中, 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可均 为平面。 但是, 本发明并不局限于此, 在其他实施例中, 第一基板 11、 第二基 板 12、 第一辐射片 13和第二辐射片 14可均为弧面, 例如凸面形状或凹面形状。 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可具有相同的曲率, 从而这些结构层 11-14之间因其相似的三维形状而贴合。 在该实施例中, 通过第 一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可以是共形的凹面形状 或凸面形状, 这样一来, 可以使得该天线设计更加紧凑, 减小平面尺寸, 通过 这种曲面的共形设计还能增加天线的辐射面积, 辐射能量集中, 进而提高天线 的增益以及扩宽覆盖范围。
[0091] 图 5示出了图 1中的天线的电压驻波比曲线图。 图 6示出了图 1中的天线的增益曲 线图。 图 7示出了图 1中的天线的轴比曲线图, 参考图 7, 本发明实施例的天线可 以在 ±50°范围内, 实现轴比小于等于 6。 结合图 5至图 7, 可知本发明中的天线可 以产生两个圆极化的频段。
[0092] 现有技术中, 需要使用两个天线或者甚至更多个天线来构成双频段或者多频段 圆极化天线, 因此, 在后端信号处理吋, 通常需要两套或者甚至更多套信号处 理装置来分别进行信号的处理, 这样很明显就增加了设备的体积、 重量和成本 [0093] 但是, 通过本发明的天线设计, 以及图 5至图 7的实际效果图来看, 单个辐射片 就能实现圆极化效果, 而且也具备双频段、 高增益以及轴比性能好的优点。
[0094] 图 4示出本发明一实施例的天线系统的结构示意图。 参考图 4所示, 本实施例的 天线系统包括图 1所示实施例的天线 10、 合路器 20、 第一功分器 22、 第二功分器 24以及馈电端口 30。 合路器 20的第一端连接馈电端口 30, 合路器 20的第二端连 接第一功分器 22的第一端, 合路器 20的第三端连接第二功分器 24的第一端, 第 一功分器 22的第二端连接辐射片 10a的第一馈电部 15, 第一功分器 22的第三端通 过 90°移相器连接辐射片 10a的第二馈电部 16。 第二功分器 24的第二端连接辐射片 10b的第三馈电部 17a, 第二功分器 24的第三端通过 90°移相器连接辐射片 10b的第 五馈电部 18a, 第二功分器 24的第四端通过 180°移相器连接辐射片 10b的第四馈电 部 17b, 第二功分器 24的第五端通过 270°移相器连接辐射片 10b的第六馈电部 18b
[0095] 在图 1-3中的第一辐射片 13采用双馈法, 而第二辐射片 14采用四馈法的实施例 中, 图 4中的辐射片 10a对应于图 1-3中的第一辐射片 13, 辐射片 10b对于于图 1-3 中的第二辐射片 14。 容易理解, 在第一辐射片 13采用四馈法, 而第二辐射片 14 采用双馈法的实施例中, 图 4中的辐射片 10a对应于图 1-3中的第二辐射片 14, 辐 射片 10b对于于图 1-3中的第一辐射片 13。
[0096] 合路器 20—方面是将输入激励信号分成多频段的信号, 分别输出到对应的功分 器 22、 24。 此吋合路器亦可称为分路器, 相应地, 天线系统处于发射信号的状 态。 合路器 20另一方面是将多频段的接收信号合路到一个馈电端口, 此吋天线 系统处于接收信号的状态。 举例来说, 本实施例中合路器 20—方面负责将馈电 端口 30提供的激励信号的第一频段输出到第一功分器 22, 将激励信号的第二频 段输出到第二功分器 24。 合路器 20另一方面负责将分别来自各个功分器 22、 24 频段信号组合到在一起后输出给馈电端口 30。 举例来说, 第二频段的频率可以 高于第一频段, 形成高频和低频的配合。
[0097] 第一功分器 22负责将一个频段的信号分成两路, 一路通过传输线输出到天线 10 的第一馈电部 15, 另一路经过 90°移相器输出到天线 10的第二馈电部 16。 类似地 , 第二功分器 24负责将另一个频段的信号分成四路, 一路通过传输线输出到天 线 10的第三馈电部 17a, 另三路分别经过 90°、 180°、 270°移相器输出到天线 10的 第五馈电部 18a、 第四馈电部 17b和第六馈电部 18b。
[0098] 发射工作吋, 激励信号从一个馈电端口 30进入合路器 20的第一端 (此吋其为输 入端) , 经合路器 20后, 分成两路信号, 其中一路信号经过合路器 20的第二端 (此吋其为输出端) 提供给第一功分器 22, 另一路信号经过合路器 20的第三端 (此吋其为输出端) 提供给第二功分器 24。 接收工作吋, 两路同频接收信号分 另 IJ从第一馈电部 15和第二馈电部 16传输到第一功分器 22的第二端 (此吋其为输入 端)和第三端 (此吋其为输入端), 从第一功分器 22的第一端 (此吋其为输出端)输出 , 然后经合路器 20的第二端 (此吋其为输入端) 组合成一个第一频段信号。 另 四路同频接收信号分别从第三馈电部 17a、 第四馈电部 17b、 第五馈电部 18a、 第 六馈电部 18b传输到第二功分器 24的第二端 (此吋其为输入端)、 第三端 (此吋其为 输入端), 第四端 (此吋其为输入端)、 第五端 (此吋其为输入端), 从第二功分器 24 的第一端 (此吋其为输出端)输出, 然后经合路器 20的第三端 (此吋其为输入端) 组合成一个第二频段信号信号。 最后, 两路不同频段的信号再从合路器 20的第 一端 (此吋其为输出端) 输出给馈电端口 30, 由后续的接收电路处理。
[0099] 在一实施例中, 90°移相器、 180°移相器和 270°移相器可通过调节传输线的长度 实现。 具体地说, 设置彼此不同长度的传输线, 使该长度之差造成的相位延迟 刚好是 90°、 180°或 270°。
[0100] 因而, 本发明只需要一个馈电端口输出, 可以仅用一套信号处理装置, 大大简 化了天线的结构, 降低了成本。
[0101] 本发明上述实施例的圆极化天线及天线系统可结合于通信设备中。
[0102] 天线由于具有剖面低、 重量轻、 体积小、 易于共形和批量生产优点, 可以广泛 应用于测量和通讯各个领域。 本发明实施例的圆极化天线应用范围更加广泛, 可以应用于移动通信、 卫星导航等领域。 圆极化天线在实际应用方面的主要优 势有:
[0103] 1)任意的极化电磁波均可分解为两个旋向相反的圆极化波, 如对于线极化波来 说, 可以分解为两个反向等幅的圆极化波。 因此, 任意极化的电磁波均可被圆 极化天线接收, 而圆极化天线发射的电磁波则可被任意极化的天线接收到, 故 电子侦察和干扰中普遍采用圆极化天线;
2)在通信、 雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋 向正交性;
[0105] 3) 圆极化波入射到对称目标 (如平面、 球面等) 吋旋向逆转, 所以圆极化天线 在移动通信、 卫星导航等领域抑制雨雾干扰和抗多径反射。
[0106] 另外, 图 8示出本发明又一实施例的天线的平视示意图。 图 9示出本发明又一实 施例的天线的俯视示意图。 参考图 8和图 9所示, 本发明又一实施例的天线 10可 包括第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14。 第一辐射片 13 设置在第一基板 11上。 第二辐射片 14设置在第二基板 12上。 第一基板 11和第二 基板 12由电介质基材制成。 第一辐射片 13和第二辐射片 14由导电材料, 例如金 属制成。 辐射片可以是贴片形式, 也可以是经光刻刻蚀的镀层。 每个辐射片及 其对应的基板这种组合单元构成一个接收和发送路径。 在本发明又一实施例中 , 两个组合单元进一步以叠合的方式组合成天线。 换言之, 第二基板 12设置在 第一辐射片 13上。 本发明的天线采用层叠的第一辐射片和第二辐射片, 可以减 小天线的体积和尺寸。
[0107] 在本实施方式中, 为了实现天线的圆极化, 采用双馈法和四馈法相结合来实施 。 双馈法通过输出两个幅度相等, 相位相差 90°的两支路对辐射片馈电, 激发两 个正交工作模式, 达到圆极化工作条件。 四馈法通过四个馈电采用不同的相移 进行相互补偿, 从而可以提高阻抗带宽和圆极化带宽, 抑制交叉极化, 提高轴 比性能。
[0108] 根据本发明的实施例, 采用了双馈法和四馈法相结合的方式来实施。 即, 第一 辐射片 13和第二辐射片 14中的任意一个采用双馈法, 而另一个采用四馈法。 例 如, 第一辐射片 13采用双馈法, 第二辐射片 14采用四馈法, 或者第一辐射片 13 采用四馈法, 第二辐射片 14采用双馈法。
[0109] 在图 8、 2、 3所示的实施例中, 第一辐射片 13采用了双馈法, 从而具有分别位 于第一辐射片 13的水平对称轴和垂直对称轴上的第一馈电部 15、 第二馈电部 16 , 而第二辐射片 14采用了四馈法, 从而具有分别位于第二辐射片 14的水平对称 轴上的第三馈电部 17a、 第四馈电部 17b和位于垂直对称轴上的第五馈电部 18a和 第六馈电部 18b。 具体地, 参考图 10, 图 10示出本发明又一实施例的天线的馈电 部示意图。
[0110] 第一馈电部 15、 第二馈电部 16可输入待发送的信号, 或者输出已接收的信号。
同样地, 第三馈电部 17a、 第四馈电部 17b、 第五馈电部 18a和第六馈电部 18b可输 入待发送的信号, 或者输出已接收的信号。
[0111] 如图 10中所示, 第一辐射片 13具有水平对称轴 XI和垂直对称轴 Yl, 第二辐射 片 14具有水平对称轴 Χ2和垂直对称轴 Υ2。 参考图 10所示, 作为特定实例, 水平 对称轴 Χ1,Χ2位于同一直线上, 且垂直对称轴 Υ1,Υ2位于同一直线上。 换言之, 第二辐射片 14的中心点在第一辐射片 13上的投影与第一辐射片 13的中心点重合 , 并且第二辐射片 14的水平对称轴和垂直对称轴在第一辐射片 13上的投影分别 与第一辐射片 13的水平对称轴和垂直对称轴重合。
[0112] 对于第一辐射片 13而言, 第一馈电部 15和第二馈电部 16需要其中一个位于水平 对称轴 XI上, 而另一个位于垂直对称轴 Y1上, 如图 10所示。 对于第二辐射片 14 而言, 第三馈电部 17a、 第四馈电部 17b需要位于水平对称轴 X2或垂直对称轴 Y2 上, 而第五馈电部 18a、 第六馈电部 18b需要位于正交的另一对称轴上。 图 10示出 了第三馈电部 17a、 第四馈电部 17b位于水平对称轴 X2上, 而第五馈电部 18a、 第 六馈电部 18b位于垂直对称轴 Y2上。 特别地, 第三馈电部 17a、 第四馈电部 17b需 要关于垂直对称轴 Y2对称, 而第五馈电部 18a、 第六馈电部 18b需要关于水平对 称轴 X2对称。 当然, 如果第三馈电部 17a、 第四馈电部 17b位于垂直对称轴 Y2上 , 而第五馈电部 18a、 第六馈电部 18b位于水平对称轴 X2上, 则第三馈电部 17a、 第四馈电部 17b需要关于水平对称轴 X2对称, 而第五馈电部 18a、 第六馈电部 18b 需要关于垂直对称轴 Y2对称。 第三馈电部 17a、 第五馈电部 18a、 第四馈电部 17b 、 第六馈电部 18b通过依次相差 90°相位的激励信号完成圆极化。
[0113] 在形状设计上, 第一基板 11和第二基板 12优选为矩形, 当然, 也可以是其它形 状。 第一辐射片 13、 第二辐射片 14优选为圆形。 当然可以理解, 第一辐射片 13 和第二辐射片 14还可以是其他形状。 不过, 第一辐射片 13和第二辐射片 14优选 为形状相同。 较优地, 第一辐射片 13的尺寸小于第一基板 11的尺寸, 第二辐射 片 14的尺寸小于第二基板 12的尺寸。 第一辐射片 13的尺寸最好大于第二辐射片 1 4的尺寸, 图 8示出第一辐射片 13的尺寸大于第二辐射片 14的尺寸的实例, 从而 以确保第一辐射片 13辐射出的信号不被位于其上的第二辐射片 14所遮挡。
[0114] 进一步, 第一基板 11和第二基板 12内可具有人造微结构, 例如导电微结构。 基 板内的人造微结构可以是具有一定几何图形的平面或立体结构, 且可以水平和 / 或竖直地放置在基材内, 也称为超材料微结构。 通过在基板内设置人造微结构 , 可以改变基板的介电常数, 从而适合提供具有不同介电常数的基板。 作为特 定实例, 人造微结构的形状可包括工字形、 十字形、 雪花形、 或者断幵的口字 型。 在尺寸上, 第一基板 11的厚度可小于第二基板 12的厚度。
[0115] 本发明又一实施例的天线被设计为具有双频发送和接收能力。 为此, 第一至第 六馈电部各自电性绝缘, 以分别将待发送的频段信号输入到各自的组合单元中 , 或者将已接收的信号从各自的组合单元中输出。
[0116] 优选地, 第一馈电部 15、 第二馈电部 16是同轴馈电部。 类似地, 第三馈电部 17 a、 第四馈电部 17b、 第五馈电部 18a、 第六馈电部 18b优选为同轴馈电部。 采用同 轴馈电的方式, 降低了馈电结构的干扰。
[0117] 在本发明又一实施例中, 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射 片 14可均为平面。 但是, 本发明并不局限于此, 在其他实施例中, 第一基板 11 、 第二基板 12、 第一辐射片 13和第二辐射片 14可均为弧面, 例如凸面形状或凹 面形状。 第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可具有相同 的曲率, 从而这些结构层 11-14之间因其相似的三维形状而贴合。 在该实施例中 , 通过第一基板 11、 第二基板 12、 第一辐射片 13和第二辐射片 14可以是共形的 凹面形状或凸面形状, 这样一来, 可以使得该天线设计更加紧凑, 减小平面尺 寸, 通过这种曲面的共形设计还能增加天线的辐射面积, 辐射能量集中, 进而 提高天线的增益以及扩宽覆盖范围。
[0118] 图 12示出了图 8中的天线的电压驻波比曲线图。 图 13示出了图 8中的天线的增益 曲线图。 图 14示出了图 8中的天线的轴比曲线图, 参考图 14, 本发明又一实施例 的天线可以在 ±50°范围内, 实现轴比小于等于 6。 结合图 12至图 14, 可知本发明 中的天线可以产生两个圆极化的频段。 [0119] 现有技术中, 需要使用两个天线或者甚至更多个天线来构成双频段或者多频段 圆极化天线, 因此, 在后端信号处理吋, 通常需要两套或者甚至更多套信号处 理装置来分别进行信号的处理, 这样很明显就增加了设备的体积、 重量和成本
[0120] 但是, 通过本发明的天线设计, 以及图 12至图 14的实际效果图来看, 单个辐射 片就能实现圆极化效果, 而且也具备双频段、 高增益以及轴比性能好的优点。
[0121] 图 11示出本发明又一实施例的天线系统的结构示意图。 参考图 11所示, 本发明 又一实施例的天线系统包括图 8所示实施例的天线 10、 合路器 20、 第一功分器 22 、 第二功分器 24以及馈电端口 30。 合路器 20的第一端连接馈电端口 30, 合路器 2 0的第二端连接第一功分器 22的第一端, 合路器 20的第三端连接第二功分器 24的 第一端, 第一功分器 22的第二端连接辐射片 10a的第一馈电部 15, 第一功分器 22 的第三端通过 90°移相器连接辐射片 10a的第二馈电部 16。 第二功分器 24的第二端 连接辐射片 10b的第三馈电部 17a, 第二功分器 24的第三端通过 90°移相器连接辐 射片 10b的第五馈电部 18a, 第二功分器 24的第四端通过 180°移相器连接辐射片 10 b的第四馈电部 17b, 第二功分器 24的第五端通过 270°移相器连接辐射片 10b的第 六馈电部 18b。
[0122] 在图 8-10中的第一辐射片 13采用双馈法, 而第二辐射片 14采用四馈法的实施例 中, 图 11中的辐射片 10a对应于图 8-10中的第一辐射片 13, 辐射片 10b对于于图 8- 10中的第二辐射片 14。 容易理解, 在第一辐射片 13采用四馈法, 而第二辐射片 1 4采用双馈法的实施例中, 图 11中的辐射片 10a对应于图 8-10中的第二辐射片 14, 辐射片 10b对于于图 8-10中的第一辐射片 13。
[0123] 合路器 20—方面是将输入激励信号分成多频段的信号, 分别输出到对应的功分 器 22、 24。 此吋合路器亦可称为分路器, 相应地, 天线系统处于发射信号的状 态。 合路器 20另一方面是将多频段的接收信号合路到一个馈电端口, 此吋天线 系统处于接收信号的状态。 举例来说, 本发明又一实施例中合路器 20—方面负 责将馈电端口 30提供的激励信号的第一频段输出到第一功分器 22, 将激励信号 的第二频段输出到第二功分器 24。 合路器 20另一方面负责将分别来自各个功分 器 22、 24频段信号组合到在一起后输出给馈电端口 30。 举例来说, 第二频段的 频率可以高于第一频段, 形成高频和低频的配合。
[0124] 第一功分器 22负责将一个频段的信号分成两路, 一路通过传输线输出到天线 10 的第一馈电部 15, 另一路经过 90°移相器输出到天线 10的第二馈电部 16。 类似地 , 第二功分器 24负责将另一个频段的信号分成四路, 一路通过传输线输出到天 线 10的第三馈电部 17a, 另三路分别经过 90°、 180°、 270°移相器输出到天线 10的 第五馈电部 18a、 第四馈电部 17b和第六馈电部 18b。
[0125] 发射工作吋, 激励信号从一个馈电端口 30进入合路器 20的第一端 (此吋其为输 入端) , 经合路器 20后, 分成两路信号, 其中一路信号经过合路器 20的第二端 (此吋其为输出端) 提供给第一功分器 22, 另一路信号经过合路器 20的第三端 (此吋其为输出端) 提供给第二功分器 24。 接收工作吋, 两路同频接收信号分 另 IJ从第一馈电部 15和第二馈电部 16传输到第一功分器 22的第二端 (此吋其为输入 端)和第三端 (此吋其为输入端), 从第一功分器 22的第一端 (此吋其为输出端)输出 , 然后经合路器 20的第二端 (此吋其为输入端) 组合成一个第一频段信号。 另 四路同频接收信号分别从第三馈电部 17a、 第四馈电部 17b、 第五馈电部 18a、 第 六馈电部 18b传输到第二功分器 24的第二端 (此吋其为输入端)、 第三端 (此吋其为 输入端), 第四端 (此吋其为输入端)、 第五端 (此吋其为输入端), 从第二功分器 24 的第一端 (此吋其为输出端)输出, 然后经合路器 20的第三端 (此吋其为输入端) 组合成一个第二频段信号信号。 最后, 两路不同频段的信号再从合路器 20的第 一端 (此吋其为输出端) 输出给馈电端口 30, 由后续的接收电路处理。
[0126] 在又一实施例中, 90°移相器、 180°移相器和 270°移相器可通过调节传输线的长 度实现。 具体地说, 设置彼此不同长度的传输线, 使该长度之差造成的相位延 迟刚好是 90°、 180°或 270°。
[0127] 因而, 本发明只需要一个馈电端口输出, 可以仅用一套信号处理装置, 大大简 化了天线的结构, 降低了成本。
[0128] 本发明上述实施例的圆极化天线及天线系统可结合于通信设备中。
[0129] 天线由于具有剖面低、 重量轻、 体积小、 易于共形和批量生产优点, 可以广泛 应用于测量和通讯各个领域。 本发明又一实施例的圆极化天线应用范围更加广 泛, 可以应用于移动通信、 卫星导航等领域。 圆极化天线在实际应用方面的主 要优势有:
[0130] 1)任意的极化电磁波均可分解为两个旋向相反的圆极化波, 如对于线极化波来 说, 可以分解为两个反向等幅的圆极化波。 因此, 任意极化的电磁波均可被圆 极化天线接收, 而圆极化天线发射的电磁波则可被任意极化的天线接收到, 故 电子侦察和干扰中普遍采用圆极化天线;
[0131] 2)在通信、 雷达的极化分集工作和电子对抗等应用中广泛利用圆极化天线的旋 向正交性;
[0132] 3) 圆极化波入射到对称目标 (如平面、 球面等) 吋旋向逆转, 所以圆极化天线 在移动通信、 卫星导航等领域抑制雨雾干扰和抗多径反射。
[0133] 提供对本公幵的先前描述是为使得本领域任何技术人员皆能够制作或使用本公 幵。 对本公幵的各种修改对本领域技术人员来说都将是显而易见的, 且本文中 所定义的普适原理可被应用到其他变体而不会脱离本公幵的精神或范围。 由此 , 本公幵并非旨在被限定于本文中所描述的示例和设计, 而是应被授予与本文 中所公幵的原理和新颖性特征相一致的最广范围。

Claims

权利要求书
[权利要求 1] 一种天线, 包括第一基板、 第二基板、 第一辐射片和第二辐射片, 所 述第一辐射片设置在所述第一基板上, 所述第二基板设置在所述第一 辐射片上, 所述第二辐射片设置在所述第二基板上, 所述第一辐射片 和所述第二辐射片中的一个具有分别位于所在辐射片的水平对称轴和 垂直对称轴上的第一馈电部和第二馈电部, 所述第一辐射片和所述第 二辐射片中的另一个具有位于所在辐射片的水平对称轴上的第三馈电 部和第四馈电部, 以及还具有位于所在辐射片的垂直对称轴上的第五 馈电部和第六馈电部, 所述第一辐射片和所述第二辐射片中至少一个 为圆形。
[权利要求 2] 如权利要求 1所述的天线, 其特征在于, 所述第一辐射片为圆形, 以 及所述第二辐射片为矩形。
[权利要求 3] 如权利要求 1所述的天线, 其特征在于, 所示第一辐射片为矩形, 以 及所述第二辐射片为圆形。
[权利要求 4] 如权利要求 1所述的天线, 其特征在于, 所示第一辐射片与所述第二 辐射片皆为圆形。
[权利要求 5] 如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的尺寸小于 所述第二基板的尺寸, 所述第一辐射片的尺寸小于所述第一基板的尺 寸, 所述第一辐射片的尺寸大于所述第二辐射片的尺寸。
[权利要求 6] 如权利要求 1所述的天线, 其特征在于, 所述第三馈电部和第四馈电 部关于所在辐射片的垂直对称轴对称, 而所述第五馈电部和第六馈电 部关于所在辐射片的水平对称轴对称。
[权利要求 7] 如权利要求 1所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片均为平面形状。
[权利要求 8] 如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的中心点在 所述第一辐射片上的投影与所述第一辐射片的中心点重合。
[权利要求 9] 如权利要求 1所述的天线, 其特征在于, 所述第二辐射片的水平对称 轴和垂直对称轴在所述第一辐射片上的投影分别与所述第一辐射片的 水平对称轴和垂直对称轴重合。
[权利要求 10] 如权利要求 1所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片均为凸面形状, 或者所述第一基板、 第二基 板、 第一辐射片和第二辐射片均为凹面形状。
[权利要求 11] 如权利要求 10所述的天线, 其特征在于, 所述第一基板、 第二基板、 第一辐射片和第二辐射片的曲率均相同。
[权利要求 12] 如权利要求 1所述的天线, 其特征在于, 所述第一基板与所述第二基 板均为矩形。
[权利要求 13] 如权利要求 12所述的天线, 其特征在于, 所述第一基板的厚度小于所 述第二基板的厚度。
[权利要求 14] 一种天线系统, 包括馈电端口、 天线、 合路器、 以及第一功分器和第 二功分器, 所述天线是权利要求 1至 13中任一项所述的天线, 所述合 路器的第一端连接所述馈电端口, 所述合路器的第二端连接所述第一 功分器的第一端, 所述合路器的第三端连接所述第二功分器的第一端 , 所述第一功分器的第二端连接所述第一馈电部, 所述第一功分器的 第三端通过 90°移相器连接所述第二馈电部, 以及所述第二功分器的 第二端连接所述第三馈电部, 所述第二功分器的第三端通过 90°移相 器连接所述第五馈电部, 所述第二功分器的第四端通过 180°移相器连 接所述第四馈电部, 所述第二功分器的第五端通过 270°移相器连接所 述第六馈电部。
[权利要求 15] 如权利要求 14所述的天线系统, 其特征在于, 所述 90°移相器、 180 。移相器、 270°移相器均通过调节传输线的长度来分别实现 90°移相、 180°移相、 270°移相。
[权利要求 16] —种通信设备, 包括权利要求 14至 15中任一项所述的天线系统。
PCT/CN2016/072681 2015-01-30 2016-01-29 天线、天线系统和通信设备 WO2016119730A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510055653.4A CN105990671A (zh) 2015-01-30 2015-01-30 天线、天线系统和通信设备
CN201510050872.3A CN105990657A (zh) 2015-01-30 2015-01-30 天线、天线系统和通信设备
CN201510050872.3 2015-01-30
CN201510055653.4 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119730A1 true WO2016119730A1 (zh) 2016-08-04

Family

ID=56542457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072681 WO2016119730A1 (zh) 2015-01-30 2016-01-29 天线、天线系统和通信设备

Country Status (1)

Country Link
WO (1) WO2016119730A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859927A (zh) * 2010-04-14 2010-10-13 电子科技大学 一种ltcc叠层双馈圆极化微带贴片天线
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN103474766A (zh) * 2013-09-23 2013-12-25 深圳市华信天线技术有限公司 一种天线装置及接收系统
US20140071016A1 (en) * 2012-09-07 2014-03-13 Yu-Sheng Chen Dual-band and dual-polarization antenna
CN204407484U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407499U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407480U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407500U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859927A (zh) * 2010-04-14 2010-10-13 电子科技大学 一种ltcc叠层双馈圆极化微带贴片天线
US20140071016A1 (en) * 2012-09-07 2014-03-13 Yu-Sheng Chen Dual-band and dual-polarization antenna
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN103474766A (zh) * 2013-09-23 2013-12-25 深圳市华信天线技术有限公司 一种天线装置及接收系统
CN204407484U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407499U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407480U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备
CN204407500U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 天线、天线系统和通信设备

Similar Documents

Publication Publication Date Title
US9391375B1 (en) Wideband planar reconfigurable polarization antenna array
US9755311B2 (en) Circularly polarized patch antennas, antenna arrays, and devices including such antennas and arrays
US20130300602A1 (en) Antenna arrays with configurable polarizations and devices including such antenna arrays
US10103432B2 (en) Multiband antenna with variable electrical tilt
JPH03166803A (ja) 二周波分離給電円偏波用マイクロストリップアンテナ
CN109037971A (zh) 宽轴比带宽双频双圆极化微带阵列天线
CN204407501U (zh) 通信天线、天线系统及通讯设备
JP6602165B2 (ja) 2周波共用円偏波平面アンテナおよびその軸比調整方法
CN204407491U (zh) 天线、天线系统和通信设备
CN204407499U (zh) 天线、天线系统和通信设备
CN104993245A (zh) S波段动中通双频圆极化微带天线及其阵列
Park et al. 37–39 GHz vertically-polarized end-fire 5G antenna array featuring electrically small profile
CN204407500U (zh) 天线、天线系统和通信设备
CN204407484U (zh) 天线、天线系统和通信设备
JP2014093767A (ja) 直交偏波共用・偏波面可変アンテナ
CN105305051A (zh) 一种椭圆形圆极化微带天线
Yang et al. Millimeter wave dual polarization design using frequency selective surface (FSS) for 5G base-station applications
US11329375B1 (en) Differential quadrature radiating elements and feeds
WO2016119740A1 (zh) 天线、天线系统和通信设备
CN204407497U (zh) 天线、天线系统和通信设备
WO2016119730A1 (zh) 天线、天线系统和通信设备
CN204407494U (zh) 天线、天线系统和通信设备
WO2016119729A1 (zh) 天线、天线系统和通信设备
Yeh et al. Designing a broadband circularly polarized patch antenna array for millimeter-wave beamforming
WO2016119728A1 (zh) 天线、天线系统和通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742792

Country of ref document: EP

Kind code of ref document: A1