WO2016119715A1 - 一种通信天线及通信天线系统 - Google Patents

一种通信天线及通信天线系统 Download PDF

Info

Publication number
WO2016119715A1
WO2016119715A1 PCT/CN2016/072511 CN2016072511W WO2016119715A1 WO 2016119715 A1 WO2016119715 A1 WO 2016119715A1 CN 2016072511 W CN2016072511 W CN 2016072511W WO 2016119715 A1 WO2016119715 A1 WO 2016119715A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
metal radiating
substrate
metal
radiating sheet
Prior art date
Application number
PCT/CN2016/072511
Other languages
English (en)
French (fr)
Inventor
刘若鹏
陈江波
李波
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2016119715A1 publication Critical patent/WO2016119715A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 

Definitions

  • the present invention belongs to the field of wireless communications, and in particular, to a communication antenna and a communication antenna system.
  • Communication antennas are an important part of satellite communication equipment. From a technical perspective, communication antennas mainly include reflective antennas, dielectric lens antennas, array antennas, and phased array antennas. These types of antennas each have their own characteristics and application range. Users can choose according to the communication antenna's use environment, the way of carrying, the geographical location, the main business and budget.
  • Different frequency band communication is realized by controlling the structure size and dielectric constant of each antenna.
  • a first aspect of the present invention provides a communication antenna, the antenna includes a metal ground layered in order from bottom to top, a first substrate, and a pair of diagonally cut by a rectangular metal radiation sheet. a first metal radiating sheet, a second substrate, and a second metal radiating sheet cut into a pair of diagonal and hexagonal shapes by another rectangular metal radiating sheet, wherein the first metal radiating sheet is at a non-right angle
  • the two sides are respectively opposite to a pair of right angles of the second metal radiating sheet; the size of the first metal radiating sheet is larger than the size of the second metal radiating sheet.
  • a second aspect of the present invention provides a communication antenna system, where the system includes a single feed port, a power splitter connected to the single feed port, an antenna connected to the power splitter, and a 90° phase shifter connecting the antenna and the power splitter;
  • the antenna includes a metal ground layered in order from bottom to top, a first base material, a first metal radiating piece and a second base which are hexagonally shaped and cut into a hexagon by a rectangular metal radiating piece.
  • a second metal radiating piece having a hexagonal shape and being cut by a pair of diagonally shaped metal radiating pieces, wherein the two sides of the first metal radiating piece at a non-right angle are respectively associated with the second metal A pair of right angles of the radiation sheet are opposite; the size of the first metal radiation sheet is larger than the size of the second metal radiation sheet.
  • the antenna is composed of Two rectangular metal radiating sheets (the first metal radiating sheet and the second metal radiating sheet) are respectively cut into two hexagonal right-angled triangles and formed into a hexagon shape, wherein one metal radiating piece realizes dual-band horizontal polarization, and A metal radiating chip realizes dual-band vertical polarization, so that one antenna can be used to realize dual-line polarization dual-band.
  • the signal on one of the metal radiating sheets passes through the 90° phase shifter and then superimposed with the signal on the other metal radiating sheet to form a circular polarization, thereby ensuring that the communication antenna system finally realizes the dual-band circular polarization of the single port.
  • FIG. 1 is a top plan view of a communication antenna according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a hexagonal first metal radiating sheet provided by an embodiment of the present invention, wherein two sides of the hexagonal first metal radiating sheet are respectively superposed with a pair of right angles of the hexagonal second metal radiating sheet.
  • FIG. 3 is a top plan view of a communication antenna according to another embodiment of the present invention.
  • FIG. 4 is a top plan view of a communication antenna according to another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a communication antenna system according to an embodiment of the present invention.
  • Embodiments of the present invention provide a communication antenna, the antenna includes a metal ground layered in a bottom-up manner from a bottom, a first substrate, and a pair of diagonally cut by a rectangular metal radiation piece to form a hexagon. a first metal radiating sheet, a second substrate, and a second metal radiating sheet cut into a pair of diagonally hexagonal shapes by another rectangular metal radiating sheet, wherein the first metal radiating sheet is at a non-right angle
  • the two sides are respectively opposite to a pair of right angles of the second metal radiating sheet; the size of the first metal radiating sheet is larger than the size of the second metal radiating sheet; and the present invention further provides a communication antenna system. The details are described below.
  • the communication antenna exemplified in FIG. 1 mainly includes a metal ground 101 which is laminated in this order from bottom to top, a first base material 102, and a pair of diagonally formed first metal radiating pieces which are hexagonal after being cut by a rectangular metal radiation piece. 103.
  • the second substrate 104, and the second metal radiating sheet 105 having a hexagonal shape after being cut by a pair of diagonal rectangular metal radiating sheets, that is, in the laminated structure, the metal ground 101 is at the lowermost layer.
  • the first substrate 102 is superposed on the metal ground 101
  • the first metal radiation sheet 103 is superposed on the first substrate 102
  • the second substrate 104 is superposed on the first metal radiation sheet 103.
  • the second metal radiation The sheet 105 is superposed on the second substrate 104.
  • the first metal radiating sheet 103 is superposed on the first substrate 102, and the second metal radiating sheet 105 is superposed on the second substrate 104, first The two sides of the metal radiating piece 103 at a non-right angle are respectively opposed to a pair of right angles of the second metal radiating piece 105, and the size of the first metal radiating piece 103 is larger than the size of the second metal radiating piece 105.
  • 2 is a side view in which the two sides of the hexagonal first metal radiating piece 103 are overlapped with a pair of right angles of the hexagonal second metal radiating piece 105, respectively.
  • the hexagonal first metal radiating sheet 103 and the hexagonal second metal radiating sheet 105 illustrated in Fig. 1 are all coaxially fed, wherein the feed point position of the hexagonal first metal radiating sheet 103 is employed. (As shown by the dot in Fig. 2) Moving in the X-axis direction, adjusting the impedance matching, the feeding point position of the hexagonal second metal radiating piece 105 (shown as a triangle in Fig. 2) on the Y-axis Moving in the direction is also used to adjust the impedance matching.
  • the antenna is composed of two Rectangular metal radiating sheet (first metal radiating sheet and second metal radiating sheet) respectively cut off two full waists
  • the corner triangle is formed in a hexagonal shape, one of the metal radiating sheets realizes dual-band horizontal polarization, and the other metal radiating piece realizes dual-band vertical polarization, so that one antenna can be used to realize dual-line polarization dual-band
  • the communication antenna system illustrated in FIG. 1 has a dielectric constant of the first substrate 102 that is less than a dielectric constant of the second substrate 104.
  • the communication antenna system exemplified in FIG. 1 has a first substrate 102, a second substrate 104, a first metal radiating sheet 103, and a second metal radiating sheet 105. There are through holes for laying the first feed line and the second feed line which respectively feed the first metal radiating piece 103 and the second metal radiating piece 105.
  • the first substrate 102, the second substrate 104, the first metal radiating sheet 103, and the second metal radiating sheet 105 have through holes
  • the first The substrate 102 has a first through hole 301 and a second through hole 302.
  • the first metal radiating piece 103 has a third through hole 303 and a fourth through hole 304
  • the second substrate 104 has a fifth through hole 305.
  • the second metal radiating sheet 105 has a sixth through hole 306, wherein the first through hole 301 and the third through hole 303 are
  • the fifth through hole 305 and the sixth through hole 306 are opposite to each other, and the second through hole 302 and the fourth through hole 304 are opposed to each other as shown in Fig. 3.
  • the through holes on the first substrate 102, the second substrate 104, the first metal radiating sheet 103, and the second metal radiating sheet 105 are opposite to each other, and are embodied in these through holes.
  • the geometric centers are overlapped. For example, if the through holes are regularly circular, the centers of the through holes overlap. If the through holes are regular square or regular rectangular, the intersections of the diagonals of the through holes overlap. Since the second through hole 302 and the fourth through hole 304 are opposite to each other, the first feed line can pass through the second through hole 302 and the fourth through hole 304 to reach the first metal radiating piece 103, which is the first metal radiating piece 103. Feeding; likewise, due to the first through hole 301, the third through hole 303,
  • the fifth through hole 305 and the sixth through hole 306 are opposite to each other, and the second feed line passes through the first through hole 301, the third through hole 303, the fifth through hole 305, and the sixth through hole 306 which are opposite to each other and directly reach the first through hole
  • the second metal radiating sheet 105 feeds the second metal radiating sheet 105.
  • the first substrate 102 has a seventh through hole 401
  • the first metal radiating piece 103 has an eighth through hole 402
  • the second substrate The ninth through hole 403, the second metal radiant piece 105 has a tenth through hole 404, wherein the seventh through hole 401 and the eighth through hole 402 face each other, the ninth through hole 403 and the tenth through hole
  • the 404s are opposite to each other, and the side of the first substrate 102 has a groove 405 extending from the side of the first substrate 102 to directly below the ninth through hole 403, as shown in FIG.
  • the through holes on the first substrate 102, the second substrate 104, the first metal radiating sheet 103, and the second metal radiating sheet 105 are opposite to each other, and are embodied in these through holes.
  • the geometric centers are overlapped. For example, if the through holes are regularly circular, the centers of the through holes overlap. If the through holes are regular square or regular rectangular, the intersections of the diagonals of the through holes overlap. Since the seventh through hole 401 and the eighth through hole 402 are opposite to each other, the first feeding line can pass through the seventh through hole 401 and the eighth through hole 402 facing each other directly to the first metal radiating piece 103, which is the first metal radiation.
  • the sheet 103 is fed; similarly, since the ninth through hole 403 and the tenth through hole 404 are opposite to each other, and the side edge of the first substrate 102 extends from the side of the first substrate 102 to the ninth through a slot directly below the hole 403. Therefore, the second feed line can pass through the ninth through hole 403 and the tenth through hole 404 which are opposite to each other and pass through the slot to reach the second metal radiating piece 105, which is the second metal radiation.
  • the chip 105 is fed.
  • the first metal radiating piece 103 and the second metal radiating piece 105 are respectively separated from a pair by a rectangular metal radiating piece. Diagonally cut off two full-width waist triangles and a hexagon.
  • FIG. 5 is a schematic structural diagram of a communication antenna system according to an embodiment of the present invention.
  • the communication antenna system illustrated in FIG. 5 mainly includes a single feed port 501, a power splitter 502 connected to the single feed port 501, an antenna 503 connected to the power splitter 502, and an antenna 503 and a power splitter 502. 90° phase shifter 504, wherein the antenna 503 is a communication antenna as exemplified in FIG. 1 , which comprises a metal ground layered in order from bottom to top, a first substrate, and a pair of diagonal edges cut by a rectangular metal radiation piece.
  • the metal ground is in the lowermost layer
  • the first substrate is superposed on the metal ground
  • the first metal radiating sheet is superposed on the first substrate
  • the second substrate is superposed on the first metal radiating sheet
  • the second metal The radiation sheet is superposed on the second substrate; the two sides of the first metal radiation sheet at a non-right angle are respectively associated with the second metal
  • a pair of right angles of the radiation sheet is opposite, the size of the first metal radiation piece is larger than the size of the second metal radiation piece; for the specific structure of the antenna 503, refer to the communication antenna illustrated in the foregoing FIG. 1 and corresponding description thereof. Narration.
  • the first substrate, the second substrate, the first metal radiating sheet, and the second metal radiating sheet are used for laying the first metal radiating sheet and the second metal, respectively.
  • the first substrate of the antenna 503 has a first through hole and a second through hole
  • the first metal radiation piece has a third pass a hole and a fourth through hole
  • the second substrate has a fifth through hole
  • the second metal radiating plate has a sixth through hole
  • the second feed line passes through the first through hole, the third through hole, and the first through hole a fifth through hole and a sixth through hole
  • the first feed line passes through the second through hole and the fourth through hole which are opposite to each other.
  • the first substrate, the second substrate, the first metal radiating sheet and the second metal radiating sheet, the first feeder and the first feeding line for feeding the first metal radiating sheet and the second metal radiating sheet respectively Another embodiment of the through hole of the two feeders, in the communication antenna system illustrated in FIG.
  • the first substrate of the antenna 503 has a seventh through hole
  • the first metal radiating plate has an eighth through hole
  • the second The substrate has a ninth through hole
  • the second metal radiating plate has a tenth through hole
  • the first feed line passes through the seventh through hole and the eighth through hole which are opposite to each other
  • a side groove of the first substrate has a groove The groove extends from the side of the first substrate to directly below the ninth through hole
  • the second feed line passes through the ninth through hole and the tenth through hole which are opposite to each other and passes through the groove.
  • the first metal radiating sheet and the second metal radiating sheet are respectively cut from a pair of diagonal corners by a rectangular metal radiating sheet.
  • the right triangle is hexagonal.
  • one of the two feeders in the 90° phase shifter is 1/4 wavelength longer than the other, and the power divider 502 can adopt the microstrip line power division method.
  • the 3dB splitter saves space and effectively reduces the weight of the system.
  • the 3dB power divider can remove the isolation resistance therein, that is, the power divider 502 of the present invention can be a 3dB power divider in which there is no isolation resistance.
  • the antenna is composed of two rectangular metals
  • the radiation piece (the first metal radiation piece and the second metal radiation piece) is respectively formed by cutting off two equal-waist right-angled triangles, and one of the metal radiation pieces realizes dual-band horizontal polarization, and the other metal radiation piece Realize dual-band vertical polarization, so that one antenna can be used to realize dual-line polarization dual-band.
  • the signal on one of the metal radiating sheets passes through the 90° phase shifter and then superimposed with the signal on the other metal radiating sheet to form a circular polarization, thereby ensuring that the communication antenna system finally realizes single-port dual-band circular polarization.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供一种通信天线及通信天线系统,旨在解决现有的通信系统中天线部分尺寸过大的技术问题。所述天线包括自下而上依次层叠设置的金属地、第一基材、由一矩形金属辐射片切去一对对角后呈六边形的第一金属辐射片、第二基材、以及由另一矩形金属辐射片切去一对对角后呈六边形的第二金属辐射片,所述第一金属辐射片的非直角所在的两条边分别与所述第二金属辐射片的一对直角正对;所述第一金属辐射片的尺寸大于所述第二金属辐射片的尺寸。本发明一方面减小了系统的尺寸,提高了系统的集成度;另一方面,可以采用一个天线实现双线极化双频段通信。

Description

说明书 发明名称:一种通信天线及通信天线系统 技术领域
[0001] 本发明属于无线通信领域, 尤其涉及一种通信天线及通信天线系统。
背景技术
[0002] 通信天线是卫星通信设备的重要组成部分。 从技术层面看, 通信天线主要有反 射面天线、 介质透镜天线、 阵列天线和相控阵天线等几类。 这几类天线各有自 身的特点和应用范围, 用户可根据通信天线的使用环境、 承载的方式、 地理位 置、 主要业务和预算等情况, 综合来进行选择。
技术问题
[0003] 对于多频段, 例如, 两个频段的通信系统, 现有技术大多采用两个圆极化天线
, 通过控制每个天线结构尺寸及介电常数分别实现不同频段通信。
[0004] 然而, 如果采用两个圆极化天线, 对后端信号的处理就需要两套信号处理部分
, 或者需要一个切换幵关来回切换两个频段, 因此会增大系统的尺寸。
问题的解决方案
技术解决方案
[0005] 本发明的目的在于提供一种通信天线及通信天线系统, 旨在解决现有的通信系 统中天线部分尺寸过大的技术问题。
[0006] 本发明第一方面提供一种通信天线, 所述天线包括自下而上依次层叠设置的金 属地、 第一基材、 由一矩形金属辐射片切去一对对角后呈六边形的第一金属辐 射片、 第二基材、 以及由另一矩形金属辐射片切去一对对角后呈六边形的第二 金属辐射片, 所述第一金属辐射片的非直角所在的两条边分别与所述第二金属 辐射片的一对直角正对; 所述第一金属辐射片的尺寸大于所述第二金属辐射片 的尺寸。
[0007] 本发明第二方面提供一种通信天线系统, 所述系统包括单馈电端口、 与所述单 馈电端口连接的功分器、 与所述功分器连接的天线、 以及与所述天线和所述功 分器连接的 90°移相器; [0008] 所述天线包括自下而上依次层叠设置的金属地、 第一基材、 由一矩形金属辐射 片切去一对对角后呈六边形的第一金属辐射片、 第二基材、 以及由另一矩形金 属辐射片切去一对对角后呈六边形的第二金属辐射片, 所述第一金属辐射片的 非直角所在的两条边分别与所述第二金属辐射片的一对直角正对; 所述第一金 属辐射片的尺寸大于所述第二金属辐射片的尺寸。
发明的有益效果
有益效果
[0009] 从上述本发明实施例可知, 一方面, 通信天线系统的天线只有一个, 因此, 减 小了通信天线系统的尺寸, 提高了通信天线系统的集成度; 另一方面, 该天线 是由两个矩形金属辐射片 (第一金属辐射片和第二金属辐射片) 分别切去两个 全等等腰直角三角形后呈六边形构成, 其中一个金属辐射片实现双频段水平极 化, 另一个金属辐射片实现双频段垂直极化, 从而可以采用一个天线实现双线 极化双频段。 而其中一个金属辐射片上的信号经过 90°移相器后再与另一金属辐 射片上的信号叠加形成圆极化, 从而保证通信天线系统最终实现单端口的双频 段圆极化。
对附图的简要说明
附图说明
[0010] 图 1是本发明实施例提供的通信天线的俯视图;
[0011] 图 2是本发明实施例提供的六边形的第一金属辐射片的非直角所在的两条边分 别与六边形的第二金属辐射片的一对直角正对后叠加在一起的侧视图;
[0012] 图 3是本发明另一实施例提供的通信天线的俯视图;
[0013] 图 4是本发明另一实施例提供的通信天线的俯视图;
[0014] 图 5是本发明实施例提供的通信天线系统的结构示意图。
本发明的实施方式
[0015] 为了使本发明的目的、 技术方案及有益效果更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
[0016] 本发明实施例提供一种通信天线, 所述天线包括自下而上依次层叠设置的金属 地、 第一基材、 由一矩形金属辐射片切去一对对角后呈六边形的第一金属辐射 片、 第二基材、 以及由另一矩形金属辐射片切去一对对角后呈六边形的第二金 属辐射片, 所述第一金属辐射片的非直角所在的两条边分别与所述第二金属辐 射片的一对直角正对; 所述第一金属辐射片的尺寸大于所述第二金属辐射片的 尺寸; 本发明还提供一种通信天线系统。 以下进行详细说明。
[0017] 请参阅附图 1, 是本发明实施例提供的通信天线的俯视图。 为了便于说明, 仅 示出了与本发明实施例相关的部分。 附图 1示例的通信天线主要包括自下而上依 次层叠设置的金属地 101、 第一基材 102、 由一矩形金属辐射片切去一对对角后 呈六边形的第一金属辐射片 103、 第二基材 104、 以及由另一矩形金属辐射片切 去一对对角后呈六边形的第二金属辐射片 105, 即, 在这一层叠结构中, 金属地 101在最下层, 第一基材 102叠加在金属地 101之上, 第一金属辐射片 103叠加在 第一基材 102之上, 第二基材 104叠加在第一金属辐射片 103之上, 第二金属辐射 片 105叠加在第二基材 104之上。
[0018] 附图 1示例的层叠结构的通信天线中, 第一金属辐射片 103叠加在第一基材 102 之上, 第二金属辐射片 105叠加在第二基材 104之上吋, 第一金属辐射片 103的非 直角所在的两条边分别与第二金属辐射片 105的一对直角正对, 而第一金属辐射 片 103的尺寸大于第二金属辐射片 105的尺寸。 如附图 2是六边形的第一金属辐射 片 103的非直角所在的两条边分别与六边形的第二金属辐射片 105的一对直角正 对后叠加在一起的侧视图。 附图 1示例的六边形的第一金属辐射片 103和六边形 的第二金属辐射片 105均采用同轴馈电, 其中, 六边形的第一金属辐射片 103的 馈电点位置 (如附图 2的圆点所示) 在 X轴方向上移动, 调节阻抗匹配, 六边形 的第二金属辐射片 105的馈电点位置 (如附图 2的三角形所示) 在 Y轴方向上移动 , 也用于调节阻抗匹配。
[0019] 从上述附图 1示例的通信天线可知, 一方面, 通信天线只有一个, 因此, 减小 了通信天线系统的尺寸, 提高了系统的集成度; 另一方面, 该天线是由两个矩 形金属辐射片 (第一金属辐射片和第二金属辐射片) 分别切去两个全等等腰直 角三角形后呈六边形构成, 其中一个金属辐射片实现双频段水平极化, 另一个 金属辐射片实现双频段垂直极化, 从而可以采用一个天线实现双线极化双频段
[0020] 作为本发明的一个实施例中, 附图 1示例的通信天线系统, 其第一基材 102的介 电常数小于第二基材 104的介电常数。
[0021] 如前所述, 第一金属辐射片 103和六边形的第二金属辐射片 105均采用同轴馈电 。 为了实现馈电, 作为本发明的一个实施例, 附图 1示例的通信天线系统, 其第 一基材 102、 第二基材 104、 第一金属辐射片 103和第二金属辐射片 105上幵有用 于铺设分别为第一金属辐射片 103和第二金属辐射片 105馈电的第一馈线和第二 馈线的通孔。
[0022] 在上述第一基材 102、 第二基材 104、 第一金属辐射片 103和第二金属辐射片 105 上幵有通孔的实施例中, 作为本发明的一个实施例, 第一基材 102幵有第一通孔 301和第二通孔 302, 第一金属辐射片 103幵有第三通孔 303和第四通孔 304, 第二 基材 104幵有第五通孔 305, 第二金属辐射片 105幵有第六通孔 306, 其中, 第一通孔 301、 第三通孔 303、
第五通孔 305和第六通孔 306彼此正对, 第二通孔 302和第四通孔 304彼此正对, 如附图 3所示。
[0023] 附图 3示例的通信天线中, 第一基材 102、 第二基材 104、 第一金属辐射片 103和 第二金属辐射片 105上通孔的彼此正对, 体现在这些通孔的几何中心是重叠的, 例如, 若通孔是规则圆形的, 则这些通孔的圆心重叠, 若通孔是规则方形或规 则矩形的, 则这些通孔的对角线的交点重叠。 由于第二通孔 302和第四通孔 304 彼此正对, 因此, 第一馈线可以穿过第二通孔 302和第四通孔 304直达第一金属 辐射片 103, 为第一金属辐射片 103馈电; 同样地, 由于第一通孔 301、 第三通孔 303、
第五通孔 305和第六通孔 306彼此正对, 第二馈线穿过彼此正对的第一通孔 301、 第三通孔 303、 第五通孔 305和第六通孔 306而直达第二金属辐射片 105, 为第二 金属辐射片 105馈电。
[0024] 在上述第一基材 102、 第二基材 104、 第一金属辐射片 103和第二金属辐射片 105 上幵有通孔的实施例中, 作为本发明的另一实施例, 第一基材 102幵有第七通孔 401, 第一金属辐射片 103幵有第八通孔 402, 第二基材 104幵有第九通孔 403, 第 二金属辐射片 105幵有第十通孔 404, 其中, 第七通孔 401和第八通孔 402彼此正 对, 第九通孔 403和第十通孔 404彼此正对, 第一基材 102的侧边幵有一槽 405, 槽 405从第一基材 102的侧边一直延伸至第九通孔 403正下方, 如附图 4所示。
[0025] 附图 4示例的通信天线中, 第一基材 102、 第二基材 104、 第一金属辐射片 103和 第二金属辐射片 105上通孔的彼此正对, 体现在这些通孔的几何中心是重叠的, 例如, 若通孔是规则圆形的, 则这些通孔的圆心重叠, 若通孔是规则方形或规 则矩形的, 则这些通孔的对角线的交点重叠。 由于第七通孔 401和第八通孔 402 彼此正对, 第一馈线可以穿过彼此正对的第七通孔 401和第八通孔 402直达第一 金属辐射片 103, 为第一金属辐射片 103馈电; 类似地, 由于第九通孔 403和第十 通孔 404彼此正对, 并且第一基材 102的侧边幵有从第一基材 102的侧边一直延伸 至第九通孔 403正下方的槽, 因此, 第二馈线可以穿过彼此正对的第九通孔 403 和第十通孔 404并从槽中穿出而直达第二金属辐射片 105, 为第二金属辐射片 105 馈电。
[0026] 为了增强极化效果, 上述附图 1、 附图 3或附图 4示例的通信天线中, 第一金属 辐射片 103和第二金属辐射片 105分别由一矩形金属辐射片从一对对角切去两个 全等等腰直角三角形后呈六边形。
[0027] 请参阅附图 5, 是本发明实施例提供的通信天线系统的结构示意图。 为了便于 说明, 仅示出了与本发明实施例相关的部分。 附图 5示例的通信天线系统主要包 括单馈电端口 501、 与单馈电端口 501连接的功分器 502、 与功分器 502连接的天 线 503、 以及与天线 503和功分器 502连接的 90°移相器 504, 其中, 天线 503是附图 1示例的通信天线, 其包括自下而上依次层叠设置的金属地、 第一基材、 由一矩 形金属辐射片切去一对对角后呈六边形的第一金属辐射片、 第二基材、 以及由 另一矩形金属辐射片切去一对对角后呈六边形的第二金属辐射片, 即, 在这一 层叠结构中, 金属地在最下层, 第一基材叠加在金属地之上, 第一金属辐射片 叠加在第一基材之上, 第二基材叠加在第一金属辐射片之上, 第二金属辐射片 叠加在第二基材之上; 第一金属辐射片的非直角所在的两条边分别与第二金属 辐射片的一对直角正对, 第一金属辐射片的尺寸大于第二金属辐射片的尺寸; 天线 503的具体结构可参阅前述附图 1示例的通信天线及其相应的说明, 此处不 做赘述。
[0028] 从上述附图 5示例的通信天线系统可知, 由于组成天线的两个金属辐射片中, 其中一个金属辐射片上的信号经过 90°移相器后再与另一金属辐射片上的信号叠 加形成圆极化, 从而能够保证通信天线系统最终实现单端口双频段圆极化。
[0029] 在附图 5示例的通信天线系统中, 第一基材、 第二基材、 第一金属辐射片和第 二金属辐射片上幵有用于铺设分别为第一金属辐射片和第二金属辐射片馈电的 第一馈线和第二馈线的通孔。
[0030] 作为第一基材、 第二基材、 第一金属辐射片和第二金属辐射片上幵有用于铺设 分别为第一金属辐射片和第二金属辐射片馈电的第一馈线和第二馈线的通孔的 一个实施例, 附图 5示例的通信天线系统中, 其天线 503的第一基材幵有第一通 孔和第二通孔, 第一金属辐射片幵有第三通孔和第四通孔, 第二基材幵有第五 通孔, 第二金属辐射片幵有第六通孔, 第二馈线穿过彼此正对的第一通孔、 第 三通孔、 第五通孔和第六通孔, 第一馈线穿过彼此正对的第二通孔和第四通孔 , 这一实施方式可以参阅前述附图 3示例的通信天线及其相应的说明, 此处不做 赘述。
[0031] 作为第一基材、 第二基材、 第一金属辐射片和第二金属辐射片上幵有用于铺设 分别为第一金属辐射片和第二金属辐射片馈电的第一馈线和第二馈线的通孔的 另一实施例, 附图 5示例的通信天线系统中, 其天线 503的第一基材幵有第七通 孔, 第一金属辐射片幵有第八通孔, 第二基材幵有第九通孔, 第二金属辐射片 幵有第十通孔, 第一馈线穿过彼此正对的第七通孔和第八通孔, 第一基材的侧 边幵有一槽, 该槽从第一基材的侧边一直延伸至第九通孔正下方, 第二馈线穿 过彼此正对的第九通孔和第十通孔并从该槽中穿出, 这一实施方式可以参阅前 述附图 4示例的通信天线及其相应的说明, 此处不做赘述。
[0032] 在上述任一示例的通信天线系统中, 为了增强极化效果, 第一金属辐射片和第 二金属辐射片分别由一矩形金属辐射片从一对对角切去两个全等等腰直角三角 形后呈六边形。 [0033] 在上述任一示例的通信天线系统中, 90°移相器中的两根馈线其中一根比另一 根长 1/4波长, 而功分器 502可采用微带线功分方式的 3dB功分器, 以节省空间和 有效减轻系统的重量。 进一步地, 3dB功分器可以去掉其中的隔离电阻, 即, 本 发明的功分器 502可以是其中无隔离电阻的 3dB功分器。
[0034] 综上, 本发明中, 通信天线系统的天线只有一个, 因此, 减小了通信天线系统 的尺寸, 提高了通信天线系统的集成度; 另一方面, 该天线是由两个矩形金属 辐射片 (第一金属辐射片和第二金属辐射片) 分别切去两个全等等腰直角三角 形后呈六边形构成, 其中一个金属辐射片实现双频段水平极化, 另一个金属辐 射片实现双频段垂直极化, 从而可以采用一个天线实现双线极化双频段。 而其 中一个金属辐射片上的信号经过 90°移相器后再与另一金属辐射片上的信号叠加 形成圆极化, 从而保证通信天线系统最终实现单端口的双频段圆极化。
[0035] 以上对本发明实施例所提供的通信天线及通信天线系统进行了详细介绍, 本文 中应用了具体个例对本发明的原理及实施方式进行了阐述, 以上实施例的说明 只是用于帮助理解本发明的方法及其核心思想; 同吋, 对于本领域的一般技术 人员, 依据本发明的思想, 在具体实施方式及应用范围上均会有改变之处, 综 上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权利要求书
[权利要求 1] 一种通信天线, 其特征在于, 所述天线包括自下而上依次层叠设置的 金属地、 第一基材、 由一矩形金属辐射片切去一对对角后呈六边形的 第一金属辐射片、 第二基材、 以及由另一矩形金属辐射片切去一对对 角后呈六边形的第二金属辐射片, 所述第一金属辐射片的非直角所在 的两条边分别与所述第二金属辐射片的一对直角正对; 所述第一金属 辐射片的尺寸大于所述第二金属辐射片的尺寸。
[权利要求 2] 如权利要求 1所述的通信天线, 其特征在于, 所述第一基材的介电常 数小于所述第二基材的介电常数。
[权利要求 3] 如权利要求 1所述的通信天线, 其特征在于, 所述第一基材、 第二基 材、 第一金属辐射片和第二金属辐射片上幵有用于铺设分别为所述第 一金属辐射片和第二金属辐射片馈电的第一馈线和第二馈线的通孔。
[权利要求 4] 如权利要求 3所述的通信天线, 其特征在于, 所述第一基材幵有第一 通孔和第二通孔, 所述第一金属辐射片幵有第三通孔和第四通孔, 所 述第二基材幵有第五通孔, 所述第二金属辐射片幵有第六通孔, 所述 第二馈线穿过彼此正对的第一通孔、 第三通孔、 第五通孔和第六通 孔, 所述第一馈线穿过彼此正对的第二通孔和第四通孔。
[权利要求 5] 如权利要求 3所述的通信天线, 其特征在于, 所述第一基材幵有第七 通孔, 所述第一金属辐射片幵有第八通孔, 所述第二基材幵有第九通 孔, 所述第二金属辐射片幵有第十通孔, 所述第一馈线穿过彼此正对 的第七通孔和第八通孔, 所述第一基材的侧边幵有一槽, 所述槽从所 述第一基材的侧边一直延伸至所述第九通孔正下方, 所述第二馈线穿 过彼此正对的第九通孔和第十通孔并从所述槽中穿出。
[权利要求 6] 如权利要求 1至 5任意一项所述的通信天线, 其特征在于, 所述第一金 属辐射片和第二金属辐射片分别由一矩形金属辐射片从一对对角切去 两个全等等腰直角三角形后呈六边形。
[权利要求 7] —种通信天线系统, 其特征在于, 所述系统包括单馈电端口、 与所述 单馈电端口连接的功分器、 与所述功分器连接的天线、 以及与所述天 线和所述功分器连接的 90°移相器;
所述天线包括自下而上依次层叠设置的金属地、 第一基材、 由一矩 形金属辐射片切去一对对角后呈六边形的第一金属辐射片、 第二基材 、 以及由另一矩形金属辐射片切去一对对角后呈六边形的第二金属辐 射片, 所述第一金属辐射片的非直角所在的两条边分别与所述第二金 属辐射片的一对直角正对; 所述第一金属辐射片的尺寸大于所述第二 金属辐射片的尺寸。
如权利要求 7所述的通信天线系统, 其特征在于, 所述第一基材、 第 二基材、 第一金属辐射片和第二金属辐射片上幵有用于铺设分别为所 述第一金属辐射片和第二金属辐射片馈电的第一馈线和第二馈线的通 孔。
如权利要求 8所述的通信天线系统, 其特征在于, 所述第一基材幵有 第一通孔和第二通孔, 所述第一金属辐射片幵有第三通孔和第四通孔 , 所述第二基材幵有第五通孔, 所述第二金属辐射片幵有第六通孔, 所述第二馈线穿过彼此正对的第一通孔、 第三通孔、 第五通孔和第 六通孔, 所述第一馈线穿过彼此正对的第二通孔和第四通孔。
如权利要求 8所述的通信天线系统, 其特征在于, 所述第一基材幵有 第七通孔, 所述第一金属辐射片幵有第八通孔, 所述第二基材幵有第 九通孔, 所述第二金属辐射片幵有第十通孔, 所述第一馈线穿过彼此 正对的第七通孔和第八通孔, 所述第一基材的侧边幵有一槽, 所述槽 从所述第一基材的侧边一直延伸至所述第九通孔正下方, 所述第二馈 线穿过彼此正对的第九通孔和第十通孔并从所述槽中穿出。
如权利要求 7至 10任一项所述的通信天线系统, 其特征在于, 所述第 一金属辐射片和第二金属辐射片分别由一矩形金属辐射片从一对对角 切去两个全等等腰直角三角形后呈六边形。
如权利要求 7至 10任一项所述的通信天线系统, 其特征在于, 所述 90° 移相器中的两根馈线其中一根比另一根长 1/4波长。
PCT/CN2016/072511 2015-01-30 2016-01-28 一种通信天线及通信天线系统 WO2016119715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510050765.0A CN105990655A (zh) 2015-01-30 2015-01-30 一种通信天线及通信天线系统
CN201510050765.0 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119715A1 true WO2016119715A1 (zh) 2016-08-04

Family

ID=56542442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072511 WO2016119715A1 (zh) 2015-01-30 2016-01-28 一种通信天线及通信天线系统

Country Status (2)

Country Link
CN (1) CN105990655A (zh)
WO (1) WO2016119715A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117335169B (zh) * 2023-09-07 2024-04-19 苏州欣天盛科技有限公司 用于5g毫米波系统的双频双圆极化透射阵天线及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531138A (zh) * 2003-01-29 2004-09-22 整合技术有限公司 具有内建接地面的多段平面天线
US20060097924A1 (en) * 2004-11-10 2006-05-11 Korkut Yegin Integrated GPS and SDARS antenna
CN101529651A (zh) * 2006-09-15 2009-09-09 莱尔德技术股份有限公司 层叠贴片天线
CN102332637A (zh) * 2011-08-31 2012-01-25 华南理工大学 一种双极化多系统兼容型天线
CN202178385U (zh) * 2011-07-15 2012-03-28 华南理工大学 一种可工作于gps和td-scdma的双频双极化天线
CN204407504U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线系统和通信设备
CN204407501U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线系统及通讯设备
CN204441465U (zh) * 2015-01-30 2015-07-01 深圳光启高等理工研究院 一种通信天线及通信天线系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740870B (zh) * 2009-12-28 2013-04-24 中国电子科技集团公司第二十六研究所 小型化单馈电点双频双极化微带天线
CN101859927B (zh) * 2010-04-14 2012-12-05 电子科技大学 一种ltcc叠层双馈圆极化微带贴片天线
CN103000991A (zh) * 2011-09-09 2013-03-27 中国航天科工集团第三研究院第八三五七研究所 小型化多单元抗干扰北斗天线阵列
CN103022731A (zh) * 2012-11-28 2013-04-03 北京中欧美经济技术发展中心 多频圆极化层叠式微带天线
CN203607540U (zh) * 2013-12-12 2014-05-21 深圳光启创新技术有限公司 圆极化天线、天线系统和通讯设备
CN203883115U (zh) * 2013-12-12 2014-10-15 深圳光启创新技术有限公司 圆极化天线、圆极化天线系统和通讯设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531138A (zh) * 2003-01-29 2004-09-22 整合技术有限公司 具有内建接地面的多段平面天线
US20060097924A1 (en) * 2004-11-10 2006-05-11 Korkut Yegin Integrated GPS and SDARS antenna
CN101529651A (zh) * 2006-09-15 2009-09-09 莱尔德技术股份有限公司 层叠贴片天线
CN202178385U (zh) * 2011-07-15 2012-03-28 华南理工大学 一种可工作于gps和td-scdma的双频双极化天线
CN102332637A (zh) * 2011-08-31 2012-01-25 华南理工大学 一种双极化多系统兼容型天线
CN204407504U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线系统和通信设备
CN204407501U (zh) * 2015-01-30 2015-06-17 深圳光启高等理工研究院 通信天线、天线系统及通讯设备
CN204441465U (zh) * 2015-01-30 2015-07-01 深圳光启高等理工研究院 一种通信天线及通信天线系统

Also Published As

Publication number Publication date
CN105990655A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
US10511101B2 (en) Wireless communication module
WO2019114740A1 (zh) 一种天线单元和天线阵列
US6593891B2 (en) Antenna apparatus having cross-shaped slot
US20160248166A1 (en) Multi-band, multi-polarized wireless communication antenna
US11695223B2 (en) Antenna array
CN104733844A (zh) 平面宽带双极化基站天线
CN204271252U (zh) 用于北斗一代和北斗二代b3频段的三频卫星导航天线
US11038286B2 (en) Antenna array
CN104157968A (zh) 一种新概念宽带圆极化天线
CN103746192B (zh) 北斗一代/北斗二代b1/gps多系统兼容导航天线
CN106384880B (zh) 北斗gps邻近频段双定位体系月牙缝隙阵列天线
CN105990670B (zh) 圆极化天线及通信设备
TW201411938A (zh) 雙頻雙極天線
CN201199545Y (zh) 一种宽频双极化天线阵子
EP3813197A1 (en) Antenna system
CN206602185U (zh) 多频双极化全向天线
CN103219588B (zh) 一种高隔离度双频导航天线
WO2016119715A1 (zh) 一种通信天线及通信天线系统
CN104993245A (zh) S波段动中通双频圆极化微带天线及其阵列
JP2017092588A (ja) 2周波共用円偏波平面アンテナおよびその軸比調整方法
CN103682646B (zh) 一种采用多层结构的双频微带天线
CN203644949U (zh) 一种应用于gps和wlan的双频微带天线
CN103825096A (zh) 一种具有高隔离度的一体化天线
JP7292800B2 (ja) 送受共用平面アレーアンテナ
CN204441465U (zh) 一种通信天线及通信天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16742777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16742777

Country of ref document: EP

Kind code of ref document: A1