WO2016119526A1 - 小区测量方法及终端 - Google Patents

小区测量方法及终端 Download PDF

Info

Publication number
WO2016119526A1
WO2016119526A1 PCT/CN2015/096810 CN2015096810W WO2016119526A1 WO 2016119526 A1 WO2016119526 A1 WO 2016119526A1 CN 2015096810 W CN2015096810 W CN 2015096810W WO 2016119526 A1 WO2016119526 A1 WO 2016119526A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
received power
precoding matrix
terminal
equivalent received
Prior art date
Application number
PCT/CN2015/096810
Other languages
English (en)
French (fr)
Inventor
高秋彬
陈润华
陈文洪
李辉
塔玛拉卡拉盖施
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP15879724.1A priority Critical patent/EP3253125B1/en
Priority to US15/539,981 priority patent/US10516494B2/en
Publication of WO2016119526A1 publication Critical patent/WO2016119526A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a cell measurement method and terminal.
  • the cell search process is as shown in FIG. 1:
  • the terminal first performs a Primary Synchronization Signal (PSS) search (see step 101), and obtains a 5 ms timing according to the PSS signal.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • frame synchronization is implemented according to the SSS signal
  • CRS Cell-Specific Reference Signal
  • the signal is a common reference signal, which may be used for channel estimation and demodulation on the one hand, and may be used on the other hand. Measured in the cell.
  • one implementation method is to perform the cell search shown in FIG. 1 in multiple candidate target cells, and measure the reference signal received power of the common reference signal CRS of each candidate target cell (RSRP, Reference Signal). Received Power), and select the cell with the best RSRP to complete the access.
  • RSRP Reference Signal
  • the base station antenna arrays are generally horizontally arranged, and the base station transmit beam can only be adjusted in the horizontal direction and in the vertical direction as a fixed downtilt.
  • the industry has emerged an active antenna that can independently control each array.
  • the antenna array is enhanced from the current two-dimensional horizontal arrangement to three-dimensional horizontal and vertical alignment. This arrangement of the antenna arrays makes it possible to dynamically adjust the beam in the vertical direction.
  • MIMO 3D multi-input multi-output
  • An object of the embodiments of the present disclosure is to provide a cell measurement method and a terminal, which are used to implement cell measurement.
  • An embodiment of the present disclosure provides a cell measurement method, including:
  • Another embodiment of the present disclosure provides a terminal, including:
  • a measurement module configured to measure a pilot of the measured cell, to obtain a channel estimation of the N pilot transmission ports of the measured cell, where N ⁇ 1;
  • a first determining module configured to determine, according to each precoding matrix in the precoding matrix set and a channel estimation of N pilot transmitting ports of the measured cell, an equivalent receiving corresponding to each precoding matrix Power;
  • a second determining module configured to determine an equivalent received power of the measured cell according to an equivalent received power corresponding to each precoding matrix.
  • a terminal including: a processor, a memory, and a transceiver, where:
  • a processor for reading a program in the memory performing the following process:
  • each precoding matrix in the precoding matrix set and N guides of the measured cell Channel estimation of the frequency transmission port, determining an equivalent received power corresponding to each of the precoding matrices;
  • a transceiver for receiving and transmitting data.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • the terminal determines the equivalent received power corresponding to each precoding matrix according to each precoding matrix in the precoding matrix set and the channel estimation of the pilot transmitting port of the measured cell, and Determining an equivalent received power of the measured cell according to an equivalent received power corresponding to each precoding matrix, thereby determining an equivalent received power of the measured cell based on the precoding matrix, because the setting of the precoding matrix set has certain flexibility In this way, the foregoing embodiments of the present disclosure can make full use of the characteristics of the precoding matrix, thereby obtaining a more accurate cell equivalent receiving power, and then performing cell selection or reselection based on the equivalent receiving power of the cell. Choose a reasonable cell for access.
  • FIG. 1 is a schematic diagram of a cell search process in the related art
  • 2a to 2d are schematic diagrams showing the structure of a two-dimensional antenna in 3D MIMO
  • FIG. 3 is a schematic diagram of a cell measurement process according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flow chart of step 302 in FIG. 3;
  • 5a to 5d are schematic diagrams of CSI-RS transmission according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal performs channel estimation according to the pilot of each measured cell, and performs equivalent receiving power for each measured cell according to the channel estimation result and each precoding matrix in the precoding matrix set.
  • the calculation is performed to obtain the equivalent received power of each measured cell as a basis for selecting a target handover cell or a camping cell.
  • FIG. 3 is a schematic diagram of a cell measurement process according to an embodiment of the present disclosure. The flow may be performed by the terminal or by a cell selection device internal to the terminal.
  • the process can include:
  • Step 301 Perform measurement on pilots of the measured cell, thereby obtaining channel estimates of N pilot transmission ports of the measured cell, where N ⁇ 1.
  • the measured cell of a terminal may include a serving cell of the terminal and a target handover cell, where the target handover cell refers to a cell to which the terminal may handover, and may be a cell adjacent to the serving cell of the terminal.
  • the pilot may be a channel state information-reference signal (CSI-RS, Channel State Information-Reference Signal), or may be other types of pilot signals or reference signals.
  • the N pilot transmission ports are configured by the base station, and the base station can configure one terminal to receive the pilots sent by all the pilot transmission ports, and can also configure one terminal to receive only the pilots sent by the partial pilot transmission ports. If the base station configuration terminal receives the pilots sent by all the pilot transmission ports, the terminal performs cell measurement based on the pilots transmitted by all the pilot transmission ports, thereby obtaining channel estimation values of the ports; if the base station configuration terminal receives part of the pilot transmission ports The transmitted pilots perform cell measurement based on the pilots transmitted by the partial pilot transmission ports, thereby obtaining channel estimation values of the ports.
  • the embodiment of the present disclosure does not limit the channel estimation algorithm.
  • Step 302 Determine, according to each precoding matrix in the precoding matrix set and the channel estimation of the N pilot transmission ports of the measured cell, an equivalent received power corresponding to each precoding matrix.
  • step 302 can be as shown in FIG. 4, including the following steps:
  • Step 3021 Perform channel estimation on each resource element (RE, Resource Element);
  • Step 3022 Determine, for each of the precoding matrices, a merge channel on each resource unit according to a channel estimate on each resource unit.
  • Step 3023 Determine, according to the merge channel on each resource unit, an equivalent received power on each resource unit corresponding to each precoding matrix
  • Step 3024 Determine, according to the equivalent received power on each resource unit corresponding to each precoding matrix, an equivalent received power on all resource units corresponding to each precoding matrix, thereby obtaining each The equivalent received power of each of the precoding matrices.
  • the resource unit described in the foregoing process may refer to a resource unit in which the terminal receives the pilot.
  • step 3022 the merge channel on each resource unit can be determined according to the following formula (1):
  • V n represents an nth precoding matrix in the precoding matrix set
  • H k represents a channel estimated by the terminal on the kth resource unit, and H k is a N r row N column matrix, N r The number of receiving antennas for the terminal
  • G k,n represents the combined channel on the kth resource unit corresponding to V n .
  • each of the corresponding precoding matrices may be determined according to the following formula (2) Equivalent received power on the resource unit:
  • P k,n represents the equivalent received power of the terminal on the kth resource unit for the nth precoding matrix
  • is the Frobenius norm of the matrix A.
  • an equivalent received power corresponding to each of the precoding matrices may be determined according to the following formula (3):
  • P n represents an equivalent received power corresponding to the nth precoding matrix
  • Step 303 Determine an equivalent received power of the measured cell according to an equivalent received power corresponding to each precoding matrix.
  • the largest equivalent received power is determined as the equivalent received power of the measured cell according to the equivalent received power corresponding to each precoding matrix.
  • the set of resource elements consists of all or part of the REs occupied by CSI-RS signals within a certain bandwidth (eg, 100 ms) and within a certain bandwidth range (eg, 20 MHz bandwidth).
  • the equivalent received power is the average over a period of time and a period of bandwidth.
  • the terminal takes the maximum value of the equivalent received power calculated for all precoding matrices, and obtains the RSRP estimation value of the cell:
  • a is the receiver link gain adjustment value, including the link gain from the terminal antenna to the baseband processing unit.
  • max n P n represents the maximum value from a set of P n
  • P n are set elements for the precoding matrix is calculated for all measured cells obtained a respective corresponding RSRP.
  • a max n P n represents multiplying max n P n by a.
  • the step of acquiring a precoding matrix set may also be included.
  • the manner of obtaining the precoding matrix set includes but is not limited to the following:
  • Mode 1 The terminal receives the dedicated signaling sent by the measured cell, and acquires a precoding matrix set carried in the dedicated signaling;
  • the measured cell may be a serving cell of the terminal and/or a target switching cell of the terminal;
  • Mode 2 The terminal receives the broadcast message sent by the measured cell, and acquires a precoding matrix set carried in the broadcast message;
  • the measured cell may be a serving cell of the terminal and/or a target switching cell of the terminal;
  • a precoding matrix set may be predefined, such as a precoding matrix set by a protocol convention.
  • the terminal acquires a predefined set of precoding matrices.
  • the process of acquiring the pilot configuration information of the measured cell may be further included.
  • the pilot configuration information may include at least one or a combination of: a pilot transmission period, a subframe offset, and a terminal for transmitting a pilot.
  • the manner in which the terminal acquires the pilot configuration information of the measured cell may include, but is not limited to, the following:
  • Method 1 The terminal receives the broadcast message sent by the measured cell, and acquires pilot configuration information of the measured cell carried in the broadcast message.
  • Mode 2 The terminal receives the dedicated signaling sent by the measured cell, and acquires pilot configuration information of the measured cell carried in the dedicated signaling;
  • Manner 3 The terminal determines pilot configuration information of the measured cell by using an agreed manner.
  • the terminal may determine the target switching cell or the camping cell according to the equivalent receiving power of each measured cell determined by the terminal, The determined equivalent received power of each measured cell may also be sent to the base station of the serving cell or the serving cell of the terminal, and the base station of the serving cell or the serving cell determines the measured cell according to the terminal. The equivalent received power determines the target handover cell or camped cell of the terminal.
  • the terminal may send the RSRP value of all possible target cells (including the target handover cell and the current serving cell) to the base station of the serving cell, and the base station of the serving cell determines the cell that the terminal needs to access. If the terminal is in the connected state, the serving cell base station of the terminal may send a cell handover command to the terminal, where the cell handover command carries the ID of the cell selected by the terminal; or if the terminal is in the connected state, the terminal service The cell base station sends the ID of the selected cell to the terminal, and the terminal initiates handover or camping to the cell.
  • the terminal may also select a cell to access according to the RSRP value, for example, access the cell with the highest RSRP value.
  • the terminal obtains the identifier of the selected cell by using the identifier of the target cell (including the target handover cell and the current serving cell) carried in the CSI-RS configuration information, and the terminal may send the identifier of the selected cell to the base station of the serving cell, or the terminal.
  • the user chooses to camp in the selected cell, or the terminal initiates an uplink random access procedure in the selected cell to access the cell.
  • the terminal determines the equivalent received power corresponding to each precoding matrix according to each precoding matrix in the precoding matrix set and the channel estimation of the pilot transmitting port of the measured cell, and Determining an equivalent received power of the measured cell according to an equivalent received power corresponding to each precoding matrix, thereby determining an equivalent received power of the measured cell based on the precoding matrix, because the setting of the precoding matrix set has certain flexibility
  • the above embodiments can make full use of the characteristics of the precoding matrix to obtain a more accurate cell equivalent receiving power, and then select a reasonable cell for access when performing cell selection or reselection based on the equivalent receiving power of the cell. .
  • the element in the precoding matrix set may be a Discrete Fourier Transform (DFT) vector.
  • DFT Discrete Fourier Transform
  • the base station can also form a beam in the vertical direction, pointing to users of different heights and vertical angles.
  • the pilot signal generally forms a directional narrow beam or a wide beam in the vertical direction. In this way, if the cell is measured based on the pilot and the cell access is selected according to the cell measurement result, the situation that the cell accessed by the terminal is inappropriate may occur. This is because the pilot measured by the terminal is directed to a fixed direction, but the signal sent to the terminal can be directed to the terminal, and there is no match between the two.
  • each precoding matrix in the precoding matrix set corresponds to a spatial direction of a vertical dimension, and the spatial direction coverage of the vertical dimension corresponding to all the precoding matrices in the precoding matrix set.
  • the direction of the vertical dimension of the user in the measured cell, so that the equivalent received power of the measured cell according to the above method is more matched with the vertical dimension of the measured cell and the cell selected by the terminal is more suitable for the cell.
  • the terminal resides.
  • the embodiments of the present disclosure provide several pilot transmission modes.
  • the CSI-RS is taken as an example to describe the manner in which a base station transmits pilots.
  • Different port combinations of one CSI-RS resource may correspond to different cells.
  • the configured CSI-RS resource has 8 ports, where port 0 to port 3 correspond to cell 1, and port 4 to port 7 correspond to cell 2.
  • a plurality of ports of the CSI-RS are mapped to one column antenna of the two-dimensional antenna array, and the plurality of ports may be all ports or partial ports of the CSI-RS.
  • Fig. 5a exemplarily shows a port configuration of a CSI-RS in the case where the antenna array is 4 rows and 4 columns of antennas, for a total of 16 antenna elements.
  • the 4-port CSI-RS (s(0), s(1), s(2), s(3)) as shown in the figure is mapped onto the 1 column antenna of the antenna array, as in the 1st column.
  • Each CSI-RS port is mapped to one antenna unit.
  • CSI-RS with wide beam The form is emitted in the vertical direction and the width of the beam depends on the beamwidth of the individual antenna elements.
  • a plurality of ports of the CSI-RS are mapped to all antenna elements of the two-dimensional antenna array, which may be all ports or partial ports of the CSI-RS.
  • Fig. 5b exemplarily shows the port configuration of the CSI-RS in the case where the antenna array is 4 rows and 4 columns of antennas, for a total of 16 antenna elements.
  • 4-port CSI-RS (s(0), s(1), s(2), s(3)) as shown in the figure is mapped to all antenna elements, and each CSI-RS port is mapped to 1
  • the row antenna unit, W i represents a beamforming vector corresponding to the ith column antenna.
  • the pilot signals of each CSI-RS port are beamformed and weighted from one line of antennas.
  • the weight of the beamforming is such that the beam it forms can cover the entire cell, for example forming a broadcast beam.
  • the CSI-RS is emitted in the vertical direction in the form of a wide beam, the width of which depends on the beamwidth of a single antenna element.
  • a plurality of ports of the CSI-RS are mapped to all antenna elements of the two-dimensional antenna array, which may be all ports or partial ports of the CSI-RS.
  • Fig. 5c exemplarily shows the port configuration of the CSI-RS in the case where the antenna array is 4 rows and 4 columns of antennas, for a total of 16 antenna elements.
  • 4-port CSI-RS (s(0), s(1), s(2), s(3)) as shown in the figure is mapped to all antenna elements, and each CSI-RS port is mapped to 1
  • the column antenna unit, W i represents a beamforming vector corresponding to the ith row antenna.
  • the pilot signals of each CSI-RS port are beamformed and weighted from a list of antennas.
  • the weight of the beamforming is such that the beam it forms can cover the entire cell, for example forming a broadcast beam.
  • the CSI-RS is emitted in the vertical direction in the form of a wide beam, the width of which depends on the beamwidth of a single antenna element.
  • the plurality of ports of the CSI-RS are mapped to one line antenna of the two-dimensional antenna array, and the plurality of ports may be all ports or partial ports of the CSI-RS.
  • Fig. 5d exemplarily shows the port configuration of the CSI-RS in the case where the antenna array is 4 rows and 4 columns of antennas, for a total of 16 antenna elements.
  • the 4-port CSI-RS (s(0), s(1), s(2), s(3)) shown in the figure is mapped onto one of the antennas, as shown in line 1.
  • Each CSI-RS port is mapped to one antenna unit.
  • the CSI-RS is emitted in the horizontal direction in the form of a wide beam, the width of which depends on the beamwidth of a single antenna element.
  • an embodiment of the present disclosure further provides a terminal.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure, where the terminal can perform the cell measurement process described in the foregoing embodiment.
  • the terminal may include: a measurement module 601, a first determination module 602, and a second determination module 603, wherein
  • the measurement module 601 is configured to measure pilots of the measured cell, thereby obtaining channel estimates of N pilot transmission ports of the measured cell, where N ⁇ 1;
  • the first determining module 602 is configured to determine, according to each precoding matrix in the precoding matrix set and the channel estimation of the N pilot transmitting ports of the measured cell, an equivalent receiving corresponding to each precoding matrix. Power;
  • the second determining module 603 is configured to determine an equivalent received power of the measured cell according to an equivalent received power corresponding to each of the precoding matrices.
  • the measurement module 601 can obtain a precoding matrix set by:
  • the first determining module 602 may determine, by using the following steps, an equivalent received power corresponding to each of the precoding matrices:
  • Channel estimation is performed on each resource unit separately;
  • the first determining module 602 can determine the combination on each resource unit according to the foregoing formula (1). And a channel, the equivalent received power corresponding to each resource unit of each precoding matrix may be determined according to the foregoing formula (2), and the equivalent corresponding to each of the precoding matrices may be determined according to the foregoing formula (3) Receive power.
  • the expressions and parameters of the formula (1), the formula (2), and the formula (3) please refer to the foregoing embodiment, and details are not described herein again.
  • the second determining module 603 may determine the maximum equivalent received power as the equivalent received power of the measured cell according to the equivalent received power corresponding to each of the precoding matrices.
  • the above terminal may further include a third determining module or a sending module (not shown in the figure).
  • the sending module is configured to send the determined equivalent received power of the measured cell to the serving cell of the terminal, so that the serving cell of the terminal is equivalent according to each measured cell of the terminal.
  • the received power determines a target handover cell or a camped cell of the terminal.
  • the third determining module is configured to determine the target switching cell or the camping cell according to the determined equivalent receiving power of each measured cell.
  • the first determining module 602 may further acquire pilot configuration information of the measured cell, where the pilot configuration information includes at least one or a combination of: a pilot transmission period, a subframe offset, and a transmission pilot. The number of ports, the identity of the measured cell, and the pilot pattern.
  • each precoding matrix in the precoding matrix set respectively corresponds to a spatial direction of one vertical dimension, and a spatial direction of a vertical dimension corresponding to all precoding matrices in the precoding matrix set covers the The vertical dimension spatial direction of the user in the cell is measured.
  • an embodiment of the present disclosure further provides a terminal.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure, where the terminal can perform the cell measurement process described in the foregoing embodiment.
  • the terminal can include a processor 701, a memory 702, and a transceiver 703.
  • the processor 701 is configured to read a program in the memory 702 to perform the following process:
  • the transceiver 703 is configured to receive and transmit data under the control of the processor 701.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 701 and various circuits of memory represented by memory 702.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 703 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 702 can store data used by the processor 701 in performing operations.
  • the processor 701 can obtain a precoding matrix set by:
  • the transceiver 703 Receiving, by the transceiver 703, the dedicated signaling sent by the measured cell, and acquiring a precoding matrix set carried in the dedicated signaling, where the measured cell includes a target handover cell and/or a serving cell of the terminal; or ,
  • the transceiver 703 Receiving, by the transceiver 703, the broadcast message sent by the measured cell, and acquiring a precoding matrix set carried in the broadcast message, where the measured cell includes a target handover cell and/or a serving cell of the terminal; or
  • the processor 701 may determine an equivalent received power corresponding to each of the precoding matrices by:
  • Channel estimation is performed on each resource unit separately;
  • the processor 701 may determine a merge channel on each resource unit according to the foregoing formula (1), and determine an equivalent reception on each resource unit corresponding to each precoding matrix according to the foregoing formula (2). For power, the equivalent received power corresponding to each of the precoding matrices may be determined according to the foregoing formula (3).
  • the expressions and parameters of the formula (1), the formula (2), and the formula (3) please refer to the foregoing embodiment, and details are not described herein again.
  • the processor 701 may determine the maximum equivalent received power as the equivalent received power of the measured cell according to an equivalent received power corresponding to each of the precoding matrices.
  • the processor 701 may further determine the target handover cell or the camping cell according to the determined equivalent reception power of each measured cell. Alternatively, the processor 701 may further send, by using the transceiver 703, the determined equivalent received power of the measured cell to the serving cell of the terminal, so that the serving cell of the terminal is configured according to each of the terminals. Measuring the equivalent received power of the cell determines a target handover cell or a camped cell of the terminal.
  • the processor 701 may further acquire pilot configuration information of the measured cell, where the pilot configuration information includes at least one or a combination of: a pilot transmission period, a subframe offset, and a port for transmitting a pilot. The number, the identity of the measured cell, and the pilot pattern.
  • each precoding matrix in the precoding matrix set respectively corresponds to a spatial direction of one vertical dimension, and a spatial direction of a vertical dimension corresponding to all precoding matrices in the precoding matrix set covers the The vertical dimension spatial direction of the user in the cell is measured.
  • the terminal determines the equivalent reception corresponding to each precoding matrix according to each precoding matrix in the precoding matrix set and the channel estimation of the pilot transmitting port of the measured cell. Power, and determining an equivalent received power of the measured cell according to an equivalent received power corresponding to each precoding matrix, thereby determining an equivalent received power of the measured cell based on the precoding matrix, since the setting of the precoding matrix set has Certain flexibility, such that the above embodiments of the present disclosure can make full use of the characteristics of the precoding matrix, thereby obtaining more accurate cell equivalent receiving power, and then performing cell selection or reselection based on the equivalent receiving power of the cell. When a reasonable cell can be selected for access.
  • each precoding matrix in the precoding matrix set respectively corresponds to a spatial direction of one vertical dimension, and a spatial direction of a vertical dimension corresponding to all precoding matrices in the precoding matrix set covers a user in a measured cell
  • the spatial direction of the vertical dimension is such that the equivalent received power of the measured cell according to the above method is more closely matched with the vertical dimension of the measured cell and the cell selected by the terminal, so that the cell selected by the terminal is more suitable for the terminal to camp.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小区测量方法及终端。所述方法包括:对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1(301);根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率(302);以及根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率(303)。

Description

小区测量方法及终端
相关申请的交叉引用
本申请主张在2015年1月30日在中国提交的中国专利申请号No.201510051428.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,并且尤其涉及小区测量方法及终端。
背景技术
在LTE(英文为Long Term Evolution,长期演进)系统中,小区搜索过程如图1所示:终端首先进行主同步信号(PSS,Primary Synchronization Signal)搜索(参见步骤101),根据PSS信号获得5ms定时同步,之后进行辅同步信号(SSS,Secondary Synchronization Signal)搜索(参见步骤102),根据SSS信号实现帧同步及获得小区ID。基于以上同步过程,终端可以获取小区专用参考信号(CRS,Cell-Specific Reference Signal)(参见步骤103),此信号为公共参考信号,一方面可以用于信道估计及解调,另一方面可以用于小区测量。
当终端进行小区接入时,一种实现方法是在多个候选目标小区中进行图1所示的小区搜索,测量每个候选目标小区的公共参考信号CRS的参考信号接收功率(RSRP,Reference Signal Received Power),并选择最优RSRP的小区完成接入。
在相关的蜂窝系统中,基站天线阵列一般呈水平排列,基站发射端波束仅能在水平方向进行调整,而在垂直方向上是固定的下倾角。随着天线技术的发展,业界已出现能够对每个阵子独立控制的有源天线。采用这种设计,天线阵列会由现在的两维水平排列增强到三维水平和垂直排列。这种天线阵列排列方式使得波束在垂直方向上的动态调整成为可能。3D多输入多输出(MIMO,Multi-Input Multi-Output)的一个重要特性是基站侧天线数目非常多而且是二维的天线结构,如8、16、32、64天线等,如图2a至图2d所示。
随着基站天线技术的发展,尤其是三维水平和垂直排列的天线的出现,需要相应的小区测量方法以进行小区测量,从而获得更为准确的小区测量结果,进而选择合理的小区进行接入。
发明内容
本公开实施例的目的在于提供一种小区测量方法及终端,用于实现小区测量。
本公开一个实施例提供一种小区测量方法,包括:
对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
本公开另一实施例提供一种终端,包括:
测量模块,用于对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
第一确定模块,用于根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
第二确定模块,用于根据所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
本公开另一实施例提供一种终端,包括:处理器、存储器和收发机,其中:
处理器,用于读取存储器中的程序,执行下列过程:
对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导 频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
收发机,用于接收和发送数据。
处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本公开的上述实施例中,由于终端根据预编码矩阵集合中的每个预编码矩阵以及被测量小区的导频发送端口的信道估计,确定与每个预编码矩阵对应的等效接收功率,并根据与每个预编码矩阵对应的等效接收功率,确定被测量小区的等效接收功率,从而基于预编码矩阵确定被测量小区的等效接收功率,由于预编码矩阵集合的设置具有一定灵活性,这样,采用本公开的上述实施例可较充分利用预编码矩阵的特点,从而获得更为准确的小区等效接收功率,进而在基于小区的等效接收功率进行小区选择或重选时,可选择合理的小区进行接入。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的小区搜索流程示意图;
图2a至图2d为3D MIMO中二维天线结构示意图;
图3为本公开实施例提供的小区测量流程示意图;
图4为图3中步骤302的流程示意图;
图5a至图5d为本公开实施例提供的CSI-RS发送示意图;
图6为本公开实施例提供的终端结构示意图;以及
图7为本公开另一实施例提供的终端结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
下面介绍的是本公开的多个实施例中的一部份,旨在提供对本公开的基本了解,并不旨在确认本公开的关键或决定性要素或限定所要保护的范围。根据本公开的技术方案,在不变更本公开的实质精神下,可以相互替换而得到其他的实现方式。
本公开实施例中,终端根据每个被测量小区的导频进行信道估计,并根据信道估计结果以及预编码矩阵集合中的每个预编码矩阵,对每个被测量小区进行等效接收功率的计算,从而得到每个被测量小区的等效接收功率,以作为选择目标切换小区或驻留小区的依据。
参见图3,为本公开实施例提供的小区测量流程示意图。该流程可由终端执行,或者由终端内部的小区选择装置执行。
如图所示,该流程可包括:
步骤301:对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1。
一个终端的被测量小区可包括该终端的服务小区以及目标切换小区,所述目标切换小区是指终端可能切换到的小区,可以是与该终端的服务小区相邻的小区。所述导频可以是信道状态信息-参考信号(CSI-RS,Channel State Information-Reference Signal),也可以是其他类型的导频信号或参考信号。
所述N个导频发送端口由基站进行配置,基站可配置一个终端接收所有导频发送端口发送的导频,也可配置一个终端仅接收部分导频发送端口发送的导频。如果基站配置终端接收所有导频发送端口发送的导频,则终端基于所有导频发送端口发送的导频进行小区测量,从而得到这些端口的信道估计值;如果基站配置终端接收部分导频发送端口发送的导频,则终端基于部分导频发送端口发送的导频进行小区测量,从而得到这些端口的信道估计值。 本公开实施例对信道估计算法不做限制。
步骤302:根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率。
具体来说,步骤302的具体实现可如图4所示,包括以下步骤:
步骤3021:分别在每个资源单元(RE,Resource Element)上进行信道估计;
步骤3022:针对所述每个预编码矩阵,分别根据每个资源单元上的信道估计,确定每个资源单元上的合并信道;
步骤3023:根据所述每个资源单元上的合并信道,确定对应每个预编码矩阵的每个资源单元上的等效接收功率;
步骤3024:根据所述对应每个预编码矩阵的每个资源单元上的等效接收功率,分别确定对应每个预编码矩阵的所有资源单元上的等效接收功率,从而得到与所述每个预编码矩阵各自对应的等效接收功率。
上述流程中所述的资源单元可以是指终端接收导频的资源单元。
在步骤3022中,可根据以下公式(1)确定每个资源单元上的合并信道:
Gk,n=HkVn……………………………………………………(1)
其中,Vn表示所述预编码矩阵集合中的第n个预编码矩阵;Hk表示所述终端在第k个资源单元上估计出的信道,Hk为Nr行N列矩阵,Nr为所述终端接收天线的数量;Gk,n表示与Vn对应的所述第k个资源单元上的合并信道。
在步骤3023中,在秩指示(RI)等于1的情况下,预编码矩阵为向量,则Gk,n为行向量,则可根据以下公式(2)确定对应每个预编码矩阵的每个资源单元上的等效接收功率:
Pk,n=||Gk,n||2……………………………………………………(2)
其中,Pk,n表示针对第n个预编码矩阵,所述终端在第k个资源单元上的等效接收功率;||A||为矩阵A的Frobenius范数。
在步骤3024中,可根据以下公式(3)确定与所述每个预编码矩阵各自对应的等效接收功率:
Pn=mean{Pk,n}k=1,...K…………………………………………(3)
其中,Pn表示与第n个预编码矩阵对应的等效接收功率,mean{}表示取集合{Pk,n}k=1,...K中所有元素的平均值,其中K为资源单元的数量。
步骤303:根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
具体来说,步骤303中,根据与所述每个预编码矩阵对应的等效接收功率,将其中最大的等效接收功率确定为所述被测量小区的等效接收功率。
作为一个例子,资源单元的集合由一段时间内(如100ms)、一定带宽范围内(如20MHz带宽)的CSI-RS信号所占用的全部或者部分RE所组成。这样,等效接收功率为一段时间和一段带宽内的平均值。
对于一个被测量小区,终端针对所有预编码矩阵计算得到的等效接收功率取最大值,得到该小区的RSRP估计值:
RSRP=maxn Pn或者RSRP=a maxn Pn
其中,a为接收机链路增益调整值,包括从终端天线到基带处理单元的链路增益。maxn Pn表示从集合Pn中取最大值,集合Pn中的元素为针对一个被测量小区计算得到的与所有预编码矩阵各自对应的RSRP。a maxn Pn表示将maxn Pn与a相乘。
可选地,在步骤302之前,还可包括获取预编码矩阵集合的步骤。具体地,获取预编码矩阵集合的方式包括但不限于以下几种:
方式1:终端接收被测量小区发送的专用信令,获取所述专用信令中携带的预编码矩阵集合;该被测量小区可以是终端的服务小区和/或该终端的目标切换小区;
方式2:终端接收所述被测量小区发送的广播消息,获取所述广播消息中携带的预编码矩阵集合;该被测量小区可以是终端的服务小区和/或该终端的目标切换小区;以及
方式3:可预先定义预编码矩阵集合,比如通过协议约定预编码矩阵集合。终端获取预先定义的预编码矩阵集合。
进一步地,在步骤301之前,即,在终端对被测量小区的导频进行测量之前,还可包括获取被测量小区的导频配置信息的过程。所述导频配置信息可至少包括以下内容之一或组合:导频发送周期、子帧偏移、发送导频的端 口的数量、所述被测量小区的标识(如小区的ID)以及导频图样。
终端获取被测量小区的导频配置信息的方式可包括但不限于以下几种:
方式1:终端接收被测量小区发送的广播消息,获取所述广播消息中携带的所述被测量小区的导频配置信息;
方式2:终端接收被测量小区发送的专用信令,获取所述专用信令中携带的所述被测量小区的导频配置信息;以及
方式3:终端通过约定的方式确定被测量小区的导频配置信息。
进一步地,终端在按照上述实施例确定出每个被测量小区的等效接收功率后,可根据该终端确定出的每个被测量小区的等效接收功率,确定目标切换小区或驻留小区,也可将确定出的每个被测量小区的等效接收功率发送给该终端的服务小区或服务小区的基站,由该服务小区或服务小区的基站根据该终端确定出的每个被测量小区的等效接收功率确定该终端的目标切换小区或驻留小区。
具体地,终端可将所有可能的目标小区(包括目标切换小区以及当前服务小区)的RSRP值发送给其服务小区的基站,由服务小区的基站决定该终端需要接入的小区。如果终端处于连接态,则该终端的服务小区基站可以向该终端发送小区切换命令,小区切换命令中携带为该终端选择的小区的ID;或者,如果该终端处于连接态,则该终端的服务小区基站将选择出的小区的ID发送给该终端,用于该终端发起向该小区的切换或者驻留。
终端也可以自己根据RSRP值选择要接入的小区,例如,接入RSRP值最高的小区。终端通过CSI-RS配置信息中携带的目标小区(包括目标切换小区以及当前服务小区)的标识获得选择出的小区的标识,终端可以将选择出的小区的标识发送给服务小区的基站,或者终端自行选择驻留在选择出的小区内,或者终端在选择出的小区内发起上行随机接入过程,以接入该小区。
通过以上实施例可以看出,由于终端根据预编码矩阵集合中的每个预编码矩阵以及被测量小区的导频发送端口的信道估计,确定与每个预编码矩阵对应的等效接收功率,并根据与每个预编码矩阵对应的等效接收功率,确定被测量小区的等效接收功率,从而基于预编码矩阵确定被测量小区的等效接收功率,由于预编码矩阵集合的设置具有一定灵活性,这样,采用本公开的 上述实施例可较充分利用预编码矩阵的特点,从而获得更为准确的小区等效接收功率,进而在基于小区的等效接收功率进行小区选择或重选时,可选择合理的小区进行接入。
可选地,所述预编码矩阵集合中的元素可以是离散傅里叶变换(DFT,Discrete Fourier Transform)向量。所述预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且所述预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖所述被测量小区内用户的垂直维度空间方向。
由于二维天线结构的引入,基站也可以在垂直方向上形成波束,指向不同高度和垂直角度的用户。但是,为了保证小区的覆盖,一般来说导频信号要在垂直方向上形成定向的窄波束或者宽波束。这样,如果基于导频对小区进行测量以及根据小区测量结果选择小区接入,就会出现终端所接入的小区不合适的情况。这是因为终端测量的导频是指向一个固定的方向的,但是发给终端的信号是可以指向该终端的,两者之间不匹配。而采用本公开的上述实施例,由于预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖一个被测量小区内用户的垂直维度空间方向,因此按照上述方法测量得到的小区的等效接收功率,与该终端与被测量小区的垂直维度方向更加匹配,进而使终端所选择的小区更适合该终端驻留。
本公开实施例提供了几种导频发送方式,下面以CSI-RS为例,描述基站发送导频的方式。一个CSI-RS资源的不同的端口组合可以对应不同的小区。例如配置的CSI-RS资源有8个端口,其中端口0至端口3对应小区1,端口4至端口7对应小区2。
方式一
CSI-RS的多个端口映射到二维天线阵列的1列天线发送,所述多个端口可以是CSI-RS的所有端口或部分端口。图5a示例性地示出了在天线阵列为4行4列天线、共计16个天线单元的情况下,CSI-RS的端口配置。4端口的CSI-RS(如图中所示的s(0),s(1),s(2),s(3))映射到该天线阵列的1列天线上发出,如第1列。每个CSI-RS端口映射到1个天线单元。CSI-RS以宽波束的 形式在垂直方向上发出,波束的宽度取决于单个天线单元的波束宽度。
方式二
CSI-RS的多个端口映射到二维天线阵列的所有天线单元发送,所述多个端口可以是CSI-RS的所有端口或部分端口。图5b示例性地示出了在天线阵列为4行4列天线、共计16个天线单元的情况下,CSI-RS的端口配置。4端口的CSI-RS(如图中所示的s(0),s(1),s(2),s(3))映射到所有天线单元上发出,每个CSI-RS端口映射到1行天线单元,Wi表示与第i列天线对应的波束赋形向量。每个CSI-RS端口的导频信号经波束赋形加权后从一行天线上发出。波束赋形的权值使得其形成的波束能覆盖整个小区,例如形成广播波束。CSI-RS以宽波束的形式在垂直方向上发出,波束的宽度取决于单个天线单元的波束宽度。
方式三
CSI-RS的多个端口映射到二维天线阵列的所有天线单元发送,所述多个端口可以是CSI-RS的所有端口或部分端口。图5c示例性地示出了在天线阵列为4行4列天线、共计16个天线单元的情况下,CSI-RS的端口配置。4端口的CSI-RS(如图中所示的s(0),s(1),s(2),s(3))映射到所有天线单元上发出,每个CSI-RS端口映射到1列天线单元,Wi表示与第i行天线对应的波束赋形向量。每个CSI-RS端口的导频信号经波束赋形加权后从一列天线上发出。波束赋形的权值使得其形成的波束能覆盖整个小区,例如形成广播波束。CSI-RS以宽波束的形式在垂直方向上发出,波束的宽度取决于单个天线单元的波束宽度。
方式四
CSI-RS的多个端口映射到二维天线阵列的1行天线发送,所述多个端口可以是CSI-RS的所有端口或部分端口。图5d示例性地示出了在天线阵列为4行4列天线、共计16个天线单元的情况下,CSI-RS的端口配置。4端口的CSI-RS(如图中所示的s(0),s(1),s(2),s(3))映射到其中的1行天线上发出,如第1行。每个CSI-RS端口映射到1个天线单元。CSI-RS以宽波束的形式在水平方向上发出,波束的宽度取决于单个天线单元的波束宽度。
基于相同的技术构思,本公开实施例还提供了一种终端。
参见图6,为本公开实施例提供的一种终端的结构示意图,该终端可执行前述实施例描述的小区测量过程。如图所示,该终端可包括:测量模块601、第一确定模块602和第二确定模块603,其中
测量模块601用于对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
第一确定模块602用于根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
第二确定模块603用于根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
进一步地,测量模块601可通过以下方式获取预编码矩阵集合:
接收所述被测量小区发送的专用信令,获取所述专用信令中携带的预编码矩阵集合,所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
接收所述被测量小区发送的广播消息,获取所述广播消息中携带的预编码矩阵集合,所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
获取预先定义的预编码矩阵集合。
具体地,第一确定模块602可通过以下步骤确定与所述每个预编码矩阵各自对应的等效接收功率:
分别在每个资源单元上进行信道估计;
针对所述每个预编码矩阵,分别根据每个资源单元上的信道估计,确定每个资源单元上的合并信道;
根据所述每个资源单元上的合并信道,确定对应每个预编码矩阵的每个资源单元上的等效接收功率;
根据所述对应每个预编码矩阵的每个资源单元上的等效接收功率,分别确定对应每个预编码矩阵的所有资源单元上的等效接收功率,从而得到所述每个预编码矩阵各自对应的等效接收功率。
其中,第一确定模块602可根据前述公式(1)确定每个资源单元上的合 并信道,可根据前述公式(2)确定对应每个预编码矩阵的每个资源单元上的等效接收功率,可根据前述公式(3)确定与所述每个预编码矩阵各自对应的等效接收功率。其中,公式(1)、公式(2)和公式(3)的表达式和参数说明请参见前述实施例,在此不再赘述。
具体地,第二确定模块603可根据与所述每个预编码矩阵对应的等效接收功率,将其中最大的等效接收功率确定为所述被测量小区的等效接收功率。
进一步地,上述终端还可包括第三确定模块或者发送模块(未在图中示出)。其中,发送模块用于将确定出的所述被测量小区的等效接收功率发送给所述终端的服务小区,以使所述终端的服务小区根据所述终端的每个被测量小区的等效接收功率确定所述终端的目标切换小区或驻留小区。第三确定模块用于根据确定出的每个被测量小区的等效接收功率,确定目标切换小区或驻留小区。
进一步地,第一确定模块602还可获取所述被测量小区的导频配置信息,所述导频配置信息至少包括以下内容之一或组合:导频发送周期、子帧偏移、发送导频的端口的数量、所述被测量小区的标识以及导频图样。
进一步地,所述预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且所述预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖所述被测量小区内用户的垂直维度空间方向。
基于相同的技术构思,本公开实施例还提供了一种终端。
参见图7,为本公开实施例提供的一种终端的结构示意图,该终端可执行前述实施例描述的小区测量过程。如图所示,该终端可包括:处理器701、存储器702和收发机703。
处理器701用于读取存储器702中的程序,以执行下列过程:
对被测量小区的导频进行测量,从而得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;
根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
收发机703用于在处理器701的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和由存储器702代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机703可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器701负责管理总线架构和通常的处理,存储器702可以存储处理器701在执行操作时所使用的数据。
进一步地,处理器701可通过以下方式获取预编码矩阵集合:
通过收发机703接收所述被测量小区发送的专用信令,获取所述专用信令中携带的预编码矩阵集合,所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
通过收发机703接收所述被测量小区发送的广播消息,获取所述广播消息中携带的预编码矩阵集合,所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
获取预先定义的预编码矩阵集合。
具体地,处理器701可通过以下步骤确定与所述每个预编码矩阵各自对应的等效接收功率:
分别在每个资源单元上进行信道估计;
针对所述每个预编码矩阵,分别根据每个资源单元上的信道估计,确定每个资源单元上的合并信道;
根据所述每个资源单元上的合并信道,确定对应每个预编码矩阵的每个资源单元上的等效接收功率;
根据所述对应每个预编码矩阵的每个资源单元上的等效接收功率,分别确定对应每个预编码矩阵的所有资源单元上的等效接收功率,从而得到所述每个预编码矩阵各自对应的等效接收功率。
其中,处理器701可根据前述公式(1)确定每个资源单元上的合并信道,可根据前述公式(2)确定对应每个预编码矩阵的每个资源单元上的等效接收 功率,可根据前述公式(3)确定与所述每个预编码矩阵各自对应的等效接收功率。其中,公式(1)、公式(2)和公式(3)的表达式和参数说明请参见前述实施例,在此不再赘述。
具体地,处理器701可根据与所述每个预编码矩阵对应的等效接收功率,将其中最大的等效接收功率确定为所述被测量小区的等效接收功率。
进一步地,处理器701还可根据确定出的每个被测量小区的等效接收功率,确定目标切换小区或驻留小区。或者,处理器701还可通过收发机703将确定出的所述被测量小区的等效接收功率发送给所述终端的服务小区,以使所述终端的服务小区根据所述终端的每个被测量小区的等效接收功率确定所述终端的目标切换小区或驻留小区。
进一步地,处理器701还可获取所述被测量小区的导频配置信息,所述导频配置信息至少包括以下内容之一或组合:导频发送周期、子帧偏移、发送导频的端口的数量、所述被测量小区的标识以及导频图样。
进一步地,所述预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且所述预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖所述被测量小区内用户的垂直维度空间方向。
综上所述,本公开实施例中,由于终端根据预编码矩阵集合中的每个预编码矩阵以及被测量小区的导频发送端口的信道估计,确定与每个预编码矩阵对应的等效接收功率,并根据与每个预编码矩阵对应的等效接收功率,确定被测量小区的等效接收功率,从而基于预编码矩阵确定被测量小区的等效接收功率,由于预编码矩阵集合的设置具有一定灵活性,这样,采用本公开的上述实施例可较充分利用预编码矩阵的特点,从而获得更为准确的小区等效接收功率,进而在基于小区的等效接收功率进行小区选择或重选时,可选择合理的小区进行接入。
进一步地,预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖一个被测量小区内用户的垂直维度空间方向,因此按照上述方法测量得到的小区的等效接收功率,与该终端与被测量小区的垂直维度方向更加匹配,进而使终端所选择的小区更适合该终端驻留。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种小区测量方法,包括:
    对被测量小区的导频进行测量,得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
    根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
    根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
  2. 如权利要求1所述的方法,在所述根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率之前,所述方法还包括:
    接收所述被测量小区发送的专用信令,并且获取所述专用信令中携带的预编码矩阵集合,其中所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
    接收所述被测量小区发送的广播消息,并且获取所述广播消息中携带的预编码矩阵集合,其中所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
    获取预先定义的预编码矩阵集合。
  3. 如权利要求1所述的方法,其中,所述根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率,包括:
    分别在每个资源单元上进行信道估计;
    针对所述每个预编码矩阵,分别根据每个资源单元上的信道估计,确定每个资源单元上的合并信道;
    根据所述每个资源单元上的合并信道,确定对应每个预编码矩阵的每个资源单元上的等效接收功率;以及
    根据所述对应每个预编码矩阵的每个资源单元上的等效接收功率,分别 确定对应每个预编码矩阵的所有资源单元上的等效接收功率,得到与所述每个预编码矩阵各自对应的等效接收功率。
  4. 如权利要求3所述的方法,其中,所述针对所述每个预编码矩阵,分别根据每个资源单元上的信道估计,确定每个资源单元上的合并信道,包括:
    根据以下公式确定每个资源单元上的合并信道:
    Gk,n=HkVn
    其中,Vn表示所述预编码矩阵集合中的第n个预编码矩阵;Hk表示所述终端在第k个资源单元上估计出的信道,Hk为Nr行N列矩阵,Nr为所述终端接收天线的数量;Gk,n表示与Vn对应的所述第k个资源单元上的合并信道;
    所述根据所述每个资源单元上的合并信道,确定对应每个预编码矩阵的每个资源单元上的等效接收功率,包括:
    根据以下公式确定对应每个预编码矩阵的每个资源单元上的等效接收功率:
    Pk,n=||Gk,n||2
    其中,Pk,n表示针对第n个预编码矩阵,所述终端在第k个资源单元上的等效接收功率;||A||为矩阵A的Frobenius范数;
    根据所述对应每个预编码矩阵的每个资源单元上的等效接收功率,分别确定对应每个预编码矩阵的所有资源单元上的等效接收功率,得到与所述每个预编码矩阵各自对应的等效接收功率,包括:
    根据以下公式确定与所述每个预编码矩阵各自对应的等效接收功率:
    Pn=mean{Pk,n}k=1,...K
    其中,Pn表示与第n个预编码矩阵对应的等效接收功率,mean{}表示取集合{Pk,n}k=1,...K中所有元素的平均值,K为资源单元的数量。
  5. 如权利要求1所述的方法,其中,所述根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率,包括:
    根据与所述每个预编码矩阵对应的等效接收功率,将其中最大的等效接收功率确定为所述被测量小区的等效接收功率。
  6. 如权利要求1所述的方法,在所述根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率之后,所述方法还包括:
    将确定出的所述被测量小区的等效接收功率发送给所述终端的服务小区,以使所述终端的服务小区根据所述终端的每个被测量小区的等效接收功率确定所述终端的目标切换小区或驻留小区;或者,
    根据确定出的每个被测量小区的等效接收功率,确定目标切换小区或驻留小区。
  7. 如权利要求1所述的方法,在所述对被测量小区的导频进行测量之前,所述方法还包括:
    获取所述被测量小区的导频配置信息,其中所述导频配置信息至少包括以下内容之一或组合:导频发送周期、子帧偏移、发送导频的端口的数量、所述被测量小区的标识以及导频图样。
  8. 如权利要求7所述的方法,其中,所述获取所述被测量小区的导频配置信息,包括:
    接收被测量小区发送的广播消息,并且获取所述广播消息中携带的所述被测量小区的导频配置信息;或者,
    接收被测量小区发送的专用信令,并且获取所述专用信令中携带的所述被测量小区的导频配置信息;或者,
    通过预定的方式确定被测量小区的导频配置信息。
  9. 如权利要求1至8中任一项所述的方法,其中,所述预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且所述预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖所述被测量小区内用户的垂直维度空间方向。
  10. 一种终端,包括:
    测量模块,用于对被测量小区的导频进行测量,得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
    第一确定模块,用于根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
    第二确定模块,用于根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率。
  11. 如权利要求10所述的终端,其中,所述测量模块还用于:
    接收所述被测量小区发送的专用信令,并且获取所述专用信令中携带的预编码矩阵集合,其中所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
    接收所述被测量小区发送的广播消息,并且获取所述广播消息中携带的预编码矩阵集合,其中所述被测量小区包括所述终端的目标切换小区和/或服务小区;或者,
    获取预先定义的预编码矩阵集合。
  12. 如权利要求10所述的终端,其中,所述第一确定模块具体用于:
    分别在每个资源单元上进行信道估计;
    针对所述每个预编码矩阵,分别根据每个资源单元上的信道估计,确定每个资源单元上的合并信道;
    根据所述每个资源单元上的合并信道,确定对应每个预编码矩阵的每个资源单元上的等效接收功率;以及
    根据所述对应每个预编码矩阵的每个资源单元上的等效接收功率,分别确定对应每个预编码矩阵的所有资源单元上的等效接收功率,得到与所述每个预编码矩阵各自对应的等效接收功率。
  13. 如权利要求12所述的终端,其中,所述第一确定模块具体用于:
    根据以下公式确定每个资源单元上的合并信道:
    Gk,n=HkVn
    其中,Vn表示所述预编码矩阵集合中的第n个预编码矩阵;Hk表示所述终端在第k个资源单元上估计出的信道,Hk为Nr行N列矩阵,Nr为所述终端接收天线的数量;Gk,n表示与Vn对应的所述第K个资源单元上的合并信道;
    根据以下公式确定对应每个预编码矩阵的每个资源单元上的等效接收功率:
    Pk,n=||Gk,n||2
    其中,Pk,n表示针对第n个预编码矩阵,所述终端在第k个资源单元上的等效接收功率;||A||为矩阵A的Frobenius范数;
    根据以下公式确定与所述每个预编码矩阵各自对应的等效接收功率:
    Pn=mean{Pk,n}k=1,...K
    其中,Pn表示与第n个预编码矩阵对应的等效接收功率,mean{}表示取集合{Pk,n}k=1,...K中所有元素的平均值,K为资源单元的数量。
  14. 如权利要求10所述的终端,其中,所述第二确定模块具体用于:根据与所述每个预编码矩阵对应的等效接收功率,将其中最大的等效接收功率确定为所述被测量小区的等效接收功率。
  15. 如权利要求10所述的终端,还包括:
    发送模块,用于将确定出的所述被测量小区的等效接收功率发送给所述终端的服务小区,以使所述终端的服务小区根据所述终端的每个被测量小区的等效接收功率确定所述终端的目标切换小区或驻留小区;或者
    第三确定模块,用于根据确定出的每个被测量小区的等效接收功率,确定目标切换小区或驻留小区。
  16. 如权利要求10所述的终端,其中,所述第一确定模块还用于:
    获取所述被测量小区的导频配置信息,其中所述导频配置信息至少包括以下内容之一或组合:导频发送周期、子帧偏移、发送导频的端口的数量、所述被测量小区的标识以及导频图样。
  17. 如权利要求10至16中任一项所述的终端,其中,所述预编码矩阵集合中的每个预编码矩阵分别对应一个垂直维度的空间方向,且所述预编码矩阵集合中的所有预编码矩阵所对应的垂直维度的空间方向覆盖所述被测量小区内用户的垂直维度空间方向。
  18. 一种终端,包括:处理器、存储器和收发机,其中:
    处理器,用于读取存储器中的程序,执行下列过程:
    对被测量小区的导频进行测量,得到所述被测量小区的N个导频发送端口的信道估计,其中N≥1;
    根据预编码矩阵集合中的每个预编码矩阵以及所述被测量小区的N个导频发送端口的信道估计,确定与所述每个预编码矩阵对应的等效接收功率;以及
    根据与所述每个预编码矩阵对应的等效接收功率,确定所述被测量小区的等效接收功率,
    收发机,用于接收和发送数据,
    处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
PCT/CN2015/096810 2015-01-30 2015-12-09 小区测量方法及终端 WO2016119526A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15879724.1A EP3253125B1 (en) 2015-01-30 2015-12-09 Cell measurement method and terminal
US15/539,981 US10516494B2 (en) 2015-01-30 2015-12-09 Method and terminal for determining equivalent received power of cell according to precoding matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510051428.3A CN105992265B (zh) 2015-01-30 2015-01-30 一种小区测量方法及终端
CN201510051428.3 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119526A1 true WO2016119526A1 (zh) 2016-08-04

Family

ID=56542353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096810 WO2016119526A1 (zh) 2015-01-30 2015-12-09 小区测量方法及终端

Country Status (5)

Country Link
US (1) US10516494B2 (zh)
EP (1) EP3253125B1 (zh)
CN (1) CN105992265B (zh)
TW (1) TWI583228B (zh)
WO (1) WO2016119526A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108810931A (zh) 2017-05-05 2018-11-13 华为技术有限公司 测量方法、终端设备和接入网设备
CN109392053B (zh) * 2017-08-03 2021-11-09 中国移动通信有限公司研究院 一种选择驻留小区的方法、设备及计算机可读存储介质
JP2019062505A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 通信装置および通信方法
US11283652B2 (en) * 2019-05-08 2022-03-22 National Taiwan University Communication system and method
CN110493831B (zh) * 2019-07-30 2021-09-28 维沃移动通信有限公司 一种功率确定方法及终端设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152612A2 (en) * 2007-06-14 2008-12-18 Nxp B.V. Method and system for operating a multi-user multiple-input multiple-output (mu-mimo) wireless communications system
CN101764681A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 多小区信道质量信息的反馈方法、系统及装置
CN103078703A (zh) * 2012-12-28 2013-05-01 东南大学 一种应用于下行链路的多点联合协作系统的传输方法
CN103582043A (zh) * 2012-08-09 2014-02-12 华为技术有限公司 小区选择方法及终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101403154B1 (ko) * 2010-04-27 2014-06-03 후지쯔 가부시끼가이샤 무선 통신 방법, 무선 기지국, 이동 단말기, 무선 통신 시스템
CN102412885B (zh) * 2011-11-25 2015-05-06 西安电子科技大学 Lte中的三维波束赋形方法
US8953478B2 (en) 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9397738B2 (en) * 2012-05-17 2016-07-19 Qualcomm Incorporated Codebook and feedback design for high order MIMO
EP2858402B1 (en) * 2012-06-04 2019-08-07 Huawei Technologies Co., Ltd. Signal received power measurement method, terminal, base station and system
CN103929772B (zh) * 2013-01-16 2017-06-16 展讯通信(上海)有限公司 参考信号接收功率测量方法及装置、重选的方法、用户端
KR20150134328A (ko) * 2013-03-25 2015-12-01 엘지전자 주식회사 하향링크 무선 신호를 수신하기 위한 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152612A2 (en) * 2007-06-14 2008-12-18 Nxp B.V. Method and system for operating a multi-user multiple-input multiple-output (mu-mimo) wireless communications system
CN101764681A (zh) * 2008-12-24 2010-06-30 大唐移动通信设备有限公司 多小区信道质量信息的反馈方法、系统及装置
CN103582043A (zh) * 2012-08-09 2014-02-12 华为技术有限公司 小区选择方法及终端
CN103078703A (zh) * 2012-12-28 2013-05-01 东南大学 一种应用于下行链路的多点联合协作系统的传输方法

Also Published As

Publication number Publication date
EP3253125B1 (en) 2020-07-15
CN105992265B (zh) 2019-09-17
CN105992265A (zh) 2016-10-05
EP3253125A1 (en) 2017-12-06
TW201628438A (zh) 2016-08-01
EP3253125A4 (en) 2018-01-24
TWI583228B (zh) 2017-05-11
US10516494B2 (en) 2019-12-24
US20170373772A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
EP3522427B1 (en) Methods and apparatuses for representing quasi co-location parameter configuration
EP2842236B1 (en) Configuring channel-state feedback resources
CN107615853B (zh) 移动台、基站以及无线通信方法
US9743348B2 (en) User equipment and base station
JP6185188B2 (ja) 基地局及びユーザ装置
CN106464332B (zh) 使用天线布置的波束形成
CA2760109C (en) Method and system for setting reference signal in wireless communication system
EP3402090A1 (en) Wireless communication method and wireless communication device
WO2016119526A1 (zh) 小区测量方法及终端
CN114144977B (zh) 波束赋形方法、装置、无线接入网设备及可读存储介质
TWI635737B (zh) 一種導頻信號的發送、接收處理方法及裝置
US20220407584A1 (en) Method and network node for uplink beam management
WO2017107067A1 (zh) 参考信号发送和信道测量的方法、发送设备和终端设备
US20240146372A1 (en) Channel information obtaining method and communication apparatus
WO2017168254A1 (en) Method and apparatus of sharing csi-rs resource
CN117035018A (zh) 波束度量参数反馈方法和接收方法及装置
WO2021043399A1 (en) Beamformed transmission towards a radio transceiver device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879724

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015879724

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15539981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE