WO2016119463A1 - 发送信号的处理方法及装置 - Google Patents

发送信号的处理方法及装置 Download PDF

Info

Publication number
WO2016119463A1
WO2016119463A1 PCT/CN2015/089000 CN2015089000W WO2016119463A1 WO 2016119463 A1 WO2016119463 A1 WO 2016119463A1 CN 2015089000 W CN2015089000 W CN 2015089000W WO 2016119463 A1 WO2016119463 A1 WO 2016119463A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
symbol
signal
type
generate
Prior art date
Application number
PCT/CN2015/089000
Other languages
English (en)
French (fr)
Inventor
袁志锋
杨勋
戴建强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016119463A1 publication Critical patent/WO2016119463A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for processing a transmitted signal.
  • NOMA Non-Orthogonal Multiple Access
  • OMA Orthogonal Multiple Access
  • the NOMA technology achieves the purpose of multiplexing users in the power domain by transmitting signals to different users who are closer to the base station and weak users that are farther away from the base station.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the signal power received by the strong user is relatively weak, and the signal power received by the user is very low. If the strong user and the weak user are on the same beam, the precoding weights used by the base station to transmit signals to the strong user and the weak user are identical, so although the base station cannot be transmitted to the strong user and the weak user from the spatial domain. The signal is separated, but the signal of the strong user can be separated by the Serial Interference Cancellation (SIC) technology. If the strong user and the weak user are on different beams, the precoding weights used by the base station to transmit signals to the strong user and the weak user are different.
  • SIC Serial Interference Cancellation
  • the strong users and the weak users can only use the orthogonal characteristics of the beam. Separate each other's signals. However, because random beams have a certain width, different random beams overlap each other and are often not completely orthogonal in space. Strong users and weak users are easily located in random beams that are not completely orthogonal. At this time, for a weak user receiving a high-power signal, the signal transmitted by the base station to the strong user has little influence on himself due to the low power, and therefore the signal received by the base station can be parsed. However, for a strong user, a low-power signal received by a weak user on an adjacent beam is a serious interference to the low-power signal that it receives, and the signal received by the user cannot be properly parsed.
  • Embodiments of the present invention provide a method and an apparatus for processing a transmitted signal, so as to at least solve the problem that a low power signal of a strong user in the related art is interfered by a strong power signal of an adjacent weak user.
  • a method for processing a transmitted signal comprising: precoding each user group of a plurality of user groups served by a base station by using precoding weights to obtain a precoded a signal, wherein each of the foregoing user groups includes a first type of user and a second type of user, wherein a signal to noise ratio of the first type of users is greater than a signal to noise ratio of the second type of users; precoding of any user group
  • the vector of the weight belongs to the zero space of the first type of user channel gain coefficient matrix in the other user groups, and the other user groups are the user groups other than the above one of the plurality of user groups;
  • the above precoded signals of the group are added to obtain a transmission signal.
  • using the precoding weight to precode each of the plurality of user groups served by the base station includes: for each user group, a signal of the first type of users in the user group and a second The signal of the class user is superimposed to generate a first symbol; the precoding weight of the first symbol is obtained, and the precoding weight of the first symbol is used as a precoding weight for precoding each user group.
  • superimposing the signal of the first type of user in the specified user group and the signal of the second type of user to generate the first symbol comprises: pairing the first class according to the first power allocated to the first type of user The user's signal is modulated to generate a second symbol; the second type of user's signal is modulated according to a second power allocated to the second type of user to generate a third symbol; and the second symbol and the third symbol are superimposed to generate The first symbol; wherein the first power is less than the second power.
  • superimposing the second symbol and the third symbol to generate the first symbol includes one of: directly adding the second symbol and the third symbol by using superposition coding modulation to generate the first symbol;
  • the second symbol and the third symbol are image-superimposed using superposition coding modulation to generate the first symbol.
  • performing image superimposition on the second symbol and the third symbol by using the superposition code modulation to generate the first symbol includes: performing image processing on the third symbol to obtain a mirrored symbol sequence; and using the second symbol and The mirrored symbol sequence is subjected to superposition coding processing to generate the first symbol.
  • the number of receiving antennas of the first type of users and the second type of users is all one.
  • a processing apparatus for transmitting a signal comprising: a precoding module, configured to use each of a plurality of user groups served by a base station using precoding weights Performing precoding to obtain a precoded signal, where each user group includes a first type user and a second type user, and the first type of user has a signal to noise ratio greater than that of the second type of user. Ratio; the vector of the precoding weight of any user group belongs to the zero space of the first type of user channel gain coefficient matrix in other user groups, and the other user groups are other than the above user groups.
  • the user group; the sending module is configured to add the pre-coded signals of the plurality of user groups to obtain a transmission signal.
  • the foregoing apparatus further includes: an overlay module, configured to: for each user group, superimpose a signal of the first type user in the user group and a signal of the second type of user to generate a first symbol; Set to get the first mentioned above The precoding weight of the symbol, the precoding weight of the first symbol is used as a precoding weight for precoding each of the user groups.
  • an overlay module configured to: for each user group, superimpose a signal of the first type user in the user group and a signal of the second type of user to generate a first symbol; Set to get the first mentioned above The precoding weight of the symbol, the precoding weight of the first symbol is used as a precoding weight for precoding each of the user groups.
  • the foregoing superimposing module further includes: a first modulating unit configured to modulate a signal of the first type of user to generate a second symbol according to a first power allocated to the first type of user; and a second modulating unit, Is configured to modulate a signal of the second type of user according to a second power allocated to the second type of user to generate a third symbol; and the superimposing unit is configured to superimpose the second symbol and the third symbol to generate the foregoing a first symbol; wherein the first power is less than the second power.
  • the superimposing module further includes: a direct superimposing unit, configured to directly superimpose the second symbol and the third symbol by using superimposition code modulation to generate the first symbol; and the mirror superimposing unit is configured to The two symbols and the third symbol described above are image superimposed using superimposition code modulation to generate the first symbol.
  • a direct superimposing unit configured to directly superimpose the second symbol and the third symbol by using superimposition code modulation to generate the first symbol
  • the mirror superimposing unit is configured to The two symbols and the third symbol described above are image superimposed using superimposition code modulation to generate the first symbol.
  • the image superimposing unit includes: acquiring a sub-unit, configured to perform mirroring on the third symbol to obtain a mirrored symbol sequence; and superimposing the sub-unit, configured to set the second symbol and the mirrored image
  • the symbol sequence is subjected to superposition coding processing to generate the first symbol described above.
  • the number of receiving antennas of the first type of users and the second type of users is all one.
  • each of the plurality of user groups served by the base station is precoded by using the precoding weight to obtain a precoded signal, where each user group includes the first type of user.
  • the second type of user the first type of user has a higher signal to noise ratio than the second type of user;
  • the vector of the precoding weight of any user group belongs to the first type of user channel gain coefficient matrix in other user groups Zero space, the other user group is a user group other than the one of the user groups; the pre-coded signals of the multiple user groups are added to obtain a transmission signal.
  • FIG. 1 is a flow chart of a method of processing a transmitted signal according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a processing apparatus for transmitting a signal according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram (1) of a processing apparatus for transmitting a signal according to an embodiment of the present invention
  • FIG. 4 is a structural block diagram (2) of a processing apparatus for transmitting a signal according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram (3) of a processing apparatus for transmitting a signal according to an embodiment of the present invention
  • FIG. 6 is a structural block diagram (4) of a processing apparatus for transmitting a signal according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of different groups of users multiplexed on different spatial beams based on power domain according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of image superimposition (horizontal mirroring) of a set of near-far users' signals according to QPSK modulation and 16QAM modulation, respectively, according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for processing a transmitted signal according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 Precoding each user group of the plurality of user groups served by the base station by using precoding weights to obtain a precoded signal, where each user group includes a first class user and a first user group.
  • the signal-to-noise ratio of the first type of users is greater than the signal-to-noise ratio of the second type of users;
  • the vector of the precoding weights of any user group belongs to the zero space of the first type of user channel gain coefficient matrix in other user groups.
  • the other user group is a user group other than the one of the multiple user groups;
  • step S104 the precoded signals of the plurality of user groups are added to obtain a transmission signal.
  • the user group is pre-coded using vectors of zero-space precoding weights belonging to the first type of user channel gain coefficient matrix in other user groups, and the pre-coded signals of the plurality of user groups are phased. Plus, the transmitted signal is sent for transmission.
  • the above steps are based on strong neighboring beams.
  • the channel information of the user calculates the precoding weight used by the base station to transmit the signal, thereby minimizing the interference of the signal transmitted by the base station to the user on any beam to the strong user on the other beam.
  • the strong user receiving the low power signal is effectively prevented from being interfered by the high power signal on the adjacent beam, so that the performance of the MIMO-NOMA system is effectively improved.
  • the above step S102 involves precoding each user group of the plurality of user groups served by the base station using the precoding weights.
  • the plurality of users served by the base station are used by using the precoding weights.
  • the signal of the first type user in the user group and the signal of the second type user are superimposed to generate a first symbol, and the precoding of the first symbol is obtained.
  • the weight, the precoding weight of the first symbol is used as a precoding weight for precoding each user group.
  • the process of superimposing the signal of the first type of user in the specified user group and the signal of the second type of user to generate the first symbol is based on the first power pair assigned to the first type of user.
  • the signal of one type of user is modulated to generate a second symbol
  • the signal of the second type of user is modulated according to the second power allocated to the second type of user to generate a third symbol
  • the second symbol and the third symbol are superimposed to generate a first symbol.
  • a symbol wherein the first power is less than the second power.
  • the above steps involve superimposing the second symbol and the third symbol to generate the first symbol.
  • the second symbol and the third symbol may be directly superimposed to generate the first symbol by using the superposition coding modulation.
  • Can also The second symbol and the third symbol are superimposed using a superposition coded modulation to generate a first symbol.
  • the third symbol is mirrored to obtain the mirrored symbol sequence.
  • the second symbol is superimposed and encoded with the mirrored symbol sequence to generate a first symbol.
  • the number of receive antennas of the first type of users and the second type of users is one.
  • a processing device for transmitting a signal is provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a precoding module 22 configured to use a precoding weight to serve a plurality of user groups served by a base station. Each user group in the group is precoded to obtain a precoded signal, wherein each user group includes a first type user and a second type user, and the first type of user has a signal to noise ratio greater than the second type.
  • the vector of the precoding weight of any user group belongs to the zero space of the first type of user channel gain coefficient matrix in other user groups, and the other user group is any one of the multiple user groups
  • the sending module 24 is configured to add the pre-coded signals of the plurality of user groups to obtain a transmission signal.
  • FIG. 3 is a structural block diagram (1) of a processing apparatus for transmitting a signal according to an embodiment of the present invention.
  • the apparatus includes, in addition to all the modules shown in FIG. 2, a superimposing module 26, which is set to For each user group, the signal of the first type of user in the user group and the signal of the second type of user are superimposed to generate a first symbol; the obtaining module 28 is configured to obtain a precoding weight of the first symbol, which will be A precoding weight of a symbol is used as a precoding weight for precoding each user group.
  • the superimposing module 26 further includes: a first modulating unit 262, configured to be allocated to the first type of user according to The first power modulates the signal of the first type of user to generate a second symbol; the second modulating unit 264 is configured to modulate the signal of the second type of user to generate the third symbol according to the second power allocated to the second type of user The superposition unit 266 is configured to superimpose the second symbol and the third symbol to generate the first symbol; wherein the first power is less than the second power.
  • FIG. 5 is a structural block diagram (3) of a processing apparatus for transmitting a signal according to an embodiment of the present invention.
  • the superimposing module 26 further includes: a direct superimposing unit 268 configured to use the second symbol and the third symbol.
  • the superimposition code modulation performs direct superposition to generate a first symbol;
  • the image superposition unit 270 is configured to perform superimposition of the second symbol and the third symbol using the superposition coding modulation to generate a first symbol.
  • FIG. 6 is a structural block diagram (4) of a processing apparatus for transmitting a signal according to an embodiment of the present invention.
  • the image superimposing unit 270 includes: an acquisition sub-unit 272 configured to perform mirroring processing on the third symbol, and obtain The mirrored symbol sequence; the superimposition sub-unit 274 is arranged to superimpose and encode the second symbol and the mirrored symbol sequence to generate a first symbol.
  • the number of receiving antennas of the first type of users and the second type of users are all ones.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are respectively located.
  • the first processor, the second processor, and the third processor In the first processor, the second processor, and the third processor.
  • a multi-antenna transmission method and system in a wireless communication system will be described. Assume that the number of transmit antenna ports of the base station is n T , the number of receive antenna ports per user is n R , and the number of users served by the base station is M.
  • the base station pairs the K groups of users ⁇ i N,1 ,i F,1 ⁇ , ⁇ i N,2 ,i F,2 ⁇ ,..., ⁇ i N,K ,i F,K ⁇ according to the channel conditions of the M users.
  • the group user channel gain coefficient matrix ⁇ H N,1 ,H F,1 ⁇ , ⁇ H N,2 ,H F,2 ⁇ ,..., ⁇ H N,K ,H F,K ⁇ are strongly correlated.
  • the inter-group user channel gain coefficient matrix is orthogonal or approximately orthogonal.
  • i N,1 , i F,1 , i N,2 , i F,2 , . . . , i N,K ,i F,K represent the user serial number. 0 ⁇ i N, k , i F, k ⁇ M, 1 ⁇ k ⁇ K.
  • the users i N,1 , i N,2 ,...,i N,K with relatively large norms of the channel gain coefficient matrix in each group are called strong users, and the norm of the channel gain coefficient matrix in each group is relatively small.
  • Users i F,1 ,i F,2 ,...,i F,K are called weak users.
  • H N,k , H F,k is the channel gain matrix with the behavior n R listed as n T , 1 ⁇ k ⁇ K.
  • FIG. 7 is a schematic diagram of different groups of users multiplexed on different spatial beams based on a power domain according to an embodiment of the present invention. As shown in FIG. 7, the base station pairs three sets of near-far users on different beams.
  • the symbols of the near-far two users i N, k , i F, k of the k- th group are first assigned different powers p N, k , p F, k , and then the modulation is superimposed using the superposition coding to form a signal.
  • k 1, 2, ..., K.
  • S N,k , S F,k respectively represent the signals transmitted by the base station to the two users u N, k , u F, k of the k-th group.
  • Representation symbol The modulated symbol
  • Representation symbol The modulated symbol.
  • Operator Indicates direct plus or mirrored addition using superimposed encoding.
  • And performing a superposition coding process on the first complex symbol sequence and the second complex symbol sequence, and generating the third complex symbol sequence comprises: mirroring the second complex symbol sequence to obtain the mirrored symbol sequence; and the first complex symbol sequence and the mirror image The subsequent symbol sequence is subjected to superposition coding processing to generate a third complex symbol sequence.
  • performing image processing on the second complex symbol sequence, and obtaining the mirrored symbol sequence comprises: determining a real symbol of the mirrored symbol sequence according to a real part value of the first complex symbol sequence; and according to the first complex symbol sequence The imaginary part of the value determines the imaginary part of the symbol sequence after mirroring.
  • the first complex symbol sequence and the mirrored symbol sequence are subjected to superposition coding processing, and the third complex symbol sequence is generated to include one of the following: the third complex symbol sequence is The third complex symbol sequence is P1 ⁇ x1+y1 ⁇ i+P2 ⁇ -1Xstd/2 ⁇ x2+-1Ystd/2 ⁇ y2 ⁇ i;
  • Xstd+Ystd ⁇ i is an unnormalized integer lattice constellation symbol corresponding to the first complex symbol sequence,
  • For the first power adjustment factor For the second power adjustment factor, Indicates rounding up, Indicates rounding down.
  • the method further includes: adjusting the third complex symbol sequence by adjusting the first power adjustment factor and/or the second power adjustment factor.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the number of transmit antenna ports of the base station is 2, the number of receive antenna ports per user is 1, and the number of users served by the base station is M.
  • the base station pairs two groups of near-far users ⁇ i N,1 ,i F,1 ⁇ , ⁇ i N,2 ,i F,2 ⁇ according to the matrix of the channel gain coefficients of the M users, and the intra-group user channel gain coefficient matrix ⁇ H N,1 ,H F,1 ⁇ , ⁇ H N,2 ,H F,2 ⁇ are strongly correlated, and the matrix of user channel gain coefficients between groups is orthogonal or approximately orthogonal.
  • i N,1 , i F,1 , i N,2 , i F,2 denote user numbers. 0 ⁇ i N, k , i F, k ⁇ M.
  • H N,k , H F,k is the channel gain matrix with behavior 1 and 2, 1 ⁇ k ⁇ 2.
  • the modulation symbols of the near-far two users u N, k , u F, k of the k -th group are first assigned different powers p N, k , p F, k , and then the modulations are added together to form a signal.
  • S N,k , S F,k respectively represent the signals transmitted by the base station to the two users u N, k , u F, k of the k-th group.
  • Representation symbol The modulated symbol
  • Representation symbol The modulated symbol.
  • FIG. 8 is a schematic diagram of image superimposition (horizontal mirroring) of a group of near-far users according to QPSK modulation and 16QAM modulation according to an embodiment of the present invention, as shown in FIG. 8.
  • FIG. 8 is a schematic diagram of image superimposition (horizontal mirroring) of signals of a group of near and far users according to QPSK modulation and 16QAM modulation, respectively, according to an embodiment of the present invention, specifically, according to users Schematic diagram of mirror superposition (horizontal mirroring) after 16QAM Q and PSK modulation, respectively.
  • SVD decomposition is performed on the channels H N,1 and H N, 2 of two strong users respectively.
  • k 1, 2.
  • U k is a value of 1 row and 1 column
  • ⁇ k [ ⁇ k 0]
  • V k is a matrix of 2 rows and 2 columns.
  • ⁇ k is the singular value of the channel matrix H N,k .
  • the operator H represents a conjugate transpose.
  • S is a vector of 2 rows and 1 column.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the number of transmit antenna ports of the base station is 4, the number of receive antenna ports per user is 1, and the number of users served by the base station is M.
  • the base station pairs the K groups of near-far users ⁇ i N,1 ,i F,1 ⁇ , ⁇ i N,2 ,i F,2 ⁇ ,..., ⁇ i N,K ,i according to the matrix of the channel gain coefficients of the M users.
  • the intra-group user channel gain coefficient matrix ⁇ H N,1 ,H F,1 ⁇ , ⁇ H N,2 ,H F,2 ⁇ ,..., ⁇ H N,K ,H F,K ⁇ are strongly correlated.
  • the inter-group user channel gain coefficient matrix is orthogonal or approximately orthogonal.
  • i N,1 , i F,1 , i N,2 , i F,2 , . . . , i N,K ,i F,K represent the user serial number. 0 ⁇ i N, k , i F, k ⁇ M, 1 ⁇ k ⁇ K.
  • the users i N,1 , i N,2 ,...,i N,K with relatively large channel signal-to-noise ratio in each group are called strong users, and the users with different channel signal-to-noise ratios in each group are i F,1 . i F,2 ,...,i F,K is called a weak user.
  • H N,k , H F,k is a channel gain matrix of 1 row and 4 columns, 1 ⁇ k ⁇ K.
  • the modulation symbols of the near-far two users u N, k , u F, k of the k -th group are first assigned different powers p N, k , p F, k , and then the modulations are added together to form a signal.
  • k 1, 2, ..., K.
  • S N,k , S F,k respectively represent the signals transmitted by the base station to the two users u N, k , u F, k of the k-th group.
  • Representation symbol The modulated symbol, Representation symbol The modulated symbol.
  • the strong user symbol is divided into less power, and the weak user symbol is divided into power. More.
  • Step 2 Is a matrix of (K-1) rows and 4 columns.
  • Step 3 Perform SVD decomposition and get
  • the basis of the zero space also constitutes the basis of a subspace of the zero space of the channel gain coefficient matrix H N,1 ,..., H N,k-1 , H N,k+1 ..., H N,K .
  • Step 4 performs SVD decomposition on H N,k to obtain
  • ⁇ k,1 is the singular value of the matrix H N,k .
  • V k,j is the jth column vector of V k .
  • the ideal precoding weight of the kth strong user should be V k,1 .
  • j 1, 2, ..., 5-K.
  • a 1 , a 2 ,...,a 5-K represents the vector V k,1 in the base vector The projection value on .
  • Step 6 Set the precoding weight used by the kth group of user signals
  • W k is the ideal precoding weight V k,1 in the matrix Projection unit vector on zero space.
  • the precoding weight W k used for the kth group of user signals can best match the channel of the kth group of strong users under the premise of ensuring that the kth group of user signals do not interfere with users of other groups.
  • Step 7k k+1. If k>K, go to step 8, otherwise go to step 2.
  • Step 8 ends.
  • S is a vector of 4 rows and 1 column.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the number of transmit antenna ports of the base station is 8, the number of receive antenna ports per user is 1, and the number of users served by the base station is M.
  • the base station pairs the K groups of near-far users ⁇ i N,1 ,i F,1 ⁇ , ⁇ i N,2 ,i F,2 ⁇ ,..., ⁇ i N,K ,i according to the matrix of the channel gain coefficients of the M users.
  • the intra-group user channel gain coefficient matrix ⁇ H N,1 ,H F,1 ⁇ , ⁇ H N,2 ,H F,2 ⁇ ,..., ⁇ H N,K ,H F,K ⁇ are strongly correlated.
  • the inter-group user channel gain coefficient matrix is orthogonal or approximately orthogonal.
  • i N,1 , i F,1 , i N,2 , i F,2 , . . . , i N,K ,i F,K represent the user serial number. 0 ⁇ i N, k , i F, k ⁇ M, 1 ⁇ k ⁇ K.
  • the users i N,1 , i N,2 ,...,i N,K with relatively large channel signal-to-noise ratio in each group are called strong users, and the users with different channel signal-to-noise ratios in each group are i F,1 . i F,2 ,...,i F,K is called a weak user.
  • H N,k , H F,k is a channel gain matrix of 1 row and 8 columns, 1 ⁇ k ⁇ K.
  • the modulation symbols of the near-far users u N, k , u F, k of the k -th group are first assigned different powers p N, k , p F, k , and then superimposed using superposition codes to form a signal
  • k 1, 2, ..., K.
  • S N,k , S F,k respectively represent the signals transmitted by the base station to the two users u N, k , u F, k of the k-th group.
  • Representation symbol The modulated symbol, Representation symbol The modulated symbol.
  • Step 2 Is a matrix of (K-1) rows and 8 columns.
  • Step 3 Perform SVD decomposition and get
  • the basis of the zero space also constitutes the basis of a subspace of the zero space of the channel gain coefficient matrix H N,1 ,..., H N,k-1 , H N,k+1 ..., H N,K .
  • Step 4 performs SVD decomposition on H N,k to obtain
  • ⁇ k,1 is the singular value of the matrix H N,k .
  • V k,j is the jth column vector of V k .
  • the ideal precoding weight of the kth strong user should be V k,1 .
  • j 1, 2, ..., 9-K.
  • a 1 , a 2 ,...,a 9-K denotes a vector V k,1 in the basis vector The projection value on.
  • Step 6 Set the precoding weight used by the kth group of user signals
  • W k is the ideal precoding weight V k,1 in the matrix Projection unit vector on zero space.
  • the precoding weight W k used for the kth group of user signals can best match the channel of the kth group of strong users under the premise of ensuring that the kth group of user signals do not interfere with users of other groups.
  • Step 7k k+1. If k>K, go to step 8, otherwise go to step 2.
  • Step 8 ends.
  • S is a vector of 8 rows and 1 column.
  • a multi-antenna transmission method and system in a wireless communication system solves the problem that a low-power of a signal received by a strong user on any beam may cause a strong user to be easily
  • the problem of severe interference of adjacent beams effectively prevents strong users receiving low-power signals from being interfered by high-power signals on adjacent beams, thereby effectively improving the performance of the MIMO-NOMA system.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • each of the plurality of user groups served by the base station is precoded by using the precoding weight to obtain a precoded signal, where each user group includes the first class.
  • the user and the second type of user the first type of user has a higher signal to noise ratio than the second type of user;
  • the vector of the precoding weight of any user group belongs to the first type of user channel gain coefficient matrix in other user groups Zero space, the other user group is a user group other than the one of the user groups; the pre-coded signals of the multiple user groups are added to obtain a transmission signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种发送信号的处理方法及装置,其中,该方法包括:使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,每个用户组中包括第一类用户和第二类用户,第一类用户的信噪比大于第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间;将多个用户组预编码后的信号进行相加,得到发送信号。通过本发明解决了相关技术中强用户的低功率信号被相邻弱用户的强功率信号干扰的问题,有效避免了接收低功率信号的强用户被相邻波束上高功率信号所干扰,从而使得MIMO-NOMA系统的性能得到有效提高。

Description

发送信号的处理方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及发送信号的处理方法及装置。
背景技术
随着当代社会对信息交换的需求越来越迫切,人们对无线通信网络的高速率、高容量有了更高的要求。人们开始尝试在现有正交多址接入技术(Orthogonal Multiple Access,简称为OMA)的基础上引入非正交多址接入技术(None Orthogonal Multiple Access,简称为NOMA),以获得更高的性能和更佳的弱用户体验。NOMA技术通过对距离基站较近的强用户和距离基站较远的弱用户采用不同的功率来发射信号,来达到在功率域上复用用户的目的。目前的仿真结果表明,NOMA相对正交频分多址(Orthogonal Frequency Division Multiple Access,简称为OFDMA)等正交多址接入技术在系统性能提高和弱用户体验提升方面有明显的作用。
近年来,有提出在多输入多输出(Multiple Input Multiple Output,简称为MIMO)所发的随机正交波束的每一波束上基于NOMA技术对多个用户进行功率复用的方案。该方案试图在MIMO空间域正交复用的基础上再加以功率域的非正交复用,以达到提高系统容量的目的。但该方案存在一个明显的缺陷问题是:一个随机波束上的强用户所接收的低功率信号由于很可能会受到相邻波束上强功率信号的严重干扰,而无法解析出基站发射给自己的信号。
这是由于随机波束具有一定的宽度,并不是完全正交,随机波束之间很可能会相互干扰。而根据NOMA技术的特性,强用户接收的信号功率相对弱用户接收的信号功率很低。如果强用户和弱用户在同一波束上,基站发射给强用户和弱用户的信号所采用的预编码权值是完全相同的,所以虽然从空间域上无法将基站发射给强用户和弱用户的信号分离开来,但可以通过串行干扰消除(Successive Interference Cancellation,简称为SIC)技术将强用户的信号剥离出来。而如果强用户和弱用户在不同波束上时,由于基站发射给强用户和弱用户的信号所采用的预编码权值是不相同的,强用户和弱用户只能利用所在波束的正交特性将彼此的信号分开。但由于随机波束存在一定的宽度,不同随机波束之间相互有重叠,常常在空间上并不是完全正交。强用户和弱用户很容易位于不完全正交的随机波束里。此时,对于接收到高功率信号的弱用户而言,基站发射给强用户的信号由于功率低对自己的影响很小,因此还可以将自己所接收的信号解析出来。但对于强用户而言,相邻波束上的弱用户所接收到高功率信号对自己所接收到的低功率信号是一个很严重的干扰,会使得自己所接收的信号无法正常解析出来。
针对相关技术中,强用户的低功率信号被相邻弱用户的强功率信号干扰的问题,还未提出有效的解决方案。
发明内容
本发明实施例提供了一种发送信号的处理方法及装置,以至少解决相关技术中强用户的低功率信号被相邻弱用户的强功率信号干扰的问题。
根据本发明实施例的一个方面,提供了一种发送信号的处理方法,包括:使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,上述每个用户组中包括一个第一类用户和一个第二类用户,上述第一类用户的信噪比大于上述第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,上述其他用户组为上述多个用户组中除上述任一用户组之外的用户组;将上述多个用户组的上述预编码后的信号进行相加,得到发送信号。
可选地,使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码之前包括:对于每个用户组,将用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号;获取上述第一符号的预编码权值,将上述第一符号的预编码权值作为对上述每个用户组进行预编码的预编码权值。
可选地,将指定用户组中的上述第一类用户的信号和上述第二类用户的信号进行叠加生成第一符号包括:根据分配给上述第一类用户的第一功率对上述第一类用户的信号进行调制生成第二符号;根据分配给上述第二类用户的第二功率将上述第二类用户的信号进行调制生成第三符号;将上述第二符号和上述第三符号进行叠加生成上述第一符号;其中,上述第一功率小于上述第二功率。
可选地,将上述第二符号和上述第三符号进行叠加生成上述第一符号包括以下之一:将上述第二符号和上述第三符号使用叠加编码调制进行直接叠加生成上述第一符号;将上述第二符号和上述第三符号使用叠加编码调制进行镜像叠加生成上述第一符号。
可选地,将上述第二符号和上述第三符号使用叠加编码调制进行镜像叠加生成上述第一符号包括:对上述第三符号进行镜像处理,获取镜像后的符号序列;将上述第二符号与上述镜像后的符号序列进行叠加编码处理,生成上述第一符号。
可选地,上述第一类用户和上述第二类用户的接收天线数目均为1。
根据本发明实施例的另一个方面,还提供了一种发送信号的处理装置,包括:预编码模块,被设置为使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,上述每个用户组中包括一个第一类用户和一个第二类用户,上述第一类用户的信噪比大于上述第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,上述其他用户组为上述多个用户组中除上述任一用户组之外的用户组;发送模块,被设置为将上述多个用户组的上述预编码后的信号进行相加,得到发送信号。
可选地,上述装置还包括:叠加模块,被设置为对于每个用户组,将用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号;获取模块,被设置为获取上述第一 符号的预编码权值,将上述第一符号的预编码权值作为对上述每个用户组进行预编码的预编码权值。
可选地,上述叠加模块还包括:第一调制单元,被设置为根据分配给上述第一类用户的第一功率对上述第一类用户的信号进行调制生成第二符号;第二调制单元,被设置为根据分配给上述第二类用户的第二功率将上述第二类用户的信号进行调制生成第三符号;叠加单元,被设置为将上述第二符号和上述第三符号进行叠加生成上述第一符号;其中,上述第一功率小于上述第二功率。
可选地,上述叠加模块还包括:直接叠加单元,被设置为将上述第二符号和上述第三符号使用叠加编码调制进行直接叠加生成上述第一符号;镜像叠加单元,被设置为将上述第二符号和上述第三符号使用叠加编码调制进行镜像叠加生成上述第一符号。
可选地,上述镜像叠加单元包括:获取次单元,被设置为对上述第三符号进行镜像处理,获取镜像后的符号序列;叠加次单元,被设置为将上述第二符号与上述镜像后的符号序列进行叠加编码处理,生成上述第一符号。
可选地,上述第一类用户和上述第二类用户的接收天线数目均为1。
通过本发明实施例,采用使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,每个用户组中包括第一类用户和第二类用户,第一类用户的信噪比大于第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,该其他用户组为多个用户组中除该任一用户组之外的用户组;将多个用户组的该预编码后的信号进行相加,得到发送信号。解决了相关技术中强用户的低功率信号被相邻弱用户的强功率信号干扰的问题,有效避免了接收低功率信号的强用户被相邻波束上高功率信号所干扰,从而使得MIMO-NOMA系统的性能得到有效提高。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的发送信号的处理方法的流程图;
图2是根据本发明实施例的发送信号的处理装置的结构框图;
图3是根据本发明实施例的发送信号的处理装置的结构框图(一);
图4是根据本发明实施例的发送信号的处理装置的结构框图(二);
图5是根据本发明实施例的发送信号的处理装置的结构框图(三);
图6是根据本发明实施例的发送信号的处理装置的结构框图(四);
图7是根据本发明实施例的不同组的用户基于功率域复用在不同的空间波束上的示意图;
图8是根据本发明实施例的一组远近用户的信号分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种发送信号的处理方法,图1是根据本发明实施例的发送信号的处理方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,每个用户组中包括一个第一类用户和一个第二类用户,第一类用户的信噪比大于第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,该其他用户组为该多个用户组中除该任一用户组之外的用户组;
步骤S104,将多个用户组的预编码后的信号进行相加,得到发送信号。
通过上述步骤,使用属于其他用户组中的第一类用户信道增益系数矩阵的零空间的预编码权值的矢量对该用户组进行预编码,将多个用户组的预编码后的信号进行相加,得到发送信号进行发送,相比于相关技术中,由于任一波束上强用户所接收信号的低功率会导致强用户易被相邻波束严重干扰,上述步骤基于相邻若干波束上的强用户的信道信息计算基站发射信号所采用的预编码权值,从而尽量降低基站发射给任一波束上用户的信号对其他波束上的强用户的干扰。有效的避免了接收低功率信号的强用户被相邻波束上高功率信号所干扰,从而使得MIMO-NOMA系统的性能得到有效提高。
上述步骤S102涉及到使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,在一个可选实施例中,使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码之前,对于每个用户组,将用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号,获取第一符号的预编码权值,将第一符号的预编码权值作为对每个用户组进行预编码的预编码权值。
在一个可选实施例中,将指定用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号的过程为,根据分配给第一类用户的第一功率对第一类用户的信号进行调制生成第二符号,根据分配给第二类用户的第二功率将第二类用户的信号进行调制生成第三符号,将第二符号和第三符号进行叠加生成第一符号,其中,第一功率小于第二功率。从而通过对每组用户中的第一类用户的信号和第二类用户的信号进行处理得到了上述的第一符号。
上述步骤中涉及到对第二符号和第三符号进行叠加处理生成第一符号,在一个可选实施例中,可以将第二符号和第三符号使用叠加编码调制进行直接叠加生成第一符号,也可以将 第二符号和第三符号使用叠加编码调制进行镜像叠加生成第一符号。
在上述步骤涉及到使用镜像叠加处理将第二符号和第三符号进行叠加生成第一符号的过程中,在一个可选实施例中,对第三符号进行镜像处理,获取镜像后的符号序列,将第二符号与镜像后的符号序列进行叠加编码处理,生成第一符号。
在一个可选实施例中,第一类用户和第二类用户的接收天线数目均为1。
在本实施例中还提供了一种发送信号的处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的发送信号的处理装置的结构框图,如图2所示,该装置包括:预编码模块22,被设置为使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,每个用户组中包括一个第一类用户和一个第二类用户,第一类用户的信噪比大于该第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,该其他用户组为该多个用户组中除该任一用户组之外的用户组;发送模块24,被设置为将多个用户组的该预编码后的信号进行相加,得到发送信号。
图3是根据本发明实施例的发送信号的处理装置的结构框图(一),如图3所示,该装置除包括图2所示的所有模块外,还包括:叠加模块26,被设置为对于每个用户组,将用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号;获取模块28,被设置为获取第一符号的预编码权值,将第一符号的预编码权值作为对每个用户组进行预编码的预编码权值。
图4是根据本发明实施例的发送信号的处理装置的结构框图(二),如图4所示,叠加模块26还包括:第一调制单元262,被设置为根据分配给第一类用户的第一功率对第一类用户的信号进行调制生成第二符号;第二调制单元264,被设置为根据分配给第二类用户的第二功率将第二类用户的信号进行调制生成第三符号;叠加单元266,被设置为将第二符号和第三符号进行叠加生成该第一符号;其中,第一功率小于第二功率。
图5是根据本发明实施例的发送信号的处理装置的结构框图(三),如图5所示,叠加模块26还包括:直接叠加单元268,被设置为将第二符号和第三符号使用叠加编码调制进行直接叠加生成第一符号;镜像叠加单元270,被设置为将第二符号和第三符号使用叠加编码调制进行镜像叠加生成第一符号。
图6是根据本发明实施例的发送信号的处理装置的结构框图(四),如图6所示,镜像叠加单元270包括:获取次单元272,被设置为对第三符号进行镜像处理,获取镜像后的符号序列;叠加次单元274,被设置为将第二符号与该镜像后的符号序列进行叠加编码处理,生成第一符号。
可选地,第一类用户和第二类用户的接收天线数目均为1。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模块分别位于第一处理器、第二处理器和第三处理器…中。
针对相关技术中存在的上述问题,下面结合可选实施例进行说明,在本可选实施例中结合了上述可选实施例及其可选实施方式。
在本可选实施例中,将要描述的是在无线通信系统中的一种多天线传输方法及系统。假设基站的发射天线端口数目为nT,每个用户的接收天线端口数目为nR,基站服务的用户数目为M。
第一步:
基站根据M个用户的信道情况配对出K组用户{iN,1,iF,1},{iN,2,iF,2},…,{iN,K,iF,K},组内用户信道增益系数矩阵{HN,1,HF,1},{HN,2,HF,2},…,{HN,K,HF,K}两两强相关,而组间用户信道增益系数矩阵正交或者近似正交。这里,iN,1,iF,1,iN,2,iF,2,…,iN,K,iF,K表示用户序号。0≤iN,k,iF,k≤M,1≤k≤K。
每组中信道增益系数矩阵的范数相对较大的用户iN,1,iN,2,…,iN,K称为强用户,每组中信道增益系数矩阵的范数相对较小的用户iF,1,iF,2,…,iF,K称为弱用户。HN,k,HF,k是行为nR列为nT的信道增益矩阵,1≤k≤K。
图7是根据本发明实施例的不同组的用户基于功率域复用在不同的空间波束上的示意图,如图7所示,基站配对出3组近远用户在不同的波束上。
第二步:
对第k组的近远两个用户iN,k,iF,k的符号先分配不同的功率pN,k,pF,k,然后调制使用叠加编码叠加在一起,形成信号
Figure PCTCN2015089000-appb-000001
Figure PCTCN2015089000-appb-000002
       式1
这里,k=1,2,…,K。SN,k,SF,k分别表示基站对第k组的近远两个用户uN,k,uF,k所发射的信号。
Figure PCTCN2015089000-appb-000003
表示符号
Figure PCTCN2015089000-appb-000004
经过调制后的符号,
Figure PCTCN2015089000-appb-000005
表示符号
Figure PCTCN2015089000-appb-000006
经过调制后的符号。运算符
Figure PCTCN2015089000-appb-000007
表示使用叠加编码的直接加或者镜像加。
在为两个用户的符号分配功率时,强用户符号分得的功率较少,弱用户符号分得的功率较多。
采用第一复数符号序列与第二复数符号序列进行叠加编码处理,生成第三复数符号序列包括:对第二复数符号序列进行镜像处理,获取镜像后的符号序列;将第一复数符号序列与镜像后的符号序列进行叠加编码处理,生成第三复数符号序列。
可选地,对第二复数符号序列进行镜像处理,获取镜像后的符号序列包括:根据第一复数符号序列的实部取值确定镜像后的符号序列的实部符号;根据第一复数符号序列的虚部取值确定镜像后的符号序列的虚部符号。
可选地,将第一复数符号序列与镜像后的符号序列进行叠加编码处理,生成第三复数符号序列包括以下之一:第三复数符号序列为
Figure PCTCN2015089000-appb-000008
Figure PCTCN2015089000-appb-000009
第三复数符号序列为P1·x1+y1·i+P2·-1Xstd/2·x2+-1Ystd/2·y2·i;其中,
Figure PCTCN2015089000-appb-000010
为第一复数符号序列,
Figure PCTCN2015089000-appb-000011
为第二复数符号序列,
Figure PCTCN2015089000-appb-000012
Figure PCTCN2015089000-appb-000013
或者
Figure PCTCN2015089000-appb-000014
为镜像后的符号序列,Xstd+Ystd·i为与第一复数符号序列对应的未归一化的整数格点星座符号,
Figure PCTCN2015089000-appb-000015
为第一功率调整因子,
Figure PCTCN2015089000-appb-000016
为第二功率调整因子,
Figure PCTCN2015089000-appb-000017
表示向上取整,
Figure PCTCN2015089000-appb-000018
表示向下取整。
可选地,在生成第三复数符号序列之后,还包括:通过调整第一功率调整因子和/或第二功率调整因子对第三复数符号序列进行调整。
第三步:
基于K个强用户的信道HN,1,HN,2,…,HN,K计算K个用户组{uN,1,uF,1},{uN,2,uF,2},…,{uN,K,uF,K}所分别对应的预编码权值W1,W2,…,WK。这里,Wk是行为nT列为rk的预编码权值矩阵,1≤k≤K,1≤rk≤nT,rk表示预编码权值的秩。且对于任意的k,l,k≠l,1≤k,l≤K满足:
HN,kWl=0         式1
第四步:
基站对第k组的信号
Figure PCTCN2015089000-appb-000019
基于预编码权值Wk进行预编码得到信号
Figure PCTCN2015089000-appb-000020
k=1,2,…,K。然后将所有组经过预编码后的信号相加得到信号S,通过nT个发射天线端口将信号S发射出去。S是一个行为nT的矢量。
Figure PCTCN2015089000-appb-000021
        式2
基于式1和式2可得
Figure PCTCN2015089000-appb-000022
      式3
实施例一:
基站的发射天线端口数目为2,每个用户的接收天线端口数目为1,基站服务的用户数目为M。
第一步:
基站根据M个用户的信道增益系数矩阵配对出2组近远用户{iN,1,iF,1},{iN,2,iF,2},组内用 户信道增益系数矩阵{HN,1,HF,1},{HN,2,HF,2}两两强相关,而组间用户信道增益系数矩阵正交或者近似正交。这里,iN,1,iF,1,iN,2,iF,2表示用户序号。0≤iN,k,iF,k≤M。
每组中信道信噪比相对较大的用户iN,1,iN,2称为强用户,每组中信道信噪比相对较小的用户iF,1,iF,2称为弱用户。HN,k,HF,k是行为1列为2的信道增益矩阵,1≤k≤2。
第二步:
对第k组的近远两个用户uN,k,uF,k的调制符号先分配不同的功率pN,k,pF,k,然后调制相加在一起,形成信号
Figure PCTCN2015089000-appb-000023
Figure PCTCN2015089000-appb-000024
       式4
这里,k=1,2。SN,k,SF,k分别表示基站对第k组的近远两个用户uN,k,uF,k所发射的信号。
Figure PCTCN2015089000-appb-000025
表示符号
Figure PCTCN2015089000-appb-000026
经过调制后的符号,
Figure PCTCN2015089000-appb-000027
表示符号
Figure PCTCN2015089000-appb-000028
经过调制后的符号。
或者基于镜像相加的叠加编码将两个用户uN,k,uF,k的信号叠加起来形成信号
Figure PCTCN2015089000-appb-000029
图8是根据本发明实施例的一组远近用户的信号分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图,具体做法如图8所示。这里,设
Figure PCTCN2015089000-appb-000030
图8是根据本发明实施例的一组远近用户的信号分别按QPSK调制和16QAM调制后镜像叠加(水平镜像)的示意图,具体地,为根据用户
Figure PCTCN2015089000-appb-000031
分别按16QAM Q和PSK调制后镜像叠加(水平镜像)的示意图。首先作镜像,假如当S1星座点为‘10’时,Sstd符号为-1+i,即Xstd=-1,Ystd=1。所以求得S为(-x2+y2i),相当于是S2的水平镜像。完成镜像步骤后,其次作叠加,符号S1和镜像后的符号S直接叠加,得到叠加后的符号S3
在为两个用户的调制符号分配功率时,强用户符号分得功率较少,弱用户符号分得功率较多。
第三步:
对2个强用户的信道HN,1和HN,2分别进行SVD分解,得到
HN,k=UkΣkVk H        式5
这里,k=1,2。Uk是1行1列的数值,Σk=[σk 0],Vk是2行2列的矩阵。σk是信道矩阵HN,k的奇异值。运算符H表示共轭转置。Vk,j是Vk的第j列矢量,j=1,2。显然,
HN,kVk,2=UkΣkVk HVk,2=0       式6
为了消除不同波束之间的信号干扰,设置第1组的用户{iN,1,iF,1}的预编码权值矩阵
W1=V2,2         式7
W2=V1,2        式8
这样就可以满足式1,即HN,1W2=0,HN,2W1=0。
第四步:
基站对第k组的信号
Figure PCTCN2015089000-appb-000032
基于预编码权值Wk进行预编码得到信号
Figure PCTCN2015089000-appb-000033
k=1,2。然后将所有组经过预编码后的信号相加得到信号S,通过nT个发射天线端口将信号S发射出去。这里,S是一个2行1列的矢量。
Figure PCTCN2015089000-appb-000034
        式9
进一步地,
Figure PCTCN2015089000-appb-000035
     式10
实施例二:
基站的发射天线端口数目为4,每个用户的接收天线端口数目为1,基站服务的用户数目为M。
第一步:
基站根据M个用户的信道增益系数矩阵配对出K组近远用户{iN,1,iF,1},{iN,2,iF,2},…,{iN,K,iF,K},K≤4。组内用户信道增益系数矩阵{HN,1,HF,1},{HN,2,HF,2},…,{HN,K,HF,K}两两强相关,而组间用户信道增益系数矩阵正交或者近似正交。这里,iN,1,iF,1,iN,2,iF,2,…,iN,K,iF,K表示用户序号。0≤iN,k,iF,k≤M,1≤k≤K。
每组中信道信噪比相对较大的用户iN,1,iN,2,…,iN,K称为强用户,每组中信道信噪比相对较小的用户iF,1,iF,2,…,iF,K称为弱用户。HN,k,HF,k是1行4列的信道增益矩阵,1≤k≤K。
第二步:
对第k组的近远两个用户uN,k,uF,k的调制符号先分配不同的功率pN,k,pF,k,然后调制相加在一起,形成信号
Figure PCTCN2015089000-appb-000036
Figure PCTCN2015089000-appb-000037
        式11
这里,k=1,2,…,K。SN,k,SF,k分别表示基站对第k组的近远两个用户uN,k,uF,k所发射的信号。
Figure PCTCN2015089000-appb-000038
表示符号
Figure PCTCN2015089000-appb-000039
经过调制后的符号,
Figure PCTCN2015089000-appb-000040
表示符号
Figure PCTCN2015089000-appb-000041
经过调制后的符号。
或者基于镜像相加的叠加编码将两个用户uN,k,uF,k的信号
Figure PCTCN2015089000-appb-000042
叠加起来形成信号
Figure PCTCN2015089000-appb-000043
具体做法如图2所示。请参见实施例一的说明。
在为两个用户的调制符号分配功率时,强用户符号分得功率较少,弱用户符号分得功率 较多。
第三步:
计算各个用户组信号所使用的预编码权值W1,W2,…,WK,具体算法如下:
步骤1取k=1。
步骤2取
Figure PCTCN2015089000-appb-000044
Figure PCTCN2015089000-appb-000045
是一个(K-1)行4列的矩阵。
步骤3对
Figure PCTCN2015089000-appb-000046
进行SVD分解,得到
Figure PCTCN2015089000-appb-000047
          式12
Figure PCTCN2015089000-appb-000048
是(K-1)行1列的矢量。
Figure PCTCN2015089000-appb-000049
是(K-1)行4列的矩阵。
Figure PCTCN2015089000-appb-000050
是4行4列的矩阵。
Figure PCTCN2015089000-appb-000051
Figure PCTCN2015089000-appb-000052
的(K-1)个奇异值。
Figure PCTCN2015089000-appb-000053
Figure PCTCN2015089000-appb-000054
的第j列矢量,j=1,2,3,4。显然,对于列矢量
Figure PCTCN2015089000-appb-000055
Figure PCTCN2015089000-appb-000056
        式13
Figure PCTCN2015089000-appb-000057
         式14
这里,K≤j≤4,1≤k,l≤K,k≠l。可见,列矢量
Figure PCTCN2015089000-appb-000058
构成了矩阵
Figure PCTCN2015089000-appb-000059
的零空间的基,也构成了信道增益系数矩阵HN,1,…,HN,k-1,HN,k+1…,HN,K的零空间的一个子空间的基。
步骤4对HN,k进行SVD分解,得到
HN,k=UkΣkVk H          式15
Uk是1行1列的数值uk,1,Σk=[σk,1 0 0 0],Vk是4行4列的矩阵。σk,1是矩阵HN,k的奇异值。Vk,j是Vk的第j列矢量。显然
Figure PCTCN2015089000-appb-000060
       式16
所以,第k组强用户的理想预编码权值应为Vk,1
步骤5计算
Figure PCTCN2015089000-appb-000061
        式17
这里,j=1,2,…,5-K。a1,a2,…,a5-K表示矢量Vk,1在基矢量
Figure PCTCN2015089000-appb-000062
上的 投影值。
步骤6设置第k组用户信号所采用的预编码权值
Figure PCTCN2015089000-appb-000063
    式18
这里,Wk是理想预编码权值Vk,1在矩阵
Figure PCTCN2015089000-appb-000064
的零空间上的投影单位矢量。
这样,对第k组用户信号所采用的预编码权值Wk,可以在保障第k组用户信号对其他组的用户没有干扰的前提下,最切合第k组强用户的信道。
步骤7k=k+1。若k>K,则转到步骤8,否则转到步骤2。
步骤8结束。
第四步:
基站对第k组的信号
Figure PCTCN2015089000-appb-000065
基于预编码权值Wk进行预编码得到信号
Figure PCTCN2015089000-appb-000066
k=1,2,…,K。然后将所有组经过预编码后的信号相加得到信号S,通过4个发射天线端口将信号S发射出去。这里,S是一个4行1列的矢量。
Figure PCTCN2015089000-appb-000067
           式19
进一步的,
Figure PCTCN2015089000-appb-000068
       式20
实施例三:
基站的发射天线端口数目为8,每个用户的接收天线端口数目为1,基站服务的用户数目为M。
第一步:
基站根据M个用户的信道增益系数矩阵配对出K组近远用户{iN,1,iF,1},{iN,2,iF,2},…,{iN,K,iF,K},K≤8。组内用户信道增益系数矩阵{HN,1,HF,1},{HN,2,HF,2},…,{HN,K,HF,K}两两强相关,而组间用户信道增益系数矩阵正交或者近似正交。这里,iN,1,iF,1,iN,2,iF,2,…,iN,K,iF,K表示用户序号。0≤iN,k,iF,k≤M,1≤k≤K。
每组中信道信噪比相对较大的用户iN,1,iN,2,…,iN,K称为强用户,每组中信道信噪比相对较小的用户iF,1,iF,2,…,iF,K称为弱用户。HN,k,HF,k是1行8列的信道增益矩阵,1≤k≤K。
第二步:
对第k组的近远两个用户uN,k,uF,k的调制符号先分配不同的功率pN,k,pF,k,然后使用叠加 编码叠加在一起,形成信号
Figure PCTCN2015089000-appb-000069
Figure PCTCN2015089000-appb-000070
      式21
这里,k=1,2,…,K。SN,k,SF,k分别表示基站对第k组的近远两个用户uN,k,uF,k所发射的信号。
Figure PCTCN2015089000-appb-000071
表示符号
Figure PCTCN2015089000-appb-000072
经过调制后的符号,
Figure PCTCN2015089000-appb-000073
表示符号
Figure PCTCN2015089000-appb-000074
经过调制后的符号。
在为两个用户的调制符号分配功率时,强用户符号分得功率较少,弱用户符号分得功率较多。
或者基于镜像相加的叠加编码将两个用户uN,k,uF,k的信号
Figure PCTCN2015089000-appb-000075
叠加起来形成信号
Figure PCTCN2015089000-appb-000076
具体做法如图8所示。请参见实施例一的说明。
第三步:
计算各个用户组信号所使用的预编码权值W1,W2,…,WK,具体算法如下:
步骤1取k=1。
步骤2取
Figure PCTCN2015089000-appb-000077
Figure PCTCN2015089000-appb-000078
是一个(K-1)行8列的矩阵。
步骤3对
Figure PCTCN2015089000-appb-000079
进行SVD分解,得到
Figure PCTCN2015089000-appb-000080
         式22
Figure PCTCN2015089000-appb-000081
是(K-1)行1列的矢量。
Figure PCTCN2015089000-appb-000082
Figure PCTCN2015089000-appb-000083
是(K-1)行8列的矩阵。
Figure PCTCN2015089000-appb-000084
是8行8列的矩阵。
Figure PCTCN2015089000-appb-000085
Figure PCTCN2015089000-appb-000086
的(K-1)个奇异值。
Figure PCTCN2015089000-appb-000087
Figure PCTCN2015089000-appb-000088
的第j列矢量,j=1,2,…,8。显然,对于列矢量
Figure PCTCN2015089000-appb-000089
Figure PCTCN2015089000-appb-000090
        式23
Figure PCTCN2015089000-appb-000091
        式24
这里,K≤j≤4,1≤k,l≤K,k≠l。可见,列矢量
Figure PCTCN2015089000-appb-000092
构成了矩阵
Figure PCTCN2015089000-appb-000093
的零空间的基,也构成了信道增益系数矩阵HN,1,…,HN,k-1,HN,k+1…,HN,K的零空间的一个子空间的基。
步骤4对HN,k进行SVD分解,得到
HN,k=UkΣkVk H        式25
Uk是1行1列的数值uk,1,Σk=[σk,1 0 0 0],Vk是8行8列的矩阵。σk,1是矩阵HN,k的奇异值。Vk,j是Vk的第j列矢量。显然
Figure PCTCN2015089000-appb-000094
       式26
所以,第k组强用户的理想预编码权值应为Vk,1
步骤5计算
Figure PCTCN2015089000-appb-000095
       式27
这里,j=1,2,…,9-K。a1,a2,…,a9-K表示矢量Vk,1在基矢量
Figure PCTCN2015089000-appb-000096
上的投影值。
步骤6设置第k组用户信号所采用的预编码权值
Figure PCTCN2015089000-appb-000097
      式28
这里,Wk是理想预编码权值Vk,1在矩阵
Figure PCTCN2015089000-appb-000098
的零空间上的投影单位矢量。
这样,对第k组用户信号所采用的预编码权值Wk,可以在保障第k组用户信号对其他组的用户没有干扰的前提下,最切合第k组强用户的信道。
步骤7k=k+1。若k>K,则转到步骤8,否则转到步骤2。
步骤8结束。
第四步:
基站对第k组的信号
Figure PCTCN2015089000-appb-000099
基于预编码权值Wk进行预编码得到信号
Figure PCTCN2015089000-appb-000100
k=1,2,…,K。然后将所有组经过预编码后的信号相加得到信号S,通过8个发射天线端口将信号S发射出去。这里,S是一个8行1列的矢量。
Figure PCTCN2015089000-appb-000101
           式29
进一步的,
Figure PCTCN2015089000-appb-000102
     式30
综上所述,通过本发明实施例提供的无线通信系统中的一种多天线传输方法及系统,解决了相关技术中由于任一波束上强用户所接收信号的低功率会导致强用户易被相邻波束严重干扰的问题,有效的避免了接收低功率信号的强用户被相邻波束上高功率信号所干扰,从而使得MIMO-NOMA系统的性能得到有效提高。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例中,采用使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,每个用户组中包括第一类用户和第二类用户,第一类用户的信噪比大于第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,该其他用户组为多个用户组中除该任一用户组之外的用户组;将多个用户组的该预编码后的信号进行相加,得到发送信号。解决了相关技术中强用户的低功率信号被相邻弱用户的强功率信号干扰的问题,有效避免了接收低功率信号的强用户被相邻波束上高功率信号所干扰,从而使得MIMO-NOMA系统的性能得到有效提高。

Claims (12)

  1. 一种发送信号的处理方法,包括:
    使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,所述每个用户组中包括一个第一类用户和一个第二类用户,所述第一类用户的信噪比大于所述第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,所述其他用户组为所述多个用户组中除所述任一用户组之外的用户组;
    将所述多个用户组的所述预编码后的信号进行相加,得到发送信号。
  2. 根据权利要求1所述的方法,其中,使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码之前包括:
    对于每个用户组,将用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号;
    获取所述第一符号的预编码权值,将所述第一符号的预编码权值作为对所述每个用户组进行预编码的预编码权值。
  3. 根据权利要求2所述的方法,其中,将指定用户组中的所述第一类用户的信号和所述第二类用户的信号进行叠加生成第一符号包括:
    根据分配给所述第一类用户的第一功率对所述第一类用户的信号进行调制生成第二符号;
    根据分配给所述第二类用户的第二功率将所述第二类用户的信号进行调制生成第三符号;
    将所述第二符号和所述第三符号进行叠加生成所述第一符号;
    其中,所述第一功率小于所述第二功率。
  4. 根据权利要求3所述的方法,其中,将所述第二符号和所述第三符号进行叠加生成所述第一符号包括以下之一:
    将所述第二符号和所述第三符号使用叠加编码调制进行直接叠加生成所述第一符号;
    将所述第二符号和所述第三符号使用叠加编码调制进行镜像叠加生成所述第一符号。
  5. 根据权利要求4所述的方法,其中,将所述第二符号和所述第三符号使用叠加编码调制进行镜像叠加生成所述第一符号包括:
    对所述第三符号进行镜像处理,获取镜像后的符号序列;
    将所述第二符号与所述镜像后的符号序列进行叠加编码处理,生成所述第一符号。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述第一类用户和所述第二类用户的 接收天线数目均为1。
  7. 一种发送信号的处理装置,包括:
    预编码模块,被设置为使用预编码权值对基站所服务的多个用户组中的每个用户组进行预编码,得到预编码后的信号,其中,所述每个用户组中包括一个第一类用户和一个第二类用户,所述第一类用户的信噪比大于所述第二类用户的信噪比;任一用户组的预编码权值的矢量属于其他用户组中的第一类用户信道增益系数矩阵的零空间,所述其他用户组为所述多个用户组中除所述任一用户组之外的用户组;
    发送模块,被设置为将所述多个用户组的所述预编码后的信号进行相加,得到发送信号。
  8. 根据权利要求7所述的装置,其中,所述装置还包括:
    叠加模块,被设置为对于每个用户组,将用户组中的第一类用户的信号和第二类用户的信号进行叠加生成第一符号;
    获取模块,被设置为获取所述第一符号的预编码权值,将所述第一符号的预编码权值作为对所述每个用户组进行预编码的预编码权值。
  9. 根据权利要求8所述的装置,其中,所述叠加模块还包括:
    第一调制单元,被设置为根据分配给所述第一类用户的第一功率对所述第一类用户的信号进行调制生成第二符号;
    第二调制单元,被设置为根据分配给所述第二类用户的第二功率将所述第二类用户的信号进行调制生成第三符号;
    叠加单元,被设置为将所述第二符号和所述第三符号进行叠加生成所述第一符号;
    其中,所述第一功率小于所述第二功率。
  10. 根据权利要求9所述的装置,其中,所述叠加模块还包括:
    直接叠加单元,被设置为将所述第二符号和所述第三符号使用叠加编码调制进行直接叠加生成所述第一符号;
    镜像叠加单元,被设置为将所述第二符号和所述第三符号使用叠加编码调制进行镜像叠加生成所述第一符号。
  11. 根据权利要求9所述的装置,其中,所述镜像叠加单元包括:
    获取次单元,被设置为对所述第三符号进行镜像处理,获取镜像后的符号序列;
    叠加次单元,被设置为将所述第二符号与所述镜像后的符号序列进行叠加编码处理,生成所述第一符号。
  12. 根据权利要求7至11中任一项所述的装置,其中,所述第一类用户和所述第二类用户的接收天线数目均为1。
PCT/CN2015/089000 2015-01-30 2015-09-06 发送信号的处理方法及装置 WO2016119463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510054353.4A CN105991219B (zh) 2015-01-30 2015-01-30 发送信号的处理方法及装置
CN201510054353.4 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016119463A1 true WO2016119463A1 (zh) 2016-08-04

Family

ID=56542327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089000 WO2016119463A1 (zh) 2015-01-30 2015-09-06 发送信号的处理方法及装置

Country Status (2)

Country Link
CN (1) CN105991219B (zh)
WO (1) WO2016119463A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690180A (zh) * 2016-08-05 2018-02-13 王晋良 功率分配方法以及使用所述方法的基站
TWI628969B (zh) * 2017-02-14 2018-07-01 國立清華大學 聯合用戶分組與功率分配方法以及使用所述方法的基地台
CN114244404A (zh) * 2021-12-02 2022-03-25 西安电子科技大学 一种双向非正交协作传输方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788651B (zh) * 2017-01-22 2020-05-22 西安交通大学 基于非正交多址接入的多地理区域广播系统的信息传输方法
CN107889124B (zh) * 2017-12-04 2020-10-16 南京邮电大学 一种基于非正交多址接入的洪涝监测数据传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453259A (zh) * 2007-12-03 2009-06-10 株式会社Ntt都科摩 一种多输入多输出系统的预编码传输方法
CN102594486A (zh) * 2011-01-04 2012-07-18 中国移动通信集团公司 抑制多用户间干扰的方法和装置
CN104301074A (zh) * 2013-07-15 2015-01-21 华为技术有限公司 消除干扰的方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376464A1 (en) * 2013-06-21 2014-12-25 Electronics & Telecommunications Research Institute Method for communication using large-scale antenna in multi-cell environment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453259A (zh) * 2007-12-03 2009-06-10 株式会社Ntt都科摩 一种多输入多输出系统的预编码传输方法
CN102594486A (zh) * 2011-01-04 2012-07-18 中国移动通信集团公司 抑制多用户间干扰的方法和装置
CN104301074A (zh) * 2013-07-15 2015-01-21 华为技术有限公司 消除干扰的方法及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690180A (zh) * 2016-08-05 2018-02-13 王晋良 功率分配方法以及使用所述方法的基站
CN107690180B (zh) * 2016-08-05 2020-12-25 王晋良 功率分配方法以及使用所述方法的基站
TWI628969B (zh) * 2017-02-14 2018-07-01 國立清華大學 聯合用戶分組與功率分配方法以及使用所述方法的基地台
CN114244404A (zh) * 2021-12-02 2022-03-25 西安电子科技大学 一种双向非正交协作传输方法及系统
CN114244404B (zh) * 2021-12-02 2024-05-31 西安电子科技大学 一种双向非正交协作传输方法及系统

Also Published As

Publication number Publication date
CN105991219B (zh) 2020-04-10
CN105991219A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
CN107483088B (zh) 大规模mimo鲁棒预编码传输方法
RU2695126C1 (ru) Способы и устройства для указания параметров прекодера в сети беспроводной связи
JP6539586B2 (ja) Lteにおける4txコードブックエンハンスメント
WO2016119463A1 (zh) 发送信号的处理方法及装置
KR101408938B1 (ko) 다중 입출력 무선통신 시스템에서 일반화된 아이겐 분석을이용한 빔포밍 장치 및 방법
JP6161333B2 (ja) 干渉アラインメントに基づくプリコーディング方法、送信機およびデバイス
WO2013131391A1 (zh) 一种多用户干扰抑制方法、终端及基站
JP5133007B2 (ja) 送信装置、及びビームフォーミング行列生成方法
US10715303B2 (en) Apparatus and a method for managing full-duplex communication between a base station and a plurality of user equipments
CN102075294B (zh) 一种协作预编码方法及系统
CN103580789B (zh) 多点协作传输预编码处理方法、装置及系统
Lv et al. Semi-blind channel estimation relying on optimum pilots designed for multi-cell large-scale MIMO systems
WO2017003963A1 (en) Power allocation and precoding matrix computation method in a wireless communication system
US8989240B2 (en) Method for operating a secondary station
Flores et al. Clustered cell-free multi-user multiple-antenna systems with rate-splitting: Precoder design and power allocation
Van Rompaey et al. Scalable and distributed MMSE algorithms for uplink receive combining in cell-free massive MIMO systems
CN107078836A (zh) 一种导频信号的生成方法及装置
JP2007214993A (ja) 無線通信システムおよび空間多重用無線通信方法
CN112887068B (zh) 数据传输方法、发送设备和接收设备
WO2016078591A1 (en) System and method for multiple-input multiple-output (mimo) orthogonal frequency division multiplexing (ofdm) offset quadrature amplitude modulation (oqam)
Flores et al. Rate-splitting meets cell-free MIMO communications
Han et al. Reconfigurable intelligent surface assisted unified NOMA framework
CN110492956B (zh) 一种用于musa系统的误差补偿多用户检测方法及装置
CN114006639A (zh) 一种适用于上行多用户mimo系统的分布式预编码方法
US11018744B2 (en) Block-diagonalization based beamforming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879661

Country of ref document: EP

Kind code of ref document: A1