WO2016118121A1 - High speed label applicator and methods - Google Patents

High speed label applicator and methods Download PDF

Info

Publication number
WO2016118121A1
WO2016118121A1 PCT/US2015/012089 US2015012089W WO2016118121A1 WO 2016118121 A1 WO2016118121 A1 WO 2016118121A1 US 2015012089 W US2015012089 W US 2015012089W WO 2016118121 A1 WO2016118121 A1 WO 2016118121A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
vacuum
recited
drum
application system
Prior art date
Application number
PCT/US2015/012089
Other languages
French (fr)
Inventor
Israel Vega
Original Assignee
Label-Aire, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Label-Aire, Inc. filed Critical Label-Aire, Inc.
Priority to PCT/US2015/012089 priority Critical patent/WO2016118121A1/en
Publication of WO2016118121A1 publication Critical patent/WO2016118121A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C3/00Labelling other than flat surfaces
    • B65C3/06Affixing labels to short rigid containers
    • B65C3/08Affixing labels to short rigid containers to container bodies
    • B65C3/14Affixing labels to short rigid containers to container bodies the container being positioned for labelling with its centre-line vertical
    • B65C3/16Affixing labels to short rigid containers to container bodies the container being positioned for labelling with its centre-line vertical by rolling the labels onto cylindrical containers, e.g. bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/08Label feeding
    • B65C9/18Label feeding from strips, e.g. from rolls
    • B65C9/1865Label feeding from strips, e.g. from rolls the labels adhering on a backing strip
    • B65C9/1876Label feeding from strips, e.g. from rolls the labels adhering on a backing strip and being transferred by suction means
    • B65C9/188Label feeding from strips, e.g. from rolls the labels adhering on a backing strip and being transferred by suction means the suction means being a vacuum drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/08Label feeding
    • B65C9/18Label feeding from strips, e.g. from rolls
    • B65C9/1865Label feeding from strips, e.g. from rolls the labels adhering on a backing strip
    • B65C9/1876Label feeding from strips, e.g. from rolls the labels adhering on a backing strip and being transferred by suction means
    • B65C9/1884Label feeding from strips, e.g. from rolls the labels adhering on a backing strip and being transferred by suction means the suction means being a movable vacuum arm or pad

Definitions

  • This invention relates generally to label applicators and more particularly, to label applicators and methods using vacuum surface systems for applying labels to generally cylindrical objects having diameters substantially larger than their height.
  • Label applicators for applying pressure-sensitive adhesive-backed labels to articles passing the applicator on a conveyor are well known. Label applicators of this general type are shown in commonly assigned U.S. Patent No. 4,255,220, issued to Kucheck et al., U.S. Patent No. 4,844,771, issued to
  • such labeling apparatus comprise a supply of adhesive-backed labels carried upon an elongate web of release material which is fed from a supply reel to a take-up reel, with the label applicator disposed between the two reels.
  • One particular category of articles to be labeled are round articles, such as snuff cans, tuna cans, and the like, where the label to be applied is long and narrow relative to its length and the article has a wall which is substantially straight.
  • such labels are disposed in a "long feed” configuration on the web to be fed into the label applicator.
  • Long feed label configurations are inefficient, in that the label feed mechanism must advance a greater distance (at least the length of each label) to deliver each label and fewer labels can be carried on each roll, thereby requiring change out of the label roll more often. Since the label application system must be shut down to perform the label roll change out, this reduces labeling volume.
  • Current long feed systems can only handle about 300 articles per minute.
  • a label application system for applying labels to round, straight-walled articles, which comprises a main frame and a label applicator assembly comprising a vacuum surface for receiving and retaining a label to be applied to a cylindrical surface of an article thereon with its adhesive side up.
  • a conveyor assembly has a conveyor for transporting articles to be labeled past the label applicator assembly.
  • the conveyor assembly comprises a label application zone adjacent to the label applicator assembly.
  • a pressure control assembly which may comprise either a feedscrew assembly or a vertically oriented moving belt assembly, is disposed upstream of the label application zone for dispensing individual articles to be labeled as they travel down the conveyor toward the label application zone.
  • a belt is provided for rotating the articles as they enter the label application zone.
  • the vacuum surface is stationary while a label is being applied to the article cylindrical surface.
  • the vacuum surface comprises a substantially flat vacuum pad disposed on a tamp assembly.
  • the vacuum surface comprises a portion of a circumferential surface of a vacuum drum assembly located adjacent to the label application zone for applying labels to passing articles.
  • the vacuum drum assembly comprises a plurality of label flats disposed about its circumferential surface, each of the label flats comprising a substantially flat surface extending across substantially an entire width of the drum and having a plurality of vacuum apertures therein, for delivering a vacuum pressure to the surface of the label flat to hold a label in place on the label flat surface with its adhesive side up.
  • the circumferential surface of the drum comprises angled transitional edges between each label flat.
  • a motor is provided for rotating the vacuum drum in a stepwise fashion, to receive individual labels sequentially as they are separated from a carrier web traveling over a peeler bar adjacent to the vacuum drum.
  • the motor comprises a stepper motor.
  • the vacuum drum is constructed to be modular, so that the plurality of label flats which together comprise its circumferential surface may be changed out, individually or as a unit, to customize the size of each label flat to correspond substantially to the size of labels being applied in a particular labeling operation.
  • Labels to be applied to passing articles are delivered to the label application zone on a carrier web in a short feed orientation, with each label being oriented lengthwise across a width of the carrier web.
  • the system is capable of labeling articles at processing speeds of approximately 450 articles per minute or more.
  • the labels applied using the system have a length to width ratio of at least about 5:1, and in some cases of at least about 8:1.
  • a vacuum drum assembly for a label application system, which comprises a generally cylindrical drum having a circumferential surface defining a hollow interior.
  • a plurality of label flats are disposed about the circumferential surface of the drum, each label flat comprising a substantially flat surface extending across substantially an entire width of the drum and being sized to accommodate a label to be applied to passing articles.
  • the label flat surface is interspersed with apertures for delivering a vacuum pressure within the hollow interior of the drum to the surface of the label flat for retaining a label on the flat with its adhesive side up.
  • the circumferential surface of the drum comprises angled transitional edges between each label flat.
  • a motor is provided for rotating the vacuum drum in a stepwise fashion to receive individual labels sequentially as they are separated from a carrier web traveling over a peeler bar adjacent to the vacuum drum, preferably a stepper motor.
  • the vacuum drum is constructed to be modular, so that the plurality of label flats which together comprise its circumferential surface may be changed out, individually or as a unit, to customize the size of each label flat to correspond substantially to the size of labels being applied in a particular labeling operation.
  • Fig. 1 is an elevational view of one embodiment of a labeling system constructed in accordance with the principles of the present invention
  • Fig. 2 is a top view of the labeling system of Fig. 1 ;
  • Fig. 3 is a schematic view showing a length of carrier web with labels of the type to be applied using the inventive system disposed thereon;
  • FIG. 4 is an illustration of one approach for dispensing articles to be labeled from the feed screw of the inventive system into the label application zone;
  • Fig. 5 is an elevational view of a modified embodiment of the labeling system of Figs. 1 and 2;
  • Fig. 6 is an end view of the embodiment of Fig. 5;
  • Fig. 7 is a top view of the embodiment of Figs. 5 and 6. Detailed Description of the Invention
  • FIGs. 1 and 2 there is shown in Figs. 1 and 2 one embodiment of a label application system 10 constructed in accordance with the principles of the present invention.
  • the system 10 comprises a main frame 12, a label applicator assembly 14, and a conveyor assembly 16, for transporting articles to be labeled past the label applicator assembly.
  • Arrow 20 illustrates the direction of product flow on the conveyor assembly 16.
  • the inventive system 10 is particularly adapted to label short, round and straight-walled articles 27 (Fig. 4), such as snuff cans, tuna cans, and the like, where the label to be applied is long and narrow relative to its length and the article has a wall which is substantially straight.
  • the labels at issue typically have a length which exceeds their width by a length to width ratio of about 5: 1 or more, in some cases 8: 1 or more.
  • such labels are disposed in a "long feed" configuration on the web to be fed into the label applicator.
  • Long feed label configurations are inefficient, in that the label feed mechanism must advance a greater distance (at least the length of each label) to deliver each label and fewer labels can be carried on each roll, thereby requiring change out of the label roll more often. Since the label application system must be shut down to perform the label roll change out, this reduces labeling volume. Current long feed systems can only handle about 300 articles per minute.
  • the current inventive labeling system is able to apply the labels in a "short feed" orientation, meaning that the labels are disposed with their length lying along the width of the carrying web. This allows substantially more labels to be carried on each label roll, reducing change-out shutdowns of the system. Additionally, the web need only advance by a distance equal to the width of the label, plus any space between adjacent labels, to deliver the next label to the application zone. As a result, the present system is capable of labeling as many as 450 articles per minute or more, an efficiency increase of at least about 50% over prior art systems.
  • the label applicator 14 comprises an unwind assembly 28 having an unwind disk 30 on which is carried a roll of labels for application to the passing articles 27 (Fig. 4) on the conveyor 16, which moves in a direction indicated by the arrow 20.
  • the unwind assembly 28 is comprised of the aforementioned assembly unwind disk 30, as well as an assembly unwind drive mechanism 31a with brake, and a shaft or spindle 3 lb for accommodating the roll of labels.
  • the unwind assembly 28 is rotatably driven through the assembly unwind drive mechanism 31 a.
  • the roll of labels comprises a carrier web, with a series of labels disposed on the web, adhesive side down.
  • the labels are typically pre- printed with appropriate brand and content information.
  • the labels are arranged in a short feed orientation, wherein the length of each label is oriented to extend across the width of the carrier web, with a desired spacing between successive labels.
  • a portion of a length of carrier web 31c, having a plurality of labels 31 d disposed thereon, is shown in Fig. 3.
  • the carrier web 31c, unwinding from the unwind assembly 28, is routed about idler rollers along a feedpath to the vacuum drum 22 (Figs. 1, 2, 4).
  • the vacuum drum is constructed to comprise a plurality of label flats 32.
  • Each label flat comprises a substantially flat surface interspersed with vacuum apertures 33, wherein the surface of each label flat is sized to accommodate a label separated from the carrier web.
  • there are twenty label flats 32 which together comprise the outer circumferential surface of the vacuum drum 22.
  • Angled transitional edges 32a are disposed between each label flat 32, formed by the respective joined edges of each label flat.
  • the vacuum drum 22 is constructed to be modular, so that label flats 32 are interchangeable.
  • the number and size of the label flats 32 on each drum can be changed out depending upon the size of the label to be applied.
  • the interior of the vacuum drum 22 is hollow, and connected to vacuum fans or pumps 34 for drawing a vacuum through the vacuum apertures 33 in the surface of each label flat 32, and through the hollow interior of the drum 22, to hold the non-adhesive side of a label on each label flat 32. It is noted that having a flat vacuum surface for receiving each label is important to the efficient functionality of the system, and its unique and previously unknown ability to apply labels to short, round, straight- walled articles at speeds substantially in excess of 300 articles per minute.
  • the label feedpath from the label roll is directed to a label peeler 36 for separating the label from the carrier web and delivering it to the next available label flat 32, with the non-adhesive side down.
  • the non- adhesive side of the label is held by the vacuum pressure against the surface of the label flat 32, with the adhesive side facing outwardly.
  • This process continues as the vacuum drum is rotated in stepwise fashion, using a stepper motor 37 or the like, advancing rotationally the distance of the width of a single label flat 32 with each step, to simultaneously present one label flat 32 to the peeler 36 for delivery of a label onto the surface of that label flat, and to a label application zone 38 for delivery of another label, disposed on the surface of another label flat 32, to an article passing through the label application zone 38.
  • control panel 26 Within the control panel 26 are disposed the electrical controls necessary to operate the system. These controls are, generally speaking, typical in the industry and will not be further described herein.
  • an operator activates the label application system by actuation of an appropriate control switch on an operator control panel 26.
  • the roll of labels is unwound from the unwind assembly 28, so that the carrier web travels along the feedpath of the device, about idler rollers.
  • a leading edge of the carrier web reaches the label peeler 36, and a first label is separated from the web and disposed onto a label flat on the vacuum drum 22.
  • the label is retained on the surface of a label flat 32 because of vacuum pressure applied through the vacuum apertures 33 on that surface, by the fans 34, with its adhesive side out.
  • the vacuum drum is stepped rotationally, by the motor 37, as the carrier web is advanced by the width of a label, plus the spacing between adjacent labels on the web, until the next label is applied, by the peeler 36, to the next label flat 32.
  • This process continues as the vacuum drum continues to be stepped rotationally in the same manner, so that each label flat 32 receives a label.
  • the conveyor assembly 14 is activated so that articles to be labeled travel toward the label application zone 38, in the direction of the arrow 20.
  • the feedscrew assembly 24 is constructed to rotate adjacent to the conveyor belt, for timing purposes, in a manner well known in the labeling art, so that passing articles are received into grooves 39 between the screws of the feedscrew, thus spacing them appropriately as they sequentially enter the label application zone.
  • the feedscrew assembly 24 comprises a back pressure control station, controlling the article pressure generated by the mass quantity of articles at the in-feed, and also creates article separation. As an article to be labeled travels toward the label application zone 38 and approaches the vacuum drum 22, it is placed into a spinning rotation by its contact with and travel along an adjacent vertically-oriented flat belt assembly, in a position opposed to the labeling surface of the vacuum drum 22, which comprises a part of the conveyor system 16.
  • the article 27 is dispensed out of the feedscrew and is set into rotation as it contacts the outwardly facing adhesive side of the next label to be applied, on a label flat 32 which has been rotated into the label application zone 38. This contact causes the end of the label to adhere to the side wall of the article. As the spinning article continues to move along the conveyor, its spinning action against the adhesive side of the label causes that label to be wrapped about the article, thus completing the labeling process.
  • FIGs. 2, 4, and 7 illustrate an alternative apparatus 40, namely a vertically oriented moving belt assembly, which may be utilized instead of the feedscrew assembly 24 for operation as the pressure control station.
  • Fig. 4 illustrates one orientation of the vacuum drum assembly relative to the passing articles 27, whereas Figs. 1 and 2 illustrate the vacuum drum assembly on an opposing side of the conveyor assembly 16. This is merely for the purpose of clarifying that the orientation of the system is a matter of design application - which side of the conveyor assembly the vacuum drum and label applicator assembly are disposed is dependent upon industrial design factors outside of the scope of the present invention.
  • Figs. 5-7 illustrate a modified embodiment of the present invention, which is similar in operational principle to the vacuum drum embodiment of Figs. 1-2, but instead utilizes a tamp applicator 42 to deliver the label to the spinning article, rather than a vacuum drum.
  • Tamp applicators are well known in the art, for example, as shown and disclosed in commonly assigned U.S. Patent No. 4,844,771, herein expressly incorporated by reference in its entirety.
  • the article 27 is initiated into a spinning rotation as it travels into the label application zone, then engages a label disposed on the tamp applicator 42, which has been extended so that the upstream end of the label thereon will contact the outer sidewall of the article to be labeled. Again, as the article travels downstream along the conveyor and the moving belt 40, the label will be wrapped about the circumference thereof to complete the labeling process quickly and efficiently, with minimal error rates.
  • the tamp applicator 42 comprises a pad having vacuum apertures therein, a vacuum pad, for receiving a dispensed label thereon, adhesive side up.
  • the pad is extended after receiving a label 3 Id thereon, as it is dispensed from the carrier web 31c (Fig. 3), using a hydraulic or pneumatically driven arm, to come into contact with a rotating passing article 27 to be labeled.
  • the arm is then withdrawn to receive the next label, after which the application process is repeated.
  • the articles 27 are rotated using a feedscrew mechanism 24 or vertically-oriented moving belt 40, as in the embodiment of Figs. 1-4, and then dispensed from the pressure control station, upstream of the label application zone 38, into that zone to receive a label.

Abstract

A label application system for applying labels to relatively short, round, straight-walled articles is constructed and designed so that labels to be applied to passing articles are delivered to the label application zone on a carrier web in a short feed orientation, with each label being oriented lengthwise across a width of the carrier web. At the time of labeling, the label is held stationary on a flat vacuum surface, and the label is applied by spinning the articles past the vacuum surface. As a result, the system is capable of labeling articles at processing speeds of at least 450 articles per minute.

Description

HIGH SPEED LABEL APPLICATOR AND METHODS
Field of the Invention
This invention relates generally to label applicators and more particularly, to label applicators and methods using vacuum surface systems for applying labels to generally cylindrical objects having diameters substantially larger than their height.
Background of the Invention
Label applicators for applying pressure-sensitive adhesive-backed labels to articles passing the applicator on a conveyor are well known. Label applicators of this general type are shown in commonly assigned U.S. Patent No. 4,255,220, issued to Kucheck et al., U.S. Patent No. 4,844,771, issued to
Crankshaw et al, and U.S. Patent No. 5,421,948, issued to Crankshaw et al, for example. Other prior art references of interest include Published U.S. Patent Application No. 2003/0121593, U.S. Patent No. 5,935,361 to Takahashi et al., U.S. Patent No. 5,643,395 to Hinton, U.S. Patent No. 5,039,374 to Winter, Published U.S. Patent Application No. US 2003/0121593, International
Publication No. WO 2005/035263, International Publication No. 2006/016823, and International Publication No. 2009/120096. All of the aforementioned patents and published patent applications are herein expressly incorporated by reference, in their entirety. Typically, such labeling apparatus comprise a supply of adhesive-backed labels carried upon an elongate web of release material which is fed from a supply reel to a take-up reel, with the label applicator disposed between the two reels.
One particular category of articles to be labeled are round articles, such as snuff cans, tuna cans, and the like, where the label to be applied is long and narrow relative to its length and the article has a wall which is substantially straight. Typically, because of limitations in currently available labeling equipment, such labels are disposed in a "long feed" configuration on the web to be fed into the label applicator. "Long feed" label configurations are inefficient, in that the label feed mechanism must advance a greater distance (at least the length of each label) to deliver each label and fewer labels can be carried on each roll, thereby requiring change out of the label roll more often. Since the label application system must be shut down to perform the label roll change out, this reduces labeling volume. Current long feed systems can only handle about 300 articles per minute.
Accordingly, it would be advantageous to have a labeling system which would be capable of labeling such round articles using a "short feed" label configuration, as such an arrangement would be much more efficient and permit much faster labeling processing speeds. Summary of the Invention
In one aspect of the invention, a label application system for applying labels to round, straight-walled articles is provided, which comprises a main frame and a label applicator assembly comprising a vacuum surface for receiving and retaining a label to be applied to a cylindrical surface of an article thereon with its adhesive side up. A conveyor assembly has a conveyor for transporting articles to be labeled past the label applicator assembly. The conveyor assembly comprises a label application zone adjacent to the label applicator assembly. A pressure control assembly, which may comprise either a feedscrew assembly or a vertically oriented moving belt assembly, is disposed upstream of the label application zone for dispensing individual articles to be labeled as they travel down the conveyor toward the label application zone. A belt is provided for rotating the articles as they enter the label application zone. Importantly, the vacuum surface is stationary while a label is being applied to the article cylindrical surface.
In one embodiment, the vacuum surface comprises a substantially flat vacuum pad disposed on a tamp assembly.
In another embodiment, the vacuum surface comprises a portion of a circumferential surface of a vacuum drum assembly located adjacent to the label application zone for applying labels to passing articles. In this embodiment, the vacuum drum assembly comprises a plurality of label flats disposed about its circumferential surface, each of the label flats comprising a substantially flat surface extending across substantially an entire width of the drum and having a plurality of vacuum apertures therein, for delivering a vacuum pressure to the surface of the label flat to hold a label in place on the label flat surface with its adhesive side up. The circumferential surface of the drum comprises angled transitional edges between each label flat.
A motor is provided for rotating the vacuum drum in a stepwise fashion, to receive individual labels sequentially as they are separated from a carrier web traveling over a peeler bar adjacent to the vacuum drum. Preferably, the motor comprises a stepper motor.
The vacuum drum is constructed to be modular, so that the plurality of label flats which together comprise its circumferential surface may be changed out, individually or as a unit, to customize the size of each label flat to correspond substantially to the size of labels being applied in a particular labeling operation.
Labels to be applied to passing articles are delivered to the label application zone on a carrier web in a short feed orientation, with each label being oriented lengthwise across a width of the carrier web. As a result, and because of the other innovative features of the present system, the system is capable of labeling articles at processing speeds of approximately 450 articles per minute or more. The labels applied using the system have a length to width ratio of at least about 5:1, and in some cases of at least about 8:1.
In another aspect of the invention, there is provided a vacuum drum assembly for a label application system, which comprises a generally cylindrical drum having a circumferential surface defining a hollow interior. A plurality of label flats are disposed about the circumferential surface of the drum, each label flat comprising a substantially flat surface extending across substantially an entire width of the drum and being sized to accommodate a label to be applied to passing articles. The label flat surface is interspersed with apertures for delivering a vacuum pressure within the hollow interior of the drum to the surface of the label flat for retaining a label on the flat with its adhesive side up. The circumferential surface of the drum comprises angled transitional edges between each label flat.
A motor is provided for rotating the vacuum drum in a stepwise fashion to receive individual labels sequentially as they are separated from a carrier web traveling over a peeler bar adjacent to the vacuum drum, preferably a stepper motor.
Advantageously, the vacuum drum is constructed to be modular, so that the plurality of label flats which together comprise its circumferential surface may be changed out, individually or as a unit, to customize the size of each label flat to correspond substantially to the size of labels being applied in a particular labeling operation.
The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawings. Brief Description of the Drawings
Fig. 1 is an elevational view of one embodiment of a labeling system constructed in accordance with the principles of the present invention;
Fig. 2 is a top view of the labeling system of Fig. 1 ; Fig. 3 is a schematic view showing a length of carrier web with labels of the type to be applied using the inventive system disposed thereon;
Fig. 4 is an illustration of one approach for dispensing articles to be labeled from the feed screw of the inventive system into the label application zone; Fig. 5 is an elevational view of a modified embodiment of the labeling system of Figs. 1 and 2;
Fig. 6 is an end view of the embodiment of Fig. 5; and
Fig. 7 is a top view of the embodiment of Figs. 5 and 6. Detailed Description of the Invention
Referring now more particularly to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views and embodiments, there is shown in Figs. 1 and 2 one embodiment of a label application system 10 constructed in accordance with the principles of the present invention. The system 10 comprises a main frame 12, a label applicator assembly 14, and a conveyor assembly 16, for transporting articles to be labeled past the label applicator assembly. Arrow 20 illustrates the direction of product flow on the conveyor assembly 16.
Other elements of the system 10 to be described below include a vacuum drum assembly 22, a feedscrew assembly 24, and a control panel 26.
The inventive system 10 is particularly adapted to label short, round and straight-walled articles 27 (Fig. 4), such as snuff cans, tuna cans, and the like, where the label to be applied is long and narrow relative to its length and the article has a wall which is substantially straight. The labels at issue typically have a length which exceeds their width by a length to width ratio of about 5: 1 or more, in some cases 8: 1 or more. Typically, because of limitations in currently available labeling equipment, such labels are disposed in a "long feed" configuration on the web to be fed into the label applicator. "Long feed" label configurations are inefficient, in that the label feed mechanism must advance a greater distance (at least the length of each label) to deliver each label and fewer labels can be carried on each roll, thereby requiring change out of the label roll more often. Since the label application system must be shut down to perform the label roll change out, this reduces labeling volume. Current long feed systems can only handle about 300 articles per minute.
The current inventive labeling system is able to apply the labels in a "short feed" orientation, meaning that the labels are disposed with their length lying along the width of the carrying web. This allows substantially more labels to be carried on each label roll, reducing change-out shutdowns of the system. Additionally, the web need only advance by a distance equal to the width of the label, plus any space between adjacent labels, to deliver the next label to the application zone. As a result, the present system is capable of labeling as many as 450 articles per minute or more, an efficiency increase of at least about 50% over prior art systems.
Now, with more particular reference to Figs. 1-4, the system 10 will be described in greater detail. The label applicator 14 comprises an unwind assembly 28 having an unwind disk 30 on which is carried a roll of labels for application to the passing articles 27 (Fig. 4) on the conveyor 16, which moves in a direction indicated by the arrow 20. The unwind assembly 28 is comprised of the aforementioned assembly unwind disk 30, as well as an assembly unwind drive mechanism 31a with brake, and a shaft or spindle 3 lb for accommodating the roll of labels. The unwind assembly 28 is rotatably driven through the assembly unwind drive mechanism 31 a.
As noted above, the roll of labels comprises a carrier web, with a series of labels disposed on the web, adhesive side down. The labels are typically pre- printed with appropriate brand and content information. The labels are arranged in a short feed orientation, wherein the length of each label is oriented to extend across the width of the carrier web, with a desired spacing between successive labels. A portion of a length of carrier web 31c, having a plurality of labels 31 d disposed thereon, is shown in Fig. 3.
The carrier web 31c, unwinding from the unwind assembly 28, is routed about idler rollers along a feedpath to the vacuum drum 22 (Figs. 1, 2, 4). The vacuum drum is constructed to comprise a plurality of label flats 32. Each label flat comprises a substantially flat surface interspersed with vacuum apertures 33, wherein the surface of each label flat is sized to accommodate a label separated from the carrier web. In the illustrated example, there are twenty label flats 32 which together comprise the outer circumferential surface of the vacuum drum 22. Angled transitional edges 32a are disposed between each label flat 32, formed by the respective joined edges of each label flat. The vacuum drum 22 is constructed to be modular, so that label flats 32 are interchangeable. Because of this modular construction, the number and size of the label flats 32 on each drum can be changed out depending upon the size of the label to be applied. As is typical with prior art non-modular vacuum drums, the interior of the vacuum drum 22 is hollow, and connected to vacuum fans or pumps 34 for drawing a vacuum through the vacuum apertures 33 in the surface of each label flat 32, and through the hollow interior of the drum 22, to hold the non-adhesive side of a label on each label flat 32. It is noted that having a flat vacuum surface for receiving each label is important to the efficient functionality of the system, and its unique and previously unknown ability to apply labels to short, round, straight- walled articles at speeds substantially in excess of 300 articles per minute.
As is known in the art, the label feedpath from the label roll is directed to a label peeler 36 for separating the label from the carrier web and delivering it to the next available label flat 32, with the non-adhesive side down. Thus, the non- adhesive side of the label is held by the vacuum pressure against the surface of the label flat 32, with the adhesive side facing outwardly. This process continues as the vacuum drum is rotated in stepwise fashion, using a stepper motor 37 or the like, advancing rotationally the distance of the width of a single label flat 32 with each step, to simultaneously present one label flat 32 to the peeler 36 for delivery of a label onto the surface of that label flat, and to a label application zone 38 for delivery of another label, disposed on the surface of another label flat 32, to an article passing through the label application zone 38.
Within the control panel 26 are disposed the electrical controls necessary to operate the system. These controls are, generally speaking, typical in the industry and will not be further described herein.
In operation, an operator activates the label application system by actuation of an appropriate control switch on an operator control panel 26. Once operational, the roll of labels is unwound from the unwind assembly 28, so that the carrier web travels along the feedpath of the device, about idler rollers. As a result, a leading edge of the carrier web reaches the label peeler 36, and a first label is separated from the web and disposed onto a label flat on the vacuum drum 22. As noted above, the label is retained on the surface of a label flat 32 because of vacuum pressure applied through the vacuum apertures 33 on that surface, by the fans 34, with its adhesive side out. The vacuum drum is stepped rotationally, by the motor 37, as the carrier web is advanced by the width of a label, plus the spacing between adjacent labels on the web, until the next label is applied, by the peeler 36, to the next label flat 32. This process continues as the vacuum drum continues to be stepped rotationally in the same manner, so that each label flat 32 receives a label. In the meantime, the conveyor assembly 14 is activated so that articles to be labeled travel toward the label application zone 38, in the direction of the arrow 20.
The feedscrew assembly 24 is constructed to rotate adjacent to the conveyor belt, for timing purposes, in a manner well known in the labeling art, so that passing articles are received into grooves 39 between the screws of the feedscrew, thus spacing them appropriately as they sequentially enter the label application zone. The feedscrew assembly 24 comprises a back pressure control station, controlling the article pressure generated by the mass quantity of articles at the in-feed, and also creates article separation. As an article to be labeled travels toward the label application zone 38 and approaches the vacuum drum 22, it is placed into a spinning rotation by its contact with and travel along an adjacent vertically-oriented flat belt assembly, in a position opposed to the labeling surface of the vacuum drum 22, which comprises a part of the conveyor system 16. Such a system is not dissimilar to the system shown and disclosed in U.S. Patent No. 4,931 , 122 to Mitchell, herein expressly incorporated by reference, in its entirety. However, advantageously, in the inventive system, the article 27 is dispensed out of the feedscrew and is set into rotation as it contacts the outwardly facing adhesive side of the next label to be applied, on a label flat 32 which has been rotated into the label application zone 38. This contact causes the end of the label to adhere to the side wall of the article. As the spinning article continues to move along the conveyor, its spinning action against the adhesive side of the label causes that label to be wrapped about the article, thus completing the labeling process. This approach is in contrast of that known in the prior art, represented by Mitchell, wherein the feedscrew 15 extended downstream, adjacent and opposed to the vacuum drum 11, so that the article being labeled in the Mitchell patent was still disposed in the grooves of the feedscrew as it was being labeled. This prior art approach is not suitable from the short, round articles 27 for which the inventive system is intended. The inventor has discovered that it is not necessary to employ a prior art starwheel to continue the rotation of articles to be labeled within the label application zone, as previously thought. They can be maintained in an adequately spinning state through the label application zone simply by use of the aforementioned flat belt assembly, thus resulting in an advantageously simpler and faster labeling system, as well as one which is efficient since it allows for a label short feed orientation, as discussed above.
Figs. 2, 4, and 7 illustrate an alternative apparatus 40, namely a vertically oriented moving belt assembly, which may be utilized instead of the feedscrew assembly 24 for operation as the pressure control station.
In the inventive system, the labeled article 27, after passing through the label application zone 38, then continues along the conveyor for further handling, such as packing and shipping, and the next article 27 to be labeled goes through the same process, with respect to the next label to be rotated into the label application zone. It is noted that Fig. 4 illustrates one orientation of the vacuum drum assembly relative to the passing articles 27, whereas Figs. 1 and 2 illustrate the vacuum drum assembly on an opposing side of the conveyor assembly 16. This is merely for the purpose of clarifying that the orientation of the system is a matter of design application - which side of the conveyor assembly the vacuum drum and label applicator assembly are disposed is dependent upon industrial design factors outside of the scope of the present invention.
Figs. 5-7 illustrate a modified embodiment of the present invention, which is similar in operational principle to the vacuum drum embodiment of Figs. 1-2, but instead utilizes a tamp applicator 42 to deliver the label to the spinning article, rather than a vacuum drum. Tamp applicators are well known in the art, for example, as shown and disclosed in commonly assigned U.S. Patent No. 4,844,771, herein expressly incorporated by reference in its entirety.
In this embodiment, wherein like elements are identified by like reference numerals, as in the vacuum drum embodiment, the article 27 is initiated into a spinning rotation as it travels into the label application zone, then engages a label disposed on the tamp applicator 42, which has been extended so that the upstream end of the label thereon will contact the outer sidewall of the article to be labeled. Again, as the article travels downstream along the conveyor and the moving belt 40, the label will be wrapped about the circumference thereof to complete the labeling process quickly and efficiently, with minimal error rates. The tamp applicator 42 comprises a pad having vacuum apertures therein, a vacuum pad, for receiving a dispensed label thereon, adhesive side up. The pad is extended after receiving a label 3 Id thereon, as it is dispensed from the carrier web 31c (Fig. 3), using a hydraulic or pneumatically driven arm, to come into contact with a rotating passing article 27 to be labeled. The arm is then withdrawn to receive the next label, after which the application process is repeated. Significantly, in this alternate embodiment, the articles 27 are rotated using a feedscrew mechanism 24 or vertically-oriented moving belt 40, as in the embodiment of Figs. 1-4, and then dispensed from the pressure control station, upstream of the label application zone 38, into that zone to receive a label.
What is particularly advantageous about this inventive approach is that the label is stationary in the label application zone, while it is being applied to the spinning article, unlike prior art systems for labeling cylindrical articles using long, thin labels, which utilize a nip method and are fed in the direction of flow of the articles.
While this invention has been described with respect to various specific examples and embodiments, it is to be understood that various modifications may be made without departing from the scope thereof. Therefore, the above description should not be construed as limiting the invention, but merely as an exemplification of preferred embodiments thereof.

Claims

WHAT IS CLAIMED IS:
1. A label application system for applying labels to round, straight- walled articles, comprising:
a main frame;
a label applicator assembly comprising a vacuum surface for receiving and retaining a label to be applied to a cylindrical surface of an article thereon with its adhesive side up;
a conveyor assembly having a conveyor for transporting articles to be labeled past the label applicator assembly, the conveyor assembly comprising a label application zone adjacent to the label applicator assembly;
a pressure control assembly upstream of the label application zone for dispensing individual articles to be labeled as they travel down the conveyor toward the label application zone; and
a belt for rotating the articles as they enter the label application zone; wherein the vacuum surface is stationary while a label is being applied to the article cylindrical surface.
2. The label application system as recited in Claim 1 , wherein the vacuum surface comprises a substantially flat vacuum pad disposed on a tamp assembly.
3. The label application system as recited in Claim 1, wherein the vacuum surface comprises a portion of a circumferential surface of a vacuum drum assembly located adjacent to the label application zone for applying labels to passing articles.
4. The label application system as recited in Claim 3, wherein the vacuum drum assembly comprises a plurality of label flats disposed about its circumferential surface, each of the label flats comprising a substantially flat surface extending across substantially an entire width of the drum and having a plurality of vacuum apertures therein, for delivering a vacuum pressure to the surface of the label flat to hold a label in place on the label flat surface with its adhesive side up, wherein the circumferential surface of the drum comprises angled transitional edges between each label flat.
5. The label application system as recited in Claim 4, and further comprising a motor for rotating the vacuum drum in a stepwise fashion to receive individual labels sequentially as they are separated from a carrier web traveling over a peeler bar adjacent to the vacuum drum.
6. The label application system as recited in Claim 5, wherein the motor comprises a stepper motor.
7. The label application system as recited in Claim 5, wherein the vacuum drum is constructed to be modular, so that the plurality of label flats which together comprise its circumferential surface may be changed out, individually or as a unit, to customize the size of each label flat to correspond substantially to the size of labels being applied in a particular labeling operation.
8. The label application system as recited in Claim 1, wherein labels to be applied to passing articles are delivered to the label application zone on a carrier web in a short feed orientation, with each label being oriented lengthwise across a width of the carrier web.
9. The label application system as recited in Claim 1, wherein the system labels articles at processing speeds of at least 450 articles per minute.
10. The label application system as recited in Claim 8, wherein the labels applied using the system have a length to width ratio of at least about 5:1.
11. The label application system as recited in Claim 10, wherein the labels applied using the system have a length to width ratio of at least about 8:1.
12. The label application system as recited in Claim 1 , wherein the pressure control assembly comprises a feedscrew assembly.
13. The label application system as recited in Claim 1, wherein the pressure control assembly comprises a vertically oriented moving belt assembly.
14. A vacuum drum assembly for a label application system;
comprising:
a generally cylindrical drum having a circumferential surface defining a hollow interior; and
a plurality of label flats disposed about the circumferential surface of the drum, each label flat comprising a substantially flat surface extending across substantially an entire width of the drum and being sized to accommodate a label to be applied to passing articles, the label flat surface being interspersed with apertures for delivering a vacuum pressure within the hollow interior of the drum to the surface of the label flat for retaining a label on the flat with its adhesive side up;
wherein the circumferential surface of the drum comprises angled transitional edges between each label flat.
15. The label application system as recited in Claim 14, and further comprising a motor for rotating the vacuum drum in a stepwise fashion to receive individual labels sequentially as they are separated from a carrier web traveling over a peeler bar adjacent to the vacuum drum.
16. The label application system as recited in Claim 15, wherein the motor comprises a stepper motor.
17. The label application system as recited in Claim 14, wherein the vacuum drum is constructed to be modular, so that the plurality of label flats which together comprise its circumferential surface may be changed out, individually or as a unit, to customize the size of each label flat to correspond substantially to the size of labels being applied in a particular labeling operation.
PCT/US2015/012089 2015-01-20 2015-01-20 High speed label applicator and methods WO2016118121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2015/012089 WO2016118121A1 (en) 2015-01-20 2015-01-20 High speed label applicator and methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/012089 WO2016118121A1 (en) 2015-01-20 2015-01-20 High speed label applicator and methods

Publications (1)

Publication Number Publication Date
WO2016118121A1 true WO2016118121A1 (en) 2016-07-28

Family

ID=56417501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/012089 WO2016118121A1 (en) 2015-01-20 2015-01-20 High speed label applicator and methods

Country Status (1)

Country Link
WO (1) WO2016118121A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241325A (en) * 2016-10-09 2016-12-21 江苏中天华宇智能科技有限公司 The carrying carrying system of full-automatic light-duty cylinder class material axial horizontal positioned state
CN106276192B (en) * 2016-10-09 2018-06-01 江苏中天华宇智能科技有限公司 The carrying shifting apparatus of the axial horizontal positioned state of full-automatic light-duty cylinder class material
CN111824539A (en) * 2020-07-10 2020-10-27 常德仁和盛五金包装制品有限公司 Laminating machine with locate function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526645A (en) * 1978-12-05 1985-07-02 Associated Packaging Equipment Corp. Ltd. Labelling equipment
US5082520A (en) * 1990-12-03 1992-01-21 West Michael J Automatic high-speed labeling machine employing various linear and rotational speeds of the container
US5964975A (en) * 1997-08-18 1999-10-12 Trine Labeling Systems, Inc. Method and apparatus of labeling cylindrical articles with label having formed curl
US20050161164A1 (en) * 2004-01-23 2005-07-28 Joe & Samia Management Inc. Tamping labeler
US20130199716A1 (en) * 2010-11-05 2013-08-08 Label Aire, Inc. Devices and methods for applying adhesive liner-less security labels to articles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4526645A (en) * 1978-12-05 1985-07-02 Associated Packaging Equipment Corp. Ltd. Labelling equipment
US5082520A (en) * 1990-12-03 1992-01-21 West Michael J Automatic high-speed labeling machine employing various linear and rotational speeds of the container
US5964975A (en) * 1997-08-18 1999-10-12 Trine Labeling Systems, Inc. Method and apparatus of labeling cylindrical articles with label having formed curl
US20050161164A1 (en) * 2004-01-23 2005-07-28 Joe & Samia Management Inc. Tamping labeler
US20130199716A1 (en) * 2010-11-05 2013-08-08 Label Aire, Inc. Devices and methods for applying adhesive liner-less security labels to articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241325A (en) * 2016-10-09 2016-12-21 江苏中天华宇智能科技有限公司 The carrying carrying system of full-automatic light-duty cylinder class material axial horizontal positioned state
CN106276192B (en) * 2016-10-09 2018-06-01 江苏中天华宇智能科技有限公司 The carrying shifting apparatus of the axial horizontal positioned state of full-automatic light-duty cylinder class material
CN106241325B (en) * 2016-10-09 2018-07-13 江苏中天华宇智能科技有限公司 Full-automatic light-duty cylinder class material is axially horizontally arranged the carrying carrying system of state
CN111824539A (en) * 2020-07-10 2020-10-27 常德仁和盛五金包装制品有限公司 Laminating machine with locate function

Similar Documents

Publication Publication Date Title
US10815021B2 (en) High speed label applicator and methods
US4931122A (en) Straight through labelling machine
US5188696A (en) Wrap around labeling machine
US3765991A (en) Labeling apparatus
WO2008088210A1 (en) Device for forming sleeve-like foil envelopes from a continuous flat strip of foil material
US10661936B2 (en) Labelling group and method for applying a plurality of labels onto respective articles
WO2016118121A1 (en) High speed label applicator and methods
US8714224B2 (en) Labelling machine
JP3036724B2 (en) Labeling equipment
US10822134B1 (en) High speed label applicator systems and methods
CN112930305A (en) Labelling machine and method for processing web-shaped labelling material in automatic labelling process
US11254461B1 (en) High speed label applicator systems and methods
US20100116408A1 (en) Devices and methods for applying pressure-sensitive adhesive liner-less labels to articles
US5336359A (en) System for applying literature to a wall of an object
EP3992095A1 (en) Labelling machine and method for applying labels onto articles adapted to contain a pourable product
US11235902B2 (en) Container labeling machine
CN209889180U (en) Device for packaging a group of individual goods and winding device for winding an individual good
MXPA01000091A (en) Labeling apparatus and methods thereof.
JPH08198227A (en) Device to affix label on bottle or similar article
CN214524964U (en) Application device and labeling machine
US20160347493A1 (en) Bottling and labeling machine
US20060157202A1 (en) System to bring adhesive backed articles into assembled association with products
KR102183401B1 (en) Bottle container positioning label applicator
US6013150A (en) Article tagging apparatus and method
JP6822295B2 (en) Labela

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879155

Country of ref document: EP

Kind code of ref document: A1