WO2016118038A1 - Titanium implant having porous surface, and method for producing same - Google Patents

Titanium implant having porous surface, and method for producing same Download PDF

Info

Publication number
WO2016118038A1
WO2016118038A1 PCT/RU2015/000031 RU2015000031W WO2016118038A1 WO 2016118038 A1 WO2016118038 A1 WO 2016118038A1 RU 2015000031 W RU2015000031 W RU 2015000031W WO 2016118038 A1 WO2016118038 A1 WO 2016118038A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
titanium
increase
forming
chemical etching
Prior art date
Application number
PCT/RU2015/000031
Other languages
French (fr)
Russian (ru)
Inventor
Илья Юльевич ФРИДМАН
Сергей Александрович КИСЕЛЕВ
Павел Александрович ЗАБУРСКИЙ
Андрей Викторович ОЛЕНИН
Original Assignee
Общество с ограниченной ответственностью "Альфа Биотех"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Альфа Биотех" filed Critical Общество с ограниченной ответственностью "Альфа Биотех"
Priority to PCT/RU2015/000031 priority Critical patent/WO2016118038A1/en
Publication of WO2016118038A1 publication Critical patent/WO2016118038A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6

Definitions

  • the invention relates to medicine, namely to dentistry, and can be used to form the surface of dental titanium implants in order to ensure further successful integration of the implant into bone tissue.
  • TiUnite from Nobel Biocare
  • NanoTechTM developed by Alpha-Bio Tes
  • SLActive from Straumann. All of them are more osteoconductive than osteinductive.
  • TiUnite technology implies a process when, under the action of electrolysis, the released gas in the titanium oxide layer creates pores and thereby increases the thickness of the oxide layer itself and, as a result, the total surface area of the implant.
  • Alpha-Bio Tes in turn, has developed an NanoTecTM surface that is exceptional in micromechanical and biological properties.
  • the NanoTecTM surface is the result of a multi-stage process, which essentially consists in sandblasting the implant body with a titanium oxide powder consisting of particles from 20 to 40 microns in size followed by double thermal acid etching to achieve microporosity from 1 to 5 microns in size.
  • Straumann developed the SLActive implant surface, during the formation of which the titanium implant body is sandblasted, acid-etched and then washed with water using a nitrogen atmosphere, which leads to the formation of a hydroxylated, chemically active layer on the surface of the implant body with hydrophilic properties.
  • This hydrophilic surface is designed to optimize the formation of a new bone structure around the implant due to its potentiated ability to retain a blood clot in the peri-implant region during its retraction.
  • the present invention is the formation of the surface of the dental implant, ensuring the successful integration of the implant into the bone tissue.
  • the problem is solved by achieving a technical result - creating such an outer surface of the implant, which provides optimal conditions for protein adhesion due to the technologically formed maximum possible surface area of the implant and the three-level structure of the formed microcavities: less than 1 micron (nanoscale), 1-5 micron (microscale) and 20-40 microns (macro level).
  • the achievement of the specified technical result is achieved as a result of the implementation of the method of forming the surface of the dental implant, including bead blasting of the titanium implant with aluminum oxide and subsequent chemical etching, in which the chemical etching is carried out using an acid composition containing sulfuric and hydrochloric acids diluted in a 50% concentration, within 20 minutes at a temperature of the solution from 22 to 25 ° C and illumination from 0.25 to 0.4 lux and simultaneous exposure to ultrasound with a power of 45 7 to 50 7 erg / s.
  • titanium implants are used, made of technically pure titanium, for example, titanium of grades VT 1-0 and BT 1-00 (GOST 19807-91) or of “commercially pure” titanium of four grades (Grade 1-4 ASTM, ISO) or titanium alloy Ti-6AI-4V (ASTM, ISO), subjected to preliminary bead-blasting with aluminum oxide (Al 2 0 3 ).
  • titanium implants of Alpha BIO company (Israel) can be used. Preliminary shot blasting is necessary for texturing the titanium surface in preparation for etching to achieve the desired etching result. In this case, the roughness size, etching carried out after bead-blasting, and the subsequent ultrasonic washing do not affect the result of subsequent modification by the proposed method.
  • the titanium implant is placed in an ultrasonic bath, where it is etched in a mixture of hydrochloric (hydrochloric acid OSCH 20-4 GOST 14261-77, and 26-4 GOST 14261-77) and sulfuric acid (sulfuric acid OSCH 11-5 (very pure) GOST 14262-78 (mass fraction of the main substance 95.6%)) in equal proportions diluted with distilled water in a 50% concentration.
  • Etching is carried out within 20 minutes. at a temperature solution from 22 to 25 ° C and illumination from 0.25 to 0.4 lux (lux) and the simultaneous exposure to ultrasound with a power of 45 7 to 50 7 erg / s.
  • a modified implant surface is formed having a three-level structure of microcavities:
  • pores with a size range from 1-5 nm to 200 nm and a maximum in the region of 50 nm provide the ability to sorb proteins in larger quantities than known analogues, providing the induction of bone morphogenetic proteins necessary for osseointegration;
  • the implant surface formed by the proposed method provides the creation of optimal conditions for protein adhesion by forming the maximum possible surface area of the implant having a three-level structure of microcavities.
  • the set of characteristics inherent in the implant surface obtained by the proposed method provides its osteinductive and osteoconductive properties, which, in turn, ensures successful osseointegration of bone tissue during implantation. Since the retraction of a blood clot on a titanium implant occurs more slowly in the region of pores having a size of less than 1 micron, the retraction of the entire clot does not occur simultaneously, since the farther the clot is located from the wound surface, the weaker its retraction. This prevents the development of such complications as epithelial ingrowth and the formation of a bone pocket around the cervical part of the implant.
  • FIG. 1 micrographs of the implant surface formed by the method according to the invention, photo of the Microanalysis Laboratory of the Skolkovo Technopark:
  • Fig. 2 microphotographs of the surface of the implant obtained by Antozhir (Anthogyr), France: a) a 150-fold increase, b) a 500-fold increase, c) a 1000-fold increase, d) a 2,500-fold increase, e) - increase 10 4 , e) increase 4x10 4 , g) - increase 8x10 4 , h) - increase 5,000 times;
  • Fig. 5 is a micrograph of the NanoTec surface of the Alpha Bio Tes ATID implant (magnification 4x10 4 );
  • Fig. 6 is a photomicrograph of a Nobel Wüsage TiUnite surface (enlarged
  • Fig. 7 is a micrograph of the surface of the SLA of Straumann Wüsage (magnification 2x10 4 );
  • Fig. 8 shows the results of spectral analysis of the surface of an ATID implant
  • Fig. 9 shows the results of spectral analysis of the ICE implant surface
  • Fig. 10 shows the results of spectral analysis of the surface of an SPI implant
  • Fig. 11 shows the results of spectral analysis of the surface of a DFI implant
  • Fig. 12 shows the results of spectral analysis of the surface of a Mirell implant
  • Fig. 14 shows the results of spectral analysis of the surface of the SIN implant.
  • the implant surface obtained by the method according to the invention is more structured than the implant surfaces of known analogues.
  • Titanium implants were subjected to acid etching in a mixture of hydrochloric and sulfuric acids, mixed in equal proportions and diluted with distilled water in a 50% concentration. Etching was carried out for 20 minutes. at a solution temperature of 24 ° ⁇ and illumination of 0.4 lux with simultaneous exposure to ultrasound with a power of 50 7 erg / s.
  • a modified implant surface was formed having a three-level structure of microcavities (see Fig. 1).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The invention relates to the field of medicine, and specifically to dentistry, and may be used for forming the surface of titanium dental implants, with the aim of subsequently allowing for the successful integration of the implant into bone tissue. To achieve said aim, a method is proposed for forming a surface of a dental implant which includes shot-peening a titanium implant using aluminum oxide, and subsequent chemical etching, characterized in that the chemical etching is carried out using an acid composition containing sulfuric acid and hydrochloric acid, which are diluted in a 50% concentration, over the course of 20 minutes at a solution temperature of 22-25°C and an illuminance of 0.25-0.4 lx and with the simultaneous application of ultrasound having a power of 457-507 ergs/sec. The surface of an implant formed using the proposed method allows for creating optimum conditions for protein adhesion by means of forming a maximum possible area of the implant surface and by means of a three-tier structure of formed microcavities.

Description

ТИТАНОВЫЙ ИМПЛАНТАТ С ПОРИСТОЙ ПОВЕРХНОСТЬЮ  POROUS SURFACE TITANIUM IMPLANT
И СПОСОБ ЕЕ ПОЛУЧЕНИЯ  AND METHOD FOR ITS PRODUCTION
Изобретение относится к области медицины, а именно к стоматологии, и может быть использовано для формирования поверхности дентальных титановых имплантатов с целью обеспечения в дальнейшем успешной интеграции имплантата в костную ткань. The invention relates to medicine, namely to dentistry, and can be used to form the surface of dental titanium implants in order to ensure further successful integration of the implant into bone tissue.
Уровень техники State of the art
Одним из основных направлений совершенствования биологических качеств продуктов производителями передовых имплантационных систем является разработка новых видов поверхностей.  One of the main directions of improving the biological qualities of products by manufacturers of advanced implantation systems is the development of new types of surfaces.
В настоящее время наиболее популярными видами биосовместимых поверхностей дентальных имплантатов являются: TiUnite производства Nobel Biocare, NanoTechTM, разработаннная компанией Alpha-Bio Тес, и SLActive производства компании Straumann. Все они в большей степени являются остеокондуктивными нежели остеиндуктивными. Технология «TiUnite» подразумевает процесс, когда под действием электролиза освобождающийся газ в слое оксида титана создает поры и таким образом увеличивает и толщину самого оксидного слоя и, как следствие, совокупную площадь поверхности имплантата. Alpha-Bio Тес, в свою очередь, разработала исключительную по микромеханическим и биологическим свойствам поверхность NanoTecTM. Поверхность NanoTecTM - это результат многостадийного технологического процесса, по сути заключающегося в пескоструйной обработке тела имплантата порошком оксида титана, состоящим из частиц размерами от 20 до 40 микрон с последующим двойным термическим кислотным травлением для достижения микропористости размерами от 1 до 5 микрон. Компания Straumann разработала поверхность имплантата SLActive, в процессе формирования которой тело титанового имплантата обрабатывают пескоструйным методом, подвергают кислотному травлению, а затем промывают водой, используя атмосферу азота, что приводит к формированию гидроксилированного, химически активного слоя на поверхности тела имплантата, обладающего гидрофильными свойствами. Эта гидрофильная поверхность предназначена для оптимизации формирования новой костной структуры вокруг имплантата за счёт своей потенцированной способности к удержанию сгустка крови в периимплантной области во время его ретракции.  Currently, the most popular types of biocompatible dental implant surfaces are: TiUnite from Nobel Biocare, NanoTechTM developed by Alpha-Bio Tes, and SLActive from Straumann. All of them are more osteoconductive than osteinductive. TiUnite technology implies a process when, under the action of electrolysis, the released gas in the titanium oxide layer creates pores and thereby increases the thickness of the oxide layer itself and, as a result, the total surface area of the implant. Alpha-Bio Tes, in turn, has developed an NanoTecTM surface that is exceptional in micromechanical and biological properties. The NanoTecTM surface is the result of a multi-stage process, which essentially consists in sandblasting the implant body with a titanium oxide powder consisting of particles from 20 to 40 microns in size followed by double thermal acid etching to achieve microporosity from 1 to 5 microns in size. Straumann developed the SLActive implant surface, during the formation of which the titanium implant body is sandblasted, acid-etched and then washed with water using a nitrogen atmosphere, which leads to the formation of a hydroxylated, chemically active layer on the surface of the implant body with hydrophilic properties. This hydrophilic surface is designed to optimize the formation of a new bone structure around the implant due to its potentiated ability to retain a blood clot in the peri-implant region during its retraction.
Однако известные методики обработки имплантатов для контролируемого формирования поверхности с нужной трехмерной организацией на наноуровне являются несовершенными. Раскрытие изобретения However, the known techniques for processing implants for controlled surface formation with the desired three-dimensional organization at the nanoscale are imperfect. Disclosure of invention
Задачей настоящего изобретения является формирование поверхности дентального имплантата, обеспечивающей успешную интеграцию имплантата в костную ткань.  The present invention is the formation of the surface of the dental implant, ensuring the successful integration of the implant into the bone tissue.
Поставленная задача решается путем достижения технического результата - создания такой наружной поверхности имплантата, которая обеспечивает оптимальные условия для адгезии белков за счет технологически сформированой максимально возможной площади поверхности имплантата и трехуровневой структуры образующихся микрополостей: менее 1 микрона (наноуровень), 1-5 микрон (микроуровень) и 20-40 микрон (макроуровень).  The problem is solved by achieving a technical result - creating such an outer surface of the implant, which provides optimal conditions for protein adhesion due to the technologically formed maximum possible surface area of the implant and the three-level structure of the formed microcavities: less than 1 micron (nanoscale), 1-5 micron (microscale) and 20-40 microns (macro level).
Достижение указанного технического результата обеспечивается в результате осуществления способа формирования поверхности дентального имплантата, включающего дробеструйную обработку титанового имплантата оксидом алюминия и последующее химическое травление, при котором химическое травление осуществляют с помощью кислотной композиции, содержащей серную и соляную кислоты, разведенные в 50%-ой концентрации, в течение 20 мин. при температуре раствора от 22 до 25 °С и освещенности от 0,25 до 0,4 лк и одновременном воздействии ультразвука мощностью от 457 до 507 эрг/с. The achievement of the specified technical result is achieved as a result of the implementation of the method of forming the surface of the dental implant, including bead blasting of the titanium implant with aluminum oxide and subsequent chemical etching, in which the chemical etching is carried out using an acid composition containing sulfuric and hydrochloric acids diluted in a 50% concentration, within 20 minutes at a temperature of the solution from 22 to 25 ° C and illumination from 0.25 to 0.4 lux and simultaneous exposure to ultrasound with a power of 45 7 to 50 7 erg / s.
Подробное описание изобретения DETAILED DESCRIPTION OF THE INVENTION
Для осуществления изобретения используют титановые имплантаты, изготовленные из технически чистого титана, например, титана марок ВТ 1-0 и ВТ 1-00 (ГОСТ 19807-91) или из «коммерчески чистого» титана четырех марок (Grade 1-4 ASTM, ISO) или титанового сплава Ti-6AI-4V(ASTM, ISO), подвергнутые предварительной дробеструйной обработке оксидом алюминия (Al203). Например, в одном из вариантов воплощения изобретения могут быть использованы титановые имплантаты компании Альфа БИО (Израиль). Предварительная дробеструйная обработка необходима для текстурирования титановой поверхности при подготовке ее к травлению для достижения необходимого результата травления. При этом размер шероховатости, травление, осуществляемое после дробеструйной обработки, и последующая ультразвуковая мойка не влияют на результат последующего модифицирования предлагаемым способом. For the implementation of the invention, titanium implants are used, made of technically pure titanium, for example, titanium of grades VT 1-0 and BT 1-00 (GOST 19807-91) or of “commercially pure” titanium of four grades (Grade 1-4 ASTM, ISO) or titanium alloy Ti-6AI-4V (ASTM, ISO), subjected to preliminary bead-blasting with aluminum oxide (Al 2 0 3 ). For example, in one embodiment of the invention, titanium implants of Alpha BIO company (Israel) can be used. Preliminary shot blasting is necessary for texturing the titanium surface in preparation for etching to achieve the desired etching result. In this case, the roughness size, etching carried out after bead-blasting, and the subsequent ultrasonic washing do not affect the result of subsequent modification by the proposed method.
Для осуществления кислотного модифицирования титановой поверхности титановый имплантат помещается в ультразвуковую ванну, где подвергается травлению в смеси соляной (соляная кислота ОСЧ 20-4 ГОСТ 14261-77, и 26-4 ГОСТ 14261-77) и серной кислот (серная кислота ОСЧ 11-5 (особо чистая) ГОСТ 14262-78 (массовая доля основного вещества 95,6%)) в равных пропорциях, разведенных дистиллированной водой в 50%-ой концентрации. Травление производится в течение 20 мин. при температуре раствора от 22 до 25 °С и освещенности от 0,25 до 0,4 лк (люкс) и одновременном воздействии ультразвука мощностью от 457 до 507 эрг/с. For acid modification of the titanium surface, the titanium implant is placed in an ultrasonic bath, where it is etched in a mixture of hydrochloric (hydrochloric acid OSCH 20-4 GOST 14261-77, and 26-4 GOST 14261-77) and sulfuric acid (sulfuric acid OSCH 11-5 (very pure) GOST 14262-78 (mass fraction of the main substance 95.6%)) in equal proportions diluted with distilled water in a 50% concentration. Etching is carried out within 20 minutes. at a temperature solution from 22 to 25 ° C and illumination from 0.25 to 0.4 lux (lux) and the simultaneous exposure to ultrasound with a power of 45 7 to 50 7 erg / s.
В результате такого воздействия формируется модифицированная поверхность имплантата, имеющая трехуровневую структуру микрополостей: As a result of this effect, a modified implant surface is formed having a three-level structure of microcavities:
• менее 1 микрона - наноуровень, необходимый для оптимизации процесса абсорбции костных морфогенетических протеинов; сформированные поры с диапазоном размеров от 1-5 нм до 200 нм и максимумом в районе 50 нм обеспечивают возможность сорбировать белки в большем количестве, чем известные аналоги, обеспечивая необходимое для остеоинтеграции индуцирование костных морфогенетических протеинов;  • less than 1 micron - the nanoscale required to optimize the absorption of bone morphogenetic proteins; formed pores with a size range from 1-5 nm to 200 nm and a maximum in the region of 50 nm provide the ability to sorb proteins in larger quantities than known analogues, providing the induction of bone morphogenetic proteins necessary for osseointegration;
• 1-5 микрон - микроуровень, необходимый для надежной фиксации фибриновых нитей, составляющих основу кровяного сгустка, что гарантированно предупреждает их отрыв от поверхности имплантата во время ретракции сгустка крови;  • 1-5 microns - the micro level necessary for reliable fixation of the fibrin filaments that make up the basis of the blood clot, which is guaranteed to prevent their separation from the implant surface during retraction of the blood clot;
• 20-40 микрон - макроуровень, соответствущий среднестатистическому размеру остеогенных клеток - активных остеобластов и необходимый для их оптимального размещения на поверхности имплантата.  • 20-40 microns - macro level, corresponding to the average size of osteogenic cells - active osteoblasts and necessary for their optimal placement on the implant surface.
Таким образом, по сравнению с известными аналогами, поверхность имплантата, сформированная предлагаемым способом, обеспечивает создание оптимальных условий для адгезии белков за счет формирования максимально возможной площади поверхности имплантата, имеющей трехуровневую структуру микрополостей.  Thus, in comparison with known analogues, the implant surface formed by the proposed method provides the creation of optimal conditions for protein adhesion by forming the maximum possible surface area of the implant having a three-level structure of microcavities.
Известно, что сохранение максимально возможного количества сгустка крови во время и после его ретракции на поверхности имплантата является основным разрешительным моментом в развитии контактного остеогенеза, который и принято считать успехом остеоинтеграции. Этот процесс в норме принято считать начальным этапом остеокондуктивных реакций, происходящих в каждом первом случае при инсталляции дентального имплантата.  It is known that the preservation of the maximum possible amount of a blood clot during and after its retraction on the implant surface is the main resolution point in the development of contact osteogenesis, which is considered to be the success of osseointegration. This process is normally considered to be the initial stage of osteoconductive reactions that occur in each first case during the installation of a dental implant.
Совокупность характеристик, присущих поверхности имплантата, получаемой предлагаемым способом, обеспечивает ее остеиндуктивные и остеокондуктивные свойства, что, в свою очередь, обеспечивает успешную остеоинтеграцию костной ткани при проведении имплантации. Поскольку ретракция кровяного сгустка на титановом имплантате происходит более медленно в области пор, имеющих размер менее 1 микрона, ретракция всего сгустка происходит не одновременно, так как чем дальше сгусток располагается от раневой поверхности, тем слабее его ретракция. Это позволяет предупредить развитие такого осложнения, как врастание эпителия и образование костного кармана вокруг пришеечной части имплантата.  The set of characteristics inherent in the implant surface obtained by the proposed method provides its osteinductive and osteoconductive properties, which, in turn, ensures successful osseointegration of bone tissue during implantation. Since the retraction of a blood clot on a titanium implant occurs more slowly in the region of pores having a size of less than 1 micron, the retraction of the entire clot does not occur simultaneously, since the farther the clot is located from the wound surface, the weaker its retraction. This prevents the development of such complications as epithelial ingrowth and the formation of a bone pocket around the cervical part of the implant.
з Изобретение иллюстрируется следующими рисунками: s The invention is illustrated by the following figures:
Рис. 1 - микрофотографии поверхности имплантата, сформированной способом по изобретению, фото лаборатории Микроанализа Технопарка «Сколково»:  Fig. 1 - micrographs of the implant surface formed by the method according to the invention, photo of the Microanalysis Laboratory of the Skolkovo Technopark:
а) - увеличение в 150 раз, б) - увеличение в 500 раз, в) увеличение в 1000 раз, г) - увеличение в 2500 раз, д) - увеличение 104, е) увеличение 4x104, a) an increase of 150 times, b) an increase of 500 times, c) an increase of 1000 times, d) an increase of 2500 times, e) an increase of 10 4 , f) an increase of 4x10 4 ,
ж) - увеличение 4x104, з) - увеличение 2x104, и) увеличение 16x104, g) - an increase of 4x10 4 , h) - an increase of 2x10 4 , and) an increase of 16x10 4 ,
к) - увеличение 8x104, л) - увеличение 30x104, м) увеличение 30x104, k) - an increase of 8x10 4 , l) - an increase of 30x10 4 , m) an increase of 30x10 4 ,
н) - увеличение 2x104, б) - увеличение 60x104; m) - increase 2x10 4 , b) - increase 60x10 4 ;
Рис. 2 - микрофотографии поверхности имплантата, полученного компанией «Антожир» (Anthogyr), Франция: а) - увеличение в 150 раз, б) - увеличение в 500 раз, в) увеличение 1000 раз, г) - увеличение в 2500 раз, д) - увеличение 104, е) увеличение 4x104, ж) - увеличение 8x104, з) - увеличение в 5000 раз; Fig. 2 - microphotographs of the surface of the implant obtained by Antozhir (Anthogyr), France: a) a 150-fold increase, b) a 500-fold increase, c) a 1000-fold increase, d) a 2,500-fold increase, e) - increase 10 4 , e) increase 4x10 4 , g) - increase 8x10 4 , h) - increase 5,000 times;
Рис. 3 - микрофотографии поверхности имплантата, полученного компанией «Торнадо» (Махачкала): а) - увеличение в 150 раз, б) - увеличение в 500 раз, в) увеличение в 1000 раз, г) - увеличение 104, д) - увеличение 8x104, е) увеличение в 1000 раз, ж) - увеличение в 5000 раз, з) - увеличение в 5000 раз; Fig. 3 - micrographs of the surface of the implant obtained by the Tornado company (Makhachkala): a) an increase of 150 times, b) an increase of 500 times, c) an increase of 1000 times, d) an increase of 10 4 , e) an increase of 8x10 4, e) increase in 1000, g) - an increase of 5,000 times, s) - an increase of 5,000 times;
Рис. 4 - микрофотографии поверхности имплантата Atid компании AlphaBioTec (Израиль): а) - увеличение 2x104, б) - увеличение 4x104, в) увеличение 8x104, Fig. 4 - micrographs of the surface of the Atid implant company AlphaBioTec (Israel): a) an increase of 2x10 4 , b) an increase of 4x10 4 , c) an increase of 8x10 4 ,
Рис. 5 - микрофотография поверхности «NanoTec» имплантата ATID компании Alpha Bio Тес (увеличение 4x104); Fig. 5 is a micrograph of the NanoTec surface of the Alpha Bio Tes ATID implant (magnification 4x10 4 );
Рис. 6 - микрофотография поверхности TiUnite компании Nobel Вюсаге (увеличение Fig. 6 is a photomicrograph of a Nobel Wüsage TiUnite surface (enlarged
Ю4); U 4 );
Рис. 7 - микрофотография поверхности SLA компании Straumann Вюсаге (увеличение 2x104); Fig. 7 is a micrograph of the surface of the SLA of Straumann Wüsage (magnification 2x10 4 );
Рис. 8 - результаты спектрального анализа поверхности имплантата ATID;  Fig. 8 shows the results of spectral analysis of the surface of an ATID implant;
Рис. 9 - результаты спектрального анализа поверхности имплантата ICE;  Fig. 9 shows the results of spectral analysis of the ICE implant surface;
Рис. 10 - результаты спектрального анализа поверхности имплантата SPI;  Fig. 10 shows the results of spectral analysis of the surface of an SPI implant;
Рис. 11 - результаты спектрального анализа поверхности имплантата DFI;  Fig. 11 shows the results of spectral analysis of the surface of a DFI implant;
Рис. 12 - результаты спектрального анализа поверхности имплантата Mirell;  Fig. 12 shows the results of spectral analysis of the surface of a Mirell implant;
Рис. 13 - результаты спектрального анализа поверхности имплантата Noris;  Fig. 13 - results of spectral analysis of the surface of the Noris implant;
Рис. 14 - результаты спектрального анализа поверхности имплантата SIN.  Fig. 14 shows the results of spectral analysis of the surface of the SIN implant.
На микрофотографиях видно, что поверхность имплантата, полученная способом по изобретению, более структурирована, чем поверхности имплантатов известных аналогов. In the micrographs it is seen that the implant surface obtained by the method according to the invention is more structured than the implant surfaces of known analogues.
Далее изобретение иллюстрируется следующим неограничивающим объем притязаний примером. Пример The invention is further illustrated by the following non-limiting example. Example
Для проведения модифицирования поверхности использовались имплантаты Atid компании AlphaBioTec (Израиль) из титана марки Grade 2 ASTM (см. рис. 4).  For surface modification, Atid implants of AlphaBioTec company (Israel) made of Grade 2 ASTM grade titanium were used (see Fig. 4).
Титановые имплантаты подвергали кислотному травлению в смеси соляной и серной кислот, смешанных в равных пропорциях и разведенных дистиллированной водой в 50%-ой концентрации. Травление производилось в течение 20 мин. при температуре раствора 24 °С и освещенности 0,4 лк с одновременным воздействием ультразвука мощностью от 507 эрг/с. Titanium implants were subjected to acid etching in a mixture of hydrochloric and sulfuric acids, mixed in equal proportions and diluted with distilled water in a 50% concentration. Etching was carried out for 20 minutes. at a solution temperature of 24 ° С and illumination of 0.4 lux with simultaneous exposure to ultrasound with a power of 50 7 erg / s.
В результате такого воздействия была сформирована модифицированная поверхность имплантата, имеющая трехуровневую структуру микрополостей (см. рис. 1).  As a result of this effect, a modified implant surface was formed having a three-level structure of microcavities (see Fig. 1).

Claims

Формула изобретения Claim
Способ формирования поверхности дентального имплантата, включающий дробеструйную обработку титанового имплантата оксидом алюминия и последующее химическое травление, отличающийся тем, что химическое травление осуществляют с помощью кислотной композиции, содержащей серную и соляную кислоты, разведенные в 50% концентрации, в течение 20 мин. при температуре раствора от 22 до 25 °С и освещенности от 0,25 до 0,4 лк и одновременном воздействии ультразвука мощностью от 457 до 507 эрг/с. A method of forming the surface of a dental implant, including bead blasting a titanium implant with aluminum oxide and subsequent chemical etching, characterized in that the chemical etching is carried out using an acid composition containing sulfuric and hydrochloric acids diluted in 50% concentration for 20 minutes. at a temperature of the solution from 22 to 25 ° C and illumination from 0.25 to 0.4 lux and simultaneous exposure to ultrasound with a power of 45 7 to 50 7 erg / s.
PCT/RU2015/000031 2015-01-21 2015-01-21 Titanium implant having porous surface, and method for producing same WO2016118038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2015/000031 WO2016118038A1 (en) 2015-01-21 2015-01-21 Titanium implant having porous surface, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2015/000031 WO2016118038A1 (en) 2015-01-21 2015-01-21 Titanium implant having porous surface, and method for producing same

Publications (1)

Publication Number Publication Date
WO2016118038A1 true WO2016118038A1 (en) 2016-07-28

Family

ID=56417451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2015/000031 WO2016118038A1 (en) 2015-01-21 2015-01-21 Titanium implant having porous surface, and method for producing same

Country Status (1)

Country Link
WO (1) WO2016118038A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357600B2 (en) 2014-12-16 2022-06-14 Nobel Biocare Services Ag Dental implant
US12121414B2 (en) 2018-11-12 2024-10-22 Nobel Biocare Services Ag Dental implant, component for dental applications, implant system for dental applications, method for forming a protective layer on the surface of an implantable or implant component, implantable or implant component having a protective layer, and use of a protective layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2202984C1 (en) * 2002-02-26 2003-04-27 Абдуллаев Фикрет Мавлудинович Dental implant
US7144428B2 (en) * 2000-09-19 2006-12-05 Eduardo Aldecoa Anitua Method for surface treatment of implants or prosthesis made of titanium or other materials
EP2054093B1 (en) * 2006-08-22 2012-11-21 Thommen Medical Ag Implant, in particular dental implant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144428B2 (en) * 2000-09-19 2006-12-05 Eduardo Aldecoa Anitua Method for surface treatment of implants or prosthesis made of titanium or other materials
RU2202984C1 (en) * 2002-02-26 2003-04-27 Абдуллаев Фикрет Мавлудинович Dental implant
EP2054093B1 (en) * 2006-08-22 2012-11-21 Thommen Medical Ag Implant, in particular dental implant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11357600B2 (en) 2014-12-16 2022-06-14 Nobel Biocare Services Ag Dental implant
US11918434B2 (en) 2014-12-16 2024-03-05 Nobel Biocare Services Ag Dental implant
US12121414B2 (en) 2018-11-12 2024-10-22 Nobel Biocare Services Ag Dental implant, component for dental applications, implant system for dental applications, method for forming a protective layer on the surface of an implantable or implant component, implantable or implant component having a protective layer, and use of a protective layer

Similar Documents

Publication Publication Date Title
US5603338A (en) Implant surface preparation utilizing acid treatment
ES2729425T3 (en) Deposition of discrete nanoparticles on a nanostructured surface of an implant
US7169317B2 (en) Implant surface preparation
US6491723B1 (en) Implant surface preparation method
CA2994292C (en) Surface treatment for an implant surface
JP2578419B2 (en) Ceramic treated metal implant
AU725983B2 (en) Surface modification of medical implants
EP2178467B1 (en) A bone tissue implant comprising lithium ions and method for manufacturing thereof
US9119687B2 (en) Method of manufacturing a functionalized implant, and functionalized implant
Fouziya et al. Surface modifications of titanium implants–The new, the old, and the never heard of options
JP2017148497A (en) Main body made from ceramic material
US8329464B2 (en) Implant surface treatment method having tissues integrated
US20050177248A1 (en) Method for treating an implant, and such an implant
US20120183923A1 (en) Dental implant and surface treatment method of dental implant
WO2016118038A1 (en) Titanium implant having porous surface, and method for producing same
EP1384524A2 (en) Low temperature process for coating surfaces with nanocrystalline apatite phosphates from an aqueous suspension of amorphous phosphate
EA026505B1 (en) Titanium implant having porous surface, and method for producing same
US20190209736A1 (en) Method for the nanometric deposition of calcium phosphate on the surface of an anodized titanium implant
Nguyen et al. The effect of two-step surface modification for Ti-Ta-Mo-Zr alloys on bone regeneration: An evaluation using calvarial defect on rat model
Zemtsova et al. Modern techniques of surface geometry modification for the implants based on titanium and its alloys used for improvement of the biomedical characteristics
Perez-Diaz et al. Evaluation of Fibroblasts cells viability and adhesion on six different titanium surfaces: An in vitro experimental study
KR101092227B1 (en) Metal surface treatment method and the metal treated thereby
Sharma et al. Implant surface microtopography–a review
TWI605838B (en) Metal medical complex surface treatment method
Saleh et al. Effect of UV rrradiation on apatite deposition on anodised TiO2 coating formed under mixed acid solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 11.01.18

122 Ep: pct application non-entry in european phase

Ref document number: 15879120

Country of ref document: EP

Kind code of ref document: A1