WO2016117882A1 - Electronic component comprising magnetic nanoparticles, and manufacturing method thereof - Google Patents

Electronic component comprising magnetic nanoparticles, and manufacturing method thereof Download PDF

Info

Publication number
WO2016117882A1
WO2016117882A1 PCT/KR2016/000465 KR2016000465W WO2016117882A1 WO 2016117882 A1 WO2016117882 A1 WO 2016117882A1 KR 2016000465 W KR2016000465 W KR 2016000465W WO 2016117882 A1 WO2016117882 A1 WO 2016117882A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic nanoparticles
electronic device
electrode
tin
pattern
Prior art date
Application number
PCT/KR2016/000465
Other languages
French (fr)
Korean (ko)
Inventor
김영근
이지성
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016117882A1 publication Critical patent/WO2016117882A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to an electronic device including the magnetic nanoparticles and a method of manufacturing the same.
  • magnetic nanoparticles have been spotlighted in various fields such as biotechnology, electronics, machinery, and new materials due to their specific morphology and physicochemical properties.
  • Particularly magnetic nanoparticles are catalysts, drug delivery, spin-electronic devices, magnetic recording devices, large resistance magnetic sensors, and the like. It is used. Therefore, there is a great interest in the scientific community regarding the study of the electrical and magnetic transport properties between the magnetic nanoparticles arranged in a variety of temperature and magnetic field environment.
  • the magnetic nanoparticles are applied to various fields, and at the same time, the magnetic nanoparticles that are appropriately used in the specific fields are specified, and the unique properties of the magnetic nanoparticles for use in these specific fields are how the magnetic nanoparticles are arranged. It was greatly affected by whether it is properly expressed.
  • the magnetic nanoparticles have a problem in that the arrangement and the consistency of the arrangement greatly depend on changes in ambient temperature and magnetic field flow, and thus, there is a problem in that the magnetic nanoparticles are very difficult to properly apply as originally intended in the art.
  • Patent Document 1 Korean Patent Registration No. 10-0996100
  • Patent Document 1 a method for manufacturing an electronic device using nanoparticles, a base template for the same, and the manufacture thereof Only disclosed electronic devices and the like have been disclosed, and no disclosure or suggestion has been made regarding electronic devices in which magnetic nanoparticles are arranged in a specific structure.
  • an object of the present invention is to provide an electronic device arranged on a substrate in a structure suitable for applying the magnetic nanoparticles applied to the electronic device to the electronic device. That is, it was difficult to arrange the magnetic nanoparticles in an appropriate structure such that the desired characteristics are expressed on the substrate included in the electronic device.
  • the present invention solves this problem, and the magnetic nanoparticles have an appropriate structure on the substrate included in the electronic device. It is an object of the present invention to provide an electronic device and a method for manufacturing the same, which can be arranged as desired. It is also an objective to control the electrical or magnetic transport properties of electronic devices using sophisticated methods.
  • Magnetic nanoparticles are arranged on one surface of an electronic device substrate having an insulating layer formed thereon,
  • the array of magnetic nanoparticles are arranged in a continuous connection along the pattern formed by the conductive material and the electrode on the substrate,
  • the conductive material and the electrode are sequentially positioned on the substrate to form a pattern
  • the pattern is formed on the left and right sides of the magnetic nanoparticles arranged in series, respectively,
  • the consecutively connected magnetic nanoparticles and the electrode forming the pattern are electronic devices, characterized in that connected to a single or a plurality of micro-electrodes at any part.
  • the pattern is a method of manufacturing an electronic device, characterized in that formed on the left and right of the magnetic nanoparticles are arranged in series.
  • the electronic device and the method of manufacturing the same according to the present invention can provide an electronic device capable of proper arrangement required in the electronic device when the magnetic nanoparticles are applied to the electronic device.
  • the electrical or magnetic properties of the magnetic nanoparticles may be beneficially expressed in the electronic device. Difficulties in arranging appropriately drastically improved the problems of failing to achieve the expected effect.
  • SEM scanning electron microscope
  • FIG. 2 is a schematic view illustrating an electronic device in which magnetic nanoparticle arrays and microelectrodes are formed according to Examples 1 to 3.
  • 3 is a graph showing a change in electrical characteristics and resistance according to the temperature of the spin electronic device manufactured according to Examples 1 to 3 below.
  • the present inventors have made intensive studies to develop an electronic device capable of forming an appropriate arrangement and a method of manufacturing the same when the magnetic nanoparticles are applied to an electronic device, and thus, the magnetic nanoparticles including the magnetic nanoparticles arranged in a specific structure according to the present invention.
  • the present invention has been completed by discovering an electronic device and a method of manufacturing the same.
  • the magnetic nanoparticles 5 are arranged on one surface of the substrate 1 for an electronic device having the insulating layer 2 formed thereon.
  • the arrangement of the magnetic nanoparticles are arranged in a continuous connection along the pattern formed by the conductive material 3 and the electrode 4 on the substrate,
  • the conductive material and the electrode are sequentially positioned on the substrate to form a pattern
  • the pattern is formed on the left and right sides of the magnetic nanoparticles arranged in series, respectively,
  • the consecutively connected magnetic nanoparticles and the electrode forming the pattern are electronic devices, characterized in that connected to a single or a plurality of microelectrodes 6 at any part.
  • the electronic device substrate may be applied to the present invention without particular limitation as long as the electronic device substrate does not prevent the magnetic nanoparticles from being continuously connected and arranged.
  • the insulating layer is a material that can be used as an insulator on the substrate for the electronic device may be included without any particular limitation, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), Silicon nitride (Si 3 N 4 ), and the like, and all highly insulating materials may be included therein.
  • the method of forming the insulating layer is not particularly limited, and may be formed by wet oxidation, deposition, or the like as a preferred embodiment.
  • a pattern is formed on the substrate for an electronic device formed on the insulating layer by a conductive material and an electrode, the magnetic nanoparticles are arranged along the pattern.
  • the magnetic nanoparticles are arranged continuously connected along the pattern.
  • the magnetic nanoparticles thus show an array structure that is continuously connected along a pattern, which can be compared to a chain structure or a nano chain structure.
  • the array structure connected in series may include both ordered or disordered superlattice structures of one, two, or three dimensions.
  • a pattern is formed by the conductive material and the electrode, and the conductive material and the electrode are sequentially formed on the substrate on which the insulating layer is formed. That is, the conductive material is first attached to a portion of the insulating layer, and then the electrodes are sequentially positioned on the conductive material.
  • the conductive material may be applied to the conductive material of the present invention without particular limitations as long as the conductive material is present, and the conductive material also serves as an adhesive layer connecting the insulating layer and the electrode in the present invention. do.
  • the conductive material is not particularly limited so long as it has conductivity and excellent adhesion, but preferably titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), niobium It is preferable that it is any one or more selected from the group consisting of (Nb) and tantalum (Ta).
  • the pattern is preferably formed on each of the left and right of the magnetic nanoparticles are arranged continuously connected. That is, the pattern is arranged to the inside of the array of magnetic nanoparticles are continuously connected to each other, preferably formed on the left and right of the magnetic nanoparticles, respectively.
  • the electrode forming the pattern with the conductive material is not particularly limited as long as it is used as an electrode material, but is distinguished from the fine electrode to be described later preferably gold (Au), silver (Ag), platinum (Pt) ), Copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin doped indium oxide (ITO), palladium (Pd) and aluminum It is preferable that it is any one or more selected from the group consisting of (Al).
  • the continuously connected magnetic nanoparticles and the patterned electrode is connected to the microelectrode at any site, the desired site and the desired site of the electrode formed pattern in the magnetic nanoparticles array structure by such a microelectrode It is possible to connect.
  • the microelectrode is to connect a desired arrangement portion of the entire array of magnetic nanoparticles with the electrode, it is possible to control the electrical or magnetic transport characteristics of the final electronic device including all of the structures by the microelectrode. do.
  • the microelectrode is to connect a desired portion of the arrangement of the magnetic nanoparticles with a desired portion of the electrode on which the pattern is formed, and may be connected to a single or a plurality of microelectrodes without particular limitation.
  • the material forming the microelectrode is distinguished from the electrode, and any material capable of connecting the magnetic nanoparticles with the electrode may be included without particular limitation.
  • platinum Pt
  • silver Ag
  • gold Au
  • copper Cu
  • iron Fe
  • nickel Ni
  • tungsten W
  • zinc Zn
  • tin Sn
  • tin doped indium oxide ITO
  • palladium Pd
  • aluminum It is preferable that it is any one or more selected from the group consisting of (Al).
  • any method that enables the connection of the microelectrode to any desired region of the electrode on which the arrangement and pattern of the magnetic nanoparticles are formed may be applied without any particular limitation, and as a preferred embodiment
  • the microelectrode may be formed by a focused ion beam system.
  • the average particle diameter of the magnetic nanoparticles is not particularly limited, but may preferably correspond to 2-200 nm. If the average particle diameter of the magnetic nanoparticles is less than 2 nm, it is not preferable because the size of the magnetic nanoparticles is too small to easily form a microelectrode. If the average particle diameter of the magnetic nanoparticles exceeds 200 nm, the size thereof is too large. It is not preferable because it is difficult to achieve the object of the present invention to view the electrical or magnetic transport properties of the magnetic nanoparticles.
  • the magnetic nanoparticles are a group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides It is preferable that it is any one or more selected from.
  • the electronic device according to the present invention having such a structure is an electronic device capable of aligning the magnetic nanoparticles on the substrate in an arrangement suitable for application to the electronic device along the pattern, whereby the magnetic nanoparticles are the corresponding electronic devices. It is an electronic device that can be aligned on a substrate so that desired characteristics are properly expressed in the device. In addition, it is possible to align the arrangement of the magnetic nanoparticles as desired, while it is possible to connect the microelectrode to any desired region of the electrode and the patterned electrode of the magnetic nanoparticles to be electrically Or it becomes possible to adjust the magnetic transport characteristic.
  • the electronic device according to the present invention may be applied to a spin electronic device, a magnetic sensor, a memory device, and the like.
  • the pattern is a method of manufacturing an electronic device, characterized in that formed on the left and right of the magnetic nanoparticles are arranged in series.
  • the substrate for an electronic device of step 1) may be applied to the present invention without particular limitation as long as the substrate for an electronic device does not prevent the magnetic nanoparticles from being continuously connected and arranged.
  • the insulating layer is a material that can be used as an insulator on the substrate for the electronic device may be included without any particular limitation, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), Silicon nitride (Si 3 N 4 ), and the like, and all highly insulating materials may be included therein.
  • the method of forming the insulating layer is not particularly limited, and may be formed by wet oxidation, deposition, or the like as a preferred embodiment.
  • the pattern of step 2) is formed by sequentially placing the conductive material and the electrode on the insulating layer
  • the method of forming the pattern by sequentially placing the conductive material and the electrode there is no particular limitation on the method of forming the pattern by sequentially placing the conductive material and the electrode,
  • a pattern in which the conductive material and the electrode are sequentially formed may be formed using a method such as deposition.
  • the conductive material may be included without particular limitation as long as the material is excellent in conductivity and adhesion, preferably titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), niobium It is preferable that it is any one or more selected from the group consisting of (Nb) and tantalum (Ta).
  • the material constituting the electrode is distinguished from the fine electrode, gold (Au), silver (Ag), platinum (Pt), copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc At least one selected from the group consisting of (Zn), tin (Sn), tin doped indium oxide (ITO), palladium (Pd), and aluminum (Al) is preferable.
  • the pattern is preferably formed on each of the left and right of the magnetic nanoparticles are arranged continuously connected. That is, the magnetic nanoparticles are arranged along the pattern on the left and right sides.
  • the magnetic nanoparticles are continuously connected in the step 3) are arranged along the pattern, this continuous connected array structure can also be compared to the chain structure or nano-chain structure, one-dimensional, two-dimensional or three It can include both ordered or disordered superlattice structures in dimensional form.
  • the magnetic nanoparticles are a group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides It is preferably a nanoparticle consisting of at least one material selected from.
  • the solution including the magnetic nanoparticles is sprayed on the substrate by adjusting the concentration of the solution while applying an external magnetic field, and thus spraying the solution.
  • the magnetic nanoparticles are continuously connected to each other in the direction of application of the magnetic field.
  • the desired magnetic field strength may be appropriately adjusted and applied without particular limitation to the structure to be expressed by arranging the magnetic nanoparticles on the electronic device substrate.
  • the magnetic nanoparticles and the electrode forming the pattern are continuously connected and arranged by the step 4) is connected to a single or a plurality of microelectrode at any part.
  • Connecting at any of the sites means connecting the magnetic nanoparticles and the electrode forming the pattern are continuously connected to the desired site.
  • it is possible to connect at any desired site, and such a random site may be a single or a plurality of sites so that the microelectrode is connected to a single or a plurality of consecutively arranged magnetic nanoparticles and formed an electrode pattern.
  • the microelectrode is distinguished from the electrode, preferably platinum (Pt), silver (Ag), gold (Au), copper (Cu), iron (Fe), nickel (Ni), tungsten (W) ), Zinc (Zn), tin (Sn), tin-doped indium oxide (ITO), palladium (Pd), and aluminum (Al) may include any one or more materials selected from the group consisting of. .
  • the method of forming the microelectrode may be applied without any particular limitation as long as it is a method for enabling the connection of the microelectrode to any desired region of the electrode on which the arrangement and pattern of the magnetic nanoparticles are formed.
  • the microelectrode can be formed by a system. Particularly, when the microelectrode is formed by using the focused ion beam system, the number of the magnetic nanoparticles may be adjusted and connected according to the physical properties expressed on the substrate.
  • the average particle diameter of the magnetic nanoparticles is not particularly limited, but may preferably correspond to 2-200 nm. If the average particle diameter of the magnetic nanoparticles is less than 2 nm, it is not preferable because the size of the magnetic nanoparticles is too small to easily form a microelectrode. If the average particle diameter of the magnetic nanoparticles exceeds 200 nm, the size thereof is too large. It is not preferable because it is difficult to achieve the object of the present invention to view the electrical or magnetic transport properties of the magnetic nanoparticles.
  • the magnetic nanoparticles are a group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides It is preferable that it is any one or more selected from.
  • the manufacturing method of an electronic device according to the present invention is a method of manufacturing an electronic device capable of aligning the magnetic nanoparticles on the substrate in a suitable arrangement to apply to the electronic device along the pattern, through
  • the magnetic nanoparticles are a method for manufacturing an electronic device that can be aligned on a substrate such that the desired characteristics of the electronic device are properly expressed.
  • a titanium (conductive material) / gold (electrode) is deposited on a silicon substrate on which a silicon oxide is grown by 200 nm using a shadow mask to form an electron beam deposition method.
  • a pattern is formed in a T shape and deposited.
  • the substrate thus deposited is subjected to ultrasonic cleaning in acetone and ethanol to minimize foreign substances.
  • Magnetite (Fe 3 O 4 ) nanoparticles of 100 nm size was performed by polyol method.
  • Iron chloride hexahydrate (FeCl 3 ⁇ 6H 2 O) was used as a precursor, and ethylene glycol, sodium acetate, and distilled water were used as reducing agents and auxiliaries, respectively.
  • the magnetic nanoparticles synthesized in Example 2 are dropped to a predetermined concentration on the substrate prepared in Example 1 in an environment in which an external magnetic field is strongly hung.
  • the separated magnetic nanoparticles were found to form an array connected continuously between the patterns of the T-shaped titanium / gold electrode as shown in FIG.
  • this arrangement is connected continuously to show a structure similar to the chain structure or nano-chain structure.
  • a focused ion beam apparatus was applied thereto to form a microelectrode connecting the specific region where the magnetic nanoparticles were continuously connected and the specific region of the patterned gold electrode.
  • the microelectrode was formed by depositing a platinum (Pt) gas precursor with platinum metal by irradiating a focused ion beam. That is, as shown in FIG. 1 (c) below, magnetic nanoparticles are arranged between a pattern formed of a deposited titanium conductive material / gold electrode using a focused ion beam system, and platinum is interposed between the electrode and the magnetic nanoparticle array at a specific site. The fine electrode was connected, and the number of nanoparticles was controlled according to the measurement conditions.
  • Pt platinum
  • FIG. 1 is an overall SEM image of the spin electronic device in which the magnetic nanoparticle array and the microelectrode are formed according to the overall process of this embodiment.
  • Figure 2 is a schematic diagram of the overall process of the present embodiment
  • the top view of Figure 2 below is a model in which the structure formed between the arrangement of the magnetic nanoparticles and the electrode in the region of the microelectrode in an arbitrary region as viewed from the top shape to be.
  • FIG. 3 (a) shows the change in electrical characteristics according to the temperature of the spin electronic device manufactured according to Examples 1 to 3.
  • the resistance value of the measured curve could be calculated and based on this, the resistance change with temperature could be confirmed as shown in FIG. 3 (b).
  • Figure 4 (a) shows a current-voltage curve according to the external magnetic field strength in the spin electronic device manufactured according to the first to third embodiments.
  • the resistance value of the measured curve could be calculated, and based on this, the magneto-resistance (MR) change according to voltage could be confirmed as shown in FIG. 4 (b).
  • MR magneto-resistance
  • Figure 5 was able to confirm the effect of the magnetic transport according to the external magnetic field strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)

Abstract

The present invention relates to an electronic component comprising magnetic nanoparticles, and a manufacturing method thereof. An electronic component comprising magnetic nanoparticles, and a manufacturing method thereof, according to the present invention, can provide an electronic component which, when magnetic nanoparticles are applied to the same, is capable of appropriately arranging the magnetic nanoparticles as required by the electronic component. As such, the present invention dramatically improves the problem that although electrical and magnetic properties unique to magnetic nanoparticles can be advantageously expressed in an electronic component, if the magnetic nanoparticles are applied when the electronic component is manufactured by conventional technologies, the expected effect is not achieved because it is difficult to appropriately arrange the magnetic nanoparticles on the electronic component due to the properties of magnetic nanoparticles. Further, the present invention is capable of effectively arranging magnetic nanoparticles on a substrate and effectively controlling the electrical or magnetic transfer properties of the entire electronic component.

Description

자성 나노입자를 포함하는 전자소자 및 이의 제조방법Electronic device comprising magnetic nanoparticles and method for manufacturing same
본 발명은 자성 나노입자를 포함하는 전자소자 및 이의 제조방법에 관한 것이다. The present invention relates to an electronic device including the magnetic nanoparticles and a method of manufacturing the same.
최근 나노입자(nanoparticle)들은 그의 특이적 형태 및 물리 화학적 성질들에 의해 생명공학 분야 및 전자, 기계, 신소재 등 여러 분야에서 각광을 받고 있다. 특히 자성을 띄고 있는 나노입자(이하 이러한 나노입자를‘자성 나노입자(magnetic nanoparticle)’라 칭함)들은 촉매제, 약물전달, 스핀전자소자(spin-electronic device), 자성 기록장치, 거대저항 자기센서 등에 사용되고 있다. 따라서 다양한 온도 및 자기장이 가해지는 환경에서 배열된 자성 나노입자 간의 전기적, 자기적 수송(transport) 특성들에 대한 연구에 관해 과학계에서 관심도가 크게 증가하고 있다.Recently, nanoparticles have been spotlighted in various fields such as biotechnology, electronics, machinery, and new materials due to their specific morphology and physicochemical properties. Particularly magnetic nanoparticles (hereinafter referred to as 'magnetic nanoparticles') are catalysts, drug delivery, spin-electronic devices, magnetic recording devices, large resistance magnetic sensors, and the like. It is used. Therefore, there is a great interest in the scientific community regarding the study of the electrical and magnetic transport properties between the magnetic nanoparticles arranged in a variety of temperature and magnetic field environment.
즉, 상기 자성 나노입자는 여러 분야에 적용됨과 동시에 해당 분야에 적절하게 사용되는 자성 나노입자는 특정되어 있고, 이러한 특정 분야에 사용되기 위한 해당 자성 나노입자의 특유한 성질은 자성 나노입자가 어떻게 배열되는지에 따라 제대로 발현되는지 크게 영향을 받는 것이었다. 특히 상기 자성 나노입자는 주변의 온도 변화 및 자기장 흐름 등에 그 배열 및 배열의 일관성이 크게 좌우되는 문제점이 있어 해당 분야에 처음 의도한 바와 같이 적절하게 적용하기가 매우 어렵다는 문제점이 있다. That is, the magnetic nanoparticles are applied to various fields, and at the same time, the magnetic nanoparticles that are appropriately used in the specific fields are specified, and the unique properties of the magnetic nanoparticles for use in these specific fields are how the magnetic nanoparticles are arranged. It was greatly affected by whether it is properly expressed. In particular, the magnetic nanoparticles have a problem in that the arrangement and the consistency of the arrangement greatly depend on changes in ambient temperature and magnetic field flow, and thus, there is a problem in that the magnetic nanoparticles are very difficult to properly apply as originally intended in the art.
이러한 문제점이 특히 두드러지게 나타나는 분야로서, 전자소자에 자성 나노입자를 적용하는 경우에는 상기 자성 나노입자가 사용되는 전극 기판 등에 외부 전류 등이 수시로 인가되고, 자기장의 흐름에 영향을 주는 재료들이 혼재되어 있어 상기 자성 나노입자를 해당 전자소자의 쓰임새에 맞게 적절하게 배열하기 어렵다는 문제점이 존재하였다. This problem is particularly prominent. When magnetic nanoparticles are applied to an electronic device, an external current or the like is frequently applied to an electrode substrate on which the magnetic nanoparticles are used, and materials affecting the flow of the magnetic field are mixed. There was a problem that it is difficult to properly arrange the magnetic nanoparticles according to the use of the electronic device.
본 발명과 관련되는 선행기술문헌으로는 대한민국 등록특허 제10-0996100호(특허문헌 1)이 개시되어 있으며, 상기 특허문헌 1에서는 나노입자를 사용한 전자소자 제조방법과 이를 위한 베이스템플릿 및 이에 의해 제조된 전자소자 등이 개시되어 있을 뿐, 자성 나노입자를 특정 구조로 배열하는 전자소자에 관하여는 어떠한 개시 또는 암시조차 되어 있지 않다. As a prior art document related to the present invention, Korean Patent Registration No. 10-0996100 (Patent Document 1) is disclosed. In Patent Document 1, a method for manufacturing an electronic device using nanoparticles, a base template for the same, and the manufacture thereof Only disclosed electronic devices and the like have been disclosed, and no disclosure or suggestion has been made regarding electronic devices in which magnetic nanoparticles are arranged in a specific structure.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 전자소자에 적용되는 자성 나노입자를 해당 전자소자에 적용시키기 적절한 구조로 기판상에 배열한 전자소자를 제공하는 것이다. 즉, 자성 나노입자는 전자소자에 포함되는 기판 상에 원하는 특성이 발현되도록 적절한 구조로 배열하는 것이 어려웠는데, 본 발명은 이러한 문제점을 해결하여 상기 자성 나노입자를 전자소자에 포함되는 기판 상에서 적절한 구조로 원하는 바와 같이 배열하는 것이 가능한 전자소자 및 이의 제조방법을 제공하는 것이 목적이다. 또한 정교한 방법을 사용하여 전자소자의 전기적 또는 자기적 수송특성을 조절하는 것이 목적이다. The present invention has been made to solve the above problems, an object of the present invention is to provide an electronic device arranged on a substrate in a structure suitable for applying the magnetic nanoparticles applied to the electronic device to the electronic device. That is, it was difficult to arrange the magnetic nanoparticles in an appropriate structure such that the desired characteristics are expressed on the substrate included in the electronic device. The present invention solves this problem, and the magnetic nanoparticles have an appropriate structure on the substrate included in the electronic device. It is an object of the present invention to provide an electronic device and a method for manufacturing the same, which can be arranged as desired. It is also an objective to control the electrical or magnetic transport properties of electronic devices using sophisticated methods.
위와 같은 과제를 해결하기 위한 본 발명의 한 양태에 따른 전자소자는An electronic device according to an aspect of the present invention for solving the above problems is
상부에 절연층이 형성된 전자소자용 기판의 일면에 자성 나노입자가 배열되고, Magnetic nanoparticles are arranged on one surface of an electronic device substrate having an insulating layer formed thereon,
상기 자성 나노입자의 배열은 기판 상에 전도성 물질 및 전극에 의해 형성된 패턴을 따라 연속적으로 연결되어 배열되며,The array of magnetic nanoparticles are arranged in a continuous connection along the pattern formed by the conductive material and the electrode on the substrate,
상기 전도성 물질 및 전극은 기판 상에 순차적으로 위치하여 패턴을 형성하고,The conductive material and the electrode are sequentially positioned on the substrate to form a pattern,
상기 패턴은 상기 연속적으로 연결되어 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되며, The pattern is formed on the left and right sides of the magnetic nanoparticles arranged in series, respectively,
상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극으로 연결되어 이루어지는 것을 특징으로 하는 전자소자이다. The consecutively connected magnetic nanoparticles and the electrode forming the pattern are electronic devices, characterized in that connected to a single or a plurality of micro-electrodes at any part.
본 발명의 또 다른 양태에 따른 전자소자의 제조방법은 Method for manufacturing an electronic device according to another aspect of the present invention
1) 전자소자용 기판 상에 절연층을 형성하는 단계;1) forming an insulating layer on a substrate for an electronic device;
2) 상기 절연층의 상부에 전도성 물질 및 전극이 순차적으로 위치하면서 패턴을 형성하는 단계2) forming a pattern while the conductive material and the electrode are sequentially positioned on the insulating layer
3) 상기 패턴을 따라 자성 나노입자를 연속적으로 연결하여 배열하는 단계;3) continuously connecting and arranging magnetic nanoparticles along the pattern;
4) 상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극으로 연결하는 단계;4) connecting the consecutively connected magnetic nanoparticles and the electrode forming the pattern to a single or a plurality of microelectrodes at any part;
를 포함하며,Including;
상기 패턴은 상기 연속적으로 연결하여 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되는 것을 특징으로 하는 전자소자의 제조방법이다. The pattern is a method of manufacturing an electronic device, characterized in that formed on the left and right of the magnetic nanoparticles are arranged in series.
본 발명에 따른 전자소자 및 이의 제조방법은 자성 나노입자를 전자소자에 적용 경우, 해당 전자소자에서 요청되는 적절한 배열이 가능한 전자소자를 제공할 수 있다. 그리하여 종래 기술에 의하여 전자소자의 제조시 자성 나노입자를 적용하여 제조하게 되면, 자성 나노입자 특유의 전기적 또는 자기적 특성이 전자소자에서 유익하게 발현될 수 있음에도, 자성 나노입자의 성질상 전자소자에 적절하도록 배열하는 것이 어려워 기대하였던 효과를 달성하지 못하였던 문제점을 획기적으로 개선하였다. 또한 자성 나노입자를 기판 상에 효과적으로 배열하면서 전체 전자소자의 전기적 또는 자기적 수송특성을 효과적으로 조절하는 것이 가능하다. The electronic device and the method of manufacturing the same according to the present invention can provide an electronic device capable of proper arrangement required in the electronic device when the magnetic nanoparticles are applied to the electronic device. Thus, when the magnetic nanoparticles are applied to the electronic device during the manufacturing of the electronic device, the electrical or magnetic properties of the magnetic nanoparticles may be beneficially expressed in the electronic device. Difficulties in arranging appropriately drastically improved the problems of failing to achieve the expected effect. In addition, it is possible to effectively control the electrical or magnetic transport characteristics of the entire electronic device while the magnetic nanoparticles are arranged on the substrate effectively.
도 1은 하기 실시예 1 내지 실시예 3에 따른 경우 자성 나노입자 배열 및 미세전극이 형성된 스핀전자 소자의 전체적인 주사전자현미경(SEM) 이미지이다. 1 is a scanning electron microscope (SEM) image of a spin electronic device in which magnetic nanoparticle arrays and microelectrodes are formed according to Examples 1 to 3 below.
도 2는 하기 실시예 1 내지 실시예 3에 따른 경우 자성 나노입자 배열 및 미세전극이 형성된 전자소자의 제작 모식도이다.FIG. 2 is a schematic view illustrating an electronic device in which magnetic nanoparticle arrays and microelectrodes are formed according to Examples 1 to 3.
도 3은 하기 실시예 1 내지 실시예 3에 따라 제작된 스핀 전자소자의 온도에 따른 전기적 특성변화 및 저항 변화를 나타내는 그래프이다.3 is a graph showing a change in electrical characteristics and resistance according to the temperature of the spin electronic device manufactured according to Examples 1 to 3 below.
도 4는 하기 실시예 1 내지 실시예 3에 따라 제작된 스핀 전자소자에 외부 자기장 세기에 따른 전류-전압 곡선 및 저항 변화를 나타내는 그래프이다. 4 is a graph showing a current-voltage curve and a resistance change according to an external magnetic field strength in the spin electronic devices manufactured according to Examples 1 to 3 below.
도 5는 하기 실시예 1 내지 실시예 3에 따라 제작된 스핀 전자소자의 자기수송 효과를 나타내는 그래프이다. 5 is a graph showing the self-transportation effect of the spin electronic device manufactured according to Examples 1 to 3 below.
이에 본 발명자들은 자성 나노입자가 전자소자에 적용되는 경우 적절한 배열을 이루는 것이 가능한 전자소자 및 이의 제조방법을 개발하기 위하여 예의 연구 노력한 결과, 본 발명에 따른 특정구조로 배열된 자성 나노입자를 포함하는 전자소자 및 이의 제조방법을 발견하여 본 발명을 완성하였다. Accordingly, the present inventors have made intensive studies to develop an electronic device capable of forming an appropriate arrangement and a method of manufacturing the same when the magnetic nanoparticles are applied to an electronic device, and thus, the magnetic nanoparticles including the magnetic nanoparticles arranged in a specific structure according to the present invention. The present invention has been completed by discovering an electronic device and a method of manufacturing the same.
구체적으로 본 발명에 따른 전자소자는 Specifically, the electronic device according to the present invention
상부에 절연층(2)이 형성된 전자소자용 기판(1)의 일면에 자성 나노입자(5)가 배열되고, The magnetic nanoparticles 5 are arranged on one surface of the substrate 1 for an electronic device having the insulating layer 2 formed thereon.
상기 자성 나노입자의 배열은 기판 상에 전도성 물질(3) 및 전극(4)에 의해 형성된 패턴을 따라 연속적으로 연결되어 배열되며,The arrangement of the magnetic nanoparticles are arranged in a continuous connection along the pattern formed by the conductive material 3 and the electrode 4 on the substrate,
상기 전도성 물질 및 전극은 기판 상에 순차적으로 위치하여 패턴을 형성하고,The conductive material and the electrode are sequentially positioned on the substrate to form a pattern,
상기 패턴은 상기 연속적으로 연결되어 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되며, The pattern is formed on the left and right sides of the magnetic nanoparticles arranged in series, respectively,
상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극(6)으로 연결되어 이루어지는 것을 특징으로 하는 전자소자이다. The consecutively connected magnetic nanoparticles and the electrode forming the pattern are electronic devices, characterized in that connected to a single or a plurality of microelectrodes 6 at any part.
한편, 상기 전자소자용 기판은 상기 자성 나노입자가 연속적으로 연결되어 배열되는 것을 방해하지 않는 전자소자용 기판이라면 특별한 제한 없이 본 발명에 적용될 수 있다.Meanwhile, the electronic device substrate may be applied to the present invention without particular limitation as long as the electronic device substrate does not prevent the magnetic nanoparticles from being continuously connected and arranged.
한편, 상기 절연층은 상기 전자소자용 기판 상에 절연체로 사용될 수 있는 물질이라면 특별한 제한 없이 모두 이에 포함될 수 있으며, 바람직한 일실시예로서 산화규소(SiO2), 산화알루미늄(Al2O3), 질화규소(Si3N4) 등이 있으며, 절연성이 강한 재료들은 모두 이에 포함될 수 있다. 이러한 절연층의 형성 방법 또한 특별한 제한이 있는 것은 아니며, 바람직한 일실시예로서 습식산화(wet oxidation), 증착(deposition) 등의 방법으로 형성될 수 있다. On the other hand, if the insulating layer is a material that can be used as an insulator on the substrate for the electronic device may be included without any particular limitation, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), Silicon nitride (Si 3 N 4 ), and the like, and all highly insulating materials may be included therein. The method of forming the insulating layer is not particularly limited, and may be formed by wet oxidation, deposition, or the like as a preferred embodiment.
한편, 상기 절연층이 상부에 형성된 전자소자용 기판 상에는 전도성 물질 및 전극에 의해 패턴이 형성되어 있으며, 상기 자성 나노입자는 상기 패턴을 따라 배열되어 있다. 또한 상기 자성 나노입자는 상기 패턴을 따라 연속적으로 연결되어 배열된다. 이렇게 상기 자성 나노입자는 패턴을 따라 연속적으로 연결된 배열 구조를 보이는데, 이렇게 연속적으로 연결된 배열 구조는 사슬구조 또는 나노체인구조로도 비유될 수 있다. 또한 이렇게 연속적으로 연결된 배열 구조는 1 차원, 2 차원 또는 3 차원 형태의 규칙(ordered) 또는 불규칙(disordered)의 초격자(superlattice) 구조를 모두 포함할 수 있다. On the other hand, a pattern is formed on the substrate for an electronic device formed on the insulating layer by a conductive material and an electrode, the magnetic nanoparticles are arranged along the pattern. In addition, the magnetic nanoparticles are arranged continuously connected along the pattern. The magnetic nanoparticles thus show an array structure that is continuously connected along a pattern, which can be compared to a chain structure or a nano chain structure. In addition, the array structure connected in series may include both ordered or disordered superlattice structures of one, two, or three dimensions.
한편, 상기 전도성 물질 및 전극에 의해 패턴이 형성되는데, 이러한 전도성 물질 및 전극은 상부에 절연층이 형성된 기판 상에 순차적으로 위치하여 형성된 것이다. 즉, 상기 전도성 물질이 먼저 절연층의 일부에 부착된 후, 전도성 물질의 상부에 순차적으로 전극이 위치하게 되는 것이다.Meanwhile, a pattern is formed by the conductive material and the electrode, and the conductive material and the electrode are sequentially formed on the substrate on which the insulating layer is formed. That is, the conductive material is first attached to a portion of the insulating layer, and then the electrodes are sequentially positioned on the conductive material.
한편, 상기 전도성 물질은 전도성이 존재하는 물질이라면 특별한 제한 없이 본 발명의 전도성 물질로 적용될 수 있으며, 또한 상기 전도성 물질은 본 발명에서는 절연층과 전극을 연결하는 접착층(adhesion layer)의 역할도 수행하게 된다. 이렇게 상기 전도성 물질은 전도성을 보유하면서 접착력도 우수한 물질이라면 특별한 제한이 있는 것은 아니지만, 바람직하게는 티타늄(Ti), 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 텅스텐(W), 니오븀(Nb) 및 탄탈럼(Ta)으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. On the other hand, the conductive material may be applied to the conductive material of the present invention without particular limitations as long as the conductive material is present, and the conductive material also serves as an adhesive layer connecting the insulating layer and the electrode in the present invention. do. The conductive material is not particularly limited so long as it has conductivity and excellent adhesion, but preferably titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), niobium It is preferable that it is any one or more selected from the group consisting of (Nb) and tantalum (Ta).
한편, 상기 패턴은 상기 연속적으로 연결되어 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되는 것이 바람직하다. 즉, 상기 패턴은 연속적으로 연결되어 배열된 자성 나노입자의 배열을 안쪽에 두는 것으로서, 상기 자성 나노입자의 좌측과 우측에 각각 형성되는 것이 바람직하다. On the other hand, the pattern is preferably formed on each of the left and right of the magnetic nanoparticles are arranged continuously connected. That is, the pattern is arranged to the inside of the array of magnetic nanoparticles are continuously connected to each other, preferably formed on the left and right of the magnetic nanoparticles, respectively.
한편, 상기 전도성 물질과 함께 패턴을 형성하는 전극은 전극 재료로 사용되는 것이라면 특별한 제한이 있는 것은 아니지만, 후술할 미세전극과 구분되는 것으로서 바람직하게는 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO),팔라듐(Pd) 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. On the other hand, the electrode forming the pattern with the conductive material is not particularly limited as long as it is used as an electrode material, but is distinguished from the fine electrode to be described later preferably gold (Au), silver (Ag), platinum (Pt) ), Copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin doped indium oxide (ITO), palladium (Pd) and aluminum It is preferable that it is any one or more selected from the group consisting of (Al).
한편, 상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴이 형성된 전극은 임의의 부위에서 미세전극으로 연결되는데, 이러한 미세전극에 의해 자성 나노입자의 배열 구조 중에서 원하는 부위와 패턴이 형성된 전극의 원하는 부위를 연결하는 것이 가능하게 된다. 또한 상기 미세전극은 자성 나노입자의 전체 배열 중에서 원하는 배열 부위를 전극과 연결하는 것이기 때문에 상기 구조를 모두 포함하는 최종적인 전자소자의 전기적 또는 자기적 수송 특성을 이러한 미세전극에 의해 조절하는 것이 가능하게 된다. 또한 이러한 미세전극은 자성 나노입자의 배열 중 원하는 부위와 상기 패턴이 형성된 전극의 원하는 임의의 부위를 연결하는 것으로서, 특별한 제한 없이 단일 또는 복수개의 미세전극으로 연결되는 것일 수 있다. 또한 상기 미세전극을 이루는 물질은 상기 전극과는 구별되는 것으로서 상기 자성 나노입자와 전극을 연결할 수 있는 물질이라면 특별한 제한 없이 이에 포함될 수 있으며, 바람직하게는 백금(Pt), 은(Ag), 금(Au), 구리(Cu) 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd) 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. 한편, 이러한 미세전극을 형성하는 방법으로는 자성 나노입자의 배열 및 패턴이 형성된 전극의 원하는 임의의 부위에 미세전극의 연결을 가능하게 하는 방법이라면 특별한 제한 없이 모두 적용될 수 있으며, 바람직한 일실시예로서 집속 이온빔 시스템에 의하여 상기 미세전극을 형성할 수 있다. On the other hand, the continuously connected magnetic nanoparticles and the patterned electrode is connected to the microelectrode at any site, the desired site and the desired site of the electrode formed pattern in the magnetic nanoparticles array structure by such a microelectrode It is possible to connect. In addition, since the microelectrode is to connect a desired arrangement portion of the entire array of magnetic nanoparticles with the electrode, it is possible to control the electrical or magnetic transport characteristics of the final electronic device including all of the structures by the microelectrode. do. In addition, the microelectrode is to connect a desired portion of the arrangement of the magnetic nanoparticles with a desired portion of the electrode on which the pattern is formed, and may be connected to a single or a plurality of microelectrodes without particular limitation. In addition, the material forming the microelectrode is distinguished from the electrode, and any material capable of connecting the magnetic nanoparticles with the electrode may be included without particular limitation. Preferably, platinum (Pt), silver (Ag), and gold ( Au), copper (Cu) iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin doped indium oxide (ITO), palladium (Pd) and aluminum It is preferable that it is any one or more selected from the group consisting of (Al). On the other hand, as a method of forming the microelectrode, any method that enables the connection of the microelectrode to any desired region of the electrode on which the arrangement and pattern of the magnetic nanoparticles are formed may be applied without any particular limitation, and as a preferred embodiment The microelectrode may be formed by a focused ion beam system.
한편, 상기 자성 나노입자의 평균 입경은 특별한 제한이 있는 것은 아니지만 바람직하게는 2-200 nm에 해당할 수 있다. 상기 자성 나노입자의 평균 입경이 2 nm 미만인 경우에는 그 크기가 너무 작아 미세전극을 형성하는 것이 용이하지 않으므로 바람직하지 않으며, 상기 자성 나노입자의 평균 입경이 200 nm를 초과하는 경우에는 그 크기가 너무 커서 자성 나노입자의 전기적 또는 자기적 수송 특성을 보려고 하는 본 발명의 목적을 달성하기 어려워 바람직하지 않다.On the other hand, the average particle diameter of the magnetic nanoparticles is not particularly limited, but may preferably correspond to 2-200 nm. If the average particle diameter of the magnetic nanoparticles is less than 2 nm, it is not preferable because the size of the magnetic nanoparticles is too small to easily form a microelectrode. If the average particle diameter of the magnetic nanoparticles exceeds 200 nm, the size thereof is too large. It is not preferable because it is difficult to achieve the object of the present invention to view the electrical or magnetic transport properties of the magnetic nanoparticles.
한편, 상기 자성 나노입자는 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 망간(Mn), 가돌리늄(Gd), 이들 각각의 산화물 및 이들 각각의 합금산화물로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. On the other hand, the magnetic nanoparticles are a group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides It is preferable that it is any one or more selected from.
결국, 이러한 구조로 이루어지는 본 발명에 따른 전자소자는 상기 패턴을 따라 자성 나노입자를 해당 전자소자에 적용하기 적절한 배열로 기판 상에 정렬하는 것이 가능한 전자소자이며, 이를 통해 상기 자성 나노입자가 해당 전자소자에서 원하는 특성이 제대로 발현하도록 기판 상에 정렬하는 것이 가능한 전자소자이다. 또한 상기 자성 나노입자의 배열을 원하는대로 정렬하는 것이 가능하면서, 미세전극을 자성 나노입자의 배열과 패턴이 형성된 전극의 원하는 임의의 부위에 연결하는 것이 가능하여 상기 구조를 모두 포함하는 전자 소자의 전기적 또는 자기적 수송특성을 조절하는 것이 가능하게 된다. After all, the electronic device according to the present invention having such a structure is an electronic device capable of aligning the magnetic nanoparticles on the substrate in an arrangement suitable for application to the electronic device along the pattern, whereby the magnetic nanoparticles are the corresponding electronic devices. It is an electronic device that can be aligned on a substrate so that desired characteristics are properly expressed in the device. In addition, it is possible to align the arrangement of the magnetic nanoparticles as desired, while it is possible to connect the microelectrode to any desired region of the electrode and the patterned electrode of the magnetic nanoparticles to be electrically Or it becomes possible to adjust the magnetic transport characteristic.
한편, 본 발명에 따른 전자소자는 스핀 전자소자(spin electronic device), 자기센서(magnetic sensor), 기억소자(memory device) 등에 적용될 수 있다.Meanwhile, the electronic device according to the present invention may be applied to a spin electronic device, a magnetic sensor, a memory device, and the like.
본 발명의 또 다른 양태에 따른 전자소자의 제조방법은Method for manufacturing an electronic device according to another aspect of the present invention
1) 전자소자용 기판 상에 절연층을 형성하는 단계;1) forming an insulating layer on a substrate for an electronic device;
2) 상기 절연층의 상부에 전도성 물질 및 전극이 순차적으로 위치하면서 패턴을 형성하는 단계2) forming a pattern while the conductive material and the electrode are sequentially positioned on the insulating layer
3) 상기 패턴을 따라 자성 나노입자를 연속적으로 연결하여 배열하는 단계;3) continuously connecting and arranging magnetic nanoparticles along the pattern;
4) 상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극으로 연결하는 단계;4) connecting the consecutively connected magnetic nanoparticles and the electrode forming the pattern to a single or a plurality of microelectrodes at any part;
를 포함하며,Including;
상기 패턴은 상기 연속적으로 연결하여 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되는 것을 특징으로 하는 전자소자의 제조방법이다.The pattern is a method of manufacturing an electronic device, characterized in that formed on the left and right of the magnetic nanoparticles are arranged in series.
상기 1)단계의 전자소자용 기판은 상기 자성 나노입자가 연속적으로 연결되어 배열되는 것을 방해하지 않는 전자소자용 기판이라면 특별한 제한 없이 본 발명에 적용될 수 있다.The substrate for an electronic device of step 1) may be applied to the present invention without particular limitation as long as the substrate for an electronic device does not prevent the magnetic nanoparticles from being continuously connected and arranged.
한편, 상기 절연층은 상기 전자소자용 기판 상에 절연체로 사용될 수 있는 물질이라면 특별한 제한 없이 모두 이에 포함될 수 있으며, 바람직한 일실시예로서 산화규소(SiO2), 산화알루미늄(Al2O3), 질화규소(Si3N4) 등이 있으며, 절연성이 강한 재료들은 모두 이에 포함될 수 있다. 이러한 절연층의 형성 방법 또한 특별한 제한이 있는 것은 아니며, 바람직한 일실시예로서 습식산화(wet oxidation), 증착(deposition) 등의 방법으로 형성될 수 있다. On the other hand, if the insulating layer is a material that can be used as an insulator on the substrate for the electronic device may be included without any particular limitation, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), Silicon nitride (Si 3 N 4 ), and the like, and all highly insulating materials may be included therein. The method of forming the insulating layer is not particularly limited, and may be formed by wet oxidation, deposition, or the like as a preferred embodiment.
한편, 상기 2)단계의 패턴은 절연층의 상부에 전도성 물질 및 전극을 순차적으로 위치시켜 형성하는 것인데, 상기 전도성 물질 및 전극을 순차적으로 위치시켜 패턴을 형성하는 방법에는 특별한 제한이 있는 것은 아니며, 바람직한 일실시예로서 증착 등의 방법을 사용하여 전도성 물질 및 전극이 순차적으로 위치한 패턴을 형성할 수 있다. On the other hand, the pattern of step 2) is formed by sequentially placing the conductive material and the electrode on the insulating layer, there is no particular limitation on the method of forming the pattern by sequentially placing the conductive material and the electrode, As a preferred embodiment, a pattern in which the conductive material and the electrode are sequentially formed may be formed using a method such as deposition.
한편, 상기 전도성 물질은 전도성 및 접착력이 우수한 물질이라면 특별한 제한 없이 이에 포함될 수 있으며, 바람직하게는 티타늄(Ti), 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 텅스텐(W), 니오븀(Nb) 및 탄탈럼(Ta)으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. 또한 상기 전극을 구성하는 물질은 미세전극과 구분되는 것으로서 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd), 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상이 것이 바람직하다. On the other hand, the conductive material may be included without particular limitation as long as the material is excellent in conductivity and adhesion, preferably titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), niobium It is preferable that it is any one or more selected from the group consisting of (Nb) and tantalum (Ta). In addition, the material constituting the electrode is distinguished from the fine electrode, gold (Au), silver (Ag), platinum (Pt), copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc At least one selected from the group consisting of (Zn), tin (Sn), tin doped indium oxide (ITO), palladium (Pd), and aluminum (Al) is preferable.
한편, 상기 패턴은 상기 연속적으로 연결되어 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되는 것이 바람직하다. 즉, 상기 자성 나노입자의 배열은 좌측과 우측에 패턴을 따라 배열되는 것이다. On the other hand, the pattern is preferably formed on each of the left and right of the magnetic nanoparticles are arranged continuously connected. That is, the magnetic nanoparticles are arranged along the pattern on the left and right sides.
한편, 상기 자성 나노입자는 상기 3)단계에서 연속적으로 연결되어 패턴을 따라 배열되는 것인데, 이렇게 연속적으로 연결된 배열 구조는 사슬구조 또는 나노체인구조로도 비유될 수 있으며, 1 차원, 2 차원 또는 3 차원 형태의 규칙(ordered) 또는 불규칙(disordered)의 초격자(superlattice) 구조를 모두 포함할 수 있다. On the other hand, the magnetic nanoparticles are continuously connected in the step 3) are arranged along the pattern, this continuous connected array structure can also be compared to the chain structure or nano-chain structure, one-dimensional, two-dimensional or three It can include both ordered or disordered superlattice structures in dimensional form.
한편, 상기 자성 나노입자는 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 망간(Mn), 가돌리늄(Gd), 이들 각각의 산화물 및 이들 각각의 합금산화물로 이루어지는 군으로부터 선택되는 어느 하나 이상의 물질로 이루어진 나노입자인 것이 바람직하다. On the other hand, the magnetic nanoparticles are a group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides It is preferably a nanoparticle consisting of at least one material selected from.
한편, 상기 자성 나노입자를 연속적으로 연결하여 배열하는 방법은 먼저, 외부 자기장을 인가한 상태에서 용액의 농도 등을 조절하여 기판 위에 상기 자성 나노입자를 포함한 용액을 분사하게 되고, 이렇게 용액을 분사한 후에는 상기 자성 나노입자가 자기장의 인가 방향으로 연속적으로 연결되어 배열되게 된다. 이러한 방법으로 배열하게 되면 상기 설명한 바와 같이 사슬구조 또는 나노체인구조로 연속적으로 연결되어 배열하게 되는 것이다. 또한 이러한 외부 자기장의 인가 시 바람직한 자기장의 세기는 해당 전자소자용 기판 상에서 상기 자성 나노입자를 배열하여 발현하려는 구조에 맞게 특별한 제한 없이 적절하게 조절하여 적용하는 것이 가능하다. Meanwhile, in the method of continuously connecting and arranging the magnetic nanoparticles, first, the solution including the magnetic nanoparticles is sprayed on the substrate by adjusting the concentration of the solution while applying an external magnetic field, and thus spraying the solution. Afterwards, the magnetic nanoparticles are continuously connected to each other in the direction of application of the magnetic field. When arranged in this way it is arranged to be connected continuously in a chain structure or nano-chain structure as described above. In addition, when the external magnetic field is applied, the desired magnetic field strength may be appropriately adjusted and applied without particular limitation to the structure to be expressed by arranging the magnetic nanoparticles on the electronic device substrate.
한편, 상기 4)단계에 의해 상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극으로 연결되게 된다. 상기 임의의 부위에서 연결하는 것은 원하는 부위에서 상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극을 연결하는 것을 의미한다. 또한 이렇게 원하는 임의의 부위에서 연결하는 것이 가능하며, 이러한 임의의 부위는 단일 또는 복수의 부위일 수 있어 상기 미세전극은 단일 또는 복수개로 연속적으로 연결되어 배열된 자성 나노입자와 패턴을 형성한 전극을 연결할 수 있다. On the other hand, the magnetic nanoparticles and the electrode forming the pattern are continuously connected and arranged by the step 4) is connected to a single or a plurality of microelectrode at any part. Connecting at any of the sites means connecting the magnetic nanoparticles and the electrode forming the pattern are continuously connected to the desired site. In addition, it is possible to connect at any desired site, and such a random site may be a single or a plurality of sites so that the microelectrode is connected to a single or a plurality of consecutively arranged magnetic nanoparticles and formed an electrode pattern. Can connect
한편, 상기 미세전극은 상기 전극과는 구분되는 것으로서, 바람직하게는 백금(Pt), 은(Ag), 금(Au), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd), 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 물질을 포함하여 이루어질 수 있다. On the other hand, the microelectrode is distinguished from the electrode, preferably platinum (Pt), silver (Ag), gold (Au), copper (Cu), iron (Fe), nickel (Ni), tungsten (W) ), Zinc (Zn), tin (Sn), tin-doped indium oxide (ITO), palladium (Pd), and aluminum (Al) may include any one or more materials selected from the group consisting of. .
또한 상기 미세전극을 형성하는 방법은 자성 나노입자의 배열 및 패턴이 형성된 전극의 원하는 임의의 부위에 미세전극의 연결을 가능하게 하는 방법이라면 특별한 제한 없이 모두 적용될 수 있으며, 바람직한 일실시예로서 집속 이온빔 시스템에 의하여 상기 미세전극을 형성할 수 있다. 특히 상기 집속 이온빔 시스템을 이용하여 미세전극을 형성하면 기판 상에서는 발현되는 물리적 성질에 맞춰 상기 자성 나노입자의 개수를 조절하여 연결 할 수 있으므로 바람직하다.In addition, the method of forming the microelectrode may be applied without any particular limitation as long as it is a method for enabling the connection of the microelectrode to any desired region of the electrode on which the arrangement and pattern of the magnetic nanoparticles are formed. The microelectrode can be formed by a system. Particularly, when the microelectrode is formed by using the focused ion beam system, the number of the magnetic nanoparticles may be adjusted and connected according to the physical properties expressed on the substrate.
한편, 상기 자성 나노입자의 평균 입경은 특별한 제한이 있는 것은 아니지만 바람직하게는 2-200 nm에 해당할 수 있다. 상기 자성 나노입자의 평균 입경이 2 nm 미만인 경우에는 그 크기가 너무 작아 미세전극을 형성하는 것이 용이하지 않으므로 바람직하지 않으며, 상기 자성 나노입자의 평균 입경이 200 nm를 초과하는 경우에는 그 크기가 너무 커서 자성 나노입자의 전기적 또는 자기적 수송 특성을 보려고 하는 본 발명의 목적을 달성하기 어려워 바람직하지 않다.On the other hand, the average particle diameter of the magnetic nanoparticles is not particularly limited, but may preferably correspond to 2-200 nm. If the average particle diameter of the magnetic nanoparticles is less than 2 nm, it is not preferable because the size of the magnetic nanoparticles is too small to easily form a microelectrode. If the average particle diameter of the magnetic nanoparticles exceeds 200 nm, the size thereof is too large. It is not preferable because it is difficult to achieve the object of the present invention to view the electrical or magnetic transport properties of the magnetic nanoparticles.
한편, 상기 자성 나노입자는 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 망간(Mn), 가돌리늄(Gd), 이들 각각의 산화물 및 이들 각각의 합금산화물로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다. On the other hand, the magnetic nanoparticles are a group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides It is preferable that it is any one or more selected from.
결국, 이러한 단계를 포함하는 본 발명에 따른 전자소자의 제조방법은 상기 패턴을 따라 자성 나노입자를 해당 전자소자에 적용하기 적절한 배열로 기판 상에 정렬하는 것이 가능한 전자소자의 제조방법이며, 이를 통해 상기 자성 나노입자가 해당 전자소자에서 원하는 특성이 제대로 발현하도록 기판 상에 정렬하는 것이 가능한 전자소자의 제조방법이다. 또한 상기 자성 나노입자의 배열을 원하는데로 정렬하는 것이 가능하면서, 미세전극을 자성 나노입자의 배열과 패턴이 형성된 전극의 원하는 임의의 부위에 연결하는 것이 가능하여 상기 구조를 모두 포함하는 전자 소자의 전기적 또는 자기적 수송특성을 조절하는 것이 가능하게 된다. After all, the manufacturing method of an electronic device according to the present invention comprising such a step is a method of manufacturing an electronic device capable of aligning the magnetic nanoparticles on the substrate in a suitable arrangement to apply to the electronic device along the pattern, through The magnetic nanoparticles are a method for manufacturing an electronic device that can be aligned on a substrate such that the desired characteristics of the electronic device are properly expressed. In addition, it is possible to arrange the arrangement of the magnetic nanoparticles as desired, while it is possible to connect the microelectrode to any desired region of the electrode and the patterned electrode of the magnetic nanoparticles, so that the electrical Or it becomes possible to adjust the magnetic transport characteristic.
이하 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to a preferred embodiment so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
실시예: 자성 나노입자 배열 및 미세전극이 형성된 스핀전자 소자 제작Example: Fabrication of spin electronic device with magnetic nanoparticle array and microelectrode
<실시예 1: 전자소자용 기판 제조>Example 1 Manufacture of Substrate for Electronic Device
스핀전자 소자를 제작하기 위해 산화 규소가 200 nm 성장되어 절연층이 존재하는 규소 기판 위에 섀도우 마스크 (shadow mask)를 이용하여 티타늄(전도성 물질)/금(전극)을 전자빔 증착법에 의하여 하기 도 1(a) 와 같이 T 자형으로 패턴을 형성하여 증착시킨다. 이렇게 증착된 기판은 이물질을 최소화 시키기 위하여 아세톤, 에탄올 용액 안에서 초음파 세척을 진행한다.In order to fabricate the spin electronic device, a titanium (conductive material) / gold (electrode) is deposited on a silicon substrate on which a silicon oxide is grown by 200 nm using a shadow mask to form an electron beam deposition method. As in a), a pattern is formed in a T shape and deposited. The substrate thus deposited is subjected to ultrasonic cleaning in acetone and ethanol to minimize foreign substances.
<실시예 2: 자성 나노입자의 제조>Example 2: Preparation of Magnetic Nanoparticles
100 nm 크기의 마그네타이트 (Fe3O4) 나노입자 합성은 폴리올 (polyol) 방법에 의해 수행 되었다. 이 때 철 클로라이드 헥사하이드레이트 (iron chloride hexahydrate (FeCl3·6H2O)를 전구체로 사용하였으며 에틸렌글리콜 (ethylene glycol), 아세트산 나트륨(sodium acetate), 증류수가 각각 환원제, 보조제로 사용되었다.Synthesis of magnetite (Fe 3 O 4 ) nanoparticles of 100 nm size was performed by polyol method. Iron chloride hexahydrate (FeCl 3 · 6H 2 O) was used as a precursor, and ethylene glycol, sodium acetate, and distilled water were used as reducing agents and auxiliaries, respectively.
<실시예 3: 스핀 전자소자의 제조>Example 3: Fabrication of Spin Electronic Device
상기 실시예 2에 의해 합성된 자성 나노입자는 에탄올에 충분히 분산시킨 후 외부 자기장이 강하게 걸려 있는 환경 속에서 상기 실시예 1에 의해 제작된 기판 위에 일정 농도로 떨어뜨린다. 떨어진 자성 나노입자는 하기 도 1(b) 와 같이 T자형 티타늄/금 전극의 패턴 사이로 연속적으로 연결된 배열을 형성함을 확인하였다. 또한 이러한 배열은 연속적으로 연결되어 사슬구조 또는 나노체인구조와 유사한 구조를 보임을 확인하였다. 그 후, 여기에 집속 이온빔 장치를 적용하여 자성 나노입자가 연속적으로 연결되어 배열된 특정 부위와 패턴이 형성된 금 전극의 특정 부위를 연결하는 미세전극을 형성하였다. 이러한 미세전극은 집속 이온빔을 조사하여 백금(Pt) 가스 전구체를 백금 금속으로 증착하는 방식으로 형성하였다. 즉, 하기 도 1(c)에서 볼 수 있듯이 집속 이온빔 시스템을 이용하여 증착 티타늄 전도성 물질/금 전극으로 형성된 패턴 사이에 자성 나노입자 배열되고, 특정 부위에서 상기 전극과 자성 나노입자 배열의 사이를 백금 미세 전극으로 연결하였으며, 측정 조건에 따라 나노입자 개수를 조절하여 연결해주었다.After the magnetic nanoparticles synthesized in Example 2 are sufficiently dispersed in ethanol, the magnetic nanoparticles are dropped to a predetermined concentration on the substrate prepared in Example 1 in an environment in which an external magnetic field is strongly hung. The separated magnetic nanoparticles were found to form an array connected continuously between the patterns of the T-shaped titanium / gold electrode as shown in FIG. In addition, this arrangement is connected continuously to show a structure similar to the chain structure or nano-chain structure. Thereafter, a focused ion beam apparatus was applied thereto to form a microelectrode connecting the specific region where the magnetic nanoparticles were continuously connected and the specific region of the patterned gold electrode. The microelectrode was formed by depositing a platinum (Pt) gas precursor with platinum metal by irradiating a focused ion beam. That is, as shown in FIG. 1 (c) below, magnetic nanoparticles are arranged between a pattern formed of a deposited titanium conductive material / gold electrode using a focused ion beam system, and platinum is interposed between the electrode and the magnetic nanoparticle array at a specific site. The fine electrode was connected, and the number of nanoparticles was controlled according to the measurement conditions.
즉, 하기 도 1은 본 실시예의 전체적인 과정에 의하는 경우 자성 나노입자 배열 및 미세전극이 형성된 스핀 전자소자의 전체적인 SEM 이미지이다.That is, FIG. 1 is an overall SEM image of the spin electronic device in which the magnetic nanoparticle array and the microelectrode are formed according to the overall process of this embodiment.
한편, 하기 도 2는 본 실시예의 전체적인 공정을 도식화한 것이며, 하기 도 2의 top view는 미세전극이 임의의 영역에서 자성 나노입자의 배열과 전극 사이에서 형성된 구조를 상부에서 바라본 형상으로 모형화한 그림이다. On the other hand, Figure 2 is a schematic diagram of the overall process of the present embodiment, the top view of Figure 2 below is a model in which the structure formed between the arrangement of the magnetic nanoparticles and the electrode in the region of the microelectrode in an arbitrary region as viewed from the top shape to be.
실험예Experimental Example
상기 실시예 1 내지 실시예 3의 과정을 거쳐 제조된 스핀 전자소자를 가지고 물성특성측정시스템을 이용하여 여러 가지 특성을 측정하였다.With the spin electronic device manufactured through the process of Examples 1 to 3, various properties were measured using a property measurement system.
하기 도 3(a)는 상기 실시예 1 내지 실시예 3에 따라 제작된 스핀 전자소자의 온도에 따른 전기적 특성변화를 나타낸다. 이렇게 측정된 곡선의 저항값을 계산할 수 있었으며 이를 바탕으로 하기 도 3(b) 와 같이 온도에 따른 저항의 변화를 확인할 수 있었다.3 (a) shows the change in electrical characteristics according to the temperature of the spin electronic device manufactured according to Examples 1 to 3. The resistance value of the measured curve could be calculated and based on this, the resistance change with temperature could be confirmed as shown in FIG. 3 (b).
또한 하기 도 4(a)는 상기 실시예 1 내지 실시예 3에 따라 제작된 스핀 전자소자에 외부 자기장 세기에 따른 전류-전압 곡선을 나타낸다. 이렇게 측정된 곡선의 저항값을 계산할 수 있었으며, 이를 바탕으로 하기 도 4(b) 와 같이 전압에 따른 자기저항(magneto-resistance, MR) 변화를 확인할 수 있었다. 또한 하기 도 5에서 보여주고 있듯이 외부 자기장 세기에 따른 자기수송 효과를 확인할 수 있었다.In addition, Figure 4 (a) shows a current-voltage curve according to the external magnetic field strength in the spin electronic device manufactured according to the first to third embodiments. The resistance value of the measured curve could be calculated, and based on this, the magneto-resistance (MR) change according to voltage could be confirmed as shown in FIG. 4 (b). In addition, as shown in Figure 5 was able to confirm the effect of the magnetic transport according to the external magnetic field strength.
한편, 이렇게 본 실험예에 의해 측정된 스핀 전자소자의 각종 특성들은, 해당 특성들이 최상의 효과를 달성하도록 자성 나노입자의 배열을 본 실시예와 같은 방법으로 조절하여 발현시키는 것이 가능하다. On the other hand, the various characteristics of the spin electronic device measured by this Experimental Example, it is possible to control and express the arrangement of the magnetic nanoparticles in the same manner as the present embodiment so that the properties to achieve the best effect.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것은 아니고, 본 발명의 기술 사상 범위 내에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 첨부된 특허 청구 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the technical idea of the present invention, which also belong to the appended claims. It is natural.
[부호의 설명][Description of the code]
1. 전자소자용 기판1. Electronic Device Substrate
2. 절연층2. Insulation layer
3. 전도성 물질3. Conductive material
4. 전극4. Electrode
5. (연속적으로 연결되어 배열된) 자성 나노입자5. Magnetic nanoparticles (continuously connected)
6. 미세전극6. Microelectrode

Claims (12)

  1. 상부에 절연층이 형성된 전자소자용 기판의 일면에 자성 나노입자가 배열되고, Magnetic nanoparticles are arranged on one surface of an electronic device substrate having an insulating layer formed thereon,
    상기 자성 나노입자의 배열은 기판 상에 전도성 물질 및 전극에 의해 형성된 패턴을 따라 연속적으로 연결되어 배열되며,The array of magnetic nanoparticles are arranged in a continuous connection along the pattern formed by the conductive material and the electrode on the substrate,
    상기 전도성 물질 및 전극은 기판 상에 순차적으로 위치하여 패턴을 형성하고,The conductive material and the electrode are sequentially positioned on the substrate to form a pattern,
    상기 패턴은 상기 연속적으로 연결되어 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되며, The pattern is formed on the left and right sides of the magnetic nanoparticles arranged in series, respectively,
    상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극으로 연결되어 이루어지는 것을 특징으로 하는 전자소자. And the magnetic nanoparticles arranged in series and connected to form a patterned electrode are connected to a single or a plurality of micro electrodes at an arbitrary site.
  2. 제 1항에 있어서,The method of claim 1,
    상기 자성 나노입자는 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 망간(Mn), 가돌리늄(Gd), 이들 각각의 산화물 및 이들 각각의 합금산화물로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전자소자. The magnetic nanoparticles are selected from the group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides. An electronic device, characterized in that any one or more.
  3. 제 1항에 있어서,The method of claim 1,
    상기 전도성 물질은 티타늄(Ti), 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 텅스텐(W), 니오븀(Nb) 및 탄탈럼(Ta)으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전자소자.The conductive material is any one or more selected from the group consisting of titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), niobium (Nb), and tantalum (Ta). An electronic device.
  4. 제 1항에 있어서,The method of claim 1,
    상기 전극은 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd), 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 물질로 이루어지는 것을 특징으로 하는 전자소자. The electrode is gold (Au), silver (Ag), platinum (Pt), copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin dope (tin doped) An electronic device comprising any one or more materials selected from the group consisting of indium oxide (ITO), palladium (Pd), and aluminum (Al).
  5. 제 1항에 있어서,The method of claim 1,
    상기 미세전극은 백금(Pt), 은(Ag), 금(Au), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd) 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 물질로 이루어지는 것을 특징으로 하는 전자소자. The microelectrode is platinum (Pt), silver (Ag), gold (Au), copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin Tin doped electronic device comprising at least one material selected from the group consisting of indium oxide (ITO), palladium (Pd) and aluminum (Al).
  6. 제 1항에 있어서,The method of claim 1,
    상기 자성 나노입자의 평균 입경은 2-200 nm인 것을 특징으로 하는 전자소자. The average particle diameter of the magnetic nanoparticles is an electronic device, characterized in that 2-200 nm.
  7. 1) 전자소자용 기판 상에 절연층을 형성하는 단계;1) forming an insulating layer on a substrate for an electronic device;
    2) 상기 절연층의 상부에 전도성 물질 및 전극이 순차적으로 위치하면서 패턴을 형성하는 단계2) forming a pattern while the conductive material and the electrode are sequentially positioned on the insulating layer
    3) 상기 패턴을 따라 자성 나노입자를 연속적으로 연결하여 배열하는 단계;3) continuously connecting and arranging magnetic nanoparticles along the pattern;
    4) 상기 연속적으로 연결되어 배열된 자성 나노입자 및 패턴을 형성한 전극은 임의의 부위에서 단일 또는 복수개의 미세전극으로 연결하는 단계;4) connecting the consecutively connected magnetic nanoparticles and the electrode forming the pattern to a single or a plurality of microelectrodes at any part;
    를 포함하며,Including;
    상기 패턴은 상기 연속적으로 연결하여 배열된 자성 나노입자의 좌측 및 우측에 각각 형성되는 것을 특징으로 하는 전자소자의 제조방법. The pattern is a method of manufacturing an electronic device, characterized in that formed on the left and right of the magnetic nanoparticles are arranged in series.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 자성 나노입자는 철(Fe), 니켈(Ni), 코발트(Co), 크롬(Cr), 망간(Mn), 가돌리늄(Gd), 이들 각각의 산화물 및 이들 각각의 합금산화물로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전자소자의 제조방법. The magnetic nanoparticles are selected from the group consisting of iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), gadolinium (Gd), their respective oxides and their respective alloy oxides. Method for producing an electronic device, characterized in that any one or more.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 전도성 물질은 티타늄(Ti), 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 텅스텐(W), 니오븀(Nb) 및 탄탈럼(Ta)으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 전자소자의 제조방법.The conductive material is any one or more selected from the group consisting of titanium (Ti), chromium (Cr), nickel (Ni), molybdenum (Mo), tungsten (W), niobium (Nb), and tantalum (Ta). Method for producing an electronic device.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 전극은 금(Au), 은(Ag), 백금(Pt), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd) 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 물질로 이루어지는 것을 특징으로 하는 전자소자의 제조방법. The electrode is gold (Au), silver (Ag), platinum (Pt), copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin dope (tin doped) A method of manufacturing an electronic device, comprising any one or more materials selected from the group consisting of indium oxide (ITO), palladium (Pd), and aluminum (Al).
  11. 제 7항에 있어서,The method of claim 7, wherein
    상기 미세전극은 백금(Pt), 은(Ag), 금(Au), 구리(Cu), 철(Fe), 니켈(Ni), 텅스텐(W), 아연(Zn), 주석(Sn), 주석 도프(tin doped) 산화인듐(ITO), 팔라듐(Pd) 및 알루미늄(Al)으로 이루어지는 군으로부터 선택되는 어느 하나 이상의 물질로 이루어지는 것을 특징으로 하는 전자소자의 제조방법. The microelectrode is platinum (Pt), silver (Ag), gold (Au), copper (Cu), iron (Fe), nickel (Ni), tungsten (W), zinc (Zn), tin (Sn), tin Tin-doped indium oxide (ITO), palladium (Pd) and aluminum (Al) of any one or more materials selected from the group consisting of an electronic device manufacturing method characterized in that.
  12. 제 7항에 있어서,The method of claim 7, wherein
    상기 자성 나노입자의 평균 입경은 2-200 nm인 것을 특징으로 하는 전자소자의 제조방법. The average particle diameter of the magnetic nanoparticles is a manufacturing method of the electronic device, characterized in that 2-200 nm.
PCT/KR2016/000465 2015-01-19 2016-01-15 Electronic component comprising magnetic nanoparticles, and manufacturing method thereof WO2016117882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0008862 2015-01-19
KR1020150008862A KR101627289B1 (en) 2015-01-19 2015-01-19 Electronic device comprising magnetic nanoparticles and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2016117882A1 true WO2016117882A1 (en) 2016-07-28

Family

ID=56192573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000465 WO2016117882A1 (en) 2015-01-19 2016-01-15 Electronic component comprising magnetic nanoparticles, and manufacturing method thereof

Country Status (2)

Country Link
KR (1) KR101627289B1 (en)
WO (1) WO2016117882A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972656B1 (en) 2017-07-19 2019-04-25 고려대학교 산학협력단 Preparation method for metal and metal ceramic phase separated composite structured ferrite

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702669B1 (en) * 2006-03-30 2007-04-03 삼성전자주식회사 Nano magnetic memory device and method of manufacturing the same
US20080017845A1 (en) * 2004-05-25 2008-01-24 The Trustees Of The University Of Pennsylvania Nanostructure Assemblies, Methods And Devices Thereof
KR100996100B1 (en) * 2008-07-01 2010-11-22 경북대학교 산학협력단 Method for making electronic devices using nanoparticles and base template therefor and electronic devices thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080017845A1 (en) * 2004-05-25 2008-01-24 The Trustees Of The University Of Pennsylvania Nanostructure Assemblies, Methods And Devices Thereof
KR100702669B1 (en) * 2006-03-30 2007-04-03 삼성전자주식회사 Nano magnetic memory device and method of manufacturing the same
KR100996100B1 (en) * 2008-07-01 2010-11-22 경북대학교 산학협력단 Method for making electronic devices using nanoparticles and base template therefor and electronic devices thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FERRARA, VERA LA ET AL.: "Nanopatterned Platinum Electrodes by focused Ion Beam in Single Palladium Nanowire Based Device", MICROELECTRONIC ENGINEERING, vol. 88, no. 11, June 2011 (2011-06-01), pages 3261 - 3266 *
ZHANG, FENG ET AL.: "Fabrication of One-dimensional Iron Oxide/silica Nanostructures with High Magnetic Sensitivity by Dipole-directed Self-assembly", J. PHYS. CHEM. C, vol. 112, no. 39, 2008, pages 15151 - 15156 *

Also Published As

Publication number Publication date
KR101627289B1 (en) 2016-06-03

Similar Documents

Publication Publication Date Title
CN101467030B (en) Hydrogen sensor
US7416993B2 (en) Patterned nanowire articles on a substrate and methods of making the same
WO2016006943A1 (en) Metal nanowire having core-shell structure coated with graphene, and manufacturing method therefor
Song et al. Direct electrospinning of Ag/polyvinylpyrrolidone nanocables
KR101163789B1 (en) Transparent electrode and praparation method thereof
US20070153363A1 (en) Multilayered device having nanostructured networks
Deepshikha et al. A review on synthesis and characterization of nanostructured conducting polymers (NSCP) and application in biosensors
DE102014103429A1 (en) Sensor and sensor technology
US9513555B2 (en) Method for manufacturing a suspended single carbon nanowire and piled nano-electrode pairs
Kim et al. Properties of CNTs coated by PEDOT: PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes
WO2013176324A1 (en) Transparent conductive thin film including plurality of mixed conductive layers comprising metal nanostructure and conductive polymer, and manufacturing method therefor
KR20110081683A (en) Ambi-polar memory device based on reduced graphene oxide using metal nanoparticle and the method for preparation of ambi-polar memory device
Daneshvar et al. Ultralong electrospun copper–carbon nanotube composite fibers for transparent conductive electrodes with high operational stability
WO2015012516A1 (en) Method of manufacturing silicon nanowire array
KR20140009879A (en) 3-dimensional nanoparticle structure and gas sensor using same
WO2016117882A1 (en) Electronic component comprising magnetic nanoparticles, and manufacturing method thereof
WO2012144728A2 (en) Method for manufacturing a nanoparticle array the size of which is adjustable, nanoparticle array manufactured thereby, and uses thereof
KR20170053462A (en) Population of metal oxide nanosheets, preparation method thereof, and elelctrical conductor and elecronic device including the same
WO2013191309A1 (en) Metal oxide semiconductor gas sensor having nanostructure and method for manufacturing same
Yin et al. Highly conductive and flexible thin film electrodes based on silver nanowires wrapped carbon fiber networks for supercapacitor applications
KR101514743B1 (en) The method for manufacturing patterned metal nanowire transparent electrode and the patterned metal nanowire transparent electrode thereby
Zhang et al. Hierarchically Oriented Jellyfish‐Like Gold Nanowires Film for Elastronics
Chen et al. Colloidal oxide nanoparticle inks for micrometer-resolution additive manufacturing of three-dimensional gas sensors
Lu et al. DNA-templated photo-induced silver nanowires: fabrication and use in detection of relative humidity
JP2011187509A (en) Electronic element substrate and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740355

Country of ref document: EP

Kind code of ref document: A1