WO2016117721A1 - Ultrasonic transducer having sound absorbing layer for improving heat dissipation - Google Patents

Ultrasonic transducer having sound absorbing layer for improving heat dissipation Download PDF

Info

Publication number
WO2016117721A1
WO2016117721A1 PCT/KR2015/000599 KR2015000599W WO2016117721A1 WO 2016117721 A1 WO2016117721 A1 WO 2016117721A1 KR 2015000599 W KR2015000599 W KR 2015000599W WO 2016117721 A1 WO2016117721 A1 WO 2016117721A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound absorbing
absorbing layer
active element
ultrasonic transducer
ultrasonic
Prior art date
Application number
PCT/KR2015/000599
Other languages
French (fr)
Korean (ko)
Inventor
이재원
이상곤
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Priority to PCT/KR2015/000599 priority Critical patent/WO2016117721A1/en
Publication of WO2016117721A1 publication Critical patent/WO2016117721A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to an ultrasonic transducer for acquiring image information inside an object under examination using ultrasonic waves.
  • the ultrasound diagnosis apparatus is an apparatus for imaging an internal tissue of a subject by using an ultrasonic signal reflected by shooting an ultrasonic signal on the subject.
  • the ultrasound diagnosis apparatus may transmit the ultrasound signal to a diagnosis part of the subject, and then acquire the image information of the diagnosis part by receiving an ultrasound signal reflected from the boundary of tissues inside the subject having different acoustic impedances. Can be.
  • the ultrasonic diagnostic apparatus includes an ultrasonic transducer for transmitting an ultrasonic signal to the subject and receiving an ultrasonic signal reflected by the subject.
  • Ultrasonic transducers generally include an active element, a matching layer, and a backer layer.
  • an ultrasonic transducer having a sound absorbing layer for improving heat dissipation is proposed.
  • An ultrasonic transducer includes an active element, a matching layer formed on a front surface of the active element and matching acoustic impedance of ultrasonic waves propagated to the front surface of the active element, and formed on a rear surface of the active element to form a rear surface of the active element. And a sound absorbing layer for blocking or attenuating the ultrasonic waves propagated to the sound absorbing layer, wherein the sound absorbing layer includes a thermal conductor having a bracket structure with respect to an elevation direction.
  • the thermal conductor of the sound absorbing layer according to the embodiment lowers the surface temperature of the ultrasonic transducer by generating heat generated in the active element toward the sound absorbing layer.
  • the bracket structure according to an embodiment is integrally inserted into the sound absorbing layer in the form of a cover with a center toward the active element. At this time, in the bracket structure, thermal conductors are formed at both ends of the upper direction.
  • the bracket structure may be inclined so that its ends become narrower in opposite directions of the ultrasonic traveling paths at both ends in the upward direction.
  • the bracket structure may have a space in which the center in the upward direction is empty.
  • Thermal conductor of the sound absorbing layer is any one of copper, aluminum, PGS graphite sheet of graphite film, graphite, carbon nanotube, aluminum nitride, boron nitride, silicon carbide, beryllium oxide thereof In the form of a bond.
  • the sound absorbing layer includes a first member composed of a thermal conductor which is a high impedance material around both ends of the upper direction, and a second member composed of a low impedance material around the center of the upper direction.
  • the first member has a small acoustic pressure difference with the active element, so that the sound pressure transmitted in the direction of the predetermined ultrasonic wave propagation path is small, and the second member has a large acoustic impedance difference with the active element, and the sound pressure delivered in the direction of the predetermined ultrasonic wave path is high.
  • the matching layer according to an embodiment has a multilayer structure.
  • the ultrasonic transducer may be easily manufactured and improve heat dissipation characteristics of the transducer as the thermal conductor having a high thermal conductivity in the shape of a bracket is inserted into the sound absorbing layer.
  • the acoustic impedance of the thermal conductors formed at both ends of the sound absorbing layer is higher than the sound impedance at the center of the sound absorbing layer, the sound pressure transmitted from the center to the acoustic lens in the upper direction is large, and from the peripheral part, the acoustic impedance is transmitted to the acoustic lens. The sound pressure is lowered. Accordingly, the beam shape is improved by apodization while the acoustic characteristics of the conventional transducer are not changed.
  • FIG. 1 is a structural diagram showing the configuration of an ultrasonic transducer having a sound absorbing layer for improving heat dissipation according to an embodiment of the present invention
  • FIG. 2 is a stereoscopic view of a first member of a sound absorbing layer according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a first member of a sound absorbing layer according to various embodiments of the present disclosure
  • FIG. 4 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 5 is a graph showing an effect of improving heat dissipation through a sound absorbing layer according to an embodiment of the present invention
  • FIG. 6 is a graph showing the degree of improvement of the beam shape of the sound absorbing layer and the conventional sound absorbing layer according to an embodiment of the present invention
  • Figure 7 is a graph showing the difference in the beam pattern accordingly.
  • the first material layer when the first material layer is formed on the second material layer, it is a substrate that explicitly excludes it, as well as the case where the first material layer is formed directly on the second material layer. Unless otherwise, it is to be construed that the other third material layer includes all the intervening layers between the first material layer and the second material layer.
  • FIG. 1 is a structural diagram showing the configuration of an ultrasonic transducer having a sound absorbing layer for improving heat dissipation according to an embodiment of the present invention.
  • the ultrasonic transducer 1 includes a backer layer 10, an active component 12, and a matching layer 14, and includes a flexible printed circuit board.
  • GRS ground sheet
  • an acoustic lens 19 may be further included.
  • the ultrasonic transducer 1 may be a single element transducer or an array transducer having a plurality of elements.
  • the type of array transducer may be a linear array, a convex array, a phased array, or the like, and the present invention is applicable to all types of array arrays.
  • the direction in which the elements of the ultrasonic transducer 1 are arranged is called the azimuth direction, and the depth direction in which the ultrasonic signal travels is called the axial direction, and the direction orthogonal to these two directions is This is called the elevation direction.
  • the active element 12 generates an ultrasonic signal, transmits the ultrasonic signal to the object under test, and receives the ultrasonic signal reflected from the object under test.
  • the sound absorbing layer 10 propagates in the direction of the sound absorbing layer 10, which is an unwanted direction of the ultrasonic signal generated from the active element 12 to minimize the return of the reflected wave.
  • the matching layer 14 matches the difference in acoustic impedance between the active element 12 and the object under test so that ultrasonic waves propagate in the direction of the ultrasonic traveling path.
  • a first member 101 made of a thermal conductor having high thermal conductivity and acoustic impedance is included inside the sound absorbing layer 10 in a bracket structure with respect to the upward direction.
  • the bracket structure means a cover structure as shown in FIG. 1. Since the first member 101 of the bracket structure only needs to be inserted into the sound absorbing layer 10, the manufacturing process is simplified.
  • the thermal conductor of the first member 101 functions to disperse heat in the direction of the sound absorbing layer 10.
  • heat generated by the ultrasonic transducer 1 for example, heat generated by the active element 112 and heat generated by multiple reflections, are absorbed.
  • the heat is dissipated in the direction of the sound absorbing layer 10 having a high heat capacity without heat being transferred to the surface of (1), for example, the acoustic lens 19.
  • the surface temperature of the ultrasonic transducer 1, for example, the temperature of the acoustic lens 19, is lowered.
  • the surface temperature of the ultrasonic transducer 1 should be lowered in the transmission signal in a proportional relationship with the magnitude of the ultrasonic signal transmitted from the main body.
  • the surface temperature of the ultrasonic transducer 1 can be lowered by the thermal conductor structure of the sound absorbing layer 10 which dissipates heat while maintaining the level of the transmission signal.
  • the first member 101 composed of a thermal conductor has a bracket structure having a center cover toward the active element 12.
  • the first member 101 of the bracket structure may have thermal conductors formed at both ends of the first member 101.
  • the heat dissipation characteristics of the ultrasonic transducer 1 can be improved without changing the existing acoustic characteristics.
  • the sound pressure transmitted to the acoustic lens 19 is low at the periphery including both ends, and the sound absorption is performed.
  • the sound pressure transmitted to the acoustic lens 19 is large.
  • the acoustic characteristics maintain and enhance the existing acoustic characteristics, and the beam shape is improved by apodization. An embodiment thereof will be described later with reference to FIGS. 6 and 7.
  • the sound absorbing layer 10 is configured such that the acoustic impedance is well matched with the active element 12.
  • the sound absorption layer 10 may be configured to have sound attenuation characteristics, which are excellent sound absorption characteristics.
  • the sound absorbing layer 10 having excellent sound absorbing properties not only reduces the pulse width of the ultrasonic wave by suppressing free vibration of the active element 12 formed on the front surface, but also occurs in the active element 12 and unnecessarily propagates the ultrasonic wave to the rear surface. Blocking the image effectively prevents image distortion.
  • the thermal conductivity and the thermal conductivity of the first member 101 and the first member 101 made of a thermal conductor having high thermal conductivity and acoustic impedance are high.
  • a second member 102 made of a material with low acoustic impedance is high.
  • the first member 101 made of a thermal conductor has a bracket structure, and is formed around both ends of the sound absorbing layer 10 in the upward direction.
  • the first member 101 may be inserted into the sound absorbing layer 10 in the form of a cover with a center toward the active element 12.
  • the first member 101 according to an exemplary embodiment is inclined such that its end is gradually narrowed in the direction opposite to the ultrasonic traveling path (depth direction).
  • the thermal conductor of the first member 101 disperses heat in the direction of the sound absorbing layer 10.
  • the thermal conductor may be a PGS graphite sheet of graphite, copper, aluminum, or a polymer film, graphite, carbon nanotubes, aluminum nitride, boron nitride, silicon carbide, beryllium oxide, or a combination thereof.
  • the first member 101 formed at both ends of the upper direction by the thermal conductor in the form of a cover which is centered toward the active element 12 has a small acoustic impedance difference from the active element 12, and thus the predetermined ultrasonic propagation.
  • the sound pressure transmitted in the path direction becomes small.
  • the second member 102 formed in the center portion of the upper direction is made of a low impedance material, so that ultrasonic waves do not propagate in the direction of the sound absorbing layer 10.
  • the sound pressure transmitted in the ultrasonic traveling path direction becomes large.
  • the size of the side lobe of the transducer is reduced, so that beam shape due to apodization is improved.
  • the active element 12 generates an ultrasonic signal when energy is applied, such as an electrical signal is applied from the FPCB 16 and the GRS 18 located at both ends.
  • the type of the active element 12 may vary depending on the type of the ultrasonic transducer 1, and is typically composed of a piezoelectric element.
  • the piezoelectric element has a property that a voltage is generated when a mechanical pressure is applied through a piezoelectric effect, and a mechanical deformation occurs when a voltage is applied. There is no particular limitation on the shape or pattern of the piezoelectric elements.
  • the piezoelectric element is made of a piezoelectric ceramic such as lead zirconate titanate (PZT), a single crystal, a composite piezoelectric compound of these materials and a polymer material, or a polymer material represented by polyvinylidene fluoride (PVDF). It may be formed of a piezoelectric body or the like.
  • PZT lead zirconate titanate
  • PVDF polyvinylidene fluoride
  • the matching layer 14 is disposed between the active element 12 and the object under test to mediate the difference in acoustic impedance between the two components. For example, the ultrasonic wave generated by the active element 12 is transmitted to the inspected object or the loss of the reflected signal reflected and returned by the inspected object is reduced.
  • the matching layer 14 may serve as a buffer for reducing problems such as image distortion caused by a sudden change in acoustic impedance between the active element 12 and the object under test.
  • the matching layer 14 may have a structure in which a plurality of layers are stacked.
  • the first matching layer 141 and the second matching layer 142 may be configured, but the number of matching layers is not limited thereto.
  • the reason why the matching layer 14 is composed of a plurality of layers is that the difference in acoustic impedance between the active element 12 and the human tissue under test is relatively large, so that the matching layer having the required characteristics is a single layer of material. Because it is difficult to form.
  • the FPCB 16 is formed between the active element 12 and the sound absorbing layer 10.
  • the FPCB 16 is electrically connected to the active element 12 to apply a voltage to the active element 12.
  • a GRS 18 may be formed between the matching layer 14 and the active element 12, and the matching layer 14 may exchange electrical signals with the active element 12 through the GRS 18.
  • An acoustic lens 19 for focusing ultrasonic waves is formed on the front surface of the matching layer 14.
  • the FPCB 16 is located in front of the sound absorbing layer 10 and the GRS 18 is located in the back of the matching layer 14, but the corresponding position is polling of the layers constituting the active element 12. It may vary depending on the direction.
  • the GRS 18 may be formed at the FPCB 16 location, and the FPCB 16 may be formed at the GRS 18 location.
  • FIG. 2 is a stereoscopic view of a first member of a sound absorbing layer according to an embodiment of the present invention.
  • the first member 101 made of a thermal conductor in the sound absorbing layer 10 has a bracket structure.
  • the first member 101 of the bracket structure may be in the form of a cover whose center is toward the active element.
  • the first member 101 may have thermal conductors formed at both ends of the bracket structure with respect to the upper direction, and the center of the bracket structure may have an empty space.
  • the sound pressure transmitted to the acoustic lens is low at the periphery including both ends, and the sound absorbing layer 10 is provided.
  • the sound pressure transmitted to the acoustic lens is large. The acoustic characteristics maintain and enhance existing acoustic characteristics, and the beam shape is improved by apodization.
  • FIG 3 is a cross-sectional view of a first member of a sound absorbing layer according to various embodiments of the present disclosure.
  • a thermal conductor is formed at both ends of the upper direction in a sound absorbing layer in a bracket structure, and may have a center cover toward the active element.
  • the cross section of the first member may be (a) a triangle, (b) a rectangle, or (c) a circle based on an upward direction. Or (d), (e) or (f) may be geometric, but is not limited thereto.
  • the center portion of the bracket structure may be formed as an empty space based on the upward direction.
  • FIG. 4 is a block diagram of the ultrasonic diagnostic apparatus according to an embodiment of the present invention.
  • the ultrasound diagnosis apparatus 40 includes an ultrasound transducer 1, a beamforming unit 2, an image processor 3, and an output unit 4.
  • the ultrasonic transducer 1 may be composed of a plurality of devices 400-1, 400-2,..., 300-n.
  • a thermal conductor having a bracket structure is inserted to disperse heat in the direction of the sound absorbing layer.
  • the bracket structure can be integrally inserted into the sound absorbing layer in the form of the cover cover the center toward the active element, as described above with reference to Figure 2, the thermal conductor is formed at both ends of the upper direction,
  • the center of the direction may have an empty space.
  • the bracket structure may be inclined so that the ends thereof become narrower in opposite directions of the ultrasonic traveling paths at both ends in the upward direction.
  • the beamforming unit 2 drives the ultrasonic transducer 1 to transmit an ultrasonic signal to the inspected object, and processes a reflected signal returned from the inspected object to generate a beam signal.
  • the image processor 3 receives the beam signal from the beamformer 2 and generates an ultrasound image.
  • the output unit 4 displays the ultrasound image generated by the image processor 3 to the outside.
  • FIG. 5 is a graph showing an effect of improving heat dissipation through a sound absorbing layer according to an embodiment of the present invention.
  • Figure 5 shows the temperature change of the acoustic lens per hour in detail, the heat is dispersed in the direction of the sound absorbing layer by the thermal conductor inserted into the sound absorbing layer in the form of a bracket of the present invention to confirm that the temperature of the acoustic lens is lowered as a result Can be.
  • FIG. 6 is a graph showing the degree of improvement of the beam shape of the sound absorbing layer and the conventional sound absorbing layer according to an embodiment of the present invention
  • Figure 7 is a graph showing the difference in the beam pattern accordingly.
  • the thermal conductor of the bracket structure inserted into the sound absorbing layer can maintain and enhance the acoustic characteristics without changing the acoustic characteristics and improve the heat dissipation characteristics of the ultrasonic transducer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Acoustics & Sound (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Disclosed is an ultrasonic transducer having a sound absorbing layer for improving heat dissipation. The ultrasonic transducer, according to one embodiment of the present invention, comprises: an active element; a matching layer formed on the front surface of the active element for matching the acoustic impedance of an ultrasonic wave propagated to the front surface of the active element; and a sound absorbing layer formed on the back surface of the active element for blocking or damping an ultrasonic wave propagated to the back surface of the active element, wherein the sound absorbing layer comprises a thermal conductor having a bracket structure with respect to an elevation direction.

Description

열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서Ultrasonic Transducer with Sound Absorbing Layer for Improved Heat Dissipation
본 발명은 초음파를 이용하여 피검사체 내부의 영상 정보를 획득하는 초음파 트랜스듀서에 관한 것이다.The present invention relates to an ultrasonic transducer for acquiring image information inside an object under examination using ultrasonic waves.
초음파 진단장치는 초음파 신호를 피검사체에 쏘아 반사된 초음파 신호로 피검사체의 내부 조직을 영상화하는 장치이다. 초음파 진단장치는 피검사체의 진단 부위에 초음파 신호를 송신한 후, 서로 다른 음향 임피던스(acoustic impedance)를 갖는 피검사체 내부의 조직들의 경계로부터 반사된 초음파 신호를 수신함으로써 진단 부위의 영상 정보를 획득할 수 있다.The ultrasound diagnosis apparatus is an apparatus for imaging an internal tissue of a subject by using an ultrasonic signal reflected by shooting an ultrasonic signal on the subject. The ultrasound diagnosis apparatus may transmit the ultrasound signal to a diagnosis part of the subject, and then acquire the image information of the diagnosis part by receiving an ultrasound signal reflected from the boundary of tissues inside the subject having different acoustic impedances. Can be.
초음파 진단장치는 초음파 신호를 피검사체로 송신하고 피검사체로 반사된 초음파 신호를 수신하기 위한 초음파 트랜스듀서(ultrasonic transducer)가 포함된다. 초음파 트랜스듀서는 크게 능동소자(active element), 정합층(matching layer) 및 흡음층(backer layer)을 포함한다.The ultrasonic diagnostic apparatus includes an ultrasonic transducer for transmitting an ultrasonic signal to the subject and receiving an ultrasonic signal reflected by the subject. Ultrasonic transducers generally include an active element, a matching layer, and a backer layer.
일 실시 예에 따라, 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서를 제안한다.According to one embodiment, an ultrasonic transducer having a sound absorbing layer for improving heat dissipation is proposed.
일 실시 예에 따른 초음파 트랜스듀서는, 능동소자와, 능동소자의 전면에 형성되어 능동소자의 전면으로 전파되는 초음파의 음향 임피던스를 정합하는 정합층과, 능동소자의 후면에 형성되어 능동소자의 후면으로 전파되는 초음파를 차단하거나 감쇠시키는 흡음층을 포함하며, 흡음층은 상(elevation) 방향을 기준으로 브래킷(bracket) 구조를 가지는 열 도전체를 포함한다.An ultrasonic transducer according to an embodiment includes an active element, a matching layer formed on a front surface of the active element and matching acoustic impedance of ultrasonic waves propagated to the front surface of the active element, and formed on a rear surface of the active element to form a rear surface of the active element. And a sound absorbing layer for blocking or attenuating the ultrasonic waves propagated to the sound absorbing layer, wherein the sound absorbing layer includes a thermal conductor having a bracket structure with respect to an elevation direction.
일 실시 예에 따른 흡음층의 열 도전체는 능동소자에서 발생하는 열을 흡음층 방향으로 발열시켜 초음파 트랜스듀서의 표면 온도를 낮춘다. 일 실시 예에 따른 브래킷 구조는 중심이 능동소자를 향하여 휜 커버(cover) 형태로 흡음층에 일체로 삽입된다. 이때, 브래킷 구조는 열 도전체가 상 방향의 양 끝 단에 형성된다. 브래킷 구조는 상 방향의 양 끝 단에서 초음파 진행경로의 반대 방향으로 그 끝이 점점 좁아지도록 경사질 수 있다. 브래킷 구조는 상 방향의 중심이 비어있는 공간을 가질 수 있다. 일 실시 예에 따른 흡음층의 열 도전체는 구리, 알루미늄, 고분자 필름을 그래파이트화한 PGS 그래파이트 시트, 그래파이트, 카본나노 튜브, 질화 알루미늄, 붕소 나이트 라이드, 탄화규소, 산화 베릴륨 중 어느 하나이거나 이들의 결합 형태이다.The thermal conductor of the sound absorbing layer according to the embodiment lowers the surface temperature of the ultrasonic transducer by generating heat generated in the active element toward the sound absorbing layer. The bracket structure according to an embodiment is integrally inserted into the sound absorbing layer in the form of a cover with a center toward the active element. At this time, in the bracket structure, thermal conductors are formed at both ends of the upper direction. The bracket structure may be inclined so that its ends become narrower in opposite directions of the ultrasonic traveling paths at both ends in the upward direction. The bracket structure may have a space in which the center in the upward direction is empty. Thermal conductor of the sound absorbing layer according to an embodiment is any one of copper, aluminum, PGS graphite sheet of graphite film, graphite, carbon nanotube, aluminum nitride, boron nitride, silicon carbide, beryllium oxide thereof In the form of a bond.
일 실시 예에 따른 흡음층은 상 방향의 양 끝 단을 중심으로 고 임피던스 물질인 열 도전체로 구성된 제1 부재와, 상 방향의 중앙을 중심으로 저 임피던스 물질로 구성된 제2 부재를 포함하며, 제1 부재는 능동소자와의 음향 임피던스 차이가 작아서 예정된 초음파 진행경로 방향으로 전달되는 음압이 작고, 제2 부재는 능동소자와의 음향 임피던스 차이가 커서 예정된 초음파 진행경로 방향으로 전달되는 음압이 크다. 일 실시 예에 따른 정합층은 다층 구조이다.The sound absorbing layer according to an embodiment includes a first member composed of a thermal conductor which is a high impedance material around both ends of the upper direction, and a second member composed of a low impedance material around the center of the upper direction. The first member has a small acoustic pressure difference with the active element, so that the sound pressure transmitted in the direction of the predetermined ultrasonic wave propagation path is small, and the second member has a large acoustic impedance difference with the active element, and the sound pressure delivered in the direction of the predetermined ultrasonic wave path is high. The matching layer according to an embodiment has a multilayer structure.
일 실시 예에 따르면, 열 분산 특성이 향상되어 초음파 트랜스듀서의 표면 온도를 낮춤에 따라 피검사체인 인체에 영향이 없다. 일 실시 예에 따른 초음파 트랜스듀서는 브래킷 모양으로 열 전도도가 높은 열 도전체가 흡음층에 삽입됨에 따라, 제작이 용이하고 트랜스듀서의 열 분산 특성을 향상시킬 수 있다.According to one embodiment, as the heat dissipation characteristics are improved and the surface temperature of the ultrasonic transducer is lowered, there is no effect on the human body, which is a subject. The ultrasonic transducer according to an embodiment may be easily manufactured and improve heat dissipation characteristics of the transducer as the thermal conductor having a high thermal conductivity in the shape of a bracket is inserted into the sound absorbing layer.
더불어, 흡음층의 양 끝 단에 형성되는 열 도전체의 음향 임피던스가 흡음층의 중심에서의 음향 임피던스보다 높기 때문에 상 방향을 기준으로 중심에서는 음향렌즈로 전달되는 음압이 크고 주변부에서는 음향렌즈로 전달되는 음압이 낮아진다. 이에 따라, 종래의 트랜스듀서의 음향 특성이 변경되지 않은 상태에서 아포디제이션(apodization)에 의해 빔 형상이 개선된다.In addition, since the acoustic impedance of the thermal conductors formed at both ends of the sound absorbing layer is higher than the sound impedance at the center of the sound absorbing layer, the sound pressure transmitted from the center to the acoustic lens in the upper direction is large, and from the peripheral part, the acoustic impedance is transmitted to the acoustic lens. The sound pressure is lowered. Accordingly, the beam shape is improved by apodization while the acoustic characteristics of the conventional transducer are not changed.
도 1은 본 발명의 일 실시 예에 따른 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서의 구성을 도시적으로 보여주는 구조도,1 is a structural diagram showing the configuration of an ultrasonic transducer having a sound absorbing layer for improving heat dissipation according to an embodiment of the present invention;
도 2는 본 발명의 일 실시 예에 따른 흡음층의 제1 부재의 입체도,2 is a stereoscopic view of a first member of a sound absorbing layer according to an embodiment of the present invention;
도 3은 본 발명의 다양한 실시 예에 따른 흡음층의 제1 부재의 단면도,3 is a cross-sectional view of a first member of a sound absorbing layer according to various embodiments of the present disclosure;
도 4는 본 발명의 일 실시 예에 따른 초음파 진단장치의 구성도,4 is a block diagram of an ultrasonic diagnostic apparatus according to an embodiment of the present invention,
도 5는 본 발명의 일 실시 예에 따른 흡음층을 통한 열 분산 향상 효과를 보여주는 그래프,5 is a graph showing an effect of improving heat dissipation through a sound absorbing layer according to an embodiment of the present invention;
도 6은 본 발명의 일 실시 예에 따른 흡음층과 종래의 흡음층의 빔 형상의 개선 정도를 보여주는 그래프이고, 도 7은 그에 따른 빔 패턴 차이를 보여주는 그래프이다.6 is a graph showing the degree of improvement of the beam shape of the sound absorbing layer and the conventional sound absorbing layer according to an embodiment of the present invention, Figure 7 is a graph showing the difference in the beam pattern accordingly.
이하에서는 첨부한 도면을 참조하여 본 발명의 실시 예들을 상세히 설명한다. 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In the following description of the present invention, if it is determined that detailed descriptions of related well-known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to intention or custom of a user or an operator. Therefore, the definition should be made based on the contents throughout the specification.
본 명세서에서 제1 물질 층이 제2 물질 층 상에 형성된다고 할 경우에, 그것은 제1 물질 층이 제2 물질 층 바로 위(directly on)에 형성되는 경우는 물론, 명시적으로 이를 배제하는 기재가 없는 한, 다른 제3 물질 층이 제1 물질 층과 제2 물질 층의 사이에 개재되어 있는 것(upper)도 모두 포함하는 것으로 해석되어야 한다.In the present specification, when the first material layer is formed on the second material layer, it is a substrate that explicitly excludes it, as well as the case where the first material layer is formed directly on the second material layer. Unless otherwise, it is to be construed that the other third material layer includes all the intervening layers between the first material layer and the second material layer.
도 1은 본 발명의 일 실시 예에 따른 열 분산 향상을 위한 흡음층을 가진 초음파 트랜스듀서의 구성을 도시적으로 보여주는 구조도이다.1 is a structural diagram showing the configuration of an ultrasonic transducer having a sound absorbing layer for improving heat dissipation according to an embodiment of the present invention.
이하, '도식적'이라는 것은 도시된 도면이 초음파 트랜스듀서에 포함되는 구성 요소들 사이의 상대적인 위치 관계 또는 적층 관계를 나타낸다는 것을 의미함을 명시한다. 따라서, 초음파 트랜스듀서에 포함되는 구성 요소들 각각의 구체적인 형상이나 두께 등은 반드시 도면에 도시된 것과 일치하지 않을 수도 있다.Hereinafter, 'schematic' indicates that the depicted figure represents a relative positional or stacking relationship between components included in the ultrasonic transducer. Therefore, the specific shape or thickness of each of the components included in the ultrasonic transducer may not necessarily match those shown in the drawings.
도 1을 참조하면, 초음파 트랜스듀서(1)는 흡음층(backer layer)(10), 능동소자(active component)(12) 및 정합층(matching layer)(14)을 포함하며, 연성 인쇄회로기판(flexible printed circuit board: FPCB, 이하 FPCB라 칭함)(16), 접지 시트(ground sheet: GRS, 이하 GRS라 칭함)(18), 음향렌즈(acoustic lens)(19)를 더 포함할 수 있다.Referring to FIG. 1, the ultrasonic transducer 1 includes a backer layer 10, an active component 12, and a matching layer 14, and includes a flexible printed circuit board. A flexible printed circuit board (FPCB, hereinafter referred to as FPCB) 16, a ground sheet (GRS, hereinafter referred to as GRS) 18, and an acoustic lens 19 may be further included.
초음파 트랜스듀서(1)는 단일 소자 트랜스듀서(single element transducer)이거나, 소자(element)가 다수 개로 구성된 배열형 트랜스듀서(array transducer)일 수 있다. 배열형 트랜스듀서의 종류는 직선 배열형(linear array), 곡선 배열형(convex array), 위상 배열형(phased array) 등일 수 있고, 본 발명은 모든 형태의 배열형 어레이에 적용 가능하다.The ultrasonic transducer 1 may be a single element transducer or an array transducer having a plurality of elements. The type of array transducer may be a linear array, a convex array, a phased array, or the like, and the present invention is applicable to all types of array arrays.
초음파 트랜스듀서(1)의 소자가 늘어서 있는 방향을 측 방향(Azimuth direction)이라 하고, 초음파 신호가 진행하는 깊이(depth) 방향을 축 방향(Axial direction)이라 하며, 이 두 방향에 직교하는 방향을 상 방향(Elevation direction)이라 명한다.The direction in which the elements of the ultrasonic transducer 1 are arranged is called the azimuth direction, and the depth direction in which the ultrasonic signal travels is called the axial direction, and the direction orthogonal to these two directions is This is called the elevation direction.
능동소자(12)는 초음파 신호를 발생시켜 피검사체로 전송하고, 피검사체로부터 반사되는 초음파 신호를 수신한다. 흡음층(10)은 능동소자(12)로부터 발생한 초음파 신호가 원치 않는 방향인, 흡음층(10) 방향으로 전파되어 그 반사파가 되돌아오는 것을 최소화한다. 정합층(14)은 능동소자(12)와 피검사체 간의 음향 임피던스 차이를 정합하여 초음파 진행경로 방향으로 초음파가 전파되도록 한다.The active element 12 generates an ultrasonic signal, transmits the ultrasonic signal to the object under test, and receives the ultrasonic signal reflected from the object under test. The sound absorbing layer 10 propagates in the direction of the sound absorbing layer 10, which is an unwanted direction of the ultrasonic signal generated from the active element 12 to minimize the return of the reflected wave. The matching layer 14 matches the difference in acoustic impedance between the active element 12 and the object under test so that ultrasonic waves propagate in the direction of the ultrasonic traveling path.
일 실시 예에 따른 흡음층(10) 내부에는 열 전도도 및 음향 임피던스가 높은 열 도전체로 구성된 제1 부재(first member)(101)가 포함된다. 제1 부재(101)는 상 방향을 기준으로 브래킷(bracket) 구조로 흡음층(10)의 내부에 형성된다. 브래킷 구조는 도 1에 도시된 바와 같은 커버(cover) 구조를 의미한다. 브래킷 구조의 제1 부재(101)를 흡음층(10)에 삽입하기만 하면 되므로 그 제조공정이 단순해진다.Inside the sound absorbing layer 10 according to an embodiment, a first member 101 made of a thermal conductor having high thermal conductivity and acoustic impedance is included. The first member 101 is formed inside the sound absorbing layer 10 in a bracket structure with respect to the upward direction. The bracket structure means a cover structure as shown in FIG. 1. Since the first member 101 of the bracket structure only needs to be inserted into the sound absorbing layer 10, the manufacturing process is simplified.
제1 부재(101)의 열 도전체는 흡음층(10) 방향으로 열을 분산시키는 기능을 한다. 흡음층(10)에 열 용량이 높은 열 도전체가 삽입됨에 따라, 초음파 트랜스듀서(1)에서 발생하는 열, 예를 들어 능동소자(112)에서 발생한 열 및 다중 반사에 의해 발생한 열을 초음파 트랜스듀서(1)의 표면, 예를 들어 음향렌즈(19)로 전달시키기 않고, 열 용량이 높은 흡음층(10) 방향으로 열을 분산시켜 발열한다. 이에 따라, 초음파 트랜스듀서(1)의 표면 온도, 예를 들어 음향렌즈(19)의 온도가 내려간다. 음향렌즈(19)는 피검사체인 인체에 직접적으로 닿는 부분이므로 음향렌즈(19)의 열 발생을 줄이는 것이 좋다. 일반적으로 초음파 트랜스듀서(1)의 표면온도는 본체에서 송신되는 초음파 신호의 크기와 비례 관계에 있어 송신신호의 레벨을 낮추어야 한다. 그러나, 본 발명에 의하면 송신신호의 레벨은 그대로 유지한 채 열을 분산시키는 흡음층(10)의 열 도전체 구조에 의해 초음파 트랜스듀서(1)의 표면 온도를 낮출 수 있다.The thermal conductor of the first member 101 functions to disperse heat in the direction of the sound absorbing layer 10. As the heat conductor having a high heat capacity is inserted into the sound absorbing layer 10, heat generated by the ultrasonic transducer 1, for example, heat generated by the active element 112 and heat generated by multiple reflections, are absorbed. The heat is dissipated in the direction of the sound absorbing layer 10 having a high heat capacity without heat being transferred to the surface of (1), for example, the acoustic lens 19. As a result, the surface temperature of the ultrasonic transducer 1, for example, the temperature of the acoustic lens 19, is lowered. Since the acoustic lens 19 directly contacts the human body, which is the object to be inspected, it is preferable to reduce heat generation of the acoustic lens 19. In general, the surface temperature of the ultrasonic transducer 1 should be lowered in the transmission signal in a proportional relationship with the magnitude of the ultrasonic signal transmitted from the main body. However, according to the present invention, the surface temperature of the ultrasonic transducer 1 can be lowered by the thermal conductor structure of the sound absorbing layer 10 which dissipates heat while maintaining the level of the transmission signal.
일 실시 예에 따른 열 도전체로 구성된 제1 부재(101)는 그 중심이 능동소자(12)를 향하여 휜 커버(cover) 형태의 브래킷 구조를 가진다. 이때, 브래킷 구조의 제1 부재(101)는 상 방향을 기준으로 양 끝 단에 열 도전체가 형성될 수 있다. 이 경우, 기존의 음향 특성을 변경하지 않으면서 초음파 트랜스듀서(1)의 열 분산 특성을 향상시킬 수 있다. 예를 들어, 상 방향을 기준으로 흡음층(10)의 양 끝 단에 형성되는 열 도전체의 음향 임피던스 크기에 의해 양 끝 단을 포함한 주변부에서는 음향렌즈(19)로 전달되는 음압이 낮고, 흡음층(10)의 중심에서는 음향렌즈(19)로 전달되는 음압이 크다. 해당 음향 특성은 기존의 음향 특성을 유지 및 강화시킨 것으로, 아포디제이션(apodization)에 의해 빔 형상이 개선된다. 이에 대한 실시 예는 도 6 및 도 7을 참조로 하여 후술한다.The first member 101 composed of a thermal conductor according to an embodiment has a bracket structure having a center cover toward the active element 12. In this case, the first member 101 of the bracket structure may have thermal conductors formed at both ends of the first member 101. In this case, the heat dissipation characteristics of the ultrasonic transducer 1 can be improved without changing the existing acoustic characteristics. For example, due to the magnitude of the acoustic impedance of the thermal conductor formed at both ends of the sound absorbing layer 10 with respect to the upward direction, the sound pressure transmitted to the acoustic lens 19 is low at the periphery including both ends, and the sound absorption is performed. At the center of the layer 10, the sound pressure transmitted to the acoustic lens 19 is large. The acoustic characteristics maintain and enhance the existing acoustic characteristics, and the beam shape is improved by apodization. An embodiment thereof will be described later with reference to FIGS. 6 and 7.
이하, 열 분산 향상을 위한 흡음층(10)을 포함하는 초음파 트랜스듀서(1)의 각 구성에 대해 상세히 후술한다.Hereinafter, each configuration of the ultrasonic transducer 1 including the sound absorbing layer 10 for improving heat dissipation will be described in detail.
흡음층(10)은 음향 임피던스가 능동소자(12)와 잘 정합되도록 구성된다. 흡음층(10)은 우수한 흡음 특성인, 음향 감쇠 특성을 가지도록 구성될 수 있다. 우수한 흡음 특성을 가진 흡음층(10)은 전면에 형성되는 능동소자(12)의 자유 진동을 억제하여 초음파의 펄스 폭을 감소시킬 뿐만 아니라 능동소자(12)에서 발생하여 후면으로 초음파가 불필요하게 전파되는 것을 차단함으로써 영상 왜곡이 생기는 것을 효과적으로 방지한다.The sound absorbing layer 10 is configured such that the acoustic impedance is well matched with the active element 12. The sound absorption layer 10 may be configured to have sound attenuation characteristics, which are excellent sound absorption characteristics. The sound absorbing layer 10 having excellent sound absorbing properties not only reduces the pulse width of the ultrasonic wave by suppressing free vibration of the active element 12 formed on the front surface, but also occurs in the active element 12 and unnecessarily propagates the ultrasonic wave to the rear surface. Blocking the image effectively prevents image distortion.
일 실시 예에 따른 흡음층(10) 내부는 열 전도도 및 음향 임피던스가 높은 열 도전체로 구성된 제1 부재(first member)(101)와, 제1 부재(first member)(101)에 비해 열 전도도 및 음향 임피던스가 낮은 물질로 구성된 제2 부재(second member)(102)를 포함한다.Inside the sound-absorbing layer 10 according to an embodiment, the thermal conductivity and the thermal conductivity of the first member 101 and the first member 101 made of a thermal conductor having high thermal conductivity and acoustic impedance are high. And a second member 102 made of a material with low acoustic impedance.
열 도전체로 구성된 제1 부재(101)는 브래킷 구조로서, 흡음층(10)의 상 방향의 양 끝 단을 위주로 형성된다. 제1 부재(101)는 중심이 능동소자(12)를 향하여 휜 커버 형태로 흡음층(10)에 삽입될 수 있다. 일 실시 예에 따른 제1 부재(101)는 도 1에 도시된 바와 같이 초음파 진행경로(깊이 방향)의 반대 방향으로 그 끝이 점점 좁아지도록 경사진다. 제1 부재(101)의 열 도전체는 흡음층(10) 방향으로 열을 분산시킨다. 열 도전체는 구리, 알루미늄, 고분자 필름을 그래파이트화한 PGS 그래파이트 시트, 그래파이트, 카본나노 튜브, 질화 알루미늄, 붕소 나이트 라이드, 탄화규소, 산화 베릴륨 등이거나, 이들의 결합 형태일 수 있다.The first member 101 made of a thermal conductor has a bracket structure, and is formed around both ends of the sound absorbing layer 10 in the upward direction. The first member 101 may be inserted into the sound absorbing layer 10 in the form of a cover with a center toward the active element 12. As shown in FIG. 1, the first member 101 according to an exemplary embodiment is inclined such that its end is gradually narrowed in the direction opposite to the ultrasonic traveling path (depth direction). The thermal conductor of the first member 101 disperses heat in the direction of the sound absorbing layer 10. The thermal conductor may be a PGS graphite sheet of graphite, copper, aluminum, or a polymer film, graphite, carbon nanotubes, aluminum nitride, boron nitride, silicon carbide, beryllium oxide, or a combination thereof.
그 중심이 능동소자(12)를 향하여 휜 커버 형태의 열 도전체에 의해, 상 방향의 양 끝 단에 형성되는 제1 부재(101)는 능동소자(12)와의 음향 임피던스 차이가 작아서 예정된 초음파 진행경로 방향으로 전달되는 음압이 작게 된다. 이에 비해, 상 방향의 중앙 부분에 형성되는 제2 부재(102)는 저 임피던스 물질로 구성되므로, 능동소자(12)와의 음향 임피던스 차이가 커서 흡음층(10) 방향으로는 초음파가 전파되지 못하고 예정된 초음파 진행경로 방향으로 전달되는 음압이 크게 된다. 따라서, 트랜스듀서의 부엽(side lobe)의 크기가 감소하여, 아포디제이션(apodization)에 의한 빔 형상이 개선된다.The first member 101 formed at both ends of the upper direction by the thermal conductor in the form of a cover which is centered toward the active element 12 has a small acoustic impedance difference from the active element 12, and thus the predetermined ultrasonic propagation. The sound pressure transmitted in the path direction becomes small. On the other hand, since the second member 102 formed in the center portion of the upper direction is made of a low impedance material, the acoustic impedance difference with the active element 12 is large, so that ultrasonic waves do not propagate in the direction of the sound absorbing layer 10. The sound pressure transmitted in the ultrasonic traveling path direction becomes large. Thus, the size of the side lobe of the transducer is reduced, so that beam shape due to apodization is improved.
일 실시 예에 따른 능동소자(12)는 양단에 위치한 FPCB(16)와 GRS(18)로부터 전기신호가 인가되는 등의 방법으로 에너지가 가해지면 초음파 신호를 발생한다. 능동소자(12)의 종류는 초음파 트랜스듀서(1)의 종류에 따라서 달라질 수 있는데, 통상적으로 압전소자(piezoelectric element)로 구성된다. 압전소자는 압전효과를 통해 기계적인 압력이 가해지면 전압이 발생하고, 전압이 인가되면 기계적인 변형이 발생하는 성질을 가진다. 압전소자들의 형상이나 배열되는 패턴에 특별한 제한은 없다. 압전소자는 티탄산 지르콘산 납(lead zirconate titanate: PZT) 계 등의 압전 세라믹, 단결정, 이들 재료와 고분자 재료를 복합한 복합 압전체, 또는 폴리불화비닐리덴(PolyVinyliDene Fluoride: PVDF)로 대표되는 고분자 재료의 압전체 등으로 형성될 수 있다.The active element 12 according to an embodiment generates an ultrasonic signal when energy is applied, such as an electrical signal is applied from the FPCB 16 and the GRS 18 located at both ends. The type of the active element 12 may vary depending on the type of the ultrasonic transducer 1, and is typically composed of a piezoelectric element. The piezoelectric element has a property that a voltage is generated when a mechanical pressure is applied through a piezoelectric effect, and a mechanical deformation occurs when a voltage is applied. There is no particular limitation on the shape or pattern of the piezoelectric elements. The piezoelectric element is made of a piezoelectric ceramic such as lead zirconate titanate (PZT), a single crystal, a composite piezoelectric compound of these materials and a polymer material, or a polymer material represented by polyvinylidene fluoride (PVDF). It may be formed of a piezoelectric body or the like.
정합층(14)은 능동소자(12)와 피검사체 사이에 배치되어서 두 구성 요소 사이의 음향 임피던스(acoustic impedance) 차이를 중재한다. 예를 들어, 능동소자(12)에서 발생한 초음파를 피검사체로 전달하거나 피검사체에 의하여 반사되어 되돌아오는 반사 신호의 손실을 저감시킨다. 정합층(14)은 능동소자(12)와 피검사체 간 음향 임피던스의 급격한 변화에 따른 영상 왜곡 등의 문제를 감소시키는 완충 역할을 할 수 있다.The matching layer 14 is disposed between the active element 12 and the object under test to mediate the difference in acoustic impedance between the two components. For example, the ultrasonic wave generated by the active element 12 is transmitted to the inspected object or the loss of the reflected signal reflected and returned by the inspected object is reduced. The matching layer 14 may serve as a buffer for reducing problems such as image distortion caused by a sudden change in acoustic impedance between the active element 12 and the object under test.
정합층(14)은 다수 개의 층(multi-layer)이 적층된 구조일 수 있다. 예를 들어, 도 1에 도시된 바와 같이 제1 정합층(141)과 제2 정합층(142)으로 구성될 수 있으나, 정합층의 수는 이에 한정되지 않는다. 복수의 층으로 정합층(14)을 구성하는 이유는, 능동소자(12)와 피검사체인 인체조직 사이의 음향 임피던스 차이가 상대적으로 크기 때문에, 요구되는 특성을 갖는 정합층을 단일 물질의 층으로는 형성하는 것이 어렵기 때문이다.The matching layer 14 may have a structure in which a plurality of layers are stacked. For example, as shown in FIG. 1, the first matching layer 141 and the second matching layer 142 may be configured, but the number of matching layers is not limited thereto. The reason why the matching layer 14 is composed of a plurality of layers is that the difference in acoustic impedance between the active element 12 and the human tissue under test is relatively large, so that the matching layer having the required characteristics is a single layer of material. Because it is difficult to form.
FPCB(16)는 능동소자(12)와 흡음층(10) 사이에 형성된다. FPCB(16)는 능동소자(12)와 전기적으로 연결되어 능동소자(12)에 전압을 인가한다. 정합층(14)과 능동소자(12) 사이에는 GRS(18)가 형성될 수 있고, 정합층(14)은 GRS(18)를 통해 능동소자(12)와 상호 전기적 신호를 주고 받을 수 있다. 정합층(14)의 전면에는 초음파의 집속을 위한 음향렌즈(19)가 형성된다.The FPCB 16 is formed between the active element 12 and the sound absorbing layer 10. The FPCB 16 is electrically connected to the active element 12 to apply a voltage to the active element 12. A GRS 18 may be formed between the matching layer 14 and the active element 12, and the matching layer 14 may exchange electrical signals with the active element 12 through the GRS 18. An acoustic lens 19 for focusing ultrasonic waves is formed on the front surface of the matching layer 14.
한편, 도 1에서는 FPCB(16)가 흡음층(10)의 전면에 위치하고, GRS(18)가 정합층(14)의 후면에 위치하고 있으나, 해당 위치는 능동소자(12)를 구성하는 층의 폴링 방향에 따라 달라질 수 있다. 예를 들어, FPCB(16) 위치에 GRS(18)가 형성되고, GRS(18) 위치에 FPCB(16)가 형성될 수 있다.Meanwhile, in FIG. 1, the FPCB 16 is located in front of the sound absorbing layer 10 and the GRS 18 is located in the back of the matching layer 14, but the corresponding position is polling of the layers constituting the active element 12. It may vary depending on the direction. For example, the GRS 18 may be formed at the FPCB 16 location, and the FPCB 16 may be formed at the GRS 18 location.
도 2는 본 발명의 일 실시 예에 따른 흡음층의 제1 부재의 입체도이다.2 is a stereoscopic view of a first member of a sound absorbing layer according to an embodiment of the present invention.
도 2를 참조하면, 흡음층(10) 내에서 열 도전체로 구성된 제1 부재(101)는 브래킷 구조를 가진다. 브래킷 구조의 제1 부재(101)는 그 중심이 능동소자를 향하여 휜 커버 형태일 수 있다. 이때, 제1 부재(101)는 도 2에 도시된 바와 같이, 상 방향을 기준으로 브래킷 구조의 양 끝 단에 열 도전체가 형성되고, 브래킷 구조의 중심은 비어있는 공간을 가질 수 있다. 이 경우, 상 방향을 기준으로 흡음층(10)의 양 끝 단에 형성되는 열 도전체의 음향 임피던스 크기에 의해 양 끝 단을 포함한 주변부에서는 음향렌즈로 전달되는 음압이 낮고, 흡음층(10)의 중심에서는 음향렌즈로 전달되는 음압이 크다. 해당 음향 특성은 기존의 음향 특성을 유지 및 강화시킨 것으로, 아포디제이션에 의해 빔 형상이 개선된다.Referring to FIG. 2, the first member 101 made of a thermal conductor in the sound absorbing layer 10 has a bracket structure. The first member 101 of the bracket structure may be in the form of a cover whose center is toward the active element. In this case, as illustrated in FIG. 2, the first member 101 may have thermal conductors formed at both ends of the bracket structure with respect to the upper direction, and the center of the bracket structure may have an empty space. In this case, due to the magnitude of the acoustic impedance of the thermal conductor formed at both ends of the sound absorbing layer 10 on the basis of the upward direction, the sound pressure transmitted to the acoustic lens is low at the periphery including both ends, and the sound absorbing layer 10 is provided. In the center of, the sound pressure transmitted to the acoustic lens is large. The acoustic characteristics maintain and enhance existing acoustic characteristics, and the beam shape is improved by apodization.
도 3은 본 발명의 다양한 실시 예에 따른 흡음층의 제1 부재의 단면도이다.3 is a cross-sectional view of a first member of a sound absorbing layer according to various embodiments of the present disclosure.
도 3을 참조하면, 일 실시 예에 따른 열 도전체는 브래킷 구조로 흡음층 내에 상 방향의 양 끝 단에 형성되는데, 중심이 능동소자를 향하여 휜 커버 형태일 수 있다. 제1 부재의 단면은 상 방향을 기준으로 (a)삼각형, (b)사각형, (c)원형일 수 있다. 또는 (d), (e) (f)와 같이 기하학적 형태일 수 있으나 이에 한정되는 것은 아니다. 나아가, 도 3에서는 도시되지 않았으나, 상 방향을 기준으로 브래킷 구조의 중심 부분은 비어있는 공간으로 형성될 수 있다.Referring to FIG. 3, a thermal conductor according to an embodiment is formed at both ends of the upper direction in a sound absorbing layer in a bracket structure, and may have a center cover toward the active element. The cross section of the first member may be (a) a triangle, (b) a rectangle, or (c) a circle based on an upward direction. Or (d), (e) or (f) may be geometric, but is not limited thereto. Furthermore, although not shown in FIG. 3, the center portion of the bracket structure may be formed as an empty space based on the upward direction.
도 4는 본 발명의 일 실시 예에 따른 초음파 진단장치의 구성도이다.4 is a block diagram of the ultrasonic diagnostic apparatus according to an embodiment of the present invention.
도 4를 참조하면, 초음파 진단장치(40)는 초음파 트랜스듀서(1), 빔포밍부(2), 영상 처리부(3) 및 출력부(4)를 포함한다.Referring to FIG. 4, the ultrasound diagnosis apparatus 40 includes an ultrasound transducer 1, a beamforming unit 2, an image processor 3, and an output unit 4.
초음파 트랜스듀서(1)는 다수의 소자(400-1,400-2,…,300-n)로 구성될 수 있다. 일 실시 예에 따른 초음파 트랜스듀서(1)의 흡음층은 흡음층 방향으로 열을 분산시키기 위해 브래킷 구조의 열 도전체가 삽입된다. 이때, 브래킷 구조는 중심이 능동소자를 향하여 휜 커버 형태로 흡음층에 일체로 삽입될 수 있는데, 도 2를 참조로 하여 전술한 바와 같이, 열 도전체가 상 방향의 양 끝 단에 형성되고, 상 방향의 중심은 비어있는 공간을 가질 수 있다. 나아가, 브래킷 구조는 상 방향의 양 끝 단에서 초음파 진행경로의 반대 방향으로 그 끝이 점점 좁아지도록 경사진 형태일 수 있다.The ultrasonic transducer 1 may be composed of a plurality of devices 400-1, 400-2,..., 300-n. In the sound absorbing layer of the ultrasonic transducer 1 according to an embodiment, a thermal conductor having a bracket structure is inserted to disperse heat in the direction of the sound absorbing layer. At this time, the bracket structure can be integrally inserted into the sound absorbing layer in the form of the cover cover the center toward the active element, as described above with reference to Figure 2, the thermal conductor is formed at both ends of the upper direction, The center of the direction may have an empty space. Furthermore, the bracket structure may be inclined so that the ends thereof become narrower in opposite directions of the ultrasonic traveling paths at both ends in the upward direction.
빔포밍부(2)는 초음파 트랜스듀서(1)를 구동하여 초음파 신호를 피검사체에 송신하고 피검사체로부터 되돌아오는 반사신호를 처리하여 빔 신호를 생성한다. 영상 처리부(3)는 빔포밍부(2)로부터 빔 신호를 수신하여 초음파 영상을 생성한다. 출력부(4)는 영상 처리부(3)를 통해 생성된 초음파 영상을 외부로 디스플레이한다.The beamforming unit 2 drives the ultrasonic transducer 1 to transmit an ultrasonic signal to the inspected object, and processes a reflected signal returned from the inspected object to generate a beam signal. The image processor 3 receives the beam signal from the beamformer 2 and generates an ultrasound image. The output unit 4 displays the ultrasound image generated by the image processor 3 to the outside.
도 5는 본 발명의 일 실시 예에 따른 흡음층을 통한 열 분산 향상 효과를 보여주는 그래프이다.5 is a graph showing an effect of improving heat dissipation through a sound absorbing layer according to an embodiment of the present invention.
도 5는 세부적으로 시간 당 음향렌즈의 온도 변화를 나타낸 것으로, 본 발명의 브래킷 형태로 흡음층에 삽입된 열 도전체에 의해 흡음층 방향으로 열이 분산되어 결과적으로 음향렌즈의 온도가 낮아짐을 확인할 수 있다.Figure 5 shows the temperature change of the acoustic lens per hour in detail, the heat is dispersed in the direction of the sound absorbing layer by the thermal conductor inserted into the sound absorbing layer in the form of a bracket of the present invention to confirm that the temperature of the acoustic lens is lowered as a result Can be.
도 6은 본 발명의 일 실시 예에 따른 흡음층과 종래의 흡음층의 빔 형상의 개선 정도를 보여주는 그래프이고, 도 7은 그에 따른 빔 패턴 차이를 보여주는 그래프이다.6 is a graph showing the degree of improvement of the beam shape of the sound absorbing layer and the conventional sound absorbing layer according to an embodiment of the present invention, Figure 7 is a graph showing the difference in the beam pattern accordingly.
도 6을 참조하면, 흡음층의 양 끝 단에 형성되는 열 도전체에 의해 흡음층 방향으로 열을 분산시킴에 따라 상 방향을 기준으로 중심에서는 음향렌즈로 전달되는 음압이 크고 주변부에서는 음향렌즈로 전달되는 음압이 낮아진다. 이러한 음향 특성은 기존의 음향 특성을 유지 및 강화시킨 것으로, 도 7에 도시된 바와 같이 아포디제이션(apodization)에 의해 빔 형상이 개선된다. 도 7을 참조하면, 본 발명의 경우 부엽(side lobe)의 크기(level)가 감소됨을 확인할 수 있다. 예를 들면, 종래의 부엽의 최대크기(Max. sidelobe level)는 -12.5dB인데 비하여, 본 발명의 브래킷 구조의 부엽의 최대크기는 -15.0dB로 부엽의 최대크기가 감소됨을 확인할 수 있다. 이에 따라, 흡음층에 삽입되는 브래킷 구조의 열 도전체는 음향 특성을 변경하지 않으면서 음향 특성을 유지 및 강화시킴과 동시에 초음파 트랜스듀서의 열 분산 특성을 향상시킬 수 있다.Referring to FIG. 6, as heat is dissipated in the direction of the sound absorbing layer by heat conductors formed at both ends of the sound absorbing layer, the sound pressure transmitted from the center to the sound lens is increased from the center to the sound lens. The sound pressure delivered is lowered. This acoustic characteristic is to maintain and enhance the existing acoustic characteristics, as shown in Figure 7, the beam shape is improved by apodization (apodization). Referring to FIG. 7, in the case of the present invention, it can be seen that the level of the side lobe is reduced. For example, while the maximum sidelobe level of the conventional side lobe is -12.5 dB, the maximum size of the side lobe of the bracket structure of the present invention can be confirmed that the maximum size of the side lobe is reduced to -15.0 dB. Accordingly, the thermal conductor of the bracket structure inserted into the sound absorbing layer can maintain and enhance the acoustic characteristics without changing the acoustic characteristics and improve the heat dissipation characteristics of the ultrasonic transducer.
이제까지 본 발명에 대하여 그 실시 예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been described with reference to the embodiments. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (9)

  1. 능동소자;Active element;
    상기 능동소자의 전면에 형성되어 상기 능동소자의 전면으로 전파되는 초음파의 음향 임피던스를 정합하는 정합층; 및A matching layer formed on a front surface of the active element and matching an acoustic impedance of ultrasonic waves propagated to the front surface of the active element; And
    상기 능동소자의 후면에 형성되어 상기 능동소자의 후면으로 전파되는 초음파를 차단하거나 감쇠시키는 흡음층; 을 포함하며,A sound absorbing layer formed on a rear surface of the active element to block or attenuate ultrasonic waves propagated to the rear surface of the active element; Including;
    상기 흡음층은 상(elevation) 방향을 기준으로 브래킷(bracket) 구조를 가지는 열 도전체를 포함하는 것을 특징으로 하는 초음파 트랜스듀서.The sound absorbing layer is an ultrasonic transducer, characterized in that it comprises a thermal conductor having a bracket (bracket) structure on the basis of the (elevation) direction.
  2. 제 1 항에 있어서, 상기 흡음층의 열 도전체는The method of claim 1, wherein the thermal conductor of the sound absorbing layer is
    상기 능동소자에서 발생하는 열을 상기 흡음층 방향으로 발열시켜 상기 초음파 트랜스듀서의 표면 온도를 낮추는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that to lower the surface temperature of the ultrasonic transducer by generating heat generated in the active element toward the sound absorbing layer.
  3. 제 1 항에 있어서, 상기 브래킷 구조는The method of claim 1, wherein the bracket structure
    중심이 상기 능동소자를 향하여 휜 커버(cover) 형태로 상기 흡음층에 일체로 삽입되는 것을 특징으로 하는 초음파 트랜스듀서.A center is inserted into the sound absorbing layer integrally in the form of a cover (cover) toward the active element, the ultrasonic transducer.
  4. 제 3 항에 있어서, 상기 브래킷 구조는4. The bracket of claim 3 wherein the bracket structure is
    열 도전체가 상 방향의 양 끝 단에 형성되는 것을 특징으로 하는 초음파 트랜스듀서.An ultrasonic transducer, characterized in that the thermal conductor is formed at both ends in the upward direction.
  5. 제 4 항에 있어서, 상기 브래킷 구조는The method of claim 4, wherein the bracket structure
    상 방향의 양 끝 단에서 초음파 진행경로의 반대 방향으로 그 끝이 점점 좁아지도록 경사지는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer characterized in that the inclined so that the end is gradually narrowed in the opposite direction of the ultrasonic traveling path at both ends in the upward direction.
  6. 제 3 항에 있어서, 상기 브래킷 구조는4. The bracket of claim 3 wherein the bracket structure is
    상 방향의 중심이 비어있는 공간을 가지는 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that the center in the upper direction has an empty space.
  7. 제 1 항에 있어서, 상기 흡음층의 열 도전체는The method of claim 1, wherein the thermal conductor of the sound absorbing layer is
    구리, 알루미늄, 고분자 필름을 그래파이트화한 PGS 그래파이트 시트, 그래파이트, 카본나노 튜브, 질화 알루미늄, 붕소 나이트 라이드, 탄화규소, 산화 베릴륨 중 어느 하나이거나 이들의 결합 형태인 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that any one of the PGS graphite sheet, graphite, carbon nanotubes, aluminum nitride, boron nitride, silicon carbide, beryllium oxide or a combination thereof of graphite, copper, aluminum, polymer film.
  8. 제 1 항에 있어서, 상기 흡음층은The method of claim 1, wherein the sound absorbing layer
    상 방향의 양 끝 단을 중심으로 고 임피던스 물질인 열 도전체로 구성된 제1 부재와, 상 방향의 중앙을 중심으로 저 임피던스 물질로 구성된 제2 부재를 포함하며,A first member composed of a thermal conductor which is a high impedance material around both ends of the phase direction, and a second member composed of a low impedance material around the center of the phase direction,
    상기 제1 부재는 능동소자와의 음향 임피던스 차이가 작아서 예정된 초음파 진행경로 방향으로 전달되는 음압이 작고,Since the first member has a small acoustic impedance difference from the active element, the sound pressure transmitted in the direction of the predetermined ultrasonic traveling path is small,
    상기 제2 부재는 능동소자와의 음향 임피던스 차이가 커서 예정된 초음파 진행경로 방향으로 전달되는 음압이 큰 것을 특징으로 하는 초음파 트랜스듀서.The second member has a large acoustic pressure difference between the active element and the ultrasonic transducer, characterized in that a large sound pressure transmitted in the direction of the predetermined ultrasonic traveling path.
  9. 제 1 항에 있어서, 상기 정합층은The method of claim 1, wherein the matching layer is
    다층 구조인 것을 특징으로 하는 초음파 트랜스듀서.Ultrasonic transducer, characterized in that the multilayer structure.
PCT/KR2015/000599 2015-01-20 2015-01-20 Ultrasonic transducer having sound absorbing layer for improving heat dissipation WO2016117721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/000599 WO2016117721A1 (en) 2015-01-20 2015-01-20 Ultrasonic transducer having sound absorbing layer for improving heat dissipation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/000599 WO2016117721A1 (en) 2015-01-20 2015-01-20 Ultrasonic transducer having sound absorbing layer for improving heat dissipation

Publications (1)

Publication Number Publication Date
WO2016117721A1 true WO2016117721A1 (en) 2016-07-28

Family

ID=56417246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000599 WO2016117721A1 (en) 2015-01-20 2015-01-20 Ultrasonic transducer having sound absorbing layer for improving heat dissipation

Country Status (1)

Country Link
WO (1) WO2016117721A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150270474A1 (en) * 2014-03-20 2015-09-24 Fujifilm Corporation Ultrasound probe
WO2020131306A1 (en) * 2018-12-19 2020-06-25 Fujifilm Sonosite, Inc. Thermal conductive layer for transducer face temperature reduction
CN112638264A (en) * 2018-06-12 2021-04-09 深圳市理邦精密仪器股份有限公司 Ultrasonic transducer, ultrasonic probe, and ultrasonic detection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009742A1 (en) * 2006-07-10 2008-01-10 Nihon Dempa Kogyo Co., Ltd. Ultrasonic probe
US20120004554A1 (en) * 2010-06-30 2012-01-05 Toshiba Medical Systems Corporation Ultrasound probe and ultrasound imaging apparatus
KR101195671B1 (en) * 2012-04-23 2012-10-30 (주)프로소닉 A laminated structure for focusing of ultrasonic transducers for medical
US20140375171A1 (en) * 2013-06-21 2014-12-25 General Electric Company Ultrasound transducer and method for manufacturing an ultrasound transducer
US20150011889A1 (en) * 2013-07-08 2015-01-08 Samsung Medison Co., Ltd. Ultrasonic probe and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009742A1 (en) * 2006-07-10 2008-01-10 Nihon Dempa Kogyo Co., Ltd. Ultrasonic probe
US20120004554A1 (en) * 2010-06-30 2012-01-05 Toshiba Medical Systems Corporation Ultrasound probe and ultrasound imaging apparatus
KR101195671B1 (en) * 2012-04-23 2012-10-30 (주)프로소닉 A laminated structure for focusing of ultrasonic transducers for medical
US20140375171A1 (en) * 2013-06-21 2014-12-25 General Electric Company Ultrasound transducer and method for manufacturing an ultrasound transducer
US20150011889A1 (en) * 2013-07-08 2015-01-08 Samsung Medison Co., Ltd. Ultrasonic probe and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150270474A1 (en) * 2014-03-20 2015-09-24 Fujifilm Corporation Ultrasound probe
US9799818B2 (en) * 2014-03-20 2017-10-24 Fujifilm Corporation Ultrasound probe with heat collecting portion
CN112638264A (en) * 2018-06-12 2021-04-09 深圳市理邦精密仪器股份有限公司 Ultrasonic transducer, ultrasonic probe, and ultrasonic detection device
CN112638264B (en) * 2018-06-12 2024-05-17 深圳市理邦精密仪器股份有限公司 Ultrasonic transducer, ultrasonic probe, and ultrasonic detection device
WO2020131306A1 (en) * 2018-12-19 2020-06-25 Fujifilm Sonosite, Inc. Thermal conductive layer for transducer face temperature reduction
US11583259B2 (en) 2018-12-19 2023-02-21 Fujifilm Sonosite, Inc. Thermal conductive layer for transducer face temperature reduction
US11998397B2 (en) 2018-12-19 2024-06-04 Fujifilm Sonosite, Inc. Thermal conductive layer for transducer face temperature reduction

Similar Documents

Publication Publication Date Title
WO2016104820A1 (en) Ultrasonic transducer having flexible printed circuit board with thick metal layer and manufacturing method thereof
EP2610860B1 (en) Ultrasound probe and manufacturing method thereof
KR101064601B1 (en) Ultrasonic Probe, Ultrasonic Imaging Apparatus and Fabricating Method Thereof
WO2005030055A1 (en) Ultrasonic probe
JP5954773B2 (en) Ultrasonic probe and method for manufacturing ultrasonic probe
US7679270B2 (en) Ultrasonic probe
WO2016137023A1 (en) Ultrasonic transducer having matching layer having composite structure and method for manufacturing same
JP2014508022A (en) Composite acoustic support with high thermal conductivity for ultrasonic transducer arrays
WO2006038632A1 (en) Ultrasonic probe
JP2000184497A (en) Ultrasonic probe
JP5065593B2 (en) Ultrasonic probe and ultrasonic imaging device
JP2011229976A (en) Ultrasonic probe and ultrasonic imaging apparatus
WO2016117721A1 (en) Ultrasonic transducer having sound absorbing layer for improving heat dissipation
US10368839B2 (en) Unit ultrasonic wave probe, ultrasonic wave probe module having same, and ultrasonic wave probe device having same
KR101638578B1 (en) Ultrasonic transducer having backer layer for improving heat distribution feature
EP2549273B1 (en) Ultrasonic probe using rear-side acoustic matching layer
WO2016137022A1 (en) Ultrasonic transducer comprising matching layer having metal layer and method for manufacturing same
WO2015145296A1 (en) Ultrasound probes and systems having pin-pmn-pt, a dematching layer, and improved thermally conductive backing materials
WO2016117722A1 (en) Ultrasonic transducer having matching layer comprising oxide powder
US20240057979A1 (en) Ultrasound probe
US20240099694A1 (en) Ultrasound probe and ultrasound diagnostic apparatus
US20240057973A1 (en) Ultrasound probe
US20240057981A1 (en) Ultrasound probe
KR102623559B1 (en) Ultrasound prove
US20240057980A1 (en) Ultrasound probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878976

Country of ref document: EP

Kind code of ref document: A1