WO2016117528A1 - Packaged sodium chloride and storage method for sodium chloride - Google Patents

Packaged sodium chloride and storage method for sodium chloride Download PDF

Info

Publication number
WO2016117528A1
WO2016117528A1 PCT/JP2016/051364 JP2016051364W WO2016117528A1 WO 2016117528 A1 WO2016117528 A1 WO 2016117528A1 JP 2016051364 W JP2016051364 W JP 2016051364W WO 2016117528 A1 WO2016117528 A1 WO 2016117528A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium chloride
container
moisture
less
proof
Prior art date
Application number
PCT/JP2016/051364
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 青山
高橋 修治
由泰 板東
敏之 青木
利広 亀和
Original Assignee
富田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富田製薬株式会社 filed Critical 富田製薬株式会社
Publication of WO2016117528A1 publication Critical patent/WO2016117528A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants

Definitions

  • Patent Document 1 since the dry air must be pulverized, filled and sealed while strictly controlling the dry air to be about 0.5 g per kilogram, the production cost of sodium chloride is increased, and the sodium chloride is slightly reduced. Since the pulverization process is essential, the production process tends to be complicated. Further, even when salt with a water content of 0.1% is cooled in a low humidity atmosphere of about 1 to 2 g in 1 kg of dry air as described in Patent Document 1, the salt is substantially dried with dry air. Unless done, solidification cannot be prevented. In addition, Patent Document 1 does not clarify the relationship between the amount of water retained by sodium chloride after drying, the humidity in the package during storage, and the solidification of sodium chloride. Is disclosed that it does not solidify if it is pulverized and filled in as dry a state as possible.
  • Patent Document 2 discloses a method for suppressing solidification during storage by providing a heating means for stored sodium chloride.
  • moisture absorption of salt particles is caused by dew condensation when the temperature of the salt drops below the dew point temperature of the outside air and deliquescence when the salt particles are placed under conditions where the relative humidity exceeds 75%.
  • the purpose is to suppress the phenomenon, and it has been found that the two moisture absorption phenomena can be prevented by increasing the temperature of sodium chloride.
  • the method of Patent Document 2 does not strictly control the amount of water held by sodium chloride, and the amount of solidification is substantially suppressed to some extent. Further, the relationship between the humidity in the package that is also affected by the moisture contained in sodium chloride and the solidification of sodium chloride has not been clarified.
  • Patent Document 3 discloses that solidification can be suppressed by absorbing moisture in salt using dry kraft paper.
  • the method of Patent Document 3 there is a cost for drying the kraft paper bag, and it is necessary to directly fill the kraft paper with salt, so there is no problem for food use, but it is not preferable for pharmaceutical use.
  • bags made of hygroscopic materials such as kraft paper, like silica gel, may be released in reverse to moisture adsorption depending on the temperature and humidity of the storage environment, so sodium chloride is re-solidified due to environmental changes.
  • Patent Document 4 a method of adding water-soluble cellulose esters
  • Patent Document 5 a method of adding disodium hydrogen phosphate or magnesium carbonate
  • Patent Document 6 A method of adding 5 to 500 ppm of sodium alginate
  • the method of blending these additives cannot be applied in the pharmaceutical field where high-purity sodium chloride is required, and has a drawback that the field of application of sodium chloride is limited.
  • sodium chloride for pharmaceutical use has high purity and is easy to solidify.
  • sodium chloride as a pharmaceutical raw material that does not solidify for a long period of time without mixing of additives and the like. If possible, formulation operations such as weighing, blending, and mixing can be facilitated.
  • sodium chloride may be used as a simple preparation, and the sodium chloride single preparation is dissolved in a dialysis facility or the like that prepares the dialysis agent, and is solidified. If the above occurs, the dissolution operation becomes complicated and difficult to handle, and it becomes a defective product as a pharmaceutical preparation. Therefore, the development of sodium chloride that does not solidify even after long-term storage is strongly demanded in pharmaceutical applications including powder dialysis agents. At the same time, in the above-mentioned applications, the addition of a dispersant or an antioxidant that contaminates the contents does not simply prevent the solidification of sodium chloride. Is required to maintain.
  • an object of the present invention is to provide sodium chloride storage technology that can suppress solidification of sodium chloride and is excellent in property stability even if stored for a long period of time without blending additives.
  • the present inventor conducted intensive studies to solve the above-mentioned problems.
  • the purity of sodium chloride was set to 99.5% by weight or more, the average particle diameter was set to 150 ⁇ m or more, and the sodium chloride was subjected to moisture permeability of 3 g / m.
  • the present invention has been completed by further studies based on such knowledge.
  • this invention provides the preservation
  • Item 1 Sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 ⁇ 24 h, and the relative humidity in the moisture-proof container is 55% or less.
  • Sodium chloride in a container which is maintained and free from solidification of sodium chloride.
  • Item 2. Item 2. The sodium chloride in a container according to Item 1, wherein the sodium chloride is not in direct contact with the hygroscopic material contained in the moisture-proof container.
  • Item 3. Item 3.
  • Item 4. Item 4. The sodium chloride in a container according to any one of Items 1 to 3, wherein the average particle size of the sodium chloride is 150 to 700 ⁇ m.
  • Item 5. The sodium chloride in a container according to any one of Items 1 to 4, wherein 0.1 kg to 1 t of sodium chloride is contained in a moisture-proof container.
  • Item 6. Item 6. The sodium chloride in a container according to any one of Items 1 to 5, wherein the water content of the sodium chloride is 0.002% by weight or less.
  • Item 7. Item 7.
  • Item 8. The sodium chloride in a container according to any one of Items 1 to 7, wherein the moisture-proof container is a polyolefin moisture-proof container having a moisture-absorbing layer made of polyolefin containing a hygroscopic inorganic material.
  • Item 10. Item 10.
  • the polyolefin moisture-proof container is formed of a laminate in which a resin layer having no additive is laminated on both surfaces of a moisture-absorbing layer made of polyolefin kneaded with a hygroscopic inorganic material.
  • Sodium chloride in a container Item 11.
  • Item 11. The sodium chloride in a container according to Item 10, wherein the laminate is a film or a sheet.
  • Item 14. The sodium chloride in a container according to any one of Items 1 to 13, wherein 0.1 to 50 kg of sodium chloride is contained in the container.
  • Item 15. Item 15. The sodium chloride in a container according to any one of Items 1 to 14, which is used as a raw material for a powder dialysis agent. Item 16.
  • Item 20. The method for preserving sodium chloride according to any one of Items 16 to 19, wherein 0.1 kg to 1 t of sodium chloride is contained in a container.
  • Item 21. The method for preserving sodium chloride according to any one of Items 16 to 20, wherein the product temperature during filling and storage is maintained at 4 ° C. or higher and 50 ° C. or lower.
  • the polyolefin moisture-proof container is formed of a laminate in which a resin layer having no additive is laminated on both surfaces of a moisture-absorbing layer made of polyolefin kneaded with a hygroscopic inorganic material. How to store sodium chloride.
  • Item 27. Item 27. The method for preserving sodium chloride according to Item 26, wherein the laminate is in the form of a film or a sheet.
  • Item 28. The method for preserving sodium chloride according to any one of Items 24 to 27, wherein the hygroscopic layer is substantially free of additives other than the hygroscopic material.
  • Item 30. The method for preserving sodium chloride in a container according to any one of Items 16 to 29, wherein 0.1 to 50 kg of sodium chloride is contained in a moisture-proof container.
  • Item 31. The method for storing sodium chloride according to any one of Items 16 to 30, which is a method for storing sodium chloride used as a raw material for a powder dialysis agent.
  • sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more is accommodated in a moisture-proof container having a moisture permeability of less than 3 g / m 2 ⁇ 24 h, and the relative humidity in the moisture-proof container is 55%.
  • the property stability of high-purity sodium chloride can be increased, and solidification of sodium chloride can be prevented even after long-term storage.
  • “property stability” means a property of maintaining a state in which sodium chloride is not solidified, and that sodium chloride is not solidified even when stored for a long period of time.
  • the sodium chloride does not directly contact the additive and the hygroscopic material (desiccant, dry material) contained as a constituent material of the moisture-proof container, and the property stability of high-purity sodium chloride is improved.
  • Sodium chloride utilizing the present invention is a simple preparation (single component preparation consisting of sodium chloride) used as a pharmaceutical raw material for which high-purity sodium chloride is required, especially for powder dialysis. Can be suitably used.
  • Test Example 1 sodium chloride is accommodated in an additive-free polyethylene inner bag, the exterior is accommodated in an aluminum foil laminated bag, and the relative humidity in the moisture-proof container is measured over time. is there.
  • sodium chloride is stored in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is stored in an aluminum foil laminated bag.
  • the relative humidity in the moisture-proof container is set as follows. It is a figure which shows the result measured with time.
  • Test Example 2 sodium chloride is accommodated in an additive-free polyethylene inner bag, the exterior is accommodated in an aluminum foil laminate bag, and the relative humidity in the moisture-proof container is measured over time. is there.
  • Test Example 2 sodium chloride is contained in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is contained in an aluminum foil laminated bag.
  • the relative humidity in the moisture-proof container is determined as follows. It is a figure which shows the result measured with time.
  • sodium chloride is accommodated in an additive-free polyethylene inner bag, the exterior is accommodated in an aluminum foil laminate bag, and the relative humidity in the moisture-proof container is measured over time. is there.
  • sodium chloride is contained in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is contained in an aluminum foil laminated bag.
  • the relative humidity in the moisture-proof container is set as follows. It is a figure which shows the result measured with time.
  • Test Example 4 sodium chloride was accommodated in an additive-free polyethylene inner bag, the exterior was accommodated in a flexible container bag, and the relative humidity and temperature in this non-moisture-proof container were measured over time.
  • FIG. 4 sodium chloride was housed in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material was kneaded, and the exterior was housed in a flexible container bag.
  • the relative humidity and temperature in this moisture-proof container It is a figure which shows the result of having measured this over time.
  • Test Example 5 sodium chloride is contained in an additive-free polyethylene inner bag or a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is accommodated in an aluminum foil laminated bag. It is a figure which shows the result of having measured the relative humidity in this moisture-proof container with time.
  • Test Example 6 sodium chloride was accommodated in an additive-free polyethylene inner bag or a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material was kneaded, and the exterior was accommodated in an aluminum foil laminated bag. It is a figure which shows the result of having measured the relative humidity in a moisture-proof container with time.
  • the sodium chloride in a container of the present invention is a sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 ⁇ 24 h.
  • the relative humidity in the moisture-proof container is maintained at 55% or less, and there is no solidification of sodium chloride.
  • the sodium chloride contained in the container of the present invention will be described in detail.
  • the sodium chloride used in the present invention has a purity of 99.5% by weight or more and an average particle size of 150 ⁇ m or more. In this way, high-purity sodium chloride with a predetermined average particle diameter is adopted and stored in a moisture-proof container with a moisture permeability of less than 3 g / m 2 ⁇ 24 h, and the relative humidity is maintained at 55% or less. It is possible to suppress the solidification of sodium chloride.
  • the purity of sodium chloride is the ratio of sodium chloride contained in solid sodium chloride, and is the ratio of sodium chloride to the sum of sodium chloride and components other than sodium chloride (inorganic, organic, etc.). is there.
  • the purity of sodium chloride is not particularly limited as long as it is 99.5% by weight or more, but from the viewpoint of using sodium chloride mainly for pharmaceutical applications, it is preferably 99.8% by weight. As mentioned above, More preferably, 99.9 weight% or more is mentioned.
  • the sodium chloride used in the present invention is not particularly limited as long as the average particle diameter is 150 ⁇ m or more, and examples thereof include about 150 ⁇ m to 2000 ⁇ m.
  • the average particle diameter of sodium chloride is preferably more than 150 ⁇ m, more preferably 160 ⁇ m or more, still more preferably 200 to 700 ⁇ m, and most preferably 200 to 500 ⁇ m from the viewpoint of further improving the solidification preventing effect of sodium chloride.
  • the average particle diameter of sodium chloride refers to a value determined by an automatic dry sonic sieving measuring instrument.
  • the sodium chloride satisfies the above purity and the average particle diameter, and within a range in which the relative humidity in the container to be stored is maintained at 55% or less.
  • it is usually 0.002% by weight or less, particularly preferably 0.001% by weight or less.
  • the water content of sodium chloride is measured as a loss on drying. According to the measurement conditions (1 g, 105 ° C., 2 hours) of the loss on drying of “sodium chloride” described in the 16th revision Japanese Pharmacopoeia. It is the value obtained according to this.
  • no solidification of sodium chloride means that the high hygroscopic ability of sodium chloride itself and its equilibrium humidity are maintained by adjusting the purity and average particle diameter of sodium chloride to the specific conditions described above. This can be achieved by utilizing the capacity and storing it in a moisture-proof container described later and maintaining the relative humidity at 55% or less. In order to reduce the relative humidity in the moisture-proof container to 55% or less, it can be achieved by a relatively simple means of adjusting the temperature and humidity atmosphere when filling sodium chloride that has been dried to a normal degree. As long as the moisture resistance of the container is maintained, the relative humidity in the container is maintained at 55% or less.
  • the relative humidity in a container can be maintained by the hygroscopic action of sodium chloride itself, and even if sodium chloride is not in direct contact with the hygroscopic material, an environment in which sodium chloride does not solidify is stably created.
  • the sodium chloride of the present invention can be prevented from solidifying by maintaining the relative humidity at 55% or less for a long period of time from sealing to opening.
  • a moisture-proof container having a moisture permeability of less than 3.0 g / m 2 ⁇ 24 h is used.
  • the moisture permeability of the moisture-proof container is preferably 0.5 g / m 2 ⁇ 24 h or less, more preferably 0.3 g / m 2 ⁇ 24 h or less, more preferably 0.3 g / m 2 ⁇ 24 h or less from the viewpoint of more effectively preventing the solidification of sodium chloride.
  • 0.1 g / m 2 ⁇ 24 h or less is used.
  • the moisture permeability is a value measured according to a method defined in JIS 0208-1976 “Moisture permeability test method for moisture-proof packaging material (cup method)”.
  • the water vapor trapping container include a resin container including a hygroscopic layer made of a resin containing a hygroscopic inorganic material.
  • the hygroscopic layer can be formed of, for example, a resin kneaded with a hygroscopic inorganic material.
  • resin used for formation of a moisture absorption layer For example, polyolefin, such as polyethylene and a polypropylene, is mentioned.
  • the resin used in the moisture absorption layer may be one kind alone, or a combination of two or more kinds.
  • the hygroscopic inorganic material used for forming the hygroscopic layer is not particularly limited, and examples thereof include magnesium sulfate anhydride and zeolite.
  • the hygroscopic inorganic material used in the hygroscopic layer may be one kind alone or a combination of two or more kinds.
  • the hygroscopic layer is preferably a polyolefin kneaded with a hygroscopic inorganic material, and more preferably a polyethylene kneaded with a hygroscopic inorganic material.
  • the hygroscopic layer is prepared by kneading a hygroscopic inorganic material into a heat-melted resin. Normally, when kneading the hygroscopic inorganic material into the resin, a dispersant or an antioxidant is added. The agent is being used. However, as described below, when a hygroscopic inorganic material is kneaded with a heat-melted resin, additives such as a dispersant and an antioxidant are essential. The hygroscopic layer contained has a problem of sodium chloride contamination due to bleedout of the additive.
  • the hygroscopic inorganic material cannot be uniformly dispersed in the resin, resulting in a decrease in moldability, film form, sheet form, etc.
  • additives such as dispersants and antioxidants
  • the hygroscopic inorganic material cannot be uniformly dispersed in the resin, resulting in a decrease in moldability, film form, sheet form, etc.
  • fish eyes and the like resulting from aggregated grains are generated as a typical example of poor dispersion, and the appearance of the molded body is impaired, and at the same time, the moisture absorption function itself is affected.
  • a hygroscopic inorganic material is kneaded into a thermoplastic resin with a twin-screw extruder without blending these additives, a lump called an eye attaches to the die and the continuity of strand molding is poor.
  • additives such as dispersants and antioxidants are likely to bleed out from the molded product and migrate (penetrate) into the sodium chloride content, discoloration on the appearance of sodium chloride, generation and dispersion of water insolubles. It has been a problem to cause contamination of chemicals and antioxidants. In particular, the problem due to the bleedout of such additives becomes more noticeable as the storage period becomes longer. Even a simple inorganic substance such as sodium chloride is contaminated by the additive when stored in a polyethylene film package to which additives such as a dispersant and an antioxidant are added.
  • the moisture-absorbing layer contained in the water vapor trapping container does not substantially contain additives such as dispersants, antioxidants, foaming agents, lubricants, and colorants (additives other than hygroscopic inorganic materials). It is desirable.
  • the moisture absorption layer which does not substantially contain an additive other than the hygroscopic inorganic material can prevent the additive from bleeding out.
  • substantially containing no additive other than the hygroscopic inorganic material means that the additive is not contained or the content is such that the original function of the additive cannot be exhibited.
  • the total content of additives other than the hygroscopic inorganic material is 0.04% by weight or less, preferably 0.01% by weight or less, more preferably 0% by weight. Means.
  • the moisture absorption layer substantially free of additives other than the hygroscopic inorganic material is a kneaded product of polyolefin and magnesium sulfate anhydride, and does not substantially contain additives other than magnesium sulfate anhydride, In addition, it can be molded using a polyolefin composition having a moisture content of 0.1% by weight or less (hereinafter sometimes referred to as “non-added polyolefin composition”). Details of the additive-free polyolefin composition will be described later.
  • the water vapor trapping container may be formed of the hygroscopic layer alone, but is preferably formed of a laminated body in which the hygroscopic layer and other layers are laminated.
  • the moisture absorbing layer is laminated with another resin layer in the water vapor trapping container. It is preferable that the container is disposed at a position other than the innermost surface of the container.
  • a moisture-proof resin container can be formed into a bag-like container, for example, when the laminate is molded into a film, and when the laminate is molded by blow molding It can be a bottle-shaped container.
  • the resin used in the resin layer is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate; polyamides such as nylon.
  • polyolefin, particularly polyethylene is suitable as a resin used for the resin layer because it has heat sealability and can be easily sealed in addition to being easily molded.
  • the water vapor barrier container include glass containers; metal containers such as stainless steel and aluminum; and resin containers including a barrier layer having a water vapor barrier function.
  • the barrier layer is not particularly limited as long as it has a barrier function against water vapor, and examples thereof include metal foils such as aluminum foil; vapor deposition films such as aluminum oxide and silica.
  • the resin container including the barrier layer
  • examples include a container formed of a laminate in which resin layers are laminated.
  • the resin used in the resin layer is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate; polyamides such as nylon.
  • the resin container including the barrier layer a resin layer is laminated on both surfaces of the barrier layer, and the resin layer on the surface located inside the container is made of polyolefin and located outside the container.
  • examples thereof include a container formed of a laminate in which the resin layer on the surface is made of polyester or polyamide.
  • a moisture-proof resin container can be formed into a bag-like container when the laminate is molded into a film, and is bottle-shaped when the laminate is molded by blow molding.
  • a resin container including such a barrier layer is provided with heat sealability by the resin layer disposed on the inside, water vapor barrier property by the barrier layer, strength and durability by the resin layer disposed on the outside, and sealed. Properties, water vapor barrier properties, strength, durability and the like can be provided in a well-balanced manner.
  • the moisture-proof container used in the present invention may be formed of a laminate in which the moisture absorption layer and the barrier layer are laminated.
  • a resin container including a moisture-absorbing layer made of a resin containing a hygroscopic inorganic material, and a barrier layer having a water vapor barrier function are preferable.
  • a resin container including a hygroscopic layer is more preferable.
  • the shape of the moisture-proof container used in the present invention may be any of a bag shape, a bottle shape, a container shape, and the like, and may be appropriately set according to the amount of sodium chloride to be filled.
  • two or more containers may be used in multiple layers.
  • a resin container including the moisture absorption layer may be used as the inner bag
  • a resin container including the barrier layer may be used as the outer bag.
  • the entire container to be used has a moistureproof property capable of maintaining the internal relative humidity at 55% or less when sealed, for example, two or more containers.
  • a combination of containers having moisture resistance may be used, or a combination of a container having moisture resistance and a container having no moisture resistance may be used.
  • the container as a whole may be a combination of two or more layers in which moisture resistance cannot be obtained alone, provided that the moisture permeability described above is provided.
  • a so-called flexible container bag when filling sodium chloride of about 150 kg to 1 t, a so-called flexible container bag can be used.
  • a film-like moisture-proof container preferably a film-like water vapor trapping container, may be used as the inner bag and / or the outer bag of the flexible container bag.
  • the additive-free polyolefin composition contains magnesium sulfate anhydride as a hygroscopic inorganic material.
  • the average particle diameter of magnesium sulfate anhydride is not particularly limited, but from the viewpoint of dispersibility with respect to polyolefin, it is preferably 1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m, and particularly preferably 1 to 10 ⁇ m.
  • the average particle diameter of magnesium sulfate anhydride is a cumulative 50% diameter obtained from a weight cumulative particle size distribution measured by a laser diffraction / scattering particle diameter distribution measuring apparatus.
  • the moisture content of the magnesium sulfate anhydride itself kneaded as a raw material is preferably small, particularly 2 wt% or less, more preferably 1 wt% or less. It is preferable.
  • the magnesium sulfate anhydride kneaded as a raw material in the additive-free polyolefin composition is usually such that the magnesium sulfate crystals (7 hydrate) are dried and calcined, and then the above-mentioned average particle size is obtained using a pulverizer. It can be obtained by grinding. By calcination of magnesium sulfate crystals (7 hydrate) at 200 ° C.
  • a magnesium sulfate anhydride having a water content of about 1% by weight or less can usually be obtained.
  • the magnesium sulfate anhydride obtained after firing is easy to absorb moisture, it is desirable that the grinding after firing is performed in the presence of dry air having an absolute humidity of about 10 g / kg DA or less.
  • the content of magnesium sulfate anhydride may be appropriately set according to the use of the polyolefin composition, the moisture absorption characteristics to be provided, etc., for example, 5 to 60% by weight, preferably 20%. -50% by weight, more preferably 20-40% by weight.
  • the additive-free polyolefin composition is a kneaded product of polyolefin and magnesium sulfate anhydride, and is produced by kneading magnesium sulfate anhydride into molten polyolefin so as to satisfy the above-described moisture content.
  • polyolefin and magnesium sulfate anhydride each have moisture, and simply kneading polyolefin and magnesium sulfate anhydride cannot satisfy the moisture content described above, and the dispersibility of magnesium sulfate anhydride is low. Only a polyolefin composition having poor moldability can be obtained.
  • polyolefin and magnesium sulfate anhydride under reduced pressure conditions, it is possible to remove moisture during kneading and obtain an additive-free polyolefin composition that satisfies the moisture content described above.
  • Specific examples of the pressure atmosphere when kneading the polyolefin and magnesium sulfate anhydride include ⁇ 65 Kpa or less, preferably ⁇ 75 Kpa or less, and more preferably ⁇ 85 Kpa or less.
  • the container is filled with sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more, and the relative humidity in the container is kept from when the container is sealed until it is opened. Set to maintain below 55%.
  • maintaining the relative humidity in the container at 55% or less means that the relative humidity to which sodium chloride is exposed is 55% or less from the time the container containing sodium chloride is sealed until the container is opened at the time of use. Means holding.
  • sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more has a relative humidity of more than 55%, even if it is designed to remove the water in the container using any method.
  • the sodium chloride having a purity of 99.5% by weight or more and an average particle size of 150 ⁇ m or more is sealed from when sealed to the container until the container is opened at the time of use. It is necessary to maintain the relative humidity to which sodium chloride is exposed at 55% or less.
  • the relative humidity in the container containing sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more is maintained at 50% or less from the viewpoint of more effectively preventing the solidification of sodium chloride. It is preferable. Moreover, the lower limit value of the relative humidity in the container is not limited. By maintaining such a range of relative humidity, the present invention can utilize the moisture absorption characteristics of sodium chloride adjusted to the above-mentioned predetermined conditions, even in an extremely low humidity environment that requires equipment costs. Solidification can be prevented.
  • the purity is 99% in an atmosphere having a relative humidity of 55% or less, preferably 50% or less.
  • the container may be filled with sodium chloride having an average particle diameter of 150 ⁇ m or more by 5 wt% or more.
  • sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 ⁇ m or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 ⁇ 24 h, and is moisture-proof.
  • the relative humidity in the conductive container is maintained at 55% or less.
  • Test example 1 (1) Preparation of sodium chloride Pharmaceutical sodium chloride (average particle size 316 ⁇ m) was transferred onto a vat, dried at 85 ° C. for 5 hours, dried at 130 ° C. for 10 hours, and then cooled to 85 ° C.
  • the sodium chloride contained in the container had a purity of 99.9% by weight and a water content of 0% by weight.
  • the sodium chloride whose moisture content is 0.001 weight%, 0.002 weight%, and 0.005 weight% it created by the method similar to the below-mentioned reference example 8 as a polyethylene bag used as an inner bag.
  • Moisture-proof polyethylene container (three-layer film) in which hygroscopic inorganic material is kneaded (layer structure: PE layer 20 ⁇ m / PE layer 60 ⁇ m containing hygroscopic inorganic material / PE layer 20 ⁇ m three-layer structure; moisture permeability
  • Two containers of about 2.5 g / m 2 ⁇ 24 h) and an additive-free polyethylene container (layer structure: polyethylene 1 layer 80 ⁇ m; moisture permeability of about 6 g / m 2 ⁇ 24 h) were used.
  • an additive-free polyethylene container containing no hygroscopic inorganic material (layer structure: polyethylene one layer 80 ⁇ m; moisture permeability about 20 g / m 2 ⁇ 24 h).
  • Table 1 shows the conditions employed in this test example (water content of sodium chloride and types of inner bags used).
  • sodium chloride in a container was prepared and stored in a refrigerator set at 4 ° C. for 24 days.
  • the relative humidity in the container was measured over time, the container was opened after storage, and the degree of solidification of sodium chloride was measured.
  • the degree of solidification of sodium chloride is such that the stored sodium chloride is placed on an 8 mm grid (mesh: wire diameter 2 mm), passed through the grid, and the weight of sodium chloride remaining on the grid is measured.
  • the weight of sodium chloride remaining on the lattice with respect to was calculated as the degree of solidification (%).
  • an aluminum foil laminated bag (outer bag) (layer structure: PET / Al / PE three-layer structure; moisture permeability of 0 g / m 2 ⁇ 24 h) prevents the solidification of sodium chloride.
  • an aluminum foil laminated bag (layer structure: PET / Al / PE three-layer structure; moisture permeability of 0 g / m 2 ⁇ 24 h) prevents the solidification of sodium chloride.
  • a moisture-proof polyethylene container in which a hygroscopic inorganic material has been kneaded, it is predicted that the hygroscopic inorganic material will function as a desiccant when an exterior formed of aluminum foil is used. Both 001% and 0.002% showed an effect of lowering the humidity.
  • Test example 2 (1) Preparation of Sodium Chloride Sodium chloride (purity 99.9% by weight, water content 0) contained in a container using sodium chloride for medical use (average particle size 316 ⁇ m) in the same manner as in Test Example 1 above. % By weight) was prepared.
  • Test example 3 (1) Preparation of Sodium Chloride Sodium chloride (purity 99.9% by weight, water content 0) contained in a container using sodium chloride for medical use (average particle size 316 ⁇ m) in the same manner as in Test Example 1 above. % By weight) was prepared.
  • Test example 4 1000 kg of medical sodium chloride (average particle size: 313 ⁇ m, purity 99.9% by weight, water content: 0.02% by weight) was prepared by a method similar to that of an additive-free polyethylene inner bag or Reference Example 8 described later.
  • Hygroscopic polyethylene container in which hygroscopic inorganic material is kneaded (layer structure: PE layer 20 ⁇ m / PE layer 60 ⁇ m containing hygroscopic inorganic material / PE layer 20 ⁇ m); 5 g / m 2 ⁇ 24 h) and sealed, put in a flexible container bag, and stored for one month in a warehouse where temperature control is not performed. During the storage period, the temperature and relative humidity in the inner bag were measured over time. Further, after one month of storage, sodium chloride was discharged from the bottom of the flexible container bag, and the presence or absence of solidification of sodium chloride was confirmed.
  • FIG. 7 and 8 show the results of measuring the temperature and relative humidity in the inner bag over time.
  • FIG. 7 shows the result when an additive-free polyethylene inner bag is used
  • FIG. 8 shows the result when a moisture-proof polyethylene inner bag into which a hygroscopic inorganic material is kneaded is used.
  • the temperature in the inner bag was about 45 ° C., but the temperature gradually decreased during the storage period and finally stabilized at about 30 ° C.
  • the relative humidity inside the container gradually increased due to the influence of the humidity of the external environment, and eventually moved around 70%.
  • the humidity effect from the external environment was prevented by the excellent moisture resistance, and the relative humidity was maintained at 55% or less.
  • Test Example 5 (1) Preparation of sodium chloride Sodium chloride contained in a container (purity 99.9 wt%, water content 0 under the same conditions as in Test Example 1 except that sodium chloride (average particle size 167 ⁇ m) was used. % By weight) was prepared.
  • FIG. 9 shows the results of measuring the relative humidity in the container over time
  • Table 8 shows the results of measuring the degree of solidification (%). From this result, it was confirmed that solidification of sodium chloride could be prevented when the relative humidity in the container was constantly maintained at 55% or less during the storage period (conditions 5-1 and 5-2).
  • the action of the moisture-proof polyethylene into which the hygroscopic inorganic material was kneaded was the same as in Test Example 2.
  • Test Example 6 (1) Preparation of sodium chloride Sodium chloride contained in a container (purity 99.9 wt%, moisture content 0 under the same conditions as in Test Example 1 except that sodium chloride (average particle size 27 ⁇ m) was used. % By weight) was prepared.
  • the sodium chloride moisture content and inner bag type are set to the conditions shown in Table 9, and the storage conditions are 25 ° C. (constant temperature and high humidity tank, relative humidity 60%). The test was conducted under the same conditions as in Test Example 1 except that the period was changed to days, and the relative humidity in the container and the solidification degree of sodium chloride after storage were measured over time.
  • FIG. 10 shows the results of measuring the relative humidity in the container over time
  • Table 10 shows the results of measuring the degree of solidification (%). Regardless of which container was used, solidification of sodium chloride occurred even though the relative humidity was maintained at 55% or less during the storage period. This is because the average particle size of the sodium chloride used was very fine at 27 ⁇ m, so the surface area and the contact area of sodium chloride were so large that it was easy to form a soft block-like lump, and it was difficult to pass through the 8 mm lattice in the solidification test. . Also, the presence or absence of hygroscopic inorganic materials was irrelevant.
  • Reference test example 1 1-1. Production of films containing hygroscopic layers Reference example 1
  • Each of the raw materials shown below is a twin-screw kneading extruder (resin temperature during kneading is 160 to 210 ° C., vent pressure is ⁇ 88 kPa, extrusion amount is 25 kg to 50 kg / h, and the raw material charging hopper is replaced with nitrogen)
  • the mixture was kneaded and extruded by Twin Screw Extruder PCM-45 (manufactured by Ikekai Iron Works Co., Ltd.) to obtain a polyolefin composition containing additives in the form of pellets.
  • the obtained additive-containing polyolefin composition was subjected to extrusion molding with a T-die film molding machine (PLABOR GT-25-A, manufactured by Plastic Engineering Laboratory Co., Ltd.), thereby forming a single layer having a thickness of 60 ⁇ m. A film was obtained.
  • Additive-free polyethylene (LDPE), the polyolefin composition prepared in Reference Example 1, and additive-free polyethylene (LDPE) are co-extruded in three layers using a three-layer three-layer inflation molding machine (manufactured by Sumitomo Heavy Industries Modern Co., Ltd.).
  • a resin layer inner layer having a thickness of 20 ⁇ m
  • a moisture absorption layer an intermediate layer having a thickness of 60 ⁇ m
  • Table 11 shows the obtained results. As shown in Table 11, both the single-layer film of Reference Example 1 and the three-layer film of Reference Example 2 have a filtration rate as slow as 3 minutes or more, and the coloration (color difference) of the filtration filter is remarkably recognized as 1 or more. It was. That is, from this result, it was confirmed that the additives (dispersant, antioxidant) contained in the film bleed out and mixed into the sodium chloride in the sachet, resulting in a decrease in quality.
  • Reference test example 2 A sachet (inner bag) made of an additive-free polyethylene film (thickness 80 ⁇ m) is covered with a sachet (outer bag) made of the three-layer film of Reference Example 2 (Package of Reference Structure 3) It was created. 500 g of Japanese Pharmacopoeia sodium chloride was put into the inner bag of the double structure package, and the inner bag was heat sealed. Next, the outer bag covering the inner bag was also heat sealed. The bleed out of the additive was evaluated under the same conditions as in Reference Test Example 1.
  • Table 12 shows the obtained results. From this result, even if an additive-free polyethylene film having a thickness of 80 ⁇ m is used as an inner bag, it cannot prevent the additive contained in the outer bag from being mixed into sodium chloride due to bleed-out. confirmed. Accordingly, it has been clarified that it is desirable that the polyolefin composition used for forming the moisture absorption layer of the package is substantially free of additives other than magnesium sulfate anhydride.
  • additive-free polyolefin composition was extruded using a T-die film molding machine (PLABOR GT-25-A, manufactured by Plastic Engineering Laboratory Co., Ltd.), thereby forming a single layer film having a thickness of 60 ⁇ m.
  • LDPE Polyethylene
  • UBE polyethylene F120N MFR1.2
  • Magnesium sulfate anhydride 33% by weight
  • Table 13 shows the obtained results. From this result, when pressure reduction was not performed when kneading polyethylene and magnesium sulfate anhydride (Reference Example 4), the water content exceeded 0.15% by weight, and the dispersibility of magnesium sulfate anhydride was very poor. The single-layer film was found to have many aggregates, many perforations were observed, and the moldability was poor. On the other hand, when kneading polyethylene and magnesium sulfate anhydride under reduced pressure (Reference Examples 5 to 7), the water content was 0.1% by weight or less, and the dispersibility of magnesium sulfate anhydride was good.
  • Reference test example 4 4-1 Production of polyolefin compositions and films Reference Example 8 Using the raw materials shown below, they were kneaded with a twin-screw kneading extruder (Twin Screw Extruder PCM-45, manufactured by Ikekai Iron Works Co., Ltd.) under the same conditions as in Reference Test Example 3 (pressure atmosphere of -88 KPa). By extruding, 200 kg of pellet-shaped additive-free polyolefin composition was obtained.
  • a twin-screw kneading extruder Twin Screw Extruder PCM-45, manufactured by Ikekai Iron Works Co., Ltd.
  • the additive-free polyethylene (LDPE), the additive-free polyolefin composition obtained above, and the additive-free polyethylene (LDPE) are three-layered using a three-layer three-layer inflation molding machine (manufactured by Sumitomo Heavy Industries Modern Co., Ltd.).
  • a three-layer film in which the resin layers (outer layers having a thickness of 20 ⁇ m) formed in step 1 were sequentially laminated was prepared.
  • ⁇ Raw material composition of additive-free polyolefin composition > Polyethylene (LDPE; trade name “UBE polyethylene R300” (MFR0.35), manufactured by Ube Maruzen Polyethylene Co., Ltd.) 67% by weight Magnesium sulfate anhydride 33% by weight
  • Reference Example 10 By using the raw materials shown below and kneading and extruding under the same conditions as in Reference Test Example 3 (pressure atmosphere of -88 KPa) with a twin-screw kneading extruder (PCM-80 manufactured by Ikegai Iron Works Co., Ltd.) A pellet-shaped additive-free polyolefin composition was obtained. Subsequently, additive-free polyethylene (LDPE), the additive-free polyolefin composition obtained above, and additive-free polyethylene (LLDPE) are coextruded in three layers with an air-cooled inflation multilayer film forming apparatus (Placo Corporation).
  • LDPE additive-free polyethylene
  • LLDPE additive-free polyethylene
  • LLDPE additive-free polyethylene
  • a resin layer (inner layer with a thickness of 20 ⁇ m) formed of additive-free polyethylene (LDPE), a moisture absorption layer (an intermediate layer of thickness of 60 ⁇ m) formed with the polyolefin composition, and an additive-free polyethylene (LLDPE) were formed.
  • LDPE additive-free polyethylene
  • UBE polyethylene F120N (MFR1.2) manufactured by Ube Maruzen Polyethylene Co., Ltd.
  • Table 14 shows the results of measuring the water content of the additive-free polyolefin compositions obtained in Reference Example 8 (same as Reference Example 9) and 10 by the same method as in Reference Test Example 3.
  • all of the additive-free polyolefin compositions obtained in Reference Examples 8 and 10 had a water content of 0.1% by weight or less. That is, also from this test result, when obtaining a polyolefin composition without adding additives other than magnesium sulfate anhydride, by kneading so that the water content is 0.1% by weight or less, magnesium sulfate is obtained. It was confirmed that the anhydride was excellent in dispersibility and the moldability was good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Packages (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Medicinal Preparation (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a storage technology for sodium chloride having excellent property stability, with which it is possible to inhibit the solidification of sodium chloride, even during long-term storage, without adding additives. By setting the purity of sodium chloride to at least 99.5 wt% and the average particle diameter to at least 150 μm, storing the sodium chloride in a moisture-proof container having a moisture permeability of less than 3 g/m2∙24h, and setting the relative humidity inside the moisture-proof container so as to be maintained at 55% or less, it is possible to prevent the sodium chloride from solidifying even during long-term storage and to increase the property stability of the sodium chloride.

Description

容器入り塩化ナトリウム、及び塩化ナトリウムの保存方法Sodium chloride in a container and storage method of sodium chloride
 本発明は、塩化ナトリウムの固化を抑制している容器入り塩化ナトリウムに関する。また、本発明は、塩化ナトリウムの固化を抑制して安定に保存するための、塩化ナトリウムの保存方法に関する。 The present invention relates to sodium chloride in a container that suppresses solidification of sodium chloride. The present invention also relates to a method for storing sodium chloride for stably storing the sodium chloride by suppressing solidification.
 塩化ナトリウムは、医薬品、化粧料、食品等の多岐に亘る分野で使用されているが、高純度の塩化ナトリウムは、保存中に固化して塊状になるという欠点がある。このような塩化ナトリウムの固化は、結晶表面における水分の吸収及び放出の繰り返しで析出した微結晶の架橋によって起こると考えられている。高純度の塩化ナトリウムでは、塩化ナトリウム飽和溶液の水蒸気圧が気相の水蒸気圧と平行する相対湿度(臨界湿度:約75%)を上下することによる溶解、析出の繰り返しによって強く固化するが、実質的な取り扱いにおいては臨界湿度以下に保持しても時間の経過と共に固結する。 Sodium chloride is used in a wide variety of fields such as pharmaceuticals, cosmetics, foods, etc., but high-purity sodium chloride has a drawback that it solidifies during storage and becomes a lump. Such solidification of sodium chloride is considered to be caused by cross-linking of microcrystals precipitated by repeated absorption and release of moisture on the crystal surface. In high-purity sodium chloride, the water vapor pressure of the saturated sodium chloride solution is strongly solidified by repeated dissolution and precipitation by raising and lowering the relative humidity (critical humidity: about 75%) parallel to the vapor pressure of the gas phase. In typical handling, it will solidify over time even if kept below the critical humidity.
 従来、塩化ナトリウムの固化を防止するために種々の手段・処方が提案されている。例えば、特許文献1には、高温の食塩を予め十分乾燥して、空気1キログラム中0.5g程度の乾燥雰囲気中で平均粒径100ミクロン以下に微粉砕し、乾燥雰囲気を保持したまま、微粉砕した食塩をアルミ箔製の包装袋に密封することを特徴とする微粒食塩の固結防止方法が開示されている。この手法では、固化し易い微粒子の塩化ナトリウムを極限まで乾燥状態を維持し、且つ空気1キログラム中0.5g程度の乾燥空気中で粉砕し、アルミ箔を用いた防湿袋に保存することによって、保存時の固化を防いでいる。しかしながら、特許文献1の手法では、乾燥空気を1キログラム中0.5g程度と厳密に制御しながら粉砕並びに充填・密封しなければならないため、塩化ナトリウムの生産コストが高くなる上、塩化ナトリウムを微粉砕する工程が必須となるので、生産工程が煩雑化しがちである。また、たとえ特許文献1の記載の通り保有水分0.1%の食塩を乾燥空気1キログラム中1~2g程度の低湿度雰囲気下にて冷却する場合も、実質的に乾燥空気による食塩の乾燥が行われない限り、固化を防ぐことはできない。また、特許文献1では、乾燥後の塩化ナトリウムが保持する水分量と、保存中の包装体内の湿度と、塩化ナトリウムの固化との関係については明らかにされていないので、本手法での製造方法は単に出来るだけ乾燥させた状態で粉砕・充填すれば固化しないことが開示されているにとどまる。 Conventionally, various means and prescriptions have been proposed to prevent the solidification of sodium chloride. For example, Patent Document 1 discloses that high-temperature sodium chloride is sufficiently dried in advance and finely pulverized to an average particle size of 100 microns or less in a dry atmosphere of about 0.5 g in 1 kilogram of air, while maintaining the dry atmosphere. A method for preventing caking of fine salt is disclosed, wherein the ground salt is sealed in an aluminum foil packaging bag. In this technique, the solidified sodium chloride, which is easy to solidify, is kept dry to the limit, and is pulverized in about 0.5 g of dry air in 1 kg of air, and stored in a moisture-proof bag using aluminum foil. Prevents solidification during storage. However, in the method of Patent Document 1, since the dry air must be pulverized, filled and sealed while strictly controlling the dry air to be about 0.5 g per kilogram, the production cost of sodium chloride is increased, and the sodium chloride is slightly reduced. Since the pulverization process is essential, the production process tends to be complicated. Further, even when salt with a water content of 0.1% is cooled in a low humidity atmosphere of about 1 to 2 g in 1 kg of dry air as described in Patent Document 1, the salt is substantially dried with dry air. Unless done, solidification cannot be prevented. In addition, Patent Document 1 does not clarify the relationship between the amount of water retained by sodium chloride after drying, the humidity in the package during storage, and the solidification of sodium chloride. Is disclosed that it does not solidify if it is pulverized and filled in as dry a state as possible.
 また、特許文献2には、貯蔵される塩化ナトリウムに加熱手段を設けることにより、保存中の固化を抑制する方法が開示されている。特許文献2の手法では、食塩粒子の吸湿には食塩の品温が外気の露点温度以下に下がった場合における結露現象と食塩粒子が相対湿度75%を超えた条件下に置かれた場合における潮解現象を抑制することを目的としており、塩化ナトリウムの品温を上昇させることによって、この二つの吸湿現象をともに防げることを見いだしている。しかしながら、特許文献2の手法でも、塩化ナトリウムが保持する水分量を厳密に制御しておらず、実質的には固化をある程度抑制する程度に留まる。また塩化ナトリウムに含まれる水分によっても影響を受ける包装体内の湿度と、塩化ナトリウムの固化の関係については明らかにされていない。 Patent Document 2 discloses a method for suppressing solidification during storage by providing a heating means for stored sodium chloride. In the technique of Patent Document 2, moisture absorption of salt particles is caused by dew condensation when the temperature of the salt drops below the dew point temperature of the outside air and deliquescence when the salt particles are placed under conditions where the relative humidity exceeds 75%. The purpose is to suppress the phenomenon, and it has been found that the two moisture absorption phenomena can be prevented by increasing the temperature of sodium chloride. However, even the method of Patent Document 2 does not strictly control the amount of water held by sodium chloride, and the amount of solidification is substantially suppressed to some extent. Further, the relationship between the humidity in the package that is also affected by the moisture contained in sodium chloride and the solidification of sodium chloride has not been clarified.
 また、特許文献3には、乾燥したクラフト紙を使用して食塩中の水分を吸湿することにより固化を抑制できることが開示されている。しかしながら、特許文献3の手法では、クラフト紙袋の乾燥にはコストがかかり、またクラフト紙に直接食塩を充填する必要があるため、食品用としては問題ないが、医薬用途には好ましくない。更に、クラフト紙等の吸湿性材料で形成されている袋は、シリカゲル同様、保管環境の温度・湿度により、水分の吸着とは逆に放出することもあるので、環境変化により塩化ナトリウムを再固化させることもある。 Further, Patent Document 3 discloses that solidification can be suppressed by absorbing moisture in salt using dry kraft paper. However, in the method of Patent Document 3, there is a cost for drying the kraft paper bag, and it is necessary to directly fill the kraft paper with salt, so there is no problem for food use, but it is not preferable for pharmaceutical use. In addition, bags made of hygroscopic materials such as kraft paper, like silica gel, may be released in reverse to moisture adsorption depending on the temperature and humidity of the storage environment, so sodium chloride is re-solidified due to environmental changes. Sometimes
 一方、添加剤を配合して塩化ナトリウムの固化を抑制する方法としては、水溶性セルロースエステル類を添加する方法(特許文献4)、リン酸水素二ナトリウムや炭酸マグネシウムを添加する方法(特許文献5)、5~500ppmのアルギン酸ナトリウムを添加する方法(特許文献6)等が提案されている。しかしながら、これらの添加剤を配合する手法は、高純度の塩化ナトリウムが要求される医薬分野等では適用できず、塩化ナトリウムの適用分野が制限されるという欠点がある。 On the other hand, as a method of adding additives to suppress solidification of sodium chloride, a method of adding water-soluble cellulose esters (Patent Document 4), a method of adding disodium hydrogen phosphate or magnesium carbonate (Patent Document 5) ) A method of adding 5 to 500 ppm of sodium alginate (Patent Document 6) has been proposed. However, the method of blending these additives cannot be applied in the pharmaceutical field where high-purity sodium chloride is required, and has a drawback that the field of application of sodium chloride is limited.
特開平5-345610号公報JP-A-5-345610 特開昭63-98367号公報JP-A-63-98367 特開平7-149387号公報JP-A-7-149387 特開平4-45836号公報JP-A-4-45836 特開平6-24738号公報JP-A-6-24738 特開平2-208219号公報JP-A-2-208219
 例えば、医薬用途の塩化ナトリウムは、高純度であるため、固化し易いことが常識となっているが、添加物等の混在が無く、長期間固化しない医薬品原料としての塩化ナトリウムを提供することができれば、計量、調合、混合等といった製剤化操作を容易にすることができる。 For example, it is common knowledge that sodium chloride for pharmaceutical use has high purity and is easy to solidify. However, it is possible to provide sodium chloride as a pharmaceutical raw material that does not solidify for a long period of time without mixing of additives and the like. If possible, formulation operations such as weighing, blending, and mixing can be facilitated.
 また、粉末透析用剤の分野では、塩化ナトリウムを単味製剤とする場合があり、塩化ナトリウムの単味製剤は、透析用剤を調製する透析施設等で溶解操作等が行われており、固化等が生じてしまうことは、溶解操作が煩雑になり取り扱いにくく、医薬品製剤としては欠陥品となる。それ故、長期保存しても固化しない塩化ナトリウムの開発は、粉末透析用剤を初めとする医薬品用途において強く求められている。同時に上記のような用途においては、内容物を汚染させる分散剤や酸化防止剤を無添加とすることは、単純に塩化ナトリウムの固化防止に止まらず、医薬用途の塩化ナトリウムにおいては、その高純度を維持することが求められている。 Also, in the field of powder dialysis agents, sodium chloride may be used as a simple preparation, and the sodium chloride single preparation is dissolved in a dialysis facility or the like that prepares the dialysis agent, and is solidified. If the above occurs, the dissolution operation becomes complicated and difficult to handle, and it becomes a defective product as a pharmaceutical preparation. Therefore, the development of sodium chloride that does not solidify even after long-term storage is strongly demanded in pharmaceutical applications including powder dialysis agents. At the same time, in the above-mentioned applications, the addition of a dispersant or an antioxidant that contaminates the contents does not simply prevent the solidification of sodium chloride. Is required to maintain.
 そこで、本発明は、添加物を配合することなく、長期間保存しても、塩化ナトリウムの固化を抑制でき、性状安定性に優れた塩化ナトリウムの保存技術を提供することを目的とする。 Therefore, an object of the present invention is to provide sodium chloride storage technology that can suppress solidification of sodium chloride and is excellent in property stability even if stored for a long period of time without blending additives.
 本発明者は、前記課題を解決すべく鋭意検討を行ったところ、塩化ナトリウムの純度を99.5重量%以上且つ平均粒子径を150μm以上に設定して、当該塩化ナトリウムを透湿度3g/m2・24h未満の防湿性容器に収容し、当該防湿性容器内の相対湿度を55%以下に維持することによって、長期間保存しても、塩化ナトリウムの固化を防止でき、塩化ナトリウムの性状安定性が向上することを見出した。本発明は、かかる知見に基づいて更に検討を重ねることにより完成したものである。 The present inventor conducted intensive studies to solve the above-mentioned problems. As a result, the purity of sodium chloride was set to 99.5% by weight or more, the average particle diameter was set to 150 μm or more, and the sodium chloride was subjected to moisture permeability of 3 g / m. Housed in a moisture-proof container of less than 2 · 24h, and maintaining the relative humidity in the moisture-proof container at 55% or less, it is possible to prevent solidification of sodium chloride even when stored for a long period of time, and to stabilize the properties of sodium chloride It was found that the performance is improved. The present invention has been completed by further studies based on such knowledge.
 即ち、本発明は、下記に掲げる態様の容器入り塩化ナトリウム、及び塩化ナトリウムの保存方法を提供する。
項1. 純度99.5重量%以上且つ平均粒子径が150μm以上の塩化ナトリウムが、透湿度3g/m2・24h未満の防湿性容器に収容されてなり、防湿性容器内の相対湿度が55%以下に維持され、塩化ナトリウムの固化がないことを特徴とする、容器入り塩化ナトリウム。
項2. 塩化ナトリウムが、防湿性容器に含まれる吸湿性材料と直接接していない、項1に記載の容器入り塩化ナトリウム。
項3. 防湿性容器内の相対湿度が50%以下に維持されている、項1又は2に記載の容器入り塩化ナトリウム。
項4. 塩化ナトリウムの平均粒子径が150~700μmである、項1~3のいずれかに記載の容器入り塩化ナトリウム。
項5. 防湿性容器内に0.1kg~1tの塩化ナトリウムが収容されている、項1~4のいずれかに記載の容器入り塩化ナトリウム。
項6. 塩化ナトリウムの水分含量が0.002重量%以下である、項1~5のいずれかに記載の容器入り塩化ナトリウム。
項7. 防湿性容器の透湿度が0.5g/m2・24h以下である、項1~6のいずれかに記載の容器入り塩化ナトリウム。
項8. 防湿性容器が、吸湿性無機材料を含むポリオレフィンからなる吸湿層を有するポリオレフィン製防湿性容器である、項1~7のいずれかに記載の容器入り塩化ナトリウム。
項9. 吸湿性無機材料が硫酸マグネシウム無水物及び/又はゼオライトである、項8に記載の容器入り塩化ナトリウム。
項10. ポリオレフィン製防湿性容器が、吸湿性無機材料が練り込まれたポリオレフィンからなる吸湿層の両面に、添加剤のない樹脂層が積層された積層体で形成されている、項8又は9に記載の容器入り塩化ナトリウム。
項11. 前記積層体がフィルム状又はシート状である、項10に記載の容器入り塩化ナトリウム。
項12. 吸湿層が吸湿性材料以外の添加剤を実質的に含まない、項8~11のいずれかに記載の容器入り塩化ナトリウム。
項13. 塩化ナトリウムの純度が99.9重量%以上である、項1~12のいずれかに記載の容器入り塩化ナトリウム。
項14. 容器内に0.1~50kgの塩化ナトリウムが収容されている、項1~13のいずれかに記載の容器入り塩化ナトリウム。
項15. 粉末透析用剤の原料として使用される、項1~14のいずれかに記載の容器入り塩化ナトリウム。
項16. 純度99.5重量%以上且つ平均粒子径が150μm以上の塩化ナトリウムを、透湿度3g/m2・24h未満の防湿性容器に収容し、防湿性容器内の相対湿度を55%以下に維持することを特徴とする、塩化ナトリウムの保存方法。
項17. 前記塩化ナトリウムが防湿性容器の構成素材として含まれる吸湿性材料と直接接していない、項16に記載の塩化ナトリウムの保存方法。
項18. 容器内の相対湿度を50%以下に維持する、項16又は17に記載の塩化ナトリウムの保存方法。
項19. 塩化ナトリウムの平均粒子径が150~700μmである、項16~18のいずれかに記載の塩化ナトリウムの保存方法。
項20. 容器内に0.1kg~1tの塩化ナトリウムを収容する、項16~19のいずれかに記載の塩化ナトリウムの保存方法。
項21. 充填時及び保管時の品温を4℃以上、50℃以下に維持する、項16~20のいずれかに記載の塩化ナトリウムの保存方法。
項22. 塩化ナトリウムの水分含量が0.002重量%以下である、項16~21のいずれかに記載の塩化ナトリウムの保存方法。
項23. 防湿性容器の透湿度が0.5g/m2・24h以下である、項16~22のいずれかに記載の塩化ナトリウムの保存方法。
項24. 防湿性容器が、吸湿性無機材料を含むポリオレフィンからなる吸湿層を有するポリオレフィン製防湿性容器である、項16~23のいずれかに記載の塩化ナトリウムの保存方法。
項25. 吸湿性無機材料が硫酸マグネシウム無水物及び/又はゼオライトである、項24に記載の塩化ナトリウムの保存方法。
項26. ポリオレフィン製防湿性容器が、吸湿性無機材料が練り込まれたポリオレフィンからなる吸湿層の両面に、添加剤のない樹脂層が積層された積層体で形成されている、項24又は25に記載の塩化ナトリウムの保存方法。
項27. 前記積層体がフィルム状又はシート状である、項26に記載の塩化ナトリウムの保存方法。
項28. 吸湿層が吸湿性材料以外の添加剤を実質的に含まない、項24~27のいずれかに記載の塩化ナトリウムの保存方法。
項29. 塩化ナトリウムの純度が99.9重量%以上である、項16~28のいずれかに記載の塩化ナトリウムの保存方法。
項30. 防湿性容器内に0.1~50kgの塩化ナトリウムを収容する、項16~29のいずれかに記載の容器入り塩化ナトリウムの保存方法。
項31. 粉末透析用剤の原料として使用される塩化ナトリウムの保存方法である、項16~30のいずれかに記載の塩化ナトリウムの保存方法。
That is, this invention provides the preservation | save method of the sodium chloride in a container of the aspect hung up below, and sodium chloride.
Item 1. Sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h, and the relative humidity in the moisture-proof container is 55% or less. Sodium chloride in a container, which is maintained and free from solidification of sodium chloride.
Item 2. Item 2. The sodium chloride in a container according to Item 1, wherein the sodium chloride is not in direct contact with the hygroscopic material contained in the moisture-proof container.
Item 3. Item 3. The sodium chloride in a container according to Item 1 or 2, wherein the relative humidity in the moisture-proof container is maintained at 50% or less.
Item 4. Item 4. The sodium chloride in a container according to any one of Items 1 to 3, wherein the average particle size of the sodium chloride is 150 to 700 μm.
Item 5. Item 5. The sodium chloride in a container according to any one of Items 1 to 4, wherein 0.1 kg to 1 t of sodium chloride is contained in a moisture-proof container.
Item 6. Item 6. The sodium chloride in a container according to any one of Items 1 to 5, wherein the water content of the sodium chloride is 0.002% by weight or less.
Item 7. Item 7. The sodium chloride in a container according to any one of Items 1 to 6, wherein the moisture permeability of the moisture-proof container is 0.5 g / m 2 · 24 h or less.
Item 8. Item 8. The sodium chloride in a container according to any one of Items 1 to 7, wherein the moisture-proof container is a polyolefin moisture-proof container having a moisture-absorbing layer made of polyolefin containing a hygroscopic inorganic material.
Item 9. Item 9. The sodium chloride in a container according to Item 8, wherein the hygroscopic inorganic material is magnesium sulfate anhydride and / or zeolite.
Item 10. Item 10. The polyolefin moisture-proof container is formed of a laminate in which a resin layer having no additive is laminated on both surfaces of a moisture-absorbing layer made of polyolefin kneaded with a hygroscopic inorganic material. Sodium chloride in a container.
Item 11. Item 11. The sodium chloride in a container according to Item 10, wherein the laminate is a film or a sheet.
Item 12. Item 12. The sodium chloride in a container according to any one of Items 8 to 11, wherein the hygroscopic layer does not substantially contain additives other than the hygroscopic material.
Item 13. Item 13. The sodium chloride in a container according to any one of Items 1 to 12, wherein the purity of the sodium chloride is 99.9% by weight or more.
Item 14. Item 14. The sodium chloride in a container according to any one of Items 1 to 13, wherein 0.1 to 50 kg of sodium chloride is contained in the container.
Item 15. Item 15. The sodium chloride in a container according to any one of Items 1 to 14, which is used as a raw material for a powder dialysis agent.
Item 16. Sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h, and the relative humidity in the moisture-proof container is maintained at 55% or less. A method for preserving sodium chloride, characterized in that
Item 17. Item 17. The method for preserving sodium chloride according to Item 16, wherein the sodium chloride is not in direct contact with a hygroscopic material contained as a constituent material of the moisture-proof container.
Item 18. Item 18. The method for preserving sodium chloride according to Item 16 or 17, wherein the relative humidity in the container is maintained at 50% or less.
Item 19. Item 19. The method for preserving sodium chloride according to any one of Items 16 to 18, wherein the sodium chloride has an average particle size of 150 to 700 μm.
Item 20. Item 20. The method for preserving sodium chloride according to any one of Items 16 to 19, wherein 0.1 kg to 1 t of sodium chloride is contained in a container.
Item 21. Item 21. The method for preserving sodium chloride according to any one of Items 16 to 20, wherein the product temperature during filling and storage is maintained at 4 ° C. or higher and 50 ° C. or lower.
Item 22. Item 22. The method for preserving sodium chloride according to any one of Items 16 to 21, wherein the water content of the sodium chloride is 0.002% by weight or less.
Item 23. Item 23. The method for preserving sodium chloride according to any one of Items 16 to 22, wherein the moisture permeability of the moisture-proof container is 0.5 g / m 2 · 24 h or less.
Item 24. Item 24. The method for preserving sodium chloride according to any one of Items 16 to 23, wherein the moisture-proof container is a polyolefin moisture-proof container having a moisture-absorbing layer made of polyolefin containing a hygroscopic inorganic material.
Item 25. Item 25. The method for preserving sodium chloride according to Item 24, wherein the hygroscopic inorganic material is magnesium sulfate anhydride and / or zeolite.
Item 26. Item 26. The polyolefin moisture-proof container is formed of a laminate in which a resin layer having no additive is laminated on both surfaces of a moisture-absorbing layer made of polyolefin kneaded with a hygroscopic inorganic material. How to store sodium chloride.
Item 27. Item 27. The method for preserving sodium chloride according to Item 26, wherein the laminate is in the form of a film or a sheet.
Item 28. Item 28. The method for preserving sodium chloride according to any one of Items 24 to 27, wherein the hygroscopic layer is substantially free of additives other than the hygroscopic material.
Item 29. Item 29. The method for preserving sodium chloride according to any one of Items 16 to 28, wherein the purity of the sodium chloride is 99.9% by weight or more.
Item 30. Item 30. The method for preserving sodium chloride in a container according to any one of Items 16 to 29, wherein 0.1 to 50 kg of sodium chloride is contained in a moisture-proof container.
Item 31. Item 31. The method for storing sodium chloride according to any one of Items 16 to 30, which is a method for storing sodium chloride used as a raw material for a powder dialysis agent.
 本発明によれば、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを透湿度3g/m2・24h未満の防湿性容器に収容し、防湿性容器内の相対湿度が55%以下に維持するという簡便な手法によって、高純度の塩化ナトリウムの性状安定性を高めることが可能になっており、長期間保存しても、塩化ナトリウム固化を防止することができる。なお、本明細書において、「性状安定性」とは、塩化ナトリウムが固化していない状態を保持する性質を意味し、塩化ナトリウムを長期間保存しても固化しないことを「性状安定性に優れている」と言う。 According to the present invention, sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is accommodated in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h, and the relative humidity in the moisture-proof container is 55%. By the simple method of maintaining the following, the property stability of high-purity sodium chloride can be increased, and solidification of sodium chloride can be prevented even after long-term storage. In the present specification, “property stability” means a property of maintaining a state in which sodium chloride is not solidified, and that sodium chloride is not solidified even when stored for a long period of time. Say.
 また、本発明によれば、塩化ナトリウムが、防湿性容器の構成素材として含まれる添加剤、吸湿性材料(乾燥剤、乾燥材料)と直接接することなく、高純度の塩化ナトリウムの性状安定性を高めることができるので、本発明を利用した塩化ナトリウムは、高純度の塩化ナトリウムが要求される医薬原料、とりわけ粉末透析用剤に使用される単味製剤(塩化ナトリウムからなる単一成分の製剤)として好適に使用できる。 In addition, according to the present invention, the sodium chloride does not directly contact the additive and the hygroscopic material (desiccant, dry material) contained as a constituent material of the moisture-proof container, and the property stability of high-purity sodium chloride is improved. Sodium chloride utilizing the present invention is a simple preparation (single component preparation consisting of sodium chloride) used as a pharmaceutical raw material for which high-purity sodium chloride is required, especially for powder dialysis. Can be suitably used.
試験例1において、塩化ナトリウムを、無添加のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 1, sodium chloride is accommodated in an additive-free polyethylene inner bag, the exterior is accommodated in an aluminum foil laminated bag, and the relative humidity in the moisture-proof container is measured over time. is there. 試験例1において、塩化ナトリウムを、吸湿性無機材料が練り込まれている防湿性のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 1, sodium chloride is stored in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is stored in an aluminum foil laminated bag. The relative humidity in the moisture-proof container is set as follows. It is a figure which shows the result measured with time. 試験例2において、塩化ナトリウムを、無添加のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 2, sodium chloride is accommodated in an additive-free polyethylene inner bag, the exterior is accommodated in an aluminum foil laminate bag, and the relative humidity in the moisture-proof container is measured over time. is there. 試験例2において、塩化ナトリウムを、吸湿性無機材料が練り込まれている防湿性のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 2, sodium chloride is contained in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is contained in an aluminum foil laminated bag. The relative humidity in the moisture-proof container is determined as follows. It is a figure which shows the result measured with time. 試験例3において、塩化ナトリウムを、無添加のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 3, sodium chloride is accommodated in an additive-free polyethylene inner bag, the exterior is accommodated in an aluminum foil laminate bag, and the relative humidity in the moisture-proof container is measured over time. is there. 試験例3において、塩化ナトリウムを、吸湿性無機材料が練り込まれている防湿性のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 3, sodium chloride is contained in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is contained in an aluminum foil laminated bag. The relative humidity in the moisture-proof container is set as follows. It is a figure which shows the result measured with time. 試験例4において、塩化ナトリウムを、無添加のポリエチレン製の内袋に収容し、外装をフレキシブルコンテナバックに収容し、この防湿性がない容器内の相対湿度及び温度を経時的に測定した結果を示す図である。In Test Example 4, sodium chloride was accommodated in an additive-free polyethylene inner bag, the exterior was accommodated in a flexible container bag, and the relative humidity and temperature in this non-moisture-proof container were measured over time. FIG. 試験例4において、塩化ナトリウムを、吸湿性無機材料が練り込まれている防湿性のポリエチレン製の内袋に収容し、外装をフレキシブルコンテナバックに収容し、この防湿性容器内の相対湿度及び温度を経時的に測定した結果を示す図である。In Test Example 4, sodium chloride was housed in a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material was kneaded, and the exterior was housed in a flexible container bag. The relative humidity and temperature in this moisture-proof container It is a figure which shows the result of having measured this over time. 試験例5において、塩化ナトリウムを、無添加のポリエチレン製の内袋又は吸湿性無機材料が練り込まれている防湿性のポリエチレン製の内袋に収容し、外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 5, sodium chloride is contained in an additive-free polyethylene inner bag or a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, and the exterior is accommodated in an aluminum foil laminated bag. It is a figure which shows the result of having measured the relative humidity in this moisture-proof container with time. 試験例6において、塩化ナトリウムを、無添加のポリエチレン製の内袋又は吸湿性無機材料が練り込まれている防湿性のポリエチレン製の内袋に収容し外装をアルミ箔ラミネート袋に収容し、この防湿性容器内の相対湿度を経時的に測定した結果を示す図である。In Test Example 6, sodium chloride was accommodated in an additive-free polyethylene inner bag or a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material was kneaded, and the exterior was accommodated in an aluminum foil laminated bag. It is a figure which shows the result of having measured the relative humidity in a moisture-proof container with time.
1.容器入り塩化ナトリウム
 本発明の容器入り塩化ナトリウムは、純度99.5重量%以上且つ平均粒子径が150μm以上の塩化ナトリウムが、透湿度3g/m2・24h未満の防湿性容器に収容されてなり、防湿性容器内の相対湿度が55%以下に維持され、塩化ナトリウムの固化がないことを特徴とする。以下、本発明の容器入り塩化ナトリウムについて詳述する。
1. Sodium Chloride in a Container The sodium chloride in a container of the present invention is a sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h. The relative humidity in the moisture-proof container is maintained at 55% or less, and there is no solidification of sodium chloride. Hereinafter, the sodium chloride contained in the container of the present invention will be described in detail.
<塩化ナトリウム>
 本発明に使用される塩化ナトリウムは、純度が99.5重量%以上且つ平均粒子径が150μm以上のものを使用する。このように高純度且つ所定の平均粒子径の塩化ナトリウムを採用し、且つ透湿度3g/m2・24h未満の防湿性容器に収容し、相対湿度を55%以下に維持することによって、保存中に塩化ナトリウムが固化するのを抑制することが可能になる。
<Sodium chloride>
The sodium chloride used in the present invention has a purity of 99.5% by weight or more and an average particle size of 150 μm or more. In this way, high-purity sodium chloride with a predetermined average particle diameter is adopted and stored in a moisture-proof container with a moisture permeability of less than 3 g / m 2 · 24 h, and the relative humidity is maintained at 55% or less. It is possible to suppress the solidification of sodium chloride.
 本発明において、塩化ナトリウムの純度とは、塩化ナトリウムの固形物に含まれる塩化ナトリウムの割合であり、塩化ナトリウムと、塩化ナトリウム以外の成分(無機物、有機物等)との総和に対する塩化ナトリウムの割合である。本発明において、塩化ナトリウムの純度としては、99.5重量%以上であることを限度として特に制限されないが、塩化ナトリウムを主に医薬品用途に使用するという観点からは、好ましくは99.8重量%以上、更に好ましくは99.9重量%以上が挙げられる。 In the present invention, the purity of sodium chloride is the ratio of sodium chloride contained in solid sodium chloride, and is the ratio of sodium chloride to the sum of sodium chloride and components other than sodium chloride (inorganic, organic, etc.). is there. In the present invention, the purity of sodium chloride is not particularly limited as long as it is 99.5% by weight or more, but from the viewpoint of using sodium chloride mainly for pharmaceutical applications, it is preferably 99.8% by weight. As mentioned above, More preferably, 99.9 weight% or more is mentioned.
 また、本発明に使用される塩化ナトリウムは、平均粒子径が150μm以上であることを限度として特に制限されないが、例えば、150μm~2000μm程度が挙げられる。塩化ナトリウムの平均粒子径として、塩化ナトリウムの固化防止効果をより一層向上させるという観点から、好ましくは150μm超、より好ましくは160μm以上、更に好ましくは200~700μm、最も好ましくは200~500μmが挙げられる。本明細書において、塩化ナトリウムの平均粒子径は、自動乾式音波ふるい分け測定器によって求められる値を指す。 The sodium chloride used in the present invention is not particularly limited as long as the average particle diameter is 150 μm or more, and examples thereof include about 150 μm to 2000 μm. The average particle diameter of sodium chloride is preferably more than 150 μm, more preferably 160 μm or more, still more preferably 200 to 700 μm, and most preferably 200 to 500 μm from the viewpoint of further improving the solidification preventing effect of sodium chloride. . In this specification, the average particle diameter of sodium chloride refers to a value determined by an automatic dry sonic sieving measuring instrument.
 また、本発明に使用される塩化ナトリウムの水分含量については、塩化ナトリウムが前記純度且つ前記平均粒子径を充足し、且つ収容する容器内の相対湿度が55%以下に維持される範囲内で適宜設定されるが、塩化ナトリウムの固化防止効果をより一層向上させるという観点から、通常は0.002重量%以下、特に好ましくは0.001重量%以下が挙げられる。ここで、塩化ナトリウムの水分含量とは、乾燥減量として測定されるもので、第十六改正日本薬局方に記載の「塩化ナトリウム」の乾燥減量の測定条件(1g、105℃、2時間)に準じて求められる値のことである。 Further, regarding the water content of sodium chloride used in the present invention, the sodium chloride satisfies the above purity and the average particle diameter, and within a range in which the relative humidity in the container to be stored is maintained at 55% or less. Although set, from the viewpoint of further improving the solidification preventing effect of sodium chloride, it is usually 0.002% by weight or less, particularly preferably 0.001% by weight or less. Here, the water content of sodium chloride is measured as a loss on drying. According to the measurement conditions (1 g, 105 ° C., 2 hours) of the loss on drying of “sodium chloride” described in the 16th revision Japanese Pharmacopoeia. It is the value obtained according to this.
 塩化ナトリウムの純度、平均粒子径及び水分含量を前述する範囲を充足させる方法は公知であり、本発明で使用する塩化ナトリウムは、公知の方法に従って純度、平均粒子径及び水分含量を前述する範囲に調整すればよい。 The method of satisfying the above-mentioned ranges for the purity, average particle size and water content of sodium chloride is known, and the sodium chloride used in the present invention has the purity, average particle size and water content within the above-mentioned ranges according to the known methods. Adjust it.
 また、本発明に使用される塩化ナトリウムは、医薬品、食品、化粧料等のいずれの分野で使用されるものであってもよいが、本発明では、高純度の塩化ナトリウムを使用しているため、医薬品原料として特に好適である。とりわけ、粉末透析用剤の原料として使用される塩化ナトリウム、特に粉末透析用剤に使用される塩化ナトリウムの単味製剤(塩化ナトリウムからなる単一成分の製剤)は、使用量が多く、使用時に高精度な計量が必要とされ、固化防止が強く求められており、本発明の容器入り塩化ナトリウムの適用対象として特に好適である。 The sodium chloride used in the present invention may be used in any field of pharmaceuticals, foods, cosmetics, etc., but in the present invention, high-purity sodium chloride is used. It is particularly suitable as a pharmaceutical raw material. In particular, sodium chloride used as a raw material for powder dialysis agents, particularly sodium chloride simple preparations (single component preparations consisting of sodium chloride) used for powder dialysis agents, are used in large quantities. Highly accurate weighing is required and solidification prevention is strongly demanded, and it is particularly suitable as an application target of the sodium chloride contained in the container of the present invention.
 また、本発明において、「塩化ナトリウムの固化がない」ことは、食塩の純度及び平均粒子径を前述する特定の条件に調節することにより、塩化ナトリウム自身の高い吸湿能力とその平衡湿度を維持する能力を利用し、これを後述の防湿性容器に収容して相対湿度55%以下に維持することで達せられる。防湿性容器内の相対湿度を55%以下にするには、通常程度に乾燥された塩化ナトリウムを充填する際の温度・湿度雰囲気を調節するという比較的簡易な手段で達成することが可能であり、容器内部は容器の防湿性が保たれている限り、容器内の相対湿度は55%以下を維持する。そして、塩化ナトリウム自身の吸湿作用によって、容器内の相対湿度を維持し続けることができ、塩化ナトリウムが吸湿性材料と直接接していなくても、塩化ナトリウムが固化しない環境が安定して作り出される。斯くして本発明の塩化ナトリウムは密封してから開封されるまでの間、長期間にわたり相対湿度を55%以下に維持することで、塩化ナトリウムの固化を防止することが可能となる。 In the present invention, “no solidification of sodium chloride” means that the high hygroscopic ability of sodium chloride itself and its equilibrium humidity are maintained by adjusting the purity and average particle diameter of sodium chloride to the specific conditions described above. This can be achieved by utilizing the capacity and storing it in a moisture-proof container described later and maintaining the relative humidity at 55% or less. In order to reduce the relative humidity in the moisture-proof container to 55% or less, it can be achieved by a relatively simple means of adjusting the temperature and humidity atmosphere when filling sodium chloride that has been dried to a normal degree. As long as the moisture resistance of the container is maintained, the relative humidity in the container is maintained at 55% or less. And the relative humidity in a container can be maintained by the hygroscopic action of sodium chloride itself, and even if sodium chloride is not in direct contact with the hygroscopic material, an environment in which sodium chloride does not solidify is stably created. Thus, the sodium chloride of the present invention can be prevented from solidifying by maintaining the relative humidity at 55% or less for a long period of time from sealing to opening.
<容器>
 本発明では、透湿度が3.0g/m2・24h未満の防湿性容器が使用される。防湿性容器の透湿度として、塩化ナトリウムの固化をより一層効果的に防止するという観点から、好ましくは0.5g/m2・24h以下、より好ましくは0.3g/m2・24h以下、更に好ましくは0.1g/m2・24h以下が挙げられる。本発明において、2以上の容器を重層的に使用する場合であれば、容器全体として、前記透湿度を充足していればよい。なお、本明細書において、透湿度とは、JIS 0208-1976「防湿包装材料の透湿度試験方法(カップ法)」に規定される方法に従って測定される値である。
<Container>
In the present invention, a moisture-proof container having a moisture permeability of less than 3.0 g / m 2 · 24 h is used. The moisture permeability of the moisture-proof container is preferably 0.5 g / m 2 · 24 h or less, more preferably 0.3 g / m 2 · 24 h or less, more preferably 0.3 g / m 2 · 24 h or less from the viewpoint of more effectively preventing the solidification of sodium chloride. Preferably, 0.1 g / m 2 · 24 h or less is used. In the present invention, if two or more containers are used in multiple layers, the entire container only needs to satisfy the moisture permeability. In this specification, the moisture permeability is a value measured according to a method defined in JIS 0208-1976 “Moisture permeability test method for moisture-proof packaging material (cup method)”.
 本発明に使用される防湿性容器は、前述する透湿度を備えていることを限度として特に制限されず、例えば、フィルム製容器、ステンレス等の金属容器、ガラス容器、プラスチック製ボトル容器等が挙げられる。これらの容器の中でも、取扱いの簡便性等の観点から、好ましくはフィルム製容器が挙げられる。 The moisture-proof container used in the present invention is not particularly limited as long as it has the above-mentioned moisture permeability, and examples thereof include a film container, a metal container such as stainless steel, a glass container, and a plastic bottle container. It is done. Among these containers, a film container is preferable from the viewpoint of easy handling.
 本発明に使用される防湿性容器として、具体的には、吸湿性無機材料等の吸湿性材料によって、容器外部から侵入する水蒸気をトラップして防湿する容器(以下、「水蒸気トラップ性容器」と表記することもある)、ガラス、金属等の素材によって、容器外部から侵入する水蒸気をバリアして防湿する容器(以下、「水蒸気バリア性容器」と表記することもある)、及びこれらを重層的に組み合わせた容器が挙げられる。 As the moisture-proof container used in the present invention, specifically, a container that traps moisture from entering the outside of the container by a hygroscopic material such as a hygroscopic inorganic material (hereinafter referred to as “water vapor trapping container”). In some cases, a container that prevents moisture entering from the outside of the container by using a material such as glass or metal (hereinafter also referred to as a “water vapor barrier container”), and these are multi-layered Can be used in combination.
 前記水蒸気トラップ性容器としては、具体的には、吸湿性無機材料を含有する樹脂からなる吸湿層を含む樹脂製容器が挙げられる。前記吸湿層は、例えば、吸湿性無機材料を練り込んだ樹脂で形成することができる。吸湿層の形成に使用される樹脂としては、特に制限されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンが挙げられる。吸湿層において使用される樹脂は、1種単独であってもよく、また2種以上の組み合わせであってもよい。また、吸湿層の形成に使用される吸湿性無機材料についても、特に制限されないが、例えば、硫酸マグネシウム無水物、ゼオライト等が挙げられる。吸湿層において使用される吸湿性無機材料は、1種単独であってもよく、また2種以上の組み合わせであってもよい。吸湿層として、好ましくは、吸湿性無機材料が練り込まれたポリオレフィン、更に好ましくは吸湿性無機材料が練り込まれたポリエチレンが挙げられる。 Specific examples of the water vapor trapping container include a resin container including a hygroscopic layer made of a resin containing a hygroscopic inorganic material. The hygroscopic layer can be formed of, for example, a resin kneaded with a hygroscopic inorganic material. Although it does not restrict | limit especially as resin used for formation of a moisture absorption layer, For example, polyolefin, such as polyethylene and a polypropylene, is mentioned. The resin used in the moisture absorption layer may be one kind alone, or a combination of two or more kinds. Further, the hygroscopic inorganic material used for forming the hygroscopic layer is not particularly limited, and examples thereof include magnesium sulfate anhydride and zeolite. The hygroscopic inorganic material used in the hygroscopic layer may be one kind alone or a combination of two or more kinds. The hygroscopic layer is preferably a polyolefin kneaded with a hygroscopic inorganic material, and more preferably a polyethylene kneaded with a hygroscopic inorganic material.
 吸湿層の製造には、熱溶融させた樹脂に吸湿性無機材料を混練することによって調製されるが、通常、吸湿性無機材料を樹脂に練り込む際に、分散剤や酸化防止剤等の添加剤が使用されている。しかしながら、以下に説明するように、熱溶融させた樹脂に吸湿性無機材料を混練する際には、分散剤や酸化防止剤等の添加剤が必須となっているものの、このような添加剤を含む吸湿層は、添加剤のブリードアウトによる塩化ナトリウムの汚染が問題となっている。 The hygroscopic layer is prepared by kneading a hygroscopic inorganic material into a heat-melted resin. Normally, when kneading the hygroscopic inorganic material into the resin, a dispersant or an antioxidant is added. The agent is being used. However, as described below, when a hygroscopic inorganic material is kneaded with a heat-melted resin, additives such as a dispersant and an antioxidant are essential. The hygroscopic layer contained has a problem of sodium chloride contamination due to bleedout of the additive.
 従来技術では、分散剤や酸化防止剤等の添加剤の配合がなければ、樹脂中で吸湿性無機材料を均一に分散させることができず、成型性の低下をきたし、フィルム状やシート状等の成型体に成型した際に、分散不良の代表例として凝集粒に起因するフィッシュアイ等が生じ、成型体の外観を損ねてしまうのと同時に、吸湿機能そのものにも影響を与えてしまう。更に、これらの添加剤を配合せずに、2軸押出機にて熱可塑性樹脂に吸湿性無機材料を練り込むと、ダイスに目やにと称される塊が付着し、ストランド成型の連続性が悪くなることが多い。しかしながら、分散剤や酸化防止剤等の添加剤は、成型体からブリードアウトしやすく、内容物である塩化ナトリウムに移行(浸透)し、塩化ナトリウムの外観上の変色、水不溶物の生成、分散剤や酸化防止剤のコンタミネーションを引き起こすことが問題となっている。特に、このような添加剤のブリードアウトによる問題は、保存期間が長くなるにつれ顕著に現れる。塩化ナトリウムという単純な無機物であっても、分散剤や酸化防止剤等の添加剤が添加されているポリエチレン製のフィルム包装体に包装して保管すると、添加剤によって汚染されてしまう。このように添加剤で汚染された塩化ナトリウムを溶解しろ過して使用することを想定した場合、溶解する際に不溶物を生成させたり、ろ過速度を著しく低下させたり、ろ過フィルターの寿命を低下させたりする。特に、このような添加剤による汚染は、高度な純度が要求される内容物(例えば、医薬品原料、特に輸液や透析液の成分として使用される塩化ナトリウム)に対しては深刻な問題を生じさせる。 In the prior art, without the addition of additives such as dispersants and antioxidants, the hygroscopic inorganic material cannot be uniformly dispersed in the resin, resulting in a decrease in moldability, film form, sheet form, etc. When it is molded into a molded body, fish eyes and the like resulting from aggregated grains are generated as a typical example of poor dispersion, and the appearance of the molded body is impaired, and at the same time, the moisture absorption function itself is affected. Furthermore, when a hygroscopic inorganic material is kneaded into a thermoplastic resin with a twin-screw extruder without blending these additives, a lump called an eye attaches to the die and the continuity of strand molding is poor. Often becomes. However, additives such as dispersants and antioxidants are likely to bleed out from the molded product and migrate (penetrate) into the sodium chloride content, discoloration on the appearance of sodium chloride, generation and dispersion of water insolubles. It has been a problem to cause contamination of chemicals and antioxidants. In particular, the problem due to the bleedout of such additives becomes more noticeable as the storage period becomes longer. Even a simple inorganic substance such as sodium chloride is contaminated by the additive when stored in a polyethylene film package to which additives such as a dispersant and an antioxidant are added. Assuming that sodium chloride contaminated with additives is dissolved and filtered before use, insoluble materials are generated when it is dissolved, the filtration speed is significantly reduced, and the filter filter life is shortened. I will let you. In particular, contamination with such additives causes serious problems for contents that require a high degree of purity (for example, pharmaceutical raw materials, particularly sodium chloride used as a component of infusion solutions and dialysis solutions). .
 そこで、水蒸気トラップ性容器に含まれる吸湿層には、分散剤、酸化防止剤、発泡剤、滑剤、着色剤等の添加剤(吸湿性無機材料以外の添加剤)については、実質的に含有しないことが望ましい。このように、吸湿性無機材料以外の添加剤を実質的に含有していない吸湿層は、添加剤のブリードアウトを防止することが可能になる。ここで、吸湿性無機材料以外の添加剤を実質的に含有しないとは、当該添加剤を含んでいない、又は当該添加剤が有する本来の機能を発揮できない程度の含有量であることを意味し、具体的には、吸湿層において、吸湿性無機材料以外の添加剤の含有量が総量で、0.04重量%以下、好ましくは0.01重量%以下、更に好ましくは0重量%であることを意味する。 Therefore, the moisture-absorbing layer contained in the water vapor trapping container does not substantially contain additives such as dispersants, antioxidants, foaming agents, lubricants, and colorants (additives other than hygroscopic inorganic materials). It is desirable. Thus, the moisture absorption layer which does not substantially contain an additive other than the hygroscopic inorganic material can prevent the additive from bleeding out. Here, “substantially containing no additive other than the hygroscopic inorganic material” means that the additive is not contained or the content is such that the original function of the additive cannot be exhibited. Specifically, in the hygroscopic layer, the total content of additives other than the hygroscopic inorganic material is 0.04% by weight or less, preferably 0.01% by weight or less, more preferably 0% by weight. Means.
 吸湿性無機材料以外の添加剤を実質的に含有していない吸湿層は、ポリオレフィン及び硫酸マグネシウム無水物の混練物であって、硫酸マグネシウム無水物以外の添加剤を実質的に含んでおらず、且つ水分含量が0.1重量%以下のポリオレフィン組成物(以下、「無添加ポリオレフィン組成物」と表記することもある)を使用して成型することができる。無添加ポリオレフィン組成物の詳細については、後述する。 The moisture absorption layer substantially free of additives other than the hygroscopic inorganic material is a kneaded product of polyolefin and magnesium sulfate anhydride, and does not substantially contain additives other than magnesium sulfate anhydride, In addition, it can be molded using a polyolefin composition having a moisture content of 0.1% by weight or less (hereinafter sometimes referred to as “non-added polyolefin composition”). Details of the additive-free polyolefin composition will be described later.
 前記水蒸気トラップ性容器は、前記吸湿層単独で形成されていてもよいが、前記吸湿層と他の層が積層された積層体で形成されていることが好ましい。前記水蒸気トラップ性容器では、容器外部から透過しようとする水蒸気をトラップすることが塩化ナトリウムの固化防止の上で重要になるため、前記水蒸気トラップ性容器において吸湿層は他の樹脂層と積層されて、容器の最内面以外の位置に配置されていることが好ましい。前記水蒸気トラップ性容器の具体的態様として、前記吸湿層の少なくとも容器内面側に配される面に添加剤のない樹脂層が積層された積層体で形成された容器;好ましくは前記吸湿層の両面に添加剤のない樹脂層が積層された積層体で形成された容器が挙げられる。このような防湿性樹脂製容器は、例えば、前記積層体がフィルム状に成型されている場合には袋状容器にすることができ、また前記積層体がブロー成形で成型されている場合にはボトル状容器にすることができる。また、前記樹脂層に使用される樹脂としては、特に制限されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート等のポリエステル;ナイロン等のポリアミド等が挙げられる。これらの樹脂の中でも、ポリオレフィン、特にポリエチレンは、ヒートシール性があり、容器を容易に密封できることに加え、成形も容易であるので、前記樹脂層に使用される樹脂として好適である。 The water vapor trapping container may be formed of the hygroscopic layer alone, but is preferably formed of a laminated body in which the hygroscopic layer and other layers are laminated. In the water vapor trapping container, trapping the water vapor to be transmitted from the outside of the container is important for preventing the solidification of sodium chloride. Therefore, the moisture absorbing layer is laminated with another resin layer in the water vapor trapping container. It is preferable that the container is disposed at a position other than the innermost surface of the container. As a specific embodiment of the water vapor trapping container, a container formed of a laminate in which a resin layer having no additive is laminated on at least a surface of the moisture absorbing layer disposed on the inner surface of the container; preferably both surfaces of the moisture absorbing layer And a container formed of a laminate in which a resin layer having no additive is laminated. Such a moisture-proof resin container can be formed into a bag-like container, for example, when the laminate is molded into a film, and when the laminate is molded by blow molding It can be a bottle-shaped container. The resin used in the resin layer is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate; polyamides such as nylon. Among these resins, polyolefin, particularly polyethylene, is suitable as a resin used for the resin layer because it has heat sealability and can be easily sealed in addition to being easily molded.
 また、前記水蒸気バリア性容器としては、具体的には、ガラス製容器;ステンレス、アルミニウム等の金属製容器;水蒸気バリア機能を有するバリア層を含む樹脂製容器等が挙げられる。 Specific examples of the water vapor barrier container include glass containers; metal containers such as stainless steel and aluminum; and resin containers including a barrier layer having a water vapor barrier function.
 前記バリア層としては、水蒸気に対するバリア機能を備えていることを限度として、特に制限されないが、例えば、アルミニウム箔等の金属箔;酸化アルミニウム、シリカ等の蒸着膜等が挙げられる。 The barrier layer is not particularly limited as long as it has a barrier function against water vapor, and examples thereof include metal foils such as aluminum foil; vapor deposition films such as aluminum oxide and silica.
 前記バリア層を含む樹脂製容器の具体的態様として、前記バリア層の少なくとも容器内面側に配される面に樹脂層が積層された積層体で形成された容器、好ましくは前記バリア層の両面に樹脂層が積層された積層体で形成された容器が挙げられる。前記樹脂層に使用される樹脂としては、特に制限されないが、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート等のポリエステル;ナイロン等のポリアミド等が挙げられる。また、前記樹脂層の内、前記バリア層の容器内面側に配される面に配される樹脂層は、添加剤が含まれていないことが好ましい。 As a specific embodiment of the resin container including the barrier layer, a container formed of a laminate in which a resin layer is laminated on at least the inner surface of the barrier layer, preferably on both surfaces of the barrier layer Examples include a container formed of a laminate in which resin layers are laminated. The resin used in the resin layer is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate; polyamides such as nylon. Moreover, it is preferable that the additive is not contained in the resin layer distribute | arranged to the surface distribute | arranged to the container inner surface side of the said barrier layer among the said resin layers.
 前記バリア層を含む樹脂製容器の好適な例として、前記バリア層の両面に樹脂層が積層されてなり、容器の内側に位置する面の樹脂層がポリオレフィンによって構成され、容器の外側に位置する面の樹脂層がポリエステル又はポリアミドによって構成されている積層体で形成された容器が挙げられる。このような防湿性樹脂製容器は、前記積層体がフィルム状に成型されている場合には袋状容器にすることができ、また前記積層体がブロー成形で成型されている場合にはボトル状容器にすることができる。また、このようなバリア層を含む樹脂製容器は、内側に配される樹脂層によってヒートシール性、バリア層によって水蒸気バリア性、外側に配される樹脂層によって強度や耐久性が付与され、密封性、水蒸気バリア性、強度、耐久性等をバランスよく兼ね備えることができる。 As a preferable example of the resin container including the barrier layer, a resin layer is laminated on both surfaces of the barrier layer, and the resin layer on the surface located inside the container is made of polyolefin and located outside the container. Examples thereof include a container formed of a laminate in which the resin layer on the surface is made of polyester or polyamide. Such a moisture-proof resin container can be formed into a bag-like container when the laminate is molded into a film, and is bottle-shaped when the laminate is molded by blow molding. Can be a container. In addition, a resin container including such a barrier layer is provided with heat sealability by the resin layer disposed on the inside, water vapor barrier property by the barrier layer, strength and durability by the resin layer disposed on the outside, and sealed. Properties, water vapor barrier properties, strength, durability and the like can be provided in a well-balanced manner.
 また、本発明で使用される防湿性容器は、前記吸湿層と前記バリア層が積層されている積層体で形成されていてもよい。 The moisture-proof container used in the present invention may be formed of a laminate in which the moisture absorption layer and the barrier layer are laminated.
 本発明で使用される防湿性容器の中でも、取扱いの簡便性等の観点から、好ましくは、吸湿性無機材料を含有する樹脂からなる吸湿層を含む樹脂製容器、水蒸気バリア機能を有するバリア層を含む樹脂製容器が挙げられ、大容量の包装容器の場合であれば、更に好ましくは吸湿層を含む樹脂製容器が挙げられる。 Among the moisture-proof containers used in the present invention, from the viewpoint of easy handling and the like, a resin container including a moisture-absorbing layer made of a resin containing a hygroscopic inorganic material, and a barrier layer having a water vapor barrier function are preferable. In the case of a large-capacity packaging container, a resin container including a hygroscopic layer is more preferable.
 本発明に使用される防湿性容器の形状については、袋状、ボトル状、コンテナ様等のいずれであってもよく、充填する塩化ナトリウムの量に応じて適宜設定すればよい。 The shape of the moisture-proof container used in the present invention may be any of a bag shape, a bottle shape, a container shape, and the like, and may be appropriately set according to the amount of sodium chloride to be filled.
 本発明では、2つ以上の容器を重層的に使用してもよい。例えば、内袋として、前記吸湿層を含む樹脂製容器を使用し、外袋として、前記バリア層を含む樹脂製容器を使用してもよい。また、2つ以上の容器を重層的に使用する場合、使用する容器全体として、密封時の内部の相対湿度を55%以下に維持できる防湿性を備えていればよく、例えば、2つ以上の防湿性を有する容器の組み合わせであっても、また防湿性を有する容器と防湿性を有していない容器との組み合わせであってもよい。勿論、容器全体として、前述する透湿度を備えることを限度として、単独では防湿性を獲得できない容器を2個以上の重層的に組み合わせたものであってもよい。 In the present invention, two or more containers may be used in multiple layers. For example, a resin container including the moisture absorption layer may be used as the inner bag, and a resin container including the barrier layer may be used as the outer bag. In addition, when two or more containers are used in multiple layers, it is sufficient that the entire container to be used has a moistureproof property capable of maintaining the internal relative humidity at 55% or less when sealed, for example, two or more containers. A combination of containers having moisture resistance may be used, or a combination of a container having moisture resistance and a container having no moisture resistance may be used. Of course, the container as a whole may be a combination of two or more layers in which moisture resistance cannot be obtained alone, provided that the moisture permeability described above is provided.
 また、本発明において、150kg~1t程度の塩化ナトリウムを充填する場合には、いわゆるフレキシブルコンテナバックを使用することができる。フレキシブルコンテナバックを使用する場合には、フレキシブルコンテナバックの内袋及び/又は外袋として、フィルム状の防湿性容器、好ましくはフィルム状の水蒸気トラップ性容器を使用すればよい。 In the present invention, when filling sodium chloride of about 150 kg to 1 t, a so-called flexible container bag can be used. When a flexible container bag is used, a film-like moisture-proof container, preferably a film-like water vapor trapping container, may be used as the inner bag and / or the outer bag of the flexible container bag.
[吸湿層の形成において好適に使用される無添加ポリオレフィン組成物]
 以下に、前述する無添加ポリオレフィン組成物について詳述する。
[No-added polyolefin composition suitably used in forming the moisture-absorbing layer]
Below, the additive-free polyolefin composition mentioned above is explained in full detail.
 無添加ポリオレフィン組成物は、ポリオレフィン及び硫酸マグネシウム無水物の混練物であって、硫酸マグネシウム無水物以外の添加剤を実質的に含んでおらず、且つ水分含量が0.1重量%以下であることを特徴とする。このように、吸湿性無機フィラーの中でも硫酸マグネシウム無水物を選択し、これをポリオレフィンに硫酸マグネシウム無水物以外の添加剤を実質的に添加することなく混練し、水分含量が0.1重量%以下にすることによって、硫酸マグネシウム無水物の分散性が良好で成型性に優れている無添加ポリオレフィン組成物を得ることができる。そして、当該無添加ポリオレフィン組成物を使用することによって吸湿性無機材料以外の添加剤を実質的に含まない吸湿層を形成することが可能になる。 The additive-free polyolefin composition is a kneaded product of polyolefin and magnesium sulfate anhydride, does not substantially contain additives other than magnesium sulfate anhydride, and has a water content of 0.1% by weight or less. It is characterized by. Thus, among the hygroscopic inorganic fillers, magnesium sulfate anhydride is selected, and this is kneaded to the polyolefin without substantially adding an additive other than magnesium sulfate anhydride, and the water content is 0.1% by weight or less. By doing so, an additive-free polyolefin composition having good dispersibility of magnesium sulfate anhydride and excellent moldability can be obtained. And it becomes possible by using the said additive-free polyolefin composition to form the moisture absorption layer which does not contain additives other than a hygroscopic inorganic material substantially.
 無添加ポリオレフィン組成物で使用されるポリオレフィンの種類については、特に制限されないが、例えば、ポリエチレン、ポリプロピレン、ポリブチレン等が挙げられる。これらのポリオレフィンの中でも、レジンとして比較的無添加であること、成型性や硫酸マグネシウム無水物の分散性等の観点から、好ましくはポリエチレンが挙げられる。また、ポリエチレンは、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)等のいずれを使用してもよいが、成型性や硫酸マグネシウム無水物の分散性等の観点から、好ましくは低密度ポリエチレンが挙げられる。無添加ポリオレフィン組成物において、ポリオレフィンの含有量については、例えば40~95重量%、好ましくは50~80重量%、更に好ましくは60~80重量%が挙げられる。 The type of polyolefin used in the additive-free polyolefin composition is not particularly limited, and examples thereof include polyethylene, polypropylene, and polybutylene. Among these polyolefins, polyethylene is preferably used from the viewpoints of relatively non-addition as a resin, moldability, dispersibility of magnesium sulfate anhydride, and the like. The polyethylene may be any of low density polyethylene (LDPE), linear low density polyethylene (LLDPE), high density polyethylene (HDPE), etc., but moldability, dispersibility of magnesium sulfate anhydride, etc. From this point of view, low density polyethylene is preferable. In the additive-free polyolefin composition, the polyolefin content is, for example, 40 to 95% by weight, preferably 50 to 80% by weight, and more preferably 60 to 80% by weight.
 無添加ポリオレフィン組成物には、吸湿性無機材料として、硫酸マグネシウム無水物を含有する。硫酸マグネシウム無水物の平均粒子径については、特に制限されないが、ポリオレフィンに対する分散性の観点から、好ましくは1~30μm、更に好ましくは1~20μm、特に好ましくは1~10μmが挙げられる。ここで、硫酸マグネシウム無水物の平均粒子径は、レーザー回折・散乱式粒子径分布測定装置によって測定される重量累積粒度分布から求められる累積50%径である。無添加ポリオレフィン組成物において後述する水分含量を充足させるために、原料として混練される硫酸マグネシウム無水物自体の水分含量は少ない方が好ましく、とりわけ2重量%以下、更に好ましくは1重量%以下であることが好ましい。無添加ポリオレフィン組成物において原料として混練される硫酸マグネシウム無水物は、通常、硫酸マグネシウム結晶(7水和物)を乾燥、焼成した後に、微粉砕機を用いて前述する平均粒子径となるように粉砕することにより得ることができる。硫酸マグネシウム結晶(7水和物)を200℃以上、好ましくは300~700℃で焼成することによって、通常、水分含量が1重量%以下程度の硫酸マグネシウム無水物を得ることができる。また、焼成後に得られる硫酸マグネシウム無水物が吸湿し易いため、焼成後の粉砕時には、絶対湿度が10g/kgDA以下程度の乾燥空気の存在下で行うことが望ましい。このように焼成及び粉砕を行うことによって、ポリオレフィンに対して分散し易い硫酸マグネシウム無水物を得ることが可能になる。無添加ポリオレフィン組成物において、硫酸マグネシウム無水物の含有量については、当該ポリオレフィン組成物の用途、備えさせるべき吸湿特性等に応じて適宜設定すればよいが、例えば5~60重量%、好ましくは20~50重量%、更に好ましくは20~40重量%が挙げられる。 The additive-free polyolefin composition contains magnesium sulfate anhydride as a hygroscopic inorganic material. The average particle diameter of magnesium sulfate anhydride is not particularly limited, but from the viewpoint of dispersibility with respect to polyolefin, it is preferably 1 to 30 μm, more preferably 1 to 20 μm, and particularly preferably 1 to 10 μm. Here, the average particle diameter of magnesium sulfate anhydride is a cumulative 50% diameter obtained from a weight cumulative particle size distribution measured by a laser diffraction / scattering particle diameter distribution measuring apparatus. In order to satisfy the moisture content described later in the additive-free polyolefin composition, the moisture content of the magnesium sulfate anhydride itself kneaded as a raw material is preferably small, particularly 2 wt% or less, more preferably 1 wt% or less. It is preferable. The magnesium sulfate anhydride kneaded as a raw material in the additive-free polyolefin composition is usually such that the magnesium sulfate crystals (7 hydrate) are dried and calcined, and then the above-mentioned average particle size is obtained using a pulverizer. It can be obtained by grinding. By calcination of magnesium sulfate crystals (7 hydrate) at 200 ° C. or higher, preferably 300 to 700 ° C., a magnesium sulfate anhydride having a water content of about 1% by weight or less can usually be obtained. Moreover, since the magnesium sulfate anhydride obtained after firing is easy to absorb moisture, it is desirable that the grinding after firing is performed in the presence of dry air having an absolute humidity of about 10 g / kg DA or less. By performing firing and pulverization in this manner, it is possible to obtain magnesium sulfate anhydride that is easily dispersed in polyolefin. In the additive-free polyolefin composition, the content of magnesium sulfate anhydride may be appropriately set according to the use of the polyolefin composition, the moisture absorption characteristics to be provided, etc., for example, 5 to 60% by weight, preferably 20%. -50% by weight, more preferably 20-40% by weight.
 無添加ポリオレフィン組成物は、ポリオレフィン及び硫酸マグネシウム無水物の混練物であり、溶融したポリオレフィンに硫酸マグネシウム無水物を、前述する水分含量を満たすように練り込むことによって製造される。但し、ポリオレフィン及び硫酸マグネシウム無水物はそれぞれ水分を保有しており、単にポリオレフィン及び硫酸マグネシウム無水物を混練しただけでは、前述する水分含量を満たすことができず、硫酸マグネシウム無水物の分散性が低く、成型性に劣るポリオレフィン組成物しか得られない。そこで、減圧条件下でポリオレフィン及び硫酸マグネシウム無水物を混練することによって、混練時に水分の除去を行い、前述する水分含量を充足する無添加ポリオレフィン組成物を得ることが可能になる。ポリオレフィン及び硫酸マグネシウム無水物を混練する際の圧力雰囲気としては、具体的には、-65Kpa以下、好ましくは-75Kpa以下、更に好ましくは-85Kpa以下が挙げられる。このような圧力雰囲気で加熱・混練を行うことにより、ポリオレフィン及び硫酸マグネシウム無水物が保有している水分を取り除くことができ、加熱・混練中にとりわけ吸湿性無機材料である硫酸マグネシウム無水物自身が持っている水分が加熱により蒸発し、この蒸発水分によって吸湿性無機材料自身が二次凝集して分散不良を起こすのを抑制することができる。ポリオレフィン及び硫酸マグネシウム無水物を混練する際の温度条件及び時間については、前述する水分含量を満たすように、採用する圧力雰囲気、仕込み量等に応じて適宜設定すればよいが、混練時の温度条件として、通常130~250℃、好ましくは150~230℃、更に好ましくは170~210℃が挙げられる。ポリオレフィン及び硫酸マグネシウム無水物の混練は、減圧機能を有する二軸混練押出機等を用いて行うことができる。二軸混練押出機の原料ホッパーへのポリオレフィン及び硫酸マグネシウム無水物の供給は、一般的な混合機を用いて予め混合したものを使用して行ってもよく、また、原料ホッパーにそれぞれを定量供給することによって行ってもよい。この場合、原料ホッパーには、窒素パージ等によってポリオレフィン及び硫酸マグネシウム無水物が吸湿しないようにしておくことが望ましい。 The additive-free polyolefin composition is a kneaded product of polyolefin and magnesium sulfate anhydride, and is produced by kneading magnesium sulfate anhydride into molten polyolefin so as to satisfy the above-described moisture content. However, polyolefin and magnesium sulfate anhydride each have moisture, and simply kneading polyolefin and magnesium sulfate anhydride cannot satisfy the moisture content described above, and the dispersibility of magnesium sulfate anhydride is low. Only a polyolefin composition having poor moldability can be obtained. Therefore, by kneading polyolefin and magnesium sulfate anhydride under reduced pressure conditions, it is possible to remove moisture during kneading and obtain an additive-free polyolefin composition that satisfies the moisture content described above. Specific examples of the pressure atmosphere when kneading the polyolefin and magnesium sulfate anhydride include −65 Kpa or less, preferably −75 Kpa or less, and more preferably −85 Kpa or less. By heating and kneading in such a pressure atmosphere, the water content of the polyolefin and magnesium sulfate anhydride can be removed, and during the heating and kneading, especially the magnesium sulfate anhydride itself, which is a hygroscopic inorganic material, is removed. It is possible to suppress the moisture that is evaporated by heating, and the evaporation moisture causes secondary agglomeration of the hygroscopic inorganic material itself to cause poor dispersion. The temperature condition and time for kneading the polyolefin and magnesium sulfate anhydride may be set as appropriate according to the pressure atmosphere, the amount charged, etc., so as to satisfy the moisture content described above. Is usually 130 to 250 ° C., preferably 150 to 230 ° C., more preferably 170 to 210 ° C. The kneading of the polyolefin and the magnesium sulfate anhydride can be performed using a twin-screw kneading extruder having a pressure reducing function. The polyolefin and magnesium sulfate anhydride may be supplied to the raw material hopper of the twin-screw kneading extruder using a premixed material using a general mixer, and each of them may be supplied quantitatively to the raw material hopper. It may be done by doing. In this case, it is desirable that the raw material hopper should not absorb moisture of polyolefin and magnesium sulfate anhydride by nitrogen purge or the like.
 無添加ポリオレフィン組成物は、水分含量が0.1重量%以下に設定される。このような水分含量を満たすことによって、硫酸マグネシウム無水物以外の添加剤を含んでいなくても、硫酸マグネシウム無水物の分散性を向上させ、吸湿性と共に成型性に優れる無添加ポリオレフィン組成物を得ることが可能になる。硫酸マグネシウム無水物の分散性及び成型性をより一層向上させるという観点から、無添加ポリオレフィン組成物における水分含量として、好ましくは0~0.1重量%、更に好ましくは0~0.09重量%が挙げられるここで、水分含量は、気化装置(250℃)を用いたカールフィッシャー水分計自動水分測定装置によって測定される値を意味する。 The moisture content of the additive-free polyolefin composition is set to 0.1% by weight or less. By satisfying such a moisture content, an additive-free polyolefin composition that improves dispersibility of magnesium sulfate anhydride and has excellent hygroscopicity and moldability even if it contains no additives other than magnesium sulfate anhydride. It becomes possible to obtain. From the viewpoint of further improving the dispersibility and moldability of magnesium sulfate anhydride, the water content in the additive-free polyolefin composition is preferably 0 to 0.1% by weight, more preferably 0 to 0.09% by weight. Here, the moisture content means a value measured by a Karl Fischer moisture meter automatic moisture measuring device using a vaporizer (250 ° C.).
<塩化ナトリウムの容器への充填、及び容器内の相対湿度>
 本発明の容器入り塩化ナトリウムでは、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを前記容器に充填し、容器の密封時から開封されるまでの間、容器内の相対湿度を55%以下に維持するように設定する。このように、密封時から開封されるまでの間、容器内の相対湿度を所定範囲に制御することによって、塩化ナトリウムの固化を防止することが可能になる。ここで、「容器内の相対湿度を55%以下に維持」とは、塩化ナトリウムを収容した容器の密封時から使用時に容器を開封するまでの間、塩化ナトリウムが晒される相対湿度が55%以下を保持していることを意味する。即ち、何らかの方法を用いて容器内の水分を除去できるように設計されていても、一時的にでも、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムが相対湿度55%超の雰囲気に晒されると、固化が生じてしまうため、本発明では、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムの容器への密封時から使用時に容器を開封するまでの間、塩化ナトリウムが晒される相対湿度が55%以下を維持することが必要となる。
<Filling sodium chloride into the container and relative humidity in the container>
In the sodium chloride contained in the container of the present invention, the container is filled with sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more, and the relative humidity in the container is kept from when the container is sealed until it is opened. Set to maintain below 55%. Thus, it becomes possible to prevent solidification of sodium chloride by controlling the relative humidity in the container within a predetermined range from the time of sealing until it is opened. Here, “maintaining the relative humidity in the container at 55% or less” means that the relative humidity to which sodium chloride is exposed is 55% or less from the time the container containing sodium chloride is sealed until the container is opened at the time of use. Means holding. That is, sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more has a relative humidity of more than 55%, even if it is designed to remove the water in the container using any method. In the present invention, when exposed to the atmosphere, solidification occurs. Therefore, in the present invention, the sodium chloride having a purity of 99.5% by weight or more and an average particle size of 150 μm or more is sealed from when sealed to the container until the container is opened at the time of use. It is necessary to maintain the relative humidity to which sodium chloride is exposed at 55% or less.
 純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを収容した容器内の相対湿度として、塩化ナトリウムの固化をより一層効果的に防止するという観点から、50%以下に維持されていることが好ましい。また、容器内の相対湿度の下限値は、限定されない。このような相対湿度の範囲を維持することにより、本発明は、設備コストを要する極めて低湿度な環境下にしなくても、前述する所定条件に調節された塩化ナトリウムの吸湿特性を利用することで固化を防止することができる。 The relative humidity in the container containing sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is maintained at 50% or less from the viewpoint of more effectively preventing the solidification of sodium chloride. It is preferable. Moreover, the lower limit value of the relative humidity in the container is not limited. By maintaining such a range of relative humidity, the present invention can utilize the moisture absorption characteristics of sodium chloride adjusted to the above-mentioned predetermined conditions, even in an extremely low humidity environment that requires equipment costs. Solidification can be prevented.
 また、本発明者等は、一時的にでも相対湿度が55%を超えると塩化ナトリウムの固化が進むことを、従来にない新たな知見として見出している。通常、温度管理されていない倉庫或は輸送トラックや船舶において製品が4℃~50℃の温度条件に晒されることが想定されるが、この温度範囲において容器内の相対湿度を55%以下に維持できれば、吸湿性に優れた乾燥剤や乾燥機能をもつ包装材料を用い極端な低湿度を維持しなくても固化を防止することができる。 In addition, the present inventors have found that the solidification of sodium chloride proceeds when the relative humidity exceeds 55% even temporarily, as a new finding that has not existed before. Normally, it is assumed that products are exposed to temperature conditions of 4 ° C to 50 ° C in warehouses or transport trucks or ships that are not temperature controlled, but the relative humidity in the container is maintained below 55% in this temperature range. If possible, solidification can be prevented without using a desiccant excellent in hygroscopicity or a packaging material having a drying function without maintaining extremely low humidity.
 純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムが収容された容器内で前記相対湿度を維持させるには、相対湿度が55%以下、好ましくは50%以下の雰囲気で、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを前記容器に充填して密封すればよい。また、このような相対湿度にするために、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムの充填及び密封時の温度を4~50℃に設定することが望ましい。充填時の温度が4℃未満になると、塩化ナトリウムが2水塩の結晶を生じさせ易くなることがあり、充填時の温度が50℃超になると、容器の耐久性に影響を与えることがある。 In order to maintain the relative humidity in a container containing sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more, the purity is 99% in an atmosphere having a relative humidity of 55% or less, preferably 50% or less. The container may be filled with sodium chloride having an average particle diameter of 150 μm or more by 5 wt% or more. In order to achieve such relative humidity, it is desirable to set the temperature at the time of filling and sealing with sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more to 4 to 50 ° C. If the filling temperature is less than 4 ° C, sodium chloride may easily form dihydrate crystals, and if the filling temperature exceeds 50 ° C, the durability of the container may be affected. .
 本発明において、容器内に純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを充填する量については、容器の大きさや形状等に応じて適宜設定すればよく通常0.1kg~1t程度であるが、フレキシブルコンテナバックを使用する場合であれば、通常150kg~1t程度、またフレキシブルコンテナバック以外の容器を使用する場合であれば、通常0.1kg~50kg程度が挙げられる。 In the present invention, the amount of sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more filled in the container may be appropriately set according to the size and shape of the container, and usually 0.1 kg to 1 t. However, if a flexible container bag is used, it is usually about 150 kg to 1 t, and if a container other than the flexible container bag is used, it is usually about 0.1 kg to 50 kg.
 本発明の容器入り塩化ナトリウムの保存条件については、特に制限されないが、容器の耐久性の低下抑制、塩化ナトリウムの2水塩の結晶の生成抑制等の観点から、4~50℃程度であることが好ましい。 The storage conditions of the sodium chloride in the container of the present invention are not particularly limited, but should be about 4 to 50 ° C. from the viewpoint of suppressing the decrease in the durability of the container and the formation of sodium chloride dihydrate crystals. Is preferred.
2.塩化ナトリウムの保存方法
 本発明の塩化ナトリウムの保存方法は、純度99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを透湿度3g/m2・24h未満の防湿性容器に収容し、防湿性容器内の相対湿度を55%以下に維持することを特徴とする。
2. Sodium Chloride Storage Method According to the Present Invention, sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h, and is moisture-proof. The relative humidity in the conductive container is maintained at 55% or less.
 本発明の保存方法において、使用される塩化ナトリウム、容器、容器内の相対湿度等については、前記「1.容器入り塩化ナトリウム」の欄に記載の通りである。 In the storage method of the present invention, the sodium chloride used, the container, the relative humidity in the container, and the like are as described in the column “1. Sodium chloride in the container”.
 以下、試験例等を挙げて本発明を具体的に説明するが、本発明はこれらの試験例に限定して解釈されるものではない。なお、以下の試験例において、塩化ナトリウムの平均粒子径は、自動乾式音波ふるい分け測定器(株式会社セイシン企業製、ROBOT SIFTER RPS-105M)によって求めた値を示す。また、以下に示す参考例で用いた硫酸マグネシウム無水物は、レーザー回折・散乱式粒子径分布測定装置(「マイクロトラックHRA粒度分析計(型式:9320-X100)、日機装株式会社製)で測定した。平均粒子径は3~7μmであり、その水分含量は0.5~2%である。 Hereinafter, the present invention will be specifically described with reference to test examples and the like, but the present invention is not construed as being limited to these test examples. In the following test examples, the average particle diameter of sodium chloride is a value determined by an automatic dry sonic sieving measuring instrument (ROBOT SIFTER RPS-105M, manufactured by Seishin Enterprise Co., Ltd.). Further, the magnesium sulfate anhydride used in the reference examples shown below was measured with a laser diffraction / scattering particle size distribution analyzer (“Microtrack HRA particle size analyzer (model: 9320-X100), manufactured by Nikkiso Co., Ltd.)”. The average particle size is 3 to 7 μm and the water content is 0.5 to 2%.
試験例1
(1)塩化ナトリウムの準備
 医薬用の塩化ナトリウム(平均粒子径316μm)をバット上に移し入れ、85℃で5時間乾燥させた後、130℃で10時間乾燥し、その後85℃まで冷却した。次いで、得られた塩化ナトリウム3kgを透湿度約6g/m2・24hのポリエチレン袋(内袋)に充填してヒートシールにより密封し、これを更にアルミ箔ラミネート袋(外袋)(層構造:ポリエチレンテレフタレート(PET)/アルミニウム箔(Al)/ポリエチレン(PE);透湿度0g/m2・24h)に入れてヒートシールによって密封した後に、20℃で1日保管し冷却した。斯くして容器内に収容された塩化ナトリウムは、純度99.9重量%であり、水分含量は0重量%であった。
Test example 1
(1) Preparation of sodium chloride Pharmaceutical sodium chloride (average particle size 316 μm) was transferred onto a vat, dried at 85 ° C. for 5 hours, dried at 130 ° C. for 10 hours, and then cooled to 85 ° C. Next, 3 kg of the obtained sodium chloride was filled into a polyethylene bag (inner bag) having a moisture permeability of about 6 g / m 2 · 24 h and sealed by heat sealing, and this was further sealed with an aluminum foil laminated bag (outer bag) (layer structure: It was put in polyethylene terephthalate (PET) / aluminum foil (Al) / polyethylene (PE); moisture permeability 0 g / m 2 · 24 h) and sealed by heat sealing, then stored at 20 ° C. for 1 day and cooled. Thus, the sodium chloride contained in the container had a purity of 99.9% by weight and a water content of 0% by weight.
(2)塩化ナトリウムの保存条件の設定及び保存
 20℃で1日保管した後に、容器を開封して、純水を0ml、0.03ml、0.06ml、0.15ml及び0.3mlを容器内の塩化ナトリウムに混合し、直ちに新たなポリエチレン袋(内袋)に移し替えて、温湿度計(おんどとりTR-77Ui)を挿入した状態でヒートシールして密封し、これを更にアルミ箔ラミネート袋(外袋)(層構造:PET/Al/PEの3層構造;透湿度0g/m2・24h)に入れて密封した。斯くして、水分含量が0重量%、0.001重量%、0.002重量%、0.005重量%及び0.01重量%の塩化ナトリウムを20℃、相対湿度40%の環境において、それぞれ容器に収容した。なお、水分含量が0.001重量%、0.002重量%、及び0.005重量%の塩化ナトリウムについては、内袋として使用したポリエチレン袋として、後述の参考例8と類似の方法で作成した吸湿性無機材料が練り込まれている防湿性のポリエチレン製容器(3層フィルム)(層構造:PE層20μm/吸湿性無機材料を含有するPE層60μm/PE層20μmの3層構造;透湿度約2.5g/m2・24h)、無添加のポリエチレン製容器(層構造:ポリエチレン1層80μm;透湿度約6g/m2・24h)の2つを用いた。また、水分含量が0重量%の塩化ナトリウムについては、内袋として使用したポリエチレン袋として、吸湿性無機材料を含まない無添加のポリエチレン製容器(層構造:ポリエチレン1層80μm;透湿度約20g/m2・24h)を使用した。本試験例で採用した条件(塩化ナトリウムの水分含量と使用した内袋の種類)を表1に示す。
(2) Setting and storage of sodium chloride storage conditions After storage at 20 ° C. for one day, the container is opened, and 0 ml, 0.03 ml, 0.06 ml, 0.15 ml and 0.3 ml of pure water are placed in the container. Mixed with sodium chloride, immediately transferred to a new polyethylene bag (inner bag), heat-sealed with a thermohygrometer (ondori TR-77Ui) inserted and sealed, and this was further laminated with an aluminum foil laminated bag ( Outer bag) (layer structure: three-layer structure of PET / Al / PE; moisture permeability 0 g / m 2 · 24 h) and sealed. Thus, 0%, 0.001%, 0.002%, 0.005%, and 0.01% by weight of sodium chloride in the environment of 20 ° C. and 40% relative humidity respectively. Housed in a container. In addition, about the sodium chloride whose moisture content is 0.001 weight%, 0.002 weight%, and 0.005 weight%, it created by the method similar to the below-mentioned reference example 8 as a polyethylene bag used as an inner bag. Moisture-proof polyethylene container (three-layer film) in which hygroscopic inorganic material is kneaded (layer structure: PE layer 20 μm / PE layer 60 μm containing hygroscopic inorganic material / PE layer 20 μm three-layer structure; moisture permeability Two containers of about 2.5 g / m 2 · 24 h) and an additive-free polyethylene container (layer structure: polyethylene 1 layer 80 μm; moisture permeability of about 6 g / m 2 · 24 h) were used. For sodium chloride having a water content of 0% by weight, as an polyethylene bag used as an inner bag, an additive-free polyethylene container containing no hygroscopic inorganic material (layer structure: polyethylene one layer 80 μm; moisture permeability about 20 g / m 2 · 24 h). Table 1 shows the conditions employed in this test example (water content of sodium chloride and types of inner bags used).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 斯くして、容器入り塩化ナトリウムを調製し、4℃に設定した冷蔵庫で24日間保存した。保存中、経時的に容器内の相対湿度を測定し、保存後に容器を開封して、塩化ナトリウムの固化の程度を測定した。塩化ナトリウムの固化の程度は、8mm格子(網:線径2mm)に保存後の塩化ナトリウムを載せて、格子を通過させ、格子上に残存した塩化ナトリウムの重量を計測し、全塩化ナトリウムの重量に対する格子上に残存した塩化ナトリウムの重量を固化度(%)として算出した。 Thus, sodium chloride in a container was prepared and stored in a refrigerator set at 4 ° C. for 24 days. During storage, the relative humidity in the container was measured over time, the container was opened after storage, and the degree of solidification of sodium chloride was measured. The degree of solidification of sodium chloride is such that the stored sodium chloride is placed on an 8 mm grid (mesh: wire diameter 2 mm), passed through the grid, and the weight of sodium chloride remaining on the grid is measured. The weight of sodium chloride remaining on the lattice with respect to was calculated as the degree of solidification (%).
(3)結果
 容器内の相対湿度を経時的に測定した結果を図1及び2に示し、固化度(%)を測定した結果を表2に示す。図1、図2及び表2から明らかなように、保存期間中、容器内の相対湿度が常に55%を超えていた場合(条件1-2、1-4、及び1-6)では、塩化ナトリウムの固化が著しく生じていた。また、保存24日後には、容器内の相対湿度が55%以下になっていても、保存期間中に、容器内の相対湿度が55%を超える期間があった場合(条件1-5)でも、塩化ナトリウムの固化が生じていた。一方、充填から保存期間中にわたり、容器内の相対湿度が常に55%以下を維持できている場合(条件1-1及び1-3)では、アルミ箔ラミネート袋(外袋)(層構造:PET/Al/PEの3層構造;透湿度0g/m2・24h)の防湿容器により塩化ナトリウムの固化を防止できていた。なお、吸湿性無機材料が練り込まれていた防湿性のポリエチレン容器においては、アルミ箔で形成された外装を使用する場合、吸湿性無機材料が乾燥剤として働くことが予測され、水分含量0.001%、0.002%とも湿度低下効果がみられ、0.001%においては固化を抑制したが、0.002%では無添加のポリエチレン同様、相対湿度が55%を超え固化を生じた。以上の結果から、純度99.5重量%以上の塩化ナトリウムを収容する容器内の相対湿度を55%以下に維持させることによって、塩化ナトリウムの固化を防止できることが明らかとなった。
(3) Results The results of measuring the relative humidity in the container over time are shown in FIGS. 1 and 2, and the results of measuring the degree of solidification (%) are shown in Table 2. As is apparent from FIGS. 1, 2 and Table 2, when the relative humidity in the container always exceeds 55% during the storage period (conditions 1-2, 1-4, and 1-6), chlorination Sodium solidification occurred remarkably. In addition, even if the relative humidity in the container is 55% or less after 24 days of storage, even if the relative humidity in the container exceeds 55% during the storage period (Condition 1-5) Solidification of sodium chloride occurred. On the other hand, when the relative humidity in the container is constantly maintained at 55% or less from filling to storage (conditions 1-1 and 1-3), an aluminum foil laminated bag (outer bag) (layer structure: PET / Al / PE three-layer structure; moisture permeability of 0 g / m 2 · 24 h) prevents the solidification of sodium chloride. In a moisture-proof polyethylene container in which a hygroscopic inorganic material has been kneaded, it is predicted that the hygroscopic inorganic material will function as a desiccant when an exterior formed of aluminum foil is used. Both 001% and 0.002% showed an effect of lowering the humidity. At 0.001%, solidification was suppressed, but at 0.002%, the relative humidity exceeded 55% and solidification occurred as in the case of the additive-free polyethylene. From the above results, it has become clear that solidification of sodium chloride can be prevented by maintaining the relative humidity in a container containing sodium chloride having a purity of 99.5% by weight or more at 55% or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
試験例2
(1)塩化ナトリウムの準備
 医薬用の塩化ナトリウム(平均粒子径316μm)を用いて、前記試験例1と同様の方法で、容器内に収容した塩化ナトリウム(純度99.9重量%、水分含量0重量%)を準備した。
Test example 2
(1) Preparation of Sodium Chloride Sodium chloride (purity 99.9% by weight, water content 0) contained in a container using sodium chloride for medical use (average particle size 316 μm) in the same manner as in Test Example 1 above. % By weight) was prepared.
(2)塩化ナトリウムの保存条件の設定及び保存
 塩化ナトリウムの水分含量と内袋の種類を表3に示す条件に設定し、保存条件を25℃(恒温高湿槽、相対湿度60%)で24日間に変更したこと以外は、前記試験例1と同様の条件で試験を行い、経時的に容器内の相対湿度と保存後の塩化ナトリウムの固化度を測定した。
(2) Setting and Storage of Sodium Chloride Storage Conditions The moisture content of sodium chloride and the type of inner bag are set to the conditions shown in Table 3, and the storage conditions are 24 at 25 ° C. (constant temperature and high humidity tank, relative humidity 60%). The test was conducted under the same conditions as in Test Example 1 except that the period was changed to days, and the relative humidity in the container and the solidification degree of sodium chloride after storage were measured over time.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(3)結果
 容器内の相対湿度を経時的に測定した結果を図3及び4に示し、固化度(%)を測定した結果を表4に示す。この結果からも、容器内の相対湿度が55%を超える保存期間がある場合(条件2-4、2-6、2-7)には、塩化ナトリウムの固化が生じていたが、充填から保存期間中にわたり、容器内の相対湿度が常に55%以下を維持できている場合(条件2-1~2-3及び2-5)では、アルミ箔ラミネート袋(外袋)(層構造:PET/Al/PEの3層構造;透湿度0g/m2・24h)の防湿容器により塩化ナトリウムの固化を防止できていた。なお、試験例1同様吸湿性無機材料が練り込まれていた防湿性のポリエチレン容器においては、アルミ箔で形成された外装を使用する場合、吸湿性無機材料が乾燥剤として働くことが予測され、水分含量0.001%、0.002%、0.005%いずれも湿度低下効果がみられ0.001%(条件2-3)及び0.002%(条件2-5)では固化を抑制したが、0.005%では無添加のポリエチレン同様、相対湿度が55%を超え固化を生じた。
(3) Results The results of measuring the relative humidity over time in the container are shown in FIGS. 3 and 4, and the results of measuring the degree of solidification (%) are shown in Table 4. Also from this result, when there was a storage period in which the relative humidity in the container exceeded 55% (Conditions 2-4, 2-6, 2-7), solidification of sodium chloride occurred, but storage from filling was started. In the case where the relative humidity in the container is constantly maintained at 55% or less throughout the period (conditions 2-1 to 2-3 and 2-5), an aluminum foil laminated bag (outer bag) (layer structure: PET / The moisture-proof container having a three-layer structure of Al / PE; moisture permeability 0 g / m 2 · 24 h) was able to prevent solidification of sodium chloride. In addition, in the moisture-proof polyethylene container in which the hygroscopic inorganic material was kneaded as in Test Example 1, it is predicted that the hygroscopic inorganic material works as a desiccant when using an exterior formed of aluminum foil, The moisture content was 0.001%, 0.002%, 0.005%, and the humidity reduction effect was observed, and solidification was suppressed at 0.001% (Condition 2-3) and 0.002% (Condition 2-5). However, at 0.005%, like the additive-free polyethylene, the relative humidity exceeded 55% and solidification occurred.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
試験例3
(1)塩化ナトリウムの準備
 医薬用の塩化ナトリウム(平均粒子径316μm)を用いて、前記試験例1と同様の方法で、容器内に収容した塩化ナトリウム(純度99.9重量%、水分含量0重量%)を準備した。
Test example 3
(1) Preparation of Sodium Chloride Sodium chloride (purity 99.9% by weight, water content 0) contained in a container using sodium chloride for medical use (average particle size 316 μm) in the same manner as in Test Example 1 above. % By weight) was prepared.
(2)塩化ナトリウムの保存条件の設定及び保存
 塩化ナトリウムの水分含量と内袋の種類を表5に示す条件に設定し、保存条件を50℃(乾燥機)で24日間に変更したこと以外は、前記試験例1と同様の条件で試験を行い、経時的に容器内の相対湿度と保存後の塩化ナトリウムの固化度を測定した。
(2) Setting and storage of sodium chloride storage conditions Except that the moisture content of sodium chloride and the type of inner bag were set to the conditions shown in Table 5, and the storage conditions were changed to 24 days at 50 ° C (dryer). The test was conducted under the same conditions as in Test Example 1, and the relative humidity in the container and the solidification degree of sodium chloride after storage were measured over time.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(3)結果
 容器内の相対湿度を経時的に測定した結果を図5及び6に示し、固化度(%)を測定した結果を表6に示す。この結果からも、前記試験例1及び2と同様に、容器内の相対湿度が55%を超える保存期間が存在する場合(条件3-4~3-6)には、塩化ナトリウムの固化が生じていたが、充填から保存期間中にわたり、容器内の相対湿度が常に55%以下を維持できている場合(条件3-1~3-3)では、アルミ箔ラミネート袋(外袋)(層構造:PET/Al/PEの3層構造;透湿度0g/m2・24h)の防湿容器により塩化ナトリウムの固化を防止できることが確認された。なお、吸湿性無機材料が練り込まれていた防湿性のポリエチレン容器においては、外装をアルミ箔を使用する場合、吸湿性無機材料が乾燥剤として働くことが予測され、水分含量0.002%、0.005%とも湿度低下効果がみられ、0.002%では固化を抑制したが、0.005%では無添加のポリエチレン同様、相対湿度が55%を超え固化を生じた。
(3) Results The results of measuring the relative humidity over time in the container are shown in FIGS. 5 and 6, and the results of measuring the degree of solidification (%) are shown in Table 6. From these results, as in Test Examples 1 and 2, when there is a storage period in which the relative humidity in the container exceeds 55% (conditions 3-4 to 3-6), solidification of sodium chloride occurs. However, when the relative humidity in the container is always kept below 55% from filling to storage (conditions 3-1 to 3-3), the aluminum foil laminated bag (outer bag) (layer structure) It was confirmed that solidification of sodium chloride can be prevented by a moisture-proof container having a three-layer structure of PET / Al / PE; moisture permeability of 0 g / m 2 · 24 h). In the moisture-proof polyethylene container in which the hygroscopic inorganic material was kneaded, when using an aluminum foil for the exterior, the hygroscopic inorganic material is predicted to work as a desiccant, and the moisture content is 0.002%, Humidity reduction effect was observed at 0.005%, and solidification was suppressed at 0.002%, but at 0.005%, the relative humidity exceeded 55% and solidification occurred as in the case of polyethylene without addition.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
試験例4
 医薬用の塩化ナトリウム(平均粒子径:313μm、純度99.9重量%、水分含量:0.02重量%)1000kgを無添加のポリエチレン製内袋又は後述の参考例8と類似の方法で作成した吸湿性無機材料が練り込まれている防湿性ポリエチレン製容器(内袋)(層構造:PE層20μm/吸湿性無機材料を含有するPE層60μm/PE層20μmの3層構造;透湿度約2.5g/m2・24h)に充填して密封し、これをフレキシブルコンテナバックに入れて、温度管理を行っていない倉庫で1カ月保存した。保存期間中、内袋内の温度と相対湿度を経時的に測定した。また、保存1ヵ月後に、フレキシブルコンテナバックの底部から塩化ナトリウムを排出させ、塩化ナトリウムの固化の有無を確認した。
Test example 4
1000 kg of medical sodium chloride (average particle size: 313 μm, purity 99.9% by weight, water content: 0.02% by weight) was prepared by a method similar to that of an additive-free polyethylene inner bag or Reference Example 8 described later. Hygroscopic polyethylene container (inner bag) in which hygroscopic inorganic material is kneaded (layer structure: PE layer 20 μm / PE layer 60 μm containing hygroscopic inorganic material / PE layer 20 μm); 5 g / m 2 · 24 h) and sealed, put in a flexible container bag, and stored for one month in a warehouse where temperature control is not performed. During the storage period, the temperature and relative humidity in the inner bag were measured over time. Further, after one month of storage, sodium chloride was discharged from the bottom of the flexible container bag, and the presence or absence of solidification of sodium chloride was confirmed.
 内袋内の温度と相対湿度を経時的に測定した結果を図7と8に示す。図7は無添加のポリエチレン製内袋を使用した場合の結果であり、図8は吸湿性無機材料が練り込まれている防湿性ポリエチレン製内袋を使用した場合の結果である。充填時には、内袋内の温度は45℃程度であったが、保存期間中に徐々に温度が低下し、最終的には30℃前後で安定していた。また、無添加のポリエチレン製内袋を使用した場合には、外部環境の湿度の影響を受け、容器内の相対湿度が徐々に上昇して、最終的には70%程度を推移していたが、吸湿性無機材料が練り込まれている防湿性ポリエチレン製内袋を使用した場合では、優れた防湿性により外部環境からの湿度の影響を防ぎ、相対湿度が55%以下を維持できていた。 7 and 8 show the results of measuring the temperature and relative humidity in the inner bag over time. FIG. 7 shows the result when an additive-free polyethylene inner bag is used, and FIG. 8 shows the result when a moisture-proof polyethylene inner bag into which a hygroscopic inorganic material is kneaded is used. At the time of filling, the temperature in the inner bag was about 45 ° C., but the temperature gradually decreased during the storage period and finally stabilized at about 30 ° C. In addition, when an additive-free polyethylene inner bag was used, the relative humidity inside the container gradually increased due to the influence of the humidity of the external environment, and eventually moved around 70%. In the case of using a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material was kneaded, the humidity effect from the external environment was prevented by the excellent moisture resistance, and the relative humidity was maintained at 55% or less.
 また、保存後にフレキシブルコンテナバックから塩化ナトリウムを取り出すと、無添加のポリエチレン製内袋を使用した場合(相対湿度が55%超)は、塩化ナトリウムが固化した大きな塊があり、外部から圧縮することによって何とか排出できる状態であった。一方、吸湿性無機材料が練り込まれている防湿性ポリエチレン製内袋を使用した場合では、透湿度が2.5g/m2・24hとアルミ箔バリア素材に比し高いものの、内袋内の相対湿度が55%以下に維持され、その結果、全く固化が認められず、重力落下のみで底部より排出できた。 In addition, when sodium chloride is taken out from the flexible container bag after storage, when an additive-free polyethylene inner bag is used (relative humidity is over 55%), there is a large lump of solidified sodium chloride that must be compressed from the outside. It was in a state that could be discharged somehow. On the other hand, when using a moisture-proof polyethylene inner bag in which a hygroscopic inorganic material is kneaded, the moisture permeability is 2.5 g / m 2 · 24 h, which is higher than that of the aluminum foil barrier material. The relative humidity was maintained at 55% or less. As a result, no solidification was observed, and it was possible to discharge from the bottom only by gravity drop.
試験例5
(1)塩化ナトリウムの準備
 塩化ナトリウム(平均粒子径167μm)を用いたこと以外は、前記試験例1と同様の条件で、容器内に収容した塩化ナトリウム(純度99.9重量%、水分含量0重量%)を準備した。
Test Example 5
(1) Preparation of sodium chloride Sodium chloride contained in a container (purity 99.9 wt%, water content 0 under the same conditions as in Test Example 1 except that sodium chloride (average particle size 167 μm) was used. % By weight) was prepared.
(2)塩化ナトリウムの保存条件の設定及び保存
 塩化ナトリウムの水分含量と内袋の種類を表7に示す条件に設定し、保存条件を25℃(恒温高湿槽、相対湿度60%)で24日間に変更したこと以外は、前記試験例1と同様の条件で試験を行い、経時的に容器内の相対湿度と保存後の塩化ナトリウムの固化度を測定した。
(2) Setting and Storage of Sodium Chloride Storage Conditions The moisture content of sodium chloride and the type of inner bag are set to the conditions shown in Table 7, and the storage conditions are 24 at 25 ° C. (constant temperature and high humidity tank, relative humidity 60%). The test was conducted under the same conditions as in Test Example 1 except that the period was changed to days, and the relative humidity in the container and the solidification degree of sodium chloride after storage were measured over time.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(3)結果
 容器内の相対湿度を経時的に測定した結果を図9に示し、固化度(%)を測定した結果を表8に示す。この結果から、保存期間中、容器内の相対湿度が常に55%以下を維持できている場合(条件5-1及び5-2)では、塩化ナトリウムの固化を防止できることが確認された。吸湿性無機材料が練り込まれた防湿ポリエチレンの作用は試験例2と同様であった。
(3) Results FIG. 9 shows the results of measuring the relative humidity in the container over time, and Table 8 shows the results of measuring the degree of solidification (%). From this result, it was confirmed that solidification of sodium chloride could be prevented when the relative humidity in the container was constantly maintained at 55% or less during the storage period (conditions 5-1 and 5-2). The action of the moisture-proof polyethylene into which the hygroscopic inorganic material was kneaded was the same as in Test Example 2.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
試験例6
(1)塩化ナトリウムの準備
 塩化ナトリウム(平均粒子径27μm)を用いたこと以外は、前記試験例1と同様の条件で、容器内に収容した塩化ナトリウム(純度99.9重量%、水分含量0重量%)を準備した。
Test Example 6
(1) Preparation of sodium chloride Sodium chloride contained in a container (purity 99.9 wt%, moisture content 0 under the same conditions as in Test Example 1 except that sodium chloride (average particle size 27 μm) was used. % By weight) was prepared.
(2)塩化ナトリウムの保存条件の設定及び保存
 塩化ナトリウムの水分含量と内袋の種類を表9に示す条件に設定し、保存条件を25℃(恒温高湿槽、相対湿度60%)で24日間に変更したこと以外は、前記試験例1と同様の条件で試験を行い、経時的に容器内の相対湿度と保存後の塩化ナトリウムの固化度を測定した。
(2) Setting and Storage of Sodium Chloride Storage Conditions The sodium chloride moisture content and inner bag type are set to the conditions shown in Table 9, and the storage conditions are 25 ° C. (constant temperature and high humidity tank, relative humidity 60%). The test was conducted under the same conditions as in Test Example 1 except that the period was changed to days, and the relative humidity in the container and the solidification degree of sodium chloride after storage were measured over time.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(3)結果
 容器内の相対湿度を経時的に測定した結果を図10に示し、固化度(%)を測定した結果を表10に示す。いずれの容器を用いた場合でも、保存期間中、相対湿度55%以下を保持していたにも関わらず、塩化ナトリウムの固化が生じた。これは用いた塩化ナトリウムの平均粒子径が27μmと非常に細かかったため、塩化ナトリウムの表面積と接触面積が大きいため柔らかいブロック状の塊を形成し易く、固化度試験において8mm格子を通過し難かった。また、吸湿性無機材料の有無も無関係であった。
(3) Results FIG. 10 shows the results of measuring the relative humidity in the container over time, and Table 10 shows the results of measuring the degree of solidification (%). Regardless of which container was used, solidification of sodium chloride occurred even though the relative humidity was maintained at 55% or less during the storage period. This is because the average particle size of the sodium chloride used was very fine at 27 μm, so the surface area and the contact area of sodium chloride were so large that it was easy to form a soft block-like lump, and it was difficult to pass through the 8 mm lattice in the solidification test. . Also, the presence or absence of hygroscopic inorganic materials was irrelevant.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 以上の結果から、3~1000kg程度もの塩化ナトリウムであっても、純度を99.5重量%以上且つ平均粒子径150μm以上の塩化ナトリウムを使用し、収容する容器内の相対湿度を55%以下に維持させることによって、固化を防止できることが確認された。 Based on the above results, even for sodium chloride of about 3 to 1000 kg, sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is used, and the relative humidity in the container to be contained is 55% or less. It was confirmed that solidification can be prevented by maintaining the temperature.
参考試験例1
1-1.吸湿層を含むフィルムの製造
参考例1
 以下に示す各原料を、(混練時の樹脂温度を160~210℃、ベント圧力-88kPa、押出量は25kg~50kg/h、原料投入ホッパーには窒素置換)の条件で二軸混練押出機(Twin Screw Extruder PCM-45、株式会社池貝鉄工所製)にて混練して押出すことにより、ペレット状の添加剤含有ポリオレフィン組成物を得た。次いで、得られた添加剤含有ポリオレフィン組成物を用いて、Tダイフィルム成型機(PLABOR GT-25-A、株式会社プラスチック工学研究所製)にて押出成型することにより、厚さ60μmの単層フィルムを得た。
<添加剤含有ポリオレフィン組成物の添加原料>
ポリエチレン(LDPE;商品名「UBEポリエチレンR300」(MFR0.35)、宇部丸善ポリエチレン株式会社製) 66.25重量%
硫酸マグネシウム無水物 33重量%
分散剤(ステアリン酸亜鉛) 0.5重量%
酸化防止剤(商品名「イルガノックス1010」、BASFジャパン株式会社製) 0.25重量%
Reference test example 1
1-1. Production of films containing hygroscopic layers
Reference example 1
Each of the raw materials shown below is a twin-screw kneading extruder (resin temperature during kneading is 160 to 210 ° C., vent pressure is −88 kPa, extrusion amount is 25 kg to 50 kg / h, and the raw material charging hopper is replaced with nitrogen) The mixture was kneaded and extruded by Twin Screw Extruder PCM-45 (manufactured by Ikekai Iron Works Co., Ltd.) to obtain a polyolefin composition containing additives in the form of pellets. Next, the obtained additive-containing polyolefin composition was subjected to extrusion molding with a T-die film molding machine (PLABOR GT-25-A, manufactured by Plastic Engineering Laboratory Co., Ltd.), thereby forming a single layer having a thickness of 60 μm. A film was obtained.
<Additive raw material for additive-containing polyolefin composition>
Polyethylene (LDPE; trade name “UBE polyethylene R300” (MFR0.35), manufactured by Ube Maruzen Polyethylene Co., Ltd.) 66.25% by weight
Magnesium sulfate anhydride 33% by weight
Dispersant (zinc stearate) 0.5% by weight
Antioxidant (trade name “Irganox 1010”, manufactured by BASF Japan Ltd.) 0.25% by weight
参考例2
 無添加のポリエチレン(LDPE)、参考例1で作成したポリオレフィン組成物、及び無添加のポリエチレン(LDPE)を3種3層インフレーション成形機(住友重機械モダン株式会社製)にて3層共押出することにより、無添加のポリエチレン(LDPE)で形成した樹脂層(厚み20μmの内層)、参考例1で作製したポリオレフィン組成物で形成した吸湿層(厚み60μmの中間層)、及び無添加のポリエチレン(LDPE)で形成した樹脂層(厚み20μmの外層)が順に積層している3層フィルムを作成した。
Reference example 2
Additive-free polyethylene (LDPE), the polyolefin composition prepared in Reference Example 1, and additive-free polyethylene (LDPE) are co-extruded in three layers using a three-layer three-layer inflation molding machine (manufactured by Sumitomo Heavy Industries Modern Co., Ltd.). Thus, a resin layer (inner layer having a thickness of 20 μm) formed from additive-free polyethylene (LDPE), a moisture absorption layer (an intermediate layer having a thickness of 60 μm) formed from the polyolefin composition prepared in Reference Example 1, and an additive-free polyethylene ( A three-layer film in which resin layers (outer layers having a thickness of 20 μm) formed by (LDPE) were sequentially laminated was prepared.
1-2.塩化ナトリウムの包装体として使用した際の性能評価
 前記で作成した各フィルムを使用し、ヒートシールにより縦15cm×横20cmの小袋を作成した。この小袋に日本薬局方塩化ナトリウム500gを入れ、脱気し、内袋と塩化ナトリウムを密着させてヒートシールした。これを60℃乾燥機にて28日間保管した。保管から7日、14日、21日、及び28日後に、各小袋内の塩化ナトリウム500gを精製水2000mLにて溶解させた。次に、メンブランフィルター(直径47mm、孔径3μm)を用いて濾過し、この時の濾過時間及び濾過圧力を計測した。また、ろ過後にメンブランフィルターを乾燥し、測色色差計ZE2000(日本電色工業株式会社製)にて色差を測定した。
1-2. Performance evaluation when used as a package of sodium chloride Using each of the films prepared above, a small bag of 15 cm in length and 20 cm in width was prepared by heat sealing. 500 g of Japanese Pharmacopoeia sodium chloride was put into this sachet, deaerated, and the inner bag and sodium chloride were brought into intimate contact and heat sealed. This was stored in a 60 ° C. dryer for 28 days. Seven days, 14 days, 21 days, and 28 days after storage, 500 g of sodium chloride in each sachet was dissolved in 2000 mL of purified water. Next, it was filtered using a membrane filter (diameter 47 mm, pore diameter 3 μm), and the filtration time and filtration pressure at this time were measured. Further, the membrane filter was dried after filtration, and the color difference was measured with a colorimetric color difference meter ZE2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
 得られた結果を表11に示す。表11に示す通り、参考例1の単層フィルム及び参考例2の3層フィルムの双方とも、ろ過速度が3分以上と遅く、更にろ過フィルターの着色(色差)も1以上と顕著に認められた。即ち、この結果から、フィルムに含まれる添加剤(分散剤、酸化防止剤)がブリードアウトして、小袋内の塩化ナトリウムに混入し、品質低下をきたしていることが確認された。 Table 11 shows the obtained results. As shown in Table 11, both the single-layer film of Reference Example 1 and the three-layer film of Reference Example 2 have a filtration rate as slow as 3 minutes or more, and the coloration (color difference) of the filtration filter is remarkably recognized as 1 or more. It was. That is, from this result, it was confirmed that the additives (dispersant, antioxidant) contained in the film bleed out and mixed into the sodium chloride in the sachet, resulting in a decrease in quality.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
参考試験例2
 添加剤無添加のポリエチレンフィルム(厚さ80μm)からなる小袋(内袋)を、参考例2の3層フィルムからなる小袋(外袋)で覆って、2重構造の包装体(参考例3)を作成した。2重構造の包装体の内袋内に、日本薬局方塩化ナトリウム500gを入れて内袋をヒートシールした。次いで、内袋を覆う外袋もヒートシールした。これを前記参考試験例1と同条件で添加剤のブリードアウトの評価を行った。
Reference test example 2
A sachet (inner bag) made of an additive-free polyethylene film (thickness 80 μm) is covered with a sachet (outer bag) made of the three-layer film of Reference Example 2 (Package of Reference Structure 3) It was created. 500 g of Japanese Pharmacopoeia sodium chloride was put into the inner bag of the double structure package, and the inner bag was heat sealed. Next, the outer bag covering the inner bag was also heat sealed. The bleed out of the additive was evaluated under the same conditions as in Reference Test Example 1.
 得られた結果を表12に示す。この結果から、厚さ80μmの厚みの添加剤無添加のポリエチレンフィルムを内袋として使用しても、外袋に含まれる添加剤のブリードアウトによる塩化ナトリウム中への混入を防ぐことはできないことが確認された。よって、包装体の吸湿層の形成に使用されるポリオレフィン組成物は、硫酸マグネシウム無水物以外の添加剤は、実質的に無添加とすることが望ましいことが明らかとなった。 Table 12 shows the obtained results. From this result, even if an additive-free polyethylene film having a thickness of 80 μm is used as an inner bag, it cannot prevent the additive contained in the outer bag from being mixed into sodium chloride due to bleed-out. confirmed. Accordingly, it has been clarified that it is desirable that the polyolefin composition used for forming the moisture absorption layer of the package is substantially free of additives other than magnesium sulfate anhydride.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
参考試験例3
 以下に示す各原料を用いて、混練時の樹脂温度を160~210℃、ベント圧力を減圧なし(参考例4)、-61KPa(参考例5)、-76KPa(参考例6)、又は-88KPa(参考例7)、押出量を25kg~50kg/h、原料投入ホッパーには窒素置換の条件で二軸混練押し出機(Twin Screw Extruder PCM-45、株式会社池貝鉄工所製)にて混練して押出すことにより、ペレット状の無添加ポリオレフィン組成物を得た。次いで、得られた無添加ポリオレフィン組成物を用いて、Tダイフィルム成型機(PLABOR GT-25-A、株式会社プラスチック工学研究所製)にて押出成型することにより、厚さ60μmの単層フィルムを得た。
<無添加ポリオレフィン組成物の添加原料>
ポリエチレン(LDPE;商品名「UBEポリエチレンF120N」(MFR1.2)、宇部丸善ポリエチレン株式会社製) 67重量%
硫酸マグネシウム無水物 33重量%
Reference test example 3
Using the raw materials shown below, the resin temperature during kneading is 160 to 210 ° C., the vent pressure is not reduced (Reference Example 4), −61 KPa (Reference Example 5), −76 KPa (Reference Example 6), or −88 KPa (Reference Example 7), the extrusion rate is 25 kg to 50 kg / h, and the raw material charging hopper is kneaded with a twin-screw kneading extruder (Twin Screw Extruder PCM-45, manufactured by Ikekai Iron Works Co., Ltd.) under nitrogen replacement conditions. By extruding, a pellet-shaped additive-free polyolefin composition was obtained. Next, the obtained additive-free polyolefin composition was extruded using a T-die film molding machine (PLABOR GT-25-A, manufactured by Plastic Engineering Laboratory Co., Ltd.), thereby forming a single layer film having a thickness of 60 μm. Got.
<Additive raw material of additive-free polyolefin composition>
Polyethylene (LDPE; trade name “UBE polyethylene F120N” (MFR1.2), manufactured by Ube Maruzen Polyethylene Co., Ltd.) 67% by weight
Magnesium sulfate anhydride 33% by weight
 前記で得られた無添加ポリオレフィン組成物について、その水分含量をカールフィッシャー水分計(250℃、1g、自動水分測定装置EV-200(平沼産業株式会社製))にて測定した。また、前記で得られた単層フィルムの外観を顕微鏡にて観察し、1m2当たりに存在する100μm以上の凝集物の数を測定した。 About the additive-free polyolefin composition obtained above, the moisture content was measured with a Karl Fischer moisture meter (250 ° C., 1 g, automatic moisture measuring device EV-200 (manufactured by Hiranuma Sangyo Co., Ltd.)). Further, the appearance of the monolayer film obtained above was observed with a microscope, and the number of aggregates of 100 μm or more present per 1 m 2 was measured.
 得られた結果を表13に示す。この結果から、ポリエチレンと硫酸マグネシウム無水物の混練時に減圧を行わなかった場合(参考例4)では、水分含量が0.15重量%を超えており、硫酸マグネシウム無水物の分散性が非常に悪く、単層フィルムには、凝集物が多数存在し、穴あきが多数認められ成型性が悪いことが判明した。これに対して、ポリエチレンと硫酸マグネシウム無水物の混練を減圧下で行った場合(参考例5~7)では、水分含量が0.1重量%以下になり、硫酸マグネシウム無水物の分散性が良好で、単層フィルムにおいて凝集物の発生が抑制できており、穴あきがなく、成型性が良好であることが明らかとなった。特に、ポリエチレンと硫酸マグネシウム無水物の混練を-76KPa以下で行ったポリオレフィン組成物(参考例6及び7)では、凝集物の発生を顕著に抑制できていた。 Table 13 shows the obtained results. From this result, when pressure reduction was not performed when kneading polyethylene and magnesium sulfate anhydride (Reference Example 4), the water content exceeded 0.15% by weight, and the dispersibility of magnesium sulfate anhydride was very poor. The single-layer film was found to have many aggregates, many perforations were observed, and the moldability was poor. On the other hand, when kneading polyethylene and magnesium sulfate anhydride under reduced pressure (Reference Examples 5 to 7), the water content was 0.1% by weight or less, and the dispersibility of magnesium sulfate anhydride was good. Thus, it was clarified that the generation of aggregates in the single-layer film can be suppressed, there is no perforation, and the moldability is good. In particular, in the polyolefin compositions (Reference Examples 6 and 7) in which kneading of polyethylene and magnesium sulfate anhydride was performed at −76 KPa or less, the generation of aggregates could be remarkably suppressed.
 以上の結果から、硫酸マグネシウム無水物以外の添加剤を添加せずにポリオレフィン組成物を得る場合において、実使用可能なものは水分含量が0.1重量%以下であれば、分散性に問題ないものが作成できることが判った。またその手段としては、混練機内での圧力雰囲気を-65KPa以下程度まで減圧すればよいことも判明した。そして、このように製造された無添加ポリオレフィン組成物を用いて成型した成型体を使用した容器で塩化ナトリウムを収容することによって、添加剤のブリードアウトによる塩化ナトリウムの汚染を抑制できることも明らかとなった。 From the above results, in the case of obtaining a polyolefin composition without adding additives other than magnesium sulfate anhydride, there is no problem in dispersibility if the water content is 0.1% by weight or less. It turns out that things can be created. Further, it has been found that the pressure atmosphere in the kneader may be reduced to about −65 KPa or less as the means. And it became clear that the contamination of sodium chloride by the bleed-out of the additive can be suppressed by containing sodium chloride in a container using a molded body molded using the additive-free polyolefin composition thus produced. It was.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
参考試験例4
4-1.ポリオレフィン組成物及びフィルムの製造
参考例8
 以下に示す各原料を用いて、前記参考試験例3と同様の条件(-88KPaの圧力雰囲気)で二軸混練押出機(Twin Screw ExtruderPCM-45、株式会社池貝鉄工所製)にて混練して押出すことにより、ペレット状の無添加ポリオレフィン組成物を200kg得た。次いで、無添加のポリエチレン(LDPE)、前記で得られた無添加ポリオレフィン組成物、及び無添加のポリエチレン(LDPE)を3種3層インフレーション成形機(住友重機械モダン株式会社製)にて3層共押出することにより、無添加のポリエチレン(LDPE)で形成した樹脂層(厚み20μmの内層)、前記ポリオレフィン組成物で形成した吸湿層(厚み60μmの中間層)、及び無添加のポリエチレン(LDPE)で形成した樹脂層(厚み20μmの外層)が順に積層している3層フィルムを作成した。
<無添加ポリオレフィン組成物の原料組成>
ポリエチレン(LDPE;商品名「UBEポリエチレンR300」(MFR0.35)、宇部丸善ポリエチレン株式会社製) 67重量%
硫酸マグネシウム無水物 33重量%
Reference test example 4
4-1. Production of polyolefin compositions and films
Reference Example 8
Using the raw materials shown below, they were kneaded with a twin-screw kneading extruder (Twin Screw Extruder PCM-45, manufactured by Ikekai Iron Works Co., Ltd.) under the same conditions as in Reference Test Example 3 (pressure atmosphere of -88 KPa). By extruding, 200 kg of pellet-shaped additive-free polyolefin composition was obtained. Next, the additive-free polyethylene (LDPE), the additive-free polyolefin composition obtained above, and the additive-free polyethylene (LDPE) are three-layered using a three-layer three-layer inflation molding machine (manufactured by Sumitomo Heavy Industries Modern Co., Ltd.). A resin layer (inner layer with a thickness of 20 μm) formed from additive-free polyethylene (LDPE) by coextrusion, a moisture absorption layer (an intermediate layer with a thickness of 60 μm) formed from the polyolefin composition, and an additive-free polyethylene (LDPE) A three-layer film in which the resin layers (outer layers having a thickness of 20 μm) formed in step 1 were sequentially laminated was prepared.
<Raw material composition of additive-free polyolefin composition>
Polyethylene (LDPE; trade name “UBE polyethylene R300” (MFR0.35), manufactured by Ube Maruzen Polyethylene Co., Ltd.) 67% by weight
Magnesium sulfate anhydride 33% by weight
参考例9
 無添加のポリエチレン(LDPE)、前記参考例8で得られた無添加ポリオレフィン組成物、及び無添加のポリエチレン(LLDPE)を3種3層インフレーション成形機(住友重機械モダン株式会社製)にて3層共押出することにより、無添加のポリエチレン(LDPE)で形成した樹脂層(厚み20μmの内層)、前記参考例8のポリオレフィン組成物で形成した吸湿層(厚み60μmの中間層)、及び無添加のポリエチレン(LLDPE)で形成した樹脂層(厚み20μmの外層)が順に積層している3層フィルムを作成した。
Reference Example 9
Additive-free polyethylene (LDPE), additive-free polyolefin composition obtained in Reference Example 8 and additive-free polyethylene (LLDPE) were added to a 3 type 3 layer inflation molding machine (manufactured by Sumitomo Heavy Industries Modern Co., Ltd.). By layer coextrusion, a resin layer (inner layer with a thickness of 20 μm) formed of additive-free polyethylene (LDPE), a moisture absorption layer (an intermediate layer with a thickness of 60 μm) formed of the polyolefin composition of Reference Example 8, and an additive-free layer A three-layer film in which resin layers (outer layers having a thickness of 20 μm) formed of polyethylene (LLDPE) were sequentially laminated was prepared.
参考例10
 以下に示す各原料を用いて、参考試験例3と同様の条件(-88KPaの圧力雰囲気)で二軸混練押出機(PCM-80 株式会社池貝鉄工所製)にて混練して押出すことにより、ペレット状の無添加ポリオレフィン組成物を得た。次いで、無添加のポリエチレン(LDPE)、前記で得られた無添加ポリオレフィン組成物、及び無添加のポリエチレン(LLDPE)を空冷インフレーション多層フィルム製膜装置(株式会社プラコー製)にて3層共押出することにより、無添加のポリエチレン(LDPE)で形成した樹脂層(厚み20μmの内層)、前記ポリオレフィン組成物で形成した吸湿層(厚み60μmの中間層)、及び無添加のポリエチレン(LLDPE)で形成した樹脂層(厚み20μmの外層)が順に積層している3層フィルムを作成した。
<無添加ポリオレフィン組成物の原料組成>
ポリエチレン(LDPE;商品名「UBEポリエチレンF120N(MFR1.2)」、宇部丸善ポリエチレン株式会社製) 67重量%
硫酸マグネシウム無水物 33重量%
Reference Example 10
By using the raw materials shown below and kneading and extruding under the same conditions as in Reference Test Example 3 (pressure atmosphere of -88 KPa) with a twin-screw kneading extruder (PCM-80 manufactured by Ikegai Iron Works Co., Ltd.) A pellet-shaped additive-free polyolefin composition was obtained. Subsequently, additive-free polyethylene (LDPE), the additive-free polyolefin composition obtained above, and additive-free polyethylene (LLDPE) are coextruded in three layers with an air-cooled inflation multilayer film forming apparatus (Placo Corporation). Thus, a resin layer (inner layer with a thickness of 20 μm) formed of additive-free polyethylene (LDPE), a moisture absorption layer (an intermediate layer of thickness of 60 μm) formed with the polyolefin composition, and an additive-free polyethylene (LLDPE) were formed. A three-layer film in which a resin layer (an outer layer having a thickness of 20 μm) was sequentially laminated was prepared.
<Raw material composition of additive-free polyolefin composition>
Polyethylene (LDPE; trade name “UBE polyethylene F120N (MFR1.2)”, manufactured by Ube Maruzen Polyethylene Co., Ltd.) 67% by weight
Magnesium sulfate anhydride 33% by weight
4-2.ポリオレフィン組成物の水分量、フィルムの外観と塩化ナトリウムの包装体として使用した際の性能評価
 参考例8~10で得られた各3層フィルムの外観を顕微鏡にて観察したところ、100μm以上の凝集物の発生が十分に抑制できており、硫酸マグネシウム無水物が良好に分散できていることが確認された。
4-2. Moisture content of the polyolefin composition, film appearance and performance evaluation when used as a package of sodium chloride The appearance of each of the three-layer films obtained in Reference Examples 8 to 10 was observed with a microscope. Generation | occurrence | production of the thing was fully suppressed and it was confirmed that the magnesium sulfate anhydride can be disperse | distributed favorably.
 また、前記参考例8(参考例9と同一)及び10で得られた無添加ポリオレフィン組成物の水分含量について、前記参考試験例3と同様の方法で測定した結果を表14に示す。この結果、参考例8及び10で得られた無添加ポリオレフィン組成物は、いずれも水分含量が0.1重量%以下であった。即ち、本試験結果からも、硫酸マグネシウム無水物以外の添加剤を添加せずにポリオレフィン組成物を得る場合には、水分含量が0.1重量%以下となるように混練することにより、硫酸マグネシウム無水物の分散性に優れ、成型性が良好になることが確認された。 Table 14 shows the results of measuring the water content of the additive-free polyolefin compositions obtained in Reference Example 8 (same as Reference Example 9) and 10 by the same method as in Reference Test Example 3. As a result, all of the additive-free polyolefin compositions obtained in Reference Examples 8 and 10 had a water content of 0.1% by weight or less. That is, also from this test result, when obtaining a polyolefin composition without adding additives other than magnesium sulfate anhydride, by kneading so that the water content is 0.1% by weight or less, magnesium sulfate is obtained. It was confirmed that the anhydride was excellent in dispersibility and the moldability was good.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 更に、参考例8~10で得られた3層フィルムを使用して、前記参考試験例1と同条件で添加剤のブリードアウトの評価を行った。得られた結果を表15に示す。この結果から、当該3層フィルムは、いずれも、濾過時間が十分に短く、しかも色差も低い値を維持しており、収容した塩化ナトリウムへの悪影響を防止できていることが分かった。 Furthermore, using the three-layer films obtained in Reference Examples 8 to 10, the additive bleed-out was evaluated under the same conditions as in Reference Test Example 1. The results obtained are shown in Table 15. From these results, it was found that all the three-layer films had a sufficiently short filtration time and maintained a low color difference, and were able to prevent adverse effects on the contained sodium chloride.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015

Claims (31)

  1.  純度99.5重量%以上且つ平均粒子径が150μm以上の塩化ナトリウムが、透湿度3g/m2・24h未満の防湿性容器に収容されてなり、防湿性容器内の相対湿度が55%以下に維持され、塩化ナトリウムの固化がないことを特徴とする、容器入り塩化ナトリウム。 Sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h, and the relative humidity in the moisture-proof container is 55% or less. Sodium chloride in a container, which is maintained and free from solidification of sodium chloride.
  2.  塩化ナトリウムが、防湿性容器に含まれる吸湿性材料と直接接していない、請求項1に記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to claim 1, wherein the sodium chloride is not in direct contact with the hygroscopic material contained in the moisture-proof container.
  3.  防湿性容器内の相対湿度が50%以下に維持されている、請求項1又は2に記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to claim 1 or 2, wherein the relative humidity in the moisture-proof container is maintained at 50% or less.
  4.  塩化ナトリウムの平均粒子径が150~700μmである、請求項1~3のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 3, wherein the sodium chloride has an average particle diameter of 150 to 700 µm.
  5.  防湿性容器内に0.1kg~1tの塩化ナトリウムが収容されている、請求項1~4のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 4, wherein 0.1 kg to 1 t of sodium chloride is contained in a moisture-proof container.
  6.  塩化ナトリウムの水分含量が0.002重量%以下である、請求項1~5のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 5, wherein the water content of sodium chloride is 0.002% by weight or less.
  7.  防湿性容器の透湿度が0.5g/m2・24h以下である、請求項1~6のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 6, wherein the moisture permeability of the moisture-proof container is 0.5 g / m 2 · 24 h or less.
  8.  防湿性容器が、吸湿性無機材料を含むポリオレフィンからなる吸湿層を有するポリオレフィン製防湿性容器である、請求項1~7のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 7, wherein the moisture-proof container is a polyolefin moisture-proof container having a moisture-absorbing layer made of polyolefin containing a hygroscopic inorganic material.
  9.  吸湿性無機材料が硫酸マグネシウム無水物及び/又はゼオライトである、請求項8に記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to claim 8, wherein the hygroscopic inorganic material is magnesium sulfate anhydride and / or zeolite.
  10.  ポリオレフィン製防湿性容器が、吸湿性無機材料が練り込まれたポリオレフィンからなる吸湿層の両面に、添加剤のない樹脂層が積層された積層体で形成されている、請求項8又は9に記載の容器入り塩化ナトリウム。 10. The polyolefin moisture-proof container is formed of a laminate in which a resin layer having no additive is laminated on both surfaces of a moisture-absorbing layer made of a polyolefin kneaded with a hygroscopic inorganic material. Sodium chloride in a container.
  11.  前記積層体がフィルム状又はシート状である、請求項10に記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to claim 10, wherein the laminate is in the form of a film or a sheet.
  12.  吸湿層が吸湿性材料以外の添加剤を実質的に含まない、請求項8~11のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 8 to 11, wherein the hygroscopic layer is substantially free of additives other than the hygroscopic material.
  13.  塩化ナトリウムの純度が99.9重量%以上である、請求項1~12のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 12, wherein the purity of the sodium chloride is 99.9% by weight or more.
  14.  容器内に0.1~50kgの塩化ナトリウムが収容されている、請求項1~13のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 13, wherein 0.1 to 50 kg of sodium chloride is contained in the container.
  15.  粉末透析用剤の原料として使用される、請求項1~14のいずれかに記載の容器入り塩化ナトリウム。 The sodium chloride in a container according to any one of claims 1 to 14, which is used as a raw material for a powder dialysis agent.
  16.  純度99.5重量%以上且つ平均粒子径が150μm以上の塩化ナトリウムを、透湿度3g/m2・24h未満の防湿性容器に収容し、防湿性容器内の相対湿度を55%以下に維持することを特徴とする、塩化ナトリウムの保存方法。 Sodium chloride having a purity of 99.5% by weight or more and an average particle diameter of 150 μm or more is contained in a moisture-proof container having a moisture permeability of less than 3 g / m 2 · 24 h, and the relative humidity in the moisture-proof container is maintained at 55% or less. A method for preserving sodium chloride, characterized in that
  17.  前記塩化ナトリウムが防湿性容器の構成素材として含まれる吸湿性材料と直接接していない、請求項16に記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to claim 16, wherein the sodium chloride is not in direct contact with a hygroscopic material contained as a constituent material of the moisture-proof container.
  18.  容器内の相対湿度を50%以下に維持する、請求項16又は17に記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to claim 16 or 17, wherein the relative humidity in the container is maintained at 50% or less.
  19.  塩化ナトリウムの平均粒子径が150~700μmである、請求項16~18のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 18, wherein the average particle diameter of the sodium chloride is 150 to 700 µm.
  20.  容器内に0.1kg~1tの塩化ナトリウムを収容する、請求項16~19のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 19, wherein 0.1 kg to 1 t of sodium chloride is contained in a container.
  21.  充填時及び保管時の品温を4℃以上、50℃以下に維持する、請求項16~20のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 20, wherein the product temperature during filling and storage is maintained at 4 ° C or higher and 50 ° C or lower.
  22.  塩化ナトリウムの水分含量が0.002重量%以下である、請求項16~21のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 21, wherein the water content of the sodium chloride is 0.002% by weight or less.
  23.  防湿性容器の透湿度が0.5g/m2・24h以下である、請求項16~22のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 22, wherein the moisture permeability of the moisture-proof container is 0.5 g / m 2 · 24 h or less.
  24.  防湿性容器が、吸湿性無機材料を含むポリオレフィンからなる吸湿層を有するポリオレフィン製防湿性容器である、請求項16~23のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 23, wherein the moisture-proof container is a polyolefin moisture-proof container having a moisture-absorbing layer made of polyolefin containing a hygroscopic inorganic material.
  25.  吸湿性無機材料が硫酸マグネシウム無水物及び/又はゼオライトである、請求項24に記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to claim 24, wherein the hygroscopic inorganic material is magnesium sulfate anhydride and / or zeolite.
  26.  ポリオレフィン製防湿性容器が、吸湿性無機材料が練り込まれたポリオレフィンからなる吸湿層の両面に、添加剤のない樹脂層が積層された積層体で形成されている、請求項24又は25に記載の塩化ナトリウムの保存方法。 The polyolefin moisture-proof container is formed of a laminate in which a resin layer having no additive is laminated on both surfaces of a moisture-absorbing layer made of polyolefin into which a hygroscopic inorganic material is kneaded. Storage method of sodium chloride.
  27.  前記積層体がフィルム状又はシート状である、請求項26に記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to claim 26, wherein the laminate is in the form of a film or a sheet.
  28.  吸湿層が吸湿性材料以外の添加剤を実質的に含まない、請求項24~27のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 24 to 27, wherein the hygroscopic layer substantially does not contain additives other than the hygroscopic material.
  29.  塩化ナトリウムの純度が99.9重量%以上である、請求項16~28のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 28, wherein the purity of the sodium chloride is 99.9% by weight or more.
  30.  防湿性容器内に0.1~50kgの塩化ナトリウムを収容する、請求項16~29のいずれかに記載の容器入り塩化ナトリウムの保存方法。 The method for preserving sodium chloride in a container according to any one of claims 16 to 29, wherein 0.1 to 50 kg of sodium chloride is accommodated in a moisture-proof container.
  31.  粉末透析用剤の原料として使用される塩化ナトリウムの保存方法である、請求項16~30のいずれかに記載の塩化ナトリウムの保存方法。 The method for preserving sodium chloride according to any one of claims 16 to 30, which is a method for preserving sodium chloride used as a raw material for a powder dialysis agent.
PCT/JP2016/051364 2015-01-23 2016-01-19 Packaged sodium chloride and storage method for sodium chloride WO2016117528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015011391A JP5858310B1 (en) 2015-01-23 2015-01-23 Sodium chloride in a container and storage method of sodium chloride
JP2015-011391 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016117528A1 true WO2016117528A1 (en) 2016-07-28

Family

ID=55300997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051364 WO2016117528A1 (en) 2015-01-23 2016-01-19 Packaged sodium chloride and storage method for sodium chloride

Country Status (2)

Country Link
JP (1) JP5858310B1 (en)
WO (1) WO2016117528A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984765A (en) * 1982-10-26 1984-05-16 日本食塩製造株式会社 Method of preventing consolidation of powdered body
JP2002200108A (en) * 2000-12-28 2002-07-16 Maikooru Kk Moistureproof packaging material, moistureproof outer bag for heating element using the same moistureproof packaging container such as moistureproof collective packaging bag for heating element or the like and heating element housed in them
JP2014000998A (en) * 2012-06-20 2014-01-09 Kyodo Printing Co Ltd Packaging bag and package body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984765A (en) * 1982-10-26 1984-05-16 日本食塩製造株式会社 Method of preventing consolidation of powdered body
JP2002200108A (en) * 2000-12-28 2002-07-16 Maikooru Kk Moistureproof packaging material, moistureproof outer bag for heating element using the same moistureproof packaging container such as moistureproof collective packaging bag for heating element or the like and heating element housed in them
JP2014000998A (en) * 2012-06-20 2014-01-09 Kyodo Printing Co Ltd Packaging bag and package body

Also Published As

Publication number Publication date
JP2016135684A (en) 2016-07-28
JP5858310B1 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US10029232B2 (en) Adsorbent composition, adsorbent-containing film and method for producing same
DE69631882T2 (en) OXYGEN ABSORBENT COMPOSITION
JP2012522869A (en) Oxygen scavenging film
WO2017169036A1 (en) Oxygen absorber composition, oxygen-absorbing multilayer body, oxygen-absorbing packaging container, and method for storing article
JP5828207B2 (en) Oxygen-absorbing film, oxygen-absorbing laminate, oxygen-absorbing packaging material comprising oxygen-absorbing laminate, and oxygen-absorbing resin composition
JP5858310B1 (en) Sodium chloride in a container and storage method of sodium chloride
KR101826624B1 (en) A manufacturing technique of pack with Oxygen Removal
JP2007030467A (en) Deoxygenation film
JP5858311B1 (en) Hygroscopic inorganic filler-containing polyolefin composition and molded body using the same
JP6225345B2 (en) Oxygen-absorbing film, oxygen-absorbing laminate, oxygen-absorbing packaging material comprising oxygen-absorbing laminate, and oxygen-absorbing resin composition
JP3788057B2 (en) Deoxygenated resin composition, deoxygenated packaging material, and dry oxygen storage method using these
EP3891215B1 (en) Polyolefin compositions with improved oxygen scavenging capability
JP4085218B2 (en) Oxygen scavenger composition and storage method
JP4544377B2 (en) Oxygen-absorbing multilayer
JP2000212448A (en) Oxygen-absorbing resin composition and multilayer packaging material using same
JP2020530866A (en) A method of forming an additive in a packaging plastic containing a melt having an oxygen-restoring effect.
JP2003311895A (en) Non-stretched film having bag bursting resistance, transparency and hard slip properties, laminated film, and package
JPH10338264A (en) Oxygen-absorbing laminate-packaging material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740135

Country of ref document: EP

Kind code of ref document: A1