WO2016117460A1 - Water quality inspection system - Google Patents

Water quality inspection system Download PDF

Info

Publication number
WO2016117460A1
WO2016117460A1 PCT/JP2016/051092 JP2016051092W WO2016117460A1 WO 2016117460 A1 WO2016117460 A1 WO 2016117460A1 JP 2016051092 W JP2016051092 W JP 2016051092W WO 2016117460 A1 WO2016117460 A1 WO 2016117460A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
image
reproduction
data
light
Prior art date
Application number
PCT/JP2016/051092
Other languages
French (fr)
Japanese (ja)
Inventor
司 松尾
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2016117460A1 publication Critical patent/WO2016117460A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms

Definitions

  • the invention of this application relates to a water quality inspection system, and more particularly to a system used in a water quality inspection that requires the measurement of the number of biological fines such as aquatic microorganisms. It is related with the system used suitably when it is going to test
  • Water-related technologies include technologies for producing clean water, such as water purification systems, as well as technologies for checking water quality, that is, water quality inspection technologies. This field is also actively researched and developed. Yes. Of these, certain types of water quality testing may require testing of biological microscopic materials such as underwater microorganisms, and it is necessary to know what types of biological microscopic materials are present and how many. There may be. This point will be described by taking an example of inspection of ballast water of a ship.
  • Ballast water is water used as a ballast for ships.
  • the seawater of the port When leaving a port without loading, the seawater of the port is loaded into the ballast tank at the port of departure. And it is discharged when loading luggage at the port of call. In doing so, it has been pointed out that the aquatic organisms contained therein have an impact on the ecosystem as alien species.
  • the Ballast Water Management Convention official name: regulation of ballast water and sediment on ships
  • an international treaty for management has been concluded, and Japan ratified it in 2014.
  • the official entry into force of the treaty imposes a requirement that in more than 30 ratifying countries, the volume of merchant vessels in the ratifying countries will be 35% or more of the total volume of merchant vessels in the world in the next year (2015). These requirements are expected to be met and the move towards the entry into force of the Convention is accelerating.
  • Section D of the Convention includes standards for ballast water that may be discharged: 1. Living organisms with a minimum diameter of 50 ⁇ m or more (mainly zooplankton): the number of surviving individuals in a cubic meter is less than 10, 2. Organisms with a minimum diameter of 10 ⁇ m or more and less than 50 ⁇ m (mainly phytoplankton): the number of surviving individuals in 1 ml is less than 10, Standards such as are established. Therefore, a treatment technique for treating the ballast water so as to satisfy the standard is necessary, and a technique for inspecting whether the treated water satisfies such a standard is necessary.
  • target water water to be examined
  • the microorganism colonies formed are discriminated, and the number of colonies is counted to indirectly determine the number of living microorganisms in the target water.
  • a reagent that reacts with the respiratory activity of microorganisms is included in the target water.
  • the microorganisms that have taken in this reagent are stained by respiration, and the number of microorganisms in the target water is measured by counting the stained microorganisms with a microscope or the like.
  • ballast water treatment and management are methods in which the target water is collected as a sample and brought into a laboratory or the like for inspection.
  • a method is not practical and seems to be almost impossible to adopt. That is, although some ballast water treatment apparatuses have already received approval, it is assumed that these treatment apparatuses are mounted on ships and discharged after treating ballast water.
  • a system that can inspect ballast water flowing in or out on the spot and measure the number of living microorganisms is expected as a useful system that can withstand practical use.
  • the object to be counted is a living body, but is not necessarily limited to a living organism (microorganism), and may be bacteria or a certain kind of cell. Accordingly, these are collectively referred to as “biological fine objects” and a system for measuring the number is provided.
  • the invention according to claim 1 of this application is a water quality inspection system for measuring the number of biological fines in target water, A water supply system that sends the target water through a pipe; And a detection system that detects the number of biological fines in the target water sent through the piping by the water supply system,
  • the pipe has a transparent part, The detection system detects the number of living body fine objects by taking an image of the target water flowing in the pipe through the transparent part,
  • the detection system is A light source that emits coherent light; An image sensor; The coherent light is irradiated into the pipe through the transparent part, the object light that is light from the target water in the pipe is guided to the image sensor through the transparent part, and the coherent light not including object information is used as the reference light.
  • An optical system that causes the imaging device to image interference fringes by causing interference on the imaging surface of the imaging device, and A data processing unit that processes hologram data that is data of interference fringes imaged by the image sensor;
  • the data processing unit acquires hologram data with a period according to the water supply speed in the pipe by the water supply system and the length in the water supply direction in the imaging region by the image sensor,
  • the data processing unit counts the number of living body fine objects by playing back each acquired hologram data, and the number of objects determined to be images of living body fine objects at the time of image reproduction for each hologram data It is configured to perform data processing for counting.
  • the invention according to claim 2 is the configuration according to claim 1, wherein the data processing unit identifies what kind of biological microscopic object is the image and determines the number. It has a configuration that performs data processing for counting.
  • the invention according to claim 3 is the configuration according to claim 1 or 2, wherein the data processing unit reproduces each hologram data for each set reproduction distance pitch. For each reproduction plane having a different reproduction distance, it is determined whether or not an image of a biological fine object can be included according to the luminance value of the reproduction plane, the reproduction plane determined to include is extracted, and the biological image is reproduced on the reproduction plane It has a configuration in which data processing is performed to count the number of objects determined to be fine objects.
  • the invention according to claim 4 has a configuration in which, in the configuration of claim 3, the luminance value is a phase value of a result of reproduction calculation of each hologram data.
  • the invention according to claim 5 is the structure according to any one of claims 1 to 4, wherein the data processing unit uses a living body for an image obtained when the hologram data is reproduced. By comparing with specimen data of fine objects, it is determined whether or not the image is a fine biological object, and the number is counted according to the result.
  • the data processing unit is alive after performing life / death discrimination on the image of the biological fine object. It is possible to count the number of items that are present.
  • the invention according to claim 7 is the configuration according to any one of claims 1 to 6, wherein the optical system includes an irradiation optical system for irradiating coherent light in the pipe, and a pipe. An imaging optical system that captures object light from the target water inside the imaging optical system, and the imaging optical system captures transmitted light from the inside of the pipe irradiated with coherent light by the irradiation optical system.
  • the invention according to claim 8 is the structure according to any one of claims 1 to 7, wherein the target water is a ballast water of a ship and is a ballast water inspection system. Have.
  • the inside of the pipe through which the target water flows is photographed, and measurement is performed on the spot based on the photographed data. It is suitable for testing a large amount of water in a short time. Further, since the photographing is hologram photographing and the number of living body fine objects in the target water is measured using digital reproduction (digital holography) of the hologram, it is further preferable from the viewpoint of inspecting a large amount of water in a short time. It will be something. In addition, according to the invention described in claim 2, since what number of living body fine objects are present is detected together with the number, more specific inspection such as whether or not there are living body minute objects in question. The result can be obtained.
  • the hologram data obtained by one imaging is not analyzed on all reproduction surfaces for each reproduction distance pitch, but an image of a biological fine object. Since the reproduction surface determined to be present is extracted and analyzed, the time required for the inspection can be further shortened. Further, according to the invention described in claim 4, in addition to the above effect, the phase value is used as the luminance value at the time of extraction of the reproduction surface, so that it is more suitable for the purpose of detecting biological fines in water. Become.
  • the sample data is used for the detection of the fine biological matter, so that the effect of shortening the time required for the measurement and preventing the erroneous detection can be obtained.
  • life / death discrimination of living body fine objects as an inspection item, so that it is suitably used in applications where it is necessary to know the number of living things. can do.
  • said each effect can be show
  • FIG. 1 It is a schematic diagram of a water quality inspection system of an embodiment. It is the schematic which showed the structure of the detection system in the water quality inspection system shown in FIG. It is the isometric view schematic which showed the relationship between the imaging surface in an image sensor, and a transparent tube. It is the schematic perspective view shown about the area
  • FIG. 1 is a schematic diagram of a water quality inspection system according to an embodiment.
  • the water quality inspection system shown in FIG. 1 is a system configured assuming ballast water inspection.
  • a major characteristic point of this system is that it is a system that measures the number of contained biological fine substances M on the spot on the pipe 1 for sending the target water (ballast water) W. That is, this system includes a water supply system 2 that sends the target water W through the pipe 1 and a detection system 3 that detects the number of the biological fines M in the target water W when being sent through the pipe 1 by the water supply system 2. Configured.
  • the water supply system 2 includes a water supply side tank 21 that temporarily stores the target water W for inspection, and a water receiving side that temporarily stores the target water W that has been inspected.
  • An anemometer 24 for detecting the flow velocity of the target water W is provided.
  • the pipe is transparent in the portion 1 that passes through the place where the detection system 3 is disposed (hereinafter referred to as a transparent pipe).
  • Normal pipes 101 and 102 are connected before and after the transparent pipe 1, and target water is sent from the water supply side tank 21 to the transparent pipe 1 by the pipe (hereinafter referred to as an inflow pipe) 101, and passes through the transparent pipe 1. Further, it is discharged through another pipe (hereinafter referred to as an outflow pipe) 102.
  • the transparent tube 1 is a cylindrical member formed of a transparent material such as glass or acrylic resin.
  • the cross section has a rectangular shape (that is, a rectangular tube shape).
  • the detection system 3 images the target water W flowing in the transparent tube 1 in order to enable in-situ measurement.
  • the number of the biological fine objects M is detected by analyzing the obtained data (imaging data).
  • the detection system 3 captures an image of the flowing target water W as a hologram instead of a normal two-dimensional image.
  • FIG. 2 is a schematic diagram showing the configuration of the detection system 3 in the water quality inspection system shown in FIG.
  • the detection system 3 includes a light source 31 that emits coherent light, an image sensor 32, optical systems 33 to 35, and a data process 36 that processes image data captured by the image sensor 32.
  • a laser oscillator is used as the coherent light source 31.
  • a HeNe laser oscillator having a wavelength of 632.8 nm, a ruby laser oscillator having a wavelength of 694 nm, or the like is used.
  • a CCD or CMOS image sensor is used for the image sensor 32. Since the imaging element 32 is intended to measure the number of the biological fine objects M, a sufficiently fine pixel pitch is used. For example, in the case of a CCD, an image pickup surface having a size of about 5.6 ⁇ 5.6 mm and a number of pixels of about 1024 ⁇ 1024 (pixel pitch is about 5.5 ⁇ m) is used.
  • the optical system irradiates coherent light into the transparent tube 1, guides the object light, which is light from the irradiated target water (ballast water) W in the transparent tube 1, to the image sensor 32, and does not include object information.
  • the coherent light is guided to the image sensor 32 as reference light and caused to interfere with the imaging surface of the image sensor 32 to cause the image sensor 32 to image the interference fringes.
  • An imaging optical system 34 for guiding and a reference light optical system 35 for guiding coherent light not including object information to the imaging element 32 as reference light are provided.
  • Object information is a term that assumes that the wavefront of coherent light changes according to the properties (shape, refractive index, etc.) of the object when the object is irradiated with coherent light. It is a term meaning object information that can be expressed by. For example, when an image of an object is reproduced by a wavefront, the shape of the object is “object information”. When the transmittance distribution in the object is obtained from the wavefront, the transmittance distribution is “object information”. Coherent light that does not include such object information (in this embodiment, coherent light that has not passed through an object) is used as reference light.
  • the coherent light from which the object information is missing is extracted by passing through the spatial filter, and this is used as the reference light.
  • a Fourier transform lens and a micro semi-transparent mirror are similarly arranged on the optical path of the light after object diffraction, and the zero-order light component of the object diffraction light Is used as a reference beam.
  • light transmitted through the transparent tube 1 is incident on the image sensor 32.
  • This light includes object light.
  • the object light is diffracted light from the living body fine object M in the target water W irradiated with the coherent light, and the coherent light is scattered light by the living body fine object M (scattered light) and the living body.
  • the object is to capture the light from the biological fine object M, image the interference fringes with the reference light, and measure the number of the biological fine object M.
  • the object light may be any case.
  • the living body fine matter M is a microorganism or a bacterium in ballast water, and the living body fine matter M is often transparent. Therefore, the object light is mainly transmitted light.
  • the imaging optical system 34 is provided between the transparent tube 1 and the imaging element 32.
  • the imaging optical system 34 includes an objective lens 341 and an imaging lens 342.
  • the imaging element 32 is arranged so that the imaging surface is perpendicular to the optical axis of the imaging optical system 34.
  • An integrating beam splitter 352 is provided on the optical path between the imaging lens 342 and the image sensor 32.
  • the reference light optical system 35 is configured to guide the reference light extracted by the extraction beam splitter 351 to the integration beam splitter 352 by the mirror 353 and to enter the imaging element 32 together with the object light.
  • the reference light optical system 35 is configured to allow the reference light to be incident on the image sensor 32 in an off-axis manner.
  • the off-axis means that the reference light is incident with an angle with respect to the object light instead of the same incident angle as the object light.
  • an off-axis driving mechanism 354 is attached to the mirror 353.
  • the off-axis driving mechanism 354 is a mechanism that changes the mirror 353 from a 45 ° angle to a state inclined by a predetermined angle.
  • the irradiation optical system 33 and the reference light optical system 35 are provided with beam expanders 331 and 355, and the coherent light is used after being expanded to a light beam of a necessary size. It is supposed to be.
  • spatial filters 332 and 356 for noise removal are arranged as necessary.
  • the data processing unit 36 is specifically a computer, and includes a CPU as the arithmetic processing unit 361, a storage unit 362, a printer 363, a display 364, and the like as output units.
  • the image sensor 32 is connected to the data processing unit 36 via an interface, and interference fringe data captured by the image sensor 32 is stored in the storage unit 362 of the data processing unit 36 as hologram data. ing. That is, the system of this embodiment inspects the target water W using digital holography, and recording of the hologram is performed by storing the captured interference fringe data as hologram data in the storage unit of the data processing unit 36. This is done by storing in 362.
  • the storage unit 362 is a storage such as a memory or a hard disk.
  • the data processing unit 36 is installed with software for measuring the number of biological fine objects M in the target water W.
  • the software includes various data used for the measurement program 366 for measuring the number of the biological fine objects M and the measurement program 366. These programs and data are stored in the storage unit 362. When the measurement program 366 is executed by the CPU 361, the number of fine biological objects in the target water W is measured, and this result is output. Hereinafter, an outline of the measurement program 366 will be described.
  • the period for taking out the hologram data is determined by the relationship between the size of the imaging region by the image sensor 32 and the flow velocity in the transparent tube 1.
  • FIG. 4 is a schematic perspective view showing an area (photographing area) of the target water W photographed by one photographing. It is.
  • the object to be imaged is in the transparent tube 1.
  • the transparent tube 1 is formed of four transparent plate-like members, and among these, the plate-like member 11 on the image pickup device 32 side is called an observation plate.
  • the imaging element 32 images the target water W in the transparent tube 1 through the observation plate 11.
  • the optical axis 340 of the imaging optical system is perpendicular to the observation plate 11, and thus the imaging surface of the imaging element 32 is parallel to the observation plate 11.
  • the optical axis 340 of the imaging optical system 34 matches the direction of one side of the square (hereinafter referred to as the depth direction) in the cross-sectional shape of the transparent tube 1. This direction is the direction of the reproduction distance D in image reproduction described later.
  • the imaging surface of the imaging device 32 is an xy plane
  • the xy direction coincides with the length direction of the transparent tube 1 (the direction of the flow of the target water W).
  • the y direction coincides with the height direction of the transparent tube 1.
  • the imaging region by the imaging device 32 is an internal space of the transparent tube 1 and therefore a rectangular parallelepiped box-shaped space region as indicated by R in FIG. Note that the length in the depth direction of the imaging region R is the length in the horizontal direction in the vertical cross section of the transparent tube 1.
  • the image reproduction space is set so that the reproduction distance D is changed by this length.
  • the length of the imaging region R in the width direction (x direction) is determined according to the width of the imaging surface of the imaging element 32 and the magnification of the imaging optical system 34. This length determines the amount of the target water W to be photographed in one photographing, and is an important parameter. Hereinafter, this length is referred to as a photographing width, and is indicated by L in FIG.
  • the photographing width L is, for example, about 0.05 to 100 mm.
  • the length h in the height direction (y direction) of the imaging region R is the height on the inner surface of the transparent tube 1 (hereinafter referred to as imaging height).
  • a planar region having the photographing width L and the photographing height h is a region that the image sensor 32 expects in one photographing.
  • this planar area is referred to as one frame area.
  • the imaging optical system 34 is designed to reliably anticipate one frame region according to the position and size of the imaging surface of the imaging device 32.
  • the imaging optical system 34 is desirably a telecentric, particularly an object-side telecentric optical system, so that the lateral magnification does not change in the depth direction of the imaging region R.
  • the outline of the imaging region R in one imaging is indicated by a solid line.
  • the target water W is successively sent to the transparent pipe 1 through the pipe 100 and flows.
  • a region of the target water W to be photographed in the next photographing is indicated by a broken line in FIG.
  • the image pickup device 32 is configured to perform one shooting at a cycle of L / V. More precisely, the image pickup device 32 takes a picture with its own frame period, but for the actual calculation of the number of living body fine objects, the output of the image pickup element 32 is taken out with a cycle of L / V and taken out.
  • the number of living body fine objects M is measured as the number confirmed by one shooting of output (hologram data).
  • this cycle is referred to as an imaging cycle.
  • the flow velocity V in the transparent tube 1 is sufficiently faster than the moving speed.
  • the flow velocity V is, for example, about 0.01 mm / s to 10,000 mm / s
  • the imaging cycle is, for example, about 1 Hz to 1000 Hz.
  • the measurement program 366 measures the biological micro object M with respect to the hologram data output for each imaging cycle.
  • hologram data output in one shooting is referred to as a data set.
  • Each data set may be used by the measurement program 366 as it is output from the image sensor 32, or may be temporarily stored in the storage unit 362, and the measurement program 366 may be read from the storage unit 362 and used.
  • each data set is temporarily stored in the storage unit 362, it is stored so that the photographing order can be identified for each data set as in a database format.
  • the measurement program 366 will be described on the assumption of the above points. First, the entire measurement program 366 will be schematically described with reference to FIG. FIG. 5 is a flowchart showing an outline of the measurement program 366. As shown in FIG. 2, the measurement program 366 includes a reproduction calculation module, a reproduction surface extraction module, an identification counting module, an output module, and the like as subprograms.
  • the measurement program 366 finally confirms whether or not the biological fine object M exists in the entire imaging region R shown in FIG. 4 for one data set, and identifies and counts the presence of the biological fine object M in the hologram reproduction result. Based on. At this time, the measurement program 366 performs data processing since the reproduction distance D is not changed by a predetermined short distance (pitch) in the depth direction.
  • the pitch of the reproduction distance in the depth direction is referred to as a reproduction distance pitch.
  • the reproduction distance pitch ⁇ D is determined according to the size of the biological fine matter M to be detected, but is generally about 0.1 ⁇ m to 10 mm.
  • FIG. 6 is a schematic perspective view showing the reproduction calculation module.
  • the reproduction calculation module is a module for calculating complex amplitude data of an image reproduction space (each reproduction plane) as an image reproduction preparation operation for one data set. Although this point is not significantly different from the reproduction of normal hologram data, the outline will be described with reference to FIG.
  • the hologram surface is a surface on which the hologram exists, but here is the position of the imaging surface of the imaging device 32.
  • the reproduction surface is parallel to the hologram surface as shown in FIG.
  • the hologram data output from the image sensor 32 is a light intensity signal (light intensity distribution) in each pixel. Therefore, as shown in FIG. 6, the hologram data 321 can be defined as g (x, y). However, as described above, the hologram data 321 is interference fringes (partly enlarged in FIG. 6 and indicated by reference numeral 322) formed by the object light and the reference light, and the pattern of the interference fringes 322 is g ( x, y). As shown in FIG. 5, in order to simplify the calculation, the reproduction surface is an XY plane that shares the hologram surface and the Z axis. The distance D between the hologram surface and the reproduction surface is the reproduction distance described above and correlates with the distance in the depth direction described above in the imaging region R.
  • Equation 1 The complex amplitude distribution on the reproduction surface can be expressed as Equation 1 according to Kirchhoff's diffraction integral equation.
  • is the wavelength of the reproduction light
  • k is the wave number.
  • Equation 3 if the integral is regarded as a Fourier transform and transformed, Equation 4 is obtained.
  • Equation 4 the parentheses of F indicate Fourier transform.
  • x and y are output values from each pixel on the imaging surface, and
  • G (X, Y) is obtained by performing a discrete Fourier transform.
  • the data G (X, Y) is a representation of the optical information of each point on the reproduction surface in the form of a complex number (complex amplitude data). Therefore, if the calculation in the middle is omitted, this data G (X, Y) is expressed by the following Equation 5.
  • the result of the reproduction calculation is complex amplitude data at each point on the reproduction surface, and the pitch depends on the pitch (pixel pitch) of the hologram data 321 as the original data.
  • 2 at each coordinate point is calculated from Equation 5 and output.
  • a deviation angle ⁇ at each coordinate point is calculated and output.
  • the output is an amplitude value distribution (amplitude value map) and a phase value distribution (phase value map) on the playback surface.
  • an image of the target object is displayed in it. Will appear.
  • the object to be imaged is water, an image thereof appears when the living body fine object M exists.
  • the measurement program 366 first reads the first data set and stores it in a memory variable. “Reading a data set” means that when the output from the image sensor 32 is used as it is, the hologram data output at the timing immediately after the execution of the program is acquired from the image sensor 32 and used as a memory variable on the measurement program. Is to store. When each data set is stored in the storage unit 362, the first data set is read and stored in a memory variable. As shown in FIG. 5, the measurement program executes the reproduction calculation module for the first data set, and stores the execution result in a memory variable. The execution result of the reproduction calculation module is a collection of complex amplitude data on each reproduction plane as described above.
  • the measurement program executes a reproduction surface extraction module.
  • the reproduction surface extraction module is a module that determines whether or not a reproduction image of the biological fine object M exists, and executes the identification counting module as a subprogram when it is determined that the reproduction image exists.
  • the execution result of the identification counting module is the ID of the confirmed biological fine object M and the number thereof, and these are temporarily stored in the memory variable.
  • the measurement program executes the reproduction surface extraction module in the same manner for the next reproduction surface, and executes the identification counting module for the reproduction surface where it is determined that the biological fine object M exists.
  • the execution results of the identification counting module are summed up for each ID (in this embodiment, the ID of the sample data) that specifies what kind of biological fine object is the execution results up to that point.
  • the reproduction surface extraction module and the identification counting module as its subprogram are executed for all reproduction surfaces, the processing for the data set is completed, and the measurement program reads the next data set.
  • the processing for all the extracted reproduction planes is completed, the processing for that data set is completed, and the counting program captures the next data set.
  • the reproduction calculation module, the reproduction surface extraction module, and the identification counting module in the case where it is determined that there is the biological fine object M are sequentially executed. After performing such processing up to the last data set, the output module is executed. The execution of the output module ends the measurement program.
  • FIG. 7 is a perspective view schematically showing the reproduction surface extraction module
  • FIG. 8 is a perspective view schematically showing the identification counting module
  • FIG. 9 is a flowchart showing an outline of the identification counting module.
  • Extraction of the reproduction surface is not particularly essential, but is provided as a suitable configuration for inspecting a large amount of water in a short time.
  • an image of each reproduction surface can be obtained by changing the reproduction distance. Therefore, a three-dimensional image of the entire photographing region R can be obtained by sequentially changing the reproduction distance with the reproduction distance pitch.
  • the reproduction distance pitch is determined according to the size of the biological fine object M to be detected, the resolution of the imaging optical system 34, and the like.
  • the image reproduction space is indicated as R ′.
  • R ′ an image of the entire imaging region R is reproduced.
  • This module is a reproduction surface extraction module.
  • the average luminance value of one entire reproduction surface is calculated and extracted depending on whether the difference with respect to the reference luminance value is more than the limit. It is to judge whether.
  • the luminance value here means the brightness of the reproduced image on the screen, and is the above-described complex amplitude data (G (X, Y)).
  • the target water W is assumed to have a constant concentration (light transmittance) as water, except that the biological fine matter M may be included.
  • the intensity of coherent light at the time of holographic photography and the illumination conditions of the place where the apparatus is placed are always constant. Therefore, when the hologram is captured and reproduced, the luminance value of the water portion image is basically constant. When an image of the biological fine object M is taken and reproduced, the luminance value changes at that portion. Therefore, when a certain reproduction surface P includes the image of the biological fine object M, the average luminance value of the reproduction surface P changes compared to the case where the reproduction surface P does not include the image of the biological fine object M. In general, coherent light is scattered and absorbed by the biological fine object M.
  • the average luminance value of the reproduction surface P including the image of the biological fine object M is a reproduction in which no image of the biological fine object M exists. It is lower than the surface. Accordingly, whether or not the average luminance value of the image of the reproduction surface that does not include the image of the biological fine object M is checked in advance and set as a reference value (hereinafter referred to as a reference luminance value), and is compared with this value to determine whether to extract Judging.
  • a reference luminance value hereinafter referred to as a reference luminance value
  • the luminance value either the amplitude or the phase of the complex amplitude data (G (X, Y)) is used.
  • the phase data is used as a luminance value.
  • the fine biological matter M detected by the water quality inspection system of the embodiment is often an underwater plankton such as a daphnia, and is a fine particle that is almost transparent and has a certain thickness.
  • phase the wavefront distortion when passing through the transparent body of microorganisms is often captured and the image is reproduced, but such wavefront distortion is likely to appear as a change in phase data. It is desirable to set a reference luminance value for and compare.
  • the identification counting module is a subprogram that is called and executed when the average luminance value of the reproduction surface is the reference luminance value when the reproduction surface extraction module is executed. If the average luminance value on the reproduction surface is equal to or higher than the reference luminance value, the identification counting module is not executed.
  • the identification counting module is a module that analyzes the reproduced image on the reproduction plane P extracted as the average luminance value is less than the reference luminance value, and calculates the number of living body fine objects M.
  • the identification counting module performs more accurate counting, that is, the viewpoint of not erroneously counting non-biological matter M, and further identifying (identifying) what kind of fine biological matter M is. A configuration optimized from the viewpoint of doing is adopted.
  • the identification counting module extracts a data area that is determined to be a part of the image of the biological fine object M, and compares the extracted data area with the sample data to determine the presence of the biological fine object M. Confirmation and identification of the living body fine object M are performed. Several methods can be considered for the comparison with the sample data. In this embodiment, the comparison is performed by comparing the image data. As shown in FIG. 9, the identification counting module reproduces an image with the extracted complex amplitude data of the reproduction surface. In this case, either amplitude or phase may be used, but an image is reproduced with amplitude data as an example. The reproduced image data is so-called image data. As shown in FIG. 8, the identification counting module processes this image data, identifies and extracts a region that is determined to show an image of the biological fine object M. This area is hereinafter referred to as an extraction area. Image data of the extraction area is indicated by I in FIG.
  • the identification counting module reads the sample data I ′ one by one from the storage unit 362 and compares it with the image data I of the extraction region. Then, the degree of coincidence between the two is determined.
  • the degree of match is quantified in the range of 0 to 100%, and the determined degree of match is temporarily stored in a memory variable.
  • the degree of coincidence is determined by the number of overlapping areas of the two image data I and I ′.
  • the image data I in the extraction area is appropriately enlarged or reduced to make the size the same as the sample data I ′, or the image data I in the extraction area is rotated to make a determination in a state where the degree of matching is the highest. .
  • the identification counting module determines whether or not the degree of coincidence is equal to or greater than a certain threshold value, and if it is equal to or greater than the threshold value, the image data I in the extraction region represents an image of the sample data (an image of the biological fine object M). And that fact is assigned to a memory variable.
  • the number of sample data whose degree of match is greater than or equal to the threshold value is usually 0 or 1, but there may be two or more, so the identification counting module is the last sample data Comparison is performed up to I ′, and when there are a plurality of matching degrees equal to or greater than the threshold, the sample ID of the sample data with the highest matching degree is updated and stored in the memory variable.
  • the memory variable is updated by adding 1 to the number of matches for the sample ID of the sample data having the highest matching degree that is equal to or higher than the threshold value.
  • the memory variable here is a matrix variable (hereinafter referred to as a match number storage variable), and is a variable for substituting the number of detections for each sample data ID (hereinafter referred to as a sample ID) (initial value is zero).
  • the image data I in the extraction area is determined for one extracted reproduction plane.
  • the number of extraction regions extracted on one reproduction plane P is only one.
  • each extraction region is similarly compared with the sample data I ′, and the degree of match is If it is greater than or equal to the threshold value, the judgment result is substituted into the match number storage variable and updated. This completes the identification counting module for one reproduction plane P.
  • the reproduction surface extraction module also ends. Since the measurement program 366 has completed the process of one example for one data set, the reproduction distance pitch is increased by ⁇ D, and similarly the reproduction calculation module, reproduction surface extraction determination module, and reproduction surface P are extracted.
  • the identification counting modules are programmed to execute sequentially. When the processing on the last reproduction surface is completed for one data set, the processing for that data set is completed. During this time, every time the degree of match exceeds the threshold value, the value of the number of detected sample IDs of the sample data is added to the match number storage variable. Note that the last reproduction plane is a reproduction plane whose reproduction distance is the final value, and is the reproduction plane having the longest reproduction distance in the set image reproduction space.
  • the measurement program 366 performs similar data processing for the next data set.
  • the measurement program 366 executes the output module and ends the program.
  • the data from the image sensor 32 is used as it is as the last data set, all the target water W to be inspected in one inspection flows in the transparent tube 1 and flows in the transparent tube 1. It becomes the data set immediately before the disappearance.
  • the flow detection sensor 10 is provided in the transparent tube 1 as shown in FIG. 1, and when the flow detection sensor 10 is turned off, the inspection is completed, and the measurement program 366 is programmed to end. Further, when each data set is stored in the storage unit 362, when the process is completed for the last data set stored in the storage unit 362, the measurement program 366 executes the output module and ends.
  • the playback distance D changes with the pitch ⁇ D, but there is a problem that the brightness of the playback image changes periodically when the playback distance is converted. This problem can be solved by using the technique disclosed in JP2013-148471A.
  • the output module displays the execution result of the measurement program 366 on the display 364.
  • FIG. 10 is a diagram schematically illustrating an example of the execution result of the measurement program 366 by the output module. As shown in FIG. 10, the output module displays the name and number of biological fine objects M whose existence has been confirmed, together with information such as program execution date and time (inspection date and time), total flow rate (total amount of inspection), and the like. It has become.
  • the reproduction calculation module and the reproduction surface extraction module may be performed in parallel (that is, processed in parallel). That is, after obtaining complex amplitude data for a playback surface of a certain playback distance D, a playback surface extraction module (identification counting module that can be executed as a subprogram thereof) is executed for the playback surface, It may be programmed to perform playback calculations.
  • the water quality inspection system of the embodiment includes a control unit 4 that controls the whole.
  • the control unit 4 controls each part of the system such as the water supply system 2 and the detection system 3.
  • This control includes opening / closing control of the valves 103 to 105 provided in the water supply system 2.
  • an inflow control valve 103 is provided on the inflow pipe 101 between the water supply side tank 21 and the transparent pipe 1.
  • An outflow control valve 104 is provided on the outflow pipe 102 between the transparent pipe 1 and the water-receiving side tank 22.
  • the pipe is branched upstream of the outflow control valve 104, and a bypass pipe (hereinafter, bypass pipe) 106 is provided.
  • a bypass valve 105 is provided in the bypass pipe 106.
  • the bypass pipe 106 is connected to the water supply side tank 21, and returns the target water W exiting the transparent pipe 1 to the water supply side tank 21.
  • a sequence control program is installed in the control unit 4.
  • the sequence control program first opens the inflow control valve 103 with the outflow control valve 104 closed and the bypass valve 105 open, and the pump 23 is activated in this state.
  • the target water W flows through the transparent pipe 1 and returns to the water supply side tank 21 through the bypass pipe 106.
  • the sequence control program sends a measurement start control signal to the detection system 3 when it is confirmed from the output of the anemometer 24 that a predetermined flow velocity is secured.
  • the coherent light source 31 in the detection system 3 operates, the operation of the image sensor 32 is also started, and the number measurement of the biological fine object M by the detection system 3 is disclosed.
  • the detection system 3 has a control unit (not shown) inside, and when it is confirmed that the output of the coherent light source 31 is stable at a predetermined value and the image sensor 32 is operating correctly, the measurement program 366 Execute.
  • the sequence control program opens the outflow control valve 104 at a predetermined timing according to the flow velocity and simultaneously closes the bypass valve 105. Accordingly, the target water W flows toward the water receiving side tank 22 and is stored in the water receiving side tank 22.
  • the timing at which the outflow control valve 104 is opened is the timing at which the target water W reaches the outflow control valve 104 as much as the number of the biological fine objects M is measured by the measurement program 366 of the detection system 3. For this reason, the target water W in which the number measurement of the biological fine matter M has been completed accumulates in the water receiving side tank 22.
  • the sequence control program is programmed to control each unit in the sequence as described above.
  • the target water W is stored in the water supply side tank 21 in advance. At this time, in order to remove relatively large dust or the like, there is a case where it is previously filtered. In addition, when turbidity is large, precipitation may be performed in advance to remove turbidity.
  • the target water W is accommodated in the water supply side tank 21 in a state where dust and turbidity are removed as necessary, and the operation of the system is started.
  • the system performs detection, identification, and number calculation of the biological fine matter M in the target water W by the operation as described above, and displays the result on the display 364.
  • the operator prints the inspection result with the printer 363 as necessary.
  • the inspected target water W is stored in the water-receiving side tank 22.
  • the target water W is ballast water
  • the target water W in the water-receiving side tank 22 is discharged to the sea as it is or if it is not a problem in the inspection result, or is stored in the ballast tank of the ship.
  • the inside of the pipe 1 through which the target water W flows is photographed, and measurement is performed on the spot based on the photographed data. It is suitable for testing a large amount of water in a short time. And since imaging
  • the hologram reconstructed image is a three-dimensional image as described above, and the system of the embodiment captures an area having a depth inside the transparent tube 1 and performs one time on the three-dimensional image reconstructing space.
  • the number of living body fine objects M is measured by photographing.
  • the normal two-dimensional imaging focuses on somewhere in the depth direction in the transparent tube. Even when imaging is performed and imaging is performed using an imaging optical system having a deep focal depth, the depth of the transparent tube cannot be increased so much.
  • the number calculation based on the analysis of imaging data cannot be performed unless the sectional area of the transparent tube is reduced and the distance in the depth direction is considerably reduced. That the cross-sectional area of the transparent tube is small means that the amount of inspection water that can be imaged at a time is small, and is not suitable for applications in which a large amount of target water W such as ballast water is inspected in a short time. .
  • the number can be calculated by one photographing in the three-dimensional space. It is very suitable for inspecting water W in a short time.
  • the hologram data (one data set) obtained by one imaging is not analyzed on all reproduction planes for each reproduction distance pitch ⁇ D, but the image of the biological fine object M is obtained. Only the reproduction surface P determined to be present is extracted and analyzed. For this reason, the time required for the inspection can be further shortened.
  • an amplitude value map or a phase value map is generated from complex amplitude data (G (X, Y)) for each reproduction distance pitch ⁇ D, and an image is analyzed for either of them to create a fine living body.
  • the measurement program 366 includes a reproduction surface extraction module, and only the reproduction surface that is determined to have an image of the biological fine object M is extracted and analyzed, so that the overall time required for data processing is greatly increased. Reduced to In the above-described embodiment, when the average luminance value on the reproduction surface is less than the standard luminance value, the reproduction surface P is extracted as an image of the biological fine object M may be included, but other configurations may be possible.
  • the determination may be made based on whether or not the change width of the luminance value in the reproduction plane (difference between the maximum value and the minimum value of the luminance value) is a certain value or more. In the case of a certain value or more, an image of the biological fine object M can be included.
  • specimen data for confirmation and identification of the presence of the biological fine matter M also shortens the time required for measurement, erroneous detection (counting something that is not the biological fine matter M, It is useful to prevent that it is mistakenly identified as the biological fine matter M.
  • a configuration in which a reconstructed image is displayed on a display and appropriately enlarged or the like is performed by an operator visually is also conceivable.
  • such a configuration takes too much time and is prone to errors.
  • analysis is performed on software by comparing sample data, there is no such problem.
  • it is determined whether or not the reproduced image is an image of the biological fine object M by comparing the image data I and I ′.
  • the software configuration can be simplified. For example, when processing the image data of the extraction region as long as it can be distinguished from mere dust, it is possible to determine whether or not it is a biological fine object M only from the contour of the image. Most living body fine objects M have complicated outlines compared to dust fragments (for example, plastic garbage fragments), and the complexity of the outline is evaluated to determine whether the object is dust or the living body fine objects M. You can also.
  • the life / death discrimination of the fine living body M is also possible.
  • many underwater microorganisms such as zooplankton, when they become dead bodies, have a shape (crumpled shape) that is crushed by water pressure.
  • the shape is often swollen by internal body fluid. Therefore, when a hologram image of an underwater microorganism is reproduced with phase data, the distortion of the wavefront becomes larger in the case of a dead body. That is, the state of wavefront distortion can be determined by image reproduction based on phase data, and life / death determination can be performed according to the degree.
  • microorganisms have a characteristic shape that is different from that when they are alive, and register specimen data separately from those that are alive about the shape of such corpses, In some cases, it is possible to make a life-and-death decision based on the comparison.
  • the flow rate in the transparent tube 1 was constant, it may not be constant.
  • the flow of the target water W may be intermittent, and the target water W may be in a stopped state in the transparent tube 1 when photographing in the detection system 3.
  • the imaging cycle has been described as the imaging width L / flow velocity V, but there may be a longer cycle.
  • the volume Q of the imaging region ⁇ the number of imaging times T is the total amount of the inspected target water W.
  • the inspected amount (Q ⁇ T) is smaller than the total amount of the target water W that has flowed through the pipe 1 and the total amount is not inspected, but the total amount of the target water W that has flowed is Since it can be determined by the anemometer 24 or the like, the total number of the biological fine objects W is calculated as an estimated value by proportional calculation.
  • the imaging cycle may be synchronized with the coherent light source 31.
  • a pulsed laser light source may be employed as the coherent light source 31 and the imaging cycle may be synchronized with the pulse cycle.
  • even a continuous oscillation type is sometimes pulsed by a chopper and the imaging cycle is synchronized with this.
  • the entire transparent tube 1 is transparent. However, it is sufficient that the transparent tube 1 can radiate coherent light and capture object light from the inside, and a part thereof is transparent like an observation window. In some cases, it is used. In addition, water may be supplied through a pipe that is all transparent.
  • the water quality inspection system of the embodiment may be installed on the discharge side of the ballast water treatment apparatus and used for the purpose of checking the treated ballast water.
  • the inspected target water W is temporarily stored in the water-receiving side tank 22, but in the case of ballast water, it may be discharged into the sea as it is or may be loaded into the ballast tank as it is. obtain.
  • the system of the said embodiment was a system which test
  • this invention should be used suitably for the test
  • it can also be used for the inspection of water used in seafood aquaculture facilities. For example, it can be suitably used to check for problematic parasites and bacteria.
  • the target water W is ballast water
  • the biological microorganisms can be various zooplanktons, various phytoplanktons, eggs and larvae of various seafood, various bacteria, various algae, and the like.
  • the water quality inspection system of the present invention can also be used for bio research and the like, and the living body fine matter M may be a biological sample or a living cell dissolved in the inspection water.

Abstract

[Problem] To provide a practical water quality inspection system that makes it possible to rapidly measure the quantity of microorganisms included in a large volume of target water while the water is flowing through piping. [Solution] The interior of transparent piping 1 through which target water W is made to flow is irradiated with coherent light and an interference fringe of object light from within the piping 1 and reference light is captured by an imaging element 32. A data processing unit 36 reproduces an image for hologram data acquired for each of imaging cycles set in accordance with the flow rate and the width of an imaging area and performs identification and quantitative measurement of an image of microorganisms M by comparing with sample data at the time of image reproduction.

Description

水質検査システムWater quality inspection system
 この出願の発明は、水質検査システムに関し、特に水中微生物のような生体微細物の数を計測することが必要な水質検査において使用されるシステムに関するものであって、船舶のバラスト水の検査のように大量の水を短時間に検査しようとする際に好適に使用されるシステムに関するものである。 The invention of this application relates to a water quality inspection system, and more particularly to a system used in a water quality inspection that requires the measurement of the number of biological fines such as aquatic microorganisms. It is related with the system used suitably when it is going to test | inspect water of this for a short time.
 環境意識の高まりを背景として、各種水関連の技術に注目が集まっている。水関連の技術には、水の浄化システムのように清浄な水を作る技術の他、水の品質をチェックする技術、即ち水質検査技術があり、この分野についても盛んに研究や開発がされている。
 このうち、ある種の水質検査においては、水中微生物のような生体微細物を検査することが必要になる場合があり、どのような生体微細物がどの程度の個数で存在しているかを知る必要がある場合がある。この点を、船舶のバラスト水の検査を例にして説明する。
Due to the growing environmental awareness, attention is being focused on various water-related technologies. Water-related technologies include technologies for producing clean water, such as water purification systems, as well as technologies for checking water quality, that is, water quality inspection technologies. This field is also actively researched and developed. Yes.
Of these, certain types of water quality testing may require testing of biological microscopic materials such as underwater microorganisms, and it is necessary to know what types of biological microscopic materials are present and how many. There may be. This point will be described by taking an example of inspection of ballast water of a ship.
 バラスト水は、船舶のバラストとして用いられる水のことで、無積載で出港するとき、その出港地で港の海水などをバラストタンクに積み込んでいる。そして、寄港先で荷物を搭載する際に排出される。その際、そこに含まれている水生生物が外来種として生態系に影響を与える問題が指摘されている
 このようなことから、バラスト水管理条約(正式名称:船舶のバラスト水および沈殿物の規制および管理のための国際条約)が締結されており、日本も2014年に批准している。条約の正式発効には、批准国30カ国以上で批准国の商船船腹量が総トン数で世界の商船船腹量の35%以上となることという要件が課されているが、来年(2015年)にもこれら要件が達成されると見込まれており、条約の発効に向けた動きが加速している。
Ballast water is water used as a ballast for ships. When leaving a port without loading, the seawater of the port is loaded into the ballast tank at the port of departure. And it is discharged when loading luggage at the port of call. In doing so, it has been pointed out that the aquatic organisms contained therein have an impact on the ecosystem as alien species. For this reason, the Ballast Water Management Convention (official name: regulation of ballast water and sediment on ships) And an international treaty for management) has been concluded, and Japan ratified it in 2014. The official entry into force of the treaty imposes a requirement that in more than 30 ratifying countries, the volume of merchant vessels in the ratifying countries will be 35% or more of the total volume of merchant vessels in the world in the next year (2015). These requirements are expected to be met and the move towards the entry into force of the Convention is accelerating.
 その一方、条約の義務を履行するためには多くの技術的な課題が存在しており、それら多くが未解決なままとなっている。そのような未解決な課題の一つに、バラスト水の検査技術がある。条約のセクションDには、排出して良いバラスト水の基準として、
1. 最小径50μm以上の生物(主に動物プランクトン):1立方メートル中の生存個体数が10未満、
2. 最小径10μm以上50μm未満の生物(主に植物プランクトン):1ミリリットル中の生存個体数が10未満、
等の基準が定められている。したがって、基準を満たすようバラスト水を処理する処理技術が必要であり、また処理された水がこのような基準を満足しているか検査する技術が必要となる。
On the other hand, there are many technical challenges to fulfill the treaty obligations, many of which remain unresolved. One such unresolved issue is ballast water testing technology. Section D of the Convention includes standards for ballast water that may be discharged:
1. Living organisms with a minimum diameter of 50 μm or more (mainly zooplankton): the number of surviving individuals in a cubic meter is less than 10,
2. Organisms with a minimum diameter of 10 μm or more and less than 50 μm (mainly phytoplankton): the number of surviving individuals in 1 ml is less than 10,
Standards such as are established. Therefore, a treatment technique for treating the ballast water so as to satisfy the standard is necessary, and a technique for inspecting whether the treated water satisfies such a standard is necessary.
 しかしながら、バラスト水のような大量の水について微生物の生存個体数を計測できる実用的な技術は、現在までのところ開発されていない。このような水中微生物の検査技術としては、培養法や染色法等が知られている。培養法では、シャーレの上に形成された寒天培地に検査対象の水(以下、対象水という。)を塗沫し、約1日、一定の温度条件で放置させることにより寒天培地上で増殖して形成された微生物のコロニーを判別し、コロニーの数を数えて間接的に対象水中の微生物の生存数とする。
 また、染色法では、微生物の呼吸活性に反応する試薬を対象水に含ませる。この試薬を取り込んだ微生物が呼吸することにより微生物が染色され、染色された微生物を顕微鏡等により計数することにより対象水中の微生物の個数を計測する。
However, a practical technique capable of measuring the number of living microorganisms in a large amount of water such as ballast water has not been developed so far. As such an inspection technique for underwater microorganisms, a culture method, a staining method, and the like are known. In the culture method, water to be examined (hereinafter referred to as “target water”) is smeared on an agar medium formed on a petri dish and allowed to stand on the agar medium for about one day under a constant temperature condition. The microorganism colonies formed are discriminated, and the number of colonies is counted to indirectly determine the number of living microorganisms in the target water.
In the staining method, a reagent that reacts with the respiratory activity of microorganisms is included in the target water. The microorganisms that have taken in this reagent are stained by respiration, and the number of microorganisms in the target water is measured by counting the stained microorganisms with a microscope or the like.
 これらの手法は、対象水をサンプルとして採取し、実験室等に持ち込んで検査する手法である。バラスト水の処理や管理の現場を考慮すると、このような手法は実用的とは到底いえず、採用はほぼ不可能であると思われる。即ち、既に幾つかのバラスト水処理装置が承認を受けているが、これら処理装置は、船舶に搭載され、バラスト水を処理した上で排出することが想定されている。このようなバラスト水の管理の現場を想定すると、船舶内のバラスト水処理装置で処理されたバラスト水の排出経路(配管)上で残存微生物の個数を計測できることが望ましい。つまり、バラスト水を船舶に積み込む際やバラスト水を排出する際に、流入又は流出するバラスト水をその場で検査し、微生物の生存個数を計測できるシステムが実用に耐え得る有用なシステムとして期待される。 These methods are methods in which the target water is collected as a sample and brought into a laboratory or the like for inspection. Considering the field of ballast water treatment and management, such a method is not practical and seems to be almost impossible to adopt. That is, although some ballast water treatment apparatuses have already received approval, it is assumed that these treatment apparatuses are mounted on ships and discharged after treating ballast water. Assuming such a ballast water management site, it is desirable that the number of remaining microorganisms can be measured on the discharge path (pipe) of the ballast water treated by the ballast water treatment device in the ship. In other words, when loading ballast water into a ship or discharging ballast water, a system that can inspect ballast water flowing in or out on the spot and measure the number of living microorganisms is expected as a useful system that can withstand practical use. The
 以上は船舶バラスト水管理の分野の課題であったが、これ以外にも、例えばプールや海水浴場、温泉施設等での水質検査でも、サンプリング等を特段必要とせずその場で検査できるシステムが提供されれば、その有用性は極めて高いと思われる。対象水が流れているその場で検査ができれば、大量の対象水を短時間に検査することが可能になるし、全量検査(例えばプールに入れる水の全量検査)も可能になる。 The above is a problem in the field of ship ballast water management. In addition to this, for example, even in water quality inspections at pools, beaches, hot spring facilities, etc., a system that can be inspected on the spot without special sampling is provided. If so, its usefulness seems to be extremely high. If inspection can be performed on the spot where the target water is flowing, a large amount of target water can be inspected in a short time, and a total amount inspection (for example, a total amount inspection of water to be put in a pool) can be performed.
 この出願の発明は、上記の点を考慮して為されたものであって、大量の対象水についてその水が配管中を流れているその場で短時間に含有生体微細物個数を計測できる実用的なシステムを提供することを解決課題とするものである。
 尚、この出願の発明において、計数される対象物は、生体ではあるものの、必ずしも生物(微生物)には限られず、細菌類やある種の細胞の場合もある。したがって、これらを総称して「生体微細物」と呼び、その数を計測するシステムを提供するものである。
The invention of this application has been made in consideration of the above points, and can be used to measure the number of biosubstances contained in a short period of time for a large amount of target water while the water is flowing in the pipe. It is a problem to provide a practical system.
In the invention of this application, the object to be counted is a living body, but is not necessarily limited to a living organism (microorganism), and may be bacteria or a certain kind of cell. Accordingly, these are collectively referred to as “biological fine objects” and a system for measuring the number is provided.
 上記課題を解決するため、この出願の請求項1記載の発明は、対象水中の生体微細物の個数を計測する水質検査システムであって、
 配管を通して対象水を送る送水系と、
 送水系により配管を通して送られる対象水中の生体微細物の個数を検出する検出系とを備えており、
 配管は透明部を有しており、
 検出系は、配管内を流れる対象水の画像を透明部を通して撮像することにより生体微細物の個数を検出するものであって、
 検出系は、
 コヒーレント光を放射する光源と、
 撮像素子と、
 コヒーレント光を透明部を通して配管内に照射し、照射された配管内の対象水からの光である物体光を透明部を通して撮像素子に導くとともに、物体情報を含まないコヒーレント光を参照光として撮像素子に導き、撮像素子の撮像面で干渉させて干渉縞を撮像素子に撮像させる光学系と、
 撮像素子が撮像した干渉縞のデータであるホログラムデータを処理するデータ処理部とを備えており、
 データ処理部は、送水系による配管内の送水速度と撮像素子による撮像領域のうち送水方向の長さとに応じた周期のホログラムデータを取得するものであり、
 データ処理部は、取得した各ホログラムデータを再生することで生体微細物の個数を数えるものであって、各ホログラムデータについての像再生の際に生体微細物の像であると判断されたものの個数を数えるデータ処理を行うものであるという構成を有する。
 また、上記課題を解決するため、請求項2記載の発明は、前記請求項1の構成において、前記データ処理部は、どのような生体微細物の像であるかという同定を行って前記個数を数えるデータ処理を行うものであるという構成を有する。
 また、上記課題を解決するため、請求項3記載の発明は、前記請求項1又は2の構成において、前記データ処理部は、前記各ホログラムデータを再生した際、設定された再生距離ピッチ毎に異なる再生距離の各再生面について当該再生面の輝度値に従って生体微細物の像を含み得るか否かを判断し、含むと判断される再生面を抽出してその再生面における再生像について前記生体微細物の像であると判断されたものの個数を数えるデータ処理を行うものであるという構成を有する。
 また、上記課題を解決するため、請求項4記載の発明は、前記請求項3の構成において、前記輝度値は、前記各ホログラムデータの再生計算した結果のうちの位相値であるという構成を有する。
 また、上記課題を解決するため、請求項5記載の発明は、前記請求項1乃至4いずれかの構成において、前記データ処理部は、前記各ホログラムデータを再生した際に得られる像について、生体微細物の標本データと比較することで生体微細物の像であるか否かを判断し、その結果に従って前記個数を数えるものであるという構成を有する。
 また、上記課題を解決するため、請求項6記載の発明は、前記請求項1乃至5いずれかの構成において、前記データ処理部は、前記生体微細物の像について生死判別をした上で生存しているものの個数を数えることが可能となっているという構成を有する。
 また、上記課題を解決するため、請求項7記載の発明は、前記請求項1乃至6いずれかの構成において、前記光学系には、配管内にコヒーレント光を照射する照射用光学系と、配管内の対象水からの物体光を捉える撮像用光学系とが含まれており、撮像用光学系は、照射用光学系でコヒーレント光が照射された配管内からの透過光を捉えて前記撮像素子に入射させるものであるという構成を有する。
 また、上記課題を解決するため、請求項8記載の発明は、前記請求項1乃至7いずれかの構成において、前記対象水は船舶のバラスト水であって、バラスト水検査システムであるという構成を有する。
In order to solve the above-mentioned problem, the invention according to claim 1 of this application is a water quality inspection system for measuring the number of biological fines in target water,
A water supply system that sends the target water through a pipe;
And a detection system that detects the number of biological fines in the target water sent through the piping by the water supply system,
The pipe has a transparent part,
The detection system detects the number of living body fine objects by taking an image of the target water flowing in the pipe through the transparent part,
The detection system is
A light source that emits coherent light;
An image sensor;
The coherent light is irradiated into the pipe through the transparent part, the object light that is light from the target water in the pipe is guided to the image sensor through the transparent part, and the coherent light not including object information is used as the reference light. An optical system that causes the imaging device to image interference fringes by causing interference on the imaging surface of the imaging device, and
A data processing unit that processes hologram data that is data of interference fringes imaged by the image sensor;
The data processing unit acquires hologram data with a period according to the water supply speed in the pipe by the water supply system and the length in the water supply direction in the imaging region by the image sensor,
The data processing unit counts the number of living body fine objects by playing back each acquired hologram data, and the number of objects determined to be images of living body fine objects at the time of image reproduction for each hologram data It is configured to perform data processing for counting.
In order to solve the above problem, the invention according to claim 2 is the configuration according to claim 1, wherein the data processing unit identifies what kind of biological microscopic object is the image and determines the number. It has a configuration that performs data processing for counting.
In order to solve the above problem, the invention according to claim 3 is the configuration according to claim 1 or 2, wherein the data processing unit reproduces each hologram data for each set reproduction distance pitch. For each reproduction plane having a different reproduction distance, it is determined whether or not an image of a biological fine object can be included according to the luminance value of the reproduction plane, the reproduction plane determined to include is extracted, and the biological image is reproduced on the reproduction plane It has a configuration in which data processing is performed to count the number of objects determined to be fine objects.
In order to solve the above-mentioned problem, the invention according to claim 4 has a configuration in which, in the configuration of claim 3, the luminance value is a phase value of a result of reproduction calculation of each hologram data. .
In order to solve the above-mentioned problem, the invention according to claim 5 is the structure according to any one of claims 1 to 4, wherein the data processing unit uses a living body for an image obtained when the hologram data is reproduced. By comparing with specimen data of fine objects, it is determined whether or not the image is a fine biological object, and the number is counted according to the result.
In order to solve the above-mentioned problem, according to a sixth aspect of the present invention, in the configuration according to any one of the first to fifth aspects, the data processing unit is alive after performing life / death discrimination on the image of the biological fine object. It is possible to count the number of items that are present.
In order to solve the above problem, the invention according to claim 7 is the configuration according to any one of claims 1 to 6, wherein the optical system includes an irradiation optical system for irradiating coherent light in the pipe, and a pipe. An imaging optical system that captures object light from the target water inside the imaging optical system, and the imaging optical system captures transmitted light from the inside of the pipe irradiated with coherent light by the irradiation optical system. It has the structure that it is made to inject into.
In order to solve the above-mentioned problem, the invention according to claim 8 is the structure according to any one of claims 1 to 7, wherein the target water is a ballast water of a ship and is a ballast water inspection system. Have.
 以下に説明する通り、この出願の請求項1記載の発明によれば、対象水が流れる配管内を撮影し、その撮影データに基づいてその場で計測が行われるので、バラスト水の検査のように大量の水を短時間に検査するのに適したものになる。そして、撮影はホログラム撮影であってホログラムのデジタル再生(デジタルホログラフィ)を利用して対象水中の生体微細物個数を計測するものであるので、大量の水を短時間に検査するという観点でさらに好適なものとなる。
 また、請求項2記載の発明によれば、どのような生体微細物が存在しているかが個数とともに検出されるので、問題となる生体微細物が存在しているかどうか等のより具体的な検査結果を得ることができる。
 また、請求項3記載の発明によれば、上記効果に加え、1回の撮影で得られたホログラムデータについて再生距離ピッチ毎のすべての再生面で解析を行うのではなく、生体微細物の像が存在すると判断される再生面を抽出して解析を行うので、検査に要する時間をさらに短縮することが可能となる。
 また、請求項4記載の発明によれば、上記効果に加え、再生面の抽出の際の輝度値として位相値を使用するので、水中の生体微細物の検出という目的のためにより適したものとなる。
 また、請求項5記載の発明によれば、上記効果に加え、生体微細物の検出について標本データを使用するので、計測に要する時間を短縮したり、誤検出を防止したりする効果が得られる。
 また、請求項6記載の発明によれば、上記効果に加え、生体微細物の生死判別を検査項目として追加することができるので、生存しているものの個数を知る必要がある用途において好適に使用することができる。
 また、請求項7記載の発明によれば、上記各効果を船舶のバラスト水検査において奏することができる。このため、バラスト水の管理のための条約上の義務を利用する上で極めて有用なものとなる。
As described below, according to the invention described in claim 1 of this application, the inside of the pipe through which the target water flows is photographed, and measurement is performed on the spot based on the photographed data. It is suitable for testing a large amount of water in a short time. Further, since the photographing is hologram photographing and the number of living body fine objects in the target water is measured using digital reproduction (digital holography) of the hologram, it is further preferable from the viewpoint of inspecting a large amount of water in a short time. It will be something.
In addition, according to the invention described in claim 2, since what number of living body fine objects are present is detected together with the number, more specific inspection such as whether or not there are living body minute objects in question. The result can be obtained.
According to the invention described in claim 3, in addition to the above effect, the hologram data obtained by one imaging is not analyzed on all reproduction surfaces for each reproduction distance pitch, but an image of a biological fine object. Since the reproduction surface determined to be present is extracted and analyzed, the time required for the inspection can be further shortened.
Further, according to the invention described in claim 4, in addition to the above effect, the phase value is used as the luminance value at the time of extraction of the reproduction surface, so that it is more suitable for the purpose of detecting biological fines in water. Become.
Further, according to the invention described in claim 5, in addition to the above-described effect, the sample data is used for the detection of the fine biological matter, so that the effect of shortening the time required for the measurement and preventing the erroneous detection can be obtained. .
Further, according to the invention described in claim 6, in addition to the above-described effect, it is possible to add life / death discrimination of living body fine objects as an inspection item, so that it is suitably used in applications where it is necessary to know the number of living things. can do.
Moreover, according to invention of Claim 7, said each effect can be show | played in the ballast water test | inspection of a ship. This makes it extremely useful in using treaty obligations for ballast water management.
実施形態の水質検査システムの概略図である。It is a schematic diagram of a water quality inspection system of an embodiment. 図1に示す水質検査システムにおける検出系の構成を示した概略図である。It is the schematic which showed the structure of the detection system in the water quality inspection system shown in FIG. 撮像素子における撮像面と透明管との関係を示した斜視概略図である。It is the isometric view schematic which showed the relationship between the imaging surface in an image sensor, and a transparent tube. 1回の撮影で撮影される対象水の領域(撮影領域)について示した斜視概略図である。It is the schematic perspective view shown about the area | region (photographing area | region) of the target water image | photographed by one imaging | photography. 計測プログラムの概略を示したフローチャートである。It is the flowchart which showed the outline of the measurement program. 再生計算モジュールについて示した斜視概略図である。It is the isometric view schematic shown about the reproduction | regeneration calculation module. 再生面抽出モジュールについて模式的に示した斜視図である。It is the perspective view which showed typically about the reproduction | regeneration surface extraction module. 同定計数モジュールについて模式的に示した斜視図である。It is the perspective view which showed typically about the identification counting module. 同定計数モジュールの概略を示したフローチャートである。It is the flowchart which showed the outline of the identification counting module. 出力モジュールによる計測プログラムの実行結果の一例を概略的に示す図である。It is a figure which shows roughly an example of the execution result of the measurement program by an output module.
 次に、この出願発明を実施するための形態(以下、実施形態)について説明する。
 図1は、実施形態の水質検査システムの概略図である。図1に示す水質検査システムは、バラスト水の検査を想定して構成されたシステムとなっている。このシステムの大きな特徴点は、対象水(バラスト水)Wを送る配管1上でその場で含有生体微細物Mの個数を計測するシステムとなっている点である。即ち、このシステムは、配管1を通して対象水Wを送る送水系2と、送水系2により配管1を通して送られる際の対象水W中の生体微細物Mの個数を検出する検出系3とを備えて構成されている。
Next, modes for carrying out the invention of the present application (hereinafter referred to as embodiments) will be described.
FIG. 1 is a schematic diagram of a water quality inspection system according to an embodiment. The water quality inspection system shown in FIG. 1 is a system configured assuming ballast water inspection. A major characteristic point of this system is that it is a system that measures the number of contained biological fine substances M on the spot on the pipe 1 for sending the target water (ballast water) W. That is, this system includes a water supply system 2 that sends the target water W through the pipe 1 and a detection system 3 that detects the number of the biological fines M in the target water W when being sent through the pipe 1 by the water supply system 2. Configured.
 具体的に説明すると、図1に示すように、送水系2は、検査のために一時的に対象水Wを溜める送水側タンク21と、検査済みの対象水Wを一時的に貯める受水側タンク22と、送水側タンク21と受水側タンク22とをつなぐよう設けられた配管1,101、102と、送水側タンク21から配管1,101,102を通して対象水Wを送るポンプ23と、対象水Wの流速を検知する流速計24等を備えている。 Specifically, as shown in FIG. 1, the water supply system 2 includes a water supply side tank 21 that temporarily stores the target water W for inspection, and a water receiving side that temporarily stores the target water W that has been inspected. A tank 22, pipes 1, 101, 102 provided to connect the water supply side tank 21 and the water reception side tank 22; a pump 23 that sends the target water W from the water supply side tank 21 through the pipes 1, 101, 102; An anemometer 24 for detecting the flow velocity of the target water W is provided.
 配管は、検出系3が配置された場所を通る部分1では透明ものとなっている(以下、透明管と言い換える)。透明管1の前後には通常の配管101,102が接続されており、送水側タンク21から対象水が配管(以下、流入管という。)101により透明管1に送られ、透明管1を通ってさらに別の配管(以下、流出管という。)102で排出されるようになっている。透明管1は、ガラスやアクリル樹脂等の透明な材料で形成された筒状の部材であり、この実施形態では、断面は方形のもの(即ち角筒状)となっている。 The pipe is transparent in the portion 1 that passes through the place where the detection system 3 is disposed (hereinafter referred to as a transparent pipe). Normal pipes 101 and 102 are connected before and after the transparent pipe 1, and target water is sent from the water supply side tank 21 to the transparent pipe 1 by the pipe (hereinafter referred to as an inflow pipe) 101, and passes through the transparent pipe 1. Further, it is discharged through another pipe (hereinafter referred to as an outflow pipe) 102. The transparent tube 1 is a cylindrical member formed of a transparent material such as glass or acrylic resin. In this embodiment, the cross section has a rectangular shape (that is, a rectangular tube shape).
 そして、この実施形態のシステムの別の大きな特徴点は、その場での計測を可能にするため、検出系3は、透明管1内を流れる対象水Wを撮像するものであり、撮像により得られたデータ(撮像データ)を解析することで生体微細物Mの個数を検出するものとなっている点である。そして、実施形態のシステムのさらなる大きな特徴点は、検出系3が、流れる対象水Wの像を通常の2次元の撮影ではなくホログラム撮影するものとなっている点である。 Another major feature of the system of this embodiment is that the detection system 3 images the target water W flowing in the transparent tube 1 in order to enable in-situ measurement. The number of the biological fine objects M is detected by analyzing the obtained data (imaging data). A further significant feature of the system of the embodiment is that the detection system 3 captures an image of the flowing target water W as a hologram instead of a normal two-dimensional image.
 図2を使用して、検出系3についてより具体的に説明する。図2は、図1に示す水質検査システムにおける検出系3の構成を示した概略図である。図2に示すように、検出系3は、コヒーレント光を放射する光源31と、撮像素子32と、光学系33~35と、撮像素子32が撮影した像のデータを処理するデータ処理36とを備えている。
 コヒーレント光源31としては、レーザ発振器が用いられる。例えば波長が632.8nmのHeNeレーザ発振器、波長694nmのルビーレーザ発振器などが用いられる。
The detection system 3 will be described more specifically with reference to FIG. FIG. 2 is a schematic diagram showing the configuration of the detection system 3 in the water quality inspection system shown in FIG. As shown in FIG. 2, the detection system 3 includes a light source 31 that emits coherent light, an image sensor 32, optical systems 33 to 35, and a data process 36 that processes image data captured by the image sensor 32. I have.
As the coherent light source 31, a laser oscillator is used. For example, a HeNe laser oscillator having a wavelength of 632.8 nm, a ruby laser oscillator having a wavelength of 694 nm, or the like is used.
 撮像素子32には、CCD又はCMOSイメージセンサが使用される。撮像素子32は、生体微細物Mの個数の計測が目的であるため、十分に細かい画素ピッチのものが使用される。例えば、CCDであれば撮像面のサイズが5.6×5.6mm程度で、画素数が1024×1024個程度のもの(画素ピッチは5.5μm程度)が使用される。 A CCD or CMOS image sensor is used for the image sensor 32. Since the imaging element 32 is intended to measure the number of the biological fine objects M, a sufficiently fine pixel pitch is used. For example, in the case of a CCD, an image pickup surface having a size of about 5.6 × 5.6 mm and a number of pixels of about 1024 × 1024 (pixel pitch is about 5.5 μm) is used.
 光学系は、コヒーレント光を透明管1内に照射し、照射された透明管1内の対象水(バラスト水)Wからの光である物体光を撮像素子32に導くとともに、物体情報を含まないコヒーレント光を参照光として撮像素子32に導き、撮像素子32の撮像面で干渉させて干渉縞を撮像素子32に撮像させるものである。
 光学系としては、コヒーレント光源31からの光を透明管1内に導いて対象水Wに照射する照射用光学系33と、照射された対象水Wからの光(物体光)を撮像素子32に導く撮像用光学系34と、物体情報を含まないコヒーレント光を参照光として撮像素子32に導く参照光用光学系35とが設けられている。
The optical system irradiates coherent light into the transparent tube 1, guides the object light, which is light from the irradiated target water (ballast water) W in the transparent tube 1, to the image sensor 32, and does not include object information. The coherent light is guided to the image sensor 32 as reference light and caused to interfere with the imaging surface of the image sensor 32 to cause the image sensor 32 to image the interference fringes.
As an optical system, an optical system 33 for irradiating light from the coherent light source 31 into the transparent tube 1 and irradiating the target water W, and light (object light) from the irradiated target water W to the image sensor 32. An imaging optical system 34 for guiding and a reference light optical system 35 for guiding coherent light not including object information to the imaging element 32 as reference light are provided.
 尚、「物体情報」とは、コヒーレント光が物体に照射された際に物体の性状(形状、屈折率等)に応じてコヒーレント光の波面が変化することを想定した用語であり、変化した波面によって表現し得る物体の情報という意味の用語である。例えば、波面によって物体の像を再生する場合、物体の形状が「物体情報」ということになる。また、物体における透過率の分布が波面から得られる場合、透過率の分布が「物体情報」ということになる。そういった物体情報を含まないコヒーレント光(この実施形態では物体を経ていないコヒーレント光)が、参照光として使用される。 “Object information” is a term that assumes that the wavefront of coherent light changes according to the properties (shape, refractive index, etc.) of the object when the object is irradiated with coherent light. It is a term meaning object information that can be expressed by. For example, when an image of an object is reproduced by a wavefront, the shape of the object is “object information”. When the transmittance distribution in the object is obtained from the wavefront, the transmittance distribution is “object information”. Coherent light that does not include such object information (in this embodiment, coherent light that has not passed through an object) is used as reference light.
 物体光用と参照光用とで別々の光源を使用することも原理的には可能であるが、別々の光源を使用すると波長や位相を十分にそろえる(可干渉性にする)ことは非常に難しい。このため、一つのコヒーレント光源31からの光を分割して使用している。即ち、図2に示すように、照射用光学系33の光路上には取り出し用ビームスプリッタ351が設けられており、光の一部を参照光として取り出すようになっている。また、参照光は、物体光から抽出することもできる。これには、具体的には二つの方法がある。一つは、特開2014-44095号公報の図12に開示されているように、物体回折後の光をビームスプリッタで二つに分離した後に、片方に対してフーリエ変換レンズとピンホールを組み合わせたスペイシャルフィルタを通過させることで、物体情報を欠落させたコヒーレント光を取り出し、これを参照光とするやり方である。もう一つは、国際公開2008/123408号公報に開示されているように、物体回折後の光の光路上に同じくフーリエ変換レンズとマイクロ半透ミラーを配置し、物体回折光の0次光成分のみを参照光として用いるやり方である。 In principle, it is possible to use separate light sources for object light and reference light, but using separate light sources makes it possible to sufficiently align the wavelength and phase (make it coherent). difficult. For this reason, the light from one coherent light source 31 is divided and used. That is, as shown in FIG. 2, an extraction beam splitter 351 is provided on the optical path of the irradiation optical system 33, and a part of the light is extracted as reference light. Further, the reference light can be extracted from the object light. Specifically, there are two methods. First, as disclosed in FIG. 12 of Japanese Patent Application Laid-Open No. 2014-44095, after the light after object diffraction is separated into two by a beam splitter, a Fourier transform lens and a pinhole are combined on one side. In this method, the coherent light from which the object information is missing is extracted by passing through the spatial filter, and this is used as the reference light. The other is that, as disclosed in International Publication No. 2008/123408, a Fourier transform lens and a micro semi-transparent mirror are similarly arranged on the optical path of the light after object diffraction, and the zero-order light component of the object diffraction light Is used as a reference beam.
 本実施形態では、透明管1内を透過した光が撮像素子32に入射するようになっている。この光の中に、物体光が含まれる。物体光は、コヒーレント光が照射された対象水W中の生体微細物Mからの回折光であるが、コヒーレント光が生体微細物Mにより散乱されて出た光(散乱光)の場合と、生体微細物Mに反射して出た光(反射光)の場合と、生体微細物M中を透過して出た光(透過光)の場合とがある。生体微細物Mからの光を捉えて参照光との干渉縞を撮像して生体微細物Mの個数を計測することが目的であり、物体光としてはいずれの場合であっても良い。散乱光、反射光、透過光は区別できない場合もあり、区別できなくても生体微細物Mの存在が判断できる限り問題はない。尚、この実施形態では、生体微細物Mはバラスト水中の微生物や細菌であり、これら生体微細物Mは透明な場合が多く、従って物体光は主として透過光となっている。 In this embodiment, light transmitted through the transparent tube 1 is incident on the image sensor 32. This light includes object light. The object light is diffracted light from the living body fine object M in the target water W irradiated with the coherent light, and the coherent light is scattered light by the living body fine object M (scattered light) and the living body. There are cases of light that is reflected by the minute object M (reflected light) and light that is transmitted through the minute object M (transmitted light). The object is to capture the light from the biological fine object M, image the interference fringes with the reference light, and measure the number of the biological fine object M. The object light may be any case. Scattered light, reflected light, and transmitted light may not be distinguished from each other, and even if they cannot be distinguished, there is no problem as long as the presence of the biological fine matter M can be determined. In this embodiment, the living body fine matter M is a microorganism or a bacterium in ballast water, and the living body fine matter M is often transparent. Therefore, the object light is mainly transmitted light.
 図2に示すように、撮像用光学系34は、透明管1と撮像素子32との間に設けられている。本実施形態では、透明管1内を拡大して投影しながら得た干渉縞をホログラムデータとして記録するようになっている。このため、撮像用光学系34は、対物レンズ341と、結像レンズ342とを備えている。尚、図2に示すように、撮像素子32は、撮像面が撮像用光学系34の光軸に対して垂直となるように配置される。
 結像レンズ342と撮像素子32との間の光路上には、統合用ビームスプリッタ352が設けられている。参照光用光学系35は、取り出し用ビームスプリッタ351で取り出された参照光をミラー353で統合用ビームスプリッタ352まで導き、物体光とともに撮像素子32に入射させるよう構成されている。
As shown in FIG. 2, the imaging optical system 34 is provided between the transparent tube 1 and the imaging element 32. In the present embodiment, interference fringes obtained while enlarging and projecting inside the transparent tube 1 are recorded as hologram data. For this reason, the imaging optical system 34 includes an objective lens 341 and an imaging lens 342. As shown in FIG. 2, the imaging element 32 is arranged so that the imaging surface is perpendicular to the optical axis of the imaging optical system 34.
An integrating beam splitter 352 is provided on the optical path between the imaging lens 342 and the image sensor 32. The reference light optical system 35 is configured to guide the reference light extracted by the extraction beam splitter 351 to the integration beam splitter 352 by the mirror 353 and to enter the imaging element 32 together with the object light.
 参照光用光学系35は、オフアクシスで参照光を撮像素子32に入射させることができるようになっている。オフアクシスとは、物体光と同じ入射角ではなく物体光に対して角度を持たせた状態で参照光を入射させることである。具体的には、ミラー353にはオフアクシス用駆動機構354が付設されている。オフアクシス用駆動機構354は、ミラー353を光軸に対して45°の角度から所定角度だけ傾けた状態に変化させる機構である。 The reference light optical system 35 is configured to allow the reference light to be incident on the image sensor 32 in an off-axis manner. The off-axis means that the reference light is incident with an angle with respect to the object light instead of the same incident angle as the object light. Specifically, an off-axis driving mechanism 354 is attached to the mirror 353. The off-axis driving mechanism 354 is a mechanism that changes the mirror 353 from a 45 ° angle to a state inclined by a predetermined angle.
 尚、図2に示すように、照射用光学系33や参照光用光学系35には、ビームエキスパンダ331,355が設けられており、コヒーレント光を必要な大きさの光芒に拡大して使用するようになっている。各ビームエキスパンダ331,355内には、ノイズ除去のためのスペイシャルフィルタ332,356が必要に応じて配置される。 As shown in FIG. 2, the irradiation optical system 33 and the reference light optical system 35 are provided with beam expanders 331 and 355, and the coherent light is used after being expanded to a light beam of a necessary size. It is supposed to be. In each of the beam expanders 331 and 355, spatial filters 332 and 356 for noise removal are arranged as necessary.
 データ処理部36は、具体的にはコンピュータであり、演算処理部361としてのCPUと、記憶部362と、出力部としてのプリンタ363やディスプレイ364等を備えている。撮像素子32は、インターフェースを介してデータ処理部36に接続されており、撮像素子32で撮像された干渉縞のデータは、ホログラムデータとしてデータ処理部36の記憶部362に記憶されるようになっている。即ち、この実施形態のシステムは、デジタルホログラフィを利用して対象水Wを検査するものとなっており、ホログラムの記録は、撮像された干渉縞のデータをホログラムデータとしてデータ処理部36の記憶部362に記憶することで行われる。記憶部362は、メモリやハードディスクのようなストレージである。 The data processing unit 36 is specifically a computer, and includes a CPU as the arithmetic processing unit 361, a storage unit 362, a printer 363, a display 364, and the like as output units. The image sensor 32 is connected to the data processing unit 36 via an interface, and interference fringe data captured by the image sensor 32 is stored in the storage unit 362 of the data processing unit 36 as hologram data. ing. That is, the system of this embodiment inspects the target water W using digital holography, and recording of the hologram is performed by storing the captured interference fringe data as hologram data in the storage unit of the data processing unit 36. This is done by storing in 362. The storage unit 362 is a storage such as a memory or a hard disk.
 データ処理部36には、対象水W中の生体微細物Mの個数を計測するソフトウェアがインストールされている。これらソフトウェアには、生体微細物Mの個数を計測する計測プログラム366や計測プログラム366に使用される各種データが含まれる。これらプログラムやデータは、記憶部362に記憶されている。計測プログラム366がCPU361で実行されることで、対象水W中の生体微細物の個数が計測され、この結果が出力される。以下、計測プログラム366の概略について説明する。 The data processing unit 36 is installed with software for measuring the number of biological fine objects M in the target water W. The software includes various data used for the measurement program 366 for measuring the number of the biological fine objects M and the measurement program 366. These programs and data are stored in the storage unit 362. When the measurement program 366 is executed by the CPU 361, the number of fine biological objects in the target water W is measured, and this result is output. Hereinafter, an outline of the measurement program 366 will be described.
 計測プログラム366において、撮像素子32による撮影領域の大きさと透明管1内の流速との関係で、ホログラムデータを取り出す周期が定められている。プログラムの詳細な説明に先立ち、まずこの点について説明する。
 図3は、撮像素子32における撮像面と透明管1との関係を示した斜視概略図、図4は1回の撮影で撮影される対象水Wの領域(撮影領域)について示した斜視概略図である。
In the measurement program 366, the period for taking out the hologram data is determined by the relationship between the size of the imaging region by the image sensor 32 and the flow velocity in the transparent tube 1. Prior to detailed description of the program, this point will be described first.
3 is a schematic perspective view showing the relationship between the imaging surface of the imaging element 32 and the transparent tube 1, and FIG. 4 is a schematic perspective view showing an area (photographing area) of the target water W photographed by one photographing. It is.
 ホログラフィでは撮影対象の空間の像を物体光と参照光との干渉縞として撮像し、その撮像結果(ホログラムデータ)に基づいて像を三次元で再生する。実施形態の水質検査システムでは、撮影対象は透明管1内である。図3に示すように、透明管1は、四つの透明な板状部材で形成されており、このうち、撮像素子32側の板状部材11を観察板と呼ぶ。撮像素子32は、観察板11を通して透明管1内の対象水Wを撮影する。 In holography, an image of a space to be imaged is captured as interference fringes between object light and reference light, and the image is reproduced three-dimensionally based on the imaging result (hologram data). In the water quality inspection system of the embodiment, the object to be imaged is in the transparent tube 1. As shown in FIG. 3, the transparent tube 1 is formed of four transparent plate-like members, and among these, the plate-like member 11 on the image pickup device 32 side is called an observation plate. The imaging element 32 images the target water W in the transparent tube 1 through the observation plate 11.
 図3に示すように、撮像光学系の光軸340は、観察板11に対して垂直であり、従って撮像素子32の撮像面は、観察板11に対して平行である。そして、図3に示すように、撮像用光学系34の光軸340は、透明管1の断面形状における方形の一辺の方向(以下、奥行き方向という。)に一致している。この方向は、後述する像再生における再生距離Dの方向である。 As shown in FIG. 3, the optical axis 340 of the imaging optical system is perpendicular to the observation plate 11, and thus the imaging surface of the imaging element 32 is parallel to the observation plate 11. As shown in FIG. 3, the optical axis 340 of the imaging optical system 34 matches the direction of one side of the square (hereinafter referred to as the depth direction) in the cross-sectional shape of the transparent tube 1. This direction is the direction of the reproduction distance D in image reproduction described later.
 撮像素子32の撮像面を、xy平面とすると、xy方向は透明管1の長さ方向(対象水Wの流れの方向)に一致している。y方向は、透明管1の高さ方向に一致している。撮像素子32による撮影領域は、透明管1の内部空間であり、したがって図4にRで示すような直方体状の箱状の空間領域となる。尚、撮影領域Rの奥行き方向の長さは、透明管1の垂直な断面における水平方向の長さである。像再生の際には、再生距離Dはこの長さの分だけ変化させるよう像再生空間が設定される。 When the imaging surface of the imaging device 32 is an xy plane, the xy direction coincides with the length direction of the transparent tube 1 (the direction of the flow of the target water W). The y direction coincides with the height direction of the transparent tube 1. The imaging region by the imaging device 32 is an internal space of the transparent tube 1 and therefore a rectangular parallelepiped box-shaped space region as indicated by R in FIG. Note that the length in the depth direction of the imaging region R is the length in the horizontal direction in the vertical cross section of the transparent tube 1. At the time of image reproduction, the image reproduction space is set so that the reproduction distance D is changed by this length.
 撮影領域Rの幅方向(x方向)の長さは、撮像素子32の撮像面の幅と撮像用光学系34の倍率とに応じて決まる。この長さは、1回の撮影において撮影される対象水Wの量を決めるものであり、重要なパラメータである。以下、この長さを、撮影幅と呼び、図3中にLで示す。撮影幅Lは、例えば0.05~100mm程度とされる。 The length of the imaging region R in the width direction (x direction) is determined according to the width of the imaging surface of the imaging element 32 and the magnification of the imaging optical system 34. This length determines the amount of the target water W to be photographed in one photographing, and is an important parameter. Hereinafter, this length is referred to as a photographing width, and is indicated by L in FIG. The photographing width L is, for example, about 0.05 to 100 mm.
 撮影領域Rの高さ方向(y方向)の長さhは、透明管1の内面における高さ(以下、撮像高さという。)である。撮影幅L及び撮影高さhの平面領域が、撮像素子32が1回の撮影において見込む領域である。以下、この平面領域を1フレーム領域と呼ぶ。撮像用光学系34は、撮像素子32の撮像面の位置及びサイズに応じて、1フレーム領域を確実に見込むよう設計される。尚、撮像用光学系34は、テレセントリック、特に物側テレセントリックな光学系とし、撮影領域Rの奥行き方向では横倍率が変化しないようにすることが望ましい。
 尚、図3において、一回の撮影における撮影領域Rの輪郭が実線で示されている。透明管1には配管100によって次々に対象水Wが送られて流れていく。次の回の撮影において撮影される対象水Wの領域を図3において破線で示す。
The length h in the height direction (y direction) of the imaging region R is the height on the inner surface of the transparent tube 1 (hereinafter referred to as imaging height). A planar region having the photographing width L and the photographing height h is a region that the image sensor 32 expects in one photographing. Hereinafter, this planar area is referred to as one frame area. The imaging optical system 34 is designed to reliably anticipate one frame region according to the position and size of the imaging surface of the imaging device 32. The imaging optical system 34 is desirably a telecentric, particularly an object-side telecentric optical system, so that the lateral magnification does not change in the depth direction of the imaging region R.
In FIG. 3, the outline of the imaging region R in one imaging is indicated by a solid line. The target water W is successively sent to the transparent pipe 1 through the pipe 100 and flows. A region of the target water W to be photographed in the next photographing is indicated by a broken line in FIG.
 透明管1内の流速をVとすると、撮像素子32は、L/Vの周期で1回の撮影を行うようになっている。より正確に言えば、撮像素子32は自身のフレーム周期で撮影を行っているが、実際の生体微細物の個数計算には、撮像素子32の出力をL/Vの周期で取り出し、その取り出した出力(ホログラムデータ)について1回の撮影で確認された数として生体微細物Mの個数を計測している。以下、この周期を撮影周期という。
 尚、対象水W中に存在し得る生体微細物Mが微生物であり、自身が移動することが想定される場合、透明管1内の流速Vは、その移動速度よりも十分に速いものとされる。流速Vは、例えば0.01mm/s~10000mm/s程度とされ、撮影周期は例えば1Hz~1000Hz程度とされる。
Assuming that the flow velocity in the transparent tube 1 is V, the image pickup device 32 is configured to perform one shooting at a cycle of L / V. More precisely, the image pickup device 32 takes a picture with its own frame period, but for the actual calculation of the number of living body fine objects, the output of the image pickup element 32 is taken out with a cycle of L / V and taken out. The number of living body fine objects M is measured as the number confirmed by one shooting of output (hologram data). Hereinafter, this cycle is referred to as an imaging cycle.
In addition, when the living body fine substance M that can exist in the target water W is a microorganism and it is assumed that the living body M moves, the flow velocity V in the transparent tube 1 is sufficiently faster than the moving speed. The The flow velocity V is, for example, about 0.01 mm / s to 10,000 mm / s, and the imaging cycle is, for example, about 1 Hz to 1000 Hz.
 計測プログラム366は、撮影周期毎に出力されるホログラムデータについて生体微細物Mを計測する。以下、説明の都合上、1回の撮影において出力されるホログラムデータをデータセットと呼ぶ。各データセットは、撮像素子32から出力されたものを計測プログラム366がそのまま使用する場合もあるし、いったん記憶部362に記憶され、計測プログラム366が記憶部362から読み出して使用する場合もある。各データセットが記憶部362にいったん記憶される場合、データベース形式のように各データセットについて撮影順が識別できるように記憶される。 The measurement program 366 measures the biological micro object M with respect to the hologram data output for each imaging cycle. Hereinafter, for convenience of explanation, hologram data output in one shooting is referred to as a data set. Each data set may be used by the measurement program 366 as it is output from the image sensor 32, or may be temporarily stored in the storage unit 362, and the measurement program 366 may be read from the storage unit 362 and used. When each data set is temporarily stored in the storage unit 362, it is stored so that the photographing order can be identified for each data set as in a database format.
 上記の点を前提とし、計測プログラム366について説明する。まず、図5を使用し、計測プログラム366の全体を概略的に説明する。図5は、計測プログラム366の概略を示したフローチャートである。図2に示すように、計測プログラム366は、サブプログラムとして、再生計算モジュール、再生面抽出モジュール、同定計数モジュール、出力モジュール等を有している。 The measurement program 366 will be described on the assumption of the above points. First, the entire measurement program 366 will be schematically described with reference to FIG. FIG. 5 is a flowchart showing an outline of the measurement program 366. As shown in FIG. 2, the measurement program 366 includes a reproduction calculation module, a reproduction surface extraction module, an identification counting module, an output module, and the like as subprograms.
 計測プログラム366は、一つのデータセットについて最終的には図4に示す撮像領域R全体について生体微細物Mが存在するかの確認と、存在する場合の同定及び計数とを、ホログラムの再生結果に基づいて行う。この際、計測プログラム366は、奥行き方向で所定の短い距離(ピッチ)で再生距離Dを変えなから、データ処理を行う。以下、奥行き方向の再生距離のピッチを再生距離ピッチと呼ぶ。再生距離ピッチΔDは、検出しようとする生体微細物Mの大きさに応じて決められるが、一般的には、0.1μm~10mm程度である。 The measurement program 366 finally confirms whether or not the biological fine object M exists in the entire imaging region R shown in FIG. 4 for one data set, and identifies and counts the presence of the biological fine object M in the hologram reproduction result. Based on. At this time, the measurement program 366 performs data processing since the reproduction distance D is not changed by a predetermined short distance (pitch) in the depth direction. Hereinafter, the pitch of the reproduction distance in the depth direction is referred to as a reproduction distance pitch. The reproduction distance pitch ΔD is determined according to the size of the biological fine matter M to be detected, but is generally about 0.1 μm to 10 mm.
 まず、再生計算モジュールについて説明する。図6は、再生計算モジュールについて示した斜視概略図である。再生計算モジュールは、一つのデータセットについて像再生の準備作業として像再生空間(各再生面)の複素振幅データを計算するモジュールである。この点は、通常のホログラムデータの再生と大きく変わるところはないが、図6を使用して概略を説明する。
 ホログラフィにおいて、数値計算によって像を再生する場合、ホログラム面と再生面とを特定する必要がある。ホログラム面とは、ホログラムが存在する面であるが、ここでは、撮像素子32の撮像面の位置となる。通常は、計算を簡単にするため、図6に示すように再生面はホログラム面と平行な面とされる。
First, the reproduction calculation module will be described. FIG. 6 is a schematic perspective view showing the reproduction calculation module. The reproduction calculation module is a module for calculating complex amplitude data of an image reproduction space (each reproduction plane) as an image reproduction preparation operation for one data set. Although this point is not significantly different from the reproduction of normal hologram data, the outline will be described with reference to FIG.
In holography, when an image is reproduced by numerical calculation, it is necessary to specify a hologram surface and a reproduction surface. The hologram surface is a surface on which the hologram exists, but here is the position of the imaging surface of the imaging device 32. Usually, in order to simplify the calculation, the reproduction surface is parallel to the hologram surface as shown in FIG.
 撮像素子32から出力されるホログラムデータは、各画素における光強度の信号(光強度分布)である。従って、図6に示すように、ホログラムデータ321は、g(x、y)と定義できる。但し、前述したように、ホログラムデータ321は、物体光と参照光とによってできた干渉縞(図6中に一部拡大して符号322で示す)であり、この干渉縞322のパターンがg(x,y)である。図5に示すように、計算を簡単にするため、再生面はホログラム面とZ軸を共通にしたXY平面とされる。ホログラム面と再生面との距離Dは、前述した再生距離であり、撮影領域Rにおいては上述した奥行き方向の距離に相関している。 The hologram data output from the image sensor 32 is a light intensity signal (light intensity distribution) in each pixel. Therefore, as shown in FIG. 6, the hologram data 321 can be defined as g (x, y). However, as described above, the hologram data 321 is interference fringes (partly enlarged in FIG. 6 and indicated by reference numeral 322) formed by the object light and the reference light, and the pattern of the interference fringes 322 is g ( x, y). As shown in FIG. 5, in order to simplify the calculation, the reproduction surface is an XY plane that shares the hologram surface and the Z axis. The distance D between the hologram surface and the reproduction surface is the reproduction distance described above and correlates with the distance in the depth direction described above in the imaging region R.
 一例として、フーリエ変換を利用しフレネル回折の距離で再生する場合について説明する。rはホログラム面上の一点から再生面上の一点までの距離であるとする。x,yはホログラム面上の座標、X,Yは再生面上の座標である。
 再生面での複素振幅分布は、キルヒホッフの回折積分の式に従い、式1のように表せる。
Figure JPOXMLDOC01-appb-M000001
 式1において、λは再生光の波長、kは波数である。式1に対し、式2に示すフレネル近似を適用して代入すると、式3が得られる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
As an example, a case where reproduction is performed at a distance of Fresnel diffraction using Fourier transform will be described. Let r be the distance from one point on the hologram surface to one point on the playback surface. x and y are coordinates on the hologram surface, and X and Y are coordinates on the reproduction surface.
The complex amplitude distribution on the reproduction surface can be expressed as Equation 1 according to Kirchhoff's diffraction integral equation.
Figure JPOXMLDOC01-appb-M000001
In Equation 1, λ is the wavelength of the reproduction light, and k is the wave number. If the Fresnel approximation shown in Formula 2 is applied and substituted into Formula 1, Formula 3 is obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式3において、積分をフーリエ変換であるとみなして変形すると、式4が得られる。
Figure JPOXMLDOC01-appb-M000004
 式4において、Fのカッコ内はフーリエ変換であることを示す。xやyは、撮像面の各ピクセルからの出力値であり、離散フーリエ変換をすることでG(X,Y)が得られる。式4からも解るように、データG(X,Y)は、再生面における各点の光情報を複素数の形式で表現したもの(複素振幅データ)である。従って、途中の計算を省略すると、このデータG(X,Y)は、以下の式5で表現されることになる。
Figure JPOXMLDOC01-appb-M000005
In Equation 3, if the integral is regarded as a Fourier transform and transformed, Equation 4 is obtained.
Figure JPOXMLDOC01-appb-M000004
In Equation 4, the parentheses of F indicate Fourier transform. x and y are output values from each pixel on the imaging surface, and G (X, Y) is obtained by performing a discrete Fourier transform. As can be seen from Equation 4, the data G (X, Y) is a representation of the optical information of each point on the reproduction surface in the form of a complex number (complex amplitude data). Therefore, if the calculation in the middle is omitted, this data G (X, Y) is expressed by the following Equation 5.
Figure JPOXMLDOC01-appb-M000005
 このように、再生計算の結果は、再生面の各点における複素振幅データであり、そのピッチは、元データであるホログラムデータ321のピッチ(画素ピッチ)に依存する。デジタルホログラフィにおいて、振幅情報で像を再生する場合、上記式5から各座標点における|A|を計算して出力する。位相情報で像を再生する場合、各座標点における偏角φを計算して出力する。出力されるのは、再生面における振幅値の分布(振幅値マップ)や位相値の分布(位相値マップ)であり、それを何らかの方法で視覚化すると、その中に目的とする物体の像が現れることになる。この実施形態では、撮影対象は水であるので、生体微細物Mが存在する場合にその像が現れることになるが、これらは同定計数モジュールで行われる。 Thus, the result of the reproduction calculation is complex amplitude data at each point on the reproduction surface, and the pitch depends on the pitch (pixel pitch) of the hologram data 321 as the original data. In digital holography, when an image is reproduced with amplitude information, | A | 2 at each coordinate point is calculated from Equation 5 and output. When an image is reproduced with phase information, a deviation angle φ at each coordinate point is calculated and output. The output is an amplitude value distribution (amplitude value map) and a phase value distribution (phase value map) on the playback surface. When this is visualized by some method, an image of the target object is displayed in it. Will appear. In this embodiment, since the object to be imaged is water, an image thereof appears when the living body fine object M exists. These are performed by the identification counting module.
 図5に示すように、計測プログラム366は、まず、最初のデータセットを読み込み、メモリ変数に格納する。「データセットを読み込む」とは、撮像素子32から出力されるものをそのまま使用する場合、プログラムの実行直後のタイミングで出力されたホログラムデータを撮像素子32から取得して計測プログラム上のメモリ変数に格納することである。また、各データセットが記憶部362に記憶されている場合、最初のデータセットを読み出してメモリ変数に格納することである。
 図5に示すように、計測プログラムは、最初のデータセットについて再生計算モジュールを実行し、その実行結果をメモリ変数に格納する。再生計算モジュールの実行結果は、前述したように各再生面における複素振幅データの集まりである。
As shown in FIG. 5, the measurement program 366 first reads the first data set and stores it in a memory variable. “Reading a data set” means that when the output from the image sensor 32 is used as it is, the hologram data output at the timing immediately after the execution of the program is acquired from the image sensor 32 and used as a memory variable on the measurement program. Is to store. When each data set is stored in the storage unit 362, the first data set is read and stored in a memory variable.
As shown in FIG. 5, the measurement program executes the reproduction calculation module for the first data set, and stores the execution result in a memory variable. The execution result of the reproduction calculation module is a collection of complex amplitude data on each reproduction plane as described above.
 次に、計測プログラムは、再生面抽出モジュールを実行する。再生面抽出モジュールは、後述するように、生体微細物Mの再生像が存在するかどうか判断し、存在すると判断される場合にサブプログラムとして同定計数モジュールを実行するモジュールである。同定計数モジュールの実行結果は、確認された生体微細物MのIDとその個数であり、これらがメモリ変数に一時的に格納される。
 そして、計測プログラムは、次の再生面について同様に再生面抽出モジュールを実行し、生体微細物Mが存在すると判断される再生面について同定計数モジュールを実行する。同定計数モジュールの実行結果は、それまでの実行結果に対してどのような生体微細物であるかを特定するID(この実施形態では標本データのID)毎に合算される。
Next, the measurement program executes a reproduction surface extraction module. As will be described later, the reproduction surface extraction module is a module that determines whether or not a reproduction image of the biological fine object M exists, and executes the identification counting module as a subprogram when it is determined that the reproduction image exists. The execution result of the identification counting module is the ID of the confirmed biological fine object M and the number thereof, and these are temporarily stored in the memory variable.
Then, the measurement program executes the reproduction surface extraction module in the same manner for the next reproduction surface, and executes the identification counting module for the reproduction surface where it is determined that the biological fine object M exists. The execution results of the identification counting module are summed up for each ID (in this embodiment, the ID of the sample data) that specifies what kind of biological fine object is the execution results up to that point.
 全ての再生面について再生面抽出モジュール及びそのサブプログラムとしての同定計数モジュールが実行されると、そのデータセットについての処理は終了であり、計測プログラムは、次のデータセットを読み込む。そして、抽出されたすべての再生面について処理が終了すると、そのデータセットでの処理は終了であり、計数プログラムは、次のデータセットを取り込む。そして、同様に再生計算モジュール、再生面抽出モジュール、生体微細物Mがあると判断された場合の同定計数モジュールを順次実行する。
 このような処理を最後のデータセットまで行った後、出力モジュールを実行する。出力モジュールの実行により、計測プログラムは終了である。
When the reproduction surface extraction module and the identification counting module as its subprogram are executed for all reproduction surfaces, the processing for the data set is completed, and the measurement program reads the next data set. When the processing for all the extracted reproduction planes is completed, the processing for that data set is completed, and the counting program captures the next data set. Similarly, the reproduction calculation module, the reproduction surface extraction module, and the identification counting module in the case where it is determined that there is the biological fine object M are sequentially executed.
After performing such processing up to the last data set, the output module is executed. The execution of the output module ends the measurement program.
 次に、再生面抽出モジュール及び同定計数モジュールについて、図7~図9を使用してより詳しく説明する。図7は再生面抽出モジュールについて模式的に示した斜視図、図8は同定計数モジュールについて模式的に示した斜視図、図9は同定計数モジュールの概略を示したフローチャートである。
 再生面の抽出は、特に必須となるものではないが、大量の水を短時間に検査するための好適な構成として設けられている。前述したように、ホログラムの再生では、再生距離を変えることで各再生面の像が得られる。したがって、再生距離ピッチで順次再生距離を変えていくことで、撮影領域R全体の三次元像が得られることになる。再生距離ピッチは、検出しようとしている生体微細物Mの大きさや撮像用光学系34の解像度等に応じて決められる。図7において、像再生空間がR’として示されている。像再生空間R’において、撮像領域R全体の像が再生される。
Next, the reproduction surface extraction module and the identification counting module will be described in more detail with reference to FIGS. FIG. 7 is a perspective view schematically showing the reproduction surface extraction module, FIG. 8 is a perspective view schematically showing the identification counting module, and FIG. 9 is a flowchart showing an outline of the identification counting module.
Extraction of the reproduction surface is not particularly essential, but is provided as a suitable configuration for inspecting a large amount of water in a short time. As described above, in the reproduction of the hologram, an image of each reproduction surface can be obtained by changing the reproduction distance. Therefore, a three-dimensional image of the entire photographing region R can be obtained by sequentially changing the reproduction distance with the reproduction distance pitch. The reproduction distance pitch is determined according to the size of the biological fine object M to be detected, the resolution of the imaging optical system 34, and the like. In FIG. 7, the image reproduction space is indicated as R ′. In the image reproduction space R ′, an image of the entire imaging region R is reproduced.
 この際、各再生面(各再生距離ピッチでの再生面)のすべてについて解析を行って生体微細物Mの像の有無を判断する構成であると、あまりに長時間を要してしまうので、解析をする必要がある再生面かどうかを予め判断し、解析を行う必要があると判断された再生面Pのみを抽出するようにしている。このモジュールが、再生面抽出モジュールである。
 再生面抽出モジュールの構成としては幾つか考えられるが、この実施形態では、一つの再生面全体の平均輝度値を算出し、基準となる輝度値に対する差が限度以上であるかどうかにより抽出するかどうかを判断するものとなっている。ここでの輝度値とは、再生像の画面における明るさという程度の意味であり、前述した複素振幅データ(G(X,Y))である。
At this time, if all the reproduction surfaces (reproduction surfaces at each reproduction distance pitch) are analyzed to determine the presence / absence of an image of the biological fine object M, it takes a long time. It is determined in advance whether or not the reproduction surface needs to be analyzed, and only the reproduction surface P determined to be analyzed is extracted. This module is a reproduction surface extraction module.
There are several possible configurations of the reproduction surface extraction module. In this embodiment, the average luminance value of one entire reproduction surface is calculated and extracted depending on whether the difference with respect to the reference luminance value is more than the limit. It is to judge whether. The luminance value here means the brightness of the reproduced image on the screen, and is the above-described complex amplitude data (G (X, Y)).
 この実施形態では、対象水Wは、生体微細物Mを含み得る以外は、水としての濃度(光透過度)は一定であることを前提としている。また、ホログラム撮影をする際のコヒーレント光の強度、装置が置かれた場所の照明条件も常に一定である。したがって、ホログラム撮影をして再生した場合、水の部分の像の輝度値は基本的に一定である。そして、生体微細物Mの像が撮影され、それが再生された場合、その部分で輝度値が変化することになる。したがって、ある再生面Pが生体微細物Mの像を含む場合、その再生面Pの平均輝度値は、生体微細物Mの像を含まない場合に比べて変化する。一般的には、コヒーレント光は、生体微細物Mにおいて吸収された散乱されたりするので、生体微細物Mの像を含む再生面Pの平均輝度値は、生体微細物Mの像が存在しない再生面に比べて低下する。したがって、生体微細物Mの像を含まない再生面の像の平均輝度値を予め調べて基準値(以下、基準輝度値という。)として設定しておき、これと比較することで抽出するかどうかを判断する。 In this embodiment, the target water W is assumed to have a constant concentration (light transmittance) as water, except that the biological fine matter M may be included. In addition, the intensity of coherent light at the time of holographic photography and the illumination conditions of the place where the apparatus is placed are always constant. Therefore, when the hologram is captured and reproduced, the luminance value of the water portion image is basically constant. When an image of the biological fine object M is taken and reproduced, the luminance value changes at that portion. Therefore, when a certain reproduction surface P includes the image of the biological fine object M, the average luminance value of the reproduction surface P changes compared to the case where the reproduction surface P does not include the image of the biological fine object M. In general, coherent light is scattered and absorbed by the biological fine object M. Therefore, the average luminance value of the reproduction surface P including the image of the biological fine object M is a reproduction in which no image of the biological fine object M exists. It is lower than the surface. Accordingly, whether or not the average luminance value of the image of the reproduction surface that does not include the image of the biological fine object M is checked in advance and set as a reference value (hereinafter referred to as a reference luminance value), and is compared with this value to determine whether to extract Judging.
 輝度値には、複素振幅データ(G(X,Y))のうち、振幅又は位相のどちらかが使用される。実施形態のような水中の生体微細物Mの検出では、位相データを輝度値とする方が望ましい。実施形態の水質検査システムで検出される生体微細物Mは、ミジンコのような水中プランクトンである場合が多く、ほぼ透明で、ある程度の厚みのある微粒子である。位相の場合、微生物の透明な体内を透過する際の波面の歪みが捉えられて像が再生される場合が多いが、このような波面の歪みは位相データの変化となって現れやすく、位相データについて基準輝度値を設定して比較する方が望ましい。 For the luminance value, either the amplitude or the phase of the complex amplitude data (G (X, Y)) is used. In the detection of the biological fine matter M in the water as in the embodiment, it is desirable to use the phase data as a luminance value. The fine biological matter M detected by the water quality inspection system of the embodiment is often an underwater plankton such as a daphnia, and is a fine particle that is almost transparent and has a certain thickness. In the case of phase, the wavefront distortion when passing through the transparent body of microorganisms is often captured and the image is reproduced, but such wavefront distortion is likely to appear as a change in phase data. It is desirable to set a reference luminance value for and compare.
 図5に示すように、同定計数モジュールは、再生面抽出モジュールが実行された際、再生面の平均輝度値が基準輝度値である場合に呼び出されて実行されるサブプログラムである。再生面の平均輝度値が基準輝度値以上である場合、同定計数モジュールは実行されない。
 同定計数モジュールは、平均輝度値が基準輝度値未満であるとして抽出された再生面Pにおいて再生像を解析し、生体微細物Mの存在個数を算出するモジュールである。同定計数モジュールは、より正確な個数計測、即ち生体微細物Mではないものを誤ってカウントしてしまわないという観点と、さらに進んでどのような生体微細物Mであるかの特定(同定)を行うという観点から最適化された構成を採用している。
As shown in FIG. 5, the identification counting module is a subprogram that is called and executed when the average luminance value of the reproduction surface is the reference luminance value when the reproduction surface extraction module is executed. If the average luminance value on the reproduction surface is equal to or higher than the reference luminance value, the identification counting module is not executed.
The identification counting module is a module that analyzes the reproduced image on the reproduction plane P extracted as the average luminance value is less than the reference luminance value, and calculates the number of living body fine objects M. The identification counting module performs more accurate counting, that is, the viewpoint of not erroneously counting non-biological matter M, and further identifying (identifying) what kind of fine biological matter M is. A configuration optimized from the viewpoint of doing is adopted.
 具体的には、同定計数モジュールは、生体微細物Mの像の部分であると判断されるデータ領域を抽出し、抽出されたデータ領域を標本データと比較することで生体微細物Mの存在の確認と、生体微細物Mの同定を行うものとなっている。標本データとの比較については、幾つかの手法が考えられるが、この実施形態では、イメージデータの比較によって行っている。
 図9に示すように、同定計数モジュールは、抽出された再生面の複素振幅データで像を再生する。この場合は、振幅、位相のいずれでも構わないが、一例として振幅データで像を再生する。再生された像データは、いわゆるイメージデータである。同定計数モジュールは、図8に示すように、このイメージデータを処理し、生体微細物Mの像を現してしると判断される領域を特定し、抽出する。この領域を、以下、抽出領域という。抽出領域のイメージデータを図8中にIで示す。
Specifically, the identification counting module extracts a data area that is determined to be a part of the image of the biological fine object M, and compares the extracted data area with the sample data to determine the presence of the biological fine object M. Confirmation and identification of the living body fine object M are performed. Several methods can be considered for the comparison with the sample data. In this embodiment, the comparison is performed by comparing the image data.
As shown in FIG. 9, the identification counting module reproduces an image with the extracted complex amplitude data of the reproduction surface. In this case, either amplitude or phase may be used, but an image is reproduced with amplitude data as an example. The reproduced image data is so-called image data. As shown in FIG. 8, the identification counting module processes this image data, identifies and extracts a region that is determined to show an image of the biological fine object M. This area is hereinafter referred to as an extraction area. Image data of the extraction area is indicated by I in FIG.
 そして、図8に示すように、同定計数モジュールは、記憶部362から標本データI’を一個ずつ読み込み、抽出領域のイメージデータIと比較する。そして、両者の合致度を判断する。合致度は、0~100%の範囲で数値化され、判断された合致度は一時的にメモリ変数に格納される。合致度の判断は、二つのイメージデータI,I’の重なり合う領域の多さで判断する。この際、抽出領域のイメージデータIを適宜拡大又は縮小してサイズを標本データI’と同じにしたり、抽出領域のイメージデータIを回転させて最も合致度が高くなる状態で判断を行ったりする。 Then, as shown in FIG. 8, the identification counting module reads the sample data I ′ one by one from the storage unit 362 and compares it with the image data I of the extraction region. Then, the degree of coincidence between the two is determined. The degree of match is quantified in the range of 0 to 100%, and the determined degree of match is temporarily stored in a memory variable. The degree of coincidence is determined by the number of overlapping areas of the two image data I and I ′. At this time, the image data I in the extraction area is appropriately enlarged or reduced to make the size the same as the sample data I ′, or the image data I in the extraction area is rotated to make a determination in a state where the degree of matching is the highest. .
 同定計数モジュールは、合致度が一定の閾値以上であるかどうか判断し、閾値以上であれば、その抽出領域のイメージデータIは当該標本データの像(生体微細物Mの像)を現していると判断し、その旨をメモリ変数に代入する。一つの抽出領域のイメージデータIについては、合致度が閾値以上である標本データは通常0個か1個であるが、2個以上ある可能性もあるので、同定計数モジュールは、最後の標本データI’まで対比を行い、合致度が閾値以上のものが複数ある場合、最も合致度が高い標本データの標本IDをメモリ変数に更新して記憶する。即ち、一つの抽出領域のイメージデータIとの対比において、合致度が閾値以上であって最も合致度が高くなった標本データの標本IDについて合致数を1を加算してメモリ変数を更新する。ここでのメモリ変数は行列変数になっており(以下、合致数格納変数という。)、各標本データのID(以下、標本IDという)について検出個数を代入する変数である(初期値はゼロ)。 The identification counting module determines whether or not the degree of coincidence is equal to or greater than a certain threshold value, and if it is equal to or greater than the threshold value, the image data I in the extraction region represents an image of the sample data (an image of the biological fine object M). And that fact is assigned to a memory variable. For image data I of one extraction region, the number of sample data whose degree of match is greater than or equal to the threshold value is usually 0 or 1, but there may be two or more, so the identification counting module is the last sample data Comparison is performed up to I ′, and when there are a plurality of matching degrees equal to or greater than the threshold, the sample ID of the sample data with the highest matching degree is updated and stored in the memory variable. That is, in the comparison with the image data I of one extraction region, the memory variable is updated by adding 1 to the number of matches for the sample ID of the sample data having the highest matching degree that is equal to or higher than the threshold value. The memory variable here is a matrix variable (hereinafter referred to as a match number storage variable), and is a variable for substituting the number of detections for each sample data ID (hereinafter referred to as a sample ID) (initial value is zero). .
 このようにして、抽出された一つの再生面について抽出領域のイメージデータIの判断を行う。殆どの場合、一つの再生面Pで抽出される抽出領域の数は1個のみであるが、2個以上あった場合、それぞれの抽出領域について同様に標本データI’と対比し、合致度が閾値以上であれば、合致数格納変数に判断結果を代入して更新する。これで、一つの再生面Pについての同定計数モジュールが終了する。 In this way, the image data I in the extraction area is determined for one extracted reproduction plane. In most cases, the number of extraction regions extracted on one reproduction plane P is only one. However, when there are two or more extraction regions, each extraction region is similarly compared with the sample data I ′, and the degree of match is If it is greater than or equal to the threshold value, the judgment result is substituted into the match number storage variable and updated. This completes the identification counting module for one reproduction plane P.
 図5に示すように、サブプログラムとしての同定計数モジュールが終了すると、再生面抽出モジュールも終了する。計測プログラム366は、一つのデータセットについての一例の処理が終了したことになるので、再生距離ピッチをΔDだけ増やし、同様に再生計算モジュール、再生面抽出判断モジュール、再生面Pが抽出された場合の同定計数モジュールを順次実行するようプログラミングされている。
 そして、一つのデータセットで最後の再生面での処理が終了すると、そのデータセットについての処理が終了である。この間、合致度が閾値を超えるたびに合致数格納変数には、当該標本データの標本IDの検出個数の値が加算されていく。尚、最後の再生面とは、再生距離が最終値である再生面のことであり、設定されている像再生空間において再生距離が最も遠い再生面のことである。
As shown in FIG. 5, when the identification counting module as the subprogram ends, the reproduction surface extraction module also ends. Since the measurement program 366 has completed the process of one example for one data set, the reproduction distance pitch is increased by ΔD, and similarly the reproduction calculation module, reproduction surface extraction determination module, and reproduction surface P are extracted. The identification counting modules are programmed to execute sequentially.
When the processing on the last reproduction surface is completed for one data set, the processing for that data set is completed. During this time, every time the degree of match exceeds the threshold value, the value of the number of detected sample IDs of the sample data is added to the match number storage variable. Note that the last reproduction plane is a reproduction plane whose reproduction distance is the final value, and is the reproduction plane having the longest reproduction distance in the set image reproduction space.
 図5に示すように、計測プログラム366は、次のデータセットについての同様のデータ処理を行う。そして、最後のデータセットについて処理が終了すると、計測プログラム366は、出力モジュールを実行し、プログラムを終了する。最後のデータセットとは、撮像素子32からのデータをそのまま使用している場合、1回の検査で検査すべき対象水Wがすべて透明管1内を流れてしまって、透明管1内の流れがなくなる直前のデータセットとなる。この場合、図1に示すように透明管1内に流れ検出センサ10が設けられており、流れ検出センサ10がオフになったら検査終了であるとし、計測プログラム366が終了するようプログラミングされる。また、各データセットが記憶部362に記憶される場合、記憶部362に記憶された最後のデータセットについて処理が終了すると、計測プログラム366は出力モジュールを実行して終了する。 As shown in FIG. 5, the measurement program 366 performs similar data processing for the next data set. When the process for the last data set is completed, the measurement program 366 executes the output module and ends the program. When the data from the image sensor 32 is used as it is as the last data set, all the target water W to be inspected in one inspection flows in the transparent tube 1 and flows in the transparent tube 1. It becomes the data set immediately before the disappearance. In this case, the flow detection sensor 10 is provided in the transparent tube 1 as shown in FIG. 1, and when the flow detection sensor 10 is turned off, the inspection is completed, and the measurement program 366 is programmed to end. Further, when each data set is stored in the storage unit 362, when the process is completed for the last data set stored in the storage unit 362, the measurement program 366 executes the output module and ends.
 尚、計測プログラム366において、再生距離DはピッチΔDで変化するが、再生距離を変換させた場合に再生像の明暗が周期的に変化する問題がある。この問題については、特開2013-148471号公報に開示された技術を利用することで解決が可能である。 In the measurement program 366, the playback distance D changes with the pitch ΔD, but there is a problem that the brightness of the playback image changes periodically when the playback distance is converted. This problem can be solved by using the technique disclosed in JP2013-148471A.
 出力モジュールは、計測プログラム366の実行結果をディスプレイ364に表示するものである。図10は、出力モジュールによる計測プログラム366の実行結果の一例を概略的に示す図である。図10に示すように、出力モジュールは、プログラムの実行日時(検査日時)、全流量(検査総量)等の情報とともに、存在が確認された生体微細物Mの名称とその個数を表示するものとなっている。 The output module displays the execution result of the measurement program 366 on the display 364. FIG. 10 is a diagram schematically illustrating an example of the execution result of the measurement program 366 by the output module. As shown in FIG. 10, the output module displays the name and number of biological fine objects M whose existence has been confirmed, together with information such as program execution date and time (inspection date and time), total flow rate (total amount of inspection), and the like. It has become.
 尚、上記計測プログラム366において、再生計算モジュールと再生面抽出モジュール(及びそのサブプログラムとして実行され得る同定計数モジュール)は、並行して行われる(即ち並列処理される)場合があり得る。つまり、ある再生距離Dの再生面について複素振幅データを得た後、当該再生面について再生面抽出モジュール(そのサブプログラムとして実行され得る同定計数モジュール)を実行し、その間に次の再生面での再生計算を行うようプログラミングされる場合もある。 In the measurement program 366, the reproduction calculation module and the reproduction surface extraction module (and the identification counting module that can be executed as a subprogram thereof) may be performed in parallel (that is, processed in parallel). That is, after obtaining complex amplitude data for a playback surface of a certain playback distance D, a playback surface extraction module (identification counting module that can be executed as a subprogram thereof) is executed for the playback surface, It may be programmed to perform playback calculations.
 次に、システム全体を制御する制御系及び送水系について補足して説明する。
 図1に示すように、実施形態の水質検査システムは、全体を制御する制御ユニット4を備えている。制御ユニット4は、送水系2や検出系3等のシステムの各部を制御するものである。この制御は、送水系2に設けられた各バルブ103~105の開閉制御を含む。
Next, the control system and the water supply system for controlling the entire system will be supplementarily described.
As shown in FIG. 1, the water quality inspection system of the embodiment includes a control unit 4 that controls the whole. The control unit 4 controls each part of the system such as the water supply system 2 and the detection system 3. This control includes opening / closing control of the valves 103 to 105 provided in the water supply system 2.
 図1に示すように、送水側タンク21と透明管1との間の流入管101上には、流入制御バルブ103が設けられている。また、透明管1と受水側タンク22の間の流出管102上には、流出制御バルブ104が設けられている。そして、図1に示すように流出制御バルブ104の上流側で配管は分岐されており、バイパス用の配管(以下、バイパス管)106が設けられている。バイパス管106には、バイパスバルブ105が設けられている。バイパス管106は、送水側タンク21に接続されており、透明管1を出た対象水Wを送水側タンク21に戻すものとなっている。 As shown in FIG. 1, an inflow control valve 103 is provided on the inflow pipe 101 between the water supply side tank 21 and the transparent pipe 1. An outflow control valve 104 is provided on the outflow pipe 102 between the transparent pipe 1 and the water-receiving side tank 22. As shown in FIG. 1, the pipe is branched upstream of the outflow control valve 104, and a bypass pipe (hereinafter, bypass pipe) 106 is provided. A bypass valve 105 is provided in the bypass pipe 106. The bypass pipe 106 is connected to the water supply side tank 21, and returns the target water W exiting the transparent pipe 1 to the water supply side tank 21.
 制御ユニット4には、シーケンス制御プログラムが実装されている。以下、システム全体の動作の説明も兼ねて、シーケンス制御プログラムについて説明する。
 実施形態のシステムは、図1に示す送水側タンク21に対象水Wが投入されている状態で動作が開始される。シーケンス制御プラグラムは、まず、流出制御バルブ104を閉じ且つバイパスバルブ105を空けた状態で流入制御バルブ103を開け、この状態でポンプ23を起動させる。この結果、対象水Wは、透明管1を通って流れ、バイパス管106を通って送水側タンク21に戻る。
A sequence control program is installed in the control unit 4. Hereinafter, the sequence control program will be described as well as the operation of the entire system.
The system of the embodiment is started in a state where the target water W is put in the water supply side tank 21 shown in FIG. The sequence control program first opens the inflow control valve 103 with the outflow control valve 104 closed and the bypass valve 105 open, and the pump 23 is activated in this state. As a result, the target water W flows through the transparent pipe 1 and returns to the water supply side tank 21 through the bypass pipe 106.
 そして、シーケンス制御プログラムは、流速計24の出力から所定の流速が確保されていることが確認されたら、検出系3に計測開始の制御信号を送る。これにより、検出系3内のコヒーレント光源31が動作し、撮像素子32の動作も開始され、検出系3による生体微細物Mの個数計測が開示される。検出系3は、内部に不図示の制御部を有しており、コヒーレント光源31の出力が所定値に安定しており、撮像素子32も正しく動作していることが確認されたら、計測プログラム366を実行する。 The sequence control program sends a measurement start control signal to the detection system 3 when it is confirmed from the output of the anemometer 24 that a predetermined flow velocity is secured. Thereby, the coherent light source 31 in the detection system 3 operates, the operation of the image sensor 32 is also started, and the number measurement of the biological fine object M by the detection system 3 is disclosed. The detection system 3 has a control unit (not shown) inside, and when it is confirmed that the output of the coherent light source 31 is stable at a predetermined value and the image sensor 32 is operating correctly, the measurement program 366 Execute.
 計測プログラム366が実行開始時に、検出系3内の制御部からその旨が制御ユニット4に出力される。シーケンス制御プログラムは、流速に応じた所定のタイミングで流出制御バルブ104を開けると同時にバイパスバルブ105を閉じる。これにより、対象水Wは受水側タンク22に向かって流れ、受水側タンク22に収容される。流出制御バルブ104が開けられるタイミングは、検出系3の計測プログラム366により生体微細物Mの個数計測がされた分の対象水Wが流出制御バルブ104に到達するタイミングである。このため、受水側タンク22には、生体微細物Mの個数計測が完了した対象水Wが溜まっていく。 At the start of execution of the measurement program 366, a notification to that effect is output from the control unit in the detection system 3 to the control unit 4. The sequence control program opens the outflow control valve 104 at a predetermined timing according to the flow velocity and simultaneously closes the bypass valve 105. Accordingly, the target water W flows toward the water receiving side tank 22 and is stored in the water receiving side tank 22. The timing at which the outflow control valve 104 is opened is the timing at which the target water W reaches the outflow control valve 104 as much as the number of the biological fine objects M is measured by the measurement program 366 of the detection system 3. For this reason, the target water W in which the number measurement of the biological fine matter M has been completed accumulates in the water receiving side tank 22.
 送水側タンク21にあったすべての対象水Wが透明管1内を流れて検査がされると、流れ検出センサ10の出力がオフになる。制御ユニット4は、この時点でポンプ23の動作を止め、検出系3に信号を送って動作を停止させる。検出系3の動作結果は、前述したようにディスプレイ364に表示される。シーケンス制御プログラムは、上記のようなシーケンスで各部を制御するようプログラミングされている。 When all the target water W in the water supply side tank 21 flows through the transparent tube 1 and is inspected, the output of the flow detection sensor 10 is turned off. At this time, the control unit 4 stops the operation of the pump 23 and sends a signal to the detection system 3 to stop the operation. The operation result of the detection system 3 is displayed on the display 364 as described above. The sequence control program is programmed to control each unit in the sequence as described above.
 上記のような構成に係る水質検査システムを使用して水質検査をする場合、対象水Wを送水側タンク21に予め収容する。この際、比較的大きなゴミ等を除去するため、予めフィルタ処理される場合がある。また、濁りが大きい場合、予め沈殿処理されて濁りが除去される場合もある。ゴミや濁りが必要に応じて除去された状態で対象水Wが送水側タンク21に収容され、システムの動作が開始される。 When the water quality test is performed using the water quality test system according to the above configuration, the target water W is stored in the water supply side tank 21 in advance. At this time, in order to remove relatively large dust or the like, there is a case where it is previously filtered. In addition, when turbidity is large, precipitation may be performed in advance to remove turbidity. The target water W is accommodated in the water supply side tank 21 in a state where dust and turbidity are removed as necessary, and the operation of the system is started.
 システムは、上記のような動作で対象水W中の生体微細物Mの検出と同定、個数計算を行い、その結果をディスプレイ364に表示する。作業者は、必要に応じて検査結果をプリンタ363で印刷する。
 システムの動作が完了すると、受水側タンク22には、検査済みの対象水Wが収容されている。この実施形態では対象水Wはバラスト水であるので、受水側タンク22内の対象水Wは、検査結果に問題がなければ、そのまま海に排出されるか、又は船舶のバラストタンクに収容される。
The system performs detection, identification, and number calculation of the biological fine matter M in the target water W by the operation as described above, and displays the result on the display 364. The operator prints the inspection result with the printer 363 as necessary.
When the operation of the system is completed, the inspected target water W is stored in the water-receiving side tank 22. In this embodiment, since the target water W is ballast water, the target water W in the water-receiving side tank 22 is discharged to the sea as it is or if it is not a problem in the inspection result, or is stored in the ballast tank of the ship. The
 以上の構成及び動作に係る実施形態の水質検査システムによれば、対象水Wが流れる配管1内を撮影し、その撮影データに基づいてその場で計測が行われるので、バラスト水の検査のように大量の水を短時間に検査するのに適したものになる。
 そして、撮影はホログラム撮影であってホログラムのデジタル再生(デジタルホログラフィ)を利用して対象水W中の生体微細物Mの個数を計測するものであるので、大量の水を短時間に検査するという観点でさらに好適なものとなっている。
According to the water quality inspection system of the embodiment related to the above configuration and operation, the inside of the pipe 1 through which the target water W flows is photographed, and measurement is performed on the spot based on the photographed data. It is suitable for testing a large amount of water in a short time.
And since imaging | photography is hologram imaging and measures the number of the biological body M in the target water W using the digital reproduction | regeneration (digital holography) of a hologram, it will test | inspect a lot of water in a short time. This is more preferable from the viewpoint.
 ホログラムの再生像は、前述したように三次元の像であり、実施形態のシステムは、透明管1内という奥行きをもった領域に対して撮影を行い、三次元の像再生空間について1回の撮影で生体微細物Mの個数計測を行う。
 一方、このような撮像による生体微細物Mの個数計測を通常の二次元の撮像により行う場合を考えてみると、通常の二次元の撮像では、透明管内の奥行き方向でどこかにピントを合わせて撮影を行うしかなく、焦点深度の深い撮像用光学系を使用して撮像を行う場合でも、透明管の奥行きはそれほど大きくはできない。つまり、通常の二次元の撮像では、透明管の断面積を小さくし奥行き方向の距離をかなり狭くした状態ではないと、撮像データの解析による個数計算は行えない。透明管の断面積が小さいということは、一度に撮像できる検査水の量が少ないことを意味し、バラスト水のような大量の対象水Wを短時間に検査する用途には不向きということになる。一方、実施形態のシステムのようにホログラム撮影をしてその再生像データの解析により個数計算を行う場合、三次元空間について1回の撮影で個数計算ができるので、バラスト水のような大量の対象水Wを短時間に検査するのに非常に適している。
The hologram reconstructed image is a three-dimensional image as described above, and the system of the embodiment captures an area having a depth inside the transparent tube 1 and performs one time on the three-dimensional image reconstructing space. The number of living body fine objects M is measured by photographing.
On the other hand, when considering the case where the number of the biological fine objects M is measured by the normal two-dimensional imaging, the normal two-dimensional imaging focuses on somewhere in the depth direction in the transparent tube. Even when imaging is performed and imaging is performed using an imaging optical system having a deep focal depth, the depth of the transparent tube cannot be increased so much. In other words, in normal two-dimensional imaging, the number calculation based on the analysis of imaging data cannot be performed unless the sectional area of the transparent tube is reduced and the distance in the depth direction is considerably reduced. That the cross-sectional area of the transparent tube is small means that the amount of inspection water that can be imaged at a time is small, and is not suitable for applications in which a large amount of target water W such as ballast water is inspected in a short time. . On the other hand, when the hologram is photographed and the number is calculated by analyzing the reproduced image data as in the system of the embodiment, the number can be calculated by one photographing in the three-dimensional space. It is very suitable for inspecting water W in a short time.
 また、実施形態のシステムでは、1回の撮影で得られたホログラムデータ(1個のデータセット)について再生距離ピッチΔD毎のすべての再生面で解析を行うのではなく、生体微細物Mの像が存在すると判断される再生面Pのみ抽出して解析を行うものとなっている。このため、検査に要する時間をさらに短縮することができている。すべての再生面で解析を行う場合、再生距離ピッチΔD毎に複素振幅データ(G(X,Y))から振幅値マップ又は位相値マップを生成し、そのいずれかについてイメージを解析して生体微細物Mのイメージと思われる領域(抽出領域)の有無を判断し、有ると判断された場合に当該領域の抽出を行って標本データとの対比を行う必要があり、時間を要するデータ処理となり得る。実施形態のシステムでは、計測プログラム366が再生面抽出モジュールを備えており、生体微細物Mの像が存在すると判断される再生面のみ取り出して解析を行うので、データ処理に要する全体の時間が大幅に削減される。
 尚、前述した実施形態では、再生面の平均輝度値が標準輝度値未満である場合にその再生面Pに生体微細物Mの像が含まれ得るとして抽出したが、他の構成もあり得る。例えば、再生面内における輝度値の変化幅(輝度値の最大値と最小値の差異)が一定以上であるかどうかにより判断しても良い。一定以上の場合、生体微細物Mの像が含まれ得るとされる。
In the system of the embodiment, the hologram data (one data set) obtained by one imaging is not analyzed on all reproduction planes for each reproduction distance pitch ΔD, but the image of the biological fine object M is obtained. Only the reproduction surface P determined to be present is extracted and analyzed. For this reason, the time required for the inspection can be further shortened. When analysis is performed on all reproduction planes, an amplitude value map or a phase value map is generated from complex amplitude data (G (X, Y)) for each reproduction distance pitch ΔD, and an image is analyzed for either of them to create a fine living body. It is necessary to determine whether or not there is an area (extraction area) that seems to be an image of the object M, and when it is determined that there is an area, it is necessary to extract the area and compare it with sample data, which can be time-consuming data processing. . In the system of the embodiment, the measurement program 366 includes a reproduction surface extraction module, and only the reproduction surface that is determined to have an image of the biological fine object M is extracted and analyzed, so that the overall time required for data processing is greatly increased. Reduced to
In the above-described embodiment, when the average luminance value on the reproduction surface is less than the standard luminance value, the reproduction surface P is extracted as an image of the biological fine object M may be included, but other configurations may be possible. For example, the determination may be made based on whether or not the change width of the luminance value in the reproduction plane (difference between the maximum value and the minimum value of the luminance value) is a certain value or more. In the case of a certain value or more, an image of the biological fine object M can be included.
 生体微細物Mの存在の確認と同定のために標本データを使用する点も、計測に要する時間を短縮したり、誤検出(生体微細物Mではないものを誤ってカウントしてしたり、別の生体微細物Mであると誤って同定してしまったりすること)を防ぐのに役立っている。生体微細物Mの同定には、再生像をディスプレイに表示し、適宜拡大等をして作業者が目視により行う構成も考えられる。しかしながら、このような構成ではあまりにも時間がかかり過ぎ、誤りも発生し易い。実施形態の構成では、標本データの対比によりソフトウェア上で解析が行われるので、このような問題はない。
 尚、上記実施形態では、イメージデータI,I’の対比によりその再生像が生体微細物Mの像であるかどうか判断したが、数値データの対比によって判断することもあり得る。例えば、ある生体微細物Mが特徴的な輪郭を有しており、その輪郭が数式で表現できる場合、再生面における複素振幅データ(G(X,Y))のうちの振幅又は位相のいずれかの数値について当該数式との相関性を見ることで判断することがあり得る。
The use of specimen data for confirmation and identification of the presence of the biological fine matter M also shortens the time required for measurement, erroneous detection (counting something that is not the biological fine matter M, It is useful to prevent that it is mistakenly identified as the biological fine matter M. For identification of the living body fine object M, a configuration in which a reconstructed image is displayed on a display and appropriately enlarged or the like is performed by an operator visually is also conceivable. However, such a configuration takes too much time and is prone to errors. In the configuration of the embodiment, since analysis is performed on software by comparing sample data, there is no such problem.
In the embodiment described above, it is determined whether or not the reproduced image is an image of the biological fine object M by comparing the image data I and I ′. However, it may be determined by comparing numerical data. For example, when a certain biological fine object M has a characteristic outline and the outline can be expressed by a mathematical expression, either the amplitude or the phase of the complex amplitude data (G (X, Y)) on the reproduction surface is selected. It may be judged by looking at the correlation between the numerical value and the mathematical formula.
 また、生体微細物Mの存在個数が計測できれば足り、同定が必要ではない場合、ソフトウェアの構成は簡略化され得る。例えば、抽出領域のイメージデータを処理する際、単なるゴミとの区別ができれば良いのであれば、イメージの輪郭だけで生体微細物Mかどうかを判断することもあり得る。殆どの生体微細物Mは、ゴミの破片(例えばプラスチックゴミの破片)等に比べて複雑な輪郭を有しており、輪郭の複雑さを評価してゴミか生体微細物Mかを判別することもできる。 In addition, if it is sufficient to measure the number of living body fine objects M, and the identification is not necessary, the software configuration can be simplified. For example, when processing the image data of the extraction region as long as it can be distinguished from mere dust, it is possible to determine whether or not it is a biological fine object M only from the contour of the image. Most living body fine objects M have complicated outlines compared to dust fragments (for example, plastic garbage fragments), and the complexity of the outline is evaluated to determine whether the object is dust or the living body fine objects M. You can also.
 さらに、実施形態の水質検査システムでは、生体微細物Mの生死判別を検査項目として追加することも可能である。例えば、動物プランクトンのような多くの水中微生物は、死骸となった場合、水圧で押し潰されたような形状(しわくちゃとなった形状)となる。その一方、生存している場合には内部の体液によって膨らんだ形状となっている場合が多い。したがって、水中微生物のホログラム像を位相データで再生した場合、波面の歪みは死骸の場合の方が大きくなる。つまり、位相データによる像再生により波面の歪み具合を判断し、その度合いによって生死判別を行うことができる。この他、微生物によっては死骸となった場合には生存中とは異なる特徴的な形状になるものもあり、そのような死骸の形状について生存中のものとは別に標本データを登録しておき、それとの対比によって生死判断を行う場合もあり得る。 Furthermore, in the water quality inspection system of the embodiment, it is also possible to add the life / death discrimination of the fine living body M as an inspection item. For example, many underwater microorganisms such as zooplankton, when they become dead bodies, have a shape (crumpled shape) that is crushed by water pressure. On the other hand, when it is alive, the shape is often swollen by internal body fluid. Therefore, when a hologram image of an underwater microorganism is reproduced with phase data, the distortion of the wavefront becomes larger in the case of a dead body. That is, the state of wavefront distortion can be determined by image reproduction based on phase data, and life / death determination can be performed according to the degree. In addition, some microorganisms have a characteristic shape that is different from that when they are alive, and register specimen data separately from those that are alive about the shape of such corpses, In some cases, it is possible to make a life-and-death decision based on the comparison.
 上記実施形態において、透明管1における流速は一定であるとしたが、一定でない場合もある。例えば、対象水Wの流れを間欠的とし、検出系3における撮影の際には透明管1内で対象水Wが停止した状態とする場合があり得る。また、停止しないまでも、周期的に流れを遅くし、その遅いタイミングで撮影が行われることもある。
 また、撮影周期は、撮影幅L/流速Vであると説明したが、これより長い周期とされる場合もある。この場合、撮影領域の容積Q×撮影回数Tが、検査された対象水Wの総量となる。この場合には、配管1を通って流れた対象水Wの総量よりも、検査された量(Q・T)の方が少なくなり、全量検査にはならないが、流れた対象水Wの総量は流速計24等により判るので、比例計算により生体微細物Wの全個数を推定値として算出する。
In the said embodiment, although the flow rate in the transparent tube 1 was constant, it may not be constant. For example, the flow of the target water W may be intermittent, and the target water W may be in a stopped state in the transparent tube 1 when photographing in the detection system 3. Moreover, even if it does not stop, the flow is periodically slowed down, and photographing may be performed at the slow timing.
In addition, the imaging cycle has been described as the imaging width L / flow velocity V, but there may be a longer cycle. In this case, the volume Q of the imaging region × the number of imaging times T is the total amount of the inspected target water W. In this case, the inspected amount (Q · T) is smaller than the total amount of the target water W that has flowed through the pipe 1 and the total amount is not inspected, but the total amount of the target water W that has flowed is Since it can be determined by the anemometer 24 or the like, the total number of the biological fine objects W is calculated as an estimated value by proportional calculation.
 尚、撮影周期については、コヒーレント光源31と同期したものとされることもあり得る。例えば、コヒーレント光源31としてパルス発振のレーザー光源を採用し、このパルスの周期に撮影周期を同期させる場合もある。また、連続発振のものであってもチョッパでパルスにし、これに撮影周期を同期させる場合もある。
 また、上記実施形態のシステムでは、透明管1は全体が透明なものであったが、コヒーレント光を照射し、内部からの物体光を捉えて撮影できれば足り、観察窓のように一部が透明とされたものが使用される場合もある。また、すべて透明である配管によって送水をする場合もあり得る。
Note that the imaging cycle may be synchronized with the coherent light source 31. For example, a pulsed laser light source may be employed as the coherent light source 31 and the imaging cycle may be synchronized with the pulse cycle. Further, even a continuous oscillation type is sometimes pulsed by a chopper and the imaging cycle is synchronized with this.
In the system of the above embodiment, the entire transparent tube 1 is transparent. However, it is sufficient that the transparent tube 1 can radiate coherent light and capture object light from the inside, and a part thereof is transparent like an observation window. In some cases, it is used. In addition, water may be supplied through a pipe that is all transparent.
 また、バラスト水の検査システムとして構成される場合、実施形態の水質検査システムは、バラスト水処理装置の排出側に設置され、処理されたバラスト水のチェックの目的で使用されることがあり得る。また、上記実施形態では、検査済みの対象水Wを受水側タンク22に一時的に溜めたが、バラスト水の場合、そのまま海に排出したり、又はそのままバラストタンクに積み込んだりする場合もあり得る。 Also, when configured as a ballast water inspection system, the water quality inspection system of the embodiment may be installed on the discharge side of the ballast water treatment apparatus and used for the purpose of checking the treated ballast water. Further, in the above embodiment, the inspected target water W is temporarily stored in the water-receiving side tank 22, but in the case of ballast water, it may be discharged into the sea as it is or may be loaded into the ballast tank as it is. obtain.
 尚、上記実施形態のシステムは、バラスト水を対象水Wとして検査するシステムであったが、本願発明は、プールや海水浴場、各種浴場施設等において使用される水の検査に好適に使用することができる。さらに、魚介類の養殖施設で使用される水の検査に使用することもでき、例えば問題となる寄生虫や細菌がないかどうかをチェックするのに好適に使用することができる。 In addition, although the system of the said embodiment was a system which test | inspects ballast water as object water W, this invention should be used suitably for the test | inspection of the water used in a pool, a beach, various bath facilities, etc. Can do. Furthermore, it can also be used for the inspection of water used in seafood aquaculture facilities. For example, it can be suitably used to check for problematic parasites and bacteria.
 上記実施形態では、対象水Wはバラスト水であり、生体微生物は各種動物プランクトン、各種植物プランクトン、各種魚介類の卵や幼生、各種細菌、各種藻類等であり得る。この他、本願発明の水質検査システムは、バイオ研究等にも利用することができ、生体微細物Mは、検査水中に溶解させた生体試料や生体細胞等である場合もある。 In the above embodiment, the target water W is ballast water, and the biological microorganisms can be various zooplanktons, various phytoplanktons, eggs and larvae of various seafood, various bacteria, various algae, and the like. In addition, the water quality inspection system of the present invention can also be used for bio research and the like, and the living body fine matter M may be a biological sample or a living cell dissolved in the inspection water.
1 配管(透明管)
10 流れ検出センサ
11 観察板
101 配管(流入管)
102 配管(流出管)
103 流入制御バルブ
104 流出制御バルブ
105 バイパス管
21 送水側タンク
22 受水側タンク
23 ポンプ
24 流速計
3 検出系
31 コヒーレント光源
32 撮像素子
33 照射用光学系
34 撮像用光学系
35 参照光用光学系
36 データ処理ユニット
361 CPU
362 記憶部
4 制御ユニット
W 対象水
M 生体微細物
P 再生面
1 Piping (transparent tube)
10 Flow detection sensor 11 Observation plate 101 Piping (inflow pipe)
102 Piping (outflow pipe)
103 Inflow control valve 104 Outflow control valve 105 Bypass pipe 21 Water supply side tank 22 Water reception side tank 23 Pump 24 Current meter 3 Detection system 31 Coherent light source 32 Imaging element 33 Irradiation optical system 34 Imaging optical system 35 Reference light optical system 36 Data processing unit 361 CPU
362 Storage unit 4 Control unit W Target water M Biological fine matter P Reproduction surface

Claims (8)

  1.  対象水中の生体微細物の個数を計測する水質検査システムであって、
     配管を通して対象水を送る送水系と、
     送水系により配管を通して送られる対象水中の生体微細物の個数を検出する検出系とを備えており、
     配管は透明部を有しており、
     検出系は、配管内を流れる対象水の画像を透明部を通して撮像することにより生体微細物の個数を検出するものであって、
     検出系は、
     コヒーレント光を放射する光源と、
     撮像素子と、
     コヒーレント光を透明部を通して配管内に照射し、照射された配管内の対象水からの光である物体光を透明部を通して撮像素子に導くとともに、物体情報を含まないコヒーレント光を参照光として撮像素子に導き、撮像素子の撮像面で干渉させて干渉縞を撮像素子に撮像させる光学系と、
     撮像素子が撮像した干渉縞のデータであるホログラムデータを処理するデータ処理部とを備えており、
     データ処理部は、送水系による配管内の送水速度と撮像素子による撮像領域のうち送水方向の長さとに応じた周期のホログラムデータを取得するものであり、
     データ処理部は、取得した各ホログラムデータを再生することで生体微細物の個数を数えるものであって、各ホログラムデータについての像再生の際に生体微細物の像であると判断されたものの個数を数えるデータ処理を行うものであることを特徴とする水質検査システム。
    A water quality inspection system for measuring the number of biological fines in target water,
    A water supply system that sends the target water through a pipe;
    And a detection system that detects the number of biological fines in the target water sent through the piping by the water supply system,
    The pipe has a transparent part,
    The detection system detects the number of living body fine objects by taking an image of the target water flowing in the pipe through the transparent part,
    The detection system is
    A light source that emits coherent light;
    An image sensor;
    The coherent light is irradiated into the pipe through the transparent part, the object light that is light from the target water in the pipe is guided to the image sensor through the transparent part, and the coherent light not including object information is used as the reference light. An optical system that causes the imaging device to image interference fringes by causing interference on the imaging surface of the imaging device, and
    A data processing unit that processes hologram data that is data of interference fringes imaged by the image sensor;
    The data processing unit acquires hologram data with a period according to the water supply speed in the pipe by the water supply system and the length in the water supply direction in the imaging region by the image sensor,
    The data processing unit counts the number of living body fine objects by playing back each acquired hologram data, and the number of objects determined to be images of living body fine objects at the time of image reproduction for each hologram data Water quality inspection system characterized by performing data processing to count
  2.  前記データ処理部は、どのような生体微細物の像であるかという同定を行って前記個数を数えるデータ処理を行うものであることを特徴とする請求項1記載の水質検査システム。 The water quality inspection system according to claim 1, wherein the data processing unit performs data processing for identifying the image of a living body fine object and counting the number.
  3.  前記データ処理部は、前記各ホログラムデータを再生した際、設定された再生距離ピッチ毎に異なる再生距離の各再生面について当該再生面の輝度値に従って生体微細物の像を含み得るか否かを判断し、含むと判断される再生面を抽出してその再生面における再生像について前記生体微細物の像であると判断されたものの個数を数えるデータ処理を行うものであることを特徴とする請求項1又は2記載の水質検査システム。 Whether the data processing unit can include an image of a biological fine object according to the luminance value of the reproduction surface for each reproduction surface having a different reproduction distance for each reproduction distance pitch set when reproducing each hologram data. The data processing is carried out by extracting a reproduction surface that is determined to be included, and counting the number of the reproduction images on the reproduction surface that are determined to be images of the living body fine objects. Item 3. The water quality inspection system according to item 1 or 2.
  4.  前記輝度値は、前記各ホログラムデータの再生計算した結果のうちの位相値であることを特徴とする請求項3記載の水質検査システム。 4. The water quality inspection system according to claim 3, wherein the luminance value is a phase value in a result of reproduction calculation of each hologram data.
  5.  前記データ処理部は、前記各ホログラムデータを再生した際に得られる像について、生体微細物の標本データと比較することで生体微細物の像であるか否かを判断し、その結果に従って前記個数を数えるものであることを特徴とする請求項1乃至4いずれかに記載の水質検査システム。 The data processing unit determines whether the image obtained when reproducing each hologram data is an image of a biological fine object by comparing it with specimen data of the biological fine object, and according to the result, the number The water quality inspection system according to any one of claims 1 to 4, wherein the water quality inspection system is counted.
  6.  前記データ処理部は、前記生体微細物の像について生死判別をした上で生存しているものの個数を数えることが可能となっていることを特徴とする請求項1乃至5いずれかに記載の水質検査システム。 The water quality according to any one of claims 1 to 5, wherein the data processing unit is capable of counting the number of living ones after determining whether or not the image of the fine living body is viable. Inspection system.
  7.  前記光学系には、配管内にコヒーレント光を照射する照射用光学系と、配管内の対象水からの物体光を捉える撮像用光学系とが含まれており、撮像用光学系は、照射用光学系でコヒーレント光が照射された配管内からの透過光を捉えて前記撮像素子に入射させるものであることを特徴とする請求項1乃至6いずれかに記載の水質検査システム。 The optical system includes an irradiation optical system for irradiating coherent light into the pipe and an imaging optical system for capturing object light from the target water in the pipe. The water quality inspection system according to any one of claims 1 to 6, wherein transmitted light from inside a pipe irradiated with coherent light by an optical system is captured and incident on the imaging device.
  8.  前記対象水は船舶のバラスト水であって、バラスト水検査システムであることを特徴とする請求項1乃至7いずれかに記載の水質検査システム。 The water quality inspection system according to any one of claims 1 to 7, wherein the target water is a ballast water of a ship and is a ballast water inspection system.
PCT/JP2016/051092 2015-01-21 2016-01-15 Water quality inspection system WO2016117460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015009885A JP2016133466A (en) 2015-01-21 2015-01-21 Water quality inspection system
JP2015-009885 2015-01-21

Publications (1)

Publication Number Publication Date
WO2016117460A1 true WO2016117460A1 (en) 2016-07-28

Family

ID=56417007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051092 WO2016117460A1 (en) 2015-01-21 2016-01-15 Water quality inspection system

Country Status (2)

Country Link
JP (1) JP2016133466A (en)
WO (1) WO2016117460A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979927A (en) * 2017-05-17 2017-07-25 孙兆华 Seawater transparency in-situ measurement device
CN116342595A (en) * 2023-05-29 2023-06-27 中数通信息有限公司 Pipeline flushing water quality transparency identification method and equipment based on AI technology

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6752670B2 (en) * 2016-09-30 2020-09-09 タカノ株式会社 Inspection method and equipment for transparent materials
CN110770333A (en) * 2017-06-22 2020-02-07 索尼公司 Information processing apparatus, information processing method, and program
KR102013219B1 (en) * 2018-04-19 2019-08-22 이병하 A System for Collecting and Analyzing Environmental Big Data
KR102111124B1 (en) * 2019-05-28 2020-05-15 (주)위아프렌즈 A Reconstruction Method of Lens-free Diffraction Image and Portable Analyzing Device of Water Particles Using this
WO2020261826A1 (en) 2019-06-28 2020-12-30 富士フイルム株式会社 Image processing device, evaluation system, image processing program, and image processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227977A (en) * 1988-07-18 1990-01-30 Hitachi Ltd Device, method and examination method for culturing animal cell
JP2007020449A (en) * 2005-07-14 2007-02-01 Olympus Corp Screening method and screening apparatus
JP2014044095A (en) * 2012-08-24 2014-03-13 Ushio Inc Three-dimensional positioning method, speed measuring method, three-dimensional positioning apparatus, and speed measuring apparatus
JP2015500475A (en) * 2011-12-07 2015-01-05 アイメックImec Analyzing and sorting objects in fluids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227977A (en) * 1988-07-18 1990-01-30 Hitachi Ltd Device, method and examination method for culturing animal cell
JP2007020449A (en) * 2005-07-14 2007-02-01 Olympus Corp Screening method and screening apparatus
JP2015500475A (en) * 2011-12-07 2015-01-05 アイメックImec Analyzing and sorting objects in fluids
JP2014044095A (en) * 2012-08-24 2014-03-13 Ushio Inc Three-dimensional positioning method, speed measuring method, three-dimensional positioning apparatus, and speed measuring apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MALLAHI AHMED EL ET AL.: "Automated three- dimensional detection and classification of living organisms using digital holographic microscopy with partial spatial coherent source: application to the monitoring of drinking water resources", APPLIED OPTICS, vol. 52, no. 1, pages A68 - A80 *
ZETSCHE EVA-MARIA ET AL.: "Imaging-in-Flow: Digital holographic microscopy as a novel tool to detect and classify nanoplanktonic organisms", LIMNOLOGY AND OCEANOGRAPHY: METHODS, vol. 12, no. 11, November 2014 (2014-11-01), pages 757 - 775 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979927A (en) * 2017-05-17 2017-07-25 孙兆华 Seawater transparency in-situ measurement device
CN116342595A (en) * 2023-05-29 2023-06-27 中数通信息有限公司 Pipeline flushing water quality transparency identification method and equipment based on AI technology
CN116342595B (en) * 2023-05-29 2023-08-04 中数通信息有限公司 Pipeline flushing water quality transparency identification method and equipment based on AI technology

Also Published As

Publication number Publication date
JP2016133466A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2016117460A1 (en) Water quality inspection system
US9013692B2 (en) Flow cytometer apparatus for three dimensional difraction imaging and related methods
JP5182945B2 (en) Methods and apparatus for cell sample analysis
EP2122326B1 (en) Detecting objects
JP5908010B2 (en) Three-dimensional imaging of living cells using ultraviolet radiation
US8842901B2 (en) Compact automated semen analysis platform using lens-free on-chip microscopy
Honkanen et al. Digital imaging measurement of dense multiphase flows in industrial processes
US8830476B2 (en) Methods and apparatuses for contact-free holographic imaging of aerosol particles
JP6649379B2 (en) Analytical methods involving determination of the location of biological particles
JP2014503794A (en) Optical method for determining the properties of transparent particles.
Emmerich et al. Optical inline analysis and monitoring of particle size and shape distributions for multiple applications: Scientific and industrial relevance
Hobson et al. The principles and practice of holographic recording of plankton
KR101927852B1 (en) Method and Apparatus for Identifying Cell Species Using 3D Refractive Index Tomography and Machine Learning Algorithm
US10830687B2 (en) Measuring arrangement for in-line holography microscopy
EA037743B1 (en) Detecting microscopic objects in fluids
EP3532822B1 (en) Trans-illumination imaging with use of interference fringes to enhance contrast and find focus
Go et al. Three-dimensional volumetric monitoring of settling particulate matters on a leaf using digital in-line holographic microscopy
CN111512140B (en) Fast and robust fourier domain-based cell differentiation
Le et al. Benchmarking and automating the image recognition capability of an in situ plankton imaging system
Go et al. Learning-based automatic sensing and size classification of microparticles using smartphone holographic microscopy
Vaughan et al. A review of microscopic cell imaging and neural network recognition for synergistic cyanobacteria identification and enumeration
CN109187367A (en) A kind of polarization optofluidic piece ballast water activity of microalgae detection device and method
Li et al. High-throughput microplastic assessment using polarization holographic imaging
Dyomin et al. Evaluation of the plankton species coordinates from digital holographic video
JP6694182B2 (en) Micro sample observation system and micro sample observation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740067

Country of ref document: EP

Kind code of ref document: A1