WO2016117325A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2016117325A1
WO2016117325A1 PCT/JP2016/000230 JP2016000230W WO2016117325A1 WO 2016117325 A1 WO2016117325 A1 WO 2016117325A1 JP 2016000230 W JP2016000230 W JP 2016000230W WO 2016117325 A1 WO2016117325 A1 WO 2016117325A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
display panel
display device
stripe pattern
polarizing plate
Prior art date
Application number
PCT/JP2016/000230
Other languages
French (fr)
Japanese (ja)
Inventor
笠原 滋雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016117325A1 publication Critical patent/WO2016117325A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/46Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers

Definitions

  • This disclosure relates to a display device in which a plurality of display panels are stacked.
  • a method of displaying a parallax image using a parallax barrier, a lenticular lens, or the like is known.
  • a method of displaying a parallax image there is a problem that visual fatigue is caused by a mismatch between binocular convergence and eye focus adjustment, and a device configuration is complicated.
  • Non-Patent Document 1 two transparent LCD (Liquid Crystal Display) panels are stacked one after the other at a predetermined interval, and the luminance ratio of the image displayed on each panel is changed.
  • a DFD (Depth Fused 3D) method has been proposed in which a stereoscopic image is displayed to an observer using an illusion phenomenon in which two images are merged.
  • the DFD method a stereoscopic display device can be realized with a simple device configuration with little eye strain.
  • a display device includes a first display panel in which pixels are formed in an area partitioned by a first stripe pattern, and a second display panel in which pixels are formed in an area partitioned by a second stripe pattern And comprising.
  • the first display panel and the second display panel are arranged so as to overlap each other, and the first stripe pattern is inclined at a predetermined angle with respect to the second stripe pattern.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of the display device according to the first embodiment.
  • FIG. 2 is a block diagram for explaining an electrical configuration of the display device according to the first embodiment.
  • FIG. 3 is a diagram showing a moire interference pattern with a two-panel configuration.
  • FIG. 4 is a diagram illustrating a first example of a two-panel configuration in the display device according to the first embodiment.
  • FIG. 5 is a diagram illustrating a second example of the two-panel configuration in the display device according to the first embodiment.
  • FIG. 6 is a diagram illustrating a third example of the two-panel configuration in the display device according to the first embodiment.
  • FIG. 7 is a diagram illustrating a fourth example of the two-panel configuration in the display device according to the first embodiment.
  • FIG. 8 is a diagram illustrating a relationship between the panel rotation angle and the moire pitch of the display panel according to the first embodiment.
  • FIG. 9A is a diagram illustrating an example in which the DFD method is applied to a liquid crystal display device.
  • FIG. 9B is a diagram illustrating an example where the DFD method is applied to the liquid crystal display device.
  • FIG. 10 is a diagram illustrating an example in which the DFD method is applied to a liquid crystal display device.
  • FIG. 11A is a diagram illustrating an example in which the DFD method is applied to a liquid crystal display device.
  • FIG. 11B is a diagram illustrating an example in which the DFD method is applied to the liquid crystal display device.
  • FIG. 1 is a schematic diagram illustrating a schematic configuration of the display device 100 according to the first embodiment.
  • the DFD display device 100 includes at least two display panels, a front panel 300 and a rear panel 400 that transmit visible light, and overlap each other when viewed from an observer with a predetermined gap. Is arranged.
  • a liquid crystal display type display device 100 is described as an example of a DFD (depth fused 3D) type display device 100.
  • the display device 100 is not limited to the liquid crystal display method, and may be an EL (Electro Luminescence) display method or an EC (Electrochromic) display method.
  • Examples of display panels constituting liquid crystal display devices include twisted nematic liquid crystal displays, in-plane switching liquid crystal displays, vertical alignment liquid crystal displays, blue phase liquid crystal displays, ferroelectric liquid crystal displays, There are OCB (Optically Compensated Bend) type liquid crystal displays and guest-host type liquid crystal displays.
  • the display device 100 may be configured by appropriately combining two display panels from among these.
  • a display device 100 using a liquid crystal display system includes a front polarizing plate 200, a front panel 300, a back panel 400, a back polarizing plate 500, and a backlight 600 that are stacked in this order from the front side as viewed from the observer 50. Composed together.
  • the front polarizing plate 200 and the rear polarizing plate 500 are not necessary when the guest-host liquid crystal method, the EL method, or the EC method is used for the display device 100. Further, when the EL method is used for the display device 100, the backlight 600 is also unnecessary.
  • FIG. 2 is a block diagram for explaining an electrical configuration of the display device 100 according to the first embodiment. As shown in FIG. 2, the front panel 300, the back panel 400, and the backlight 600 constituting the display device 100 are electrically connected to the control circuit board 700.
  • the front panel 300 includes a liquid crystal display unit 310, a scanning line driving circuit 320, and a video line driving circuit 330.
  • a plurality of scanning lines 321 extended from the scanning line driving circuit 320 and a plurality of video lines 331 extended from the video line driving circuit 330 are arranged.
  • the rear panel 400 includes a liquid crystal display unit 410, a scanning line driving circuit 420, and a video line driving circuit 430.
  • the liquid crystal display unit 410 includes a plurality of scanning lines 421 extended from the scanning line driving circuit 420 and a plurality of video lines 431 extended from the video line driving circuit 430.
  • the backlight 600 includes, for example, an LED light source and an optical system such as a light guide plate that guides light emitted from the LED light source toward the rear panel 400 and the front panel 300.
  • an optical system such as a light guide plate that guides light emitted from the LED light source toward the rear panel 400 and the front panel 300.
  • a diffusion plate or the like may be provided.
  • the arrangement of the LED light sources of the backlight 600 may be a direct type or an edge type.
  • the control circuit board 700 includes a backlight control circuit 710, an AC / DC (AC / DC) converter 720, a front image control circuit 730, and a back image control circuit 740.
  • the control circuit board 700 supplies power and control signals to the front panel 300, the back panel 400, and the backlight 600.
  • the backlight control circuit 710 controls the backlight 600 based on an alternating current supplied from an AC (Alternating Current) power supply. Thereby, the backlight 600 can emit visible light toward the back panel 400 and the front panel 300 by causing the LED light source to emit light.
  • AC Alternating Current
  • AC / DC converter 720 converts an alternating current supplied from an AC power source into a direct current. Then, the AC / DC converter 720 supplies the converted direct current to the front panel 300 and the back panel 400. Thereby, the front panel 300 and the back panel 400 can perform various operations.
  • the front image control circuit 730 generates a timing signal, a gradation voltage, a common voltage, and the like based on the acquired front image signal and supplies them to the front panel 300.
  • the front panel 300 drives the scanning line driving circuit 320 and the video line driving circuit 330 to operate the scanning line 321 and the video line 331. Accordingly, the front panel 300 can control the orientation of the liquid crystal molecules of the liquid crystal display unit 310 and display an image based on the light emitted from the backlight 600.
  • the rear image control circuit 740 generates a timing signal, a gradation voltage, a common voltage, and the like based on the acquired rear image signal and supplies them to the rear panel 400.
  • the back panel 400 drives the scanning line driving circuit 420 and the video line driving circuit 430 to operate the scanning lines 421 and the video lines 431. Accordingly, the back panel 400 can control the orientation of the liquid crystal molecules of the liquid crystal display unit 410 and display an image based on the light emitted from the backlight 600.
  • the front image signal and the rear image signal have the same image content, but have different brightness. Accordingly, images of the same content are displayed on the front panel 300 and the back panel 400 with different luminances. Accordingly, the observer 50 can be stereoscopically displayed by using an illusion phenomenon in which two images of the front image displayed by the front panel 300 and the rear image displayed by the rear panel 400 are fused. An image can be displayed.
  • the front panel 300 and the back panel 400 are arranged with various color filters such as an R (Red) filter, a G (Green) filter, and a B (Blue) filter in accordance with a predetermined arrangement in order to display a color image.
  • the R filter, the G filter, and the B filter are partitioned by a black matrix formed in a lattice shape by a material that shields at least visible light. Therefore, an array of color filters and a stripe pattern by a black matrix are formed.
  • wiring for connecting the scanning line driving circuits 320 and 420 and each pixel along the black matrix
  • Wirings (video lines 331 and 431) connecting the video line driving circuits 330 and 430 and the respective pixels are arranged to be orthogonal to each other. Therefore, a striped pattern by wiring is formed.
  • the stripe pattern formed by a color filter, a black matrix, wiring, or the like is collectively referred to as a stripe pattern.
  • the stripe pattern formed on the front panel 300 is generically referred to as the front stripe pattern 340
  • the stripe pattern formed on the back panel 400 is generically referred to as the back stripe pattern 440.
  • the stripe pattern is not limited to the checkered stripe, and may be a stripe pattern such as a vertical stripe or a horizontal stripe.
  • FIG. 3 is a diagram showing a moire interference pattern with a two-panel configuration.
  • the moire pattern 110 is visually recognized by the observer 50 as shown in FIG. If the moiré pattern 110 is generated, the visibility of the image displayed on the display device 100 is deteriorated, which is not preferable.
  • the front stripe pattern 340 is changed to the back stripe pattern 440 by tilting one of the front panel 300 and the back panel 400 relative to the other by a predetermined angle. It is tilted at a predetermined angle relative to it.
  • the front panel 300 and the back panel 400 are overlapped so that the wiring, black matrix, and color filter are arranged at a predetermined angle.
  • the pitch of the moire pattern 110 is shortened, and at the same time, the brightness difference between the bright and dark portions of the moire pattern 110 is reduced, and the contrast is lowered. Further, it is possible to make the moire pattern 110 less visible.
  • FIG. 4 is a diagram illustrating a first example of a two-panel configuration in the display device according to the first embodiment.
  • the front panel 300 is viewed relative to the back panel 400 as viewed from the observer 50 as shown in FIG. You may arrange so that it may incline.
  • a portion where the image displayable area of the back panel 400 and the image displayable area of the front panel 300 overlap becomes the display surface 120.
  • the rear panel 400 may be disposed to be inclined with respect to the front panel 300.
  • FIG. 5 is a diagram illustrating a second example of the two-panel configuration in the display device according to the first embodiment.
  • both the front panel 300 and the back panel 400 are tilted when viewed from the observer 50 as shown in FIG.
  • both the front panel 300 and the back panel 400 are arranged so as to be inclined, and a portion where the image displayable area of the back panel 400 and the image displayable area of the front panel 300 overlap becomes the display surface 120.
  • the second example shown in FIG. 5 has a wider area display than the display surface that can be obtained when one of the front panel 300 or the rear panel 400 is inclined as in the first example shown in FIG. There is an advantage that a surface is obtained.
  • FIG. 6 is a diagram illustrating a third example of the two-panel configuration in the display device according to the first embodiment.
  • the front stripe pattern 340 of the front panel 300 is tilted relative to the rear stripe pattern 440 of the rear panel 400, as shown in FIG. It may be designed to place a filter. As a result, wiring and color filters can be minimized and costs can be reduced.
  • FIG. 7 is a diagram of a fourth example of the two-panel configuration in the display device according to the first embodiment.
  • components necessary for image display such as wiring, black matrix, and color filter are arranged on a rectangular display panel substrate.
  • the present invention is not limited to this, and as shown in FIG. 7, a substrate having a shape with few components necessary for display (for example, a circular shape or a bowl shape) may be used.
  • the tilt angle when the front stripe pattern 340 of the front panel 300 is tilted relative to the back stripe pattern 440 of the back panel 400 by tilting the front panel 300 relative to the back panel 400 The relationship between the moire pitch (mm) of the moire pattern generated at that time (hereinafter referred to as the panel rotation angle) will be described with reference to FIG.
  • FIG. 8 is a diagram showing the relationship between the rotation angle of the display panel and the moire pitch according to the first embodiment.
  • shaft of FIG. 8 shows a moire pitch (mm).
  • the horizontal axis in FIG. 8 indicates a panel rotation angle (degree) that is a relative angle between the front panel 300 and the back panel 400.
  • the distance between the front panel 300 and the back panel 400 is fixed to 5 mm.
  • a change in moire pitch was measured when a 20 ⁇ magnification camera was installed at a position about 10 cm from the front panel 300 toward the observer 50 and the panel rotation angle was changed. The measurement was performed on a pair of front panel 300 and rear panel 400 having pixel pitches of 0.113 mm, 0.179 mm, and 0.252 mm, respectively.
  • the moire pitch rapidly decreases as the angle increases from the state where the wiring, the black matrix, and the color filter are parallel (panel rotation angle is 0 degree) by changing the panel rotation angle. Moire is less visible.
  • the moiré pitch clearly has a minimum value near 30 degrees regardless of the pixel pitch.
  • the moire pitch increased, and a local value was obtained in the vicinity of 45 degrees.
  • the moire pitch became smaller and took a minimum value in the vicinity of 60 degrees.
  • the moire pitch increased rapidly.
  • the angle formed by each stripe pattern (for example, wiring, black matrix, and color filter) of the front panel 300 and the back panel 400 is 20 degrees or more and less than 45 degrees, and preferably about 30 degrees. Deploy. Or it arrange
  • the transmission axis 201 of the front polarizing plate 200, the transmission axis 501 of the rear polarizing plate 500, and the liquid crystal of the front panel 300 when used in a liquid crystal display type display device As an example of the DFD display device 100, the transmission axis 201 of the front polarizing plate 200, the transmission axis 501 of the rear polarizing plate 500, and the liquid crystal of the front panel 300 when used in a liquid crystal display type display device.
  • the alignment direction 301 of molecules and the alignment direction 401 of liquid crystal molecules of the back panel 400 will be described.
  • FIG. 9A, FIG. 9B, and FIG. 10 are diagrams illustrating an example when the DFD method is applied to the liquid crystal display device.
  • FIG. 9A shows a display device in which, when the front polarizing plate 200, the front panel 300, the rear panel 400, and the rear polarizing plate 500 are arranged to overlap each other, each panel is not inclined relative to the other panels.
  • FIG. 9B shows the relationship between the orientation direction 401 and the wiring, black matrix, and color filter of the back panel 400 in FIG. 9A.
  • a plurality of patterns as shown in FIG. 9B are formed on the back panel 400, and color filters are provided in sections separated by the lattice 350.
  • the lattice is formed by a black matrix or wiring.
  • the stripe pattern is not inclined with respect to the alignment direction 401.
  • the relationship between the wiring of the front panel 300 in FIG. 9A, the black matrix, the color filter, and the orientation direction 401 is the same as that in FIG. 9B. That is, the stripe pattern is parallel or perpendicular to the alignment directions 301 and 401.
  • the transmission axis 201 indicating the deflection direction of the light transmitted through the front polarizing plate 200 is the screen vertical direction
  • the transmission axis 501 indicating the deflection direction of the light transmitted through the rear polarizing plate 500 is the horizontal screen.
  • Direction perpendicular to the transmission axis 201).
  • the alignment direction 301 of the liquid crystal molecules on the front panel 300 and the alignment direction 401 of the liquid crystal molecules on the back panel 400 are both horizontal to the screen.
  • the polarized light transmitted through the rear polarizing plate 500 remains unchanged without changing the polarization direction.
  • the display device can display black.
  • the wiring, black matrix, and color filter of the back panel 400 and the front panel 300 are parallel or vertical, so that moire occurs.
  • FIG. 10 shows that the front panel 300 and the front polarizing plate 200 are inclined relative to the back panel 400 and the rear polarizing plate 500 in order to reduce the occurrence of moire as shown in the first embodiment.
  • a display device is shown. Note that the front panel 300 and the back panel 400 have the same configuration as that in FIG. 9B, and the stripe pattern is parallel or perpendicular to the orientation directions 301 and 401. At this time, since the wiring, black matrix, and color filter of the front panel 300 and the back panel 400 overlap each other at a predetermined angle, the occurrence of moire is reduced.
  • the black display becomes white. That is, when both the front panel 300 and the back panel 400 are in a black display state, the polarized light transmitted through the back polarizing plate 500 passes through the back panel 400 and reaches the front panel 300 without changing the polarization direction. .
  • the front panel 300 forms a predetermined angle with the back panel 400, the linearly polarized light that has reached the front panel 300 is converted into elliptically polarized light by birefringence, for example, and transmitted to reach the front polarizing plate 200.
  • the polarization component in the direction of the transmission axis 201 of the front polarizing plate 200 is transmitted through the front polarizing plate 200. For this reason, although the generation of moire is reduced, the black display becomes white.
  • a front panel 1300 and a front polarizing plate 1200 are formed as shown in FIGS. 11A and 11B.
  • FIG. 11A and FIG. 11B are diagrams illustrating an example when the DFD method is applied to the display device.
  • the front panel 1300 and the front polarizing plate 1200 are inclined relative to the rear panel 400 and the rear polarizing plate 500, and the transmission axis 201 and the transmission axis 501 are orthogonal to each other. is doing.
  • the orientation direction 1301 and the orientation 401 are configured to be orthogonal to the transmission axis 1201.
  • the front panel 1300 will be described with reference to FIG. 11B.
  • the orientation direction 1301 is determined to be a predetermined direction regardless of the direction of the grating 350.
  • the polarized light transmitted through the rear polarizing plate 500 passes through the rear panel 400 and reaches the front polarizing plate 1200 without changing the polarization direction, but the transmission axis 1201 of the front polarizing plate 1200 has a front polarizing plate. Since it forms 90 ° with the polarization axis of the polarized light that has reached 1200, it cannot be transmitted through the front polarizing plate 1200. Thereby, generation
  • 9A to 11B are examples of the alignment direction of the liquid crystal and the transmission axis direction of the polarizing plate, and even if the orientation differs depending on the type of liquid crystal, whitening can be suppressed by applying the same idea.
  • the first embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments that have been changed, replaced, added, omitted, and the like.
  • the present invention is not limited to this.
  • the present disclosure can be applied even when three or more display panels are used in an overlapping manner.
  • the present disclosure is applicable to various display devices such as a television receiver, a digital signage terminal, an electronic blackboard, a large touch panel device, a tablet terminal, a smartphone terminal, and a personal computer monitor, as long as the display device has a plurality of display panels. Applicable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The objective of the present invention is to reduce the occurrence of moire in a display device formed by overlapping a plurality of display panels. The invention is provided with a first display panel having pixels formed in a region divided by means of a first stripe pattern, and a second display panel having pixels formed in a region divided by means of a second stripe pattern. The first display panel and second display panel are arranged so as to overlap, and the first stripe pattern is inclined at a prescribed angle relative to the second stripe pattern.

Description

表示装置Display device
 本開示は、表示パネルを複数枚重ねあわせた表示装置に関する。 This disclosure relates to a display device in which a plurality of display panels are stacked.
 立体表示の方式として、視差バリアやレンチキュラーレンズ等を使用して視差画像を表示する方式が知られている。しかしながら、視差画像を表示する方式の場合、両眼輻輳と眼のピント調節の不一致により視覚疲労を起こす問題や、装置構成が複雑になってしまう問題がある。 As a stereoscopic display method, a method of displaying a parallax image using a parallax barrier, a lenticular lens, or the like is known. However, in the case of a method of displaying a parallax image, there is a problem that visual fatigue is caused by a mismatch between binocular convergence and eye focus adjustment, and a device configuration is complicated.
 そこで、例えば、非特許文献1に記載されている表示装置では、2枚の透明なLCD(Liquid Crystal Display)パネルを所定の間隔で前後に重ね、それぞれのパネルに表示する画像の輝度比を変化させることにより、2つの像が融合した1つの像に見える錯視現象を利用して観察者に立体的な画像を表示するDFD(Depth Fused 3D)方式が提案されている。DFD方式によれば、眼精疲労感の少なく、簡単な装置構成で、立体表示装置を実現できる。 Therefore, for example, in the display device described in Non-Patent Document 1, two transparent LCD (Liquid Crystal Display) panels are stacked one after the other at a predetermined interval, and the luminance ratio of the image displayed on each panel is changed. By doing so, a DFD (Depth Fused 3D) method has been proposed in which a stereoscopic image is displayed to an observer using an illusion phenomenon in which two images are merged. According to the DFD method, a stereoscopic display device can be realized with a simple device configuration with little eye strain.
 本開示にかかる表示装置は、第1のストライプパターンによって区画された領域に画素を形成した第1の表示パネルと、第2のストライプパターンによって区画された領域に画素を形成した第2の表示パネルと、を備える。第1の表示パネルと第2の表示パネルとは重ね合わされ配置されており、第1のストライプパターンは、第2のストライプパターンに対して所定の角度傾いている。 A display device according to the present disclosure includes a first display panel in which pixels are formed in an area partitioned by a first stripe pattern, and a second display panel in which pixels are formed in an area partitioned by a second stripe pattern And comprising. The first display panel and the second display panel are arranged so as to overlap each other, and the first stripe pattern is inclined at a predetermined angle with respect to the second stripe pattern.
 本開示によれば、表示パネルを複数重ねあわせた表示装置において、モアレの発生を低減することができる。 According to the present disclosure, it is possible to reduce the occurrence of moire in a display device in which a plurality of display panels are stacked.
図1は、実施の形態1にかかる表示装置の概略構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of the display device according to the first embodiment. 図2は、実施の形態1にかかる表示装置の電気的構成を説明するためのブロック図である。FIG. 2 is a block diagram for explaining an electrical configuration of the display device according to the first embodiment. 図3は、2枚のパネル構成によるモアレ干渉パターンを示す図である。FIG. 3 is a diagram showing a moire interference pattern with a two-panel configuration. 図4は、実施の形態1にかかる表示装置における2枚のパネル構成の第1例を示す図である。FIG. 4 is a diagram illustrating a first example of a two-panel configuration in the display device according to the first embodiment. 図5は、実施の形態1にかかる表示装置における2枚のパネル構成の第2例を示す図である。FIG. 5 is a diagram illustrating a second example of the two-panel configuration in the display device according to the first embodiment. 図6は、施の形態1にかかる表示装置における2枚のパネル構成の第3例を示す図である。FIG. 6 is a diagram illustrating a third example of the two-panel configuration in the display device according to the first embodiment. 図7は、実施の形態1にかかる表示装置における2枚のパネル構成の第4例を示す図である。FIG. 7 is a diagram illustrating a fourth example of the two-panel configuration in the display device according to the first embodiment. 図8は、実施の形態1にかかる表示パネルのパネル回転角とモアレピッチとの関係を示す図である。FIG. 8 is a diagram illustrating a relationship between the panel rotation angle and the moire pitch of the display panel according to the first embodiment. 図9Aは、液晶表示装置にDFD方式を適用した場合の例を示す図である。FIG. 9A is a diagram illustrating an example in which the DFD method is applied to a liquid crystal display device. 図9Bは、液晶表示装置にDFD方式を適用した場合の例を示す図である。FIG. 9B is a diagram illustrating an example where the DFD method is applied to the liquid crystal display device. 図10は、液晶表示装置にDFD方式を適用した場合の例を示す図である。FIG. 10 is a diagram illustrating an example in which the DFD method is applied to a liquid crystal display device. 図11Aは、液晶表示装置にDFD方式を適用した場合の例を示す図である。FIG. 11A is a diagram illustrating an example in which the DFD method is applied to a liquid crystal display device. 図11Bは、液晶表示装置にDFD方式を適用した場合の例を示す図である。FIG. 11B is a diagram illustrating an example in which the DFD method is applied to the liquid crystal display device.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、当業者が本開示を十分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art. In addition, in order for those skilled in the art to provide a thorough understanding of the present disclosure, the accompanying drawings and the following description are provided, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、添付の図面を用いて、実施の形態1を説明する。
(Embodiment 1)
The first embodiment will be described below with reference to the accompanying drawings.
 〔1-1.構成〕
 図1は、実施の形態1にかかる表示装置100の概略構成を示す模式図である。図1に示すように、DFD方式の表示装置100は、可視光を透過する前面パネル300及び背面パネル400の少なくとも2枚の表示パネルを、所定間隔の空隙をあけて、観察者から見て重なるように配している。図1では、DFD(Depth Fused 3D)方式の表示装置100の一例として、液晶表示方式の表示装置100を記載している。但し、表示装置100は、液晶表示方式に限定されるものではなく、EL(Electro Luminescence)表示方式、EC(Electrochromic)表示方式であってもよい。また、液晶表示方式の表示装置を構成する表示パネルの例としては、ツイスト・ネマティック型液晶ディスプレイ、インプレイン・スイッチング型液晶ディスプレイ、バーチカルアライメント型液晶ディスプレイ、ブルー相液晶ディスプレイ、強誘電性液晶ディスプレイ、OCB(Optically Compensated Bend)型液晶ディスプレイ、ゲスト-ホスト型液晶ディスプレイがある。そして、表示装置100は、これらの中から2枚の表示パネルを適宜組み合わせて構成してもよい。
[1-1. Constitution〕
FIG. 1 is a schematic diagram illustrating a schematic configuration of the display device 100 according to the first embodiment. As shown in FIG. 1, the DFD display device 100 includes at least two display panels, a front panel 300 and a rear panel 400 that transmit visible light, and overlap each other when viewed from an observer with a predetermined gap. Is arranged. In FIG. 1, a liquid crystal display type display device 100 is described as an example of a DFD (depth fused 3D) type display device 100. However, the display device 100 is not limited to the liquid crystal display method, and may be an EL (Electro Luminescence) display method or an EC (Electrochromic) display method. Examples of display panels constituting liquid crystal display devices include twisted nematic liquid crystal displays, in-plane switching liquid crystal displays, vertical alignment liquid crystal displays, blue phase liquid crystal displays, ferroelectric liquid crystal displays, There are OCB (Optically Compensated Bend) type liquid crystal displays and guest-host type liquid crystal displays. The display device 100 may be configured by appropriately combining two display panels from among these.
 図1に示すように、液晶表示方式による表示装置100は、観察者50から見て手前側から、前面偏光板200、前面パネル300、背面パネル400、背面偏光板500、バックライト600が順に重ね合わさって構成される。なお、表示装置100に、ゲスト-ホスト型液晶方式や、EL方式やEC方式が用いられている場合には、前面偏光板200、背面偏光板500は不要である。更に、表示装置100にEL方式が用いられている場合には、バックライト600も不要である。 As shown in FIG. 1, a display device 100 using a liquid crystal display system includes a front polarizing plate 200, a front panel 300, a back panel 400, a back polarizing plate 500, and a backlight 600 that are stacked in this order from the front side as viewed from the observer 50. Composed together. Note that the front polarizing plate 200 and the rear polarizing plate 500 are not necessary when the guest-host liquid crystal method, the EL method, or the EC method is used for the display device 100. Further, when the EL method is used for the display device 100, the backlight 600 is also unnecessary.
 図2は、実施の形態1にかかる表示装置100の電気的構成を説明するためのブロック図である。図2に示すように、表示装置100を構成する前面パネル300、背面パネル400、バックライト600は、制御回路基板700と電気的に接続されている。 FIG. 2 is a block diagram for explaining an electrical configuration of the display device 100 according to the first embodiment. As shown in FIG. 2, the front panel 300, the back panel 400, and the backlight 600 constituting the display device 100 are electrically connected to the control circuit board 700.
 前面パネル300は、液晶表示部310、走査線駆動回路320、映像線駆動回路330を備えている。液晶表示部310には、走査線駆動回路320から伸長した複数本の走査線321と、映像線駆動回路330から伸長した複数本の映像線331が配置されている。 The front panel 300 includes a liquid crystal display unit 310, a scanning line driving circuit 320, and a video line driving circuit 330. In the liquid crystal display unit 310, a plurality of scanning lines 321 extended from the scanning line driving circuit 320 and a plurality of video lines 331 extended from the video line driving circuit 330 are arranged.
 背面パネル400は、液晶表示部410、走査線駆動回路420、映像線駆動回路430を備えている。液晶表示部410には、走査線駆動回路420から伸長した複数本の走査線421と、映像線駆動回路430から伸長した複数本の映像線431が配置されている。 The rear panel 400 includes a liquid crystal display unit 410, a scanning line driving circuit 420, and a video line driving circuit 430. The liquid crystal display unit 410 includes a plurality of scanning lines 421 extended from the scanning line driving circuit 420 and a plurality of video lines 431 extended from the video line driving circuit 430.
 バックライト600は、例えばLED光源と、LED光源から発光された光を背面パネル400及び前面パネル300の方向へと導光する導光板などの光学系とを備えている。LED光源から発光された光を均一にするために拡散板などを備えていてもよい。バックライト600のLED光源の配置は、直下型であってもよいし、エッジ型であってもよい。 The backlight 600 includes, for example, an LED light source and an optical system such as a light guide plate that guides light emitted from the LED light source toward the rear panel 400 and the front panel 300. In order to make the light emitted from the LED light source uniform, a diffusion plate or the like may be provided. The arrangement of the LED light sources of the backlight 600 may be a direct type or an edge type.
 制御回路基板700は、バックライト制御回路710、AC/DC(交流/直流)コンバータ720、前面画像制御回路730、背面画像制御回路740を備えている。制御回路基板700は、前面パネル300、背面パネル400、バックライト600に対して、電力及び制御信号などの供給を行う。 The control circuit board 700 includes a backlight control circuit 710, an AC / DC (AC / DC) converter 720, a front image control circuit 730, and a back image control circuit 740. The control circuit board 700 supplies power and control signals to the front panel 300, the back panel 400, and the backlight 600.
 バックライト制御回路710は、AC(Alternating Current)電源から供給される交流電流に基づいて、バックライト600を制御する。これにより、バックライト600は、LED光源を発光させて、背面パネル400及び前面パネル300に向けて可視光を照射することができる。 The backlight control circuit 710 controls the backlight 600 based on an alternating current supplied from an AC (Alternating Current) power supply. Thereby, the backlight 600 can emit visible light toward the back panel 400 and the front panel 300 by causing the LED light source to emit light.
 AC/DCコンバータ720は、AC電源から供給される交流電流を直流電流へと変換する。そして、AC/DCコンバータ720は、変換した直流電流を、前面パネル300及び背面パネル400へと供給する。これにより、前面パネル300及び背面パネル400は、各種の動作を実行することができる。 AC / DC converter 720 converts an alternating current supplied from an AC power source into a direct current. Then, the AC / DC converter 720 supplies the converted direct current to the front panel 300 and the back panel 400. Thereby, the front panel 300 and the back panel 400 can perform various operations.
 前面画像制御回路730は、取得した前面画像信号に基づいて、タイミング信号、階調電圧、コモン電圧などを発生し、前面パネル300に対して供給する。この供給を受けて、前面パネル300は、走査線駆動回路320及び映像線駆動回路330を駆動して、走査線321及び映像線331を動作させる。これにより、前面パネル300は、液晶表示部310の液晶分子の配向を制御し、バックライト600から照射される光に基づく映像を表示することができる。 The front image control circuit 730 generates a timing signal, a gradation voltage, a common voltage, and the like based on the acquired front image signal and supplies them to the front panel 300. In response to this supply, the front panel 300 drives the scanning line driving circuit 320 and the video line driving circuit 330 to operate the scanning line 321 and the video line 331. Accordingly, the front panel 300 can control the orientation of the liquid crystal molecules of the liquid crystal display unit 310 and display an image based on the light emitted from the backlight 600.
 背面画像制御回路740は、取得した背面画像信号に基づいて、タイミング信号、階調電圧、コモン電圧などを発生し、背面パネル400に対して供給する。この供給を受けて、背面パネル400は、走査線駆動回路420及び映像線駆動回路430を駆動して、走査線421及び映像線431を動作させる。これにより、背面パネル400は、液晶表示部410の液晶分子の配向を制御し、バックライト600から照射される光に基づく映像を表示することができる。 The rear image control circuit 740 generates a timing signal, a gradation voltage, a common voltage, and the like based on the acquired rear image signal and supplies them to the rear panel 400. In response to this supply, the back panel 400 drives the scanning line driving circuit 420 and the video line driving circuit 430 to operate the scanning lines 421 and the video lines 431. Accordingly, the back panel 400 can control the orientation of the liquid crystal molecules of the liquid crystal display unit 410 and display an image based on the light emitted from the backlight 600.
 前面画像信号と背面画像信号は、それぞれが示す画像の内容は同一であるが、輝度が互いに異なる。従って、前面パネル300と背面パネル400には、同一内容の画像が、異なる輝度により表示される。これにより、前面パネル300が表示する前面画像と、背面パネル400が表示する背面画像との2つの画像が融合した1つの像に見える錯角現象を利用して、観察者50に対して立体的な画像を表示することができる。 The front image signal and the rear image signal have the same image content, but have different brightness. Accordingly, images of the same content are displayed on the front panel 300 and the back panel 400 with different luminances. Accordingly, the observer 50 can be stereoscopically displayed by using an illusion phenomenon in which two images of the front image displayed by the front panel 300 and the rear image displayed by the rear panel 400 are fused. An image can be displayed.
 前面パネル300及び背面パネル400は、カラー画像を表示するために、例えばR(Red)フィルター、G(Green)フィルター、B(Blue)フィルターといった各種のカラーフィルターを、所定の配列に従って配置している。そして、Rフィルター、Gフィルター、Bフィルターは、少なくとも可視光を遮光する材質により格子状に形成されたブラックマトリックスにより区画されている。従って、カラーフィルターの配列や、ブラックマトリックスによる縞模様を形成する。更に、前面パネル300及び背面パネル400のTFT(Thin Film Transistor)基板上には、ブラックマトリックスに沿って、走査線駆動回路320、420と各画素とを結ぶ配線(走査線321、421)と、映像線駆動回路330、430と各画素とを結ぶ配線(映像線331、431)とが直交するように配置されている。従って、配線による縞模様を形成する。ここでは、カラーフィルター、ブラックマトリックス、配線などによる縞模様のことをストライプパターンと総称する。そして、前面パネル300にて形成されるストライプパターンを前面ストライプパターン340と、背面パネル400にて形成されるストライプパターンを背面ストライプパターン440と総称ことにする。なお、ストライプパターンは、格子縞には限定されず、縦縞、横縞などの縞模様であってもよい。 The front panel 300 and the back panel 400 are arranged with various color filters such as an R (Red) filter, a G (Green) filter, and a B (Blue) filter in accordance with a predetermined arrangement in order to display a color image. . The R filter, the G filter, and the B filter are partitioned by a black matrix formed in a lattice shape by a material that shields at least visible light. Therefore, an array of color filters and a stripe pattern by a black matrix are formed. Furthermore, on the TFT (Thin Film Transistor) substrate of the front panel 300 and the back panel 400, wiring (scanning lines 321 and 421) for connecting the scanning line driving circuits 320 and 420 and each pixel along the black matrix, Wirings (video lines 331 and 431) connecting the video line driving circuits 330 and 430 and the respective pixels are arranged to be orthogonal to each other. Therefore, a striped pattern by wiring is formed. Here, the stripe pattern formed by a color filter, a black matrix, wiring, or the like is collectively referred to as a stripe pattern. The stripe pattern formed on the front panel 300 is generically referred to as the front stripe pattern 340, and the stripe pattern formed on the back panel 400 is generically referred to as the back stripe pattern 440. The stripe pattern is not limited to the checkered stripe, and may be a stripe pattern such as a vertical stripe or a horizontal stripe.
 図3は、2枚のパネル構成によるモアレ干渉パターンを示す図である。前面パネル300と背面パネル400とを、前面ストライプパターン340と背面ストライプパターン440とが平行または直交するように重ねると、観察者50から図3に示すようにモアレパターン110が視認されてしまう。モアレパターン110が発生してしまうと、表示装置100が表示する映像の視認性が悪くなるため好ましくない。 FIG. 3 is a diagram showing a moire interference pattern with a two-panel configuration. When the front panel 300 and the back panel 400 are overlapped so that the front stripe pattern 340 and the back stripe pattern 440 are parallel or orthogonal to each other, the moire pattern 110 is visually recognized by the observer 50 as shown in FIG. If the moiré pattern 110 is generated, the visibility of the image displayed on the display device 100 is deteriorated, which is not preferable.
 そこで、実施の形態1にかかる表示装置100では、前面パネル300と背面パネル400とのいずれか一方を他方に対して相対的に所定の角度傾けることにより、前面ストライプパターン340を背面ストライプパターン440に対して相対的に所定の角度傾けている。換言すれば、前面パネル300と背面パネル400の各々の配線、ブラックマトリックス、及びカラーフィルターが所定の角度をもって配するように重ねる。これにより、モアレパターン110のピッチを短くすると同時にモアレパターン110の明部と暗部の輝度差が少なくなり、コントラストが低下する。そして、モアレパターン110を視認されにくくすることができる。 Therefore, in the display device 100 according to the first embodiment, the front stripe pattern 340 is changed to the back stripe pattern 440 by tilting one of the front panel 300 and the back panel 400 relative to the other by a predetermined angle. It is tilted at a predetermined angle relative to it. In other words, the front panel 300 and the back panel 400 are overlapped so that the wiring, black matrix, and color filter are arranged at a predetermined angle. As a result, the pitch of the moire pattern 110 is shortened, and at the same time, the brightness difference between the bright and dark portions of the moire pattern 110 is reduced, and the contrast is lowered. Further, it is possible to make the moire pattern 110 less visible.
 図4は、実施の形態1にかかる表示装置における2枚のパネル構成の第1例を示す図である。前面パネル300の前面ストライプパターン340を背面パネル400の背面ストライプパターン440に対して相対的に傾ける手段として、図4のように、観察者50から見て、前面パネル300を背面パネル400に対して傾けるように配置してもよい。このとき、背面パネル400の画像表示可能領域と前面パネル300の画像表示可能領域とが重なる部分が表示面120となる。なお、背面パネル400を前面パネル300に対して傾けるように配置してもよい。 FIG. 4 is a diagram illustrating a first example of a two-panel configuration in the display device according to the first embodiment. As a means for inclining the front stripe pattern 340 of the front panel 300 relative to the back stripe pattern 440 of the back panel 400, the front panel 300 is viewed relative to the back panel 400 as viewed from the observer 50 as shown in FIG. You may arrange so that it may incline. At this time, a portion where the image displayable area of the back panel 400 and the image displayable area of the front panel 300 overlap becomes the display surface 120. Note that the rear panel 400 may be disposed to be inclined with respect to the front panel 300.
 図5は、実施の形態1にかかる表示装置における2枚のパネル構成の第2例を示す図である。前面パネル300の前面ストライプパターン340を背面パネル400の背面ストライプパターン440に対して相対的に傾ける手段として、図5のように観察者50から見て、前面パネル300と背面パネル400の両方を傾けるように配置してもよい。図5に示すように、前面パネル300と背面パネル400の両方を傾けるように配置し、背面パネル400の画像表示可能領域と前面パネル300の画像表示可能領域とが重なる部分が表示面120となる。このとき、図5に示す第2例は、図4に示した第1例のように前面パネル300あるいは背面パネル400の一方を傾けた場合に取り得る表示面と比較してより広い面積の表示面が得られる利点がある。 FIG. 5 is a diagram illustrating a second example of the two-panel configuration in the display device according to the first embodiment. As a means for tilting the front stripe pattern 340 of the front panel 300 relative to the back stripe pattern 440 of the back panel 400, both the front panel 300 and the back panel 400 are tilted when viewed from the observer 50 as shown in FIG. You may arrange as follows. As shown in FIG. 5, both the front panel 300 and the back panel 400 are arranged so as to be inclined, and a portion where the image displayable area of the back panel 400 and the image displayable area of the front panel 300 overlap becomes the display surface 120. . At this time, the second example shown in FIG. 5 has a wider area display than the display surface that can be obtained when one of the front panel 300 or the rear panel 400 is inclined as in the first example shown in FIG. There is an advantage that a surface is obtained.
 図6は、実施の形態1にかかる表示装置における2枚のパネル構成の第3例を示す図である。前面パネル300の前面ストライプパターン340を背面パネル400の背面ストライプパターン440に対して相対的に傾けたときに、図6に示すように、少なくとも表示面120の部分に画像表示に必要な配線やカラーフィルターを配置するように設計してもよい。これにより、配線やカラーフィルターを必要最低限にすることができ、コスト低減できる。 FIG. 6 is a diagram illustrating a third example of the two-panel configuration in the display device according to the first embodiment. When the front stripe pattern 340 of the front panel 300 is tilted relative to the rear stripe pattern 440 of the rear panel 400, as shown in FIG. It may be designed to place a filter. As a result, wiring and color filters can be minimized and costs can be reduced.
 図7は、実施の形態1にかかる表示装置における2枚のパネル構成の第4例を示す図である。図4~図6で示した第1例~第3例は、長方形の表示パネルの基板上に、配線、ブラックマトリックス及びカラーフィルターなど画像表示に必要な構成要素を配置した。しかしながら、これに限定されず、図7に示すように、表示に必要な構成要素がない部分が少ない形状(例えば、円形や蒲鉾形など)の基板を用いてもよい。 FIG. 7 is a diagram of a fourth example of the two-panel configuration in the display device according to the first embodiment. In the first to third examples shown in FIGS. 4 to 6, components necessary for image display such as wiring, black matrix, and color filter are arranged on a rectangular display panel substrate. However, the present invention is not limited to this, and as shown in FIG. 7, a substrate having a shape with few components necessary for display (for example, a circular shape or a bowl shape) may be used.
 続いて、前面パネル300を背面パネル400に対して相対的に傾けることにより、前面パネル300の前面ストライプパターン340を背面パネル400の背面ストライプパターン440に対して相対的に傾けたときの、傾き角(以下、パネル回転角と呼ぶ)と、そのときに発生するモアレパターンのモアレピッチ(mm)との関係について、図8を用いて説明する。 Subsequently, the tilt angle when the front stripe pattern 340 of the front panel 300 is tilted relative to the back stripe pattern 440 of the back panel 400 by tilting the front panel 300 relative to the back panel 400. The relationship between the moire pitch (mm) of the moire pattern generated at that time (hereinafter referred to as the panel rotation angle) will be described with reference to FIG.
 図8は、実施の形態1にかかる表示パネルの回転角とモアレピッチとの関係を示す図である。図8の縦軸は、モアレピッチ(mm)を示す。図8の横軸は、前面パネル300と背面パネル400との相対角であるパネル回転角(度)を示す。図8の測定結果の取得にあたっては、前面パネル300と背面パネル400の間隔を5mmに固定している。そして、前面パネル300から観察者50の方向へと約10cm辺りの位置に20倍の拡大カメラを設置してパネル回転角を変化させたときのモアレピッチの変化を測定した。測定は、0.113mm、0.179mm、0.252mmの画素ピッチの一対の前面パネル300、背面パネル400についてそれぞれ行った。 FIG. 8 is a diagram showing the relationship between the rotation angle of the display panel and the moire pitch according to the first embodiment. The vertical axis | shaft of FIG. 8 shows a moire pitch (mm). The horizontal axis in FIG. 8 indicates a panel rotation angle (degree) that is a relative angle between the front panel 300 and the back panel 400. In obtaining the measurement results of FIG. 8, the distance between the front panel 300 and the back panel 400 is fixed to 5 mm. Then, a change in moire pitch was measured when a 20 × magnification camera was installed at a position about 10 cm from the front panel 300 toward the observer 50 and the panel rotation angle was changed. The measurement was performed on a pair of front panel 300 and rear panel 400 having pixel pitches of 0.113 mm, 0.179 mm, and 0.252 mm, respectively.
 図8に示すように、パネル回転角を変化させて、各々の配線、ブラックマトリックス及びカラーフィルターが平行な状態(パネル回転角が0度)から角度が増すにつれ、モアレピッチは急激に短くなるとともに、モアレが視認されにくくなっていく。モアレピッチは、画素ピッチと関係なく明らかに30度近傍で最小値をとった。パネル回転角が30度を超えると、モアレピッチは大きくなり、45度近傍で局大値をとった。次に、パネル回転角が45度を超えると、モアレピッチは小さくなっていき、60度近傍で最小値をとった。そして、パネル回転角が60度を超えると、モアレピッチは急激に増加した。 As shown in FIG. 8, the moire pitch rapidly decreases as the angle increases from the state where the wiring, the black matrix, and the color filter are parallel (panel rotation angle is 0 degree) by changing the panel rotation angle. Moire is less visible. The moiré pitch clearly has a minimum value near 30 degrees regardless of the pixel pitch. When the panel rotation angle exceeded 30 degrees, the moire pitch increased, and a local value was obtained in the vicinity of 45 degrees. Next, when the panel rotation angle exceeded 45 degrees, the moire pitch became smaller and took a minimum value in the vicinity of 60 degrees. And when the panel rotation angle exceeded 60 degrees, the moire pitch increased rapidly.
 このとき、前面パネル300前に配置した拡大カメラにより撮影した拡大画像を目視すると、パネル回転角が20度以上45度未満のとき及び、45度より大きく70度未満のときにおいて、概ねモアレが視認されにくい状態になった。そして、パネル回転角が30度近傍と60度近傍であるときに、モアレの暗部と明部のコントラストが特に低くかった。一方、パネル回転角が45度近傍であるときでは、モアレの暗部と明部のコントラストが高くなると同時に、背面パネル400の配線、ブラックマトリックス及びカラーフィルターに平行と垂直なモアレが視認された。 At this time, when an enlarged image taken by an enlarged camera arranged in front of the front panel 300 is visually observed, moire is generally visually recognized when the panel rotation angle is 20 degrees or more and less than 45 degrees and when it is greater than 45 degrees and less than 70 degrees. It became difficult to be done. When the panel rotation angle is around 30 degrees and around 60 degrees, the contrast between the dark part and the bright part of the moire was particularly low. On the other hand, when the panel rotation angle was around 45 degrees, the contrast between the dark part and the bright part of the moire increased, and at the same time, moire parallel to and perpendicular to the wiring, the black matrix, and the color filter of the rear panel 400 was visually recognized.
 以上の結果から、前面パネル300と背面パネル400の各々のストライプパターン(例えば、配線、ブラックマトリックス及びカラーフィルター)がなす角を、20度以上45度未満で、好ましくは略30度になるように配置する。あるいは、45度より大きく70度以下で、好ましくは略60度になるように配置する。これにより、モアレの発生を低減させる最適角度にて、前面パネル300及び背面パネル400を配置することができる。そして、観察者50は、視認性高く快適に映像表示を楽しむことができる。 From the above results, the angle formed by each stripe pattern (for example, wiring, black matrix, and color filter) of the front panel 300 and the back panel 400 is 20 degrees or more and less than 45 degrees, and preferably about 30 degrees. Deploy. Or it arrange | positions so that it may become larger than 45 degree | times and below 70 degree | times, Preferably it is about 60 degree | times. Thereby, the front panel 300 and the back panel 400 can be arrange | positioned at the optimal angle which reduces generation | occurrence | production of a moire. The observer 50 can enjoy video display comfortably with high visibility.
 続いて、DFD方式の表示装置100の一例として、液晶表示方式の表示装置に利用した場合の、前面偏光板200の透過軸201及び背面偏光板500の透過軸501、並びに、前面パネル300の液晶分子の配向方向301及び背面パネル400の液晶分子の配向方向401について説明する。 Subsequently, as an example of the DFD display device 100, the transmission axis 201 of the front polarizing plate 200, the transmission axis 501 of the rear polarizing plate 500, and the liquid crystal of the front panel 300 when used in a liquid crystal display type display device. The alignment direction 301 of molecules and the alignment direction 401 of liquid crystal molecules of the back panel 400 will be described.
 図9A、図9B、図10は、液晶表示装置にDFD方式を適用した場合の例を示す図である。図9Aは、前面偏光板200、前面パネル300、背面パネル400、背面偏光板500を重ねあわせて配置した場合において、それぞれのパネルは他のパネルに対して相対的に傾けていない表示装置を示す。図9Bは、図9Aにおける背面パネル400の配線、ブラックマトリックス及びカラーフィルターと配向方向401との関係を示す。図9Bに示すような、パターンが背面パネル400上で複数形成されており、格子350で区切られた区画にカラーフィルターが設けられている。なお、格子は、ブラックマトリクスや配線により形成されている。このとき、ストライプパターンは、配向方向401に対して傾いていない。一方、図9Aにおける前面パネル300の配線、ブラックマトリックス及びカラーフィルターと配向方向401との関係も図9Bと同様になる。つまり、ストライプパターンは、配向方向301、401に対して、平行あるいは垂直になっている。 FIG. 9A, FIG. 9B, and FIG. 10 are diagrams illustrating an example when the DFD method is applied to the liquid crystal display device. FIG. 9A shows a display device in which, when the front polarizing plate 200, the front panel 300, the rear panel 400, and the rear polarizing plate 500 are arranged to overlap each other, each panel is not inclined relative to the other panels. . FIG. 9B shows the relationship between the orientation direction 401 and the wiring, black matrix, and color filter of the back panel 400 in FIG. 9A. A plurality of patterns as shown in FIG. 9B are formed on the back panel 400, and color filters are provided in sections separated by the lattice 350. The lattice is formed by a black matrix or wiring. At this time, the stripe pattern is not inclined with respect to the alignment direction 401. On the other hand, the relationship between the wiring of the front panel 300 in FIG. 9A, the black matrix, the color filter, and the orientation direction 401 is the same as that in FIG. 9B. That is, the stripe pattern is parallel or perpendicular to the alignment directions 301 and 401.
 図9Aに示す例では、前面偏光板200を透過する光の偏向方向を示す透過軸201は画面縦方向である一方、背面偏光板500を透過する光の偏向方向を示す透過軸501は画面横方向(透過軸201に対して垂直方向)である。また、前面パネル300の液晶分子の配向方向301及び背面パネル400の液晶分子の配向方向401は共に画面横方向である。図9Aに示す例の表示装置において、前面パネル300と背面パネル400を共に黒表示状態にした場合、背面偏光板500を透過した偏光光は、そのまま偏光方向を変えることなく背面パネル400、前面パネル300を通過し、前面偏光板200に到達する。前面偏光板200の透過軸201は、前面偏光板200まで到達してきた偏光光の偏光軸と90°をなすため、前面偏光板200を透過できない。これにより、表示装置は黒表示ができる。但し、図9A、図9Bで説明したように背面パネル400と前面パネル300の各々の配線、ブラックマトリックス及びカラーフィルターが平行あるいは垂直であるため、モアレが発生する。 In the example shown in FIG. 9A, the transmission axis 201 indicating the deflection direction of the light transmitted through the front polarizing plate 200 is the screen vertical direction, while the transmission axis 501 indicating the deflection direction of the light transmitted through the rear polarizing plate 500 is the horizontal screen. Direction (perpendicular to the transmission axis 201). In addition, the alignment direction 301 of the liquid crystal molecules on the front panel 300 and the alignment direction 401 of the liquid crystal molecules on the back panel 400 are both horizontal to the screen. In the example of the display device shown in FIG. 9A, when both the front panel 300 and the rear panel 400 are in a black display state, the polarized light transmitted through the rear polarizing plate 500 remains unchanged without changing the polarization direction. Pass 300 and reach the front polarizing plate 200. Since the transmission axis 201 of the front polarizing plate 200 forms 90 ° with the polarization axis of the polarized light that has reached the front polarizing plate 200, it cannot pass through the front polarizing plate 200. As a result, the display device can display black. However, as described with reference to FIGS. 9A and 9B, the wiring, black matrix, and color filter of the back panel 400 and the front panel 300 are parallel or vertical, so that moire occurs.
 一方、図10は、実施の形態1に示すように、モアレの発生を低減させるために、前面パネル300及び前面偏光板200を、背面パネル400及び背面偏光板500に対して相対的に傾けた表示装置を示す。なお、前面パネル300及び背面パネル400は、図9Bと同じ構成であり、ストライプパターンは、配向方向301、401に対して、平行あるいは垂直になっている。このとき、前面パネル300と背面パネル400の各々の配線、ブラックマトリックス及びカラーフィルターが所定の角度をなして重なるため、モアレの発生は低減される。 On the other hand, FIG. 10 shows that the front panel 300 and the front polarizing plate 200 are inclined relative to the back panel 400 and the rear polarizing plate 500 in order to reduce the occurrence of moire as shown in the first embodiment. A display device is shown. Note that the front panel 300 and the back panel 400 have the same configuration as that in FIG. 9B, and the stripe pattern is parallel or perpendicular to the orientation directions 301 and 401. At this time, since the wiring, black matrix, and color filter of the front panel 300 and the back panel 400 overlap each other at a predetermined angle, the occurrence of moire is reduced.
 しかしながら、ストライプパターンを所定の角度をなして重ねたことにより黒表示が白浮きする。すなわち、前面パネル300と背面パネル400を共に黒表示状態にした場合では、背面偏光板500を透過した偏光光は、そのまま偏光方向を変えることなく背面パネル400を通過して前面パネル300に到達する。一方、前面パネル300は背面パネル400と所定の角度をなしているため、前面パネル300に到達した直線偏光は、たとえば複屈折により楕円偏光に変換されて透過し、前面偏光板200に到達する。楕円偏光となった偏光光は、前面偏光板200の透過軸201の方向の偏光成分が、前面偏光板200を透過してしまう。そのため、モアレの発生は低減されるものの、黒表示が白浮きする。 However, when the stripe pattern is overlapped at a predetermined angle, the black display becomes white. That is, when both the front panel 300 and the back panel 400 are in a black display state, the polarized light transmitted through the back polarizing plate 500 passes through the back panel 400 and reaches the front panel 300 without changing the polarization direction. . On the other hand, since the front panel 300 forms a predetermined angle with the back panel 400, the linearly polarized light that has reached the front panel 300 is converted into elliptically polarized light by birefringence, for example, and transmitted to reach the front polarizing plate 200. In the polarized light that has become elliptically polarized light, the polarization component in the direction of the transmission axis 201 of the front polarizing plate 200 is transmitted through the front polarizing plate 200. For this reason, although the generation of moire is reduced, the black display becomes white.
 そこで、図11A、図11Bに示すように前面パネル1300、前面偏光板1200を構成する。 Therefore, a front panel 1300 and a front polarizing plate 1200 are formed as shown in FIGS. 11A and 11B.
 図11A、図11Bは、表示装置にDFD方式を適用した場合の例を示す図である。図11Aに示す表示装置では、前面パネル1300及び前面偏光板1200を、背面パネル400及び背面偏光板500に対して相対的に傾けるとともに、透過軸201と透過軸501とが互いに直交するように構成している。また、配向方向1301と配向401とが、透過軸1201に対して直交するように構成している。 FIG. 11A and FIG. 11B are diagrams illustrating an example when the DFD method is applied to the display device. In the display device shown in FIG. 11A, the front panel 1300 and the front polarizing plate 1200 are inclined relative to the rear panel 400 and the rear polarizing plate 500, and the transmission axis 201 and the transmission axis 501 are orthogonal to each other. is doing. Further, the orientation direction 1301 and the orientation 401 are configured to be orthogonal to the transmission axis 1201.
 ここで、前面パネル1300について図11Bを用いて説明する。前面パネル1300において、図9Bと異なり、格子350の方向に関係なく、配向方向1301が所定の向きになるように定められている。これにより、背面偏光板500を透過した偏光光は、そのまま偏光方向を変えることなく背面パネル400を通過して前面偏光板1200まで到達するが、前面偏光板1200の透過軸1201は、前面偏光板1200まで到達してきた偏光光の偏光軸と90°をなすため、前面偏光板1200を透過できない。これにより、モアレの発生を低減させることができると同時に、白浮きを抑制することができる。 Here, the front panel 1300 will be described with reference to FIG. 11B. In the front panel 1300, unlike FIG. 9B, the orientation direction 1301 is determined to be a predetermined direction regardless of the direction of the grating 350. As a result, the polarized light transmitted through the rear polarizing plate 500 passes through the rear panel 400 and reaches the front polarizing plate 1200 without changing the polarization direction, but the transmission axis 1201 of the front polarizing plate 1200 has a front polarizing plate. Since it forms 90 ° with the polarization axis of the polarized light that has reached 1200, it cannot be transmitted through the front polarizing plate 1200. Thereby, generation | occurrence | production of a moire can be reduced and a whitening can be suppressed simultaneously.
 図9Aから図11Bに示す液晶の配向方向及び偏光板の透過軸方向に関しては一例であって、液晶の種類によって向きが異なっても、同様の思想を適用することにより、白浮きを抑制できる。 9A to 11B are examples of the alignment direction of the liquid crystal and the transmission axis direction of the polarizing plate, and even if the orientation differs depending on the type of liquid crystal, whitening can be suppressed by applying the same idea.
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
(Other embodiments)
As described above, the first embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments that have been changed, replaced, added, omitted, and the like. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1, and it can also be set as a new embodiment.
 たとえば、上記実施の形態1では、2枚の表示パネルを重ねあわせた場合を説明したが、これに限定されない。本開示は、3枚以上の表示パネルを重ねあわせて用いた場合においても適用可能である。 For example, in the first embodiment, the case where two display panels are overlapped has been described, but the present invention is not limited to this. The present disclosure can be applied even when three or more display panels are used in an overlapping manner.
 添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 The components described in the attached drawings and detailed description include not only components essential for solving the problem but also components not essential for solving the problem in order to exemplify the above technique. Can be. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, since the above-described embodiment is for illustrating the technique in the present disclosure, various modifications, replacements, additions, omissions, and the like can be performed within the scope of the claims or an equivalent scope thereof.
 本開示は、表示パネルを複数重ねあわせた表示装置であれば、テレビジョン受像機、デジタルサイネージ端末、電子黒板、大型タッチパネル装置、タブレット端末、スマートフォン端末、パーソナルコンピュータのモニタなど、各種の表示装置に適用可能である。 The present disclosure is applicable to various display devices such as a television receiver, a digital signage terminal, an electronic blackboard, a large touch panel device, a tablet terminal, a smartphone terminal, and a personal computer monitor, as long as the display device has a plurality of display panels. Applicable.
 50 観察者
 100 表示装置
 110 モアレパターン
 120 表示面
 200,1200 前面偏光板
 201,1201 透過軸
 300,1300 前面パネル
 301,401,1301 配向方向
 310 液晶表示部
 320 走査線駆動回路
 321,421 走査線
 330 映像線駆動回路
 331,431 映像線
 340 前面ストライプパターン
 350 格子
 400 背面パネル
 410 液晶表示部
 420 走査線駆動回路
 430 映像線駆動回路
 440 背面ストライプパターン
 500 背面偏光板
 501 透過軸
 600 バックライト
 700 制御回路基板
 710 バックライト制御回路
 720 AC/DC(交流/直流)コンバータ
 730 前面画像制御回路
 740 背面画像制御回路
50 observer 100 display device 110 moire pattern 120 display surface 200,1200 front polarizing plate 201,1201 transmission axis 300,1300 front panel 301,401,1301 orientation direction 310 liquid crystal display unit 320 scanning line drive circuit 321 421 scanning line 330 Video line drive circuit 331, 431 Video line 340 Front stripe pattern 350 Lattice 400 Rear panel 410 Liquid crystal display unit 420 Scanning line drive circuit 430 Video line drive circuit 440 Back stripe pattern 500 Rear polarizing plate 501 Transmission axis 600 Backlight 700 Control circuit board 710 Backlight control circuit 720 AC / DC (AC / DC) converter 730 Front image control circuit 740 Rear image control circuit

Claims (10)

  1.  第1のストライプパターンによって区画された領域に画素を形成した第1の表示パネルと、
     第2のストライプパターンによって区画された領域に画素を形成した第2の表示パネルと、を備え、
     前記第1の表示パネルと前記第2の表示パネルとは重ね合わされ配置されており、前記第1のストライプパターンは、第2のストライプパターンに対して所定の角度傾いている、表示装置。
    A first display panel in which pixels are formed in a region partitioned by a first stripe pattern;
    A second display panel in which pixels are formed in a region partitioned by a second stripe pattern,
    The display device, wherein the first display panel and the second display panel are arranged to overlap each other, and the first stripe pattern is inclined at a predetermined angle with respect to the second stripe pattern.
  2.  前記第1の表示パネルを前記第2の表示パネルに対して傾けて配置することにより、前記第1のストライプパターンは、第2のストライプパターンに対して所望の角度傾いている、請求項1に記載の表示装置。 The first stripe pattern is inclined at a desired angle with respect to the second stripe pattern by arranging the first display panel to be inclined with respect to the second display panel. The display device described.
  3.  前記第1のストライプパターンに沿って配置された第1の配線と、
     前記第2のストライプパターンに沿って配置された第2の配線と、を更に備え、
     前記第1の表示パネルを前記第2の表示パネルに対して傾けて配置することにより、前記第1の配線は、前記第2の配線に対して所定の角度傾いている、請求項1又は2に記載の表示装置。
    A first wiring disposed along the first stripe pattern;
    A second wiring disposed along the second stripe pattern, and
    3. The first wiring is inclined at a predetermined angle with respect to the second wiring by arranging the first display panel so as to be inclined with respect to the second display panel. The display device described in 1.
  4.  前記第1の表示パネルを前記第2の表示パネルに対して傾けて配置したときに、前記第1の表示パネルと前記第2の表示パネルとが重ね合わさる領域を表示面とした請求項1から3のいずれかに記載の表示装置。 The region where the first display panel and the second display panel overlap each other when the first display panel is disposed to be inclined with respect to the second display panel is used as a display surface. 4. The display device according to any one of 3.
  5.  前記所定の角度は、鋭角成分が20°以上で且つ45°未満である、請求項1~4のいずれかに記載の表示装置。 5. The display device according to claim 1, wherein the predetermined angle has an acute angle component of 20 ° or more and less than 45 °.
  6.  前記所定の角度は、鋭角成分が略30°である請求項5に記載の表示装置。 The display device according to claim 5, wherein the predetermined angle has an acute angle component of approximately 30 °.
  7.  前記所定の角度は、鋭角成分が45°より大きく且つ70°未満である、請求項1~4のいずれかに記載の表示装置。 5. The display device according to claim 1, wherein the predetermined angle has an acute angle component larger than 45 ° and smaller than 70 °.
  8.  前記所定の角度は、鋭角成分が略60°である請求項7に記載の表示装置。 The display device according to claim 7, wherein the predetermined angle has an acute angle component of approximately 60 °.
  9.  第1の透過軸を有する第1の偏光板と、第2の透過軸を有する第2の偏光板と、を更に備え、
     前記第1の偏光板、前記第1の表示パネル、前記第2の表示パネル、前記第2の偏光板の順に配置され、
     前記第1の透過軸と、前記第2の透過軸とが互いに直交あるいは、平行になるよう配置された、請求項1から8のいずれかに記載の表示装置。
    A first polarizing plate having a first transmission axis, and a second polarizing plate having a second transmission axis,
    Arranged in order of the first polarizing plate, the first display panel, the second display panel, the second polarizing plate,
    The display device according to claim 1, wherein the first transmission axis and the second transmission axis are arranged so as to be orthogonal or parallel to each other.
  10.  第1の透過軸を有する第1の偏光板と、第2の透過軸を有する第2の偏光板と、を更に備え、
     前記第1の表示パネルは、第1の液晶配向方向による液晶表示パネルであり、かつ、前記第2の表示パネルは、第2の液晶配向方向による液晶表示パネルであり、
     前記第1の偏光板、前記第1の表示パネル、前記第2の表示パネル、前記第2の偏光板の順に配置され、
     前記第1の透過軸と、前記第2の透過軸とが互いに直交あるいは、平行になるよう配置され、かつ、前記第1の液晶配向方向、前記第2の液晶配向方向、及び、前記第1の透過軸とが直交あるいは平行するよう配置された、請求項1から8のいずれかに記載の表示装置。
    A first polarizing plate having a first transmission axis, and a second polarizing plate having a second transmission axis,
    The first display panel is a liquid crystal display panel according to a first liquid crystal alignment direction, and the second display panel is a liquid crystal display panel according to a second liquid crystal alignment direction;
    Arranged in order of the first polarizing plate, the first display panel, the second display panel, the second polarizing plate,
    The first transmission axis and the second transmission axis are arranged so as to be orthogonal or parallel to each other, and the first liquid crystal alignment direction, the second liquid crystal alignment direction, and the first The display device according to claim 1, wherein the transmission axis is arranged so as to be orthogonal or parallel to the transmission axis.
PCT/JP2016/000230 2015-01-20 2016-01-19 Display device WO2016117325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-008220 2015-01-20
JP2015008220 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016117325A1 true WO2016117325A1 (en) 2016-07-28

Family

ID=56416878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000230 WO2016117325A1 (en) 2015-01-20 2016-01-19 Display device

Country Status (1)

Country Link
WO (1) WO2016117325A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343271A1 (en) * 2016-12-29 2018-07-04 HannStar Display (Nanjing) Corporation Display device with two display panels
CN110888279A (en) * 2019-11-29 2020-03-17 惠州市华星光电技术有限公司 Liquid crystal display panel
CN112415807A (en) * 2019-08-23 2021-02-26 京东方科技集团股份有限公司 Display panel and display device
CN113156655B (en) * 2020-01-14 2023-08-25 嘉兴驭光光电科技有限公司 Electronic device for under-screen camera shooting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128167A (en) * 2003-10-22 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> 3-dimensional display device
JP2012226104A (en) * 2011-04-19 2012-11-15 Sony Corp Display device
JP2012248066A (en) * 2011-05-30 2012-12-13 Canon Inc Image processing device, control method of the same, control program and imaging apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128167A (en) * 2003-10-22 2005-05-19 Nippon Telegr & Teleph Corp <Ntt> 3-dimensional display device
JP2012226104A (en) * 2011-04-19 2012-11-15 Sony Corp Display device
JP2012248066A (en) * 2011-05-30 2012-12-13 Canon Inc Image processing device, control method of the same, control program and imaging apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3343271A1 (en) * 2016-12-29 2018-07-04 HannStar Display (Nanjing) Corporation Display device with two display panels
US20180188551A1 (en) * 2016-12-29 2018-07-05 Hannstar Display (Nanjing) Corporation Display device with two display panels
CN108254934A (en) * 2016-12-29 2018-07-06 南京瀚宇彩欣科技有限责任公司 Display device
EP3579043A1 (en) 2016-12-29 2019-12-11 HannStar Display (Nanjing) Corporation Display device with two display panels
EP3579042A1 (en) 2016-12-29 2019-12-11 HannStar Display (Nanjing) Corporation Display device with two display panels
US10656434B2 (en) 2016-12-29 2020-05-19 Hannstar Display (Nanjing) Corporation Display device with two display panels
CN112415807A (en) * 2019-08-23 2021-02-26 京东方科技集团股份有限公司 Display panel and display device
CN110888279A (en) * 2019-11-29 2020-03-17 惠州市华星光电技术有限公司 Liquid crystal display panel
WO2021103236A1 (en) * 2019-11-29 2021-06-03 惠州市华星光电技术有限公司 Liquid crystal display panel
CN113156655B (en) * 2020-01-14 2023-08-25 嘉兴驭光光电科技有限公司 Electronic device for under-screen camera shooting

Similar Documents

Publication Publication Date Title
US9052537B1 (en) 2D/3D image switching type liquid crystal display
TWI379584B (en) Image display device
US9191657B2 (en) Image display device
US8952942B2 (en) Image display device capable of implementing 2D image and 3D image and driving method thereof
US10627641B2 (en) 3D display panel assembly, 3D display device and driving method thereof
US9412312B2 (en) Display device
WO2015190588A1 (en) Liquid crystal display device
US20130050284A1 (en) Display device and electronic unit
KR20130127496A (en) 3d display method and 3d display device
WO2016117325A1 (en) Display device
KR20070095101A (en) Screen synchronous high resolution optical angular field three dimensional display apparatus
KR20130063311A (en) Stereoscopic image display device
US20130201417A1 (en) Display device
TW201416714A (en) Two-dimensional and three-dimensional switchable liquid crystal display device and displaying method thereof
US20140035800A1 (en) Segmented parallax barrier based display apparatus with 2d/3d mode switching and method thereof
WO2018012331A1 (en) Display device
JP2017173387A (en) Display device
KR20150037230A (en) Method of multi-view image formation and stereoscopic image display device using the same
WO2016117326A1 (en) Display device
WO2017122595A1 (en) Display device and liquid crystal panel driving method
US10447988B2 (en) Stereoscopic image display
CN105759436B (en) Naked eye three-dimensional display system and adjustable refractive index device
US20130335540A1 (en) Stereoscopic image display apparatus
JP2012203111A (en) Stereoscopic image display device
US9805665B2 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16739934

Country of ref document: EP

Kind code of ref document: A1