WO2016117141A1 - Cooler box - Google Patents

Cooler box Download PDF

Info

Publication number
WO2016117141A1
WO2016117141A1 PCT/JP2015/064313 JP2015064313W WO2016117141A1 WO 2016117141 A1 WO2016117141 A1 WO 2016117141A1 JP 2015064313 W JP2015064313 W JP 2015064313W WO 2016117141 A1 WO2016117141 A1 WO 2016117141A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
liquid
tank
brine solution
temperature
Prior art date
Application number
PCT/JP2015/064313
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 大澤
Original Assignee
株式会社中温
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社中温 filed Critical 株式会社中温
Priority to CN201580074201.9A priority Critical patent/CN107250691B/en
Priority to KR1020177019881A priority patent/KR102292586B1/en
Priority to JP2016570473A priority patent/JP6198975B2/en
Publication of WO2016117141A1 publication Critical patent/WO2016117141A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a refrigerator that can store an object to be cooled at a temperature lower than 0 ° C. without being frozen.
  • Patent Document 1 discloses a method of immersing and storing fresh food in storage water at -2 ° C to 0 ° C.
  • Patent Document 2 discloses a method for preserving fresh food by cooling with ultra-low temperature water maintained in an unfrozen state at 0 ° C. or lower.
  • JP 60-49740 A JP-A-8-116869
  • the inventor invented the cool box according to the present invention as a means for easily solving this problem.
  • the object of the present invention is to provide a cool box that can be easily stored without freezing the object to be cooled below 0 ° C.
  • the cold storage according to the present invention is a cold storage having at least a housing having a storage space for a cold object inside, and a part of a wall forming the outer shape of the housing includes an outer wall and the storage space.
  • An inner wall having thermal conductivity facing each other and a partition wall having thermal conductivity provided between the outer wall and the inner wall, and a brine solution that does not freeze at 0 ° C. is accommodated between the inner wall and the partition wall.
  • the cooling means freezes the liquid.
  • the liquid may be a liquid that does not freeze at 0 ° C., and the cooling means may be configured not to freeze the liquid.
  • the cool box according to the present invention is formed of a material selected from cold-resistant rubber, plastics, foamed resins, ceramics, and glass, and materials coated with copper, titanium, stainless steel, aluminum, and aluminum alloy. Or a multilayer structure having an air layer inside.
  • the outer wall of the housing includes a front wall, a back wall, a top wall, a bottom wall, a right side wall, and a left side wall, and the front wall, the back wall, the top wall, It is preferable that at least one of the bottom wall, the right side wall, and the left side wall includes the outer wall, the inner wall, and the partition wall.
  • the freezing temperature of the liquid is preferably higher than the freezing temperature of the brine solution.
  • the second tank has a shape in which at least a portion including the upper end gradually widens upward.
  • the cool box according to the present invention preferably further includes a thermometer that measures the temperature of the brine solution, and a control unit that controls cooling of the liquid by the cooling unit based on the temperature.
  • the material, thickness, and heat transfer area of the partition wall are set so that the brine solution is not completely frozen.
  • the cool box according to the present invention is provided in the casing, and includes a fin coil device having a plurality of plate-like fins and a heat exchange pipe penetrating the plate-like fins, and connecting the heat exchange pipe to the first tank. It is preferable to further include a pipe for circulating the brine solution in the heat exchange pipe.
  • the cool box according to the present invention further includes air blowing means for blowing air in the storage space between the plate fins.
  • the cool box according to the present invention further includes a plate facing the inner surface of the casing, and the fin coil device is provided between the inner surface and the plate.
  • a slit is formed in the plate.
  • the present invention it is possible to provide a refrigerator that can easily store an object to be cooled at less than 0 ° C. without being frozen.
  • FIG. 2 is a cross-sectional view (vertical cross-sectional view) taken along line AA of FIG. In FIG. 2, the caster 9 is not shown.
  • FIG. 2 is a cross-sectional view (cross-sectional view) taken along line BB in FIG. It is a cross-sectional view which shows the modification of the cooling holding structure of the wall of a cool box. It is a longitudinal cross-sectional view which shows the modification of the cooling holding structure of the wall of a cool box. In FIG. 5, the caster 9 is not shown. It is a perspective view of the cool box which concerns on other embodiment of this invention.
  • FIG. 8 is a CC cross-sectional view (transverse cross-sectional view) of FIG. 7. It is a longitudinal cross-sectional view which shows the modification of the cool box of FIG.
  • FIG. 10 is a cross-sectional view (cross-sectional view) taken along the line CC of FIG. 9. It is a schematic sectional drawing of a cold storage vehicle provided with the cold storage which concerns on this invention.
  • FIG. 1 shows the external appearance of the cool box 1 according to an embodiment of the present invention
  • FIGS. 2 and 3 show the internal structure of the cool box 1.
  • the cold storage 1 includes at least a housing 2 having a storage space S for the object to be cooled inside.
  • casing 2 is not specifically limited, In this embodiment, it is a rectangular parallelepiped, and the inner side of the wall which makes the external shape of the housing
  • the storage space S may be provided with multistage shelves in order to increase the storage capacity, and the size of the storage space S with respect to the housing 2 is not particularly limited.
  • the object to be stored in the storage space S is kept at a temperature lower than 0 ° C. and stored without freezing, and the quality can be maintained for a long time, for example, fresh vegetables, seafood, livestock, etc. Examples include food, organs and organs for transplantation, and blood.
  • the refrigerator 1 which supplies a refrigerant
  • the brine solution is an antifreeze solution having a freezing point of less than 0 ° C.
  • the outer wall of the housing 2 includes a front wall 2a and a back wall 2b facing each other, a top wall 2c and a bottom wall 2d facing each other, and a right side wall 2e and a left side wall 2f facing each other.
  • Four casters 9 are attached to the bottom wall 2d, and the cool box 1 can be self-propelled.
  • the front wall 2a is a door for opening the storage space S, and is attached to the left side wall 2f so as to be openable and closable by known means, although not shown.
  • a handle 10 for opening and closing is provided on the outer surface of the front wall 2a.
  • a part of the wall forming the outer shape of the housing 2 has a cooling and holding structure for cooling and holding the inside of the storage space S to a temperature of less than 0 ° C.
  • the back wall 2b, the right side wall 2e, and the left side wall 2f among the walls forming the outer shape of the housing 2 have a cooling holding structure.
  • a heat insulating aluminum coating foamed resin for example, a foamed resin such as foamed polystyrene, a fiber reinforced plastic (FRP), or a heat insulating wall with an internal vacuum
  • a wall structure having a cooling holding structure may be used similarly to the back wall 2b, the right side wall 2e, and the left side wall 2f.
  • the back wall 2b, the right side wall 2e and the left side wall 2f having the cooling holding structure are respectively an outer wall 3, an inner wall 4 having thermal conductivity facing the storage space S, and an outer wall. 3 and the partition wall 5 having thermal conductivity provided between the inner wall 4 and the inner wall 4.
  • a first tank T1 is provided between the inner wall 4 and the partition wall 5 to store a brine solution L1 that is not frozen at 0 ° C.
  • a second tank T2 is stored between the outer wall 3 and the partition wall 5 to store a liquid L2.
  • the 2nd tank T2 is provided with the cooling means 6 for cooling the accommodated liquid L2 to less than 0 degreeC.
  • the walls 2b, 2e and 2f having the cooling holding structure are provided with a waterproof wall 3a on the inner surface of the outer wall 3 and at the positions corresponding to the bottoms of the first tank T1 and the second tank T2 on the upper surface of the bottom wall 2d.
  • a waterproof wall 3b is lined.
  • the outer wall 3 is common to the back wall 2b, the right side wall 2e, and the left side wall 2f, and a flat plate bent in a U shape is used.
  • a combination of three flat plates in a U shape may be used as the outer wall 3.
  • the waterproof wall 3a, the partition wall 5, and the inner wall 4 are formed by bending flat plates into a U shape, but may be a combination of three flat plates in a U shape.
  • the outer peripheral surface of the waterproof wall 3 a is affixed to the inner peripheral surface of the outer wall 3.
  • the partition wall 5 is slightly smaller than the outer wall 3 and is disposed inside the outer wall 3.
  • the inner wall 4 is slightly smaller than the partition wall 5 and is disposed inside the partition wall 5.
  • the cooling means 6 is slightly smaller than the outer wall 3 and is disposed between the waterproof wall 3 a and the partition wall 5. Furthermore, the waterproof wall 3c for preventing the liquid etc. in the 1st tank T1 and the 2nd tank T2 from leaking in the edge part of the waterproof wall 3a, the partition 5, and the inner wall 4 is provided.
  • a U-shaped tank composed of the inner wall 4 and the waterproof walls 3a, 3b, 3c is formed, and then the partition wall 5 is formed between the inner wall 4 and the waterproof wall 3a. May be arranged.
  • a U-shaped first tank T1 including the inner wall 4 and the partition wall 5 and a U-shaped second tank T2 that is slightly larger than the first tank T1 including the partition wall 5 and the waterproof wall 3a are separately prepared in advance. Then, the first tank T1 may be fitted into the second tank T2, and the two may be bonded together.
  • the partition wall 5 has a two-layer structure.
  • the walls 2b, 2e and 2f having the cooling and holding structure are provided with an L-shaped or U-shaped waterproof wall 3a, a flat waterproof wall 3b, a flat plate on the individual outer walls 3.
  • the partition wall 5 and the inner wall 4, the right side wall 2e, and the left side wall 2f can be configured by pasting together a panel in which the waterproof wall 3c is integrated into a U shape.
  • the outer wall 3, the inner wall 4 and the partition wall 5 are all provided perpendicular to the bottom wall 2d, but the angle of the outer wall 3, the inner wall 4 and the partition wall 5 with respect to the bottom wall 2d is 90 °. It is not limited to.
  • the outer wall 3 is preferably formed of a heat-insulating material so that heat of the outside air is not transmitted to the inside of the housing 2.
  • a heat-shielding aluminum coating foamed resin a foamed resin such as foamed polystyrene, fiber reinforced plastic (FRP), and a heat insulating wall whose inside is evacuated.
  • the inner wall 4 is preferably formed of a material having a high heat transfer coefficient. Examples of such materials include copper, titanium, stainless steel, aluminum, and aluminum alloy.
  • the heat transfer coefficient of the partition wall 5 is not particularly limited, in the present embodiment, it is formed of a material having a high heat transfer coefficient, and can be formed of a material such as copper, titanium, stainless steel, aluminum, or an aluminum alloy.
  • the partition wall 5 may have a single layer structure or a multilayer structure.
  • the brine solution L1 accommodated in the first tank T is an aqueous solution that does not freeze at 0 ° C. but freezes at a predetermined temperature below 0 ° C.
  • the freezing temperature of the brine solution L1 may be equal to or lower than the set cool temperature of the storage object, that is, the set temperature of the storage space S.
  • the brine solution L1 is an aqueous solution that freezes at a temperature of less than 0 ° C. to ⁇ 5 ° C., and for example, an aqueous solution in which an organic solvent such as a salt, organic acid salt, saccharide, or alcohol is dissolved can be used. .
  • the solute of the brine solution L1 is not particularly limited as long as it lowers the freezing point of water, but is preferably one that does not adversely affect the human body.
  • salt, alcohol, sucrose, etc. can be used.
  • the freezing temperature of the brine solution L1 can be set to a desired temperature by adjusting the solute concentration.
  • the salts used for the solute are not particularly limited as long as they are salts that are harmless to the human body, such as sodium chloride, calcium chloride, phosphate, sulfite, and the like.
  • the salt concentration of the brine solution L1 is not particularly limited as long as the freezing temperature of the brine solution L1 is equal to or lower than the set temperature of the storage space S.
  • the salt concentration when the brine solution L1 is ethanol is used. Is 2.3 wt% (freezing point ⁇ 0.1 ° C.) to 12.9 wt% (freezing point ⁇ 5.0 ° C.).
  • the inlet 11 is provided in the upper part of the first tank T1, and the outlet 12 is provided in the lower part.
  • the first tank T may be filled with the brine solution L1.
  • the liquid L2 stored in the second tank T2 is not particularly limited, and may be the same as or different from the brine solution L1.
  • a liquid having a freezing temperature higher than that of the brine solution L1 is used as the liquid L2. More specifically, the freezing temperature of the liquid L2 is preferably higher than the set temperature of the storage space S and less than 0 ° C.
  • the set temperature of the storage space S is ⁇ 1.0 ° C.
  • a solution in which an antibacterial agent or a bactericidal agent is dissolved in a frozen liquid that is as close to pure water as possible to be frozen at 0 ° C. is used.
  • the freezing temperature of the liquid L2 is higher than the set temperature of the storage space S, for example, ⁇ 0.5 ° C. Further, the growth of microorganisms in the liquid L2 can be suppressed by the antibacterial agent or the bactericidal agent.
  • a maintenance inlet 13 and outlet 14 are provided at the upper and lower parts of the second tank T2, respectively. Since the volume of the liquid L2 increases when frozen, the amount of the liquid L2 is preferably smaller than the capacity of the second tank T2. Normally, the liquid L2 stored in the second tank T2 is not exchanged.
  • the cooling means 6 is not particularly limited as long as it has a function of cooling and freezing the liquid L2.
  • the cooling means 6 may have a configuration including a refrigerant coil through which a refrigerant flows and a heat transfer panel formed so as to cover the periphery of the refrigerant coil.
  • a plurality of protrusions may be formed on the surface of the heat transfer panel.
  • the material of the refrigerant coil and the heat transfer panel is not particularly limited, but a material having a high heat transfer property is preferable. As such a material, titanium, copper, stainless steel, aluminum, and alloys thereof can be used. Further, a corrosion-preventing paint or resin may be formed on the surface of the heat transfer panel.
  • the refrigerator 7 is connected to the refrigerant coil of the cooling means 6 through the refrigerant pipe 7a.
  • the refrigerant pipe 7a is covered with a heat insulating material, and by supplying the refrigerant from the refrigerator 7 to the refrigerant coil, the refrigerant flows into the refrigerant coil and the surface temperature of the heat transfer panel is lowered. Thereby, the liquid L2 can be frozen.
  • the installation position of the refrigerator 7 is not specifically limited, For example, you may attach to the outer surface of the back wall 2b of the housing
  • the thermometer 8 has a main body provided in the storage space S, and the tip of a sensor for detecting temperature passes through the inner wall 4 and reaches the first tank T1. Thereby, the thermometer 8 can measure the temperature of the brine solution L1.
  • the installation position of the main body of the thermometer 8 is not particularly limited.
  • thermometer 8 can transmit the measured temperature of the brine solution L1 to the controller by wired or wireless communication (wireless communication in FIG. 2) from the main body, and the controller is based on the temperature, The operating state of the refrigerator 7, that is, cooling of the liquid L2 by the cooling means 6 is controlled.
  • the set cold storage temperature of the storage object is ⁇ 1.0 ° C.
  • the freezing temperature of the brine solution L1 is less than ⁇ 1.0 ° C.
  • the freezing temperature of the liquid L2 is ⁇ 0.5 ° C.
  • the freezing temperature of the liquid L2 is not particularly limited as long as it is less than 0 ° C.
  • the objects to be stored are stored in the storage space S, and the front wall 2a that is a door is closed.
  • the refrigerator 7 is operated and the refrigerant is supplied to the refrigerant coil of the cooling means 6.
  • the liquid L2 is cooled to less than 0 ° C., and the liquid L2 is gradually frozen.
  • heat exchange is performed between the liquid L2 and the brine solution L1 via the partition wall 5, and the brine solution L1 is cooled to less than 0 ° C.
  • the controller of the refrigerator 7 stops supplying the refrigerant from the refrigerator 7 Let Thereby, cooling of the liquid L2 by the cooling means 6 stops.
  • the inner wall 4 is formed of a material having a high heat transfer coefficient, heat is quickly exchanged between the brine solution L1 and the air in the storage space S, and the temperature in the storage space S is the temperature of the brine solution L1. Is almost equal to As a result, the temperature in the storage space S becomes ⁇ 1.0 ° C.
  • the controller of the refrigerator 7 operates the refrigerator 7 and restarts the cooling of the liquid L2 by the cooling means 6. Thereafter, when the temperature of the brine solution L1 becomes ⁇ 1.0 ° C., the controller of the refrigerator 7 stops the refrigerator 7. Thereafter, the refrigerator 7 repeats the operation cycle of the refrigerator 7 based on the temperature of the brine solution L1.
  • the inside of the storage space S is cooled by the brine solution L1 cooled to a desired temperature of less than 0 ° C.
  • the brine solution L1 has less temperature unevenness than the air in the storage space S with temperature unevenness depending on the position, the temperature of the brine solution L1 is accurately adjusted to an arbitrary temperature not lower than the freezing temperature and lower than 0 ° C. Can do. Therefore, the object to be cooled can be easily stored without being frozen at less than 0 ° C.
  • the freezing temperature of the liquid L2 is ⁇ 0.5 ° C. higher than ⁇ 1.0 ° C. Therefore, when the temperature of the brine solution L1 becomes ⁇ 1.0 ° C. and the cooling of the liquid L2 is stopped, the liquid L2 in the second tank T2 is also cooled to about ⁇ 1.0 ° C. It has become.
  • a lot of heat energy called latent heat is required. Therefore, even if the cooling of the liquid L2 is stopped, it takes time until the frozen body is completely dissolved, and the temperature rise of the brine solution L1 can be suppressed until the frozen body is dissolved. Furthermore, the frozen body has an effect of blocking heat entering from outside air.
  • the temperature in the brine solution L1 and the storage space S can be kept low for a long time even after the power supply to the cool box 1 is stopped.
  • the cold storage 1 can be transported for a long time.
  • the liquid L2 in the second tank T2 is cooled to about ⁇ 1.0 ° C., which is the set cold temperature of the object to be stored, but the cooling temperature of the liquid L2 may be further reduced (for example, ⁇ 10 ° C.).
  • the time until the frozen body in the second tank T2 is thawed to become the liquid L2 is further increased, so that the cool keeping duration can be extended.
  • the partition wall 5 may be covered with a material having a high heat transfer property, and the heat transfer area of the partition wall 5 may be adjusted to be small.
  • the partition walls 5 may have a multilayer structure having an air layer inside, such as pair glass.
  • the cool box 1 since the volume of the liquid L2 increases due to freezing, high pressure is likely to be applied to the outer wall 3 and the partition wall 5 forming the second tank T2. Therefore, in the cool box 1, it is preferable to form the part which contacts the 2nd tank T2 of the outer wall 3 with a flexible material. Thereby, even if the liquid L2 freezes, it can deform
  • the second tank T2 may have a shape that gradually widens upward.
  • the width of the second tank T2 (distance between the partition wall 5 and the outer wall 3) increases as it goes upward by providing the partition wall 5 so that the upper end tilts inward (storage space S side) from the lower end. I am doing so.
  • the width of the second tank T2 is gradually widened upward in the entire height direction, but only the portion including at least the upper end of the second tank T2 has a width upward. It is good also as a shape which spreads gradually.
  • the cool box 1 has a structure in which the front wall of the casing can be opened and closed
  • the present invention can be used as long as the structure has at least a casing having a storage space for the object to be cooled inside. It is not limited to this, For example, you may comprise like cold storage 1 'shown in FIG.
  • the casing that forms the outer shape of the cool box 1 includes a front wall 2a and a back wall 2b, opposed top wall 2c and bottom wall 2d, opposed right side wall 2e and left side wall.
  • the top wall 2c is detachable.
  • the front wall 2a, the back wall 2b, the right side wall 2e, and the left side wall 2f have the same cooling holding structure as described above. That is, the front wall 2a, the back wall 2b, the right side wall 2e, and the left side wall 2f include an outer wall 3, an inner wall 4, and a partition wall 5 provided between the outer wall 3 and the inner wall 4, and between the inner wall 4 and the partition wall 5.
  • Constitutes a first tank T1 for containing the brine solution L1 and a space between the outer wall 3 and the partition wall 5 constitutes a second tank T2 for containing the liquid L2.
  • a cooling means 6 is provided between the partition wall 5 and the outer wall 3.
  • FIG. 7 and 8 show the internal structure of a cold box 1a according to another embodiment of the present invention.
  • the basic configuration of the cool box 1a shown in FIG. 7 and FIG. 8 is the same as the configuration of the cool box 1 shown in FIG. 2 and FIG. 3, and here, the same reference numerals are given to the corresponding components. Detailed description is omitted.
  • the cool box 1 a of the present embodiment is provided with a cooling holding structure only on the back wall 2 b, and instead, the fin coil device 20, the pipe 23, Further, a pump 24 and a blower (blower unit) 25 are further provided.
  • the cooling and holding structure of the back wall 2b is the same as that shown in FIGS.
  • the fin coil device 20 is provided in the housing 2 of the cool box 1 a and includes a plurality of plate-like fins 21 and a heat exchange tube 22 that penetrates the plate-like fins 21.
  • the fin coil device 20 is attached to the right side wall 2e and the left side wall 2f of the housing 2.
  • the position where the fin coil device 20 is attached is not limited to this.
  • the fin coil device 20 may be attached to at least one of the front wall 2a, the back wall 2b, the top wall 2c, and the bottom wall 2d.
  • the plate-like fins 21 have a thin plate shape extending in the height direction of the cool box 1a, and a plurality of plate-like fins 21 are parallel to each other with a predetermined interval between the right side wall 2e and the left side wall 2f. It is attached to become.
  • the plate-like fins 21 are preferably formed of a material having high thermal conductivity. Examples of such materials include copper, copper alloy, aluminum, aluminum alloy, titanium, titanium alloy, and stainless steel.
  • the heat exchange tube 22 extends in the height direction of the cool box 1 a while meandering, and vertically penetrates the main surface of the plurality of plate-like fins 21.
  • the heat exchange tube 22 is also preferably formed of a material having high thermal conductivity, and may be formed of the same material as the plate-like fins 21.
  • the pipe 23 is connected to both ends of the heat exchange pipe 22, and connects the heat exchange pipe 22 to the first tank T1.
  • the pump 24 circulates the brine solution in the first tank T1 in the heat exchange tube 22.
  • the pipe 23 and the pump 24 may be provided in the storage space S, or part or all of them may be embedded in the wall of the housing 2.
  • the blower 25 blows the air in the storage space S between the plurality of plate-like fins 21.
  • a small fan for example, a bladed fan such as a pressure ventilation fan, a sirocco fan, a turbo fan, a limit load fan, or the like can be used.
  • the fin coil device 20 is provided in the housing 2, and the brine solution in the first tank T1 is circulated through the heat exchange pipe 22, whereby the plate fins 21 and the heat exchange are performed.
  • Heat exchange with the air in the storage space S can be performed via the surface of the tube 22.
  • the fin coil device 20 by reducing the distance between the plate-like fins 21 and increasing the number of the plate-like fins 21, the area for heat exchange with the air in the storage space S can be easily increased. Therefore, since the air in the storage space S can be efficiently cooled by the fin coil device 20, even when the cooling holding structure is provided only on the back wall 2b, the temperature in the storage space S is sufficiently low. It can be.
  • the air in the storage space S is blown between the plate-like fins 21 by the blower 25, so that the cooled air near the surfaces of the plate-like fins 21 and the heat exchange tubes 22 is efficiently put into the storage space S. It can be circulated. Thereby, the cooling effect in the storage space S can be further enhanced.
  • the fin coil device 20 and the like are installed without providing a cooling holding structure on the right side wall 2e and the left side wall 2f.
  • the wall having the cooling and holding structure is heavier because the brine solution L1 and the liquid L2 are accommodated in the first tank T1 and the second tank T2, respectively.
  • the total weight of the fin coil device 20, the pipe 23, the pump 24, and the blower 25 is generally smaller than the total weight of the brine solution L1 and the liquid L2. Therefore, compared with the cool box 1 shown in FIGS. 2 and 3, the cool box 1 a of the present embodiment can realize a cooling effect equivalent to or higher than that of the storage space S and can reduce the weight.
  • the structure of the fin coil apparatus 20 is not limited to the above-mentioned thing, All the well-known fin coil apparatuses can be used.
  • the back wall 2b may have a cooling holding structure shown in FIG.
  • 9 and 10 show the internal structure of a cold box 1a 'according to a modification of the cold box 1a.
  • the cool box 1a ′ further includes a plate 26 facing the inner surface of the housing 2, and the fin coil device 20 includes the inner surface of the casing 2. And the plate 26. Specifically, two plates 26 are provided so as to face the right side wall 2e and the left side wall 2f, respectively, between the right side wall 2e and one plate 26, and between the left side wall 2f and the other plate. The fin coil device 20 is provided between each of them.
  • the plate 26 is a flat plate having a rectangular shape in plan view.
  • the material of the board 26 is not particularly limited, and can be selected according to the use of the cool box 1a ′ and the size of the storage space S.
  • the plate 26 may be formed of plastic having a heat insulating effect, or may be formed of stainless steel, copper, copper alloy, aluminum, aluminum alloy, titanium or the like having a heat transfer effect.
  • the plate 26 serves as a partition to separate the fin coil device 20 from the storage space S, and the temperature around the fin coil device 20 is the center side of the storage space S. It becomes lower than the temperature.
  • the temperature difference between the air near the surfaces of the plate-like fins 21 and the heat exchange pipe 22 and the brine liquid L1 flowing in the heat exchange pipe 22 can be reduced. Therefore, it becomes difficult for frost to adhere to the surfaces of the plate-like fins 21 and the heat exchange tubes 22, and a decrease in heat exchange efficiency due to frost can be prevented.
  • the plate 26 has a size that can cover the entire fin coil device 20 and is as close to the fin coil device 20 as possible.
  • the cold storage provided with the above-described fin coil device is suitable for a refrigerated showcase in which outside air easily enters the storage space and a cold storage vehicle having a large storage space. Then, the example which applied the cool box which concerns on this invention to the cool truck is demonstrated.
  • symbol is attached
  • FIG. 11 shows a cold car 30 equipped with a cold box 1b.
  • the cool box 1b further includes a fin coil device 20, a pipe 23, a pump 24, a blower 25, and a plate 26, and a slit 27 is formed in the plate 26.
  • the fin coil device 20 is attached to the top wall 2c, and the configuration thereof is substantially the same as that shown in FIGS.
  • a heat exchange pipe (not shown in FIG. 11) of the fin coil device 20 is connected to the first tank T1 of the front wall 2a by a pipe 23, and the heat exchange pipe has a pump 24 in the first tank T1. Brine solution is circulating.
  • the blower 25 blows air in the storage space S between a plurality of plate-like fins (not shown in FIG. 11) of the fin coil device 20.
  • the fin coil device 20 is provided between the inner surface of the top wall 2c and the plate 26. Air from the blower 25 flows between the inner surface of the top wall 2c and the plate 26 from the front wall 2a toward the back wall 2b, and part of the air flows out from the slit 27 to the lower storage space S.
  • the cool box 1b further includes the fin coil device 20, and a cooling holding structure is provided only on the upper surface wall 2c.
  • the cool box 1b can be lightened. Therefore, the cold storage vehicle 30 can carry a heavier thing and can improve transport efficiency.
  • the fin coil device 20 by covering the fin coil device 20 with the plate 26, it is possible to prevent the heat exchange efficiency from being lowered due to frost. Furthermore, by letting some of the air cooled by the fin coil device 20 flow downward from the slit 27, the air in the storage space S can be uniformly and efficiently cooled.
  • the back wall 2b constitutes a door that can be opened and closed.
  • the plate 26 is provided so that one end thereof extends to the vicinity of the back wall 2b, and the air that has passed through the fin coil device 20 flows downward near the back wall 2b. Thereby, when the back wall 2b is opened, the air flowing downward makes it difficult for outside air to enter the accommodation space S, and a rapid temperature rise of the air in the accommodation space S can be prevented.
  • the outer shape of the casing of the cool box is a rectangular parallelepiped, but is not limited thereto, and may be a cube, a tetrahedron, a cylinder, or the like.
  • the liquid L2 in the second tank T2 is frozen in order to cool the brine solution L1, but when the freezing temperature of the liquid L2 is lower than the cold storage temperature of the storage object, the liquid L2 may not be frozen. That is, the liquid L2 may be a liquid that does not freeze at 0 ° C., and the cooling unit 6 may be configured not to freeze the liquid L2.
  • the heat exchange efficiency with the brine solution L1 decreases. Therefore, for example, when the cool box is a refrigerated showcase, since outside air frequently flows into the storage space S, temperature control in the storage space S becomes difficult. Therefore, by making the liquid L2 a liquid that does not freeze even at the temperature of the refrigerant flowing inside the cooling means 6 (for example, ⁇ 20 ° C.), the heat exchange efficiency between the liquid L2 and the brine solution L1 does not decrease, and the inside of the storage space S Even if outside air flows in, the air in the accommodation space S can be quickly cooled.
  • liquid L2 is not frozen, the effect of cooling the animal after the supply of power to the cool box is reduced, but the refrigerated showcase is always used in an environment where power is supplied, so no problem occurs.
  • the cold storage according to the present invention can be applied to a cold storage vehicle, a cold storage container (air cargo, maritime container, railway container), a large cold storage, a refrigerated showcase, a small cold storage container, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The purpose of the present invention is to provide a cooler box capable of easily preserving items to be cooled at temperatures below 0°C without freezing said items. The cooler box (1) in the present invention is provided with at least a housing that has a storage space (S) for the items to be cooled in the interior, wherein a portion (back surface wall (2b)) of walls that form the outer form of the housing is provided with an outer wall (3), a thermally conductive inner wall (4) facing the storage space (S) and a thermally conductive partition wall (5) provided between the outer wall (3) and the inner wall (4). A first tank (T1) is formed between the inner wall (4) and the partition wall (5) to contain a brine solution (L1) that does not freeze at 0°C and a second tank (T2) is formed between the outer wall (3) and the partition wall (5) to contain a liquid (L2). A cooling means (6) is provided in the second tank (T2) to cool the contained liquid (L2) to below 0°C.

Description

保冷庫Cold storage
 本発明は、被保冷物を0℃未満で且つ凍結させずに保存できる保冷庫に関する。 The present invention relates to a refrigerator that can store an object to be cooled at a temperature lower than 0 ° C. without being frozen.
 例えば、生鮮野菜類や、熟成を要する魚介類、畜産類などの食品、及び、移植用の臓器や器官、血液といった被保冷物は、0℃未満の温度に冷却することで、被保冷物の品質保持時間を延長でき、その時間は温度が低いほど対数的に延長される事が知られている。しかし、電気的な制御によって保冷温度を凍結温度付近に保持しようとすると、温度が不安定になり、被保冷物の組織が凍結して損傷し品質が著しく低下し、被保冷物が使用不能になるおそれがあった。又、電気的な制御によって温度を凍結限界温度で一定に保持するには、高精度のコントロールが必要な為に電気制御装置が高価になるという欠点があった。そのため、凍結を防止する為には、凍結限界温度よりも高い保冷温度にする方法が一般的であった。 For example, foods such as fresh vegetables, fish and shellfish that require ripening, livestock and the like, as well as cold objects such as organs, organs, and blood for transplantation are cooled to a temperature of less than 0 ° C. It is known that the quality retention time can be extended, and that time is extended logarithmically as the temperature decreases. However, if an attempt is made to keep the cold insulation temperature close to the freezing temperature by electrical control, the temperature becomes unstable, the structure of the cold object freezes and is damaged, the quality is significantly reduced, and the cold object becomes unusable. There was a risk of becoming. Further, in order to keep the temperature constant at the freezing limit temperature by electrical control, there is a disadvantage that the electrical control device becomes expensive because high-precision control is required. For this reason, in order to prevent freezing, a method of setting a cool temperature higher than the freezing limit temperature has been common.
 これに対し、特許文献1には、生鮮食品を-2℃~0℃の保存水中に浸漬保存する方法が開示されている。また、特許文献2には、0℃以下の非凍結状態に維持された超低温水で冷却処理することで生鮮食品を保存する方法が開示されている。 On the other hand, Patent Document 1 discloses a method of immersing and storing fresh food in storage water at -2 ° C to 0 ° C. Patent Document 2 discloses a method for preserving fresh food by cooling with ultra-low temperature water maintained in an unfrozen state at 0 ° C. or lower.
 しかし、特許文献1に記載された発明では、被収納物が濡れるので、保存後に水分を除去するのに手間がかかるという不具合がある。また、特許文献2に記載された発明では、温度が低くなりすぎて、生鮮食品の鮮度が低下するという不具合がある。 However, in the invention described in Patent Document 1, since the object to be stored is wet, there is a problem that it takes time to remove moisture after storage. Moreover, in the invention described in patent document 2, there exists a malfunction that the temperature becomes too low and the freshness of fresh food falls.
特開昭60-49740号公報JP 60-49740 A 特開平8-116869号公報JP-A-8-116869
 発明者は、この課題を容易に解決する為の手段として本発明に係る保冷庫を発明した。 The inventor invented the cool box according to the present invention as a means for easily solving this problem.
 本発明は、被保冷物を0℃未満で凍結させずに容易に保存できる保冷庫を提供する事を目的にしている。 The object of the present invention is to provide a cool box that can be easily stored without freezing the object to be cooled below 0 ° C.
 本発明に係る保冷庫は、内部に被保冷物の収納空間を有する筐体を少なくとも備えた保冷庫であって、前記筐体の外形をなす壁の一部は、外壁と、前記収納空間に面した熱伝導性を有する内壁と、前記外壁及び前記内壁の間に設けられた熱伝導性を有する隔壁とを備え、前記内壁及び前記隔壁の間は、0℃で凍結しないブライン溶液を収容するための第1槽をなし、前記外壁及び前記隔壁の間は、液体を収容するための第2槽をなし、前記第2槽には、収容された液体を0℃未満に冷却するための冷却手段が設けられていることを特徴とする。 The cold storage according to the present invention is a cold storage having at least a housing having a storage space for a cold object inside, and a part of a wall forming the outer shape of the housing includes an outer wall and the storage space. An inner wall having thermal conductivity facing each other and a partition wall having thermal conductivity provided between the outer wall and the inner wall, and a brine solution that does not freeze at 0 ° C. is accommodated between the inner wall and the partition wall. A second tank for storing liquid between the outer wall and the partition wall, and cooling for cooling the stored liquid below 0 ° C. in the second tank. Means are provided.
 本発明に係る保冷庫では、前記冷却手段は、前記液体を凍結させることが好ましい。 In the cool box according to the present invention, it is preferable that the cooling means freezes the liquid.
 本発明に係る保冷庫では、前記液体は、0℃で凍結しない液体であり、前記冷却手段は、前記液体を凍結させない構成としてもよい。 In the cool box according to the present invention, the liquid may be a liquid that does not freeze at 0 ° C., and the cooling means may be configured not to freeze the liquid.
 本発明に係る保冷庫では、耐冷ゴム、プラスチック類、発泡樹脂類、セラミック、及びガラス、並びに、それらを銅、チタン、ステンレス、アルミ、アルミ合金で被覆した材料から選択される材料で形成されている、又は、内部に空気層を有する多層構造であることが好ましい。 The cool box according to the present invention is formed of a material selected from cold-resistant rubber, plastics, foamed resins, ceramics, and glass, and materials coated with copper, titanium, stainless steel, aluminum, and aluminum alloy. Or a multilayer structure having an air layer inside.
 本発明に係る保冷庫では、前記筐体の外形をなす壁は、前面壁、背面壁、上面壁、底面壁、右側面壁及び左側面壁からなり、前記前面壁、前記背面壁、前記上面壁、前記底面壁、前記右側面壁及び前記左側面壁の少なくとも1つが、前記外壁、前記内壁及び前記隔壁とからなることが好ましい。 In the cool box according to the present invention, the outer wall of the housing includes a front wall, a back wall, a top wall, a bottom wall, a right side wall, and a left side wall, and the front wall, the back wall, the top wall, It is preferable that at least one of the bottom wall, the right side wall, and the left side wall includes the outer wall, the inner wall, and the partition wall.
 本発明に係る保冷庫では、前記液体の凍結温度は前記ブライン溶液の凍結温度よりも高いことが好ましい。 In the cool box according to the present invention, the freezing temperature of the liquid is preferably higher than the freezing temperature of the brine solution.
 本発明に係る保冷庫では、前記第2槽は、少なくとも上端を含む部分が、上方に向かって幅が徐々に広がる形状であることが好ましい。 In the cool box according to the present invention, it is preferable that the second tank has a shape in which at least a portion including the upper end gradually widens upward.
 本発明に係る保冷庫では、前記ブライン溶液の温度を測定する温度計と、前記温度に基づいて、前記冷却手段による前記液体の冷却を制御する制御手段と、をさらに備えることが好ましい。 The cool box according to the present invention preferably further includes a thermometer that measures the temperature of the brine solution, and a control unit that controls cooling of the liquid by the cooling unit based on the temperature.
 本発明に係る保冷庫では、前記ブライン溶液が完全に凍結しないように、前記隔壁の材料、厚み、及び熱伝達面積が設定されていることが好ましい。 In the cool box according to the present invention, it is preferable that the material, thickness, and heat transfer area of the partition wall are set so that the brine solution is not completely frozen.
 本発明に係る保冷庫は、前記筐体内に設けられ、複数の板状フィンと該板状フィンを貫通する熱交換管とを有するフィンコイル装置と、前記熱交換管を前記第1槽に接続する配管と、前記熱交換管内に前記ブライン溶液を循環させるポンプと、をさらに備えることが好ましい。 The cool box according to the present invention is provided in the casing, and includes a fin coil device having a plurality of plate-like fins and a heat exchange pipe penetrating the plate-like fins, and connecting the heat exchange pipe to the first tank. It is preferable to further include a pipe for circulating the brine solution in the heat exchange pipe.
 本発明に係る保冷庫は、前記収納空間内の空気を前記板状フィンの間に送風する送風手段をさらに備えることが好ましい。 It is preferable that the cool box according to the present invention further includes air blowing means for blowing air in the storage space between the plate fins.
 本発明に係る保冷庫は、前記筐体の内面と対向する板をさらに備え、前記フィンコイル装置は、前記内面と前記板との間に設けられることが好ましい。 It is preferable that the cool box according to the present invention further includes a plate facing the inner surface of the casing, and the fin coil device is provided between the inner surface and the plate.
 本発明に係る保冷庫では、前記板にスリットが形成されていることが好ましい。 In the cool box according to the present invention, it is preferable that a slit is formed in the plate.
 本発明によれば、被保冷物を0℃未満で凍結させずに容易に保存できる保冷庫を提供することができる。 According to the present invention, it is possible to provide a refrigerator that can easily store an object to be cooled at less than 0 ° C. without being frozen.
本発明の一実施形態に係る保冷庫の斜視図である。It is a perspective view of the cool box which concerns on one Embodiment of this invention. 図1のA-A断面図(縦断面図)である。なお、図2ではキャスター9の図示を省略している。FIG. 2 is a cross-sectional view (vertical cross-sectional view) taken along line AA of FIG. In FIG. 2, the caster 9 is not shown. 図1のB-B断面図(横断面図)である。FIG. 2 is a cross-sectional view (cross-sectional view) taken along line BB in FIG. 保冷庫の壁の冷却保持構造の変形例を示す横断面図である。It is a cross-sectional view which shows the modification of the cooling holding structure of the wall of a cool box. 保冷庫の壁の冷却保持構造の変形例を示す縦断面図である。なお、図5ではキャスター9の図示を省略している。It is a longitudinal cross-sectional view which shows the modification of the cooling holding structure of the wall of a cool box. In FIG. 5, the caster 9 is not shown. 本発明の他の実施形態に係る保冷庫の斜視図である。It is a perspective view of the cool box which concerns on other embodiment of this invention. 本発明のさらに他の実施形態に係る保冷庫の縦断面図である。It is a longitudinal cross-sectional view of the cool box which concerns on further another embodiment of this invention. 図7のC-C断面図(横断面図)である。FIG. 8 is a CC cross-sectional view (transverse cross-sectional view) of FIG. 7. 図7の保冷庫の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the cool box of FIG. 図9のC-C断面図(横断面図)である。FIG. 10 is a cross-sectional view (cross-sectional view) taken along the line CC of FIG. 9. 本発明に係る保冷庫を備える保冷車の概略断面図である。It is a schematic sectional drawing of a cold storage vehicle provided with the cold storage which concerns on this invention.
 以下、本発明の実施形態について添付図面を参照して説明する。なお、本発明は、下記の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this invention is not limited to the following embodiment.
 図1は、本発明の一実施形態に係る保冷庫1の外観を示し、図2及び図3は、保冷庫1の内部構造を示す。 FIG. 1 shows the external appearance of the cool box 1 according to an embodiment of the present invention, and FIGS. 2 and 3 show the internal structure of the cool box 1.
 保冷庫1は、内部に被保冷物の収納空間Sを有する筐体2を少なくとも備えている。筐体2の形状は、特に限定されないが、本実施形態では直方体であり、筐体2の外形をなす壁の内側が収納空間Sである。収納空間Sには、収納量を増やすために多段の棚を設けてもよく、筐体2に対する収納空間Sの大きさは、特に限定されない。収納空間Sに収納される被保冷物は、0℃未満で、且つ凍結させずに保存することで長期間品質を保持できるものであり、例えば、生鮮野菜類、魚介類、畜産類などの生鮮食品、移植用の臓器や器官、血液が挙げられる。また、保冷庫1には、後述する冷却手段6に冷媒を供給する冷凍機7が筐体2上に設けられているとともに、第1槽T1に収容されたブライン溶液L1の温度を測定する温度計8が設けられている。ブライン溶液とは、凝固点が0℃未満の不凍溶液である。 The cold storage 1 includes at least a housing 2 having a storage space S for the object to be cooled inside. Although the shape of the housing | casing 2 is not specifically limited, In this embodiment, it is a rectangular parallelepiped, and the inner side of the wall which makes the external shape of the housing | casing 2 is the storage space S. The storage space S may be provided with multistage shelves in order to increase the storage capacity, and the size of the storage space S with respect to the housing 2 is not particularly limited. The object to be stored in the storage space S is kept at a temperature lower than 0 ° C. and stored without freezing, and the quality can be maintained for a long time, for example, fresh vegetables, seafood, livestock, etc. Examples include food, organs and organs for transplantation, and blood. Moreover, the refrigerator 1 which supplies a refrigerant | coolant to the cooling means 6 mentioned later is provided in the cold storage 1 on the housing | casing 2, and the temperature which measures the temperature of the brine solution L1 accommodated in the 1st tank T1 A total of 8 are provided. The brine solution is an antifreeze solution having a freezing point of less than 0 ° C.
 筐体2の外形をなす壁は、対向する前面壁2a及び背面壁2bと、対向する上面壁2c及び底面壁2dと、対向する右側面壁2e及び左側面壁2fとからなる。底面壁2dには、4つのキャスター9が取り付けられており、保冷庫1は自走可能となっている。前面壁2aは、収納空間Sを開放するための扉であり、左側面壁2fに図示は省略するが、公知の手段により開閉可能に取り付けられている。前面壁2aの外面には開閉用の取手10が設けられている。 The outer wall of the housing 2 includes a front wall 2a and a back wall 2b facing each other, a top wall 2c and a bottom wall 2d facing each other, and a right side wall 2e and a left side wall 2f facing each other. Four casters 9 are attached to the bottom wall 2d, and the cool box 1 can be self-propelled. The front wall 2a is a door for opening the storage space S, and is attached to the left side wall 2f so as to be openable and closable by known means, although not shown. A handle 10 for opening and closing is provided on the outer surface of the front wall 2a.
 筐体2の外形をなす壁の一部は、収納空間S内を0℃未満の温度に冷却及び保持するための冷却保持構造を有している。本実施形態では、筐体2の外形をなす壁のうち、背面壁2b、右側面壁2e及び左側面壁2fが、冷却保持構造を有している。なお、前面壁2a、上面壁2c及び底面壁2dについては、本実施形態では、例えば遮熱アルミコーティング発泡樹脂、発泡ポリスチレンなどの発泡樹脂、繊維強化プラスチック(FRP)、内部を真空にした断熱壁などの断熱性を有する材料で形成されているが、背面壁2b、右側面壁2e及び左側面壁2fと同様に、冷却保持構造を有する壁構造としてもよい。 A part of the wall forming the outer shape of the housing 2 has a cooling and holding structure for cooling and holding the inside of the storage space S to a temperature of less than 0 ° C. In the present embodiment, the back wall 2b, the right side wall 2e, and the left side wall 2f among the walls forming the outer shape of the housing 2 have a cooling holding structure. For the front wall 2a, the top wall 2c, and the bottom wall 2d, in this embodiment, for example, a heat insulating aluminum coating foamed resin, a foamed resin such as foamed polystyrene, a fiber reinforced plastic (FRP), or a heat insulating wall with an internal vacuum However, a wall structure having a cooling holding structure may be used similarly to the back wall 2b, the right side wall 2e, and the left side wall 2f.
 図2及び図3に示すように、冷却保持構造を備える背面壁2b、右側面壁2e及び左側面壁2fは、それぞれ、外壁3と、収納空間Sに面した熱伝導性を有する内壁4と、外壁3及び内壁4の間に設けられた熱伝導性を有する隔壁5とを備える。内壁4及び隔壁5の間は、0℃で凍結しないブライン溶液L1を収容するための第1槽T1をなし、外壁3及び隔壁5の間は、液体L2を収容するための第2槽T2をなしている。第2槽T2には、収容された液体L2を0℃未満に冷却するための冷却手段6が設けられている。 As shown in FIGS. 2 and 3, the back wall 2b, the right side wall 2e and the left side wall 2f having the cooling holding structure are respectively an outer wall 3, an inner wall 4 having thermal conductivity facing the storage space S, and an outer wall. 3 and the partition wall 5 having thermal conductivity provided between the inner wall 4 and the inner wall 4. A first tank T1 is provided between the inner wall 4 and the partition wall 5 to store a brine solution L1 that is not frozen at 0 ° C., and a second tank T2 is stored between the outer wall 3 and the partition wall 5 to store a liquid L2. There is no. The 2nd tank T2 is provided with the cooling means 6 for cooling the accommodated liquid L2 to less than 0 degreeC.
 さらに、冷却保持構造を備える壁2b、2e及び2fは、外壁3の内面に防水壁3aが内張りされているとともに、底面壁2dの上面の第1槽T1及び第2槽T2の底部に当たる位置に防水壁3bが内張りされている。 Further, the walls 2b, 2e and 2f having the cooling holding structure are provided with a waterproof wall 3a on the inner surface of the outer wall 3 and at the positions corresponding to the bottoms of the first tank T1 and the second tank T2 on the upper surface of the bottom wall 2d. A waterproof wall 3b is lined.
 図3に示すように、本実施形態では、外壁3は、背面壁2b、右側面壁2e及び左側面壁2fで共通のものであり、平板をコ字状に折り曲げたものが用いられている。なお、3枚の平板をコ字状に組み合わせたものを外壁3として用いてもよい。同様に、防水壁3a、隔壁5及び内壁4も、平板をコ字状に折り曲げたものが用いられているが、3枚の平板をコ字状に組み合わせたものを用いてもよい。防水壁3aは、外周面が外壁3の内周面に貼り付けられている。隔壁5は、外壁3よりも一回り小さく、外壁3の内側に配置されている。内壁4は、隔壁5よりも一回り小さく、隔壁5の内側に配置されている。冷却手段6は、外壁3よりも一回り小さく、防水壁3aと隔壁5との間に配置されている。さらに、防水壁3a、隔壁5及び内壁4の端部には、第1槽T1及び第2槽T2内の液などが漏れ出さないようにするための防水壁3cが設けられている。 As shown in FIG. 3, in this embodiment, the outer wall 3 is common to the back wall 2b, the right side wall 2e, and the left side wall 2f, and a flat plate bent in a U shape is used. A combination of three flat plates in a U shape may be used as the outer wall 3. Similarly, the waterproof wall 3a, the partition wall 5, and the inner wall 4 are formed by bending flat plates into a U shape, but may be a combination of three flat plates in a U shape. The outer peripheral surface of the waterproof wall 3 a is affixed to the inner peripheral surface of the outer wall 3. The partition wall 5 is slightly smaller than the outer wall 3 and is disposed inside the outer wall 3. The inner wall 4 is slightly smaller than the partition wall 5 and is disposed inside the partition wall 5. The cooling means 6 is slightly smaller than the outer wall 3 and is disposed between the waterproof wall 3 a and the partition wall 5. Furthermore, the waterproof wall 3c for preventing the liquid etc. in the 1st tank T1 and the 2nd tank T2 from leaking in the edge part of the waterproof wall 3a, the partition 5, and the inner wall 4 is provided.
 第1槽T1及び第2槽T2を形成する方法として、内壁4及び防水壁3a,3b,3cからなるコ字状の槽を形成し、その後、内壁4と防水壁3aとの間に隔壁5を配置してもよい。あるいは、内壁4及び隔壁5などからなるコ字状の第1槽T1と、隔壁5及び防水壁3aなどからなる第1槽T1より一回り大きいコ字状の第2槽T2をあらかじめ別個に作製し、第2槽T2に第1槽T1を嵌め込んで、両者を貼り合わせてもよい。この場合、隔壁5は2層構造となる。 As a method of forming the first tank T1 and the second tank T2, a U-shaped tank composed of the inner wall 4 and the waterproof walls 3a, 3b, 3c is formed, and then the partition wall 5 is formed between the inner wall 4 and the waterproof wall 3a. May be arranged. Alternatively, a U-shaped first tank T1 including the inner wall 4 and the partition wall 5 and a U-shaped second tank T2 that is slightly larger than the first tank T1 including the partition wall 5 and the waterproof wall 3a are separately prepared in advance. Then, the first tank T1 may be fitted into the second tank T2, and the two may be bonded together. In this case, the partition wall 5 has a two-layer structure.
 また、図4に示すように、冷却保持構造を有する壁2b、2e及び2fは、個別の外壁3に、L字板状ないしはコ字板状の防水壁3a、平板状の防水壁3b、平板状の隔壁5及び内壁4、右側面壁2e及び左側面壁2fについては防水壁3cを一体化したパネルを、コ字状となるように貼り合わせることで構成することもできる。 Further, as shown in FIG. 4, the walls 2b, 2e and 2f having the cooling and holding structure are provided with an L-shaped or U-shaped waterproof wall 3a, a flat waterproof wall 3b, a flat plate on the individual outer walls 3. The partition wall 5 and the inner wall 4, the right side wall 2e, and the left side wall 2f can be configured by pasting together a panel in which the waterproof wall 3c is integrated into a U shape.
 なお、本実施形態では、外壁3、内壁4及び隔壁5はいずれも、底面壁2dに対して垂直に設けられているが、外壁3、内壁4及び隔壁5の底面壁2dに対する角度は90°に限定されない。 In this embodiment, the outer wall 3, the inner wall 4 and the partition wall 5 are all provided perpendicular to the bottom wall 2d, but the angle of the outer wall 3, the inner wall 4 and the partition wall 5 with respect to the bottom wall 2d is 90 °. It is not limited to.
 外壁3は、外気の熱が筐体2内部へ伝達しないように、断熱性を有する材料で形成されることが好ましい。そのような材料として、例えば、遮熱アルミコーティング発泡樹脂、発泡ポリスチレンなどの発泡樹脂、繊維強化プラスチック(FRP)、内部を真空にした断熱壁などが挙げられる。 The outer wall 3 is preferably formed of a heat-insulating material so that heat of the outside air is not transmitted to the inside of the housing 2. Examples of such a material include a heat-shielding aluminum coating foamed resin, a foamed resin such as foamed polystyrene, fiber reinforced plastic (FRP), and a heat insulating wall whose inside is evacuated.
 内壁4は、熱伝達率の高い材料で形成されることが好ましい。そのような材料として、銅、チタン、ステンレス、アルミ、アルミ合金などが挙げられる。 The inner wall 4 is preferably formed of a material having a high heat transfer coefficient. Examples of such materials include copper, titanium, stainless steel, aluminum, and aluminum alloy.
 隔壁5の熱伝達率は特に限定されないが、本実施形態では、熱伝達率の高い材料で形成されており、銅、チタン、ステンレス、アルミ、アルミ合金などの材料で形成することができる。また、隔壁5は単層構造であってもよいし、複層構造であってもよい。 Although the heat transfer coefficient of the partition wall 5 is not particularly limited, in the present embodiment, it is formed of a material having a high heat transfer coefficient, and can be formed of a material such as copper, titanium, stainless steel, aluminum, or an aluminum alloy. The partition wall 5 may have a single layer structure or a multilayer structure.
 第1槽Tに収容されるブライン溶液L1は、0℃では凍結しないが0℃未満の所定温度で凍結する水溶液である。ブライン溶液L1の凍結温度は、被収納物の設定保冷温度、すなわち収納空間Sの設定温度以下であればよい。本実施形態では、ブライン溶液L1は0℃未満~-5℃の温度で凍結する水溶液であり、例えば、塩、有機酸塩、糖類、又はアルコール等の有機溶媒を溶解した水溶液を用いることができる。ブライン溶液L1の溶質は、水の凝固点を下げるものであれば特に限定されないが、人体に悪影響を及ぼさないものが好ましく、例えば、食塩、アルコール、ショ糖などを用いることができる。ブライン溶液L1の凍結温度は、溶質濃度を調整することで、所望の温度に設定することができる。 The brine solution L1 accommodated in the first tank T is an aqueous solution that does not freeze at 0 ° C. but freezes at a predetermined temperature below 0 ° C. The freezing temperature of the brine solution L1 may be equal to or lower than the set cool temperature of the storage object, that is, the set temperature of the storage space S. In this embodiment, the brine solution L1 is an aqueous solution that freezes at a temperature of less than 0 ° C. to −5 ° C., and for example, an aqueous solution in which an organic solvent such as a salt, organic acid salt, saccharide, or alcohol is dissolved can be used. . The solute of the brine solution L1 is not particularly limited as long as it lowers the freezing point of water, but is preferably one that does not adversely affect the human body. For example, salt, alcohol, sucrose, etc. can be used. The freezing temperature of the brine solution L1 can be set to a desired temperature by adjusting the solute concentration.
 ブライン溶液L1が塩水溶液である場合、溶質に用いられる塩類は、塩化ナトリウム、塩化カルシウム、リン酸塩、亜硫酸塩などが挙げられる、人体に害のない塩類であれば特に限定されない。また、ブライン溶液L1の塩濃度は、ブライン溶液L1の凍結温度が収納空間Sの設定温度以下であれば特に限定されず、本実施形態では、例えば、ブライン溶液L1がエタノールである場合の塩濃度は、2.3wt%(凝固点-0.1℃)~12.9wt%(凝固点-5.0℃)である。 When the brine solution L1 is an aqueous salt solution, the salts used for the solute are not particularly limited as long as they are salts that are harmless to the human body, such as sodium chloride, calcium chloride, phosphate, sulfite, and the like. The salt concentration of the brine solution L1 is not particularly limited as long as the freezing temperature of the brine solution L1 is equal to or lower than the set temperature of the storage space S. In this embodiment, for example, the salt concentration when the brine solution L1 is ethanol is used. Is 2.3 wt% (freezing point−0.1 ° C.) to 12.9 wt% (freezing point−5.0 ° C.).
 図2に示すように、第1槽T1の上部には注入口11が設けられ、下部には排出口12が設けられている。本実施形態ではブライン溶液L1を凍らせることはないため、第1槽Tをブライン溶液L1によって一杯に充填してもよい。 As shown in FIG. 2, the inlet 11 is provided in the upper part of the first tank T1, and the outlet 12 is provided in the lower part. In this embodiment, since the brine solution L1 is not frozen, the first tank T may be filled with the brine solution L1.
 第2槽T2に収容される液体L2は、特に限定されず、ブライン溶液L1と同じであっても異なってもよい。本実施形態では、液体L2として、凍結温度がブライン溶液L1の凍結温度よりも高いものを用いている。より具体的には、液体L2の凍結温度は、収納空間Sの設定温度よりも高く、0℃未満であることが好ましい。 The liquid L2 stored in the second tank T2 is not particularly limited, and may be the same as or different from the brine solution L1. In the present embodiment, a liquid having a freezing temperature higher than that of the brine solution L1 is used as the liquid L2. More specifically, the freezing temperature of the liquid L2 is preferably higher than the set temperature of the storage space S and less than 0 ° C.
 本実施形態では、収納空間Sの設定温度が-1.0℃である場合、液体L2として、できるだけ0℃で凍結する純水に近い凍結液に抗菌剤または殺菌剤を溶解した溶液を用いており、液体L2の凍結温度は、収納空間Sの設定温度より高く、例えば-0.5℃である。また、抗菌剤または殺菌剤により、液体L2内の微生物の増殖を抑えることができる。 In this embodiment, when the set temperature of the storage space S is −1.0 ° C., as the liquid L2, a solution in which an antibacterial agent or a bactericidal agent is dissolved in a frozen liquid that is as close to pure water as possible to be frozen at 0 ° C. is used. The freezing temperature of the liquid L2 is higher than the set temperature of the storage space S, for example, −0.5 ° C. Further, the growth of microorganisms in the liquid L2 can be suppressed by the antibacterial agent or the bactericidal agent.
 第2槽T2の上部及び下部には、メンテナンス用の注入口13及び排出口14がそれぞれ設けられている。液体L2は凍結時に体積が増加するため、液体L2の量は、第2槽T2の容量よりも少ないことが好ましい。なお通常は、第2槽T2に収容された液体L2を交換することはない。 A maintenance inlet 13 and outlet 14 are provided at the upper and lower parts of the second tank T2, respectively. Since the volume of the liquid L2 increases when frozen, the amount of the liquid L2 is preferably smaller than the capacity of the second tank T2. Normally, the liquid L2 stored in the second tank T2 is not exchanged.
 冷却手段6は、液体L2を冷却して凍結させる機能を有するものであれば特に限定されない。例えば、冷却手段6は、内部に冷媒が流れる冷媒コイルと、冷媒コイルの周囲を覆うように形成された熱伝達パネルとを有する構成としてもよい。また、熱伝達パネルの表面に突出部を複数形成してもよい。冷媒コイル及び熱伝達パネルの材料は特に限定されないが、熱伝達性の高い材料が好ましい。そのような材料として、チタン、銅、ステンレス、アルミ、並びにそれらの合金を利用することができる。さらに、熱伝達パネルの表面に、腐食防止の塗装又は樹脂を形成してもよい。 The cooling means 6 is not particularly limited as long as it has a function of cooling and freezing the liquid L2. For example, the cooling means 6 may have a configuration including a refrigerant coil through which a refrigerant flows and a heat transfer panel formed so as to cover the periphery of the refrigerant coil. A plurality of protrusions may be formed on the surface of the heat transfer panel. The material of the refrigerant coil and the heat transfer panel is not particularly limited, but a material having a high heat transfer property is preferable. As such a material, titanium, copper, stainless steel, aluminum, and alloys thereof can be used. Further, a corrosion-preventing paint or resin may be formed on the surface of the heat transfer panel.
 冷凍機7は、冷媒管7aを介して冷却手段6の冷媒コイルに接続されている。冷媒管7aは断熱材で被覆されており、冷凍機7から冷媒コイルに冷媒を供給することにより、冷媒コイル内に冷媒が流れ、熱伝達パネルの表面温度が下がる。これにより、液体L2を凍結させることができる。なお、冷凍機7の設置位置は特に限定されず、例えば、筐体2の背面壁2b、右側面壁2eまたは左側面壁2fの外面に取り付けてもよい。 The refrigerator 7 is connected to the refrigerant coil of the cooling means 6 through the refrigerant pipe 7a. The refrigerant pipe 7a is covered with a heat insulating material, and by supplying the refrigerant from the refrigerator 7 to the refrigerant coil, the refrigerant flows into the refrigerant coil and the surface temperature of the heat transfer panel is lowered. Thereby, the liquid L2 can be frozen. In addition, the installation position of the refrigerator 7 is not specifically limited, For example, you may attach to the outer surface of the back wall 2b of the housing | casing 2, the right side wall 2e, or the left side wall 2f.
 温度計8は、本体部が収納空間Sに設けられ、温度を検知するセンサーの先端部が内壁4を貫通して第1槽T1内に達している。これにより、温度計8は、ブライン溶液L1の温度を測定することができる。温度計8の本体の設置位置は、特に限定されない。 The thermometer 8 has a main body provided in the storage space S, and the tip of a sensor for detecting temperature passes through the inner wall 4 and reaches the first tank T1. Thereby, the thermometer 8 can measure the temperature of the brine solution L1. The installation position of the main body of the thermometer 8 is not particularly limited.
 冷凍機7内には、冷凍機7の稼動を制御するコントローラ(制御手段)が内蔵されている。本実施形態では、温度計8は、本体部から有線又は無線通信(図2では無線通信)により、測定したブライン溶液L1の温度をコントローラに送信することができ、コントローラは該温度に基づいて、冷凍機7の稼動状態、すなわち、冷却手段6による液体L2の冷却を制御する。 A controller (control means) for controlling the operation of the refrigerator 7 is built in the refrigerator 7. In this embodiment, the thermometer 8 can transmit the measured temperature of the brine solution L1 to the controller by wired or wireless communication (wireless communication in FIG. 2) from the main body, and the controller is based on the temperature, The operating state of the refrigerator 7, that is, cooling of the liquid L2 by the cooling means 6 is controlled.
 上記の保冷庫1に被収納物を冷却保存する方法について説明する。以下では、被収納物の設定保冷温度を-1.0℃とする。また、ブライン溶液L1の凍結温度は-1.0℃未満であり、液体L2の凍結温度は-0.5℃である。なお、液体L2の凍結温度は0℃未満であれば特に限定されない。 A description will be given of a method for storing the objects to be stored in the cold storage 1 in the above manner. In the following, it is assumed that the set cold storage temperature of the storage object is −1.0 ° C. The freezing temperature of the brine solution L1 is less than −1.0 ° C., and the freezing temperature of the liquid L2 is −0.5 ° C. The freezing temperature of the liquid L2 is not particularly limited as long as it is less than 0 ° C.
 まず、第1槽T1にブライン溶液L1が収容され、第2槽T2に液体L2が収容された状態で、収納空間Sに被収納物を収納し、扉である前面壁2aを閉じる。 First, in a state where the brine solution L1 is stored in the first tank T1 and the liquid L2 is stored in the second tank T2, the objects to be stored are stored in the storage space S, and the front wall 2a that is a door is closed.
 続いて、冷凍機7を稼動させ、冷却手段6の冷媒コイルに冷媒を供給する。これにより、液体L2は0℃未満に冷却され、液体L2は次第に凍結する。液体L2の冷却に伴い、隔壁5を介して液体L2とブライン溶液L1との間で熱交換が行われ、ブライン溶液L1が0℃未満に冷却される。 Subsequently, the refrigerator 7 is operated and the refrigerant is supplied to the refrigerant coil of the cooling means 6. Thereby, the liquid L2 is cooled to less than 0 ° C., and the liquid L2 is gradually frozen. Along with the cooling of the liquid L2, heat exchange is performed between the liquid L2 and the brine solution L1 via the partition wall 5, and the brine solution L1 is cooled to less than 0 ° C.
 その後、温度計8によって計測されるブライン溶液L1の温度が、被収納物の設定保冷温度である-1.0℃になると、冷凍機7のコントローラは、冷凍機7からの冷媒の供給を停止させる。これにより、冷却手段6による液体L2の冷却が停止する。 After that, when the temperature of the brine solution L1 measured by the thermometer 8 reaches −1.0 ° C., which is the set cold insulation temperature of the storage object, the controller of the refrigerator 7 stops supplying the refrigerant from the refrigerator 7 Let Thereby, cooling of the liquid L2 by the cooling means 6 stops.
 内壁4が熱伝達率の高い材料で形成されているため、ブライン溶液L1と収納空間S内の空気との間で速やかに熱交換が行われ、収納空間S内の温度がブライン溶液L1の温度とほぼ等しくなる。これにより、収納空間S内の温度が-1.0℃となる。 Since the inner wall 4 is formed of a material having a high heat transfer coefficient, heat is quickly exchanged between the brine solution L1 and the air in the storage space S, and the temperature in the storage space S is the temperature of the brine solution L1. Is almost equal to As a result, the temperature in the storage space S becomes −1.0 ° C.
 その後、ブライン溶液L1の温度が、例えば-0.5℃まで上昇すると、冷凍機7のコントローラは冷凍機7を稼動させ、冷却手段6による液体L2の冷却を再開させる。その後、ブライン溶液L1の温度が-1.0℃となると、冷凍機7のコントローラは、冷凍機7を停止させる。以後、冷凍機7は、ブライン溶液L1の温度に基づいて、冷凍機7の稼動及び停止のサイクルを繰り返す。 Thereafter, when the temperature of the brine solution L1 rises, for example, to −0.5 ° C., the controller of the refrigerator 7 operates the refrigerator 7 and restarts the cooling of the liquid L2 by the cooling means 6. Thereafter, when the temperature of the brine solution L1 becomes −1.0 ° C., the controller of the refrigerator 7 stops the refrigerator 7. Thereafter, the refrigerator 7 repeats the operation cycle of the refrigerator 7 based on the temperature of the brine solution L1.
 このように、本実施形態では、0℃未満の所望の温度に冷却したブライン溶液L1によって、収納空間S内を冷却する。また、位置によって温度ムラのある収納空間S内の空気に比べ、ブライン溶液L1は温度ムラが少ないため、ブライン溶液L1の温度を、凍結温度以上0℃未満の任意の温度で正確に調整することができる。よって、被保冷物を0℃未満で凍結させずに容易に保存できる。 Thus, in this embodiment, the inside of the storage space S is cooled by the brine solution L1 cooled to a desired temperature of less than 0 ° C. In addition, since the brine solution L1 has less temperature unevenness than the air in the storage space S with temperature unevenness depending on the position, the temperature of the brine solution L1 is accurately adjusted to an arbitrary temperature not lower than the freezing temperature and lower than 0 ° C. Can do. Therefore, the object to be cooled can be easily stored without being frozen at less than 0 ° C.
 ここで、液体L2の凍結温度は、-1.0℃よりも高い-0.5℃である。そのため、ブライン溶液L1の温度が-1.0℃となり液体L2の冷却が停止した時点で、第2槽T2内の液体L2も-1.0℃程度に冷却されるため、全て凍結し凍結体となっている。ここで、凍結体が解凍して液体L2となるためには、潜熱と呼ばれる多くの熱エネルギーが必要となる。そのため、液体L2の冷却が停止しても、凍結体が完全に溶解するまでに時間がかかり、凍結体が溶解する迄、ブライン溶液L1の温度上昇を抑えることができる。更に、凍結体は外気から侵入する熱を遮断する効果もある。よって、液体L2を凍結させずにブライン溶液L1を冷却する場合に比べ、保冷庫1への電源供給停止後も、長時間、ブライン溶液L1及び収納空間S内の温度を低温に保つことができ、保冷庫1の長時間輸送も可能となる。 Here, the freezing temperature of the liquid L2 is −0.5 ° C. higher than −1.0 ° C. Therefore, when the temperature of the brine solution L1 becomes −1.0 ° C. and the cooling of the liquid L2 is stopped, the liquid L2 in the second tank T2 is also cooled to about −1.0 ° C. It has become. Here, in order for the frozen body to thaw and become the liquid L2, a lot of heat energy called latent heat is required. Therefore, even if the cooling of the liquid L2 is stopped, it takes time until the frozen body is completely dissolved, and the temperature rise of the brine solution L1 can be suppressed until the frozen body is dissolved. Furthermore, the frozen body has an effect of blocking heat entering from outside air. Therefore, compared with the case where the brine solution L1 is cooled without freezing the liquid L2, the temperature in the brine solution L1 and the storage space S can be kept low for a long time even after the power supply to the cool box 1 is stopped. In addition, the cold storage 1 can be transported for a long time.
 なお、本実施形態では、第2槽T2の液体L2を被収納物の設定保冷温度である-1.0℃程度に冷却していたが、液体L2の冷却温度をさらに低くしてもよい(例えば、-10℃)。これにより、保冷庫1への電源供給停止後に、第2槽T2内の凍結体が解凍して液体L2となるまでの時間がさらに長くなるため、保冷持続時間を延長することができる。なおこの場合、ブライン溶液L1が凍結しないように、隔壁5を熱伝達性の調整できる材料で形成することが好ましい。そのような材料として、例えば耐冷ゴム、プラスチック類、発泡樹脂類、セラミック、ガラス等並びに、それらを、銅、チタン、ステンレス、アルミ、アルミ合金等に被覆した材料を用いることができる。さらに、隔壁5を熱伝達性の高い材料で被覆し、隔壁5の熱伝達面積を小さくするように調整してもよい。また、隔壁5の熱伝達性を小さくするため、隔壁5を、ペアガラスのように、内部に空気層を有する多層構造としてもよい。このように、隔壁5の材料、厚み、及び熱伝達面積を設定(制御)することで、隔壁5の熱伝達速度を調整し、凍結体の蓄冷能力を上げ、尚且つ、ブライン溶液L1が完全に凍結しないようにすることができる。 In the present embodiment, the liquid L2 in the second tank T2 is cooled to about −1.0 ° C., which is the set cold temperature of the object to be stored, but the cooling temperature of the liquid L2 may be further reduced ( For example, −10 ° C.). Thereby, after the supply of power to the cool box 1 is stopped, the time until the frozen body in the second tank T2 is thawed to become the liquid L2 is further increased, so that the cool keeping duration can be extended. In this case, it is preferable to form the partition wall 5 with a material that can adjust heat transfer so that the brine solution L1 does not freeze. As such materials, for example, cold resistant rubber, plastics, foamed resins, ceramics, glass, and the like, and materials obtained by coating them with copper, titanium, stainless steel, aluminum, aluminum alloy, or the like can be used. Further, the partition wall 5 may be covered with a material having a high heat transfer property, and the heat transfer area of the partition wall 5 may be adjusted to be small. Further, in order to reduce the heat transfer property of the partition walls 5, the partition walls 5 may have a multilayer structure having an air layer inside, such as pair glass. Thus, by setting (controlling) the material, thickness, and heat transfer area of the partition wall 5, the heat transfer rate of the partition wall 5 is adjusted, the cold storage capacity of the frozen body is increased, and the brine solution L1 is completely Can be kept from freezing.
 なお、液体L2は、凍結することにより体積が増加するため、第2槽T2を形成する外壁3及び隔壁5に高い圧力がかかりやすい。そのため、保冷庫1では、外壁3の第2槽T2に接する部分を、柔軟な材料で形成することが好ましい。これにより、液体L2が凍結しても、第2槽T2が外壁3に張り出すように変形することができ、第2槽T2の破損を防止することができる。あるいは、隔壁5を柔軟な材料で形成することによっても、液体L2の凍結時に隔壁5が第1槽T1側へ変形するため、第2槽T2の破損を防止することができる。 In addition, since the volume of the liquid L2 increases due to freezing, high pressure is likely to be applied to the outer wall 3 and the partition wall 5 forming the second tank T2. Therefore, in the cool box 1, it is preferable to form the part which contacts the 2nd tank T2 of the outer wall 3 with a flexible material. Thereby, even if the liquid L2 freezes, it can deform | transform so that the 2nd tank T2 may protrude on the outer wall 3, and the failure | damage of the 2nd tank T2 can be prevented. Alternatively, even when the partition wall 5 is formed of a flexible material, the partition wall 5 is deformed to the first tank T1 side when the liquid L2 is frozen, so that the second tank T2 can be prevented from being damaged.
 また、液体L2の凍結による第2槽T2の破損を防止するために、図5に示すように、第2槽T2を上方に向かって幅が徐々に広がる形状としてもよい。図5では、隔壁5を上端が下端よりも内側(収納空間S側)に傾倒するように設けることで、第2槽T2の幅(隔壁5と外壁3との距離)を上方に向かうにつれて広がるようにしている。これにより、液体L2が凍結して凍結体となる際に、凍結体の体積の増加分が第2槽T2の上部の幅広部分に押し出される。よって、第2槽T2を形成する外壁3及び隔壁5にかかる圧力を抑制して、第2槽T2の破損を防止することができる。なお、図5では、第2槽T2の高さ方向の全体にわたり、上方に向かって幅が徐々に広がる形状としているが、第2槽T2の少なくとも上端を含む部分のみを、上方に向かって幅が徐々に広がる形状としてもよい。 Further, in order to prevent the second tank T2 from being damaged due to the freezing of the liquid L2, as shown in FIG. 5, the second tank T2 may have a shape that gradually widens upward. In FIG. 5, the width of the second tank T2 (distance between the partition wall 5 and the outer wall 3) increases as it goes upward by providing the partition wall 5 so that the upper end tilts inward (storage space S side) from the lower end. I am doing so. Thereby, when the liquid L2 freezes and becomes a frozen body, the increase in the volume of the frozen body is pushed out to the wide portion at the top of the second tank T2. Therefore, the pressure applied to the outer wall 3 and the partition wall 5 forming the second tank T2 can be suppressed, and damage to the second tank T2 can be prevented. In FIG. 5, the width of the second tank T2 is gradually widened upward in the entire height direction, but only the portion including at least the upper end of the second tank T2 has a width upward. It is good also as a shape which spreads gradually.
 上述の実施形態に係る保冷庫1は、筐体の前面壁が開閉可能な構造であったが、内部に被保冷物の収納空間を有する筐体を少なくとも備えた構造であれば、本発明はこれに限定されず、例えば、図6に示す保冷庫1’のように構成してもよい。保冷庫1’の外形をなす筐体は、図1に示す保冷庫1と同様、前面壁2a及び背面壁2bと、対向する上面壁2c及び底面壁2dと、対向する右側面壁2e及び左側面壁2fとからなるが、保冷庫1と異なり、上面壁2cが着脱可能となっている。 Although the cool box 1 according to the above-described embodiment has a structure in which the front wall of the casing can be opened and closed, the present invention can be used as long as the structure has at least a casing having a storage space for the object to be cooled inside. It is not limited to this, For example, you may comprise like cold storage 1 'shown in FIG. As with the cool box 1 shown in FIG. 1, the casing that forms the outer shape of the cool box 1 'includes a front wall 2a and a back wall 2b, opposed top wall 2c and bottom wall 2d, opposed right side wall 2e and left side wall. However, unlike the cool box 1, the top wall 2c is detachable.
 図6では、背面壁2b及び右側面壁2eの上端が破断されており、右側面壁2eの内部が透視されている。保冷庫1’では、前面壁2a、背面壁2b、右側面壁2e及び左側面壁2fが、上記と同様の冷却保持構造を有している。すなわち、前面壁2a、背面壁2b、右側面壁2e及び左側面壁2fは、外壁3と、内壁4と、外壁3及び内壁4の間に設けられた隔壁5を備え、内壁4及び隔壁5の間がブライン溶液L1を収容するための第1槽T1をなし、外壁3及び隔壁5の間が液体L2を収容するための第2槽T2をなしている。そして、隔壁5と外壁3との間に、冷却手段6が設けられている。 In FIG. 6, the upper ends of the back wall 2b and the right side wall 2e are broken, and the inside of the right side wall 2e is seen through. In the cool box 1 ', the front wall 2a, the back wall 2b, the right side wall 2e, and the left side wall 2f have the same cooling holding structure as described above. That is, the front wall 2a, the back wall 2b, the right side wall 2e, and the left side wall 2f include an outer wall 3, an inner wall 4, and a partition wall 5 provided between the outer wall 3 and the inner wall 4, and between the inner wall 4 and the partition wall 5. Constitutes a first tank T1 for containing the brine solution L1, and a space between the outer wall 3 and the partition wall 5 constitutes a second tank T2 for containing the liquid L2. A cooling means 6 is provided between the partition wall 5 and the outer wall 3.
 続いて、本発明の他の実施形態について説明する。図7及び図8は、本発明の他の実施形態に係る保冷庫1aの内部構造を示す。なお、図7及び図8に示す保冷庫1aの基本的な構成は、図2及び図3に示す保冷庫1の構成と同様であり、ここでは対応する構成に同一の符号を付することで詳細な説明を省略する。 Subsequently, another embodiment of the present invention will be described. 7 and 8 show the internal structure of a cold box 1a according to another embodiment of the present invention. The basic configuration of the cool box 1a shown in FIG. 7 and FIG. 8 is the same as the configuration of the cool box 1 shown in FIG. 2 and FIG. 3, and here, the same reference numerals are given to the corresponding components. Detailed description is omitted.
 本実施形態の保冷庫1aは、図2及び図3に示す保冷庫1と比較して、背面壁2bのみに冷却保持構造を設けており、その代わりに、フィンコイル装置20と、配管23と、ポンプ24と、送風機(送風手段)25とをさらに備えている。なお、背面壁2bの冷却保持構造は、図2及び図3に示すものと同じである。 Compared to the cool box 1 shown in FIGS. 2 and 3, the cool box 1 a of the present embodiment is provided with a cooling holding structure only on the back wall 2 b, and instead, the fin coil device 20, the pipe 23, Further, a pump 24 and a blower (blower unit) 25 are further provided. The cooling and holding structure of the back wall 2b is the same as that shown in FIGS.
 フィンコイル装置20は、保冷庫1aの筐体2内に設けられ、複数の板状フィン21と、板状フィン21を貫通する熱交換管22とを有する。本実施形態では、フィンコイル装置20は、筺体2の右側面壁2e及び左側面壁2fに取り付けられている。なお、フィンコイル装置20を取り付ける位置はこれに限定されない。例えば、前面壁2a、背面壁2b、上面壁2c及び底面壁2dの少なくともいずれかにフィンコイル装置20を取り付けてもよい。 The fin coil device 20 is provided in the housing 2 of the cool box 1 a and includes a plurality of plate-like fins 21 and a heat exchange tube 22 that penetrates the plate-like fins 21. In the present embodiment, the fin coil device 20 is attached to the right side wall 2e and the left side wall 2f of the housing 2. The position where the fin coil device 20 is attached is not limited to this. For example, the fin coil device 20 may be attached to at least one of the front wall 2a, the back wall 2b, the top wall 2c, and the bottom wall 2d.
 板状フィン21は、保冷庫1aの高さ方向に長く延びる薄板状を呈しており、右側面壁2e及び左側面壁2fに複数の板状フィン21が所定の間隔をあけてその主面が互いに平行となるようにして取り付けられている。板状フィン21は、熱伝導性の高い材料で形成されていることが好ましく、そのような材料として、銅、銅合金、アルミ、アルミ合金、チタン、チタン合金、ステンレス等が挙げられる。 The plate-like fins 21 have a thin plate shape extending in the height direction of the cool box 1a, and a plurality of plate-like fins 21 are parallel to each other with a predetermined interval between the right side wall 2e and the left side wall 2f. It is attached to become. The plate-like fins 21 are preferably formed of a material having high thermal conductivity. Examples of such materials include copper, copper alloy, aluminum, aluminum alloy, titanium, titanium alloy, and stainless steel.
 熱交換管22は、蛇行しながら保冷庫1aの高さ方向に延びており、複数の板状フィン21の主面を垂直に貫通している。熱交換管22も、熱伝導性の高い材料で形成されていることが好ましく、板状フィン21と同じ材料で形成されてもよい。 The heat exchange tube 22 extends in the height direction of the cool box 1 a while meandering, and vertically penetrates the main surface of the plurality of plate-like fins 21. The heat exchange tube 22 is also preferably formed of a material having high thermal conductivity, and may be formed of the same material as the plate-like fins 21.
 配管23は、熱交換管22の両端に連結されており、熱交換管22を第1槽T1に接続する。また、ポンプ24は、熱交換管22内に第1槽T1内のブライン溶液を循環させる。配管23及びポンプ24は、収納空間S内に設けてもよいし、その一部又は全部を筺体2の壁に埋設させてもよい。 The pipe 23 is connected to both ends of the heat exchange pipe 22, and connects the heat exchange pipe 22 to the first tank T1. The pump 24 circulates the brine solution in the first tank T1 in the heat exchange tube 22. The pipe 23 and the pump 24 may be provided in the storage space S, or part or all of them may be embedded in the wall of the housing 2.
 送風機25は、収納空間S内の空気を複数の板状フィン21の間に送風する。送風機25としては、例えば、小型扇風機、有圧換気扇といった翼型ファン、シロッコファン、ターボファン、リミットロードファン等を用いることができる。 The blower 25 blows the air in the storage space S between the plurality of plate-like fins 21. As the blower 25, for example, a small fan, a bladed fan such as a pressure ventilation fan, a sirocco fan, a turbo fan, a limit load fan, or the like can be used.
 本実施形態の保冷庫1aによると、筐体2内にフィンコイル装置20を設け、第1槽T1内のブライン溶液を熱交換管22に循環させていることにより、板状フィン21及び熱交換管22の表面を介して、収納空間S内の空気と熱交換を行うことができる。フィンコイル装置20では、板状フィン21間の間隔を小さくして、板状フィン21の個数を増やすことによって、収納空間S内の空気と熱交換を行う面積を容易に大きくすることができる。そのため、フィンコイル装置20によって、効率的に収納空間S内の空気を冷却することができるので、背面壁2bのみに冷却保持構造を設けた場合においても、収納空間S内の温度を十分に低温とすることができる。 According to the cool box 1a of the present embodiment, the fin coil device 20 is provided in the housing 2, and the brine solution in the first tank T1 is circulated through the heat exchange pipe 22, whereby the plate fins 21 and the heat exchange are performed. Heat exchange with the air in the storage space S can be performed via the surface of the tube 22. In the fin coil device 20, by reducing the distance between the plate-like fins 21 and increasing the number of the plate-like fins 21, the area for heat exchange with the air in the storage space S can be easily increased. Therefore, since the air in the storage space S can be efficiently cooled by the fin coil device 20, even when the cooling holding structure is provided only on the back wall 2b, the temperature in the storage space S is sufficiently low. It can be.
 さらに、送風機25によって、収納空間S内の空気を板状フィン21の間に送風することにより、板状フィン21及び熱交換管22の表面付近の冷却された空気を収納空間S内に効率よく循環させることができる。これにより、収納空間S内の冷却効果をより高めることができる。 Further, the air in the storage space S is blown between the plate-like fins 21 by the blower 25, so that the cooled air near the surfaces of the plate-like fins 21 and the heat exchange tubes 22 is efficiently put into the storage space S. It can be circulated. Thereby, the cooling effect in the storage space S can be further enhanced.
 また、本実施形態の保冷庫1aでは、右側面壁2e及び左側面壁2fに冷却保持構造を設けずにフィンコイル装置20等を設置している。ここで、冷却保持構造を有する壁は、第1槽T1及び第2槽T2内にブライン溶液L1及び液体L2がそれぞれ収容されているため、重量が大きくなる。一方で、フィンコイル装置20、配管23、ポンプ24及び送風機25の総重量は、一般に、ブライン溶液L1及び液体L2の総重量よりも小さい。よって、本実施形態の保冷庫1aは、図2及び図3に示す保冷庫1との比較で、収納空間Sに対して同等以上の冷却効果を実現できるうえに重量を軽くすることができる。 Further, in the cool box 1a of the present embodiment, the fin coil device 20 and the like are installed without providing a cooling holding structure on the right side wall 2e and the left side wall 2f. Here, the wall having the cooling and holding structure is heavier because the brine solution L1 and the liquid L2 are accommodated in the first tank T1 and the second tank T2, respectively. On the other hand, the total weight of the fin coil device 20, the pipe 23, the pump 24, and the blower 25 is generally smaller than the total weight of the brine solution L1 and the liquid L2. Therefore, compared with the cool box 1 shown in FIGS. 2 and 3, the cool box 1 a of the present embodiment can realize a cooling effect equivalent to or higher than that of the storage space S and can reduce the weight.
 なお、フィンコイル装置20の構成は上述のものに限定されず、公知のあらゆるフィンコイル装置を用いることができる。また、保冷庫1aにおいて、背面壁2bは、図5に示す冷却保持構造を有してもよい。 In addition, the structure of the fin coil apparatus 20 is not limited to the above-mentioned thing, All the well-known fin coil apparatuses can be used. Moreover, in the cool box 1a, the back wall 2b may have a cooling holding structure shown in FIG.
 続いて、本実施形態のさらに好ましい変形例について説明する。図9及び図10は、保冷庫1aの変形例に係る保冷庫1a’の内部構造を示す。 Subsequently, a further preferable modification of the present embodiment will be described. 9 and 10 show the internal structure of a cold box 1a 'according to a modification of the cold box 1a.
 保冷庫1a’は、図7及び図8に示す保冷庫1aと比較して、筐体2の内面と対向する板26をさらに備えたものであり、フィンコイル装置20は、前記筺体2の内面と板26との間に設けられている。具体的には、2つの板26が、それぞれ右側面壁2e及び左側面壁2fに対向するように設けられており、右側面壁2eと一方の板26との間、及び、左側面壁2fと他方の板26との間に、それぞれフィンコイル装置20が設けられている。 Compared to the cool box 1a shown in FIGS. 7 and 8, the cool box 1a ′ further includes a plate 26 facing the inner surface of the housing 2, and the fin coil device 20 includes the inner surface of the casing 2. And the plate 26. Specifically, two plates 26 are provided so as to face the right side wall 2e and the left side wall 2f, respectively, between the right side wall 2e and one plate 26, and between the left side wall 2f and the other plate. The fin coil device 20 is provided between each of them.
 板26は、平面視矩形状の平板である。板26の材質は特に限定されず、保冷庫1a’用途及び収納空間Sの大きさに応じて選択することができる。例えば、板26は、断熱効果のあるプラスチックによって形成してもよいし、伝熱効果のあるステンレス、銅、銅合金、アルミ、アルミ合金、チタン等によって形成してもよい。 The plate 26 is a flat plate having a rectangular shape in plan view. The material of the board 26 is not particularly limited, and can be selected according to the use of the cool box 1a ′ and the size of the storage space S. For example, the plate 26 may be formed of plastic having a heat insulating effect, or may be formed of stainless steel, copper, copper alloy, aluminum, aluminum alloy, titanium or the like having a heat transfer effect.
 このように、板26によってフィンコイル装置20を覆うことにより、板26が仕切りとなってフィンコイル装置20が収納空間Sから隔てられ、フィンコイル装置20周囲の温度が、収納空間Sの中心側の温度よりも低くなる。これにより、板26を設けない場合に比べ、板状フィン21及び熱交換管22の表面付近の空気と、熱交換管22内を流れるブライン液L1との温度差を小さくすることができる。よって、板状フィン21及び熱交換管22の表面に霜が付着しにくくなり、霜による熱交換効率の低下を防ぐことができる。 Thus, by covering the fin coil device 20 with the plate 26, the plate 26 serves as a partition to separate the fin coil device 20 from the storage space S, and the temperature around the fin coil device 20 is the center side of the storage space S. It becomes lower than the temperature. Thereby, compared with the case where the board 26 is not provided, the temperature difference between the air near the surfaces of the plate-like fins 21 and the heat exchange pipe 22 and the brine liquid L1 flowing in the heat exchange pipe 22 can be reduced. Therefore, it becomes difficult for frost to adhere to the surfaces of the plate-like fins 21 and the heat exchange tubes 22, and a decrease in heat exchange efficiency due to frost can be prevented.
 また、送風機25から複数の板状フィン21の間に送られた空気が、フィンコイル装置20により冷却されている途中で収納空間Sの中心側へ流れ出ることを、板26によって抑制することができる。よって、フィンコイル装置20による冷却効果をさらに高めることができる。そのため、板26は、フィンコイル装置20全体を覆うことができる大きさであり、かつ、フィンコイル装置20にできるだけ近接していることが好ましい。 Moreover, it can suppress with the board 26 that the air sent between the several plate-shaped fins 21 from the air blower 25 flows out to the center side of the storage space S in the middle of being cooled by the fin coil apparatus 20. . Therefore, the cooling effect by the fin coil device 20 can be further enhanced. Therefore, it is preferable that the plate 26 has a size that can cover the entire fin coil device 20 and is as close to the fin coil device 20 as possible.
 なお、板26には複数のスリット27を形成することが好ましい。これにより、フィンコイル装置20によって冷却された空気の一部が、スリット27を通って収納空間Sの中心側へ流出する。これにより、図9に示す送風機25から板26の下端を抜けて収納空間Sに流れる気流の他に、スリット27から収納空間Sに流れる気流が発生するので、収納空間S内を効率的かつより均一に冷却することができる。 Note that it is preferable to form a plurality of slits 27 in the plate 26. Thereby, a part of the air cooled by the fin coil device 20 flows out to the center side of the storage space S through the slit 27. Accordingly, in addition to the airflow that flows from the blower 25 shown in FIG. 9 through the lower end of the plate 26 to the storage space S, an airflow that flows from the slit 27 to the storage space S is generated. It can cool uniformly.
 上述のフィンコイル装置を備えた保冷庫は、収納空間内に外気が入り込みやすい冷蔵ショーケースや、収納空間が大きい保冷車に好適である。続いて、本発明に係る保冷庫を保冷車に適用した例について説明する。なお、上述の実施形態におけるものと略同一の機能を有する部材については、同一の符号を付し、その説明を適宜省略する。 The cold storage provided with the above-described fin coil device is suitable for a refrigerated showcase in which outside air easily enters the storage space and a cold storage vehicle having a large storage space. Then, the example which applied the cool box which concerns on this invention to the cool truck is demonstrated. In addition, about the member which has the substantially same function as the thing in the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted suitably.
 図11は、保冷庫1bを備えた保冷車30を示す。保冷庫1bの筐体2の外形をなす壁のうち、前面壁2aのみが冷却保持構造を有している。また、保冷庫1bは、フィンコイル装置20、配管23、ポンプ24、送風機25及び板26をさらに備え、板26にはスリット27が形成されている。 FIG. 11 shows a cold car 30 equipped with a cold box 1b. Of the walls forming the outer shape of the housing 2 of the cool box 1b, only the front wall 2a has a cooling holding structure. The cool box 1b further includes a fin coil device 20, a pipe 23, a pump 24, a blower 25, and a plate 26, and a slit 27 is formed in the plate 26.
 フィンコイル装置20は、上面壁2cに取り付けられており、その構成は、図7及び図8に示すものと略同一である。フィンコイル装置20の熱交換管(図11では図示を省略)は、配管23によって前面壁2aの第1槽T1に接続されており、該熱交換管内にはポンプ24によって第1槽T1内のブライン溶液が循環している。送風機25は、収納空間S内の空気をフィンコイル装置20の複数の板状フィン(図11では図示を省略)の間に送風する。 The fin coil device 20 is attached to the top wall 2c, and the configuration thereof is substantially the same as that shown in FIGS. A heat exchange pipe (not shown in FIG. 11) of the fin coil device 20 is connected to the first tank T1 of the front wall 2a by a pipe 23, and the heat exchange pipe has a pump 24 in the first tank T1. Brine solution is circulating. The blower 25 blows air in the storage space S between a plurality of plate-like fins (not shown in FIG. 11) of the fin coil device 20.
 また、フィンコイル装置20は、上面壁2cの内面と板26との間に設けられている。送風機25からの空気は、上面壁2cの内面と板26との間を、前面壁2aから背面壁2bに向かって流れるとともに、その一部がスリット27から下方の収納空間Sに流れ出る。 Further, the fin coil device 20 is provided between the inner surface of the top wall 2c and the plate 26. Air from the blower 25 flows between the inner surface of the top wall 2c and the plate 26 from the front wall 2a toward the back wall 2b, and part of the air flows out from the slit 27 to the lower storage space S.
 以上のように、保冷庫1bは、フィンコイル装置20をさらに備えるとともに、上面壁2cのみに冷却保持構造を設けている。これにより、収納空間S内の空気を効率よく冷却することができるとともに、保冷庫1bを軽くすることができる。よって、保冷車30は、より重量の大きい物を運搬することができ、輸送効率を上げることができる。 As described above, the cool box 1b further includes the fin coil device 20, and a cooling holding structure is provided only on the upper surface wall 2c. Thereby, while being able to cool the air in the storage space S efficiently, the cool box 1b can be lightened. Therefore, the cold storage vehicle 30 can carry a heavier thing and can improve transport efficiency.
 また、板26によってフィンコイル装置20を覆うことにより、霜による熱交換効率の低下を防ぐことができる。さらに、フィンコイル装置20によって冷却された空気の一部を、スリット27から下方へ流出させることにより、収納空間S内の空気を均一かつ効率的に冷却することができる。 Further, by covering the fin coil device 20 with the plate 26, it is possible to prevent the heat exchange efficiency from being lowered due to frost. Furthermore, by letting some of the air cooled by the fin coil device 20 flow downward from the slit 27, the air in the storage space S can be uniformly and efficiently cooled.
 また、背面壁2bは開閉可能な扉を構成している。ここで保冷庫1bでは、板26を、その一端が背面壁2b付近まで延びるように設け、フィンコイル装置20を通過した空気が背面壁2bの付近で下方に流れるように構成されている。これにより、背面壁2bを開放したときに、下方に流れる空気によって、外気が収容空間S内に侵入しにくくなり、収容空間S内の空気の急激な温度上昇を防ぐことができる。 Also, the back wall 2b constitutes a door that can be opened and closed. Here, in the cool box 1b, the plate 26 is provided so that one end thereof extends to the vicinity of the back wall 2b, and the air that has passed through the fin coil device 20 flows downward near the back wall 2b. Thereby, when the back wall 2b is opened, the air flowing downward makes it difficult for outside air to enter the accommodation space S, and a rapid temperature rise of the air in the accommodation space S can be prevented.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, A various change is possible unless it deviates from the meaning.
 例えば、上述の実施形態では、保冷庫の筐体の外形が直方体であったが、これに限定されず、立方体、四面体、円柱形などであってもよい。 For example, in the above-described embodiment, the outer shape of the casing of the cool box is a rectangular parallelepiped, but is not limited thereto, and may be a cube, a tetrahedron, a cylinder, or the like.
 また、上述の実施形態では、ブライン溶液L1を冷却するために第2槽T2内の液体L2を凍結させていたが、液体L2の凍結温度が被収納物の保冷温度よりも低い場合は、液体L2を凍結させなくてもよい。つまり、液体L2は、0℃で凍結しない液体であり、冷却手段6は、液体L2を凍結させない構成としてもよい。 In the above-described embodiment, the liquid L2 in the second tank T2 is frozen in order to cool the brine solution L1, but when the freezing temperature of the liquid L2 is lower than the cold storage temperature of the storage object, the liquid L2 may not be frozen. That is, the liquid L2 may be a liquid that does not freeze at 0 ° C., and the cooling unit 6 may be configured not to freeze the liquid L2.
 液体L2を完全に凍結させると、ブライン溶液L1との熱交換効率が低下する。そのため、例えば、保冷庫が冷蔵ショーケースである場合、収容空間S内に頻繁に外気が流入するので、収容空間S内の温度制御が難しくなる。そこで、液体L2を冷却手段6の内部に流れる冷媒の温度(例えば-20℃)でも凍結しない液体とすることで、液体L2とブライン溶液L1との熱交換効率が低下せず、収容空間S内に外気が流入しても、速やかに収容空間S内の空気を冷却することができる。 When the liquid L2 is completely frozen, the heat exchange efficiency with the brine solution L1 decreases. Therefore, for example, when the cool box is a refrigerated showcase, since outside air frequently flows into the storage space S, temperature control in the storage space S becomes difficult. Therefore, by making the liquid L2 a liquid that does not freeze even at the temperature of the refrigerant flowing inside the cooling means 6 (for example, −20 ° C.), the heat exchange efficiency between the liquid L2 and the brine solution L1 does not decrease, and the inside of the storage space S Even if outside air flows in, the air in the accommodation space S can be quickly cooled.
 なお、液体L2を凍結させない場合、保冷庫への電源供給停止後の畜冷効果は低下するが、冷蔵ショーケースは常に電源供給される環境で使用されるため、問題は生じない。 If the liquid L2 is not frozen, the effect of cooling the animal after the supply of power to the cool box is reduced, but the refrigerated showcase is always used in an environment where power is supplied, so no problem occurs.
 本発明に係る保冷庫は、保冷車、保冷コンテナ(エアカーゴ、海上コンテナ、鉄道コンテナ)、大型保冷庫、冷蔵ショーケース、小型保冷容器などに適用することができる。 The cold storage according to the present invention can be applied to a cold storage vehicle, a cold storage container (air cargo, maritime container, railway container), a large cold storage, a refrigerated showcase, a small cold storage container, and the like.
1  保冷庫
1’ 保冷庫
1a 保冷庫
1a’ 保冷庫
1c 保冷庫
2  筐体
2a 前面壁
2b 背面壁
2c 上面壁
2d 底面壁
2e 右側面壁
2f 左側面壁
3  外壁
3a 防水壁
3b 防水壁
3c 防水壁
4  内壁
5  隔壁
6  冷却手段
7  冷凍機
7a 冷媒管
8  温度計
9  キャスター
10 取手
11 注入口
12 排出口
13 注入口
14 排出口
20 フィンコイル装置
21 板状フィン
22 熱交換管
23 配管
24 ポンプ
25 送風機
27 スリット
30 保冷車
L1 ブライン溶液
L2 液体
S  収納空間
T1 第1槽
T2 第2槽
DESCRIPTION OF SYMBOLS 1 Cold storage 1 'Cold storage 1a Cold storage 1a' Cold storage 1c Cold storage 2 Case 2a Front wall 2b Rear wall 2c Top wall 2d Bottom wall 2e Right side wall 2f Left side wall 3 Outer wall 3a Waterproof wall 3b Waterproof wall 3c Waterproof wall 4 Inner wall 5 Bulkhead 6 Cooling means 7 Refrigerator 7a Refrigerant pipe 8 Thermometer 9 Caster 10 Handle 11 Inlet 12 Outlet 13 Inlet 14 Outlet 20 Fin coil device 21 Plate fin 22 Heat exchange pipe 23 Pipe 24 Pump 25 Blower 27 Slit 30 Cold storage vehicle L1 Brine solution L2 Liquid S Storage space T1 First tank T2 Second tank

Claims (13)

  1.  内部に被保冷物の収納空間を有する筐体を少なくとも備えた保冷庫であって、
     前記筐体の外形をなす壁の一部は、
     外壁と、前記収納空間に面した熱伝導性を有する内壁と、前記外壁及び前記内壁の間に設けられた熱伝導性を有する隔壁とを備え、
     前記内壁及び前記隔壁の間は、0℃で凍結しないブライン溶液を収容するための第1槽をなし、
     前記外壁及び前記隔壁の間は、液体を収容するための第2槽をなし、
     前記第2槽には、収容された液体を0℃未満に冷却するための冷却手段が設けられていることを特徴とする保冷庫。
    A cold storage room having at least a housing having a storage space for the object to be cooled inside,
    A part of the wall forming the outer shape of the casing is
    An outer wall, an inner wall having thermal conductivity facing the storage space, and a partition wall having thermal conductivity provided between the outer wall and the inner wall,
    Between the inner wall and the partition wall is a first tank for containing a brine solution that does not freeze at 0 ° C.,
    Between the outer wall and the partition wall, a second tank for storing liquid is formed,
    The second tank is provided with a cooling means for cooling the stored liquid to less than 0 ° C.
  2.  前記冷却手段は、前記液体を凍結させることを特徴とする請求項1に記載の保冷庫。 The cold storage according to claim 1, wherein the cooling means freezes the liquid.
  3. 追加請求項4に対応
     前記液体は、0℃で凍結しない液体であり、
     前記冷却手段は、前記液体を凍結させないことを特徴とする請求項1に記載の保冷庫。
    Corresponding to additional claim 4 The liquid is a liquid that does not freeze at 0 ° C.
    The cold storage according to claim 1, wherein the cooling means does not freeze the liquid.
  4.  前記隔壁は、耐冷ゴム、プラスチック類、発泡樹脂類、セラミック、及びガラス、並びに、それらを銅、チタン、ステンレス、アルミ、アルミ合金で被覆した材料から選択される材料で形成されている、又は、内部に空気層を有する多層構造であることを特徴とする請求項1~3のいずれかに記載の保冷庫。 The partition wall is formed of a material selected from cold-resistant rubber, plastics, foamed resins, ceramics, and glass, and materials coated with copper, titanium, stainless steel, aluminum, and aluminum alloy, or 4. The cool box according to claim 1, which has a multilayer structure having an air layer inside.
  5.  前記筐体の外形をなす壁は、前面壁、背面壁、上面壁、底面壁、右側面壁及び左側面壁からなり、
     前記前面壁、前記背面壁、前記上面壁、前記底面壁、前記右側面壁及び前記左側面壁の少なくとも1つが、前記外壁、前記内壁及び前記隔壁とからなることを特徴とする請求項1~4のいずれかに記載の保冷庫。
    The wall forming the outer shape of the housing consists of a front wall, a back wall, a top wall, a bottom wall, a right side wall, and a left side wall,
    The at least one of the front wall, the back wall, the top wall, the bottom wall, the right side wall, and the left side wall includes the outer wall, the inner wall, and the partition wall. Cold storage in any one.
  6.  前記液体の凍結温度は前記ブライン溶液の凍結温度よりも高いことを特徴とする請求項1~5のいずれかに記載の保冷庫。 The cold box according to any one of claims 1 to 5, wherein the freezing temperature of the liquid is higher than the freezing temperature of the brine solution.
  7.  前記第2槽は、少なくとも上端を含む部分が、上方に向かって幅が徐々に広がる形状であることを特徴とする請求項1~6のいずれかに記載の保冷庫。 The cold storage according to any one of claims 1 to 6, wherein at least a portion including the upper end of the second tank has a shape in which a width gradually increases upward.
  8.  前記ブライン溶液の温度を測定する温度計と、
     前記温度に基づいて、前記冷却手段による前記液体の冷却を制御する制御手段と、
    をさらに備えることを特徴とする請求項1~7のいずれかに記載の保冷庫。
    A thermometer for measuring the temperature of the brine solution;
    Control means for controlling cooling of the liquid by the cooling means based on the temperature;
    The cold storage according to any one of claims 1 to 7, further comprising:
  9.  前記ブライン溶液が完全に凍結しないように、前記隔壁の材料、厚み、及び熱伝達面積が設定されていることを特徴とする請求項1~8のいずれかに記載の保冷庫。 The cold storage according to any one of claims 1 to 8, wherein a material, a thickness, and a heat transfer area of the partition wall are set so that the brine solution is not completely frozen.
  10.  前記筐体内に設けられ、複数の板状フィンと該板状フィンを貫通する熱交換管とを有するフィンコイル装置と、
     前記熱交換管を前記第1槽に接続する配管と、
     前記熱交換管内に前記ブライン溶液を循環させるポンプと、
    をさらに備えたことを特徴とする請求項1~9のいずれかに記載の保冷庫。
    A fin coil device provided in the housing and having a plurality of plate fins and a heat exchange tube penetrating the plate fins;
    A pipe connecting the heat exchange pipe to the first tank;
    A pump for circulating the brine solution in the heat exchange tube;
    The cool box according to any one of claims 1 to 9, further comprising:
  11.  前記収納空間内の空気を前記板状フィンの間に送風する送風手段をさらに備えたことを特徴とする請求項10に記載の保冷庫。 The cool box according to claim 10, further comprising a blowing means for blowing the air in the storage space between the plate fins.
  12.  前記筐体の内面と対向する板をさらに備え、
     前記フィンコイル装置は、前記内面と前記板との間に設けられたことを特徴とする請求項10または11のいずれかに記載の保冷庫。
    A plate facing the inner surface of the housing;
    The cold storage according to claim 10 or 11, wherein the fin coil device is provided between the inner surface and the plate.
  13.  前記板にスリットが形成されていることを特徴とする請求項12に記載の保冷庫。 The cold storage according to claim 12, wherein a slit is formed in the plate.
PCT/JP2015/064313 2015-01-23 2015-05-19 Cooler box WO2016117141A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580074201.9A CN107250691B (en) 2015-01-23 2015-05-19 Cold storage
KR1020177019881A KR102292586B1 (en) 2015-01-23 2015-05-19 Cooler box
JP2016570473A JP6198975B2 (en) 2015-01-23 2015-05-19 Cold storage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-011812 2015-01-23
JP2015011812 2015-01-23

Publications (1)

Publication Number Publication Date
WO2016117141A1 true WO2016117141A1 (en) 2016-07-28

Family

ID=56416706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064313 WO2016117141A1 (en) 2015-01-23 2015-05-19 Cooler box

Country Status (5)

Country Link
JP (1) JP6198975B2 (en)
KR (1) KR102292586B1 (en)
CN (1) CN107250691B (en)
TW (1) TWI654401B (en)
WO (1) WO2016117141A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641378U (en) * 1987-06-24 1989-01-06
WO2014103344A1 (en) * 2012-12-27 2014-07-03 トッパン・フォームズ株式会社 Implement for constant-temperature storage and storage container housing same
WO2015025675A1 (en) * 2013-08-22 2015-02-26 富士電機株式会社 Cooler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049740A (en) 1983-08-31 1985-03-19 Susumu Kurita Method for preserving perishable food
JP2889600B2 (en) * 1989-08-11 1999-05-10 三洋電機株式会社 Cold storage
JPH08116869A (en) 1994-10-27 1996-05-14 Hiyouon:Kk Storage of perishable food by ultra-low temperature water treatment
KR100189100B1 (en) * 1994-11-11 1999-06-01 윤종용 Refirgerator manufacturing method having high efficient multi evaporator cycle
KR20080017609A (en) * 2006-08-21 2008-02-27 친 쿠앙 루오 Air cooling/heating device
CN101581511A (en) * 2008-05-12 2009-11-18 凌建军 High-efficiency energy-saving multifunctional refrigerating device taking liquid as cold absorbing medium
KR20150132797A (en) * 2014-05-18 2015-11-26 주식회사 리우스 Cold storage system controllable cold capacity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641378U (en) * 1987-06-24 1989-01-06
WO2014103344A1 (en) * 2012-12-27 2014-07-03 トッパン・フォームズ株式会社 Implement for constant-temperature storage and storage container housing same
WO2015025675A1 (en) * 2013-08-22 2015-02-26 富士電機株式会社 Cooler

Also Published As

Publication number Publication date
KR20170103831A (en) 2017-09-13
CN107250691B (en) 2020-09-18
CN107250691A (en) 2017-10-13
TWI654401B (en) 2019-03-21
JPWO2016117141A1 (en) 2017-09-14
JP6198975B2 (en) 2017-09-20
KR102292586B1 (en) 2021-08-23
TW201627622A (en) 2016-08-01

Similar Documents

Publication Publication Date Title
US5598713A (en) Portable self-contained cooler/freezer apparatus with nitrogen environment container
US5363670A (en) Self-contained cooler/freezer apparatus
JP5395809B2 (en) Refrigeration container for super freezing temperature
JPH10148442A (en) Refrigerator
EP2258995B1 (en) Refrigerator
KR101389531B1 (en) Thermoelectric element-applied apparatus for transporting and delivering agrifood
US20160109187A1 (en) Device for conserving and transporting fresh or frozen products, in particular for thermally insulated containers or the like
JP6300970B2 (en) Multi-tube cooling and cold storage
TWI564528B (en) Refrigerator
WO2015176581A1 (en) Refrigerator
JP6198975B2 (en) Cold storage
WO2018047387A1 (en) Multilayer pipe cooling cold storage
KR101608057B1 (en) Temperature control method for storage and transport container
WO1994012836A1 (en) Self-contained cooler/freezer apparatus
JPH06211294A (en) Cool storage-type freezing-refrigerating box
KR101775274B1 (en) Power saving cold storage
JPH07500484A (en) Methods and devices for storing foodstuffs, plants, meat and other organic substances
CN217560175U (en) Freezing chamber, freezing room and refrigeration plant
KR20180063429A (en) A Container of Accumulating Cool Air
JP3522977B2 (en) Cold storage warehouse
JP2006118832A (en) Cold storage house and cold storage method
JP2010230275A (en) Cold storage
JPH02254244A (en) Artificial ice heat accumulating refrigerating system
EP2444762A1 (en) Refrigeration appliance having a 0 degree compartment
BRPI0804667A2 (en) organ transplant system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570473

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177019881

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878832

Country of ref document: EP

Kind code of ref document: A1