JP2010230275A - Cold storage - Google Patents

Cold storage Download PDF

Info

Publication number
JP2010230275A
JP2010230275A JP2009079917A JP2009079917A JP2010230275A JP 2010230275 A JP2010230275 A JP 2010230275A JP 2009079917 A JP2009079917 A JP 2009079917A JP 2009079917 A JP2009079917 A JP 2009079917A JP 2010230275 A JP2010230275 A JP 2010230275A
Authority
JP
Japan
Prior art keywords
brine
storage
cooling pack
pipe
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009079917A
Other languages
Japanese (ja)
Inventor
Yoshio Hirasawa
良男 平澤
Chika Sasaki
親 佐々木
Junichi Matsuzawa
潤一 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyox Co Ltd
Toyama University
Original Assignee
Toyox Co Ltd
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyox Co Ltd, Toyama University filed Critical Toyox Co Ltd
Priority to JP2009079917A priority Critical patent/JP2010230275A/en
Publication of JP2010230275A publication Critical patent/JP2010230275A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold storage capable of uniformly cooling the inside of the storage for a long time and reducing energy cost by increasing a heat storage amount by applying a heat storage method utilizing midnight power and the like. <P>SOLUTION: The cold storage includes a storage body 12 receiving a stored object, a cooling pack 18 mounted in the storage body 12, and a resin pipe 22 for heat exchange which is disposed in the cooling pack 18 and in which brine such as the water of a prescribed temperature flows. Pipes 21 are disposed while being connected with both ends of the resin pipe 22, and led out to the outside of the cooling pack 18 and the storage body 12. The cooling pack 18 including a filling fluid is sealed up. The pipes 21 are connected to a refrigerating machine independent from the cold storage 10, and the brine of a prescribed temperature is circulated to the resin pipe 22 to freeze the filling fluid. The inflow of the brine is stopped, so that the stored object can be kept cold by the frozen filling fluid in the cooling pack 18. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、氷で庫内を冷却する保冷庫に関する。   The present invention relates to a cold storage that cools the inside of the storage with ice.

従来、保冷が必要な食品を保管する場合は、一般に冷凍機を備えた保冷庫が用いられている。また、特許文献1に開示されている収納庫及び物品輸送システムがある。この特許文献の収納庫は、収納庫本体と、庫内を熱媒体により冷却又は加熱する熱交換器と、この熱交換器から庫外の熱源機に連続し熱媒体を流動させる接続手段が設けられている。この熱交換器は、収納庫本体の内側面沿いに多数の細管が相互に接近して配置された面状体である。この特許文献の物品輸送システムは、まず食品工場等で熱源機と収納庫を接続して熱交換器に熱媒体を流入して庫内を所定温度に冷却または加熱する。庫内の温度が一定に安定した後に食品を入れ、熱媒体の流入を停止し熱源機から外し、収納庫をトラックなどの輸送機器で庫内温度を維持しながら輸送する。店舗等、輸送先に熱源機を設置し、輸送した収納庫を熱源機に接続して熱媒体を流入し、所定温度に保ち店舗用の保冷庫として使用するものである。   Conventionally, in the case of storing foods that need to be kept cold, a cool box equipped with a freezer is generally used. Moreover, there is a storage and an article transportation system disclosed in Patent Document 1. The storage of this patent document is provided with a storage body, a heat exchanger that cools or heats the interior of the storage with a heat medium, and a connecting means that allows the heat medium to flow continuously from the heat exchanger to a heat source device outside the storage. It has been. This heat exchanger is a planar body in which a large number of thin tubes are arranged close to each other along the inner side surface of the storage body. In the article transport system of this patent document, a heat source machine and a storage are first connected in a food factory or the like, a heat medium is introduced into a heat exchanger, and the interior is cooled or heated to a predetermined temperature. After the inside temperature has stabilized, put food, stop the inflow of the heat medium, remove it from the heat source machine, and transport the storage with the transport equipment such as trucks while maintaining the inside temperature. A heat source device is installed at a transportation destination such as a store, the transported storage is connected to the heat source device, a heat medium flows in, and the temperature is kept at a predetermined temperature and used as a cold storage for a store.

特開2008−286485号公報JP 2008-286485 A

上記従来技術の場合、熱媒体の顕熱を利用しているので熱媒体の流入を停止した後に長時間経過すると、庫内の温度が上昇して外気温に近くなり、食品の保冷ができなくなるおそれがある。また、エネルギーのコストを下げることは考えられていなかった。   In the case of the above prior art, since the sensible heat of the heat medium is used, if the inflow of the heat medium is stopped for a long time, the temperature inside the cabinet rises and becomes close to the outside temperature, and the food cannot be kept cold. There is a fear. Moreover, it was not considered to reduce the cost of energy.

この発明は、上記背景技術の問題点に鑑みてなされたものであり、深夜電力等を利用した蓄熱方式を採用することにより蓄熱量を増加させ、庫内を均一に長時間冷却でき、エネルギーのコストを抑えることができる保冷庫を提供することを目的とする。   This invention has been made in view of the problems of the background art described above, and by adopting a heat storage method using midnight power or the like, the amount of stored heat can be increased, the interior can be uniformly cooled for a long time, It aims at providing the cold storage which can hold down cost.

本発明は、被収容物を収容する収納庫本体と、前記収納庫本体の内側に取り付けられている冷却パックと、前記冷却パックの中に設けられ所定温度のブラインが流れる熱交換用のパイプと、前記パイプの両端部に接続され前記冷却パックから前記収納庫本体の外側へ引き出された配管と、前記冷却パック内に密閉された充填液とを備え、前記保冷庫と別体の冷凍機に前記接続部材を接続して所定温度の前記ブラインを前記パイプに循環させて前記充填液を凍らせた後、前記ブラインの流入を停止し、前記冷却パックの前記充填液により前記被収容物を保冷可能とした保冷庫である。前記パイプは樹脂製であり、充填液は水である。   The present invention relates to a storage body for storing an object to be stored, a cooling pack attached to the inside of the storage body, a pipe for heat exchange provided in the cooling pack and through which brine of a predetermined temperature flows. A pipe connected to both ends of the pipe and drawn from the cooling pack to the outside of the storage body, and a filling liquid sealed in the cooling pack, the refrigerator being separate from the cold storage After the connecting member is connected to circulate the brine at a predetermined temperature through the pipe to freeze the filling liquid, the inflow of the brine is stopped, and the container is cooled by the filling liquid in the cooling pack. It is a cold storage that is possible. The pipe is made of resin, and the filling liquid is water.

前記冷却パックは前記収納庫本体の側面に各々取り付けられ、前記側面に沿う薄形に形成され、前記パイプには、前記側面に対してほぼ平行な細い複数の熱交換パイプが設けられているものである。   The cooling pack is attached to each side surface of the storage body, is formed in a thin shape along the side surface, and the pipe is provided with a plurality of thin heat exchange pipes substantially parallel to the side surface. It is.

さらに、前記保冷庫は、前記冷凍機と切り離して、搬送可能に設けられているものである。   Furthermore, the said cool box is separated from the said refrigerator, and is provided so that conveyance is possible.

本発明の保冷庫は、ブラインの循環を止めても冷却パックの凍った充填液により保冷効果が長時間持続して被収容物を低温に保つことができ、省エネルギー性能が高く、被収容物を確実に保冷しながら簡単に輸送することができる。安価な夜間電力を使用して夜間に充填液を凍らせ、昼間にブラインの循環を止めて使用することができ、コストを抑えることができる。   Even if the circulation of the brine is stopped, the cold storage according to the present invention can maintain the object to be stored at a low temperature by maintaining the cooling effect for a long time by the frozen filling liquid of the cooling pack, and has high energy saving performance. It can be transported easily while keeping it cool. It is possible to freeze the filling liquid at night by using inexpensive nighttime power, stop the circulation of the brine during the daytime, and reduce the cost.

この発明の一実施形態の保冷庫の斜視図である。It is a perspective view of the cool box of one embodiment of this invention. この実施形態の保冷庫の冷却パックの斜視図(a)と側面図(b)である。It is the perspective view (a) and side view (b) of the cooling pack of the cool box of this embodiment. この実施形態の冷却パックのカバーの斜視図である。It is a perspective view of the cover of the cooling pack of this embodiment. この発明の他の実施形態の樹脂パイプを示す正面図である。It is a front view which shows the resin pipe of other embodiment of this invention. 従来の熱交換器を有する保冷庫の、ブライン流入直後の経過時間と庫内温度変化を、ブラインの温度3種類について測定した結果を示すグラフである。It is a graph which shows the result of having measured the elapsed time immediately after a brine inflow, and the temperature change in a warehouse about the temperature of three types of brine of the cold storage which has the conventional heat exchanger. 図1の保冷庫の、ブライン注入直後の経過時間と庫内温度変化をブラインの流速3種類について測定した結果を示すグラフである。It is a graph which shows the result of having measured the elapsed time just after brine injection | pouring of the cool storage box of FIG. 図1の保冷庫の、ブライン流入後温度変化が安定した後ブライン流入を停止した直後の経過時間と庫内温度変化をブラインの温度3種類について測定し無次元化した値を示すグラフである。It is a graph which shows the elapsed time immediately after stopping the inflow of a brine, and the temperature change in a store | warehouse | chamber of the cool storage box of FIG. 図1の保冷庫の、ブライン流入後温度変化が安定した後ブライン流入を停止し庫内上部に氷を設置した直後の時間経過と庫内温度変化を氷の重量3種類について測定し無次元化した値を示すグラフである。After the temperature change after the inflow of brine in the cold storage in FIG. 1 stabilizes, the time immediately after the inflow of the brine is stopped and the ice is placed in the upper part of the storage and the temperature change in the storage are measured for three types of ice weight and made dimensionless. It is a graph which shows the value which carried out. 図1の保冷庫の、ブライン流入後温度変化が安定した後ブライン流入を停止し庫内側壁に冷却パックの氷を設置した直後の時間経過と庫内温度変化を氷の重量3種類について測定し無次元化した値を示すグラフである。After the temperature change after the brine inflow in the cold storage in FIG. 1 stabilized, the time immediately after the brine inflow was stopped and the ice of the cooling pack was installed on the inner wall of the refrigerator and the temperature change in the refrigerator were measured for three types of ice weight. It is a graph which shows the value made dimensionless.

以下、この発明の実施形態について図面に基づいて説明する。図1〜図4はこの発明の一実施形態を示すもので、この実施形態の保冷庫10は、倉庫や保管スペースでの保冷や、トラック等の輸送機器で搬送可能な形状の収納庫本体12が設けられている。収納庫本体12は、一方向に長い矩形の上面12aと、上面12aと同形の底面12bと、上面12aの短い辺の一方に直角に連続する背面12cと、上面12aの一対の長い片に直角に連続する一対の側面12d,12eが設けられている。収納庫本体12は、一側面に開口部14が設けられ、開口部14には、気密に閉じる扉16が開閉自在に設けられている。収納庫本体12の内周面には図示しない断熱材が取り付けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 show an embodiment of the present invention, and a cold storage 10 of this embodiment is a storage body 12 having a shape that can be cooled in a warehouse or a storage space or transported by a transport device such as a truck. Is provided. The storage body 12 has a rectangular upper surface 12a that is long in one direction, a bottom surface 12b that is the same shape as the upper surface 12a, a back surface 12c that is perpendicular to one of the short sides of the upper surface 12a, and a pair of long pieces of the upper surface 12a. A pair of side surfaces 12d and 12e continuous to each other is provided. The storage body 12 is provided with an opening 14 on one side surface, and an airtightly closing door 16 is provided in the opening 14 so as to be opened and closed. A heat insulating material (not shown) is attached to the inner peripheral surface of the storage body 12.

収納庫本体12の、側面12d,12eの内周面には、冷却パック18が設けられている。冷却パック18は、強度のあるポリアミド樹脂等の合成樹脂シート等で作られた矩形の袋体20で覆われ、袋体20の内側にはブラインが流される熱交換用の樹脂パイプ22が設けられている。   A cooling pack 18 is provided on the inner peripheral surfaces of the side surfaces 12 d and 12 e of the storage body 12. The cooling pack 18 is covered with a rectangular bag body 20 made of a synthetic resin sheet such as a strong polyamide resin, and a heat exchange resin pipe 22 through which brine flows is provided inside the bag body 20. ing.

樹脂パイプ22は、冷却パック18の上端部に沿って設けられている供給側メインパイプ22aと、戻り側メインパイプ22bを備え、供給側メインパイプ22aと戻り側メインパイプ22b間で、冷却パック18の下端部で折り返してU字状に配置された複数の細管である熱交換パイプ22cが設けられている。さらに供給側メインパイプ22aには液体の熱交換用媒体であるブラインの流入口23aが設けられ、戻り側メインパイプ22bの端部にはブラインの流出口23bが設けられている。流入口23aと流出口23bには、袋体20と収納庫本体12を貫通して収納庫本体12の外側に引き出された配管21が連結されている。   The resin pipe 22 includes a supply-side main pipe 22a and a return-side main pipe 22b provided along the upper end portion of the cooling pack 18, and the cooling pack 18 is provided between the supply-side main pipe 22a and the return-side main pipe 22b. A heat exchanging pipe 22c, which is a plurality of thin tubes arranged in a U shape by being folded back at the lower end portion, is provided. Further, the supply-side main pipe 22a is provided with an inlet 23a for brine, which is a liquid heat exchange medium, and an outlet 23b for brine is provided at the end of the return-side main pipe 22b. The inflow port 23 a and the outflow port 23 b are connected to a pipe 21 that passes through the bag body 20 and the storage body main body 12 and is drawn to the outside of the storage body main body 12.

冷却パック18の袋体20には、充填液24が密閉されている。充填液24は、例えば水である。冷却パック18は、収納庫本体12の側面12dと側面12eに一対が設けられ、側面12d、側面12eから僅かに離間されて平行に固定されている。さらに、冷却パック18は、収納庫本体12内で破損防止用のカバー25で覆われている。   A filling liquid 24 is sealed in the bag body 20 of the cooling pack 18. The filling liquid 24 is water, for example. A pair of the cooling pack 18 is provided on the side surface 12d and the side surface 12e of the storage body 12, and is slightly spaced apart from the side surface 12d and the side surface 12e and fixed in parallel. Further, the cooling pack 18 is covered with a cover 25 for preventing damage in the storage body 12.

収納庫本体12の底面12bには補強板26が取り付けられ、補強板26の角部にはキャスタ28が4個設けられている。   A reinforcing plate 26 is attached to the bottom surface 12 b of the storage body 12, and four casters 28 are provided at the corners of the reinforcing plate 26.

次に、この実施形態の保冷庫10の使用方法について説明する。まず、保冷庫10を冷却するときは、図示しない冷凍機の近傍に移動する。ここで、冷凍機について説明する。冷凍機の内部にはブラインを収容するタンクと、このタンク内のブラインを設定温度に冷却するための1次側の冷却回路と、2次側でタンク内のブラインを圧送するポンプが設けられ、冷凍機の側面にはタンクに通じるブライン流出口またはブライン流入口が各々設けられているものである。そして、保冷庫10側の配管21を冷凍機のブライン流出口とブライン流入口にそれぞれ接続し、ブラインを冷却パック18の樹脂パイプ22に流して循環させる。これにより、冷却パック18の中の充填液24が冷やされて氷になり、準備が完了する。次に冷凍機から保冷庫10側の配管21を外し、扉16を開けて食品等の被収容物を入れ、扉16を密閉する。この状態で保冷庫10を移動したり輸送したりすることができる。氷が保冷庫10の収納庫本体12内を冷却し、長時間低温を保つ。   Next, the usage method of the cool box 10 of this embodiment is demonstrated. First, when the cool box 10 is cooled, it moves to the vicinity of a refrigerator (not shown). Here, the refrigerator will be described. Inside the refrigerator, a tank for storing brine, a primary side cooling circuit for cooling the brine in the tank to a set temperature, and a pump for pumping the brine in the tank on the secondary side are provided. A brine outlet or a brine inlet leading to the tank is provided on each side of the refrigerator. Then, the pipe 21 on the cool box 10 side is connected to the brine outlet and the brine inlet of the refrigerator, respectively, and the brine is circulated through the resin pipe 22 of the cooling pack 18. Thereby, the filling liquid 24 in the cooling pack 18 is cooled to become ice, and the preparation is completed. Next, the pipe 21 on the cool box 10 side is removed from the refrigerator, the door 16 is opened, and an object such as food is placed therein, and the door 16 is sealed. In this state, the cool box 10 can be moved or transported. Ice cools the inside of the storage body 12 of the cold storage 10 and keeps the temperature low for a long time.

この実施形態の保冷庫10によれば、簡単な構造で庫内を均一に長時間低温に保つことができ、さらに以下のような効果を有する。冷却パック18の充填液24の氷の冷熱を利用して収納庫本体12内を、電力等を用いずに5℃前後に長時間保持することができる。冷却パック18が一対の側面12d、側面12eの内側にあるため、凍った充填液24が直接庫外からの侵入熱を吸収するため、効率よく低温を維持することができる。食品など被収容物を5℃以下に保つことができ、バクテリア等の発生と毒素の増加を抑制し安全に輸送することができる。常時冷凍機に接続する必要が無く、省エネルギー性能が高い。安価な夜間電力を使用して夜間に充填液を凍らせて氷蓄熱し、昼間にブラインの循環を止めて使用することができ、コストを抑えることができる。夜間電力を使用することにより、消費電力の平準化が実行され、エネルギーの有効利用に寄与することができる。保冷庫10は軽量で移動に便利であり、氷蓄熱により移動時の設備が簡略化され、保冷車以外の車両で搬送することができ、輸送コストの削減が可能である。保冷庫10は氷蓄熱により長時間低温に保たれるため、冷蔵庫として機能し、倉庫に保管するときに倉庫全体の温度調節が不要となり、温度調節機能が無い一般の倉庫に保管することができる。倉庫に冷凍機を用意すれば、保冷庫10に接続してブラインの流入を開始して冷却を続けることができる。冷却パック18の熱交換パイプ22cは合成樹脂製であり、金属製のものよりも熱伝導率が低いが、熱交換パイプ22の全体に渡り比較的均一に凍るため、熱効率が良好である。   According to the cool box 10 of this embodiment, the inside of the box can be kept uniformly at a low temperature for a long time with a simple structure, and further has the following effects. The inside of the storage body 12 can be maintained at around 5 ° C. for a long time without using electric power or the like by using the cold heat of the filling liquid 24 of the cooling pack 18. Since the cooling pack 18 is inside the pair of side surfaces 12d and 12e, the frozen filling liquid 24 directly absorbs intrusion heat from the outside of the warehouse, so that the low temperature can be efficiently maintained. Objects to be contained such as food can be kept at 5 ° C. or lower, and can be safely transported while suppressing the generation of bacteria and the increase of toxins. It is not necessary to connect to a freezer at all times, and energy saving performance is high. It is possible to freeze the filling liquid at night by using inexpensive nighttime electric power to store ice heat, stop the circulation of brine during the daytime, and reduce the cost. By using nighttime power, power consumption is leveled, which can contribute to effective use of energy. The cool box 10 is lightweight and convenient for movement, and the equipment during movement is simplified due to ice heat storage, and can be transported by a vehicle other than the cold storage car, and the transportation cost can be reduced. Since the cool box 10 is kept at a low temperature for a long time due to ice heat storage, it functions as a refrigerator, and when stored in the warehouse, the temperature of the entire warehouse is not required, and can be stored in a general warehouse without a temperature control function. . If a refrigerator is prepared in the warehouse, it can be connected to the cool box 10 to start the inflow of brine and continue cooling. The heat exchange pipe 22c of the cooling pack 18 is made of a synthetic resin and has a lower thermal conductivity than that of a metal one. However, the heat exchange pipe 22c freezes relatively uniformly over the entire heat exchange pipe 22, so that the heat efficiency is good.

なお、この実施形態の熱交換パイプ22cは、図4に示すように、大きくU字状に折り返して配置することもできる。この場合、より太い熱交換パイプに対応可能である。また、冷却パック18は、収納庫本体12の側面12d,12eに加え、背面12cにも取り付けても良い。   In addition, as shown in FIG. 4, the heat exchange pipe 22c of this embodiment can also be largely folded back in a U shape. In this case, a thicker heat exchange pipe can be accommodated. Further, the cooling pack 18 may be attached to the back surface 12c in addition to the side surfaces 12d and 12e of the storage body 12.

この発明の一実施例の保冷庫による保温冷却効果について、従来の熱交換器を有する保冷庫を使用して実験的検証を行った。まず、実験に使用する保冷庫について説明する。この保冷庫は、拠点冷蔵倉庫から運送先までの温度を保つものであり、本体に冷凍機器を持たないものである。保冷庫の収納庫本体内に伝熱管を配置し、輸送先で冷凍機と接続することにより、簡易的な冷蔵庫として使用可能なものである。   About the heat insulation cooling effect by the cold storage of one Example of this invention, it verified experimentally using the cold storage which has the conventional heat exchanger. First, the cold storage used for experiment is demonstrated. This cold storage keeps the temperature from the base refrigerated warehouse to the transport destination, and has no refrigeration equipment in the main body. By arranging a heat transfer tube in the storage body of the cool box and connecting it to a refrigerator at the transport destination, it can be used as a simple refrigerator.

保冷庫の大きさは、外寸W×H×D=580×1500×810mmで、容積は477l(480×1400×710mm)で、壁の平均熱貫流率は80W/mKである。側壁等は厚さ50mmの発泡ウレタン(熱伝導率0.024W/(mK))と、ガルバニウム鋼板の外装、アルミニウム板の内装で構成されている。熱交換パイプはPP製の細管マット(内径d=2.3mmで長さl=2800mmで片面31本を二つ折りにしたもの)である。この熱交換パイプは、保冷庫の収納庫本体内の左右壁面に設置されている。 The size of the cool box is the outer dimensions W × H × D = 580 × 1500 × 810 mm, the volume is 477 l (480 × 1400 × 710 mm), and the average heat transmissivity of the wall is 80 W / m 3 K. The side walls and the like are made of 50 mm thick urethane foam (thermal conductivity 0.024 W / (mK)), a galvanium steel sheet exterior, and an aluminum sheet interior. The heat exchange pipe is a PP thin tube mat (inner diameter d = 2.3 mm, length l = 2800 mm, 31 on one side folded in half). This heat exchange pipe is installed on the left and right wall surfaces in the storage body of the cold storage.

次に、実験装置および手順について説明する。まず、ブラインを熱交換パイプに流入させ、庫内温度を一定にする。庫内温度安定後、ブラインの流入を停止し、4時間放置する。これらの温度変化を各条件について測定する。保冷庫の温度は熱電対(K型、導体径0.2mm)を用い、28点に上記熱電対を設置し測定を行う。測定結果はデータロガーを通し、パーソナルコンピュータにて収集する。   Next, the experimental apparatus and procedure will be described. First, brine is introduced into the heat exchange pipe to keep the inside temperature constant. After the inside temperature is stabilized, the inflow of brine is stopped and left for 4 hours. These temperature changes are measured for each condition. The temperature of the cool box is measured using a thermocouple (K type, conductor diameter 0.2 mm), with the thermocouple installed at 28 points. The measurement results are collected by a personal computer through a data logger.

まず、保冷庫の熱交換パイプに、ブラインを流入して収納庫内を一定温度まで冷却する。庫内温度安定後、ブラインの流入を停止し、庫内温度上昇を測定する。同時に熱交換パイプ内に残留しているブラインが蓄熱材として十分働くかどうかを確認する。   First, brine is introduced into the heat exchange pipe of the cold storage to cool the inside of the storage to a certain temperature. After the internal temperature stabilizes, stop the inflow of brine and measure the internal temperature rise. At the same time, it is confirmed whether the brine remaining in the heat exchange pipe works sufficiently as a heat storage material.

図5、図6は、ブライン流入直後の経過時間と庫内温度変化を示すグラフである(凡例のカッコ内の温度は外気温度の平均である)。図5は、ブラインを2l/minで流入したとき、ブラインの温度条件を−5℃、0℃、5℃の3種類について測定したものである。これによると、ブラインの温度条件の3種類とも、ブライン流入後およそ0.5hrで食品安全管理温度の10℃を下回り、1.5hrには庫内温度はほぼ安定する。図6は、−5℃のブラインを、流量条件を1l/min、2l/min、4l/minの3種類について測定したものである。これによると、ブラインの流量条件が2l/minと4l/minではほぼ同じ値を示し、1l/minのときだけ高い値を示した。よって、ブラインの流量は2l/minが庫内を冷却する上で最も効率が良いと推測される。   5 and 6 are graphs showing the elapsed time immediately after the inflow of brine and the internal temperature change (the temperature in the parenthesis in the legend is an average of the outside air temperature). FIG. 5 shows the measurement of three kinds of temperature conditions of −5 ° C., 0 ° C., and 5 ° C. when brine is introduced at 2 l / min. According to this, for all three types of brine temperature conditions, the food safety management temperature falls below 10 ° C. at about 0.5 hr after the inflow of the brine, and the inside temperature is almost stabilized at 1.5 hr. FIG. 6 shows the measurement of -5 ° C. brine for three types of flow rate conditions of 1 l / min, 2 l / min, and 4 l / min. According to this, when the flow rate conditions of brine were 2 l / min and 4 l / min, the values were almost the same, and only when 1 l / min, the values were high. Therefore, it is estimated that the flow rate of brine is 2 l / min, which is the most efficient in cooling the inside of the warehouse.

なおこの実験では、収納庫本体内は空気のみなので、熱容量は極端に小さく、また収納庫本体の断熱性も高いため熱負荷がほとんど無いため、ブライン流量による違いが少ないと思われる。食品などが収容されている場合は、ブライン流量による違いはより明確になると思われる。   In this experiment, since the inside of the storage body is only air, the heat capacity is extremely small, and since the heat insulation of the storage body is high, there is almost no heat load, so there seems to be little difference due to the brine flow rate. If food is contained, the difference due to the brine flow rate will be clearer.

図7は、ブラインを2l/minで流入し、十分に冷却され温度変化が安定した後、ブラインの流入を停止した直後の経過時間と庫内温度変化を測定し、庫内温度変化の平均値を以下の式(1)により無次元化した値を示すグラフである。
1−(T−T)/(T−T) …(1)
FIG. 7 shows the average value of the temperature change in the chamber after measuring the elapsed time and the temperature change in the cabinet immediately after stopping the inflow of the brine after the brine flowed in at 2 l / min, sufficiently cooled and the temperature change stabilized. It is a graph which shows the value made dimensionless by the following formula | equation (1).
1- (T ∞ -T) / ( T ∞ -T O) ... (1)

ここで、Tは外気温度、Tは庫内の初期温度である。ブラインの温度条件は−5℃、0℃、5℃の3種類について測定した。これによると、ブラインの温度によって若干の差はあるが、ほぼ影響はなく、温度は無次元温度で0.8まで上昇しブラインのみの蓄冷では食品搬送に十分な保冷能力があるとは言えない。 Here, T is the ambient air temperature, T O is the initial temperature of the refrigerator. The temperature conditions of brine were measured for three types of −5 ° C., 0 ° C., and 5 ° C. According to this, although there is a slight difference depending on the temperature of the brine, there is almost no effect, the temperature rises to 0.8 at a dimensionless temperature, and it can not be said that the cold storage only with brine has sufficient cold storage capacity for food transport .

そこで保冷庫に、ブラインに加えて蓄冷材として氷を収納庫本体の内側の上部に設置して、庫内の温度上昇を抑制することにした。図8は、まず前述した実験と同じ条件で庫内温度をブラインにより冷却し温度変化が安定した後、ブラインの流入を停止し庫内上部に氷を設置し、その直後の時間経過と庫内温度変化を測定し、庫内温度変化の平均値を式(1)により無次元化した値を示すものである。ここで、氷の重量は2kg、6kg、8kgの3種類について測定した。これによると、氷2kg、6kg、8kgの無次元温度は0〜0.65の範囲であることがわかる。食品管理温度という観点では食品の搬送において十分な保冷能力があることがわかる。しかし、庫内温度は徐々に上昇し続けており、氷の潜熱が十分に活かされていないこともわかった。   Therefore, in addition to brine, ice as a cold storage material was installed in the upper part inside the storage body to suppress the temperature rise in the storage. FIG. 8 shows that after the temperature in the cabinet is cooled with brine under the same conditions as in the above-described experiment and the temperature change is stabilized, the inflow of brine is stopped and ice is installed in the upper portion of the cabinet. The temperature change is measured, and the value obtained by making the average value of the temperature change in the cabinet dimensionless by the equation (1) is shown. Here, the weight of ice was measured for three types of 2 kg, 6 kg, and 8 kg. According to this, it can be seen that the dimensionless temperatures of ice 2 kg, 6 kg, and 8 kg are in the range of 0 to 0.65. From the viewpoint of the food management temperature, it can be seen that there is a sufficient cooling capacity in the conveyance of food. However, it was also found that the internal temperature continued to rise gradually, and the latent heat of ice was not fully utilized.

次に、冷却パックである薄い容器に氷を入れて、収納庫本体の側壁に均等に配置して、同様の実験を行った。図9は、図8の実験と同じ条件で庫内温度をブラインにより冷却し温度変化が安定した後、ブラインの流入を停止し、氷を入れた薄い容器から成る冷却パックを、収納庫本体の一対の側壁に均等に4〜8袋取り付けた場合の、その直後からの時間経過と庫内温度変化を測定し、庫内温度変化の平均値を式(1)により無次元化した値を示すものである。ここで、氷の重量は8kg、2.4kgの2種類について測定した。これによると、同じ氷の量でも冷却パックを壁面に配置した場合は、庫内の温度上昇は小さく抑えられており、しかも長時間安定した温度が保たれることがわかった。この理由として中央上部に氷を設置した場合には、庫外から侵入した熱は庫内の空気に吸収され、氷の表面で冷却された空気と混合することで冷却されるのに対し、氷が収納庫本体の側面にあるときは氷が直接庫外からの侵入熱を吸収するためと思われる。   Next, ice was put into a thin container which is a cooling pack, and the same experiment was performed by arranging it uniformly on the side wall of the storage body. FIG. 9 shows that after cooling the inside temperature with brine under the same conditions as in the experiment of FIG. 8 and the temperature change is stabilized, the inflow of brine is stopped and a cooling pack consisting of a thin container containing ice is attached to the storage body. When 4 to 8 bags are evenly attached to a pair of side walls, the time elapsed immediately after that and the temperature change inside the chamber are measured, and the average value of the temperature change inside the chamber is shown as a dimensionless value by equation (1). Is. Here, the weight of ice was measured for two types of 8 kg and 2.4 kg. According to this, it was found that when the cooling pack was placed on the wall surface with the same amount of ice, the temperature rise in the cabinet was kept small, and a stable temperature was maintained for a long time. The reason for this is that when ice is installed in the upper center, the heat that enters from the outside of the warehouse is absorbed by the air inside the warehouse and is cooled by mixing with the air cooled on the surface of the ice, whereas the ice is This is probably because the ice directly absorbs the intrusion heat from the outside of the cabinet when it is on the side of the cabinet body.

以上より、収納庫本体の内面に水を充填した冷却パックを取り付け、この冷却パックの中にブラインが流れる樹脂製熱交換パイプを設けて氷を形成し、その氷を蓄冷材として用いると、効果的に長時間低温を保つことができ、有効であることがわかった。氷の位置は収納庫本体の上部よりも側壁に均等に配置すると効率が良く冷却効果が高い。また、ブライン2l/min、氷2〜8kgで十分な能力を得ることができた。   From the above, installing a cooling pack filled with water on the inner surface of the storage body, forming a resin heat exchange pipe through which brine flows in this cooling pack to form ice, and using that ice as a cold storage material, the effect Therefore, it was found that it was effective for maintaining a low temperature for a long time. If the position of the ice is evenly arranged on the side wall than the upper part of the storage body, it is efficient and the cooling effect is high. Moreover, sufficient capacity could be obtained with 2 l / min of brine and 2-8 kg of ice.

10 保冷庫
12 収納庫本体
14 開口部
16 扉
18 冷却パック
20 袋体
21 配管
22 樹脂パイプ
22a 供給側メインパイプ
22b 戻り側メインパイプ
22c 熱交換パイプ
24 充填液
26 補強板
28 キャスタ
DESCRIPTION OF SYMBOLS 10 Cold storage 12 Storage body 14 Opening part 16 Door 18 Cooling pack 20 Bag body 21 Piping 22 Resin pipe 22a Supply side main pipe 22b Return side main pipe 22c Heat exchange pipe 24 Filling liquid 26 Reinforcement board 28 Caster

Claims (4)

被収容物を収容する収納庫本体と、前記収納庫本体の内側に取り付けられている冷却パックと、前記冷却パックの中に設けられ所定温度のブラインが流れる熱交換用のパイプと、前記パイプの両端部に接続され前記冷却パックから前記収納庫本体の外側へ引き出された配管と、前記冷却パック内に密閉された充填液とを備え、前記保冷庫と別体の冷凍機に前記接続部材を接続して所定温度の前記ブラインを前記パイプに循環させて前記充填液を凍らせた後、前記ブラインの流入を停止し、前記冷却パックの前記充填液により前記被収容物を保冷可能としたことを特徴とする保冷庫。   A storage body for storing the objects to be stored, a cooling pack attached to the inside of the storage body, a pipe for heat exchange provided in the cooling pack and through which a brine of a predetermined temperature flows, A pipe connected to both ends and drawn out of the main body of the storage from the cooling pack; and a filling liquid sealed in the cooling pack; and the connecting member is connected to the refrigerator separately from the cold storage. After connecting and circulating the brine at a predetermined temperature through the pipe to freeze the filling liquid, the inflow of the brine is stopped, and the contained object can be kept cool by the filling liquid of the cooling pack. A cold storage that features. 前記パイプは樹脂製であり、充填液は水であることを特徴とする請求項1記載の保冷庫。   The cold storage according to claim 1, wherein the pipe is made of resin and the filling liquid is water. 前記冷却パックは前記収納庫本体の側面に各々取り付けられ、前記側面に沿う薄形に形成され、前記パイプには、前記側面に対してほぼ平行な細い複数の熱交換パイプが設けられていることを特徴とする請求項1記載の保冷庫。   The cooling pack is attached to each side surface of the storage body, is formed in a thin shape along the side surface, and the pipe is provided with a plurality of thin heat exchange pipes substantially parallel to the side surface. The cold storage according to claim 1. 前記保冷庫は、前記冷凍機と切り離して、搬送可能に設けられていることを特徴とする請求項1,2又は3記載の保冷庫。
The said cool box is separated from the said refrigerator, and is provided so that conveyance is possible, The cool box of Claim 1, 2, or 3 characterized by the above-mentioned.
JP2009079917A 2009-03-27 2009-03-27 Cold storage Pending JP2010230275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009079917A JP2010230275A (en) 2009-03-27 2009-03-27 Cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009079917A JP2010230275A (en) 2009-03-27 2009-03-27 Cold storage

Publications (1)

Publication Number Publication Date
JP2010230275A true JP2010230275A (en) 2010-10-14

Family

ID=43046271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009079917A Pending JP2010230275A (en) 2009-03-27 2009-03-27 Cold storage

Country Status (1)

Country Link
JP (1) JP2010230275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019567A1 (en) * 2012-08-01 2014-02-06 Goseling Ug Cold reservoir device and cooling system arrangement
WO2024122388A1 (en) * 2022-12-09 2024-06-13 ブランテックインターナショナル株式会社 Cold-reserving storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019567A1 (en) * 2012-08-01 2014-02-06 Goseling Ug Cold reservoir device and cooling system arrangement
KR20150040313A (en) * 2012-08-01 2015-04-14 고셀링 유쥐 Cold reservoir device and cooling system arrangement
CN104685307A (en) * 2012-08-01 2015-06-03 格斯林有限责任公司 Cold reservoir device and cooling system arrangement
CN104685307B (en) * 2012-08-01 2017-05-31 古德尔集团股份公司 Cold-storage device and refrigeration system
AU2013299046B2 (en) * 2012-08-01 2017-08-31 Gudel Group Ag Cold reservoir device and cooling system arrangement
US10288358B2 (en) 2012-08-01 2019-05-14 Güdel Group AG Cold reservoir device and cooling system arrangement
KR101986403B1 (en) 2012-08-01 2019-06-05 귀델 그룹 아게 Cooling system arrangement
WO2024122388A1 (en) * 2022-12-09 2024-06-13 ブランテックインターナショナル株式会社 Cold-reserving storage device

Similar Documents

Publication Publication Date Title
US9976790B2 (en) Cooling element and cooling device
JP6107954B2 (en) Cold storage
US20170131015A1 (en) Temperature Controlled Cargo Containers
US20160109186A1 (en) Apparatus for the storage, transport and distribution of refrigerated or frozen goods, in particular for thermally insulated containers of refrigerated vehicles, cold rooms and the like
EP1236960B1 (en) Preservation apparatus particularly for perishable products at a preset temperature
JPH0884578A (en) Device and method for preserving fresh product at predetermined temperature ensuring optimum heat absorbing condition
CN110595129B (en) Refrigeration device and method
CN112789475A (en) Heat accumulator comprising PCM and refrigerated container provided with said heat accumulator
JP7077369B2 (en) Heat shield to maintain a nearly constant temperature
KR101506187B1 (en) Hybrid cold storage system.
EP0701677B1 (en) Thermal storage device and method
JP2010230275A (en) Cold storage
KR101608057B1 (en) Temperature control method for storage and transport container
KR101466864B1 (en) Multipurpose cooling system using phase-change material and control method thereof
KR101429165B1 (en) Cold-storage module using brine-cooled heat exchanger system.
CN207894114U (en) Preservation transport case
JPH06211294A (en) Cool storage-type freezing-refrigerating box
CN103890508A (en) Cooling element for refrigerator
JP2008128534A (en) Refrigerator and its temperature control method
JP2019104523A (en) Beverage dispenser
KR20140052617A (en) Cooling system for refrigeration container and cooling method
CN217945950U (en) Cold supply subassembly, cold chain case and have its cold chain delivery vehicle
JP7165890B2 (en) Cold storage device
JPH01189473A (en) Chill accumulating type cold storehouse
JP2016080259A (en) Cold heat device, cold heat system and control method of cold heat device