WO2016117135A1 - Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell - Google Patents

Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell Download PDF

Info

Publication number
WO2016117135A1
WO2016117135A1 PCT/JP2015/052781 JP2015052781W WO2016117135A1 WO 2016117135 A1 WO2016117135 A1 WO 2016117135A1 JP 2015052781 W JP2015052781 W JP 2015052781W WO 2016117135 A1 WO2016117135 A1 WO 2016117135A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reporter gene
related protein
intron
cells
Prior art date
Application number
PCT/JP2015/052781
Other languages
French (fr)
Japanese (ja)
Inventor
和史 合田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/052781 priority Critical patent/WO2016117135A1/en
Priority to JP2016570469A priority patent/JPWO2016117135A1/en
Publication of WO2016117135A1 publication Critical patent/WO2016117135A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a method for visualizing eukaryotic cells, and a modified reporter gene and expression vector for visualizing eukaryotic cells.
  • reporter assay techniques and cell imaging techniques have been widely used for the purpose of observing various life phenomena.
  • biological cells are modified using reporter genes that encode light-related proteins such as fluorescent proteins and photoproteins, and various biological phenomena in biological cells are analyzed using fluorescence and luminescence as indicators.
  • fluorescence and luminescence as indicators has been done.
  • This technique is very useful in that various life phenomena including the expression and activation state of a target gene in living cells can be monitored and analyzed over time visually.
  • the sample or test system to be tested is designed to be configured with the minimum necessary elements, and can be pre-purified so as not to contain impurities such as cells other than the object to be observed, if necessary.
  • a plant cell or animal cell to be observed that is, a eukaryotic cell
  • a bacterium prokaryote
  • a reporter assay of a living plant cell if the plant cell is infected with bacteria, the plant cell and the bacteria are mixed, and the reporter gene is introduced not only into the plant cell but also into the bacterium. As a result, light indicating the activation of the reporter is also generated from the mixed bacteria, the background is increased, and the test accuracy can be lowered.
  • Non-Patent Document 1 is a method limited to plant cells performed using an old-type luminescent reporter gene.
  • true methods such as plant cells and animal cells are used.
  • No method has been proposed that can be used in common with nuclear cells.
  • it has been suggested in biological mechanisms that the activation of target genes in animal cells to be observed may be affected by prokaryotes.
  • Non-Patent Document 2 it has been reported that the on / off of the function of a clock gene in a biological clock of a mammalian intestine is maintained by a bacterial flora in the intestine.
  • eukaryotic cells and prokaryotes can coexist (for example, in which mammalian intestinal cells and intestinal flora are mixed), eukaryotic cells can be specifically identified. There is a need for possible reporter assays.
  • the present invention has been made in view of the above problems, and can visualize eukaryotic cells that can specifically identify eukaryotic cells in a sample in which eukaryotic cells and prokaryotes are mixed. It is an object to provide methods, and modified reporter genes and expression vectors for visualization of eukaryotic cells.
  • the present inventor uses a modified reporter gene modified so that the amount of light derived from light-related proteins in prokaryotes is reduced, so that eukaryotes are mixed in a sample in which eukaryotic cells and prokaryotes (prokaryotes) are mixed. It has been found that signals derived from cells can be detected with high accuracy.
  • the present invention has been realized by conducting earnest research based on these findings.
  • the eukaryotic cell visualization method of the present invention comprises: Preparing a sample in which one or more eukaryotic cells and prokaryotes are mixed; One or more modified reporter genes comprising a coding sequence of a light-related protein and modified so that the amount of light derived from the light-related protein in the prokaryote is reduced in the eukaryotic cell and the prokaryote A process to be introduced in, Placing the sample under conditions capable of photodetecting the light-related protein; Photodetecting the light-related protein in the sample; It is characterized by including.
  • eukaryotic cell visualization method of the present invention eukaryotic cells can be specifically visualized in a sample in which eukaryotic cells and prokaryotes are mixed.
  • the modified reporter gene preferably includes an intron spliced in the eukaryotic cell in the coding sequence of the light-related protein. According to this configuration, light derived from a light-related protein can be specifically generated in a eukaryotic cell by a relatively simple principle.
  • the intron is preferably a base sequence that is commonly spliced between eukaryotic species, and more preferably the base sequence of SEQ ID NO: 1. According to these configurations, since it can be used in combination with a plurality of eukaryotic cells including animal cells and / or plant cells and prokaryotes, it is excellent in versatility and economy (for example, reasonable as a reagent). A method can be provided.
  • the one or more eukaryotic cells may include plant cells. According to this configuration, for example, in a plant cell in which soil bacteria are mixed due to infection, activation of a target gene in the plant cell can be specifically visualized.
  • the one or more eukaryotic cells may include animal cells.
  • activation of a target gene in an animal cell can be specifically visualized in an animal cell in which pathogenic bacteria are mixed due to infection.
  • the animal cell preferably includes an animal cell derived from a mammal. According to these configurations, life phenomena can be elucidated for the purpose of treating or preventing diseases and trauma in animal species, particularly mammalian species, and elucidating and improving body functions.
  • the light-related protein is a photoprotein, and the amount of luminescence is adjusted according to the type of the photoprotein. According to this configuration, the light emission amount can be adjusted and optimized by appropriately selecting the type of photoprotein (biological origin or modification), irrespective of the detection principle based on introns.
  • the photoprotein preferably has the amino acid sequence of SEQ ID NO: 3 having high luminescence intensity.
  • the modified reporter gene for visualization of eukaryotic cells of the present invention is A coding sequence of a light-related protein; An intron spliced in a eukaryotic cell; Including A modified reporter gene for visualization of eukaryotic cells, characterized in that the intron is inserted into the coding sequence of the light-related protein. It is characterized by.
  • the modified reporter gene can be suitably used in the visualization method of the present invention.
  • the intron preferably has a base sequence that is commonly spliced between eukaryotic species, and more preferably has the base sequence of SEQ ID NO: 1. According to these configurations, a modified reporter gene excellent in versatility and economy (for example, reasonable as a reagent) can be provided because it can be used in combination with a plurality of eukaryotic cells including mammals and prokaryotes. can do.
  • the modified reporter gene of the present invention can be used for visualization of plant cells.
  • the visualization method of the present invention can be suitably used when the visualization target is a plant cell.
  • the modified reporter gene of the present invention can be used for visualization of animal cells.
  • the visualization method of the present invention can be suitably used when the visualization target is an animal cell.
  • the modified reporter gene of the present invention is preferably used for visualization of mammalian cells. According to this configuration, it can be suitably used for elucidating life phenomena for the purpose of treating or preventing diseases and trauma in animal species, particularly mammalian species, and elucidating and improving body functions.
  • the light-related protein is a photoprotein, and the amount of luminescence is adjusted according to the type of the photoprotein. According to this configuration, it is possible to provide a modified reporter gene in which the amount of luminescence is regulated and optimized by appropriately selecting the type of photoprotein (derived from organism or modified).
  • the photoprotein preferably has the amino acid sequence of SEQ ID NO: 3 having high luminescence intensity.
  • An expression vector for visualizing eukaryotic cells of the present invention is characterized by including the modified reporter gene of the present invention.
  • the expression vector can be suitably used in the visualization method of the present invention.
  • visualization of eukaryotic cells that can specifically identify eukaryotic cells in a sample in which one or more eukaryotic cells and one or more prokaryotes are mixed.
  • Methods, modified reporter genes and expression vectors for visualization of eukaryotic cells can be provided.
  • transduced the modified reporter gene which concerns on one Embodiment of this invention into soil bacteria, and was measured with the luminometer is shown.
  • the result of having introduced the modified reporter gene which concerns on one Embodiment of this invention into soil bacteria, and performed the imaging is shown.
  • the result of having introduced the modified reporter gene concerning one embodiment of the present invention into a plant, and having performed imaging is shown.
  • E._coli, and measured with the luminometer is shown.
  • E._coli is shown.
  • the result of having introduced the modified reporter gene concerning one embodiment of the present invention into a human cell, and performing imaging is shown.
  • the eukaryotic cell visualization method of the present invention comprises: Preparing a sample in which one or more eukaryotic cells and one or more prokaryotes are mixed; One or more modified reporter genes comprising a coding sequence of a light-related protein and modified so that the amount of light derived from the light-related protein in the prokaryote is reduced in the eukaryotic cell and the prokaryote A process to be introduced in, Placing the sample under conditions capable of photodetecting the light-related protein; Photodetecting the light-related protein in the sample; It is characterized by including.
  • the visualization method of the present invention uses one or more modified reporter genes that contain a coding sequence of a light-related protein and are modified so that the amount of light derived from the light-related protein is reduced in a prokaryote (prokaryotic cell) To do.
  • a prokaryote prokaryotic cell
  • the modified reporter gene is introduced into a prokaryote, the amount of light derived from the light-related protein in the prokaryote is reduced, whereas when it is introduced into a eukaryotic cell, it is derived from the light-related protein in the eukaryotic cell.
  • the amount of light is not reduced. Therefore, the detection intensity of the light quantity in the eukaryotic cell becomes relatively strong, and the eukaryotic cell can be detected and visualized with high accuracy.
  • the visualization method of the present invention can be used, for example, in a test environment (for example, a culture chamber) in which prokaryotes having eukaryotes as hosts are mixed. Moreover, the test environment may be in vivo or in vitro. According to the visualization method of the present invention, light derived from the modified reporter gene taken up by the prokaryotic organism is not detected, and substantially only light from the modified reporter gene taken up by the eukaryotic cell is detected. Therefore, it is possible to accurately detect and visualize the on / off of a biological function derived from a biological interaction with a eukaryotic cell alone or with a prokaryote.
  • the visualization method of the present invention includes a step of preparing a sample in which one or two or more eukaryotic cells and one or two or more prokaryotes are mixed. “One or more” means that it may be only a single type or a mixture of different types.
  • the one or more eukaryotic cells include eukaryotic cells visualized by the visualization method of the present invention.
  • the one or more eukaryotic cells are not particularly limited, and may include plant cells and animal cells alone or in combination.
  • the animal cells preferably include mammalian cells. Elucidation of life phenomena is often performed for the purpose of treating or preventing diseases and trauma in mammalian species and elucidating and improving body functions, and animal cells derived from mammals are widely used for such life clarification. is there.
  • the prokaryote is not particularly limited, and may be any of bacteria and algae. Specific examples include those that use eukaryotic cells to be visualized as hosts, those that can affect the life phenomena of the eukaryotic cells, and those that are difficult to separate from the eukaryotic cells. . Examples include soil bacteria that infect plant cells and pathogenic bacteria that infect animal cells.
  • the sample When the test environment is in vitro, the sample is preferably prepared under conditions where viable eukaryotic cells can survive. Examples of such conditions include medium composition and pH, atmospheric composition (eg, oxygen concentration), temperature, luminous intensity, container, and the like. These can be appropriately selected depending on the eukaryotic cell to be visualized. Although the example of a container is not specifically limited, A culture chamber, a petri dish, a well plate, etc. are mentioned.
  • the prepared sample may be subjected to the next step without taking time, or may be subjected to the next step after a certain period of time has elapsed. Alternatively, if necessary, the next step may be performed after culturing eukaryotic cells or prokaryotes in the sample.
  • the sample is preferably placed under conditions that allow the eukaryotic cells to be visualized to survive in the subsequent steps.
  • the visualization method of the present invention includes the step of introducing one or more modified reporter genes into one or more eukaryotic cells and one or more prokaryotes.
  • the modified reporter gene includes a coding sequence for a light-related protein.
  • the light-related protein means a protein whose presence can be detected directly or indirectly by light, and examples thereof include a photoprotein and a fluorescent protein.
  • Photoprotein means an enzyme that catalyzes a chemical reaction in which luminescence occurs. Examples include luciferase, aequorin, and mutants thereof. Luciferase catalyzes the oxidation reaction of luciferin as a substrate when ATP is present. During the reaction, luciferin emits light. Aequorin is a protein complex that contains coelenterazine, a substrate, in the molecule, and aequorin itself emits light when triggered by calcium ions.
  • Fluorescent protein means a protein that emits fluorescence by itself or absorbs excitation energy when irradiated with excitation light.
  • fluorescent proteins include green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), blue fluorescent protein (BFP), and variants thereof.
  • Luciferase can control the on / off of luminescence using enzyme-substrate reaction such as luciferase-luciferin reaction, the species-specific combination of enzyme and substrate is strong, the half-life is compared with the half-life of fluorescent protein This is because it has many advantages such as short and short, auto-fluorescence emitted by cells does not become a background, and a wide dynamic range.
  • Luciferase may be derived from various organisms such as fireflies and bacteria.
  • commercially available products such as luc2 luciferase, Eluc luciferase, CRB luciferase, and Renilla luciferase can be used.
  • the modified reporter gene is modified so that the amount of light derived from the light-related protein is reduced in prokaryotes.
  • it has been modified so that expression of a modified reporter gene in prokaryotes can be inhibited or reduced by taking advantage of differences in gene expression mechanisms between prokaryotes (prokaryotes) and eukaryotic cells.
  • Such alteration can be performed by genetic techniques such as intron introduction, mutation introduction, and modification.
  • Such modifications may be introduced into commercially available vectors that already contain the coding sequence for the light-related protein. Examples of commercially available vectors containing a luciferase gene in advance include pGL4 vector (Promega), Eluc vector (Toyobo), CRB vector (Promega) and Renilla vector (Promega).
  • the modified reporter gene preferably includes an intron that is spliced in a eukaryotic cell to be visualized in the coding sequence of the light-related protein.
  • Including an intron in the coding sequence means that the intron has been inserted in a manner that disrupts the coding sequence.
  • This mature mRNA is translated to form a polypeptide chain containing the full-length amino acid sequence of the light-related protein, and the light-related protein is formed in a complete form. That is, the light-related protein is normally expressed. In this way, in eukaryotic cells, normal expression of light-related proteins can be detected as light, that is, light can be detected.
  • the modified reporter gene is transcribed into mRNA containing the intron region. Since splicing is a phenomenon unique to eukaryotic cells, the mRNA is translated without the intron region being spliced. When the intron region contains a stop codon (for example, UAA, UAC, UGA, etc.), transcription of the modified reporter gene is terminated at the position of the stop codon, so that only a part of the coding sequence of the light-related protein is translated. Not.
  • the polypeptide chain thus translated contains only a partial fragment on the N-terminal side of the full-length amino acid sequence of the light-related protein. Therefore, the light-related protein cannot be formed in a complete form.
  • the intron region does not contain a stop codon, or if the stop codon does not function due to mutation or the like, in prokaryotes, transcription is completed without terminating in the middle of the modified reporter gene, and the intron region is also translated. Is done.
  • the polypeptide chain thus translated contains the full-length amino acid sequence of the light-related protein, but also contains an intron translation sequence so as to disrupt the amino acid sequence. Therefore, normal folding of the polypeptide chain becomes difficult, and the light-related protein cannot be formed substantially.
  • light-related proteins are not normally expressed, and light derived from light-related proteins is not substantially detected.
  • the intron is not particularly limited, and even if it is a base sequence commonly spliced among eukaryotic species, it is a base sequence specifically spliced according to the organism origin of the eukaryotic cell to be visualized. May be.
  • the intron is preferably a base sequence that is commonly spliced among eukaryotic species. Since it can be used with a sample containing a combination of plant cells and / or animal cells and prokaryotes derived from a plurality of eukaryotes regardless of species, the method is excellent in versatility and economy (for example, reasonable as a reagent). Can be provided.
  • Examples of such introns include those in which the base sequence on the 5 'end side (splice donor site) is GT and the base sequence on the 3' end side (splice acceptor site) is AG.
  • the intron examples include, for example, a second intron (hereinafter referred to as ST-LS1 intron) possessed by the LS1 gene of potato (Solanum tuberosum).
  • ST-LS1 intron contains a typical splice junction (ie, GT at the intron 5 ′ end (splice donor site) and AG at the intron 3 ′ end (splice acceptor site)) and multiple stop codons (in all translation reading frames). And at least one stop codon), and has a base sequence having a length of 189 bp represented by SEQ ID NO: 1.
  • the present inventor conducted a test method using a reporter gene having an ST-LS1 intron, which has been used only in a combination of plant cells and soil bacteria in the prior art (for example, Prior Art Document 1), on mammalian cells as well. I found out that it could be applied. That is, it was found that a reporter gene having an intron designed for plant observation can be applied to animal cells (for example, derived from mammals) as it is. Furthermore, the present inventors have replaced the combination of the conventional luminescent reporter gene with low luminescent brightness and the ST-LS1 intron, which has been studied in the prior art for the purpose of visualizing plant cells, to emit luminescence with stronger luminescence intensity.
  • the RNA that undergoes the splicing reaction is a single-stranded nucleic acid, and is therefore expected to form a higher-order three-dimensional structure in the cell.
  • whether the target splicing reaction proceeds as expected is similar to the consensus sequence before and after the intron. Prediction based only on the degree is difficult even for those skilled in the art.
  • the site for inserting an intron in the coding sequence of light-related protein is not particularly limited, but it is inserted so that a base sequence that appears frequently in the vicinity of the intron in the eukaryotic cell species to be visualized is located in the vicinity of the intron. It is preferable.
  • the base sequence of the light-related protein adjacent to the 5 ′ end (splice donor site) of the intron is AAG or CT, and the light related protein is adjacent to the 3 ′ end (splice acceptor site) of the intron. Examples include a site where the base sequence of the protein is G.
  • the base sequence of the light-related protein adjacent to the 5 ′ end of the intron is AG, and the 3 ′ end of the intron (splice acceptor site).
  • part from which the base sequence of the light related protein adjacent to is G is mentioned.
  • the site for inserting the intron is, for example, AG, the base sequence of the light-related protein adjacent to the 5 ′ end (splice donor site) of the intron, and the base of the light-related protein adjacent to the 3 ′ end (splice accepting site) of the intron.
  • a site where the sequence is G is preferred.
  • an intron is inserted between AG and G at the site having the base sequence of AGG in the coding sequence of the light-related protein.
  • an intron may be inserted into a site of a desired base sequence that originally exists, or an intron may be inserted into a site of a desired base sequence generated by introducing a mutation.
  • a luciferase luc2 derived from North American firefly (Phototinus pyralis) encoded by the base sequence of SEQ ID NO: 2 and having the amino acid sequence of base sequence 3, and an ST-LS1 intron And the combination.
  • a preferred example of the modified reporter gene is the base sequence of SEQ ID NO: 4 in which an ST-LS1 intron is inserted into the luciferase luc2.
  • the base sequence of the ST-LS1 intron (SEQ ID NO: 1) is inserted between the 478th base and the 489th base of luc2.
  • Modulating light in eukaryotic cells and prokaryotes by changing the type of light-related protein, the type of intron, the combination of light-related protein and intron, the arrangement of introns and light-related protein coding sequences (for example, Generation, augmentation, suppression, or stopping).
  • a person skilled in the art can determine the optimal combination depending on the origin or sequence type of the intron and / or light-related protein.
  • the modified reporter gene may be a DNA strand or an RNA strand.
  • the modified reporter gene of the present invention may be composed only of the coding sequence of the light-related protein and the intron, or as long as the function and expression of the modified reporter gene and the light-related protein are not impaired. It may have a mutation such as substitution, deletion or addition of a base sequence, or an additional base sequence.
  • the visualization method of the present invention includes a step of placing a sample in which eukaryotic cells and prokaryotes are mixed under conditions that allow light detection of the light-related protein.
  • conditions vary depending on the light-related protein used. Those skilled in the art can appropriately select appropriate conditions.
  • the light-related protein is luciferase
  • luciferin that reacts with the luciferase is added to the sample.
  • Calcium ions are added to the sample when the light-related protein is iculione.
  • the light-related protein is a fluorescent protein
  • the sample is irradiated with excitation light having a specific wavelength that can excite the fluorescent protein.
  • the visualization method of the present invention includes a step of photodetecting a light-related protein in a sample.
  • Photodetection can be performed using any device capable of detecting light from the light-related protein used.
  • light can be detected by imaging using an imaging device such as a CCD or CMOS.
  • the light detected can be visualized by amplifying it with a photomultiplier such as a photomultiplier.
  • a photoprotein, particularly luciferase as the light-related protein
  • light detection and visualization can be performed with high sensitivity, high accuracy, and short time.
  • An apparatus capable of performing photodetection and visualization of a photoprotein is also called a luminescence imaging system, and examples thereof include a luminescence imaging system LV200 (manufactured by Olympus Corporation).
  • Imaging with a light image sensor can be performed over time, that is, continuously at an arbitrary interval. For example, imaging is performed at intervals of 5 minutes to 1 hour. Moreover, the time of one imaging is arbitrarily set according to the light quantity of light related protein. One imaging time can be adjusted so that a sufficient amount of light can be detected. Visualization over time can be performed by imaging over time. Therefore, it is very significant in that life phenomena in eukaryotic cells can be monitored over time.
  • the method for visualizing eukaryotic cells of the present invention can be carried out in vitro or in vivo. Further, in a sample containing a plurality of different types of eukaryotic cells, a plurality of modified reporter genes having different light-related proteins for each type can be used to visualize each type of eukaryotic cell. Furthermore, by using a luminescent protein such as luc2 such as luc2 as the light-related protein, high sensitivity and / or shortening of detection time can be achieved.
  • the visualization method of the present invention can be modified in various ways such as a modified reporter gene, light detection conditions, a modified reporter gene introduction method and the like based on common general technical knowledge.
  • the modified reporter gene for eukaryotic cells of the present invention is A coding sequence of a light-related protein; An intron spliced in a eukaryotic cell; Including The intron is inserted in the coding sequence of the light-related protein.
  • This modified reporter gene can be suitably used in the eukaryotic cell visualization method of the present invention.
  • the constitution and preferred embodiment of the modified reporter gene of the present invention are as described above.
  • This modified reporter gene inserts an intron that is spliced in a eukaryotic cell to be visualized into the coding sequence of a light-related protein, such as a commercially available photoprotein or fluorescent protein, using any genetic technique Can be produced.
  • a light-related protein such as a commercially available photoprotein or fluorescent protein
  • any genetic technique can be produced. Examples of the genetic techniques include restriction enzyme digestion, ligase ligation, and commercially available recombinant techniques.
  • the intron may be inserted into a commercially available vector previously containing a photoprotein or fluorescent protein coding sequence.
  • commercially available vectors containing a luciferase gene in advance include pGL4 vector (Promega), Eluc vector (Toyobo), CRB vector (Promega) and Renilla vector (Promega).
  • the expression vector for visualization of eukaryotic cells of the present invention is characterized by including a modified reporter gene for visualization of eukaryotic cells of the present invention.
  • the expression vector of the present invention only needs to contain the modified reporter gene so that it can be expressed.
  • the modified reporter gene is linked to the downstream of the promoter gene region so that it can be expressed.
  • the type of vector is not particularly limited as long as it can be expressed in eukaryotic cells, and commercially available products can be used. Examples include plasmid vectors, phage vectors, cosmids and the like.
  • Expression vectors can be constructed.
  • introns may be inserted into commercially available vectors that already contain coding sequences for photoproteins and fluorescent proteins.
  • the expression vector of the present invention can also be provided in the form of a kit containing a reagent for introduction into eukaryotic cells, a reagent necessary for light detection of the formed light-related protein, and / or an assay protocol. .
  • Example 1 Construction of mammalian cell expression vector having modified reporter gene
  • ST-LS1 intron an intron (ST-LS1 intron) of a potato-derived ST-LS1 gene in the base sequence (SEQ ID NO: 2) of a luciferase gene luc2 derived from North American firefly (Photinus pyralis) IntGL4 (SEQ ID NO: 4) in which the base sequence (SEQ ID NO: 1) was inserted was constructed.
  • the luc2 gene is inserted downstream of the CMV promoter of the plasmid pcDNA3.1 for transformation of mammalian cells to produce pcDNA3.1 (+)-GL4, and in pcDNA3.1 (+)-GL4
  • pcDNA3.1 (+)-GL4 A mammalian cell expression vector pcDNA3.1 (+)-intGL4 having a modified reporter gene intGL4 was constructed by inserting the ST-LS1 intron into the luc2 gene.
  • the experimental procedure is as follows.
  • Primeng HS DNA polymerase attached buffer 100 mM Tris-HCl buffer, 10 mM KCl, 6 mM (NH 4 ) 2 SO 4 , 2 mM MgCl 2 , 0.1% Triton X-100, 0.001% BSA), 98 ng of pGL4 .14 plasmid DNA, each dNTP (final concentration: 0.2 mM), 2.5 U PrimeSTAR HS DNA polymerase, luc2 amplification primer (each final concentration: 300 nM) were added to a final volume of 40 ⁇ L.
  • the nucleotide sequence of the luc2 amplification primer is shown below. PCR reaction conditions were as follows.
  • the pcDNA3.1 DNA fragment and the pcDNA3.1 insertion DNA fragment were ligated to obtain a plasmid pcDNA3.1 (+)-GL4 in which the luc2 gene was inserted downstream of the CMV promoter.
  • the insertion of the luc2 gene was confirmed by decoding the nucleotide sequence with a sequencer.
  • the base sequence of the primer for ST-LS1 intron amplification is shown below. These primers were designed by adding sequences homologous to the insertion site in the luc2 base sequence. Further, the 5 ′ forward primer (SEQ ID NO: 7) contains a silent mutation in which the 476 to 479th nucleotide sequence AGGG of luc2 is changed to AAGG in the modified reporter gene intGL4 in order to enhance recognition as an intron site. Designed. PCR reaction conditions were as follows.
  • Example 2 Construction of expression vectors for plant cells and soil bacteria
  • a plant transformation plasmid pRI201AN (TAKARA) was used, and between the restriction enzyme sites Ndel and SalI downstream of the 35S promoter derived from cauliflower mosaic virus (CaMV).
  • the intGL4 gene was inserted to construct a plant cell expression vector pRI201AN-intGL4.
  • the specific procedure is as follows. DNA of intGL4 gene was amplified by PCR using plasmid pcDNA3.1 (+)-intGL4 having the base sequence of intGL4 gene constructed in Experimental Example 1 as a template.
  • the PCR reaction solution was prepared as follows according to the standard protocol attached to PrimeSTAR HS DNA polymerase.
  • PrimeSTAR HS DNA polymerase attached buffer with 98 ng pGL4.14-intGL4 DNA, each dNTP (final concentration: 0.2 mM), 2.5 U PrimeSTAR HS DNA polymerase, intGL4 amplification primer (each final concentration: 300 nM) Added to a final volume of 40 ⁇ L.
  • the base sequence of the intGL4 amplification primer is shown below.
  • the conditions for the PCR reaction were as follows. First step: 95 ° C. for 5 minutes, second step: 95 ° C. for 30 seconds (denaturation), 55 ° C. for 30 seconds (annealing), 72 ° C.
  • the PCR product was subjected to agarose electrophoresis to confirm the presence of the target amplification product of about 1850 bp. After confirmation, a gel of the same size was cut out and purified using the Wizard SV Gel and PCR Clean up system, and the DNA fragment of the intGL4 gene was recovered. The recovered intGL4 gene DNA fragment was further digested with restriction enzymes Ndel and SalI, and a DNA fragment of about 1840 bp was recovered and used as a pRI201AN insertion intGL4 gene DNA fragment.
  • Plasmid pRI201AN was digested with restriction enzymes Ndel and SalI, and a DNA fragment of approximately 10500 bp was recovered using agarose electrophoresis and Wizard SV Gel and PCR Clean up system.
  • the pRI201AN-intGL4 DNA fragment was ligated to the pRI201AN-inserted intGL4 gene DNA fragment to obtain pRI201AN-intGL4.
  • the insertion of the intGL4 gene was confirmed by decoding the base sequence with a sequencer.
  • plasmid pRI201AN and plasmid pRI201AN-GL4 in which only the luc2 gene was inserted downstream of the 35S promoter were also prepared. The introduction of genes into plants and soil bacteria and confirmation of luminescence signals will be described later.
  • Example 3 Introduction of modified reporter gene into soil bacteria and detection of luminescent signal
  • the plant cell expression vector pRI201AN-intGL4 was introduced into Agrobacterium tumefaciens LBA4404 Electro-Cells (TAKARA) using an electroporation method. MicroPulser (BioRad) was used for electroporation. For comparison, similar to pRI201AN-intGL4, plasmids pRI201AN and pRI201AN-GL4 were also introduced alone. The gene transfer was performed according to an experimental protocol (http://catalog.takara-bio.co.jp/PDFS/9115_j.pdf) shown by TAKARA.
  • the detection of the luminescence signal in the soil bacteria was performed by two methods: luminometer measurement of the cultured cells and imaging of the fungal colonies.
  • the light emission amount on the vertical axis of the graph is an integrated value for 15 seconds.
  • soil bacteria into which the plasmid pRI201AN-GL4 into which only the luciferase gene luc2 was inserted was introduced, a high amount of luminescence was detected.
  • pRI201AN-intGL4 into which the modified reporter gene was inserted was introduced, when only the reagent was introduced, a very low light emission amount was detected as in the case of introducing plasmid pRI201AN.
  • the luminescence signal could not be detected as in the case of introducing only the reagent and the plasmid pRI201AN. . From these results, it was suggested that the luc2 gene fragment contained in the modified reporter gene of the present invention did not show a luminescence signal in soil bacteria, and the intron in the luc2 gene was not spliced.
  • Fig. 3 shows the detection result of the luminescence signal in the plant.
  • the left figure of FIG. 3 is an image under white illumination after luciferin addition, the left half is a plant into which pRI201AN as a negative control is introduced, and the right half is a plant into which pRI201AN-intGL4 is introduced.
  • the right figure in Fig. 3 is a photograph of the luminescence signal taken by adding luciferin to cause luciferase to emit light.
  • the left half is a plant into which pRI201AN as a negative control was introduced, and the right half is a plant into which pRI201AN-intGL4 was introduced.
  • the luminometer measurement of the bacterial cells was the same as the method used in Experimental Example 4 except that the accumulated amount of light emission was changed to 5 seconds.
  • the results are shown in FIG. A high amount of luminescence was detected in the colon bacterium into which the plasmid pcDNA3.1 (+)-GL4 into which only the luciferase gene luc2 was inserted was introduced.
  • the colon bacterium introduced with pcDNA3.1 (+)-intGL4 into which the modified reporter gene is inserted when only the reagent is introduced, when plasmid pcDNA3.1 (pcDNA3.1 (+)) as a negative control is introduced As with, very low light emission was detected.
  • DMEM containing 10% fetal bovine serum (FBS) was used as the medium. It was prepared to contain 2.8 ⁇ g of plasmid DNA and 8.3 ⁇ L of FuGENE® HD reagent in 128 ⁇ L of OPTIMEM and incubated at room temperature for 5 minutes. Then, the gene was introduced into Hela cells by adding to the 35 mm dish.
  • FBS fetal bovine serum
  • FIG. 6 The left figure of FIG. 6 is a bright field image under a microscope after luciferin addition.
  • the right side of FIG. 6 (in the thick black frame) is a photograph of the luminescence signal obtained by adding luciferin to cause luciferase to emit light.
  • the visualization method of the present invention and the modified reporter gene and expression vector of the present invention can identify animal cells with high accuracy in a sample in which animal cells and prokaryotes are mixed.

Abstract

Provided are a method for visualizing an eukaryotic cell, whereby the eukaryotic cell can be specifically identified from a sample in which the eukaryotic cell is mixed with a prokaryote, and a modified reporter gene. The method according to the present invention for visualizing an eukaryotic cell comprises: a step for preparing a sample in which one or more eukaryotic cells are mixed with one or more prokaryotes; a step for introducing one or more modified reporter genes, which contain a sequence encoding a light-related protein and have been modified so that the quantity of light derived from the light-related protein is reduced in the prokaryotes, into the eukaryotic cells and the prokaryotes; a step for placing the sample under such conditions as enabling the photodetection of the light-related protein; and a step for photodetecting the light-related protein in the sample. The modified reporter gene according to the present invention contains a sequence encoding a light-related protein and an intron spliced in an eukaryotic cell, wherein the intron is inserted into the sequence encoding the light-related protein.

Description

真核生物細胞の可視化方法、並びに真核生物細胞の可視化用の改変レポーター遺伝子及び発現ベクターEukaryotic cell visualization method, and modified reporter gene and expression vector for eukaryotic cell visualization
 本発明は、真核生物細胞の可視化方法、並びに真核生物細胞の可視化用の改変レポーター遺伝子及び発現ベクターに関する。 The present invention relates to a method for visualizing eukaryotic cells, and a modified reporter gene and expression vector for visualizing eukaryotic cells.
 従来から、種々の生命現象を観察する目的で、レポーターアッセイ技術や細胞イメージング技術が広く行われている。特に、細胞イメージング技術では、蛍光タンパク質や発光タンパク質などの光関連タンパク質をコードするレポーター遺伝子を使用して生物細胞を改変し、蛍光や発光を指標として、生物細胞における種々の生命現象を解析することが行われている。この技術は、生細胞における目的遺伝子の発現や活性化の状態などをはじめとする種々の生命現象を視覚的且つ経時的にモニタリングして解析することができる点で、非常に有用である。 Conventionally, reporter assay techniques and cell imaging techniques have been widely used for the purpose of observing various life phenomena. In particular, in cell imaging technology, biological cells are modified using reporter genes that encode light-related proteins such as fluorescent proteins and photoproteins, and various biological phenomena in biological cells are analyzed using fluorescence and luminescence as indicators. Has been done. This technique is very useful in that various life phenomena including the expression and activation state of a target gene in living cells can be monitored and analyzed over time visually.
 かかるイメージングを高精度に行うためには、対象の生物細胞におけるレポーター(光関連タンパク質)由来の光を特異的に検出することが必要である。そのため、観察対象の細胞でのレポーター由来の光以外のバックグラウンドを低減させる努力がなされている。一般に、試験される試料や試験系は、必要最低限の要素で構成されるように設計されており、必要に応じて、観察対象以外の細胞などの不純物を含まないように予備精製され得る。 In order to perform such imaging with high accuracy, it is necessary to specifically detect light derived from a reporter (light-related protein) in a target biological cell. Therefore, efforts are being made to reduce backgrounds other than light derived from reporters in cells to be observed. In general, the sample or test system to be tested is designed to be configured with the minimum necessary elements, and can be pre-purified so as not to contain impurities such as cells other than the object to be observed, if necessary.
 しかしながら、試験される試料において、観察対象の細胞と他の細胞との分離が困難な場合がある。例として、観察対象の植物細胞や動物細胞(すなわち、真核生物細胞)に、細菌(原核生物)が感染している場合などが挙げられる。例えば、生きた植物細胞のレポーターアッセイにおいて、その植物細胞が細菌に感染していると、植物細胞と細菌とが混在し、植物細胞だけでなく細菌にもレポーター遺伝子が導入される。その結果、混在する細菌からもレポーターの活性化を示す光が生じ、バックグラウンドが増加して、試験精度を低下させ得る。 However, in the sample to be tested, it may be difficult to separate the cells to be observed from other cells. As an example, there may be mentioned a case where a plant cell or animal cell to be observed (that is, a eukaryotic cell) is infected with a bacterium (prokaryote). For example, in a reporter assay of a living plant cell, if the plant cell is infected with bacteria, the plant cell and the bacteria are mixed, and the reporter gene is introduced not only into the plant cell but also into the bacterium. As a result, light indicating the activation of the reporter is also generated from the mixed bacteria, the background is increased, and the test accuracy can be lowered.
 このため、かかる試料においても、観察対象の植物細胞のみでレポーターを活性化して、細菌によるバックグラウンドを低減し、レポーターアッセイの試験精度を向上させる方法が考えられている。例えば、感染により土壌細菌が混在している植物細胞のレポーターアッセイにおいて、ジャガイモのLS1遺伝子が持つイントロンをluc+遺伝子(発光レポータ遺伝子)に挿入することにより、土壌細菌中に取り込まれた該レポーター遺伝子の活性を抑えて土壌細菌からのバックグラウンドを低減できたことが報告されている(非特許文献1)。 For this reason, even in such a sample, a method is considered in which the reporter is activated only by the plant cell to be observed, the background due to bacteria is reduced, and the test accuracy of the reporter assay is improved. For example, in a reporter assay of a plant cell in which soil bacteria are mixed due to infection, the intron of the potato LS1 gene is inserted into the luc + gene (luminescence reporter gene), whereby the reporter gene incorporated into the soil bacteria It has been reported that the background from soil bacteria could be reduced by suppressing the activity (Non-patent Document 1).
 しかしながら、非特許文献1の方法は、旧来型の発光レポーター遺伝子を用いて行った植物細胞に限定された方法であり、近年に開発された新型の発光レポーター遺伝子において植物細胞や動物細胞などの真核生物の細胞に共通に用いることのできる方法は提案されていない。また近年、生体メカニズムにおいて、観察対象の動物細胞での目的遺伝子の活性化が、原核生物の影響を受ける可能性が示唆されている。例えば、非特許文献2に記載されるように、哺乳動物の腸の生物時計における時計遺伝子の機能のオンオフが腸内の細菌叢によって維持されていることが報告されている。これをきっかけに、真核生物細胞と原核生物とが混在する(例えば、哺乳動物の腸管細胞と腸内の細菌叢とが混在する)試料において、真核生物細胞を特異的に識別することが可能なレポーターアッセイが求められている。 However, the method of Non-Patent Document 1 is a method limited to plant cells performed using an old-type luminescent reporter gene. In a new type of luminescent reporter gene developed in recent years, true methods such as plant cells and animal cells are used. No method has been proposed that can be used in common with nuclear cells. In recent years, it has been suggested in biological mechanisms that the activation of target genes in animal cells to be observed may be affected by prokaryotes. For example, as described in Non-Patent Document 2, it has been reported that the on / off of the function of a clock gene in a biological clock of a mammalian intestine is maintained by a bacterial flora in the intestine. Using this as a trigger, eukaryotic cells and prokaryotes can coexist (for example, in which mammalian intestinal cells and intestinal flora are mixed), eukaryotic cells can be specifically identified. There is a need for possible reporter assays.
 本発明は、上記問題点に鑑みてなされたものであり、真核生物細胞と原核生物とが混在する試料において、真核生物細胞を特異的に識別することができる、真核生物細胞の可視化方法、並びに真核生物細胞の可視化用の改変レポーター遺伝子及び発現ベクターを提供することを目的とする。 The present invention has been made in view of the above problems, and can visualize eukaryotic cells that can specifically identify eukaryotic cells in a sample in which eukaryotic cells and prokaryotes are mixed. It is an object to provide methods, and modified reporter genes and expression vectors for visualization of eukaryotic cells.
 本発明者は、原核生物における光関連タンパク質由来の光量が低減するように改変した改変レポーター遺伝子を用いることにより、真核生物細胞と原核生物(原核細胞)とが混在する試料において、真核生物細胞に由来するシグナルを高精度に検出できることを見出した。本発明は、これら知見に基づき、鋭意研究を行うことにより、実現されたものである。 The present inventor uses a modified reporter gene modified so that the amount of light derived from light-related proteins in prokaryotes is reduced, so that eukaryotes are mixed in a sample in which eukaryotic cells and prokaryotes (prokaryotes) are mixed. It has been found that signals derived from cells can be detected with high accuracy. The present invention has been realized by conducting earnest research based on these findings.
 すなわち、本発明の真核生物細胞の可視化方法は、
 1又は2以上の真核生物細胞と原核生物とが混在する試料を準備する工程と、
 光関連タンパク質のコード配列を含み且つ該原核生物において該光関連タンパク質に由来する光量が低減されるように改変された1又は2以上の改変レポーター遺伝子を、該真核生物細胞内及び該原核生物内に導入する工程と、
 該試料を、該光関連タンパク質を光検出することが可能な条件下に置く工程と、
 該試料中の該光関連タンパク質を光検出する工程と、
を含むことを特徴とする。
 本発明の真核生物細胞の可視化方法によると、真核生物細胞と原核生物とが混在する試料において、真核生物細胞を特異的に可視化することができる。
That is, the eukaryotic cell visualization method of the present invention comprises:
Preparing a sample in which one or more eukaryotic cells and prokaryotes are mixed;
One or more modified reporter genes comprising a coding sequence of a light-related protein and modified so that the amount of light derived from the light-related protein in the prokaryote is reduced in the eukaryotic cell and the prokaryote A process to be introduced in,
Placing the sample under conditions capable of photodetecting the light-related protein;
Photodetecting the light-related protein in the sample;
It is characterized by including.
According to the eukaryotic cell visualization method of the present invention, eukaryotic cells can be specifically visualized in a sample in which eukaryotic cells and prokaryotes are mixed.
 本発明の真核生物細胞の可視化方法では、前記改変レポーター遺伝子が、前記光関連タンパク質のコード配列中に該真核生物細胞においてスプライシングされるイントロンを含むことが好ましい。この構成によれば、比較的簡便な原理で、真核生物細胞において特異的に光関連タンパク質由来の光を発生させることができる。 In the eukaryotic cell visualization method of the present invention, the modified reporter gene preferably includes an intron spliced in the eukaryotic cell in the coding sequence of the light-related protein. According to this configuration, light derived from a light-related protein can be specifically generated in a eukaryotic cell by a relatively simple principle.
 本発明の真核生物細胞の可視化方法では、前記イントロンが、真核生物種間で共通にスプライシングされる塩基配列であることが好ましく、配列番号1の塩基配列であることがより好ましい。これらの構成によれば、動物細胞及び/又は植物細胞を含む複数の真核生物細胞と原核生物との組み合わせで使用できることから、汎用性、経済性(例えば、試薬としてのリーズナブルさ)に優れた方法を提供することができる。 In the eukaryotic cell visualization method of the present invention, the intron is preferably a base sequence that is commonly spliced between eukaryotic species, and more preferably the base sequence of SEQ ID NO: 1. According to these configurations, since it can be used in combination with a plurality of eukaryotic cells including animal cells and / or plant cells and prokaryotes, it is excellent in versatility and economy (for example, reasonable as a reagent). A method can be provided.
 本発明の真核生物細胞の可視化方法では、前記1又は2以上の真核生物細胞が、植物細胞を含むことができる。この構成によれば、例えば、感染により土壌細菌が混在している植物細胞において、植物細胞における目的遺伝子の活性化を特異的に可視化することができる。 In the eukaryotic cell visualization method of the present invention, the one or more eukaryotic cells may include plant cells. According to this configuration, for example, in a plant cell in which soil bacteria are mixed due to infection, activation of a target gene in the plant cell can be specifically visualized.
 本発明の真核生物細胞の可視化方法では、前記1又は2以上の真核生物細胞が、動物細胞を含むことができる。この構成によれば、例えば、感染により病原性細菌が混在している動物細胞において、動物細胞における目的遺伝子の活性化を特異的に可視化することができる。前記動物細胞は、哺乳動物由来の動物細胞を含むことが好ましい。これらの構成によれば、動物種、特に哺乳動物種における疾患及び外傷の治療又は予防並びに身体機能の解明及び向上といった目的で生命現象の解明を行うことができる。 In the eukaryotic cell visualization method of the present invention, the one or more eukaryotic cells may include animal cells. According to this configuration, for example, activation of a target gene in an animal cell can be specifically visualized in an animal cell in which pathogenic bacteria are mixed due to infection. The animal cell preferably includes an animal cell derived from a mammal. According to these configurations, life phenomena can be elucidated for the purpose of treating or preventing diseases and trauma in animal species, particularly mammalian species, and elucidating and improving body functions.
 本発明の真核生物細胞の可視化方法では、前記光関連タンパク質が、発光タンパク質であり、該発光タンパク質の種類に応じて発光量が調節されることが好ましい。この構成によれば、イントロンに基づく検出原理とは実質的に関係なく、発光タンパク質の種類(生物由来や改変)を適切に選択することにより、発光量の調節及び最適化を行うことができる。前記発光タンパク質は、発光強度が強い配列番号3のアミノ酸配列を有することが好ましい。 In the eukaryotic cell visualization method of the present invention, it is preferable that the light-related protein is a photoprotein, and the amount of luminescence is adjusted according to the type of the photoprotein. According to this configuration, the light emission amount can be adjusted and optimized by appropriately selecting the type of photoprotein (biological origin or modification), irrespective of the detection principle based on introns. The photoprotein preferably has the amino acid sequence of SEQ ID NO: 3 having high luminescence intensity.
 本発明の真核生物細胞の可視化用の改変レポーター遺伝子は、
 光関連タンパク質のコード配列と、
 真核生物細胞でスプライシングされるイントロンと、
を含み、
 該イントロンが、該光関連タンパク質のコード配列中に挿入されていることを特徴とする、真核生物細胞の可視化用の改変レポーター遺伝子。
を特徴とする。前記改変レポーター遺伝子は、本発明の前記可視化方法において、好適に使用することができる。
The modified reporter gene for visualization of eukaryotic cells of the present invention is
A coding sequence of a light-related protein;
An intron spliced in a eukaryotic cell;
Including
A modified reporter gene for visualization of eukaryotic cells, characterized in that the intron is inserted into the coding sequence of the light-related protein.
It is characterized by. The modified reporter gene can be suitably used in the visualization method of the present invention.
 本発明の前記改変レポーター遺伝子は、前記イントロンが、真核生物種間で共通にスプライシングされる塩基配列を有することが好ましく、配列番号1の塩基配列を有することがより好ましい。これら構成によれば、哺乳動物を含む複数の真核生物由来細胞と原核生物との組み合わせで使用できることから、汎用性、経済性(例えば、試薬としてのリーズナブルさ)に優れた改変レポーター遺伝子を提供することができる。 In the modified reporter gene of the present invention, the intron preferably has a base sequence that is commonly spliced between eukaryotic species, and more preferably has the base sequence of SEQ ID NO: 1. According to these configurations, a modified reporter gene excellent in versatility and economy (for example, reasonable as a reagent) can be provided because it can be used in combination with a plurality of eukaryotic cells including mammals and prokaryotes. can do.
 本発明の前記改変レポーター遺伝子は、植物細胞の可視化用とすることができる。この構成によれば、本発明の可視化方法において、可視化対象が植物細胞である場合に好適に使用することができる。 The modified reporter gene of the present invention can be used for visualization of plant cells. According to this configuration, the visualization method of the present invention can be suitably used when the visualization target is a plant cell.
 本発明の前記改変レポーター遺伝子は、動物細胞の可視化用とすることができる。この構成によれば、本発明の可視化方法において、可視化対象が動物細胞である場合に好適に使用することができる。本発明の前記改変レポーター遺伝子は、哺乳動物の細胞の可視化用であることが好ましい。この構成によれば、動物種、特に哺乳動物種における疾患及び外傷の治療又は予防並びに身体機能の解明及び向上といった目的で生命現象の解明に好適に用いることができる。 The modified reporter gene of the present invention can be used for visualization of animal cells. According to this configuration, the visualization method of the present invention can be suitably used when the visualization target is an animal cell. The modified reporter gene of the present invention is preferably used for visualization of mammalian cells. According to this configuration, it can be suitably used for elucidating life phenomena for the purpose of treating or preventing diseases and trauma in animal species, particularly mammalian species, and elucidating and improving body functions.
 本発明の前記改変レポーター遺伝子は、前記光関連タンパク質が、発光タンパク質であり、該発光タンパク質の種類に応じて発光量が調節されることが好ましい。この構成によれば、発光タンパク質の種類(生物由来や改変)を適切に選択することにより、発光量が調節及び最適化された改変レポーター遺伝子を提供することができる。前記発光タンパク質は、発光強度が強い配列番号3のアミノ酸配列を有することが好ましい。 In the modified reporter gene of the present invention, it is preferable that the light-related protein is a photoprotein, and the amount of luminescence is adjusted according to the type of the photoprotein. According to this configuration, it is possible to provide a modified reporter gene in which the amount of luminescence is regulated and optimized by appropriately selecting the type of photoprotein (derived from organism or modified). The photoprotein preferably has the amino acid sequence of SEQ ID NO: 3 having high luminescence intensity.
 本発明の真核生物細胞の可視化用の発現ベクターは、本発明の前記改変レポーター遺伝子を含むことを特徴とする。前記発現ベクターは、本発明の前記可視化方法において、好適に使用することができる。 An expression vector for visualizing eukaryotic cells of the present invention is characterized by including the modified reporter gene of the present invention. The expression vector can be suitably used in the visualization method of the present invention.
 本発明によれば、1又は2以上の真核生物細胞と1又は2以上の原核生物とが混在する試料において、真核生物細胞を特異的に識別することができる、真核生物細胞の可視化方法、真核生物細胞の可視化用の改変レポーター遺伝子及び発現ベクターを提供することができる。 According to the present invention, visualization of eukaryotic cells that can specifically identify eukaryotic cells in a sample in which one or more eukaryotic cells and one or more prokaryotes are mixed. Methods, modified reporter genes and expression vectors for visualization of eukaryotic cells can be provided.
本発明の一実施形態に係る改変レポーター遺伝子を土壌細菌に導入してルミノメーターで計測した結果を示す。The result which introduce | transduced the modified reporter gene which concerns on one Embodiment of this invention into soil bacteria, and was measured with the luminometer is shown. 本発明の一実施形態に係る改変レポーター遺伝子を土壌細菌に導入してイメージングを行った結果を示す。The result of having introduced the modified reporter gene which concerns on one Embodiment of this invention into soil bacteria, and performed the imaging is shown. 本発明の一実施形態に係る改変レポーター遺伝子を植物に導入してイメージングを行った結果を示す。The result of having introduced the modified reporter gene concerning one embodiment of the present invention into a plant, and having performed imaging is shown. 本発明の一実施形態に係る改変レポーター遺伝子を大腸菌に導入してルミノメーターで計測した結果を示す。The result which introduce | transduced the modified reporter gene which concerns on one Embodiment of this invention into colon_bacillus | E._coli, and measured with the luminometer is shown. 本発明の一実施形態に係る改変レポーター遺伝子を大腸菌に導入してイメージングを行った結果を示す。The result of having imaged by introduce | transducing the modified reporter gene which concerns on one Embodiment of this invention in colon_bacillus | E._coli is shown. 本発明の一実施形態に係る改変レポーター遺伝子をヒト細胞に導入してイメージングを行った結果を示す。The result of having introduced the modified reporter gene concerning one embodiment of the present invention into a human cell, and performing imaging is shown.
 以下、本発明を、その実施形態に基づき具体的に例示説明する。 Hereinafter, the present invention will be specifically described based on the embodiments.
<真核生物細胞の可視化方法>
 本発明の真核生物細胞の可視化方法は、
 1又は2以上の真核生物細胞と1又は2以上の原核生物とが混在する試料を準備する工程と、
 光関連タンパク質のコード配列を含み且つ該原核生物において該光関連タンパク質に由来する光量が低減されるように改変された1又は2以上の改変レポーター遺伝子を、該真核生物細胞内及び該原核生物内に導入する工程と、
 該試料を、該光関連タンパク質を光検出することが可能な条件下に置く工程と、
 該試料中の該光関連タンパク質を光検出する工程と、
を含むことを特徴とする。
<Visualization method for eukaryotic cells>
The eukaryotic cell visualization method of the present invention comprises:
Preparing a sample in which one or more eukaryotic cells and one or more prokaryotes are mixed;
One or more modified reporter genes comprising a coding sequence of a light-related protein and modified so that the amount of light derived from the light-related protein in the prokaryote is reduced in the eukaryotic cell and the prokaryote A process to be introduced in,
Placing the sample under conditions capable of photodetecting the light-related protein;
Photodetecting the light-related protein in the sample;
It is characterized by including.
 本発明の可視化方法は、光関連タンパク質のコード配列を含み且つ原核生物(原核細胞)において該光関連タンパク質に由来する光量が低減されるように改変された1又は2以上の改変レポーター遺伝子を使用する。前記改変レポーター遺伝子は、原核生物に導入されると、原核生物における前記光関連タンパク質由来の光量が低減される一方、真核生物細胞に導入されても、真核生物細胞における前記光関連タンパク質由来の光量は低減されない。そのため、真核生物細胞における前記光量の検出強度が相対的に強まり、真核生物細胞を高精度に光検出し可視化することができる。 The visualization method of the present invention uses one or more modified reporter genes that contain a coding sequence of a light-related protein and are modified so that the amount of light derived from the light-related protein is reduced in a prokaryote (prokaryotic cell) To do. When the modified reporter gene is introduced into a prokaryote, the amount of light derived from the light-related protein in the prokaryote is reduced, whereas when it is introduced into a eukaryotic cell, it is derived from the light-related protein in the eukaryotic cell. The amount of light is not reduced. Therefore, the detection intensity of the light quantity in the eukaryotic cell becomes relatively strong, and the eukaryotic cell can be detected and visualized with high accuracy.
 本発明の可視化方法は、例えば、真核生物を宿主とする原核生物が混在するような試験環境(例えば培養チャンバー)に使用することができる。また、試験環境は、in vivoであってもin vitroであってもよい。本発明の可視化方法によると、該原核生物が取りこんだ改変レポーター遺伝子由来の光は検出されず、実質的には真核生物細胞が取りこんだ改変レポーター遺伝子からの光のみが検出される。そのため、真核生物細胞単独での又は原核生物との間の生物学的な相互作用に由来する生物学的機能のオンオフを精度よく検出し可視化することができる。 The visualization method of the present invention can be used, for example, in a test environment (for example, a culture chamber) in which prokaryotes having eukaryotes as hosts are mixed. Moreover, the test environment may be in vivo or in vitro. According to the visualization method of the present invention, light derived from the modified reporter gene taken up by the prokaryotic organism is not detected, and substantially only light from the modified reporter gene taken up by the eukaryotic cell is detected. Therefore, it is possible to accurately detect and visualize the on / off of a biological function derived from a biological interaction with a eukaryotic cell alone or with a prokaryote.
 本発明の可視化方法は、1又は2以上の真核生物細胞と1又は2以上の原核生物とが混在する試料を準備する工程を含む。「1又は2以上の」とは、単一の種類に分類されるもののみであっても、異なる種類に分類されるものの混合物であってもよいことを意味する。 The visualization method of the present invention includes a step of preparing a sample in which one or two or more eukaryotic cells and one or two or more prokaryotes are mixed. “One or more” means that it may be only a single type or a mixture of different types.
 前記1又は2以上の真核生物細胞は、本発明の可視化方法で可視化される真核生物細胞を含む。前記1又は2以上の真核生物細胞は、特に限定されず、植物細胞及び動物細胞を単独で又は組み合わせて含むことができる。前記動物細胞は、哺乳動物の細胞を含むことが好ましい。生命現象の解明は、哺乳動物種における疾患及び外傷の治療又は予防並びに身体機能の解明及び向上といった目的で行われることが多く、かかる生命解明には、哺乳類由来の動物細胞が汎用されるからである。 The one or more eukaryotic cells include eukaryotic cells visualized by the visualization method of the present invention. The one or more eukaryotic cells are not particularly limited, and may include plant cells and animal cells alone or in combination. The animal cells preferably include mammalian cells. Elucidation of life phenomena is often performed for the purpose of treating or preventing diseases and trauma in mammalian species and elucidating and improving body functions, and animal cells derived from mammals are widely used for such life clarification. is there.
 前記原核生物は、特に限定されず、細菌類、藻類のいずれであってもよい。具体的には、可視化される真核生物細胞を宿主とするもの、該真核生物細胞の生命現象に影響を与え得るもの、該真核生物細胞から分離することが困難なものなどが挙げられる。例えば、植物細胞に感染する土壌細菌や、動物細胞に感染する病原性細菌などが挙げられる。 The prokaryote is not particularly limited, and may be any of bacteria and algae. Specific examples include those that use eukaryotic cells to be visualized as hosts, those that can affect the life phenomena of the eukaryotic cells, and those that are difficult to separate from the eukaryotic cells. . Examples include soil bacteria that infect plant cells and pathogenic bacteria that infect animal cells.
 試験環境がin vitroである場合、前記試料は、可視化される真核生物細胞が生存可能な条件下に準備することが好ましい。かかる条件の例としては、培地の組成及びpH、大気組成(例えば、酸素濃度)、温度、光度、容器などが挙げられる。これらは、可視化される真核生物細胞に応じて適切に選択することができる。容器の例は、特に限定されないが、培養チャンバー、ペトリディッシュ、ウェルプレートなどが挙げられる。準備した試料は、時間をおかずに次の工程を行ってもよく、又は、一定期間経過した後に次の工程を行ってもよい。あるいは、必要に応じて、試料中の真核生物細胞又は原核生物を培養した後に次の工程を行ってもよい。試料は、以降の工程においても、可視化される真核生物細胞が生存可能な条件下に置かれることが好ましい。 When the test environment is in vitro, the sample is preferably prepared under conditions where viable eukaryotic cells can survive. Examples of such conditions include medium composition and pH, atmospheric composition (eg, oxygen concentration), temperature, luminous intensity, container, and the like. These can be appropriately selected depending on the eukaryotic cell to be visualized. Although the example of a container is not specifically limited, A culture chamber, a petri dish, a well plate, etc. are mentioned. The prepared sample may be subjected to the next step without taking time, or may be subjected to the next step after a certain period of time has elapsed. Alternatively, if necessary, the next step may be performed after culturing eukaryotic cells or prokaryotes in the sample. The sample is preferably placed under conditions that allow the eukaryotic cells to be visualized to survive in the subsequent steps.
 本発明の可視化方法は、1又は2以上の改変レポーター遺伝子を、1又は2以上の真核生物細胞内及び1又は2以上の原核生物内に導入する工程を含む。該改変レポーター遺伝子は、光関連タンパク質のコード配列を含む。前記光関連タンパク質とは、その存在を直接的又は間接的に光により検出することができるタンパク質を意味し、例えば、発光タンパク質、蛍光タンパク質などが挙げられる。 The visualization method of the present invention includes the step of introducing one or more modified reporter genes into one or more eukaryotic cells and one or more prokaryotes. The modified reporter gene includes a coding sequence for a light-related protein. The light-related protein means a protein whose presence can be detected directly or indirectly by light, and examples thereof include a photoprotein and a fluorescent protein.
 発光タンパク質とは、発光が生じる化学反応を触媒する酵素を意味する。例としては、ルシフェラーゼ、イクオリン、それらの変異体などが挙げられる。ルシフェラーゼは、ATPが存在する場合に、基質であるルシフェリンの酸化反応を触媒する。その反応の際、ルシフェリンが発光する。イクオリンは、基質であるセレンテラジンを分子内に含むタンパク質複合体であり、カルシウムイオンがトリガーとなってイクオリン自体が発光する。 Photoprotein means an enzyme that catalyzes a chemical reaction in which luminescence occurs. Examples include luciferase, aequorin, and mutants thereof. Luciferase catalyzes the oxidation reaction of luciferin as a substrate when ATP is present. During the reaction, luciferin emits light. Aequorin is a protein complex that contains coelenterazine, a substrate, in the molecule, and aequorin itself emits light when triggered by calcium ions.
 蛍光タンパク質とは、自ら蛍光を発するか、励起光を照射するとその励起エネルギーを吸収して蛍光を発するタンパク質を意味する。蛍光タンパク質の例としては、例えば、緑色蛍光タンパク質(GFP)、黄色蛍光タンパク質(YFP)赤色蛍光タンパク質(RFP)、青色蛍光タンパク質(BFP)、それらの変異体などが挙げられる。 Fluorescent protein means a protein that emits fluorescence by itself or absorbs excitation energy when irradiated with excitation light. Examples of fluorescent proteins include green fluorescent protein (GFP), yellow fluorescent protein (YFP), red fluorescent protein (RFP), blue fluorescent protein (BFP), and variants thereof.
 光関連タンパク質として、公知の発光タンパク質及び蛍光タンパク質のいずれをも用いることができるが、発光タンパク質であることがより好ましく、中でもルシフェラーゼが更に好ましい。ルシフェラーゼは、ルシフェラーゼ−ルシフェリン反応といった酵素−基質反応を利用して発光のオンオフを制御することができ、酵素と基質との組み合わせの種特異性が強い、半減期は蛍光タンパク質の半減期よりも比較的短い、細胞の発する自己蛍光がバックグラウンドとならない、ダイナミックレンジが広い、といった多くの利点を有するからである。ルシフェラーゼは、ホタルやバクテリアといった種々の生物に由来するものであってよい。ルシフェラーゼは、例えば、luc2ルシフェラーゼ、Elucルシフェラーゼ、CRBルシフェラーゼ、ウミシイタケルシフェラーゼといった市販のものを使用することができる。 As the light-related protein, any of known luminescent proteins and fluorescent proteins can be used, but luminescent proteins are more preferable, and luciferase is more preferable among them. Luciferase can control the on / off of luminescence using enzyme-substrate reaction such as luciferase-luciferin reaction, the species-specific combination of enzyme and substrate is strong, the half-life is compared with the half-life of fluorescent protein This is because it has many advantages such as short and short, auto-fluorescence emitted by cells does not become a background, and a wide dynamic range. Luciferase may be derived from various organisms such as fireflies and bacteria. As the luciferase, for example, commercially available products such as luc2 luciferase, Eluc luciferase, CRB luciferase, and Renilla luciferase can be used.
 前記改変レポーター遺伝子は、原核生物において該光関連タンパク質に由来する光量が低減されるように改変されている。例えば、原核生物(原核細胞)と真核細胞との間の遺伝子発現メカニズムにおける相違を利用して、原核生物における改変レポーター遺伝子の発現を阻害又は低減できるように改変されている。かかる改変は、例えば、イントロンの導入、変異導入、修飾といった遺伝学的手法により行うことができる。このような改変を、光関連タンパク質のコード配列を予め含有する市販のベクターに導入してもよい。ルシフェラーゼ遺伝子を予め含有する市販のベクターの例としては、pGL4ベクター(プロメガ社)、Elucベクター(東洋紡)、CRBベクター(プロメガ社)およびRenillaベクター(プロメガ社)などが挙げられる。 The modified reporter gene is modified so that the amount of light derived from the light-related protein is reduced in prokaryotes. For example, it has been modified so that expression of a modified reporter gene in prokaryotes can be inhibited or reduced by taking advantage of differences in gene expression mechanisms between prokaryotes (prokaryotes) and eukaryotic cells. Such alteration can be performed by genetic techniques such as intron introduction, mutation introduction, and modification. Such modifications may be introduced into commercially available vectors that already contain the coding sequence for the light-related protein. Examples of commercially available vectors containing a luciferase gene in advance include pGL4 vector (Promega), Eluc vector (Toyobo), CRB vector (Promega) and Renilla vector (Promega).
 本発明では、前記改変レポーター遺伝子が、前記光関連タンパク質のコード配列中に、可視化される真核生物細胞においてスプライシングされるイントロンを含むことが好ましい。コード配列中にイントロンを含むとは、コード配列を分断する形でイントロンが挿入されていることを意味する。前記改変レポーター遺伝子は、真核生物細胞内で転写されると、前記イントロンの相補配列を含むmRNA前駆体が形成される。該mRNA前駆体から前記イントロン領域のみがスプライシングされる。次いで、分断されていたエクソン配列の相補配列が連結されて、光関連タンパク質のコード配列の相補配列を完全な形で含む成熟mRNAが形成される。この成熟mRNAが翻訳されて、光関連タンパク質の全長アミノ酸配列を含むポリペプチド鎖が形成され、光関連タンパク質が完全な形態で形成される。すなわち、光関連タンパク質が正常に発現される。このようにして、真核生物細胞においては、光関連タンパク質の正常な発現を、光として検出すること、すなわち、光検出することが可能となる。 In the present invention, the modified reporter gene preferably includes an intron that is spliced in a eukaryotic cell to be visualized in the coding sequence of the light-related protein. Including an intron in the coding sequence means that the intron has been inserted in a manner that disrupts the coding sequence. When the modified reporter gene is transcribed in a eukaryotic cell, an mRNA precursor containing the complementary sequence of the intron is formed. Only the intron region is spliced from the mRNA precursor. Subsequently, the complementary sequences of the separated exon sequences are ligated to form a mature mRNA that contains the complete sequence of the complementary sequence of the light-related protein coding sequence. This mature mRNA is translated to form a polypeptide chain containing the full-length amino acid sequence of the light-related protein, and the light-related protein is formed in a complete form. That is, the light-related protein is normally expressed. In this way, in eukaryotic cells, normal expression of light-related proteins can be detected as light, that is, light can be detected.
 一方、原核生物(原核細胞)において前記改変レポーター遺伝子は、前記イントロン領域も含むmRNAへと転写される。スプライシングは、真核細胞に特有の現象であるため、前記イントロン領域がスプライシングされることなく前記mRNAが翻訳される。前記イントロン領域が停止コドン(例えば、UAA、UAC、UGAなど)を含む場合は、該停止コドンの位置で改変レポーター遺伝子の転写が終結するため、前記光関連タンパク質のコード配列が一部のみしか翻訳されない。このように翻訳されたポリペプチド鎖は、前記光関連タンパク質の全長アミノ酸配列のうちN末端側の一部断片のみを含む。そのため、前記光関連タンパク質を、完全な形態で形成することができない。 On the other hand, in a prokaryote (prokaryotic cell), the modified reporter gene is transcribed into mRNA containing the intron region. Since splicing is a phenomenon unique to eukaryotic cells, the mRNA is translated without the intron region being spliced. When the intron region contains a stop codon (for example, UAA, UAC, UGA, etc.), transcription of the modified reporter gene is terminated at the position of the stop codon, so that only a part of the coding sequence of the light-related protein is translated. Not. The polypeptide chain thus translated contains only a partial fragment on the N-terminal side of the full-length amino acid sequence of the light-related protein. Therefore, the light-related protein cannot be formed in a complete form.
 一方、前記イントロン領域が停止コドンを含まない場合、又は変異などによって停止コドンが機能しない場合、原核生物において、前記改変レポーター遺伝子の途中で転写が終結せずに完了し、イントロン領域も含めて翻訳される。このように翻訳されたポリペプチド鎖は、前記光関連タンパク質の全長アミノ酸配列を含むが、そのアミノ酸配列を分断するようにイントロンの翻訳配列も含む。そのため、前記ポリペプチド鎖は正常なフォールディングが困難となり、実質的に前記光関連タンパク質を形成することができない。このように、原核生物においては、光関連タンパク質が正常に発現されず、光関連タンパク質に由来する光が実質的に検出されない。 On the other hand, if the intron region does not contain a stop codon, or if the stop codon does not function due to mutation or the like, in prokaryotes, transcription is completed without terminating in the middle of the modified reporter gene, and the intron region is also translated. Is done. The polypeptide chain thus translated contains the full-length amino acid sequence of the light-related protein, but also contains an intron translation sequence so as to disrupt the amino acid sequence. Therefore, normal folding of the polypeptide chain becomes difficult, and the light-related protein cannot be formed substantially. Thus, in prokaryotes, light-related proteins are not normally expressed, and light derived from light-related proteins is not substantially detected.
 前記イントロンは、特に限定されず、真核生物種間で共通にスプライシングされる塩基配列であっても、可視化される真核生物細胞の生物由来に応じて特異的にスプライシングされる塩基配列であってもよい。前記イントロンは、真核生物種間で共通にスプライシングされる塩基配列であることが好ましい。種にかかわらず複数の真核生物由来の植物細胞及び/又は動物細胞と原核生物との組み合わせを含む試料で使用できることから、汎用性、経済性(例えば、試薬としてのリーズナブルさ)に優れた方法を提供することができる。かかるイントロンの例としては、5’末端側(スプライス供与部位)の塩基配列がGTであり、3’末端側(スプライス受容部位)の塩基配列がAGであるものが挙げられる。 The intron is not particularly limited, and even if it is a base sequence commonly spliced among eukaryotic species, it is a base sequence specifically spliced according to the organism origin of the eukaryotic cell to be visualized. May be. The intron is preferably a base sequence that is commonly spliced among eukaryotic species. Since it can be used with a sample containing a combination of plant cells and / or animal cells and prokaryotes derived from a plurality of eukaryotes regardless of species, the method is excellent in versatility and economy (for example, reasonable as a reagent). Can be provided. Examples of such introns include those in which the base sequence on the 5 'end side (splice donor site) is GT and the base sequence on the 3' end side (splice acceptor site) is AG.
 前記イントロンの例として、例えば、ジャガイモ(Solanum tuberosum)のLS1遺伝子が持つ2番目のイントロン(以下、ST−LS1イントロンと呼ぶ)が挙げられる。ST−LS1イントロンは、典型的なスプライスジャンクション(すなわち、イントロン5’末端(スプライス供与部位)におけるGT及びイントロン3’末端(スプライス受容部位)におけるAG)と、多重停止コドン(全ての翻訳読み枠で、少なくとも1つの停止コドンが存在する)とを有し、配列番号1で表される189bpの長さの塩基配列を有する。 Examples of the intron include, for example, a second intron (hereinafter referred to as ST-LS1 intron) possessed by the LS1 gene of potato (Solanum tuberosum). The ST-LS1 intron contains a typical splice junction (ie, GT at the intron 5 ′ end (splice donor site) and AG at the intron 3 ′ end (splice acceptor site)) and multiple stop codons (in all translation reading frames). And at least one stop codon), and has a base sequence having a length of 189 bp represented by SEQ ID NO: 1.
 本発明者は、先行技術において(例えば、先行技術文献1)、植物細胞と土壌細菌の組み合わせにおいてのみ利用されてきた、ST−LS1イントロンを持つレポーター遺伝子による試験方法を、哺乳類由来の細胞にも応用できることを突き止めた。つまり、植物観察のために設計されたイントロンを有するレポーター遺伝子が、意外にも、そのまま、動物細胞(例えば、哺乳類由来)に対しても同様に適用できることが判明した。更に、本発明者らは、植物細胞の可視化の目的で先行技術において検討されていた発光輝度の低い旧来型の発光レポーター遺伝子とST−LS1イントロンとの組み合わせに替えて、より発光強度の強い発光遺伝子luc2ルシフェラーゼとST−LS1イントロンとの組み合わせを利用できることを見出した。真核生物細胞内でのスプライシングにおいて、スプライシング反応を受けるRNAは1本鎖核酸であるため、該細胞内で高次の立体構造を形成することが予想されている。このような状況下、光関連タンパク質のコード配列における相違や、植物細胞・動物細胞間の相違を考慮すると、目的のスプライシング反応が理論通りに進行するか否かをイントロンの前後における共通配列の類似度のみに基づき予測することは、当業者といえども予測が困難である。事実、本発明者は、霊長類由来の動物細胞と植物細胞とでイントロン近傍の配列を比較すると、5’側の−2、−1、+3の塩基の出現頻度や3’側の−6、−5、−4、−3の塩基の出現頻度が異なるとの知見を得ている。この事実は、イントロン近傍の配列においても植物細胞・動物細胞間で異なる遺伝子発現メカニズムが働いていることを示唆している。これらの事実から、植物細胞、動物細胞に関わらず、真核生物細胞で共通に利用することができる本発明の新規な改変レポーター遺伝子及び可視化方法は、先行技術に対して大きな進歩をもたらすものである。 The present inventor conducted a test method using a reporter gene having an ST-LS1 intron, which has been used only in a combination of plant cells and soil bacteria in the prior art (for example, Prior Art Document 1), on mammalian cells as well. I found out that it could be applied. That is, it was found that a reporter gene having an intron designed for plant observation can be applied to animal cells (for example, derived from mammals) as it is. Furthermore, the present inventors have replaced the combination of the conventional luminescent reporter gene with low luminescent brightness and the ST-LS1 intron, which has been studied in the prior art for the purpose of visualizing plant cells, to emit luminescence with stronger luminescence intensity. It was found that a combination of the gene luc2 luciferase and the ST-LS1 intron can be used. In splicing in eukaryotic cells, the RNA that undergoes the splicing reaction is a single-stranded nucleic acid, and is therefore expected to form a higher-order three-dimensional structure in the cell. Under these circumstances, considering differences in the coding sequences of light-related proteins and differences between plant cells and animal cells, whether the target splicing reaction proceeds as expected is similar to the consensus sequence before and after the intron. Prediction based only on the degree is difficult even for those skilled in the art. In fact, when comparing the sequences in the vicinity of introns between primate-derived animal cells and plant cells, the inventor found that the frequencies of occurrence of bases of −2, −1, and +3 on the 5 ′ side and −6 on the 3 ′ side, The knowledge that the appearance frequency of bases of −5, −4, and −3 is different has been obtained. This fact suggests that different gene expression mechanisms are working between plant cells and animal cells even in sequences near introns. Based on these facts, the novel modified reporter gene and visualization method of the present invention that can be commonly used in eukaryotic cells regardless of plant cells and animal cells provide a significant advance over the prior art. is there.
 光関連タンパク質のコード配列中、イントロンを挿入する部位は、特に限定されないが、可視化対象の真核生物細胞種においてイントロン近傍の配列として出現頻度が高い塩基配列がイントロン近傍に位置するように挿入することが好ましい。植物細胞を可視化する目的においては、例えば、イントロンの5’末端(スプライス供与部位)に隣接する光関連タンパク質の塩基配列がAAG又はCT、イントロンの3’末端(スプライス受容部位)に隣接する光関連タンパク質の塩基配列がGとなる部位が挙げられる。また、哺乳動物の細胞(例えば、霊長類由来)においては、例えば、イントロンの5’末端(スプライス供与部位)に隣接する光関連タンパク質の塩基配列がAG、イントロンの3’末端(スプライス受容部位)に隣接する光関連タンパク質の塩基配列がGとなる部位が挙げられる。前記イントロンを挿入する部位は、例えば、イントロンの5’末端(スプライス供与部位)に隣接する光関連タンパク質の塩基配列がAG、イントロンの3’末端(スプライス受容部位)に隣接する光関連タンパク質の塩基配列がGとなる部位が好ましい。この例では、光関連タンパク質のコード配列中、AGGの塩基配列を有する部位のAGとGの間にイントロンが挿入される。光関連タンパク質のコード配列中、本来存在する所望の塩基配列の部位にイントロンを挿入してもよく、又は変異を導入して生成した所望の塩基配列の部位にイントロンを挿入してもよい。 The site for inserting an intron in the coding sequence of light-related protein is not particularly limited, but it is inserted so that a base sequence that appears frequently in the vicinity of the intron in the eukaryotic cell species to be visualized is located in the vicinity of the intron. It is preferable. For the purpose of visualizing plant cells, for example, the base sequence of the light-related protein adjacent to the 5 ′ end (splice donor site) of the intron is AAG or CT, and the light related protein is adjacent to the 3 ′ end (splice acceptor site) of the intron. Examples include a site where the base sequence of the protein is G. In mammalian cells (eg, from primates), for example, the base sequence of the light-related protein adjacent to the 5 ′ end of the intron (splice donor site) is AG, and the 3 ′ end of the intron (splice acceptor site). The site | part from which the base sequence of the light related protein adjacent to is G is mentioned. The site for inserting the intron is, for example, AG, the base sequence of the light-related protein adjacent to the 5 ′ end (splice donor site) of the intron, and the base of the light-related protein adjacent to the 3 ′ end (splice accepting site) of the intron. A site where the sequence is G is preferred. In this example, an intron is inserted between AG and G at the site having the base sequence of AGG in the coding sequence of the light-related protein. In the coding sequence of the light-related protein, an intron may be inserted into a site of a desired base sequence that originally exists, or an intron may be inserted into a site of a desired base sequence generated by introducing a mutation.
 光関連タンパク質とイントロンとの好ましい組み合わせの一例として、配列番号2の塩基配列でコードされ、塩基配列3のアミノ酸配列を有する、北アメリカ産ホタル(Photinus pyralis)由来のルシフェラーゼluc2と、ST−LS1イントロンとの組み合わせが挙げられる。また、前記改変レポーター遺伝子の好ましい一例として、前記ルシフェラーゼluc2にST−LS1イントロンを挿入した配列番号4の塩基配列が挙げられる。配列番号4の塩基配列を有する改変レポーター遺伝子では、luc2の478番目の塩基と489番目の塩基との間にST−LS1イントロンの塩基配列(配列番号1)が挿入されている。 As an example of a preferred combination of a light-related protein and an intron, a luciferase luc2 derived from North American firefly (Phototinus pyralis) encoded by the base sequence of SEQ ID NO: 2 and having the amino acid sequence of base sequence 3, and an ST-LS1 intron And the combination. A preferred example of the modified reporter gene is the base sequence of SEQ ID NO: 4 in which an ST-LS1 intron is inserted into the luciferase luc2. In the modified reporter gene having the base sequence of SEQ ID NO: 4, the base sequence of the ST-LS1 intron (SEQ ID NO: 1) is inserted between the 478th base and the 489th base of luc2.
 光関連タンパク質の種類、イントロンの種類、光関連タンパク質とイントロンとの組み合わせ、イントロンと光関連タンパク質コード配列との配置などを変化させることにより、真核生物細胞及び原核生物における光の調節(例えば、発生、増強、抑制又は停止など)を行うことができる。当業者であれば、イントロンおよび/または光関連タンパクの由来又は配列の種類に応じて、最適な組合せを決定することができる。 Modulating light in eukaryotic cells and prokaryotes by changing the type of light-related protein, the type of intron, the combination of light-related protein and intron, the arrangement of introns and light-related protein coding sequences (for example, Generation, augmentation, suppression, or stopping). A person skilled in the art can determine the optimal combination depending on the origin or sequence type of the intron and / or light-related protein.
 前記改変レポーター遺伝子は、DNA鎖であってもRNA鎖であってもよい。本発明の改変レポーター遺伝子は、光関連タンパク質のコード配列と前記イントロンのみで構成されていてもよく、又は、該改変レポーター遺伝子及び光関連タンパク質の機能及び発現を損なわない限りにおいて、1個以上の塩基配列の置換、欠失若しくは付加といった変異又は付加的な塩基配列を有していてもよい。 The modified reporter gene may be a DNA strand or an RNA strand. The modified reporter gene of the present invention may be composed only of the coding sequence of the light-related protein and the intron, or as long as the function and expression of the modified reporter gene and the light-related protein are not impaired. It may have a mutation such as substitution, deletion or addition of a base sequence, or an additional base sequence.
 また、本発明の可視化方法は、真核生物細胞と原核生物とが混在する試料を、前記光関連タンパク質を光検出することが可能な条件下に置く工程を含む。かかる条件は、使用する光関連タンパク質に応じて異なる。当業者は、適宜適切な条件を選択することができる。例えば、光関連タンパク質が、ルシフェラーゼである場合には、該ルシフェラーゼと反応するルシフェリンを試料に添加する。光関連タンパク質がイクエリオンである場合には、カルシウムイオンを試料に添加する。光関連タンパク質が蛍光タンパク質である場合には、蛍光タンパク質を励起させることができる特定波長の励起光を試料に照射する。 Also, the visualization method of the present invention includes a step of placing a sample in which eukaryotic cells and prokaryotes are mixed under conditions that allow light detection of the light-related protein. Such conditions vary depending on the light-related protein used. Those skilled in the art can appropriately select appropriate conditions. For example, when the light-related protein is luciferase, luciferin that reacts with the luciferase is added to the sample. Calcium ions are added to the sample when the light-related protein is iculione. When the light-related protein is a fluorescent protein, the sample is irradiated with excitation light having a specific wavelength that can excite the fluorescent protein.
 本発明の可視化方法は、試料中の光関連タンパク質を光検出する工程を含む。光検出は、使用する光関連タンパク質由来の光を検出可能ないずれかの装置を使用して行うことができる。例えば、CCDやCMOS等の撮像素子を使用する撮像によって光検出することができる。また、光検出した光をフォトマル等の光電子倍増手段により増幅して可視化することもできる。光関連タンパク質として発光タンパク質、特にルシフェラーゼを使用することにより、高感度、高精度、短時間での光検出及び可視化を行うことができる。発光タンパク質の光検出及び可視化を行うことができる装置は、発光イメージングシステムとも呼ばれ、例として、発光イメージングシステムLV200(オリンパス株式会社製)などが挙げられる。 The visualization method of the present invention includes a step of photodetecting a light-related protein in a sample. Photodetection can be performed using any device capable of detecting light from the light-related protein used. For example, light can be detected by imaging using an imaging device such as a CCD or CMOS. In addition, the light detected can be visualized by amplifying it with a photomultiplier such as a photomultiplier. By using a photoprotein, particularly luciferase, as the light-related protein, light detection and visualization can be performed with high sensitivity, high accuracy, and short time. An apparatus capable of performing photodetection and visualization of a photoprotein is also called a luminescence imaging system, and examples thereof include a luminescence imaging system LV200 (manufactured by Olympus Corporation).
 光の撮像素子による撮像は、経時的に行うことができる、すなわち、任意の間隔で連続的に行うことができる。例えば、撮像は、5分から1時間の間隔で行われる。また、1回の撮像の時間は、光関連タンパク質の光量に応じて、任意に設定される。1回の撮像時間は、十分な光量を検出できるように調整することができる。これらの経時的な撮像により、経時的な可視化を行うことができる。従って、真核生物細胞における生命現象を経時的にモニタリングすることができる点で非常に有意である。 Imaging with a light image sensor can be performed over time, that is, continuously at an arbitrary interval. For example, imaging is performed at intervals of 5 minutes to 1 hour. Moreover, the time of one imaging is arbitrarily set according to the light quantity of light related protein. One imaging time can be adjusted so that a sufficient amount of light can be detected. Visualization over time can be performed by imaging over time. Therefore, it is very significant in that life phenomena in eukaryotic cells can be monitored over time.
 本発明の真核生物細胞の可視化方法は、in vitroでもin vivoでも実施することができる。また、異なる複数種の真核生物細胞を含む試料において、種類ごとに光関連タンパク質が異なる複数の改変レポーター遺伝子を使用して、各種類の真核生物細胞ごとに可視化することもできる。更に、光関連タンパク質として発光タンパク質、例えばluc2などの高輝度のルシフェラーゼを使用することにより、高感度化及び/又は検出時間の短縮化も達成できる。また、本発明の可視化方法は、技術常識に基づき、改変レポーター遺伝子、光検出条件、改変レポーター遺伝子の導入方法などに様々な改変を行うことができる。 The method for visualizing eukaryotic cells of the present invention can be carried out in vitro or in vivo. Further, in a sample containing a plurality of different types of eukaryotic cells, a plurality of modified reporter genes having different light-related proteins for each type can be used to visualize each type of eukaryotic cell. Furthermore, by using a luminescent protein such as luc2 such as luc2 as the light-related protein, high sensitivity and / or shortening of detection time can be achieved. In addition, the visualization method of the present invention can be modified in various ways such as a modified reporter gene, light detection conditions, a modified reporter gene introduction method and the like based on common general technical knowledge.
<真核生物細胞の遺伝的可視化用の改変レポーター遺伝子>
 本発明の真核生物細胞用の改変レポーター遺伝子は、
 光関連タンパク質のコード配列と、
 真核生物細胞でスプライシングされるイントロンと、
を含み、
 該イントロンが、該光関連タンパク質のコード配列中に挿入されていることを特徴とする。この改変レポーター遺伝子は、本発明の真核生物細胞の可視化方法において、好適に使用することができる。
<Modified reporter gene for genetic visualization of eukaryotic cells>
The modified reporter gene for eukaryotic cells of the present invention is
A coding sequence of a light-related protein;
An intron spliced in a eukaryotic cell;
Including
The intron is inserted in the coding sequence of the light-related protein. This modified reporter gene can be suitably used in the eukaryotic cell visualization method of the present invention.
 本発明の前記改変レポーター遺伝子の構成及び好ましい実施形態は、上述の通りである。この改変レポーター遺伝子は、市販の発光タンパク質や蛍光タンパク質などの光関連タンパク質のコード配列中に、いずれかの遺伝学的手法を用いて、可視化される真核生物細胞においてスプライシングされるイントロンを挿入することによって、作製することができる。前記遺伝学的手法の例として、制限酵素での切断、リガーゼによるライゲーション、市販の組み換え技術などが挙げられる。 The constitution and preferred embodiment of the modified reporter gene of the present invention are as described above. This modified reporter gene inserts an intron that is spliced in a eukaryotic cell to be visualized into the coding sequence of a light-related protein, such as a commercially available photoprotein or fluorescent protein, using any genetic technique Can be produced. Examples of the genetic techniques include restriction enzyme digestion, ligase ligation, and commercially available recombinant techniques.
 例えば、発光タンパク質や蛍光タンパク質のコード配列を予め含有する市販のベクターに、前記イントロンを挿入してもよい。ルシフェラーゼ遺伝子を予め含有する市販のベクターの例としては、pGL4ベクター(プロメガ社)、Elucベクター(東洋紡)、CRBベクター(プロメガ社)およびRenillaベクター(プロメガ社)などが挙げられる。 For example, the intron may be inserted into a commercially available vector previously containing a photoprotein or fluorescent protein coding sequence. Examples of commercially available vectors containing a luciferase gene in advance include pGL4 vector (Promega), Eluc vector (Toyobo), CRB vector (Promega) and Renilla vector (Promega).
<真核生物細胞の可視化用の発現ベクター>
 本発明の真核生物細胞の可視化用の発現ベクターは、本発明の真核生物細胞の可視化用の改変レポーター遺伝子を含むことを特徴とする。本発明の発現ベクターは、前記改変レポーター遺伝子が発現可能にベクターに含まれていればよい。例えば、発現ベクター内においては、前記改変レポーター遺伝子が、プロモーター遺伝子領域の下流に、発現可能に連結されている。ベクターの種類は、真核生物細胞で発現可能なものであれば特に限定されず、市販のものを使用することができる。例として、プラスミドベクター、ファージベクター、コスミドなどが挙げられる。
<Expression vector for visualization of eukaryotic cells>
The expression vector for visualization of eukaryotic cells of the present invention is characterized by including a modified reporter gene for visualization of eukaryotic cells of the present invention. The expression vector of the present invention only needs to contain the modified reporter gene so that it can be expressed. For example, in the expression vector, the modified reporter gene is linked to the downstream of the promoter gene region so that it can be expressed. The type of vector is not particularly limited as long as it can be expressed in eukaryotic cells, and commercially available products can be used. Examples include plasmid vectors, phage vectors, cosmids and the like.
 当業者であれば、技術常識に照らして、クローニングサイト、プロモーター遺伝子その他の制御因子、発現させる真核生物細胞の生物由来などの諸条件に基づき、適切なベクターを選択し、常法に従って、所望する発現ベクターを構築することができる。あるいは、上述するように、発光タンパク質や蛍光タンパク質のコード配列を予め含有する市販のベクターに、イントロンを挿入してもよい。 A person skilled in the art will select an appropriate vector based on various conditions such as cloning sites, promoter genes and other regulatory factors, and the origin of the eukaryotic cell to be expressed, in accordance with common general technical knowledge. Expression vectors can be constructed. Alternatively, as described above, introns may be inserted into commercially available vectors that already contain coding sequences for photoproteins and fluorescent proteins.
 本発明の前記発現ベクターは、真核生物細胞への導入用の試薬、形成される光関連タンパク質の光検出に必要な試薬、及び/又はアッセイプロトコルなどを含むキットの形態で提供することもできる。 The expression vector of the present invention can also be provided in the form of a kit containing a reagent for introduction into eukaryotic cells, a reagent necessary for light detection of the formed light-related protein, and / or an assay protocol. .
 以下、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
[実験例1:改変レポーター遺伝子を有する哺乳動物細胞発現用ベクターの構築]
 本発明の一実施形態に係る改変レポーター遺伝子として、北アメリカ産ホタル(Photinus pyralis)由来のルシフェラーゼ遺伝子luc2の塩基配列(配列番号2)内にジャガイモ由来のST−LS1遺伝子のイントロン(ST−LS1イントロン)の塩基配列(配列番号1)を挿入したintGL4(配列番号4)を構築した。具体的には、哺乳動物細胞形質転換用のプラスミドpcDNA3.1のCMVプロモーターの下流にluc2遺伝子を挿入してpcDNA3.1(+)−GL4を作製し、pcDNA3.1(+)−GL4中のluc2遺伝子内にST−LS1イントロンを挿入することによって、改変レポーター遺伝子intGL4を有する哺乳動物細胞発現用ベクターpcDNA3.1(+)−intGL4を構築した。実験手順は、以下の通りである。
[Experimental Example 1: Construction of mammalian cell expression vector having modified reporter gene]
As a modified reporter gene according to one embodiment of the present invention, an intron (ST-LS1 intron) of a potato-derived ST-LS1 gene in the base sequence (SEQ ID NO: 2) of a luciferase gene luc2 derived from North American firefly (Photinus pyralis) IntGL4 (SEQ ID NO: 4) in which the base sequence (SEQ ID NO: 1) was inserted was constructed. Specifically, the luc2 gene is inserted downstream of the CMV promoter of the plasmid pcDNA3.1 for transformation of mammalian cells to produce pcDNA3.1 (+)-GL4, and in pcDNA3.1 (+)-GL4 A mammalian cell expression vector pcDNA3.1 (+)-intGL4 having a modified reporter gene intGL4 was constructed by inserting the ST-LS1 intron into the luc2 gene. The experimental procedure is as follows.
 [pcDNA3.1(+)−GL4の作製]
 最初にluc2遺伝子の塩基配列を持つプラスミドpGL4.14(プロメガ社)を鋳型として用いて、luc2遺伝子のDNAをPCRで増幅した。PCR反応液は、PrimeSTAR(登録商標)polymerase kit(TAKARA社)に添付された標準プロトコルに従って次のように調製した。PrimeSTAR HS DNA polymerase添付のバッファ(100mM Tris−HClバッファ、10mM KCl、6mM(NHSO、2mM MgCl、0.1% Triton X−100、0.001% BSA)に、98ngのpGL4.14プラスミドDNA、各dNTP(最終濃度:0.2mM)、2.5UのPrimeSTAR HS DNA polymerase、luc2増幅用プライマー(各最終濃度:300nM)を添加して、最終容量40μLとした。luc2増幅用プライマーの塩基配列を下記に示す。
Figure JPOXMLDOC01-appb-I000001
PCRの反応条件は、次の通りであった。第1ステップ:95℃で5分間、第2ステップ:94℃で15秒間(変性)、55℃で15秒間(アニーリング)、72℃で3分間(伸長)のサイクルを40サイクル、第3ステップ:72℃で7分間。このPCR産物をアガロース電気泳動にかけて、目的とする約1660bpの増幅産物の存在を確認した。確認後、同サイズのゲルを切り出し、Wizard(登録商標)SV Gel and PCR Clean up system(プロメガ社)を用いて精製して、luc2遺伝子のDNA断片を回収した。これを更に制限酵素EcoRI及びSalIで消化し、アガロース電気泳動及びWizard SV Gel and PCR Clean up systemを用いて、約1650bpのpcDNA3.1挿入用luc2遺伝子のDNA断片を回収した。
 哺乳動物細胞形質転換用のプラスミドpcDNA3.1(Lifetechnologies社)を制限酵素EcoRI及びXholで消化した後、アガロース電気泳動及びWizard SV Gel and PCR Clean up systemを用いて、約5500bpのDNA断片を回収した。このpcDNA3.1のDNA断片と前記pcDNA3.1挿入用DNA断片とをライゲーションして、CMVプロモーターの下流にluc2遺伝子が挿入されたプラスミドpcDNA3.1(+)−GL4を得た。シークエンサーにより塩基配列を解読することで、luc2遺伝子の挿入を確認した。
[Preparation of pcDNA3.1 (+)-GL4]
First, using the plasmid pGL4.14 (Promega) having the nucleotide sequence of the luc2 gene as a template, the DNA of the luc2 gene was amplified by PCR. The PCR reaction solution was prepared as follows according to the standard protocol attached to PrimeSTAR (registered trademark) polymerase kit (TAKARA). Primeng HS DNA polymerase attached buffer (100 mM Tris-HCl buffer, 10 mM KCl, 6 mM (NH 4 ) 2 SO 4 , 2 mM MgCl 2 , 0.1% Triton X-100, 0.001% BSA), 98 ng of pGL4 .14 plasmid DNA, each dNTP (final concentration: 0.2 mM), 2.5 U PrimeSTAR HS DNA polymerase, luc2 amplification primer (each final concentration: 300 nM) were added to a final volume of 40 μL. The nucleotide sequence of the luc2 amplification primer is shown below.
Figure JPOXMLDOC01-appb-I000001
PCR reaction conditions were as follows. 1st step: 95 ° C for 5 minutes, 2nd step: 94 ° C for 15 seconds (denaturation), 55 ° C for 15 seconds (annealing), 72 ° C for 3 minutes (extension), 40 cycles, 3rd step: 7 minutes at 72 ° C. This PCR product was subjected to agarose electrophoresis to confirm the presence of the target amplification product of about 1660 bp. After confirmation, a gel of the same size was cut out and purified using Wizard (registered trademark) SV Gel and PCR Clean up system (Promega) to recover the DNA fragment of the luc2 gene. This was further digested with restriction enzymes EcoRI and SalI, and a DNA fragment of the luc2 gene for pcDNA3.1 insertion of about 1650 bp was recovered using agarose electrophoresis and Wizard SV Gel and PCR Clean up system.
A plasmid pcDNA3.1 (Lifetechnologies) for mammalian cell transformation was digested with restriction enzymes EcoRI and Xhol, and then a DNA fragment of about 5500 bp was recovered using agarose electrophoresis and Wizard SV Gel and PCR Clean up system. . The pcDNA3.1 DNA fragment and the pcDNA3.1 insertion DNA fragment were ligated to obtain a plasmid pcDNA3.1 (+)-GL4 in which the luc2 gene was inserted downstream of the CMV promoter. The insertion of the luc2 gene was confirmed by decoding the nucleotide sequence with a sequencer.
 [ST−LS1イントロンの増幅及び精製]
 ST−LS1イントロンのDNAは、Operon社が提供する遺伝子合成サービスで全合成した。このST−LS1イントロンDNAを、ルシフェラーゼ遺伝子luc2に挿入するため、PrimeSTAR HS DNA polymeraseを用いてPCR反応によって増幅させた。PCR反応液を、PrimeSTAR HS DNA polymeraseに添付された標準プロトコルに従って次のように調製した。PrimeSTAR HS DNA polymerase添付のバッファに、0.5ngのST−LS1イントロンDNA、各dNTP(最終濃度:0.2mM)、2.5UのPrimeSTAR HS DNA polymerase、ST−LS1イントロン増幅用プライマー(各最終濃度:300nM)を添加して、最終容量40μLとした。ST−LS1イントロン増幅用プライマーの塩基配列を下記に示す。
Figure JPOXMLDOC01-appb-I000002
 これら両プライマーには、luc2塩基配列中の挿入部位と相同な配列を付加してデザインした。また上記5’側のフォワードプライマー(配列番号7)は、イントロン部位としての認識を高めるために、luc2の476~479番目の塩基配列AGGGを改変レポーター遺伝子intGL4ではAAGGとするサイレント変異が含まれるようにデザインした。PCRの反応条件は、次の通りであった。第1ステップ:95℃で5分間、第2ステップ:94℃で20秒間(変性)、56℃で20秒間(アニーリング)、72℃で1分間(伸長)のサイクルを50サイクル、第3ステップ:72℃で7分間。このPCR産物を、アガロース電気泳動にかけて、目的とする増幅産物の存在を確認した。確認後、目的とする増幅産物のサイズのゲルを切り出し、Wizard SV Gel and PCR Clean up systemを用いて精製して、pcDNA3.1(+)−GL4に挿入するためのST−LS1イントロンのDNA断片を得た。
[Amplification and purification of ST-LS1 intron]
The DNA of ST-LS1 intron was totally synthesized by a gene synthesis service provided by Operan. In order to insert this ST-LS1 intron DNA into the luciferase gene luc2, it was amplified by PCR reaction using PrimeSTAR HS DNA polymerase. A PCR reaction solution was prepared as follows according to the standard protocol attached to PrimeSTAR HS DNA polymerase. PrimeSTAR HS DNA polymerase attached buffer, 0.5 ng ST-LS1 intron DNA, each dNTP (final concentration: 0.2 mM), 2.5 U PrimeSTAR HS DNA polymerase, ST-LS1 intron amplification primer (each final concentration) : 300 nM) to a final volume of 40 μL. The base sequence of the primer for ST-LS1 intron amplification is shown below.
Figure JPOXMLDOC01-appb-I000002
These primers were designed by adding sequences homologous to the insertion site in the luc2 base sequence. Further, the 5 ′ forward primer (SEQ ID NO: 7) contains a silent mutation in which the 476 to 479th nucleotide sequence AGGG of luc2 is changed to AAGG in the modified reporter gene intGL4 in order to enhance recognition as an intron site. Designed. PCR reaction conditions were as follows. 1st step: 95 ° C for 5 minutes, 2nd step: 94 ° C for 20 seconds (denaturation), 56 ° C for 20 seconds (annealing), 72 ° C for 1 minute (extension), 50 cycles, 3rd step: 7 minutes at 72 ° C. This PCR product was subjected to agarose electrophoresis to confirm the presence of the target amplification product. After confirmation, a gel of the size of the target amplification product is excised, purified using the Wizard SV Gel and PCR Clean up system, and the DNA fragment of the ST-LS1 intron for insertion into pcDNA3.1 (+)-GL4 Got.
 [pcDNA3.1(+)−intGL4の構築]
 pcDNA3.1(+)−GL4プラスミド中のluc2遺伝子の塩基配列の492番目に存在するBsp14071の制限酵素サイトを切断し、アガロース電気泳動及びWizard SV Gel and PCR Clean up systemを用いて、pcDNA3.1(+)−GL4のDNA断片を回収した。GeneART(登録証商標) Seamless cloning kit(Lifetechnologies社)を使用して、ST−LS1イントロンのDNA断片をpcDNA3.1(+)−GL4のDNA断片へクローニングし、改変レポーター遺伝子intGL4を有するpcDNA3.1(+)−intGL4を得た。シークエンサーにより塩基配列を解読することで、目的の改変レポーター遺伝子intGL4(配列番号3)が得られたことを確認した。
 ヒト細胞、大腸菌への遺伝子導入、発光シグナルの確認は後述する。
[Construction of pcDNA3.1 (+)-intGL4]
The restriction enzyme site of Bsp14071 present at position 492 of the nucleotide sequence of the luc2 gene in the pcDNA3.1 (+)-GL4 plasmid was cleaved, and pcDNA3.1 was used using agarose electrophoresis and Wizard SV Gel and PCR Clean up system. A DNA fragment of (+)-GL4 was recovered. Using GeneART® Seamless cloning kit (Lifetechnologies), the DNA fragment of ST-LS1 intron was cloned into the DNA fragment of pcDNA3.1 (+)-GL4 and pcDNA3.1 having the modified reporter gene intGL4 (+)-IntGL4 was obtained. It was confirmed that the target modified reporter gene intGL4 (SEQ ID NO: 3) was obtained by decoding the base sequence with a sequencer.
Gene transfer into human cells and E. coli and confirmation of the luminescence signal will be described later.
[実験例2:植物細胞及び土壌細菌用発現ベクターの構築]
 改変レポーター遺伝子intGL4の植物での発現のために、植物形質転換用プラスミドpRI201AN(TAKARA社)を使用し、カリフラワーモザイクウイルス(CaMV)由来の35Sプロモーターの下流の制限酵素サイトNdelとSalIとの間にintGL4遺伝子を挿入して、植物細胞発現用ベクターpRI201AN−intGL4を構築した。具体的な手順は、次の通りである。
 上記実験例1で構築したintGL4遺伝子の塩基配列を持つプラスミドpcDNA3.1(+)−intGL4を鋳型として用いて、intGL4遺伝子のDNAをPCRで増幅した。PCR反応液は、PrimeSTAR HS DNA polymeraseに添付された標準プロトコルに従って次のように調製した。PrimeSTAR HS DNA polymerase添付のバッファに、98ngのpGL4.14−intGL4 DNA、各dNTP(最終濃度:0.2mM)、2.5UのPrimeSTAR HS DNA polymerase、intGL4増幅用プライマー(各最終濃度:300nM)を添加して、最終容量40μLとした。intGL4増幅用プライマーの塩基配列を下記に示す。
Figure JPOXMLDOC01-appb-I000003
 PCR反応の条件は、次の通りであった。第1ステップ:95℃で5分間、第2ステップ:95℃で30秒間(変性)、55℃で30秒間(アニーリング)、72℃で2分30秒間(伸長)のサイクルを40サイクル、第3ステップ:2℃で7分間。
 PCR産物を、アガロース電気泳動にかけて、目的とする約1850bpの増幅産物の存在を確認した。確認後、同サイズのゲルを切り出し、Wizard SV Gel and PCR Clean up systemを用いて精製して、intGL4遺伝子のDNA断片を回収した。回収したintGL4遺伝子のDNA断片を、更に制限酵素Ndel及びSalIで消化し、約1840bpのDNA断片を回収して、pRI201AN挿入用intGL4遺伝子のDNA断片とした。プラスミドpRI201ANを制限酵素Ndel及びSalIで消化し、アガロース電気泳動及びWizard SV Gel and PCR Clean up systemを用いて、約10500bpのDNA断片を回収した。このpRI201ANの断片に、前記pRI201AN挿入用intGL4遺伝子のDNA断片をライゲーションし、pRI201AN−intGL4を得た。シークエンサーにより塩基配列を解読することで、intGL4遺伝子の挿入を確認した。
 コントロールとして、プラスミドpRI201ANと、35Sプロモーターの下流にluc2遺伝子のみを挿入したプラスミドpRI201AN−GL4も準備した。植物、土壌細菌への遺伝子導入、発光シグナルの確認は後述する。
[Experimental Example 2: Construction of expression vectors for plant cells and soil bacteria]
For expression of the modified reporter gene intGL4 in plants, a plant transformation plasmid pRI201AN (TAKARA) was used, and between the restriction enzyme sites Ndel and SalI downstream of the 35S promoter derived from cauliflower mosaic virus (CaMV). The intGL4 gene was inserted to construct a plant cell expression vector pRI201AN-intGL4. The specific procedure is as follows.
DNA of intGL4 gene was amplified by PCR using plasmid pcDNA3.1 (+)-intGL4 having the base sequence of intGL4 gene constructed in Experimental Example 1 as a template. The PCR reaction solution was prepared as follows according to the standard protocol attached to PrimeSTAR HS DNA polymerase. PrimeSTAR HS DNA polymerase attached buffer with 98 ng pGL4.14-intGL4 DNA, each dNTP (final concentration: 0.2 mM), 2.5 U PrimeSTAR HS DNA polymerase, intGL4 amplification primer (each final concentration: 300 nM) Added to a final volume of 40 μL. The base sequence of the intGL4 amplification primer is shown below.
Figure JPOXMLDOC01-appb-I000003
The conditions for the PCR reaction were as follows. First step: 95 ° C. for 5 minutes, second step: 95 ° C. for 30 seconds (denaturation), 55 ° C. for 30 seconds (annealing), 72 ° C. for 2 minutes 30 seconds (extension), 40 cycles, Step: 7 minutes at 2 ° C.
The PCR product was subjected to agarose electrophoresis to confirm the presence of the target amplification product of about 1850 bp. After confirmation, a gel of the same size was cut out and purified using the Wizard SV Gel and PCR Clean up system, and the DNA fragment of the intGL4 gene was recovered. The recovered intGL4 gene DNA fragment was further digested with restriction enzymes Ndel and SalI, and a DNA fragment of about 1840 bp was recovered and used as a pRI201AN insertion intGL4 gene DNA fragment. Plasmid pRI201AN was digested with restriction enzymes Ndel and SalI, and a DNA fragment of approximately 10500 bp was recovered using agarose electrophoresis and Wizard SV Gel and PCR Clean up system. The pRI201AN-intGL4 DNA fragment was ligated to the pRI201AN-inserted intGL4 gene DNA fragment to obtain pRI201AN-intGL4. The insertion of the intGL4 gene was confirmed by decoding the base sequence with a sequencer.
As controls, plasmid pRI201AN and plasmid pRI201AN-GL4 in which only the luc2 gene was inserted downstream of the 35S promoter were also prepared. The introduction of genes into plants and soil bacteria and confirmation of luminescence signals will be described later.
[実験例3:土壌細菌への改変レポーター遺伝子導入及び発光シグナルの検出]
 植物細胞発現用ベクターpRI201AN−intGL4を、Agrobacterium tumefaciens LBA4404 Electro−Cells(TAKARA社)にエレクトロポレーション法を用いて導入した。エレクトロポレーションには、MicroPulser(BioRad社)を用いた。比較のため、pRI201AN−intGL4と同様に、試薬のみ、プラスミドpRI201AN、pRI201AN−GL4の導入も行った。遺伝子導入は、TAKARA社から示された実験プロトコル(http://catalog.takara−bio.co.jp/PDFS/9115_j.pdf)に従って行った。
[Experimental Example 3: Introduction of modified reporter gene into soil bacteria and detection of luminescent signal]
The plant cell expression vector pRI201AN-intGL4 was introduced into Agrobacterium tumefaciens LBA4404 Electro-Cells (TAKARA) using an electroporation method. MicroPulser (BioRad) was used for electroporation. For comparison, similar to pRI201AN-intGL4, plasmids pRI201AN and pRI201AN-GL4 were also introduced alone. The gene transfer was performed according to an experimental protocol (http://catalog.takara-bio.co.jp/PDFS/9115_j.pdf) shown by TAKARA.
 土壌細菌における発光シグナルの検出は、培養後の菌体のルミノメーター計測と、菌コロニーのイメージングとの、2通りの方法によって行った。 The detection of the luminescence signal in the soil bacteria was performed by two methods: luminometer measurement of the cultured cells and imaging of the fungal colonies.
 菌体のルミノメーター計測では、まず、コロニーからピックアップした土壌細菌を1晩ほど28℃にて振盪培養した。翌日に、ほぼ同等の増殖を示した培養液を500μL取って、4℃、10000rpmにて10分間の遠心分離を行い、集菌した。上清を捨てて、ペレットとBright−Glo(商標)Luciferase Assay system(プロメガ社)中の再溶解後の基質溶液を300μL混合した。よく混ぜた後、混合液から150μL取って、ルミノメーター(ATTO社製Luminescence JNRII AB−2300)で計測した。結果を図1に示す。尚、グラフ縦軸の発光量は15秒の積算値である。
 ルシフェラーゼ遺伝子luc2のみを挿入したプラスミドpRI201AN−GL4を導入した土壌細菌では、高い発光量が検出された。一方、改変レポーター遺伝子を挿入したpRI201AN−intGL4を導入した土壌細菌では、試薬のみを導入した場合、プラスミドpRI201ANを導入した場合と同様に、非常に低い発光量が検出された。
In the luminometer measurement of the microbial cell, first, soil bacteria picked up from the colony were cultured with shaking at 28 ° C. for about one night. On the next day, 500 μL of a culture solution showing almost the same growth was taken and centrifuged at 4 ° C. and 10000 rpm for 10 minutes to collect bacteria. The supernatant was discarded, and 300 μL of the pellet and the substrate solution after redissolving in Bright-Glo ™ Luciferase Assay system (Promega) were mixed. After thoroughly mixing, 150 μL was taken from the mixed solution and measured with a luminometer (Luminescence JNRII AB-2300 manufactured by ATTO). The results are shown in FIG. The light emission amount on the vertical axis of the graph is an integrated value for 15 seconds.
In soil bacteria into which the plasmid pRI201AN-GL4 into which only the luciferase gene luc2 was inserted was introduced, a high amount of luminescence was detected. On the other hand, in the soil bacteria into which pRI201AN-intGL4 into which the modified reporter gene was inserted was introduced, when only the reagent was introduced, a very low light emission amount was detected as in the case of introducing plasmid pRI201AN.
 菌コロニーのイメージングでは、コロニーに2.5mMのルシフェリン水溶液をスプレーし5分ほど暗黒下に静置した後、GE社のImage Quant LAS4000miniで発光シグナルを取得した。計測条件は、chemilumiモードの「Ultra」で露光時間は15秒であった。結果を図2に示す。
 ルシフェラーゼ遺伝子luc2のみを挿入したプラスミドpRI201AN−GL4を導入した土壌細菌では、発光シグナルを検出することができた。一方、改変レポーター遺伝子を挿入したpRI201AN−intGL4を導入した土壌細菌では(図2黒太枠内)、試薬のみを導入した場合及びプラスミドpRI201ANを導入した場合と同様に、発光シグナルが検出できなかった。これらの結果から、土壌細菌において、本発明の改変レポーター遺伝子に含まれるluc2遺伝子断片により発光シグナルを示すことはなく、luc2遺伝子中のイントロンがスプライシングされなかったことが示唆された。
In the imaging of fungal colonies, a 2.5 mM luciferin aqueous solution was sprayed on the colonies and allowed to stand in the dark for about 5 minutes, and then a luminescence signal was obtained with Image Quant LAS4000mini from GE. The measurement conditions were “Ultra” in chemili mode and the exposure time was 15 seconds. The results are shown in FIG.
In soil bacteria into which the plasmid pRI201AN-GL4 into which only the luciferase gene luc2 had been inserted was introduced, a luminescence signal could be detected. On the other hand, in the soil bacteria into which pRI201AN-intGL4 into which the modified reporter gene was inserted was introduced (inside the black thick frame in FIG. 2), the luminescence signal could not be detected as in the case of introducing only the reagent and the plasmid pRI201AN. . From these results, it was suggested that the luc2 gene fragment contained in the modified reporter gene of the present invention did not show a luminescence signal in soil bacteria, and the intron in the luc2 gene was not spliced.
[実験例4:植物への改変レポーター遺伝子導入及び発光シグナルの検出]
 植物(シロイズナズナ:Arabidopsis thaliana)への遺伝子導入は、FAST(Fast Agro−mediated Seeding Transformation)法を用いて行った。FAST法のプロトコルは、Jian−Feng Liら、“The FAST technique:a simplified Agrobacterium−based transformation method for transient gene expression analysis in seeding of Arabidopsis and other plant species”、Plant Methods、2009年、第5巻第6号記載の通りに行った。遺伝子導入に用いた土壌細菌はpRI201AN(ネガティブコントロール)を持つ菌体とpRI201AN−intGL4を持つ菌体である。それぞれの遺伝子を導入後の植物は、発光シグナル確認のために発光イメージングを行った。発光イメージングの観察条件は、露光時間を10秒に変更した以外は、上述の実験例3で用いた方法と同様であった。
[Experimental Example 4: Introduction of modified reporter gene into plant and detection of luminescent signal]
Gene introduction into a plant (Arabidopsis thaliana) was performed using a FAST (Fast Agro-Mediated Seeding Transformation) method. FAST method of protocol, Jian-Feng Li, et al., "The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seeding of Arabidopsis and other plant species", Plant Methods, 2009 years, Vol. 5 No. 6 As described in the issue. The soil bacteria used for gene introduction are cells having pRI201AN (negative control) and cells having pRI201AN-intGL4. Plants after introduction of each gene were subjected to luminescence imaging to confirm the luminescence signal. The observation conditions for luminescence imaging were the same as the method used in Experimental Example 3 except that the exposure time was changed to 10 seconds.
 植物での発光シグナルの検出結果を図3に示す。図3左図は、ルシフェリン添加後の白色照明下の画像であり、左半分はネガティブコントロールであるpRI201ANを導入した植物、右半分はpRI201AN−intGL4を導入した植物である。 図3右図は、ルシフェリンを添加してルシフェラーゼを発光させ、その発光シグナルを撮影した写真である。その左半分はネガティブコントロールであるpRI201ANを導入した植物、右半分はpRI201AN−intGL4を導入した植物である。図3右図の写真において、図3左図の写真に示されるpRI201AN−intGL4を導入した植物体に対応する位置で発光が撮像されていることが分かる。この結果から、本発明の改変レポーター遺伝子を導入した植物では、本発明の可視化方法により、植物細胞において有意な発光を検出し可視化できたことが示された。 Fig. 3 shows the detection result of the luminescence signal in the plant. The left figure of FIG. 3 is an image under white illumination after luciferin addition, the left half is a plant into which pRI201AN as a negative control is introduced, and the right half is a plant into which pRI201AN-intGL4 is introduced. The right figure in Fig. 3 is a photograph of the luminescence signal taken by adding luciferin to cause luciferase to emit light. The left half is a plant into which pRI201AN as a negative control was introduced, and the right half is a plant into which pRI201AN-intGL4 was introduced. In the photograph of the right figure of FIG. 3, it turns out that light emission is imaged in the position corresponding to the plant body which introduce | transduced pRI201AN-intGL4 shown by the photograph of the left figure of FIG. From this result, it was shown that in plants into which the modified reporter gene of the present invention was introduced, significant luminescence was detected and visualized in plant cells by the visualization method of the present invention.
 上記実験から、改変レポーター遺伝子intGL4を使用することにより、植物細胞と土壌細菌とが混在する試料において、植物細胞を有意に可視化できることが分かる。次いで、改変レポーター遺伝子intGL4を使用して、ヒト細胞と大腸菌とが混在する試料においても、動物細胞であるヒト細胞を有意に可視化できることを確かめるため、以下の実験を行った。 From the above experiment, it can be seen that by using the modified reporter gene intGL4, plant cells can be visualized significantly in a sample in which plant cells and soil bacteria are mixed. Next, the following experiment was performed to confirm that human cells, which are animal cells, can be visualized significantly even in a sample in which human cells and E. coli are mixed using the modified reporter gene intGL4.
[実験例5:大腸菌への改変レポーター遺伝子導入及び発光シグナルの検出]
 発光シグナル確認のために大腸菌DH5α株(TAKARA社)にプラスミドをヒートショック法により導入した。プロトコルの詳細は、TAKARA社のホームページ(http://catalog.takara−bio.co.jp/PDFS/9057_j.pdf)で示される通りである。大腸菌における発光シグナルの検出は、培養後の菌体のルミノメーター計測、菌コロニーのイメージング、の2通りの方法で行った。
[Experimental Example 5: Introduction of modified reporter gene into E. coli and detection of luminescent signal]
In order to confirm the luminescence signal, a plasmid was introduced into E. coli DH5α strain (TAKARA) by the heat shock method. Details of the protocol are as shown on the TAKARA website (http://catalog.takara-bio.co.jp/PDFS/9057_j.pdf). The detection of the luminescence signal in E. coli was carried out by two methods: luminometer measurement of cultured cells and imaging of bacterial colonies.
 菌体のルミノメーター計測は、発光量の積算時間を5秒に変更した以外は、上記実験例4で用いた方法と同様であった。結果を図4に示す。
 ルシフェラーゼ遺伝子luc2のみを挿入したプラスミドpcDNA3.1(+)−GL4を導入した大腸細菌では、高い発光量が検出された。一方、改変レポーター遺伝子を挿入したpcDNA3.1(+)−intGL4を導入した大腸細菌では、試薬のみを導入した場合、ネガティブコントロールとしてのプラスミドpcDNA3.1(pcDNA3.1(+))を導入した場合と同様に、非常に低い発光量が検出された。
The luminometer measurement of the bacterial cells was the same as the method used in Experimental Example 4 except that the accumulated amount of light emission was changed to 5 seconds. The results are shown in FIG.
A high amount of luminescence was detected in the colon bacterium into which the plasmid pcDNA3.1 (+)-GL4 into which only the luciferase gene luc2 was inserted was introduced. On the other hand, in the colon bacterium introduced with pcDNA3.1 (+)-intGL4 into which the modified reporter gene is inserted, when only the reagent is introduced, when plasmid pcDNA3.1 (pcDNA3.1 (+)) as a negative control is introduced As with, very low light emission was detected.
 菌コロニーのイメージングの観察条件は、露光時間を10秒に変更した以外は、上記実験例4で用いたものと同様であった。発光シグナルの検出結果を図5に示す。
 ルシフェラーゼ遺伝子luc2のみを挿入したプラスミドpcDNA3.1(+)−GL4を導入した大腸菌では、発光を可視化することができた。一方、改変レポーター遺伝子を挿入したpcDNA3.1(+)−intGL4を導入した大腸菌では(図5黒太枠内)、試薬のみを導入した場合、pcDNA3.1(+)を導入した場合と同様に、発光が可視化されなかった。これらの結果から、大腸菌において、本発明の改変レポーター遺伝子に含まれるluc2遺伝子断片により発光シグナルを示すことはなく、luc2遺伝子中のイントロンがスプライシングされなかったことが示唆された。
The observation conditions for fungal colony imaging were the same as those used in Experimental Example 4 except that the exposure time was changed to 10 seconds. The detection result of the luminescence signal is shown in FIG.
In Escherichia coli introduced with the plasmid pcDNA3.1 (+)-GL4 into which only the luciferase gene luc2 was inserted, luminescence could be visualized. On the other hand, in E. coli into which pcDNA3.1 (+)-intGL4 into which the modified reporter gene has been introduced (FIG. 5 black frame), when only the reagent is introduced, the same as when pcDNA3.1 (+) is introduced. The luminescence was not visualized. From these results, in E. coli, no luminescence signal was shown by the luc2 gene fragment contained in the modified reporter gene of the present invention, suggesting that the intron in the luc2 gene was not spliced.
[実験例6:ヒト培養細胞への改変レポーター遺伝子導入及び発光シグナルの検出]
 ヒト培養細胞株Hela細胞(ATCC(American Type Culture Collection)より入手)に発現プラスミドベクターpcDNA3.1(+)−intGL4を一過的に導入した。遺伝子導入には、FuGene HD(プロメガ社)を利用した。遺伝子導入の実験プロトコルは、プロメガ社のホームページにあるプロトコルデータベース(http://www.promega.com/techserv/tools/FugeneHdTool/)のHela細胞、35mm dishで検索されるページで示されるものに従った。具体的には次の通りである。遺伝子導入の前日に、Hela細胞を35mmディッシュに3×10の細胞数で播種した。10%ウシ胎児血清(FBS)を含むDMEMを培地として使用した。128μLのOPTIMEM中に2.8μgのプラスミドDNAと8.3μLのFuGENE(登録商標)HD reagentが含まれるように調製し、室温で5分間インキュベーションした。その後、前記35mmディッシュに添加して、Hela細胞に遺伝子導入した。
[Experimental Example 6: Introduction of modified reporter gene into cultured human cells and detection of luminescent signal]
The expression plasmid vector pcDNA3.1 (+)-intGL4 was transiently introduced into human cultured cell line Hela cells (obtained from ATCC (American Type Culture Collection)). FuGene HD (Promega) was used for gene transfer. The experimental protocol for gene transfer follows the protocol shown on the Promega's website (http://www.promega.com/techserv/tools/FugeneHdTool/) Hela cells, 35 mm dish. It was. Specifically, it is as follows. The day before gene introduction, Hela cells were seeded in a 35 mm dish at a cell number of 3 × 10 5 . DMEM containing 10% fetal bovine serum (FBS) was used as the medium. It was prepared to contain 2.8 μg of plasmid DNA and 8.3 μL of FuGENE® HD reagent in 128 μL of OPTIMEM and incubated at room temperature for 5 minutes. Then, the gene was introduced into Hela cells by adding to the 35 mm dish.
 プラスミド導入後、24~48時間の間に発光イメージングシステムLV200(オリンパス株式会社製)で観察した。対物レンズは40倍のものを使用した。撮像用カメラはImageMカメラ(浜松ホトニクス株式会社製)を使用し、EMCCDモードにて露光1分で撮影した。
 ヒトHela細胞における発光シグナルの検出結果を図6に示す。図6左図は、ルシフェリン添加後の顕微鏡下での明視野画像である。図6右図(黒太枠内)は、ルシフェリンを添加してルシフェラーゼを発光させ、その発光シグナルを撮影した写真である。図6右図の写真において、図6左図の写真に示されるヒト細胞に対応する位置でルシフェラーゼの発光シグナルが撮影されていることが分かる。この結果から、本発明の改変レポーター遺伝子及び本発明の可視化方法により、ヒトHela細胞において有意な発光を検出し可視化できたことが示された。
Observation was performed with a luminescence imaging system LV200 (manufactured by Olympus Corporation) for 24 to 48 hours after introduction of the plasmid. An objective lens having a magnification of 40 times was used. The imaging camera was an ImageM camera (manufactured by Hamamatsu Photonics Co., Ltd.), and the image was taken in 1 minute exposure in the EMCCD mode.
The detection result of the luminescence signal in human Hela cells is shown in FIG. The left figure of FIG. 6 is a bright field image under a microscope after luciferin addition. The right side of FIG. 6 (in the thick black frame) is a photograph of the luminescence signal obtained by adding luciferin to cause luciferase to emit light. In the photograph on the right side of FIG. 6, it can be seen that the luciferase luminescence signal is captured at the position corresponding to the human cell shown in the photograph on the left side of FIG. From this result, it was shown that significant luminescence was detected and visualized in human Hela cells by the modified reporter gene of the present invention and the visualization method of the present invention.
 上記実験例の結果から、本発明の可視化方法、並びに本発明の改変レポーター遺伝子及び発現ベクターが、動物細胞と原核生物とが混在する試料において、動物細胞を高精度に識別できるといえる。
From the results of the above experimental examples, it can be said that the visualization method of the present invention and the modified reporter gene and expression vector of the present invention can identify animal cells with high accuracy in a sample in which animal cells and prokaryotes are mixed.

Claims (18)

  1.  1又は2以上の真核生物細胞と1又は2以上の原核生物とが混在する試料を準備する工程と、
     光関連タンパク質のコード配列を含み且つ該原核生物において該光関連タンパク質に由来する光量が低減されるように改変された1又は2以上の改変レポーター遺伝子を、該真核生物細胞内及び該原核生物内に導入する工程と、
     該試料を、該光関連タンパク質を光検出することが可能な条件下に置く工程と、
     該試料中の該光関連タンパク質を光検出する工程と、
    を含むことを特徴とする、真核生物細胞の可視化方法。
    Preparing a sample in which one or more eukaryotic cells and one or more prokaryotes are mixed;
    One or more modified reporter genes comprising a coding sequence of a light-related protein and modified so that the amount of light derived from the light-related protein in the prokaryote is reduced in the eukaryotic cell and the prokaryote A process to be introduced in,
    Placing the sample under conditions capable of photodetecting the light-related protein;
    Photodetecting the light-related protein in the sample;
    A method for visualizing eukaryotic cells, comprising:
  2.  前記改変レポーター遺伝子が、前記光関連タンパク質のコード配列中に、前記真核生物細胞でスプライシングされるイントロンを含む、請求項1に記載の可視化方法。 The visualization method according to claim 1, wherein the modified reporter gene contains an intron spliced in the eukaryotic cell in the coding sequence of the light-related protein.
  3.  前記イントロンが、真核生物種間で共通にスプライシングされる塩基配列を有する、請求項2に記載の可視化方法。 The visualization method according to claim 2, wherein the intron has a base sequence commonly spliced between eukaryotic species.
  4.  前記イントロンが、配列番号1の塩基配列を有する、請求項1~3のいずれか1項に記載の可視化方法。 The visualization method according to any one of claims 1 to 3, wherein the intron has the base sequence of SEQ ID NO: 1.
  5.  前記1又は2以上の真核生物細胞が、植物細胞を含む、請求項1~4のいずれか1項に記載の可視化方法。 The visualization method according to any one of claims 1 to 4, wherein the one or more eukaryotic cells include plant cells.
  6.  前記1又は2以上の真核生物細胞が、動物細胞を含む、請求項1~5のいずれか1項に記載の可視化方法。 The visualization method according to any one of claims 1 to 5, wherein the one or more eukaryotic cells include animal cells.
  7.  前記動物細胞が、哺乳動物の細胞を含む、請求項6に記載の可視化方法。 The visualization method according to claim 6, wherein the animal cells include mammalian cells.
  8.  前記光関連タンパク質が、発光タンパク質であり、該発光タンパク質の種類に応じて発光量が調節される、請求項1~7のいずれか1項に記載の可視化方法。 The visualization method according to any one of claims 1 to 7, wherein the light-related protein is a photoprotein, and the amount of luminescence is adjusted according to the type of the photoprotein.
  9.  前記発光タンパク質が、配列番号3のアミノ酸配列を有する、請求項8に記載の可視化方法。 The visualization method according to claim 8, wherein the photoprotein has the amino acid sequence of SEQ ID NO: 3.
  10.  光関連タンパク質のコード配列と、
     真核生物細胞でスプライシングされるイントロンと、
    を含み、
     該イントロンが、該光関連タンパク質のコード配列中に挿入されていることを特徴とする、真核生物細胞の可視化用の改変レポーター遺伝子。
    A coding sequence of a light-related protein;
    An intron spliced in a eukaryotic cell;
    Including
    A modified reporter gene for visualization of eukaryotic cells, characterized in that the intron is inserted into the coding sequence of the light-related protein.
  11.  前記イントロンが、真核生物種間で共通にスプライシングされる塩基配列を有する、請求項10に記載の改変レポーター遺伝子。 The modified reporter gene according to claim 10, wherein the intron has a base sequence commonly spliced between eukaryotic species.
  12.  前記イントロンが、配列番号1の塩基配列を有する、請求項11に記載の改変レポーター遺伝子。 The modified reporter gene according to claim 11, wherein the intron has the base sequence of SEQ ID NO: 1.
  13.  植物細胞の可視化可視化用である、請求項10~12のいずれか1項に記載の改変レポーター遺伝子。 The modified reporter gene according to any one of claims 10 to 12, which is used for visualization of plant cells.
  14.  動物細胞の可視化用である、請求項10~13のいずれか1項に記載の改変レポーター遺伝子。 The modified reporter gene according to any one of claims 10 to 13, which is used for visualization of animal cells.
  15.  哺乳動物の細胞の可視化用である、請求項14に記載の改変レポーター遺伝子。 The modified reporter gene according to claim 14, which is used for visualization of mammalian cells.
  16.  前記光関連タンパク質が、発光タンパク質である、請求項10~15のいずれか1項に記載の改変レポーター遺伝子。 The modified reporter gene according to any one of claims 10 to 15, wherein the light-related protein is a photoprotein.
  17.  前記発光タンパク質が、配列番号3のアミノ酸配列を有する、請求項16に記載の改変レポーター遺伝子。 The modified reporter gene according to claim 16, wherein the photoprotein has the amino acid sequence of SEQ ID NO: 3.
  18.  請求項10~17のいずれか1項に記載の改変レポーター遺伝子を含むことを特徴とする、真核生物細胞の可視化用の発現ベクター。 An expression vector for visualizing eukaryotic cells, comprising the modified reporter gene according to any one of claims 10 to 17.
PCT/JP2015/052781 2015-01-23 2015-01-23 Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell WO2016117135A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/052781 WO2016117135A1 (en) 2015-01-23 2015-01-23 Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell
JP2016570469A JPWO2016117135A1 (en) 2015-01-23 2015-01-23 Eukaryotic cell visualization method, and modified reporter gene and expression vector for eukaryotic cell visualization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052781 WO2016117135A1 (en) 2015-01-23 2015-01-23 Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell

Publications (1)

Publication Number Publication Date
WO2016117135A1 true WO2016117135A1 (en) 2016-07-28

Family

ID=56416700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052781 WO2016117135A1 (en) 2015-01-23 2015-01-23 Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell

Country Status (2)

Country Link
JP (1) JPWO2016117135A1 (en)
WO (1) WO2016117135A1 (en)

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERIKO OGURA ET AL.: "Idenshi Hatsugen Kaiseki ni Okeru Intron Sonyugata Hakko Reporter Idenshi no Oyo", JAPANESE SOCIETY FOR PLANT CELL AND MOLECULAR BIOLOGY TAIKAI SYMPOSIUM KOEN YOSHISHU, vol. 31, 2013, pages 144 *
ERIKO OGURA ET AL.: "Idenshi Hatsugen Kaiseki ni Okeru Intron Sonyugata Hakko Reporter Idenshi no Riyo Oyobi Kohatsugen Vector Cis Hairetsu no Saitekika ni Tsuite", JAPANESE SOCIETY FOR PLANT CELL AND MOLECULAR BIOLOGY TAIKAI SYMPOSIUM KOEN YOSHISHU, vol. 32, 2014, pages 77 *
HIDETO HAYAKAWA ET AL.: "Novel intron-containing luciferase genes for quantitative analysis of mRNA levels in transient gene expression assays", PLANT BIOTECHNOLOGY, vol. 29, no. 5, 2012, pages 505 - 509 *
JOSE S. GIL ET AL.: "A method to rapidly and accurately compare relative efficacies of non- invasive imaging reporter genes in a mouse model, and its application to luciferase reporters", MOL IMAGING BIOL., 2013, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813453/pdf/nihms-521075.pdf> *
S. LUKE MANKIN ET AL.: "Introduction of a plant intron into the luciferase gene of Photinus pyralis", PLANT MOLECULAR BIOLOGY REPORTER, vol. 15, no. 2, 1997, pages 186 - 196 *

Also Published As

Publication number Publication date
JPWO2016117135A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
Minko et al. Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas
JP4519163B2 (en) Isolated luciferase and uses thereof
WO2013044792A1 (en) Nicotinamide adenine dinucleotide gene encoding fluorescent probe, preparation method therefor and application thereof
JP4669180B2 (en) Luciferase expression cassette and method of use
US8206961B2 (en) Modified Luciola cruciata luciferase protein
Mitani et al. Novel gene encoding a unique luciferase from the fireworm Odontsyllis undecimdonta
JP6025566B2 (en) Firefly luciferase
JP5896624B2 (en) Firefly luciferase
KR102018248B1 (en) Mutant Gaussia luciferase with enhanced bioluminescence intensity
JP6032861B2 (en) Firefly luciferase
JP6006070B2 (en) Firefly luciferase
EP3037534B1 (en) Polypeptide exhibiting fluorescent properties, and utilization of same
WO2016117135A1 (en) Method for visualizing eukaryotic cell, and modified reporter gene and expression vector for visualizing eukaryotic cell
US9328334B2 (en) Luciferase derived from lucidina accensa
JP5969757B2 (en) Variant of firefly luciferase
CN108659110B (en) Improved red fluorescent protein and application thereof
EP3505625B1 (en) Modified luciferase
JP5980608B2 (en) Firefly luciferase
JP5860651B2 (en) Firefly luciferase
EP2686424B1 (en) Star-worm luciferase
Yu Development of a bioassay for engineered nanoparticles (ENPs) in the environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878826

Country of ref document: EP

Kind code of ref document: A1