KR102018248B1 - Mutant Gaussia luciferase with enhanced bioluminescence intensity - Google Patents
Mutant Gaussia luciferase with enhanced bioluminescence intensity Download PDFInfo
- Publication number
- KR102018248B1 KR102018248B1 KR1020170032655A KR20170032655A KR102018248B1 KR 102018248 B1 KR102018248 B1 KR 102018248B1 KR 1020170032655 A KR1020170032655 A KR 1020170032655A KR 20170032655 A KR20170032655 A KR 20170032655A KR 102018248 B1 KR102018248 B1 KR 102018248B1
- Authority
- KR
- South Korea
- Prior art keywords
- amino acid
- lys
- ala
- gly
- luciferase
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0069—Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/66—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving luciferase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y113/00—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
- C12Y113/12—Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of one atom of oxygen (internal monooxygenases or internal mixed function oxidases)(1.13.12)
- C12Y113/12007—Photinus-luciferin 4-monooxygenase (ATP-hydrolysing) (1.13.12.7), i.e. firefly-luciferase
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
본 발명은 부위 특이적 돌연변이를 이용하여 가우시아 프린셉스(Gaussia Princeps) 유래 루시퍼라아제의 생물발광 강도를 증폭시키도록 변형시킨 가우시아 루시퍼라아제 변이체에 관한 것이다. 보다 상세하게는, 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)의 아미노산 서열에서 60번째, 88번째, 89번째, 90번째 및 103번째 아미노산 중 하나 이상의 아미노산을 다른 아미노산으로 치환하여 제조한 가우시아 루시퍼라아제 단일 또는 다중 돌연변이체, 상기 변이체 서열을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 재조합 벡터, 상기 재조합 벡터를 포함하는 형질전환체, 상기 형질전환체로부터 생물발광 강도가 향상된 변이 가우시아 루시퍼라아제를 제조하는 방법, 및 상기 변이 가우시아 루시퍼라아제를 포함하는 키트에 관한 것이다.
GLuc(Gaussia luciferase)는 세포 기반 리포터 분석(cell-based reporter assay)을 위해 가장 널리 사용되는 분비성 루시퍼라아제로, 다양한 종에서 유래되는 루시퍼라아제 중에서 크기가 가장 작아 다른 단백질과 결합시 단백질 구조의 영향을 최소화함으로써 효과적인 모니터링에 사용할 수 있는 장점을 가지고 있다. 그러나, 야생형(wild-type) GLuc의 경우 발광신호 크기가 충분하지 못한 단점을 가지고 있다.
따라서, 본 발명은 가우시아 루시퍼라아제의 생물발광 신호 증폭에 있어서 중요한 역할을 하는 아미노산 잔기를 돌연변이 시킴으로써, 생물발광 신호가 향상된 변이 가우시아 루시퍼라아제를 제조할 수 있으며, 이를 세포 모니터링 및 신약 스크리닝 등에 유용하게 사용할 수 있다. The present invention relates to Gaussian luciferase variants modified to amplify the bioluminescence intensity of Gaussia Princeps derived luciferases using site specific mutations. More specifically, in the amino acid sequence of G Luc, Gaussia princeps Luciferase ( G Luc), one or more of the 60th, 88th, 89th, 90th, and 103th amino acid is replaced with another amino acid. Cya luciferase single or multiple mutants, polynucleotides encoding the variant sequences, recombinant vectors comprising the polynucleotides, transformants comprising the recombinant vectors, and mutant Gauges with enhanced bioluminescence intensity from the transformants A method of making cya luciferase, and a kit comprising said variant Gaussian luciferase.
G Luc ( Gassia luciferase) is the most widely used secretory luciferase for cell-based reporter assays.It is the smallest of the luciferases from various species, and when combined with other proteins By minimizing the impact of the structure, it has the advantage of being used for effective monitoring. However, the wild-type G Luc has a disadvantage that the size of the light emission signal is not enough.
Accordingly, the present invention can prepare a mutant Gaussian luciferase with improved bioluminescent signal by mutating amino acid residues that play an important role in amplifying the bioluminescent signal of Gaussian luciferase. It can be usefully used.
Description
본 발명은 부위 특이적 돌연변이를 이용하여 가우시아 프린셉스(Gaussia Princeps) 유래 루시퍼라아제의 생물발광 강도를 증폭시키도록 변형시킨 가우시아 루시퍼라아제 변이체에 관한 것이다. 보다 상세하게는, 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)의 아미노산 서열에서 60번째, 88번째, 89번째, 90번째 및 103번째 아미노산 중 하나 이상의 아미노산을 다른 아미노산으로 치환하여 제조한 가우시아 루시퍼라아제 단일 또는 다중 돌연변이체, 상기 변이체 서열을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 재조합 벡터, 상기 재조합 벡터를 포함하는 형질전환체, 상기 형질전환체로부터 생물발광 강도가 향상된 변이 가우시아 루시퍼라아제를 제조하는 방법, 및 상기 변이 가우시아 루시퍼라아제를 포함하는 키트에 관한 것이다. The present invention relates to Gaussian luciferase variants modified to amplify the bioluminescence intensity of Gaussia Princeps derived luciferases using site specific mutations. More specifically, Gaussian luciferase ( G Luc, Gaussia A single or multiple mutants of Gaussian luciferase prepared by substituting one or more of the 60th, 88th, 89th, 90th, and 103th amino acids in the amino acid sequence of princeps Luciferase) with other amino acids, and encoding the variant sequence. A polynucleotide, a recombinant vector comprising the polynucleotide, a transformant comprising the recombinant vector, a method of producing a mutant Gaussian luciferase having improved bioluminescence intensity from the transformant, and the mutant Gaussian lucifer A kit comprising a lagase.
루시퍼라아제(luciferase)를 이용한 생물발광 분석(bioluminescence assay)은 높은 감도(sensitivity), 광범위한 선형성(extensive linearity) 및 매우 낮은 백그라운드 신호(background signals) 때문에, 이와 유사한 형광분석법(fluorescence assay) 또는 화학발광 분석법(chemiluminescence assay)을 종종 능가하는 결과가 나온다. 루시퍼라아제는 루시페린 기질(루시페린(luciferin) 또는 코엘렌테라진(coelenterazine))의 산화(oxdiation)를 촉매하여 빛을 생성한다. 지금까지, 반딧불이(firefly), 레닐라(Renilla), 갑각류(copepod) 및 박테리아(bacteria)를 포함한 다양한 종(species)으로부터 루시퍼라아제가 클로닝(cloning) 되었으며, 특성화(characterization)되었다(W.W. Lorenz et.al., Proc. Natl . Acad . Sci . USA., 88: 4438-4442, 1991). 바이오어세이(bioassay)에 가장 널리 사용된 루시퍼라아제는 반딧불이 루시퍼라아제(firefly luciferase, FLuc), 레닐라 루시퍼라아제(Renilla luciferase, RLuc) 및 최근에 가우시아 루시퍼라아제(Gaussia luciferase, GLuc)이다. FLuc는 ATP, 산소(oxygen) 및 Mg2 +의 존재하에 루시페린(luciferin)을 산화시키는 촉매 구실을 한다. 한편, RLuc 및 GLuc는 ATP 및 마그네슘(Mg2 +) 비의존적이며, 기질로서 코엘렌테라진을 사용한다. RLuc는 코엘렌테라진-의존적 루시퍼라아제(coelenterazine-dependent luciferases) 중 가장 널리 사용되고 구조적으로 특징화 되어있다(A.M. Loening et.al., J. Mol . Biol ., 374: 1017-1028, 2007).Bioluminescence assays using luciferases are similar to fluorescence assays or chemiluminescence because of their high sensitivity, broad linearity and very low background signals. Results often exceed the chemiluminescence assay. Luciferases produce light by catalyzing the oxidation of luciferin substrates (luciferin or coelenterazine). To date, luciferase has been cloned and characterized from various species including firefly, Renilla, copepod and bacteria (WW Lorenz et. al. , Proc. Natl . Acad . Sci . USA. , 88: 4438-4442, 1991). The most widely used luciferases for bioassay are firefly luciferase (FLuc), Renilla luciferase ( R Luc) and recently Gaussia luciferase ( R ). G Luc). FLuc plays a catalyst role for the oxidation of luciferin (luciferin) in the presence of ATP, oxygen (oxygen) and Mg + 2. On the other hand, R Luc and Luc G is an ATP-independent and a magnesium (Mg + 2), uses coelenterazine as a substrate. R Luc is the most widely used and structurally characterized coelenterazine-dependent luciferases (AM Loening et.al. , J. Mol . Biol . , 374: 1017-1028, 2007 ).
그러나, 최근 해양 갑각류(copepod)인 가우시아 프린셉스(Gaussia Princeps)로부터 동정된 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)는 코엘렌테라진 의존성 생물발광 단백질로, 현재까지 다양한 종에서 유래되는 루시퍼라아제 중에서 크기가 가장 작고 생물발광이 강하며, 세포 기반 리포터 분석(cell-based repoter assay)을 위해 가장 널리 사용되는 분비성 루시퍼라아제로서 많은 주목을 받고 있는 것으로 밝혀진 바 있다(B.A. Tannous et.al., Mol . Ther ., 11: 435-443, 2005). GLuc는 라이브 이미징(live imaging), 단백질-단백질 상호작용(protein-protein interaction), 단백질 역학(protein dynamics), 종양 진행 모니터링(monitoring tumor progression) 및 고속대량 스크리닝(high-throughput screening, HTS)과 같은 바이오분석을 하는데 있어 다양한 이점을 지니고 있다(C.A. Maguire et.al., Anal. Chem ., 81: 7102-7106, 2009). 다양한 이점을 지니고 있음에도 불구하고, GLuc의 구조와 기능적 세부사항은 거의 알려져 있지 않다. 또한, 루시퍼라아제는 진화(evolutionary)와 관련이 없으며, 서열 유사성(sequence similarity)을 공유하지 않는다. 한편, 여러 보고서에서는 자연적으로 존재하는 형태보다 RLuc 변이형(variant)을 강화하고 안정화시키는 단백질 공학적 노력을 더 강조하고 있다(A.M. Loening et.al., Nat. Methods., 7: 5-6, 2010). 변형된(modified) RLuc 돌연변이체는 다양한 이분자(biomolecular) 및 고속대량 스크리닝 기반 어세이(high-throughput screening based assay)에 대한 새로운 전략 개발에 널리 사용된다(A. Dragulescu-Andrasi et.al., Proc . Natl . Acad . Sci . USA., 108: 12060-12065, 2011).However, recently identified from Gaussia Princeps , a marine copepod G Luc, Gaussia princeps Luciferase) is a coelenterazine-dependent bioluminescent protein, the smallest and most bioluminescent of luciferases derived from various species to date, and the most widely used for cell-based repoter assays. It has been found to attract a lot of attention as a secretory luciferase used (BA Tannous et.al. , Mol . Ther . , 11: 435-443, 2005). G Luc includes live imaging, protein-protein interactions, protein dynamics, monitoring tumor progression and high-throughput screening (HTS). The same bioanalysis has various advantages (CA Maguire et.al. , Anal. Chem . , 81: 7102-7106, 2009). Despite its many benefits, little is known about the structure and functional details of G Luc. In addition, luciferases are not related to evolution and do not share sequence similarity. Meanwhile, several reports emphasize protein engineering efforts to enhance and stabilize R Luc variants rather than naturally occurring forms (AM Loening et.al. , Nat. Methods. , 7: 5-6, 2010). Modified R Luc mutants are widely used to develop new strategies for a variety of biomolecular and high-throughput screening based assays (A. Dragulescu-Andrasi et.al. , Proc . Natl . Acad . Sci . USA. , 108: 12060-12065, 2011).
GLuc의 경우에도 유전자 셔플링(gene shuffling; 유전자 재조합) 기술을 사용하여 발광 강도(intensity)를 몇 배 증폭시키기 위한 연구 개발이 이루어지고 있다(M.H. Degeling et.al., Anal. Chem ., 85: 3006-3012, 2013). Maguire CA 등은 고속대량 스크리닝(high-throughput screening, HTS)에 적합한, Triton X-100의 존재하에 글로우 타입(glow-type)의 발광(light emission) 동역학(kinetics)을 나타내는 GLuc 변이체(variant)에 대해 보고한 바 있다(C.A. Maguire et.al., Anal. Chem., 81: 7102-7106, 2009). Welsh JP 등은 야생형(wild-type) GLuc보다 연장된 발광(luminescence) 반감기(half-life)를 나타내는 이중 돌연변이 변이체(double mutant variant)에 대해 보고한 바 있다(J.P. Welsh et.al., Biochem . Biophys . Res. Commun ., 389: 563-568, 2009). 이와 같이, GLuc에 대해 유전자 공학적으로 변이를 도입한 다수의 변이체가 알려져 있지만, 발광 강도 및 안정성 면에서 만족이 가는 변이 가우시아 루시퍼라아제는 미비하다. 따라서, 생물발광 강도 및 안정성이 향상되고, 기질 특이성을 갖는 변이 가우시아 루시퍼라아제 개발이 필요한 실정이다. In the case of G Luc, research and development are being conducted to amplify the intensity of light by several times using gene shuffling (MH Degeling et.al. , Anal. Chem . , 85) . : 3006-3012, 2013). Maguire CA et al. Show G Luc variants exhibiting glow-type light emission kinetics in the presence of Triton X-100, suitable for high-throughput screening (HTS). (Ma Maguire et.al. , Anal. Chem. , 81: 7102-7106, 2009). Welsh JP et al . Reported a double mutant variant that exhibits extended luminescence half-life than wild-type G Luc (JP Welsh et.al. , Biochem). .. Biophys Res Commun, 389: .. 563-568, 2009). As described above, a number of variants genetically engineered into G Luc have been known, but mutant Gaussian luciferase which is satisfactory in terms of luminescence intensity and stability is insufficient. Accordingly, there is a need for development of mutant Gaussian luciferase with improved bioluminescence intensity and stability and substrate specificity.
이에, 본 발명자들은 갑각류 루시퍼라아제(copepod luciferase) 중, 고도로 보존되고 일치된 다양한 아미노산의 상세한 역할을 분석하고자 하였다. 동종의 갑각류 루시퍼라아제 서열을 규명하기 위해 블라스트 검색(BLAST-search)을 수행하였으며, 고도로 보존되고 일치된 아미노산을 확인하기 위해 GLuc에 대한 다중 정렬(multiple alignment)을 수행하였다. 다중 정렬에 따른 결과를 기반으로 하여, 일치된 아미노산 잔기를 변이시킨 보존된 아미노산을 이용하여 생물발광 강도 향상에 있어서의 역할을 분석하였다. 향상된 생물발광 강도를 갖는 단일 돌연변이체를 추가로 조합하여 최대 생물발광 강도를 갖는 다중 돌연변이체를 구축하였다.Thus, the inventors of the crustacean We attempted to analyze the detailed role of various highly conserved and matched amino acids in the luciferase (copepod luciferase). Blast-search was performed to identify homologous crustacean luciferase sequences, and multiple alignments to G Luc were performed to identify highly conserved and matched amino acids. Based on the results of multiple alignments, the role in enhancing bioluminescence intensity was analyzed using conserved amino acids that mutated identical amino acid residues. Single mutants with improved bioluminescent intensity were further combined to construct multiple mutants with maximum bioluminescent intensity.
이러한 배경하에서, 본 발명자들은 생물발광 강도가 증폭된 변이 가우시아 루시퍼라아제를 개발하고자 예의 연구 노력한 결과, 다양한 갑각류(copepod)의 루시퍼라아제 서열의 정렬을 기반으로 시퀀스-가이드 돌연변이 유발 분석(sequence-guided mutagenesis analysis)으로 생물발광 강도(bioluminescence intensity)를 현저하게 증폭시킬 수 있는 주요 후보 아미노산을 도출하고, 상기 도출된 아미노산을 다른 아미노산으로 치환하여 제조한 가우시아 루시퍼라아제 단일 또는 다중 돌연변이체가 야생형(wild-type)과 비교하여 생물발광 강도가 현저히 증가됨을 확인함으로써, 본 발명을 완성하게 되었다.Against this background, the present inventors have made diligent efforts to develop mutant Gaussian luciferases with amplified bioluminescence intensity, and as a result, sequence-guided mutagenesis analysis based on the alignment of luciferase sequences of various copepods. -guided mutagenesis analysis) yields key candidate amino acids that can significantly amplify bioluminescence intensity, and Gaussian luciferase single or multiple mutants prepared by substituting the derived amino acids for other amino acids are wild-type. The present invention was completed by confirming that the bioluminescence intensity was significantly increased compared to the wild-type.
본 발명의 목적은 부위 특이적 돌연변이를 이용하여 가우시아 프린셉스(Gaussia Princeps) 유래 루시퍼라아제의 생물발광 강도를 증폭시키도록 변형시킨 가우시아 루시퍼라아제 변이체를 제공하기 위한 것이다.It is an object of the present invention to provide Gaussian luciferase variants modified to amplify the bioluminescence intensity of Gaussia Princeps derived luciferases using site specific mutations.
본 발명의 다른 목적은 상기 변이체 서열을 코딩하는 폴리뉴클레오티드를 제공하기 위한 것이다.Another object of the present invention is to provide a polynucleotide encoding the variant sequence.
본 발명의 또 다른 목적은 상기 폴리뉴클레오티드를 포함하는 재조합 벡터를 제공하기 위한 것이다.Still another object of the present invention is to provide a recombinant vector comprising the polynucleotide.
본 발명의 또 다른 목적은 상기 재조합 벡터를 포함하는 형질전환체를 제공하기 위한 것이다.Still another object of the present invention is to provide a transformant comprising the recombinant vector.
본 발명의 또 다른 목적은 상기 형질전환체로부터 생물발광 강도가 향상된 변이 가우시아 루시퍼라아제를 제조하는 방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing a mutant Gaussian luciferase with improved bioluminescence intensity from the transformant.
본 발명의 또 다른 목적은 상기 변이 가우시아 루시퍼라아제를 포함하는 키트를 제공하기 위한 것이다.Still another object of the present invention is to provide a kit comprising the mutated Gaussian luciferase.
상기 목적을 달성하기 위하여, 본 발명은 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)의 아미노산 서열에서 60번째, 88번째, 89번째, 90번째 및 103번째 아미노산 중 하나 이상의 아미노산을 다른 아미노산으로 치환하여 제조한 가우시아 루시퍼라아제 단일 또는 다중 돌연변이체, 상기 변이체 서열을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 재조합 벡터, 상기 재조합 벡터를 포함하는 형질전환체, 상기 형질전환체로부터 생물발광 강도가 향상된 변이 가우시아 루시퍼라아제를 제조하는 방법, 및 상기 변이 가우시아 루시퍼라아제를 포함하는 키트를 제공한다.In order to achieve the above object, the present invention is Gaussian cyano luciferase 60th, in the amino acid sequence of (G Luc, Gaussia princeps Luciferase) 88 th, 89 th, other one or more amino acid of the 90th and 103rd amino acids Gaussian luciferase prepared by substitution, single or multiple mutants, polynucleotides encoding the variant sequences, recombinant vectors comprising the polynucleotides, transformants comprising the recombinant vectors, bioluminescence from the transformants Provided are a method of making a modified Gaussian luciferase with enhanced strength, and a kit comprising said modified Gaussian luciferase.
이하, 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.
하나의 양태로서, 본 발명은 서열번호 1의 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M), 88번째 아미노산인 리신(Lysine, K), 89번째 아미노산인 페닐알라닌(Phenylalanine, F) 및 103번째 아미노산인 세린(Serine, S) 중 하나 이상의 아미노산이 변이된 것을 특징으로 하는 가우시아 루시퍼라아제 변이체를 제공한다.In one embodiment, the present invention provides a methionine (M), which is the 60th amino acid, and a lysine (K) which is the 88th amino acid, in the amino acid sequence of Gaussian princeps Luciferase ( G Luc) of SEQ ID NO: 1. It provides a Gaussian luciferase variant, characterized in that one or more amino acids of the 89th amino acid (Phenylalanine (F)) and the 103rd amino acid Serine (Srine, S) is mutated.
본 발명에서 용어 "루시퍼라아제(luciferase)"는 발광 단백질로서, 생물발광에 있어 루시페린(luciferin)-발광효소(luciferase)반응(L-L반응)을 나타내는 발광반응의 발광성 효소를 총칭한다. 루시퍼라아제는 북아메리카 반디인 포티너스 파이랄리스(Photinus Pyralis)의 파이어플라이 루시퍼라아제(firefly luciferase; Fluc)가 대표적이나, 최근 가우시아 루시퍼라아제(Gaussia luciferase, GLuc)가 크기가 가장 작고 생물발광이 강하여 주목받고 있다.As used herein, the term "luciferase" is a luminescent protein, and refers to a luminescent enzyme of a luminescent reaction that exhibits a luciferin-luciferase reaction (LL reaction) in bioluminescence. Luciferase is typical of firefly luciferase (Fluc) from Photinus Pyralis, a North American bond, but recently Gaussia luciferase ( G Luc) is the smallest. Bioluminescence is strong and attracting attention.
본 발명에서 용어 "가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)"는 가우시아 프린셉스(Gaussia Princeps)로부터 동정된 루시퍼라아제로, 현재까지 다양한 종에서 유래되는 루시퍼라아제 중에서 크기가 가장 작고 생물발광(bioluminescence)이 강하며, 세포 기반 리포터 분석(cell-based repoter assay)을 위해 가장 널리 사용되는 분비성 루시퍼라아제로 알려져있다.In the present invention the term " G Lucia Gaussia princeps Luciferase "was identified from Gaussia Princeps Luciferase, the smallest of the luciferases derived from various species to date, has strong bioluminescence, and is the most widely used secretory luciferase for cell-based repoter assays. Known as Aze
야생형(wild-type) 가우시아 루시퍼라아제(GLuc)는 185개의 아미노산(amino acid)으로 이루어져 있으며, GenBank accession number는 AAG54095.1이고, 본 발명에서 서열번호 1로 표시하였다. 한편, 야생형(wild-type) 가우시아 루시퍼라아제(GLuc)의 염기서열은 서열번호 14로 표시하였다. Wild-type Gaussian luciferase ( G Luc) is composed of 185 amino acids (gen acid), GenBank accession number is AAG54095.1, represented by SEQ ID NO: 1 in the present invention. Meanwhile, the nucleotide sequence of the wild-type Gaussian luciferase ( G Luc) is represented by SEQ ID NO: 14.
본 발명의 "가우시아 루시퍼라아제 변이체"는 부위 특이적 돌연변이를 이용하여 가우시아 프린셉스(Gaussia Princeps) 유래 루시퍼라아제의 생물발광 강도를 증폭시키도록 변형시킨 변이체로, 야생형 가우시아 루시퍼라아제의 아미노산 서열, 즉 서열번호 1의 아미노산 서열에서 60번째, 88번째, 89번째, 90번째 및/또는 103번째 아미노산 잔기를 다른 아미노산으로 치환하여 제조한 가우시아 루시퍼라아제 단일 또는 다중 돌연변이체이다." Gaussia luciferase variants" of the present invention utilize Gaussia princes using site specific mutations. Princeps ) is a variant modified to amplify the bioluminescence intensity of luciferase derived from the amino acid sequence of the wild type Gaussian luciferase, i.e., the 60th, 88th, 89th, 90th, and / Or a Gaussian luciferase single or multiple mutant prepared by substituting the 103rd amino acid residue for another amino acid.
구체적으로, 본 발명의 "가우시아 루시퍼라아제 변이체"는 서열번호 1의 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M), 88번째 아미노산인 리신(Lysine, K), 89번째 아미노산인 페닐알라닌(Phenylalanine, F) 및 103번째 아미노산인 세린(Serine, S) 중 하나 이상의 아미노산이 변이된 것일 수 있다. 또한, 본 발명의 "가우시아 루시퍼라아제 변이체"는 상기 4개의 위치의 아미노산 외에, 서열번호 1의 가우시아 루시퍼라아제(GLuc, Gaussia princeps Luciferase)의 아미노산 서열에서 90번째 아미노산인 이소류신(Isoleucine, I)이 추가로 변이된 것일 수 있다.Specifically, the " Gaussia luciferase variant" of the present invention refers to the Gaussian luciferase of SEQ ID NO: 1 ( G Luc, Gaussia In the amino acid sequence of princeps Luciferase, the 60th amino acid Methionine (M), the 88th amino acid Lysine (K), the 89th amino acid Phenylalanine (F) and the 103rd amino acid Serine (S) At least one of the amino acids may be mutated. In addition, the "Gaussia luciferase variant" of the present invention, in addition to the amino acid at the four positions, the Gaussian luciferase of SEQ ID NO: 1 ( G Luc, Gaussia In the amino acid sequence of princeps Luciferase), the 90th amino acid isoleucine (Isoleucine, I) may be further modified.
본 발명의 일실시예에서는, 먼저 단일 위치의 아미노산 변이를 갖는 하기 가우시아 루시퍼라아제 단일 돌연변이체를 제조하였다:In one embodiment of the present invention, the following Gaussian luciferase single mutants were first prepared having amino acid mutations in a single position:
서열번호 1의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M)을 류신(Leucine, L)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 2);A variant having an amino acid sequence in which the methionine (M), which is the 60th amino acid, of the amino acid sequence of SEQ ID NO: 1 is substituted with leucine (Lucine, L) (SEQ ID NO: 2);
서열번호 1의 아미노산 서열에서 88번째 아미노산인 리신(Lysine, K)을 글루타민(Glutamine, Q)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 3);A variant having an amino acid sequence in which the 88th amino acid Lysine (K) in the amino acid sequence of SEQ ID NO: 1 is substituted with glutamine (Q) (SEQ ID NO: 3);
서열번호 1의 아미노산 서열에서 89번째 아미노산인 페닐알라닌(Phenylalanine, F)을 타이로신(Tyrosine, Y)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 4);A variant having an amino acid sequence of phenylalanine (F) which is the 89th amino acid of SEQ ID NO: 1 by tyrosine (Y);
서열번호 1의 아미노산 서열에서 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 5); 또는A variant having an amino acid sequence of replacing isoleucine (I), which is the 90th amino acid, in the amino acid sequence of SEQ ID NO: 1 with leucine (Lucine, L) (SEQ ID NO: 5); or
서열번호 1의 아미노산 서열에서 103번째 아미노산인 세린(Serine, S)을 트레오닌(Threonine, T)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 6).A variant having an amino acid sequence in which Serine (S), which is the 103rd amino acid in the amino acid sequence of SEQ ID NO: 1, was replaced with threonine (T) (SEQ ID NO: 6).
상기 단일 돌연변이체를 이용하여 생물발광 강도를 측정해 본 결과, 야생형 가우시아 루시퍼라아제와 비교하여 생물발광 신호가 향상됨을 확인하였다. 특히, 상기 단일 돌연변이체 중 M60L 및 K88Q가 가장 높은 발광 강도 증진 효과를 나타내었다(도 2).As a result of measuring the bioluminescence intensity using the single mutant, it was confirmed that the bioluminescence signal is improved compared to wild type Gaussian luciferase. In particular, M60L and K88Q of the single mutants showed the highest luminous intensity enhancing effect (Fig. 2).
본 발명의 또 다른 일실시예에서는, 상기 단일 위치의 아미노산 변이가 하나 이상 조합된 하기 가우시아 루시퍼라아제 다중 돌연변이체를 제조하였다:In another embodiment of the present invention, the following Gaussian luciferase multiple mutant was prepared in which one or more amino acid variations in the single position were combined:
서열번호 1의 아미노산 서열에서 60번째 아미노산 메티오닌(Methionine, M)을 류신(Leucine, L)으로, 88번째 아미노산 리신(Lysine, K)을 글루타민(Glutamine, Q)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 7);In the amino acid sequence of SEQ ID NO: 1, a variant having an amino acid sequence in which the 60th amino acid Methionine (M) was replaced with Leucine (L) and the 88th amino acid Lysine (K) with Glutamine (Q) ( SEQ ID NO: 7);
서열번호 1의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M)을 류신(Leucine, L)으로, 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 8);In the amino acid sequence of SEQ ID NO: 1, the amino acid sequence of replacing the 60th amino acid Methionine (M) with Leucine (L) and the 90th amino acid Isoleucine (I) with Leucine (L) Variant (SEQ ID NO: 8);
서열번호 1의 아미노산 서열에서 88번째 아미노산인 리신(Lysine, K)을 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 9);In the amino acid sequence of SEQ ID NO: 1, the amino acid sequence of Lysine (K), which is the 88th amino acid, is substituted with glutamine (Q), and Isoleucine (I), which is the 90th amino acid, is substituted by Leucine (L). Variant (SEQ ID NO: 9);
서열번호 1의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M)이 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)을 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 10);In the amino acid sequence of SEQ ID NO: 1, the 60th amino acid Methionine (M) is leucine (L), the 88th amino acid Lysine (K) is glutamine (Q), the 90th amino acid isoleucine A variant having an amino acid sequence in which (Isoleucine, I) is substituted with leucine (Leucine, L) (SEQ ID NO: 10);
서열번호 1의 아미노산 서열에서 88번째 아미노산인 리신(Lysine, K)을 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로, 103번째 아미노산인 세린(Serine, S)을 트레오닌(Threonine, T)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 11);In the amino acid sequence of SEQ ID NO: 1, the 88th amino acid Lysine (K) is converted into glutamine (Q), the 90th amino acid isoleucine (I) is converted into leucine (Lucine), and the 103rd amino acid serine A variant having an amino acid sequence in which (Serine, S) was substituted with Threonine (T) (SEQ ID NO: 11);
서열번호 1의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M)을 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)을 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로, 103번째 아미노산인 세린(Serine, S)을 트레오닌(Threonine, T)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 12); 또는In the amino acid sequence of SEQ ID NO: 1, methionine (M), the 60th amino acid, is leucine (L), lysine (K), the 88th amino acid, is glutamine (Q), and isoleucine, the 90th amino acid. A variant having an amino acid sequence in which (Isoleucine, I) was substituted with leucine (Leucine, L) and serine (S), which is the 103rd amino acid, with threonine (T) (SEQ ID NO: 12); or
서열번호 1의 아미노산 서열에서 60번째 아미노산인 메티오닌(Methionine, M)을 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)을 글루타민(Glutamine, Q)으로, 89번째 아미노산인 페닐알라닌(Phenylalanine, F)을 타이로신(Tyrosine, Y)으로, 90번째 아미노산인 이소류신(Isoleucine, I)을 류신(Leucine, L)으로, 103번째 아미노산인 세린(Serine, S)을 트레오닌(Threonine, T)으로 치환시킨 아미노산 서열을 가지는 변이체(서열번호 13).In the amino acid sequence of SEQ ID NO: 1, methionine (M), which is the 60th amino acid, is leucine (L), lysine (K), which is the 88th amino acid, is glutamine (Q), and phenylalanine, which is the 89th amino acid. (Phenylalanine, F) is tyrosine (Y), 90th amino acid isoleucine (I) is leucine (L), and 103th amino acid Serine (S) is threonine (T) Variant having an amino acid sequence substituted with (SEQ ID NO: 13).
상기 다중 돌연변이체를 이용하여 생물발광 강도를 측정해 본 결과, 야생형 가우시아 루시퍼라아제와 비교하여 생물발광 신호가 현저하게 증가됨을 확인하였다. 특히, 다중 돌연변이체 중 M60L과 조합된 변이체의 발광 활성 증폭이 두드러짐을 확인하였다(도 3).As a result of measuring the bioluminescence intensity using the multiple mutants, it was confirmed that the bioluminescence signal was significantly increased as compared with wild type Gausia luciferase. In particular, it was confirmed that the amplification of the luminescent activity of the variant combined with M60L among the multiple mutants (Fig. 3).
본 발명의 가우시아 루시퍼라아제 변이체는 서열번호 2 내지 13의 아미노산 서열 중 어느 하나의 아미노산 서열을 가질 수 있으나, 이에 제한되는 것은 아니며, 이들 서열에 하나 이상의 치환, 결손, 역위, 전좌 등을 통하여 본 발명이 달성하고자 하는 효과를 얻는 변이체도 본 발명의 범위에 포함될 수 있다.The Gaussian luciferase variant of the present invention may have an amino acid sequence of any one of the amino acid sequences of SEQ ID NOs: 2 to 13, but is not limited thereto, and through one or more substitutions, deletions, inversions, translocations, etc. to these sequences. Variants that achieve the effect of the present invention may also be included in the scope of the present invention.
경우에 따라, 본 발명의 가우시아 루시퍼라아제 변이체는 이들의 물리, 화학적 성질을 증가 또는 감소시키는 변형을 가질 수 있어 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation), 아밀화(amidation) 등으로 변형(modification)될 수 있으며, 이러한 변형에 의해 증가된 가우시아 루시퍼라아제 변이체의 생물발광 활성이 실질적으로 유지되는 한, 이러한 기능적 유도체도 본 발명의 범위에 포함될 수 있다.In some cases, the Gaussian luciferase variants of the present invention may have modifications that increase or decrease their physical and chemical properties such that phosphorylation, sulfation, acrylation, glycosylation, It can be modified by methylation, farnesylation, acetylation, amylation, and the like, and the bioluminescent activity of the Gaussian luciferase variant increased by this modification is substantially reduced. As long as it is maintained as such, functional derivatives may be included in the scope of the present invention.
다른 하나의 양태로서, 본 발명은 상기 가우시아 루시퍼라아제 변이체 서열을 코딩하는 폴리뉴클레오티드를 제공한다.In another aspect, the present invention provides a polynucleotide encoding the Gaussian luciferase variant sequence.
본 발명에서 용어 "폴리뉴클레오티드(polynucleotide)"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 상기 가우시아 루시퍼라아제 변이체 서열을 코딩(coding)하는 폴리뉴클레오티드이다.In the present invention, the term "polynucleotide" is a polymer of nucleotides in which nucleotide monomers are long chained by covalent bonds, and are DNA or RNA strands of a predetermined length or more, and are Gaussian luciferase variants. It is a polynucleotide encoding a sequence.
상기 가우시아 루시퍼라아제 변이체 서열을 코딩(coding)하는 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 가우시아 루시퍼라아제 변이체를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 상기 가우시아 루시퍼라아제 변이체의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 이에 제한되지는 않으나, 본 발명에서 가우시아 루시퍼라아제 변이체 서열을 코딩하는 폴리뉴클레오티드는 서열번호 15 내지 26의 염기서열 중 어느 하나의 염기서열을 갖는 폴리뉴클레오티드 일 수 있다.The polynucleotide encoding the Gaussian luciferase variant sequence may be modified by the degeneracy of the codon or in consideration of the codons preferred in the organism to express the Gaussian luciferase variant. Various modifications may be made to the coding region within the scope of not changing the amino acid sequence of the cya luciferase variant. Although not limited thereto, the polynucleotide encoding the Gaussian luciferase variant sequence may be a polynucleotide having any one of the nucleotide sequences of SEQ ID NOs: 15 to 26.
또 다른 하나의 양태로서, 본 발명은 상기 가우시아 루시퍼라아제 변이체 서열을 코딩하는 폴리뉴클레오티드가 작동 가능하게 연결된 재조합 벡터 및 상기 재조합 벡터가 도입된 형질전환체를 제공한다.In another aspect, the present invention provides a recombinant vector operably linked to a polynucleotide encoding the Gaussian luciferase variant sequence and a transformant into which the recombinant vector is introduced.
본 발명에서 용어 "재조합 벡터"는 숙주세포에 가우시아 루시퍼라아제 변이체를 코딩하는 DNA를 도입하여 가우시아 루시퍼라아제 변이체를 발현시키기 위한 수단을 말하며, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함한 통상의 모든 벡터를 사용할 수 있으며, 벡터는 DNA 재조합 기술을 이용한 임의의 공지된 방법에 따라 당업자가 용이하게 제조할 수 있다. As used herein, the term "recombinant vector" refers to a means for expressing a Gaussian luciferase variant by introducing DNA encoding a Gaussian luciferase variant into a host cell, and includes a plasmid vector, a cosmid vector, a bacteriophage vector and Any conventional vector can be used, including viral vectors and the like, and the vector can be readily prepared by those skilled in the art according to any known method using DNA recombination techniques.
상기 "작동 가능하게 연결된"은 발현 조절 서열이 가우시아 루시퍼라아제 변이체 서열을 코딩하는 폴리뉴클레오티드 서열의 전사 및 해독을 조절하도록 연결된 것을 말하며, 발현 조절 서열(프로모터 포함)의 조절하에 폴리뉴클레오티드 서열이 발현되어 폴리뉴클레오티드 서열에 의해 코딩되는 가우시아 루시퍼라아제 변이체가 생성되도록 정확한 해독 프레임을 유지시키는 것을 포함한다.Said "operably linked" refers to that expression control sequences are linked to regulate transcription and translation of the polynucleotide sequence encoding the Gaussian luciferase variant sequence, wherein the polynucleotide sequence is controlled under the control of the expression control sequence (including the promoter) Maintaining an accurate reading frame such that a Gaussian luciferase variant that is expressed and encoded by the polynucleotide sequence is produced.
본 발명에서 용어 "형질전환"은 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것을 의미하며, 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함된다.As used herein, the term "transformation" refers to introducing a gene into a host cell so that the gene can be expressed in the host cell, and the transformed gene can be expressed in the host cell, or inserted into a chromosome or chromosome of the host cell. Anything else located is included without limitation.
본 발명에서 제공하는 "형질전환체"는 상기 본 발명에서 제공하는 재조합 벡터를 숙주에 도입하여 형질전환시켜서 제작될 수 있다. 상기 형질전환은 다양한 방법에 의하여 수행될 수 있는데, 생물발광 신호를 증대시킬 수 있는 본 발명의 변이 가우시아 루시퍼라아제를 생산할 수 있는 한, 특별히 제한되지 않는다. The "transformer" provided in the present invention can be produced by introducing and transforming the recombinant vector provided in the present invention into a host. The transformation can be carried out by a variety of methods, as long as it can produce a mutant Gaussian luciferase of the present invention that can enhance the bioluminescence signal, it is not particularly limited.
또한, 상기 형질전환체의 제작에 사용되는 숙주 역시 본 발명의 변이 가우시아 루시퍼라아제를 생산할 수 있는 한, 특별히 이에 제한되지 않으며, 구체적으로는 에스케리키아(Escherichia) 속, 바실러스(Bacilus) 속, 슈도모나스 속(Pseudomonas), 랄스토니아(Ralstonia) 속 등의 박테리아 세포; 사카로마이세스 세레비지애(Saccharomycescerevisiae) 등의 효모 세포; 피치아 파스토리스(Pichia pastoris) 등의 균류 세포 등을 포함할 수 있다.In addition, the host used in the preparation of the transformant is also not particularly limited as long as it can produce the mutant Gaussian luciferase of the present invention, specifically Escherichia genus, Bacilus genus Bacterial cells such as Pseudomonas , Ralstonia , etc .; Yeast cells such as Saccharomyces cerevisiae ; Fungal cells such as Pichia pastoris , and the like.
상기 형질전환체는 또한 본 발명에서 제공하는 변이 가우시아 루시퍼라아제를 생산하기 위하여 사용될 수 있다. 구체적으로, 상기 형질전환체의 배양물 등으로부터 상기 변이 가우시아 루시퍼라아제를 수득할 수 있다.The transformant may also be used to produce the variant Gaussian luciferase provided by the present invention. Specifically, the mutant Gaussian luciferase can be obtained from the culture of the transformant.
상기 형질전환체를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다. 배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족하도록 한다.The method of culturing the transformant may be performed using a method well known in the art. Specifically, the culture may be continuously performed in a batch process or an injection batch or repeated fed batch process, but is not limited thereto. The medium used for the cultivation is adapted to meet the requirements of the specific strain in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
본 발명의 일실시예에 있어서, 가우시아 루시퍼라아제 변이체 서열을 코딩하는 유전자가 포함된 pETGLuc_SEP 발현(expression) 플라스미드 재조합 벡터를 E. coli 균주(strain) BL21 세포로 형질전환(transformation) 시키고, 이를 배양하여 생물발광 강도가 증진된 변이 가우시아 루시퍼라아제를 제조하였다(실시예 1-3).In one embodiment of the present invention, a pETGLuc_SEP expression plasmid recombinant vector containing a gene encoding a Gaussian luciferase variant sequence is transformed into an E. coli strain BL21 cell, which is then transformed. By culturing, mutant Gaussian luciferase with enhanced bioluminescence intensity was prepared (Examples 1-3).
또 다른 하나의 양태로서, 본 발명은 상기 형질전환체를 배양하고, 이의 배양물 또는 배양 상층액으로부터 가우시아 루시퍼라아제를 회수하는 단계를 포함하는, 생물발광 강도가 증진되도록 변이된 가우시아 루시퍼라아제의 제조방법을 제공한다.In another embodiment, the present invention is a Gaussian lucifer mutated to enhance bioluminescence intensity, comprising culturing the transformant and recovering Gaussian luciferase from its culture or culture supernatant. It provides a method for preparing a laase.
이때, 상기 생물발광 강도가 증진되도록 변이된 가우시아 루시퍼라아제를 회수하는 단계는 상기 배양물로부터 수득한 배양균체 또는 배양 상층액을 균체파쇄, 추출, 친화성크로마토그래피, 이온교환크로마토그래피, 겔여과 크로마토그래피, 소수성 크로마토그래피, 단백질 침전, 투석 등의 공지된 정제방법을 단독으로 또는 적당히 조합함으로써 수행될 수 있고, 회수된 목적 단백질의 확인은 SDS-PAGE, 웨스턴 블럿 등의 공지된 통상의 방법을 이용하여 수행될 수 있다.At this time, the step of recovering the mutated Gaussian luciferase to enhance the bioluminescence intensity is cell disruption, extraction, affinity chromatography, ion exchange chromatography, gel of the culture cells or culture supernatant obtained from the culture Known purification methods such as filtration chromatography, hydrophobic chromatography, protein precipitation, dialysis and the like can be carried out alone or as a suitable combination, and the identification of the desired protein recovered is known conventional methods such as SDS-PAGE, Western blot and the like. It can be performed using.
또 다른 하나의 양태로서, 본 발명은 상기 변이된 가우시아 루시퍼라아제를 포함하는 키트를 제공한다.In another aspect, the present invention provides a kit comprising the mutated Gaussian luciferase.
본 발명의 변이된 가우시아 루시퍼라아제는 야생형 가우시아 루시퍼라아제와 비교하여 향상된 발광성을 가지므로, 루시퍼라아제가 사용되어 왔던 종래의 분석 방법 또는 분석 키트에서 유용하게 사용될 수 있다. 루시퍼라아제는 발광 반응을 촉매하며, 그로 인해 발생하는 생물발광(bioluminescence)은 시험관 내(in vitro) 및 생체 내(in vivo) 생물학적 과정을 모니터링 하는데 이용될 수 있다.Since the modified Gaussian luciferase of the present invention has improved luminescence compared to wild type Gaussian luciferase, it can be usefully used in conventional assay methods or assay kits in which luciferase has been used. Luciferases catalyze luminescent reactions, and the resulting bioluminescence can be used to monitor biological processes in vitro and in vivo .
또한, 본 발명의 키트에는 루시페린이 추가로 포함될 수 있다. In addition, the kit of the present invention may further comprise luciferin.
상기 루시페린은, 이에 제한되지는 않으나, 천연형(native) 코엘렌테라진 또는 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진일 수 있다.The luciferin may be, but is not limited to, native coelenterazine or h -coelenterazine which is a 2-deoxy derivative of a natural form.
본 발명에서 용어 "루시페린(luciferin)"은 생물발광에 있어 루시페린(luciferin)-발광효소(luciferase)반응(L-L반응)을 나타내는 발광반응의 발광성 기질을 총칭하며, 종류로는 갯반디루시페린, 반디루시페린, 라티아루시페린, 코엘렌테라진 등이 있다. 발광성 효소 존재하에서 산소분자에 의해 산화되어 산화생성물(옥시루시페린)이 들뜬 상태에서 생성되며, 그것이 기저상태가 될 때에 가시광을 발생하는데 그 과정을 요약하면 루시페린+O2 → 옥시루시페린+광(光)이 된다. In the present invention, the term "luciferin" refers to a luminescent substrate of a luminescence reaction that exhibits a luciferin-luciferase reaction (LL reaction) in bioluminescence, and is a type of gadban di luciferin and bandidirushin. , Thiatia luciferin and coelenterazine. Oxygen is oxidized by oxygen molecules in the presence of luminescent enzymes to produce an oxidized product (oxyluciferin) in the excited state, and it generates visible light when it becomes the ground state. In summary, the process of luciferin + O 2 → do.
본 발명의 키트는 통상 이용되는 재료 및 방법으로 제조할 수 있다. 본 발명의 키트는 예를 들면 샘플 튜브, 플레이트, 키트 사용자에 대한 지시서, 용액(solution), 버퍼(buffer), 시약, 표준화를 위해서 적합한 샘플 또는 대조 샘플을 포함할 수 있다.Kits of the present invention can be prepared from materials and methods commonly used. Kits of the invention can include, for example, sample tubes, plates, instructions for kit users, solutions, buffers, reagents, samples suitable for standardization or control samples.
또 다른 하나의 양태로서, 본 발명은 상기 가우시아 루시퍼라아제 변이체 및 루시페린을 접촉시키는 단계를 포함하는, 생물발광 신호 측정방법을 제공한다.As another aspect, the present invention provides a method for measuring a bioluminescence signal comprising contacting the Gaussian luciferase variant and luciferin.
상기 가우시아 루시퍼라아제 변이체 및 루시페린은 전술한 바와 같다.The Gaussian luciferase variant and luciferin are as described above.
상기 "접촉"은 본 발명의 가우시아 루시퍼라아제 변이체와 루시페린을 동일한 반응계(reaction system)에 존재시키는 것을 의미하며, 예를 들어, 루시페린을 수용한 용기에 본 발명의 가우시아 루시퍼라아제 변이체를 첨가하는 것, 본 발명의 가우시아 루시퍼라아제 변이체를 수용한 용기에 루시페린을 첨가하는 것, 본 발명의 가우시아 루시퍼라아제 변이체와 루시페린을 혼합하는 것을 포함한다. 반응 조건으로서는 가우시아 루시퍼라아제를 이용한 발광 반응에 통상 이용되는 조건 또는 그에 준한 조건에서 수행될 수 있다(WO99/49019, J. Biol . Chem ., 279, 3212-3217 (2004) 등)."Contact" means that the Gaussian luciferase variant of the present invention and luciferin are present in the same reaction system. For example, the Gaussian luciferase variant of the present invention is placed in a container containing luciferin. Adding, adding luciferin to a container containing the Gaussian luciferase variant of the present invention, and mixing the Gaussian luciferase variant of the present invention with luciferin. The reaction conditions can be carried out under the conditions normally used for the luminescence reaction using Gaussian luciferase or under the same conditions (WO99 / 49019, J. Biol . Chem . , 279, 3212-3217 (2004) and the like).
상기 생물발광 신호 측정방법은, 본 발명의 가우시아 루시퍼라아제 변이체와 루시페린의 발광반응에 따른 발광량을 측정하는 단계를 포함할 수 있다. 상기 루시페린은, 이에 제한되지는 않으나, 천연형(native) 코엘렌테라진 또는 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진일 수 있다.The bioluminescent signal measuring method may include measuring a light emission amount according to the light emission reaction of the Gaussian luciferase variant of the present invention and luciferin. The luciferin may be, but is not limited to, native coelenterazine or h -coelenterazine which is a 2-deoxy derivative of a natural form.
구체적으로, 반응 용매로서는 Tris-HCl 완충액, NaCl 등의 완충액, 물 등이 이용될 수 있으며, 반응 온도는 통상 4 내지 40℃, 바람직하게는 4 내지 25℃일 수 있다. 반응용액의 pH는 통상 5 내지 10, 바람직하게는 6 내지 9, 보다 바람직하게는 7 내지 8일 수 있다.Specifically, as the reaction solvent, Tris-HCl buffer, buffer such as NaCl, water and the like may be used, and the reaction temperature may be 4 to 40 ° C, preferably 4 to 25 ° C. The pH of the reaction solution may be usually 5 to 10, preferably 6 to 9, more preferably 7 to 8.
본 발명의 일실시예에 있어서, 50mM Tris 및 50mM NaCl(pH 8.0)을 이용하여 본 발명의 가우시아 루시퍼라아제 변이체 및, 코엘렌테라진 또는 h-코엘렌테라진을 혼합하고, 플레이트 리더를 사용하여 생물발광 강도를 측정하였다(실시예 1-4).In one embodiment of the present invention, 50mM Tris and 50mM NaCl (pH 8.0) are used to mix the Gaussian luciferase variant of the present invention, coelenterazine or h -coelenterazine, and the plate reader Bioluminescence intensity was measured (Examples 1-4).
GLuc(Gaussia luciferase)는 세포 기반 리포터 분석(cell-based reporter assay)을 위해 가장 널리 사용되는 분비성 루시퍼라아제로, 다양한 종에서 유래되는 루시퍼라아제 중에서 크기가 가장 작아 다른 단백질과 결합시 단백질 구조의 영향을 최소화함으로써 효과적인 모니터링에 사용할 수 있는 장점을 가지고 있다. 그러나, 야생형(wild-type) GLuc의 경우 발광신호 크기가 충분하지 못한 단점을 가지고 있다. G Luc ( Gassia luciferase) is the most widely used secretory luciferase for cell-based reporter assays.It is the smallest of the luciferases from various species, and when combined with other proteins By minimizing the impact of the structure, it has the advantage of being used for effective monitoring. However, the wild-type G Luc has a disadvantage that the size of the light emission signal is not enough.
따라서, 본 발명은 가우시아 루시퍼라아제의 생물발광 신호 증폭에 있어서 중요한 역할을 하는 아미노산 잔기를 돌연변이 시킴으로써, 생물발광 신호가 향상된 변이 가우시아 루시퍼라아제를 제조할 수 있으며, 이를 세포 모니터링 및 신약 스크리닝 등에 유용하게 사용할 수 있다. Accordingly, the present invention can prepare a mutant Gaussian luciferase with improved bioluminescent signal by mutating amino acid residues that play an important role in amplifying the bioluminescent signal of Gaussian luciferase. It can be usefully used.
도 1은 본 발명의 일실시예에 따라 GLuc(Gaussia princeps Luciferase)와 다른 관련된 갑각류(copepod) 루시퍼라아제의 두 개의 반복된 촉매 도메인의 서열 정렬을 나타낸 도이다. 여기에서, 화살표는 돌연변이 유발(mutagenesis)을 위해 선택된 아미노산을 표시하여 나타낸 것이다.
도 2는 본 발명의 일실시예에 따라 (A) 천연형 코엘렌테라진(native coelenterazine)을 기질로 사용하여 측정한 GLuc 단일 돌연변이체의 상대적 생물발광 강도(bioluminescence intensity) 및 (B) h-코엘렌테라진(h-coelenterazine)을 기질로 사용하여 측정한 GLuc 단일 돌연변이체의 상대적 생물발광 강도를 나타낸 그래프이다.
도 3은 본 발명의 일실시예에 따라 (A) 천연형 코엘렌테라진(native coelenterazine)을 기질로 사용하여 측정한 GLuc 다중 돌연변이체(multiple mutant)의 상대적 생물발광 강도(bioluminescence intensity) 및 (B) h-코엘렌테라진(h-coelenterazine)을 기질로 사용하여 측정한 GLuc 다중 돌연변이체의 상대적 생물발광 강도를 나타낸 그래프이다.
도 4는 본 발명의 일실시예에 따라, 기질로서 사용한 (A) 천연형 코엘렌테라진(native coelenterazine) 및 (B) h-코엘렌테라진(h-coelenterazine)의 구조를 나타낸 도이다.1 is a GLuc ( Gaussia) according to an embodiment of the present invention. Figure shows the sequence alignment of two repeated catalytic domains of princeps Luciferase) and other related copepod luciferases. Here, the arrows indicate the amino acids selected for mutagenesis.
FIG. 2 shows the relative bioluminescence intensity and (B) h of G Luc single mutants measured using (A) native coelenterazine as a substrate according to one embodiment of the invention. It is a graph showing the relative bioluminescence intensity of G Luc single mutants measured using h- coelenterazine as a substrate.
FIG. 3 shows the relative bioluminescence intensity of G Luc multiple mutants measured using (A) native coelenterazine as a substrate according to one embodiment of the invention, and (B) h - a graph of the relative bioluminescence intensity of coelenterazine G Luc multiple mutants were measured by using as a substrate a (h -coelenterazine).
4 is used as a substrate (A) wild-type coelenterazine (native coelenterazine) and (B) h, in accordance with an embodiment of the present invention is a diagram showing the structure of coelenterazine (h -coelenterazine).
이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the configuration and effects of the present invention through the embodiments will be described in more detail. These examples are only for illustrating the present invention, but the scope of the present invention is not limited by these examples.
실시예Example 1: 실험 재료 준비 및 실험 방법 1: Preparation of Experimental Materials and Experimental Methods
실시예Example 1-1: 실험 재료 1-1: Experimental Materials
PCMV-GLuc(Gaussia princeps Luciferase) 플라스미드(plasmind)는 나노라이트 테크놀로지(Nanolight technology, USA)로부터 구입하였으며, 특이적 프라이머(primer)를 이용하여 클로닝(cloning) 하는데 사용하였다. 모든 프라이머는 마크로젠(Macrogen, Korea)에서 구입하였다. 천연형(native type) 코엘렌테라진(coelenterazine) 및 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진(h-coelenterazine)은 모두 나노라이트 테크놀로지(Nanolight technology, USA)로부터 구입하였다. 다른 모든 시약(reagents)은 상업적 출처에서 구입하였으며, 가장 높은 순도 등급을 가진 시약을 구입하여 사용하였다.PCMV- G Luc ( Gaussia The princeps Luciferase plasmid was purchased from Nanolight technology, USA and used for cloning with specific primers. All primers were purchased from Macrogen (Macrogen, Korea). Wild-type (native type) coelenterazine (coelenterazine), and h of 2- deoxy derivative (2-deoxy derivative) of the native-coelenterazine (h -coelenterazine) are both nano-Light Technologies (Nanolight technology, USA ). All other reagents were purchased from commercial sources and the reagents with the highest purity grade were purchased and used.
실시예Example 1-2: 1-2: 시퀀스sequence -가이드 돌연변이 유발(sequence-guided Sequence-guided mutagenesis mutagenesismutagenesis ))
먼저, 상대적인 갑각류의 루시퍼라아제(copepod luciferase) 서열을 확인하고자, GLuc(Gaussia princeps Luciferase; GenBank accession number_AAG54095.1; 서열번호 1) 아미노산 서열(amino acid sequence)을 이용하여 단백질-블라스트 검색(Protein-BLAST search)을 수행하였다. 블라스트 검색(BLAST search)으로부터 도출된 루시퍼라아제 서열(luciferase sequence)을 이용하여 다중 서열 정렬(multiple sequence alignment)을 수행하였고, 부위 특이적 돌연변이 유도(site-directed mutagenesis) 및 특성(characterization) 규명을 위해 매우 일치하는(highly consensus) 아미노산을 선택하였다. 루시퍼라아제 서열(luciferase sequences)에 대한 GenBank 수납 번호(accession number)는 다음과 같다; Metridia asymmetrica 1(MaLuc_1, BAN91823), M. asymmetric 2(MaLuc_2, BAN91824), Metridia curticauda 1(McLuc_1, BAN91825), M. curticauda 2(McLuc_2, BAN91826), Metridia pacifica 1(MpLuc_1, BAG48249), M. pacifica 2(MpLuc_2, BAG48250), Metridia okhotensis 1(MoLuc_1, BAM11213), M. okhotensis 2(MoLuc_2, BAL63033), Metridia longa 1(MlLuc_1, ABW06650), M. longa 2(MlLuc_2, AAR17541), Pleuromamma abdominalis 1(PaLuc_1, BAL63034), P. abdominalis 2(PaLuc_2, BAL63035), P. scutullata 1(PsLuc_1, BAN91827), P. scutullata 2(PsLuc_2, BAN91828), P. xiphias 1(PxLuc_1, BAN91832), P. xiphias 2(PxLuc_2, BAN91829), Lucicutia ovaliformis(LoLuc, BAN91831), Heterorhabdus tanneri 1(HtLuc_1, BAL63039), H. tanneri 2(HtLuc_2, BAL63040), Heterostylites major 1(HmLuc_1, BAL63041) 및 H. major 2(HmLuc_2, BAL63042).First, relative crustaceans To identify the luciferase sequence, G Luc ( Gaussia princeps Luciferase; GenBank accession number_AAG54095.1; SEQ ID NO: 1) Protein-Blast search was performed using an amino acid sequence. Multiple sequence alignments were performed using luciferase sequences derived from BLAST search, and site-directed mutagenesis and characterization were identified. Highly consensus amino acids were selected. GenBank accession numbers for luciferase sequences are as follows; Metridia asymmetrica 1 (MaLuc_1, BAN91823) , M. asymmetric 2 (MaLuc_2, BAN91824), Metridia curticauda 1 (McLuc_1, BAN91825), M. curticauda 2 (McLuc_2, BAN91826), Metridia pacifica 1 (MpLuc_1, BAG48249), M. pacifica 2 (MpLuc_2, BAG48250), Metridia okhotensis 1 (MoLuc_1, BAM11213), M. okhotensis 2 (MoLuc_2, BAL63033), Metridia longa 1 (MlLuc_1, ABW06650), M. longa 2 (MlLuc_2, AAR17541) _1 Pleuromamma abdominalis , BAL63034), P. abdominalis 2 (PaLuc_2, BAL63035), P. scutullata 1 (PsLuc_1, BAN91827), P. scutullata 2 (PsLuc_2, BAN91828), P. xiphias 1 (PxLuc_1, BAN91832uc_2, P. xiphias 2 (Px xiphias 2) , BAN91829), Lucicutia ovaliformis (LoLuc, BAN91831), Heterorhabdus tanneri 1 (HtLuc_1, BAL63039), H. tanneri 2 (HtLuc_2, BAL63040), Heterostylites major 1 (HmLuc_1, BAL63041) and H. major 2 (HmLuc_2, BAL63042).
부위 특이적 돌연변이 유도(site-directed mutagenesis)는 C-말단(C-terminal)에 SEP-태그(tag)를 갖는 GLuc 유전자(gene)를 운반하는 pETGLuc-SEP 플라스미드(plasmid)를 사용하여 수행하였다. pETGLuc-SEP는 시판중인 PCMV-GLuc 벡터(vector)로부터 GLuc 서열(sequence)을 클로닝(cloing)하여 제조하였다. PCR을 수행하여, T. Rathnayaka et.al., Biochim . Biophys . Acta ., 1814, 1775-1778 (2011)에 기재되어 있는 방법에 따라 용해도(solubility)를 증가시키기 위해 C-말단(C-terminus)에 SEP-태그(SEP-tag; 6개의 Asp 잔기(Aspartic acid residues)) 서열을 첨가하고, 결과적으로 생성된 GLuc-SEP를 pET-28 벡터(vector)로 클로닝(cloning) 하였다. 모든 야생형(wild-type) 및 돌연변이체(mutant)의 서열(sequence)은 마크로젠(Macrogen, Korea)의 시퀀싱 서비스(sequencing service)를 이용하여 분석하였다.Site-directed mutagenesis was performed using the pETGLuc-SEP plasmid carrying the G Luc gene with the SEP-tag at the C-terminal. . pETGLuc-SEP was prepared by cloning the G Luc sequence from a commercial PCMV-GLuc vector. PCR was performed to determine T. Rathnayaka et.al. , Biochim . Biophys . Acta . SEP-tag at the C-terminus to increase solubility according to the method described in, 1814, 1775-1778 (2011), 6 Asp residues (Aspartic acid residues) ) Was added, and the resulting GLuc-SEP was cloned into the pET-28 vector. The sequences of all wild-type and mutant were analyzed using sequencing services of Macrogen, Korea.
실시예Example 1-3: 1-3: GG LucLuc (( GaussiaGaussia princepsprinceps LuciferaseLuciferase ) 돌연변이체의 발현 및 정제Expression and Purification of Mutants
E. coli 균주(strain) BL21 세포로 pETGLuc_SEP 발현(expression) 플라스미드를 형질전환(transformation) 시키고, 500 g/㎖의 카나마이신(kanamycin)이 포함되어 있는, 250㎖의 LB 배지(Luria-Bertani broth)를 이용하여 600nm에서 OD(optical density) 값이 0.7에 도달할 때까지 상기 형질전환시킨 균주(bacteria)를 37℃에서 배양하였다. 0.5 mM IPTG를 첨가하여 단백질 발현을 유도하고, 25℃에서 5시간 더 배양하였다. 세포를 7000 rpm에서 10분간 원심분리하여 수확(harvest)하였다.Transformation of the pETGLuc_SEP expression plasmid into E. coli strain BL21 cells, and 250 ml LBa medium (Luria-Bertani broth) containing 500 g / ml kanamycin The transformed bacteria were incubated at 37 ° C. until the optical density (OD) value reached 0.7 at 600 nm. 0.5 mM IPTG was added to induce protein expression and further incubated at 25 ° C. for 5 hours. Cells were harvested by centrifugation at 7000 rpm for 10 minutes.
상기 수확된 세포 펠렛(pellet)은 12.5㎖의 용해 버퍼(lysis buffer; 50mM Tris, 300mM NaCl, 1 ㎎/㎖ 라이소자임(lysozyme), 1mM PMSF(phenylmethylsulfonyl fluoride) 및 0.5 % Triton X-100, pH 8.0)로 재현탁(resuspension) 시키고, 초음파처리(ultrasonication)하여 파쇄하였다. 상기 파쇄한 조세포 추출물(crude cell extract)을 14,000 rpm에서 20분간 원심분리하고, 상층액(supernatant)을 여과하여, 1㎖의 Ni-NTA 비드(bead)와 4℃에서 1시간 동안 쉐이킹(shaking) 하면서 인큐베이션(incubation) 하였다. 통과액(flow-through)을 제거하고 비드를 세척 버퍼(wash buffer; 50mM Tris, 300mM NaCl 및 20mM 이미다졸(imidazole), pH 8.0)로 3회 세척하였다. 세척 버퍼 내 이미다졸의 농도를 0 내지 0.5M로 하여 결합된 단백질, 즉 가우시아 루시퍼라아제를 선형 구배(linear gradient)로 용출(elution)시켰다. 발현된 단백질, 즉 가우시아 루시퍼라아제를 포함하는 분획(fraction)을 투석(dialysis)하고, 50mM Tris 및 50mM NaCl(pH 8.0)로 농축(concetration)시켰다. 돌연변이 단백질(mutant protein) 또한 유사한 방법으로 정제하였다. The harvested cell pellet was 12.5 ml lysis buffer (50mM Tris, 300mM NaCl, 1mg / ml lysozyme), 1mM phenylmethylsulfonyl fluoride (PMSF) and 0.5% Triton X-100, pH 8.0) The cells were resuspended and sonicated and crushed. The crushed crude cell extract was centrifuged at 14,000 rpm for 20 minutes and the supernatant was filtered, shaking with 1 ml of Ni-NTA beads for 1 hour at 4 ° C. Incubation was performed. The flow-through was removed and the beads washed three times with wash buffer (50 mM Tris, 300 mM NaCl and 20 mM imidazole, pH 8.0). The bound protein, ie Gaussian luciferase, was eluted with a linear gradient with an imidazole concentration in the wash buffer of 0-0.5M. Fractions containing the expressed protein, namely Gaussian luciferase, were dialysis and concentrated with 50 mM Tris and 50 mM NaCl, pH 8.0. Mutant proteins were also purified in a similar manner.
실시예Example 1-4: 1-4: GG LucLuc (( GaussiaGaussia princepsprinceps LuciferaseLuciferase ) 돌연변이체의 특성 평가) Characterization of Mutants
생물발광 분석(bioluminescence assay)은 정제한 GLuc 단백질(GLuc protein)과 코엘렌테라진(coelenterazine) 기질(substrate)이 포함되어 있는, 100㎕의 50mM Tris 및 50mM NaCl(pH 8.0)를 이용하여 수행하였다. 간단히, 천연형(native type) 코엘렌테라진(coelenterazine) 또는 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진(h-coelenterazine) 용액(solution) 50㎕를 각각 정제한 GLuc 50㎕(최종 농도 250 nM)와 혼합하고, 플레이트 리더(plate reader)를 사용하여 400-600 nm 파장에서 생물발광 강도(bioluminescence intensity)를 즉시 측정하였다. 생물발광 강도 분석(analysis)을 위해 482 nm(최대 강도 파장(maximum intensity wavelength), λmax)에서 돌연변이 단백질(mutant protein) 강도를 야생형(wild-type)과 비교하고, 추가 특성 분석을 위해 생물발광 강도가 증폭된 후보물질(candidate)을 선택하였다.Bioluminescence assay was performed using 100 μl of 50 mM Tris and 50 mM NaCl (pH 8.0) containing purified G Luc protein and coelenterazine substrate. It was. Briefly, wild-type (native type) coelenterazine (coelenterazine), or native-type of the 2-deoxy derivatives (2-deoxy derivative) is h - a coelenterazine (h -coelenterazine) solution (solution) 50㎕ each 50 μl of purified G Luc (final concentration 250 nM) was mixed and bioluminescence intensity was immediately measured at 400-600 nm wavelength using a plate reader. Compare mutant protein intensity with wild-type at 482 nm (maximum intensity wavelength, λ max ) for bioluminescence intensity analysis, and bioluminescence for further characterization Candidates with increased intensity were selected.
실시예Example 2: 2: GG LucLuc (( GaussiaGaussia princepsprinceps LuciferaseLuciferase ) 돌연변이체의 선정 및 정제) Selection and Purification of Mutants
널리 사용되고 있음에도 불구하고, GLuc의 주요 구조 및 기능적 특징은 여전히 잘 알려져 있지 않다. 개별적으로 발현될 때 활성화되는, 2개의 반복된 촉매 도메인(repeated catalytic domain)의 존재가 GLuc에서 확인되었다(S. Inouye. et.al., Biochem . Biophys . Res. Commun ., 365: 96-101, 2008). 소수성 검색(hydrophobicity search)을 사용하여 GFP(green fluorescent protein)와 코엘렌테라진(coelenterazine)의 발색단 영역(chomophore region)의 서열 유사성(sequence similarity)을 비교함에 따라, GLuc의 활성 사이트(active site)가 친수성 도메인(hydrophilic domain)인 아미노산(amino acid) 71-140 사이에 위치하고 있는 것으로 가설화 되었다. 또한, 생물발광 강도가 향상된 몇 가지 돌연변이(I90L(90번째의 Isoleucine을 Leucine으로 치환) 및 8990)를 제안하였다(S.B. Kim et.al., Anal. Chem ., 83: 8732-8740, 2011). 최근, GLuc에 관한 분자 방향성 진화(molecular directed evolution; 특정 유전자나 단백질의 효능을 향상) 연구 또한 글로우 타입(glow-type)의 발광(light emission) 동역학(kinetics)을 나타내는 돌연변이체(M60I(60번째의 Methionine을 Isoleucine으로 치환))를 보고하였다(C.A. Maguire et.al., Anal. Chem ., 81: 7102-7106, 2009; M.H. Degeling et.al., Anal. Chem ., 85: 3006-3012, 2013). 이러한 연구에서 모든 돌연변이는 첫 번째 도메인(domain)에만 국한되었으며, 두 번째 도메인에서 상응(corresponding)하는 아미노산을 돌연변이 시키면 추가적인 효과가 없는 것으로 보고되었다(M.H. Degeling et.al., Anal. Chem ., 85: 3006-3012, 2013).Despite its widespread use, the major structural and functional features of G Luc are still unknown. The presence of two repeated catalytic domains, activated when expressed individually, was identified in G Luc (S. Inouye. Et.al. , Biochem . Biophys . Res. Commun . , 365: 96- 101, 2008). By using hydrophobicity search to compare the sequence similarity of the chomophore region of GFP (green fluorescent protein) and coelenterazine, the active site of G Luc ) Is located between 71-140 amino acid, a hydrophilic domain. In addition, several mutations (I90L (the 90th Isoleucine replaced with Leucine) and 8990) with enhanced bioluminescence intensity were proposed (SB Kim et . Al . , Anal. Chem . , 83: 8732-8740, 2011). Recently, molecular directed evolution studies on G Luc also improved the mutants (M60I (60) that exhibit glow-type light emission kinetics. It reported the substitution of Methionine as a second Isoleucine)) (CA Maguire et.al., Anal Chem, 81: 7102-7106, 2009; MH Degeling et.al., Anal Chem, 85:.... 3006-3012 , 2013). In these studies, all mutations were confined to the first domain, and it was reported that mutating the corresponding amino acids in the second domain had no additional effect (MH Degeling et.al. , Anal. Chem . , 85) . : 3006-3012, 2013).
이에, 본 발명자들은 GLuc의 블라스트 검색(BLAST-search)을 사용하여 기능 연구를 계속하였으며, ~37-73%의 동일성(identity)을 지닌 21종의 갑각류(copepod) 계통(family)으로부터 밀접하게 관련된 루시퍼라아제(luciferase)를 확인하였다(도 1). GLuc(Gaussia princeps Luciferase)와 관련된 갑각류(copepod) 루시퍼라아제(luciferase)의 다중 서열 정렬(multiple sequence alignment)을 통해 몇몇 고도로 보존되고 일치된 위치(consensus position)가 나타남을 확인하였다(도 1). 또한, 첫 번째 반복된 도메인(27-97)에 초점을 맞추었으며, 일치된 위치(consensus position)를 돌연변이 유발(mutagenesis)을 위한 위치(하기 도 1에 화살표로 표시)로 선정하였다. 박테리아 발현 시스템(bacterial expression system)에서 GLuc의 발현은 5개의 이황화 결합(five-disulfide bonds) 형성에 의해 저해되는 것으로 알려져 있다. GLuc에 존재하는 10개의 시스테인 잔기(cysteine residues)는 5개의 이황화 결합을 형성하는 것으로 알려져 있으며, 갑각류(copepod)의 루시퍼라아제(luciferase) 중 가장 높게 보존되는 것으로 밝혀졌다. 이러한 시스테인 잔기의 돌연변이가 Gluc 활성의 유의적인 손실을 일으키는 것으로 알려져 있다(A.R. Goerke et.al., Metab. Eng., 10: 187-200, 2008).Thus, we continued the functional study using G Luc's BLAST-search and closely from 21 copepod families with ~ 37-73% identity. Related luciferases were identified (FIG. 1). G Luc ( Gaussia Multiple sequence alignments of the copepod luciferase associated with princeps Luciferase confirmed that several highly conserved and consensus positions appeared (FIG. 1). In addition, the focus was on the first repeated domains 27-97 and the consensus position was chosen as the position for mutagenesis (indicated by the arrow in FIG. 1 below). The expression of G Luc in bacterial expression systems is known to be inhibited by the formation of five disulfide bonds. Ten cysteine residues present in G Luc are known to form five disulfide bonds and have been found to be the most conserved of luciferases in crustacean (copepods). Mutations of these cysteine residues are known to cause significant loss of G luc activity (AR Goerke et . Al . , Metab. Eng. , 10: 187-200, 2008).
박테리아 시스템(bacterial system)에서 GLuc의 수용성 발현(soluble expression) 및 정제를 향상시키기 위한 몇 가지 시도가 수행되었다(T. Rathnayaka et.al., Biochim . Biophys . Acta ., 1814: 1775-1778, 2011; A.R. Goerke et.al., Metab. Eng ., 10: 187-200, 2008; T. Rathnayaka et.al., Biochim . Biophys . Acta., 1804: 1902-1907, 2010). 그 중에서 Rathnayaka T 등은 C-말단(C-terminus)에 SEP-태그(SEP-tag; 9개의 아스파트산(Aspartic acid, Asp) 잔기)를 삽입하여 수용성 발현을 현저하게 증가시킨다고 보고하였다(T. Rathnayaka et.al., Biochim . Biophys. Acta ., 1814: 1775-1778, 2011). Several attempts have been made to improve the soluble expression and purification of G Luc in bacterial systems (T. Rathnayaka et.al. , Biochim . Biophys . Acta . , 1814: 1775-1778, 2011; AR Goerke et.al., Metab Eng , 10: 187-200, 2008; T. Rathnayaka et.al., Biochim Biophys Acta, 1804:..... 1902-1907, 2010). Among them, Rathnayaka T et al. Reported that the insertion of SEP-tag (SEP-tag; 9 Aspartic acid (Asp) residues) at the C-terminus significantly increased water-soluble expression (T . Rathnayaka et.al., Biochim Biophys Acta, 1814:... 1775-1778, 2011).
이에, 본 발명자들은 C-말단(C-terminus)에 6개의 아스파트산(Aspartic acid, Asp) 잔기가 있는 GLuc를 PET-28 벡터(vector)에 클로닝(cloning) 하여 발현(expression) 및 돌연변이 유발(mutagenesis)에 사용하였다. 돌연변이 유발은 pET-GLuc_SEP로 수행한 다음, 모든 서열(sequence)이 적합하다는 것을 확인하였다. SEP-태그(SEP-tag)의 포함은 E. coli 세포에서 GLuc의 수용성 발현을 이끌어 내었다. 야생형(wild-type) 단백질과 돌연변이(mutant) 단백질의 정제는 T. Rathnayaka et.al., Biochim . Biophys . Acta ., 1814, 1775-1778 (2011)에 기재되어 있는 방법에 따라 수행하였다. 간단히, 250㎖의 세포 펠렛(pellet)을 초음파 처리(sonication) 하여 용해 버퍼(lysis buffer)로 용해시키고, 원심분리 후 상층액(supernatant)은 Ni-NTA 컬럼(column)에 로딩(loading)하였다. 컬럼을 세척 버퍼(wash buffer)로 세척하고, 결합된 단백질을 이미다졸(imidazole) 농도 구배(gradient)로 용출(elution)시켰다. 단백질 함유 분획(fraction)을 투석(dialysis)하고, 10% 글리세롤(glycerol)로 농축하여 이후 사용하였다. SDS-PAGE(Sodium Dodecyl Sulfate Poly Acrylamide Gel Electrophoresis) 겔에서 관찰 된 정제된 GLuc의 분자량(molecular weight)은 ~ 24 kDa으로, 서열(sequence)에서 계산된 분자량과 유사하였다. 평균 수율은 7.0 mg/ℓ이었다. 야생형과 마찬가지로, 모든 돌연변이 단백질(mutant protein) 또한 수용성 형태(soluble form)로 발현되었으며, 고순도로 정제되었다.Accordingly, the present inventors cloned G Luc having six aspartic acid (Asp) residues at the C-terminus into a PET-28 vector to express and mutate. Used for mutagenesis. Mutagenesis was performed with pET- G Luc_SEP and then confirmed that all sequences were suitable. Inclusion of SEP-tag elicited water-soluble expression of G Luc in E. coli cells. Purification of wild-type and mutant proteins is described by T. Rathnayaka et.al. , Biochim . Biophys . Acta . , 1814, 1775-1778 (2011). Briefly, 250 ml of cell pellets were sonicated and lysed in lysis buffer, and after centrifugation, the supernatant was loaded onto a Ni-NTA column. The column was washed with wash buffer and the bound protein was eluted with an imidazole concentration gradient. The protein containing fractions were dialysis, concentrated to 10% glycerol and subsequently used. The molecular weight of the purified G Luc observed on SDS-PAGE (Sodium Dodecyl Sulfate Poly Acrylamide Gel Electrophoresis) gel was ~ 24 kDa, similar to the molecular weight calculated from the sequence. The average yield was 7.0 mg / l. Like the wild type, all mutant proteins were expressed in soluble form and purified to high purity.
실시예Example 3: 단일 돌연변이체(single mutant)의 특성 평가 3: Characterization of single mutants
모든 발광(luminescence) 측정은 250 nM의 루시퍼라아제(luciferase)가 포함되어 있는 100㎕의 반응 버퍼(reaction buffer; 50mM Tris 및 50 mM NaCl, pH 8.0)로 Thermo Scientific™ Varioskan™ Flash Multimode Reader를 사용하여 수행하였다. 먼저, 250 nM의 야생형 단백질과 돌연변이 단백질을 100㎕의 반응 버퍼(reaction buffer)에 준비하였다. 발광 강도(luminescence intensity)는 1㎕의 천연형(native type) 코엘렌테라진(coelenterazine)을 첨가한 직후 400-600 nm 파장 사이에서 측정하였다. All luminescence measurements were performed using the Thermo Scientific ™ Varioskan ™ Flash Multimode Reader with 100 μl of reaction buffer (250 mM Tris and 50 mM NaCl, pH 8.0) containing 250 nM luciferase. It was performed by. First, 250 nM of wild type protein and mutant protein were prepared in 100 μl of reaction buffer. Luminescence intensity was measured between 400-600 nm wavelength immediately after addition of 1 μl of native type coelenterazine.
상기 실시예 2에서 선정한 돌연변이체들(mutants)의 발광 강도를 측정한 결과, 그 중, 5개의 돌연변이체(mutant) M60L(GLuc의 60번째 위치의 메티오닌(Methionine, M)을 류신(Leucine, L)으로 치환), K88Q(GLuc의 88번째 위치의 리신(Lysine, K)을 글루타민(Glutamine, Q)으로 치환), F89Y(GLuc의 89번째 위치의 페닐알라닌(Phenylalanine, F)을 타이로신(Tyrosine, Y)으로 치환), I90L(GLuc의 90번째 위치의 이소류신(Isoleucine, I)을 류신(Leucine, L)으로 치환) 및 S103T(GLuc의 103번째 위치의 세린(Serine, S)을 트레오닌(Threonine, T)으로 치환)의 발광 강도가 야생형(wild-type) GLuc보다 약 2-7배 증폭된 강도를 나타내었다(도 2의 A). 특히, 5개의 후보 돌연변이체(mutant) 중, K88Q 및 M60L이 가장 높은 발광 강도 증진 효과를 나타내었다. GLuc의 60번째 위치(M60)에서 이소류신(Isoleucine, I)의 치환(M60I)은, Triton X-100의 존재하에서, 2.4분(야생형)에서 9.1분까지 연장된 발광(light emission) 반감기(half life)를 나타내는 것으로 알려져 있다(C.A. Maguire. et.al., Anal. Chem ., 81: 7102-7106, 2009). F89W와 I90L은 또한 GLuc에서 생물발광(bioluminescence) 향상에 대해 이전에 보고된 바 있다(S.B. Kim et.al., Anal. Chem ., 83: 8732-8740, 2011). 비교를 위해, 482 nm(λmax)에서의 야생형 GLuc의 강도(intensity)를 1로 간주하였다. As a result of measuring the luminescence intensity of the mutants selected in Example 2, five mutants M60L (Methionine (M) at the 60th position of G Luc) leucine (Leucine, L)), K88Q (Lysine, K in G Luc at position 88 to Glutamine, Q), F89Y (Phenylalanine (F) at position 89 in G Luc) Tyrosine, Y)), I90L (Isoleucine, I) at position 90 in G Luc with leucine (L)) and S103T (Serine, S) at position 103 in G Luc The luminescence intensity of threonine (substituted with Th) was about 2-7 times amplified than wild-type G Luc (FIG. 2A). In particular, of the five candidate mutants, K88Q and M60L showed the highest luminescence intensity enhancing effect. The substitution of isoleucine (I) (M60I) at the 60th position (M60) of G Luc is a light emission half-life extending from 2.4 minutes (wild type) to 9.1 minutes in the presence of Triton X-100. life) (CA Maguire. et.al. , Anal. Chem . , 81: 7102-7106, 2009). F89W and I90L have also been previously reported for bioluminescence enhancement in G Luc (SB Kim et . Al . , Anal. Chem . , 83: 8732-8740, 2011). For comparison, the intensity of wild type G Luc at 482 nm (λ max ) was considered 1.
또한, 상기 실시예 2에서 선정한 돌연변이체들(mutants)의 발광 강도를 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진(h-coelenterazine)을 기질로 하여 측정해 본 결과, 5개의 돌연변이체(mutant) M60L, K88Q, F89Y, I90L 및 S103T의 발광 강도가 천연형(native type) 코엘렌테라진(coelenterazine)을 기질로 사용한 경우와 마찬가지로 야생형(wild-type) GLuc보다 증폭된 강도를 나타내었다(도 2의 B). 그러나, 야생형 및 돌연변이형 루시퍼라아제 모두 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진(h-coelenterazine) 보다 천연형(native type) 코엘렌테라진(coelenterazine)을 기질로 사용한 경우 상대적으로 훨씬 더 높은 발광 강도를 나타내었다.Further, the second embodiment of the selection of mutants (mutants) of the emission intensity h 2- deoxy derivative (2-deoxy derivative) of the wild-type in-year measured by the coelenterazine (h -coelenterazine) substrate As a result, the luminescence intensity of the five mutants M60L, K88Q, F89Y, I90L and S103T was wild-type G as in the case of using native type coelenterazine as a substrate. Amplified intensity over Luc is shown (FIG. 2B). However, wild-type and mutant-type luciferase of both wild-type 2-deoxy derivative (2-deoxy derivative) is h - coelenterazine (h -coelenterazine) than wild-type (native type) coelenterazine (coelenterazine) When used as a substrate showed a relatively much higher emission intensity.
(individual mutant)(individual mutant)
(native-type coelenterazine)Natural Coelenterazine
(native-type coelenterazine)
(h-coelenterazine) h -coelenterazine
( h -coelenterazine)
실시예Example 4: 다중 돌연변이체(multiple 4: multiple mutants mutnatmutnat )의 특성 평가Evaluation of
상기 실시예 3에서 분석한 M60L, K88Q, F89Y, I90L 및 S103T의 단일 돌연변이체의 발광 강도 증폭 효과에 대해 더 입증하고자, 상기 돌연변이에 대해 다양한 조합(combination)을 구축하여 평가하였다(도 3). To further demonstrate the luminescence intensity amplification effect of single mutants of M60L, K88Q, F89Y, I90L and S103T analyzed in Example 3 above, various combinations were constructed and evaluated for the mutations (FIG. 3).
천연형(native type) 코엘렌테라진(coelenterazine)을 기질로 사용한 경우, 트리플 돌연변이체(triple mutant; M60L-K88Q-I90L)는 테스트한 조합 중 가장 높은 발광 강도(~ 7배)를 나타내었는데, 이는 단일 돌연변이 K88Q보다 약간 높은 발광 강도 값을 나타내었다(도 3의 A). 한편, 상기 5개의 모든 돌연변이(M60L, K88Q, F89Y, I90L 및 S103T)를 포함하는 GLuc_5 돌연변이는 야생형(wild-type) GLuc와 비교하여 약 3배 증가된 발광 활성을 나타내었다(도 3의 A). 또한, 다중 돌연변이(multiple mutation) 발광 강도 값이 단일 돌연변이(single mutation) 발광 강도 값, 예컨대, M60L 및 K88Q 단일 돌연변이체 발광 강도 값보다 다소 감소하는 경우도 확인되었다(도 3의 A). 특히, 모든 다중 돌연변이(multiple mutation)는 천연형의 2-디옥시 유도체(2-deoxy derivative)인 h-코엘렌테라진(h-coelenterazine)을 기질로 사용한 경우, 단일 돌연변이(individual mutation)보다 현저하게 우수한 발광 활성이 향상됨을 확인하였다(도 3의 B). K88Q-I90L 및 K88Q-I90L-S103T 조합(combination)으로부터 보통의 발광 활성 증가가 확인되었으며, M60L(GLuc의 60번째 위치의 메티오닌(Methionine, M)을 류신(Leucine, L)으로 치환)를 포함한, 모든 다중 돌연변이체(multiple mutants)는 천연형(native type) 코엘렌테라진(coelenterazine) 보다 h-코엘렌테라진(h-coelenterazine)을 기질로 사용한 경우에 발광 강도가 현저하게 증가되었다. 이를 통해, M60L의 조합이 중요한 발광 활성 증폭을 위한 주요 돌연변이(key mutation)인 것으로 확인되었다(도 3의 B). 특히, h-코엘렌테라진(h-coelenterazine)을 기질로 사용한 경우, 상기 5개의 모든 돌연변이(M60L, K88Q, F89Y, I90L 및 S103T)를 포함하는 GLuc_5 돌연변이는 야생형(wild-type) GLuc와 비교하여 약 29배 더 높은 발광 활성을 나타내었다(도 3의 B). 하기 도 4에 나타난 바와 같이, 천연형 코엘렌테라진(native coelenterazine)과 h-코엘렌테라진(h-coelenterazine) 간의 유일한 차이가 천연형에 -OH기(-OH group)가 추가된 점을 고려해 볼 때, 돌연변이 된 부위가 기질 특이성(substrate specificity)에 있어서 중요하며, 따라서, 생물발광 강도 증폭에 있어서도 중요한 역할을 함을 알 수 있었다. 다른 루시퍼라아제(luciferase)와 달리, GLuc는 코엘렌테라진 유도체(coelenterazine derivative)에 대한 좁은 기질 특이성(narrow substrate specificity)을 나타내는 것으로 알려져 있다(S. Inouye et.al., Protein. Expr . Purif., 88: 150-156, 2013). 천연형 코엘렌테라진(native coelenterazine)에 의해서는 아니지만, h-코엘렌테라진(h-coelenterazine)에 의한 GLuc_5(M60L-K88Q-F89Y-I90L-S103T)의 강력한 생물 발광(bioluminescence)의 증폭은 천연형 코엘렌테라진(native coelenterazine)과 다른 코엘렌테라진 유사체(analogue) 간에 GLuc의 기질 특이성이 높음을 의미한다. 또한, 이전에 보고된 바 있는 소수성 검색(hydrophobicity search)을 기반으로 아미노산(amino acid) 71-140 사이에 GLuc 활성 사이트(active site)가 존재함에 대한 가설을 상기 결과를 통해 재입증하였다(S.B. Kim et.al., Anal. Chem ., 83: 8732-8740, 2011).When using native type coelenterazine as a substrate, the triple mutant (M60L-K88Q-I90L) showed the highest luminescence intensity (˜7-fold) of the tested combinations. This showed a slightly higher luminescence intensity value than the single mutant K88Q (FIG. 3A). On the other hand, the G Luc_5 mutation, which includes all five mutations (M60L, K88Q, F89Y, I90L, and S103T), exhibited about 3-fold increased luminescent activity compared to wild-type G Luc (FIG. 3). A). In addition, it was also confirmed that the multiple mutation emission intensity value was slightly reduced than the single mutation emission intensity value, such as the M60L and K88Q single mutant emission intensity values (FIG. 3A). In particular, all multiple mutations (multiple mutation) is a h-deoxy derivative 2- (2-deoxy derivative) of wild-type - significantly greater than when using a coelenterazine (h -coelenterazine) as a substrate, a single mutation (individual mutation) It was confirmed that excellent luminescent activity was improved (B of FIG. 3). Moderate increase in luminescent activity was confirmed from K88Q-I90L and K88Q-I90L-S103T combinations, including M60L (substituting methionine (M) at
(multiple mutant)(multiple mutant)
(native-type coelenterazine)Natural Coelenterazine
(native-type coelenterazine)
(h-coelenterazine) h -coelenterazine
( h -coelenterazine)
(Met60Leu-Lys88Gln)M60L-K88Q
(Met60Leu-Lys88Gln)
(Met60Leu-Ile90Leu)M60L-I90L
(Met60Leu-Ile90Leu)
(Lys88Gln-Ile90Leu)K88Q-I90L
(Lys88Gln-Ile90Leu)
(Met60Leu-Lys88Gln-Ile90Leu)M60L-K88Q-I90L
(Met60Leu-Lys88Gln-Ile90Leu)
(Met60Leu-Lys88Gln-Ser103Thr)M60L-K88Q-S103T
(Met60Leu-Lys88Gln-Ser103Thr)
(Lys88Gln-Ile90Leu-Ser103Thr)K88Q-I90L-S103T
(Lys88Gln-Ile90Leu-Ser103Thr)
(Met60Leu-Lys88Gln-Ile90Leu-
Ser103Thr)M60L-K88Q-I90L-S103T
(Met60Leu-Lys88Gln-Ile90Leu-
Ser103Thr)
(M60L-K88Q-F89Y-I90L-S103T; Met60Leu-Lys88Gln-Phe89Try-
Ile90Leu-Ser103Thr)Gluc_5
(M60L-K88Q-F89Y-I90L-S103T; Met60Leu-Lys88Gln-Phe89Try-
Ile90Leu-Ser103Thr)
<110> HANYANG HAK WON CO LTD <120> Mutant Gaussia luciferase with enhanced bioluminescence intensity <130> P17U10C0207 <160> 26 <170> KoPatentIn 3.0 <210> 1 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_wild type <400> 1 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 2 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L <400> 2 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 3 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_K88Q <400> 3 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 4 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_F89Y <400> 4 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Tyr Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 5 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_I90L <400> 5 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 6 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_S103T <400> 6 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 7 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_K88Q <400> 7 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 8 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_I90L <400> 8 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 9 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_K88Q_I90L <400> 9 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 10 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_K88Q_I90L <400> 10 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 11 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_K88Q_I90L_S103T <400> 11 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 12 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_K88Q_I90L_S103T <400> 12 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 13 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_5 <400> 13 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Tyr Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 14 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_wilde type <400> 14 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 15 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L <400> 15 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 16 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_K88Q <400> 16 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 17 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_F89Y <400> 17 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagtacatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 18 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_I90L <400> 18 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 19 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_S103T <400> 19 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 20 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_K88Q <400> 20 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 21 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_I90L <400> 21 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 22 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_K88Q_I90L <400> 22 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 23 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_K88Q_I90L <400> 23 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 24 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_K88Q_I90L_S103T <400> 24 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 25 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_K88Q_I90L_S103T <400> 25 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 26 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_5 <400> 26 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagtacctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <110> HANYANG HAK WON CO LTD <120> Mutant Gaussia luciferase with enhanced bioluminescence intensity <130> P17U10C0207 <160> 26 <170> KoPatentIn 3.0 <210> 1 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_wild type <400> 1 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 2 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L <400> 2 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 3 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_K88Q <400> 3 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 4 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_F89Y <400> 4 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Tyr Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 5 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_I90L <400> 5 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 6 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_S103T <400> 6 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 7 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_K88Q <400> 7 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Ile Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 8 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_I90L <400> 8 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Lys Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 9 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_K88Q_I90L <400> 9 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 10 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_K88Q_I90L <400> 10 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Ser Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 11 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_K88Q_I90L_S103T <400> 11 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Met Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 12 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_M60L_K88Q_I90L_S103T <400> 12 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Phe Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 13 <211> 185 <212> PRT <213> Artificial Sequence <220> <223> GLuc_5 <400> 13 Met Gly Val Lys Val Leu Phe Ala Leu Ile Cys Ile Ala Val Ala Glu 1 5 10 15 Ala Lys Pro Thr Glu Asn Asn Glu Asp Phe Asn Ile Val Ala Val Ala 20 25 30 Ser Asn Phe Ala Thr Thr Asp Leu Asp Ala Asp Arg Gly Lys Leu Pro 35 40 45 Gly Lys Lys Leu Pro Leu Glu Val Leu Lys Glu Leu Glu Ala Asn Ala 50 55 60 Arg Lys Ala Gly Cys Thr Arg Gly Cys Leu Ile Cys Leu Ser His Ile 65 70 75 80 Lys Cys Thr Pro Lys Met Lys Gln Tyr Leu Pro Gly Arg Cys His Thr 85 90 95 Tyr Glu Gly Asp Lys Glu Thr Ala Gln Gly Gly Ile Gly Glu Ala Ile 100 105 110 Val Asp Ile Pro Glu Ile Pro Gly Phe Lys Asp Leu Glu Pro Met Glu 115 120 125 Gln Phe Ile Ala Gln Val Asp Leu Cys Val Asp Cys Thr Thr Gly Cys 130 135 140 Leu Lys Gly Leu Ala Asn Val Gln Cys Ser Asp Leu Leu Lys Lys Trp 145 150 155 160 Leu Pro Gln Arg Cys Ala Thr Phe Ala Ser Lys Ile Gln Gly Gln Val 165 170 175 Asp Lys Ile Lys Gly Ala Gly Gly Asp 180 185 <210> 14 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_wilde type <400> 14 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 15 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L <400> 15 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 16 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_K88Q <400> 16 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 17 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_F89Y <400> 17 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagtacatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 18 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_I90L <400> 18 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 19 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_S103T <400> 19 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 20 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_K88Q <400> 20 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcatc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 21 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_I90L <400> 21 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gaagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 22 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_K88Q_I90L <400> 22 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 23 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_K88Q_I90L <400> 23 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagtccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 24 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_K88Q_I90L_S103T <400> 24 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagatg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 25 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_M60L_K88Q_I90L_S103T <400> 25 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagttcctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555 <210> 26 <211> 555 <212> DNA <213> Artificial Sequence <220> <223> GLuc sequence_5 <400> 26 atgggagtca aagttctgtt tgccctgatc tgcatcgctg tggccgaggc caagcccacc 60 gagaacaacg aagacttcaa catcgtggcc gtggccagca acttcgcgac cacggatctc 120 gatgctgacc gcgggaagtt gcccggcaag aagctgccgc tggaggtgct caaagagctg 180 gaagccaatg cccggaaagc tggctgcacc aggggctgtc tgatctgcct gtcccacatc 240 aagtgcacgc ccaagatgaa gcagtacctc ccaggacgct gccacaccta cgaaggcgac 300 aaagagaccg cacagggcgg cataggcgag gcgatcgtcg acattcctga gattcctggg 360 ttcaaggact tggagcccat ggagcagttc atcgcacagg tcgatctgtg tgtggactgc 420 acaactggct gcctcaaagg gcttgccaac gtgcagtgtt ctgacctgct caagaagtgg 480 ctgccgcaac gctgtgcgac ctttgccagc aagatccagg gccaggtgga caagatcaag 540 ggggccggtg gtgac 555
Claims (15)
Gaussian luciferase variant, comprising a variant in which the 88th amino acid Lysine (K) in the amino acid sequence of GLuc, Gaussia princeps Luciferase (SEQ ID NO: 1) is substituted with glutamine (Q) .
The mutant of claim 1, wherein the variant is methionine (M), which is the 60th amino acid in the Gaussian luciferase amino acid sequence of SEQ ID NO. ) Is replaced with Tyrosine (Y), 90th amino acid isoleucine (I) is substituted with leucine (Lucine, L), and 103th amino acid Serine (Srine) is replaced with Threonine (T) The Gaussian luciferase variant, further comprising one or more of the substituted variants.
The Gaussian luciferase variant of claim 1, wherein the Gaussian luciferase variant comprises the amino acid sequence of SEQ ID NO: 3. 6.
a) 60번째 아미노산인 메티오닌(Methionine, M)이 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)이 글루타민(Glutamine, Q)으로 치환;
b) 88번째 아미노산인 리신(Lysine, K)이 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)이 류신(Leucine, L)으로 치환;
c) 60번째 아미노산인 메티오닌(Methionine, M)이 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)이 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)이 류신(Leucine, L)으로 치환;
d) 88번째 아미노산인 리신(Lysine, K)이 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)이 류신(Leucine, L)으로, 103번째 아미노산인 세린(Serine, S)이 트레오닌(Threonine, T)으로 치환;
e) 60번째 아미노산인 메티오닌(Methionine, M)이 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)이 글루타민(Glutamine, Q)으로, 90번째 아미노산인 이소류신(Isoleucine, I)이 류신(Leucine, L)으로, 103번째 아미노산인 세린(Serine, S)이 트레오닌(Threonine, T)으로 치환; 또는
f) 60번째 아미노산인 메티오닌(Methionine, M)이 류신(Leucine, L)으로, 88번째 아미노산인 리신(Lysine, K)이 글루타민(Glutamine, Q)으로, 89번째 아미노산인 페닐알라닌(Phenylalanine, F)이 타이로신(Tyrosine, Y)으로, 90번째 아미노산인 이소류신(Isoleucine, I)이 류신(Leucine, L)으로, 103번째 아미노산인 세린(Serine, S)이 트레오닌(Threonine, T)으로 치환된 아미노산 서열로 이루어진 것인 가우시아 루시퍼라아제 변이체.
The method of claim 2, wherein the variant is selected from the amino acid sequence of SEQ ID 1
a) 60th amino acid Methionine (M) is replaced with Leucine (L), 88th amino acid Lysine (Lysine, K) is replaced with glutamine (Q);
b) 88th amino acid Lysine (K) is replaced by glutamine (Q), 90th amino acid isoleucine (I) by leucine (Lucine, L);
c) The 60th amino acid Methionine (M) is Leucine (L), the 88th amino acid Lysine (K) is Glutamine (Q), the 90th amino acid Isoleucine (I) Substitution with this leucine (Leucine, L);
d) 88th amino acid Lysine (K) is glutamine (Q), 90th amino acid Isoleucine (I) is Leucine (L), 103rd amino acid Serine (S) Substitution with this threonine (T);
e) 60th amino acid Methionine (M) is Leucine (L), 88th amino acid Lysine (K) is glutamine (Q), 90th amino acid Isoleucine (I) With leucine (L), serine (S), the 103rd amino acid, is substituted with threonine (T); or
f) The 60th amino acid Methionine (M) is Leucine (L), the 88th amino acid Lysine (K) is Glutamine (Q), the 89th amino acid Phenylalanine (F) This amino acid sequence is tyrosine (Y), the 90th amino acid isoleucine (I) is replaced with leucine (L), and the 103th amino acid serine (S) is replaced with threonine (T). Gaussian luciferase variant consisting of.
The Gaussian luciferase variant of claim 4, wherein the Gaussian luciferase variant consists of the amino acid sequence of SEQ ID NO: 7, 9, 10, 11, 12 or 13. 6.
A polynucleotide encoding the Gaussian luciferase variant sequence of claim 1.
According to claim 7, wherein the polynucleotide is a polynucleotide consisting of any one of the nucleotide sequence of SEQ ID NO: 16, 20, 22 to 26.
A recombinant vector in which the polynucleotide of claim 7 is operably linked.
A transformant having a recombinant vector of claim 9 introduced therein.
A method of producing a Gaussian luciferase, wherein the method comprises culturing the transformant of claim 10 and recovering Gaussian luciferase from the culture or the culture supernatant thereof.
A kit comprising the mutated Gaussian luciferase according to claim 11.
The kit of claim 12, wherein luciferin is further included.
The kit of claim 13, wherein the luciferin is coelenterazine or h -coelenterazine.
The method of claim 1, comprising contacting the Gaussian luciferase variant and luciferin.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170032655A KR102018248B1 (en) | 2017-03-15 | 2017-03-15 | Mutant Gaussia luciferase with enhanced bioluminescence intensity |
PCT/KR2018/003023 WO2018169317A1 (en) | 2017-03-15 | 2018-03-15 | Mutant gaussia princeps luciferase having amplified bioluminescence intensity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170032655A KR102018248B1 (en) | 2017-03-15 | 2017-03-15 | Mutant Gaussia luciferase with enhanced bioluminescence intensity |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180105772A KR20180105772A (en) | 2018-10-01 |
KR102018248B1 true KR102018248B1 (en) | 2019-09-05 |
Family
ID=63523653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170032655A KR102018248B1 (en) | 2017-03-15 | 2017-03-15 | Mutant Gaussia luciferase with enhanced bioluminescence intensity |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102018248B1 (en) |
WO (1) | WO2018169317A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118574927A (en) * | 2021-12-31 | 2024-08-30 | 深圳华大生命科学研究院 | Mutant and application thereof |
WO2024000408A1 (en) * | 2022-06-30 | 2024-01-04 | 青岛华大智造普惠科技有限公司 | Luciferase mutant and use thereof |
WO2023109981A2 (en) * | 2023-04-11 | 2023-06-22 | 深圳华大智造科技股份有限公司 | Novel copepod luciferase mutant and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010119721A1 (en) * | 2009-04-17 | 2010-10-21 | 独立行政法人産業技術総合研究所 | Stable artificial bioluminescent enzyme having super-high brightness |
US20120122182A1 (en) * | 2009-06-30 | 2012-05-17 | The General Hospital Corporation | Gaussia luciferase variant for high-throughput screening |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69938293T2 (en) * | 1998-03-27 | 2009-03-12 | Bruce J. Beverly Hills Bryan | LUCIFERASE, GFP FLUORESCENCE PROTEINS, CODING NUCLEIC CAUSE, AND ITS USE IN DIAGNOSIS |
-
2017
- 2017-03-15 KR KR1020170032655A patent/KR102018248B1/en active IP Right Grant
-
2018
- 2018-03-15 WO PCT/KR2018/003023 patent/WO2018169317A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010119721A1 (en) * | 2009-04-17 | 2010-10-21 | 独立行政法人産業技術総合研究所 | Stable artificial bioluminescent enzyme having super-high brightness |
US20120122182A1 (en) * | 2009-06-30 | 2012-05-17 | The General Hospital Corporation | Gaussia luciferase variant for high-throughput screening |
Also Published As
Publication number | Publication date |
---|---|
WO2018169317A1 (en) | 2018-09-20 |
KR20180105772A (en) | 2018-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4999341B2 (en) | Mutant firefly luciferase, gene, recombinant vector, transformant, and method for producing mutant firefly luciferase | |
US20240218378A1 (en) | Materials and methods for protein production | |
EP1978092A1 (en) | Mutant luciferases | |
US10851141B2 (en) | Mutant beetle luciferase, gene, recombinant vector, transformant, and method for preparing mutant beetle luciferase | |
KR102018248B1 (en) | Mutant Gaussia luciferase with enhanced bioluminescence intensity | |
JP4519163B2 (en) | Isolated luciferase and uses thereof | |
EP3613851A1 (en) | Recombinant dna polymerase | |
JP2020505028A (en) | Novel luciferase and method of using the same | |
US7915021B2 (en) | Mutant firefly luciferase | |
JP2003180352A (en) | Variants of erwinia-type creatinase | |
CN115074338B (en) | Mutant beetle luciferase, gene, recombinant vector, transformant, and method for producing mutant beetle luciferase | |
CN115161296B (en) | Mutant of spiny shrimp luciferase Nluc and application thereof | |
EP1468284B1 (en) | Method for measuring intracellular atp and/or gene expression | |
JP6535483B2 (en) | Juvenile hormone sensor | |
CN115261363A (en) | Method for determining RNA deaminase activity of APOBEC3A and APOBEC3A variant with high RNA activity | |
JP5224100B2 (en) | Mutant luciferase | |
US7807429B2 (en) | Isolated luciferase gene of L. italica | |
KR20200009926A (en) | A screening system for formate dehydrogenase with increased carbon dioxide reducing activity and uses thereof | |
JP6441534B2 (en) | Luminescent enzyme protein | |
WO2024158050A1 (en) | Luciferase variant | |
US10907134B2 (en) | Mutated genes for the catalytic protein of oplophorus luciferase and use thereof | |
KR101400903B1 (en) | Novel gene encoding esterase derived from compost metagenome and preparation method thereof | |
EP3505625B1 (en) | Modified luciferase | |
KR102067475B1 (en) | Gene Circuit for Selecting 3-Hydroxypropionic Acid Using Responding 3-Hydroxypropionic Acid Transcription Factor and Method for Screening of 3-Hydroxypropionic Acid Producing Strain | |
JP5980608B2 (en) | Firefly luciferase |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |