WO2016116678A1 - Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor - Google Patents

Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor Download PDF

Info

Publication number
WO2016116678A1
WO2016116678A1 PCT/FR2016/000004 FR2016000004W WO2016116678A1 WO 2016116678 A1 WO2016116678 A1 WO 2016116678A1 FR 2016000004 W FR2016000004 W FR 2016000004W WO 2016116678 A1 WO2016116678 A1 WO 2016116678A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
magnets
face
electromagnetic machine
Prior art date
Application number
PCT/FR2016/000004
Other languages
English (en)
Inventor
Romain RAVAUD
Loïc MAYEUR
Original Assignee
Whylot Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whylot Sas filed Critical Whylot Sas
Publication of WO2016116678A1 publication Critical patent/WO2016116678A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2796Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the rotor face a stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle

Definitions

  • the present invention relates to a rotor for an axial flow electromagnetic machine rotating at high rotational speeds and an electromagnetic machine equipped with such a rotor.
  • the electrical machine may comprise at least one rotor flanked by two stators.
  • the present invention finds an advantageous but non-limiting application in an electric motor delivering a high power with a high rotational speed of the rotor which is obtained by the specific characteristics of the rotor according to the present invention.
  • Such an engine can be used for example as an electric motor in a fully electric or hybrid motor vehicle.
  • An electromagnetic machine comprises at least one stator and at least one rotor, an air gap separating these two elements.
  • the rotor carries at least one permanent magnet, advantageously a series of permanent magnets, while at least one series of winding elements is carried by the stator.
  • each of the winding elements comprises a tooth carrying a coil, the tooth being framed on each of its sides by a notch, a good conductor wire being wound on the tooth to form the coil.
  • the rotor which is secured to the output shaft of the motor is subjected to a torque resulting from the magnetic field, the magnetic flux created being an axial flow for an axial flow electric machine .
  • the first disadvantage is the weight of such an engine with large magnet and winding surfaces. Such an engine weighs heavily and has a large footprint.
  • the second disadvantage is also its price, the price of magnets being high as well as the price of windings frequently made with copper wire.
  • the main disadvantage of a high rotation speed motor lies in the high probability of detachment of the rotor magnet or magnets as well as at least partial breakage of the rotor.
  • the rotor of such an engine must be able to withstand high rotational speeds.
  • Document FR-A-3,004,025 discloses an axial flow electric machine intended to reconcile compactness, robustness and performance.
  • the electric machine is provided with a rotor which includes a plurality of magnet poles disposed on the peripheral portion of the rotor disk body.
  • the magnet poles are embedded in a stiffened support.
  • a shaft member for driving in rotation of a shaft this shaft element comprising a series of stops, each stop being also embedded in the support, these stops absorbing at least the torque forces during rotor rotation.
  • This document also shows the use of a hoop at the periphery of the rotor body.
  • the stiffened support is composite material, thermosetting resin or thermoplastic.
  • the abutments have surfaces on which abut the stiffened support of composite material. It follows the risk of rupture of the disk-shaped body of the rotor at its periphery.
  • a composite material embedding the magnets carried by the rotor does not allow to stiffen sufficiently and homogeneously, both in an axial direction and in a radial direction, the rotor from which risks high rupture of the rotor or detachment of the rotor magnets at high rotational speed.
  • the document EP-A-2 773 023 describes a rotor intended for an electromagnetic machine with axial flow, the rotor comprising a body in the form of a disc having two circular faces connected by a thickness and at least one permanent magnet carried circularly. on at least one of the two faces being held on said face by securing means, the body being based on metal, said at least one magnet extending to the periphery of said face or projecting radially from the periphery of said face.
  • This document proposes to use a fiber network to fix the magnets on the rotor.
  • a fiber network does not automatically obtain a freedom in radial or axial displacement for the magnets if the fiber network is not specifically configured to allow such a displacement. No indication is given in this regard in this document.
  • a rotor is not specifically adapted to withstand the forces in all directions of the space that it undergoes at high speeds of rotation.
  • the problem underlying the present invention is to design a rotor for an axial flow electromagnetic machine that can withstand the forces in all directions of the space it undergoes at high rotational speeds or not its rotor, while allowing to evacuate the possible losses due to heating of the magnets and to maximize the magnetic flux in the air gap.
  • the invention provides a rotor for an axial flow electromagnetic machine, the rotor comprising a body in the form of a disk having two circular faces connected by a thickness and at least one permanent magnet carried circularly. on at least one of the two faces being held on said face by securing means, the body being based on metal, said at least one magnet extending to the periphery of said face or protruding radially from the periphery of said face, characterized in that:
  • a ring forming a composite material ring is provided at the periphery of the body for its frame, the band directly surrounding the edge of said at least one magnet outside the rotor,
  • the securing means maintain said at least one magnet in the axial direction of the rotor while they leave a limited clearance in the radial direction allowing it to perform work in compression against the hoop.
  • the technical effect obtained is a better rotor behavior both axially and radially and results from a synergistic effect provided by the combination of these characteristics.
  • a metal-based body gives the rotor a much better axial strength than a body of composite material.
  • the magnet or magnets resist better to a compressive stress rather than a tensile stress. By leaving a radial clearance limited to the magnet or magnets, it is possible that this or these magnets work in compression directly against the hoop.
  • ruptures of rotor areas may frequently be to its periphery, which was common in composite material rotors according to the state of the art.
  • a hoop already present for the absorption of centrifugal forces serves more as a stop to the magnet or magnets to perform their work in compression, which is a saving of means.
  • the invention further comprises at least any of the following:
  • said at least one magnet is in the form of a plurality of magnets arranged directly adjacent to each other or separated by an empty spacing or by a branch of less thickness than the magnets, the plurality of magnets forming a circular ring on said at least one face.
  • edges or branches between the magnets when they were not completely embedded in a composite material forming a rotor body, these edges having a thickness greater than or equal to that of the magnets . It turned out that these edges formed zones of weakening of the rotor which can break due to vibrations and more mainly centrifugal forces and can also be the seat of significant magnetic losses in case of significant axial thickness.
  • An empty spacing or a branch of reduced thickness compared to that of the magnets contributes to a good stiffening of the rotor while minimizing the magnetic losses that could be generated in these branches, especially at high rotational speeds.
  • the magnets have angles at the vertex being in the form of polygonal tiles, each vertex angle of each magnet being associated with a torque recovery element, the torque recovery elements forming at least partly the means for securing the magnets.
  • elements already present on the rotor namely the elements of torque recovery can occupy an additional function namely to allow to maintain the magnet or magnets while leaving them a limited radial clearance.
  • the shapes of the magnets make it possible to reduce the losses generated by the eddy currents, in particular at high rotation speeds which can advantageously be combined with the presence of branches of reduced thickness compared to that of the magnets, advantageously made of metal, allowing axially stiffen the rotor by limiting its mass in a given volume and allow a significant torque recovery.
  • the torque recovery elements have elasticity in the radial direction of the rotor.
  • the securing means are formed by an adhesive applied between the at least one magnet and the associated face of the rotor body, the adhesive being resistant to detachment of the at least one magnet in the axial direction of the rotor while allowing elasticity in the direction radial.
  • These securing means may be taken alternatively or in addition to the securing means formed by the torque recovery elements.
  • the body is made of iron or an alloy based on iron, titanium or titanium oxide or an alloy based on titanium.
  • Iron has the advantage of a low price but titanium or an alloy containing titanium may be preferred to ensure better axial resistance of the rotor.
  • the hoop made of composite material is formed of fibers selected from glass fibers, carbon, polymer or mineral fibers.
  • the body is pierced with holes distributed around a concentric circle to the circular faces of the rotor body. These holes allow ventilation of the rotor while reducing weight.
  • the two circular faces respectively carry at least one magnet distributed circularly on the associated face of the rotor body.
  • said at least one magnet is chosen from ferrite magnets, rare-earth magnets such as neodymium-iron-boron magnets or samarium cobalt magnets, magnets based on aluminum, nickel and cobalt, with or without thermoplastic binder.
  • a rotor based on titanium or a mixture containing titanium by the choice of magnets without iron, it can be obtained a rotor with a minimum of iron, which is advantageous for the reduction of eddy currents.
  • an electromagnetic machine having at least one stator carrying a series of winding elements and at least one rotor carrying at least one magnet, characterized in that said at least one rotor is a rotor such than previously described.
  • Such an electromagnetic machine may have a rotor specifically adapted to rotate at high speeds resulting in additional power output.
  • said at least one rotor when said at least one rotor has the two circular faces of its body carrying respectively at least one magnet distributed circularly on its associated face, said at least one rotor is framed on each side by a stator.
  • FIG. 1 is a schematic representation of a perspective view of an embodiment of a face of a rotor body intended for an axial flux electrical machine according to the present invention, the magnet or magnets carried by this face of the rotor body that has been omitted from this figure,
  • FIG. 2 is a schematic representation of a perspective view of the same embodiment illustrated in FIG. 1 showing a rotor body intended for an axial flow electric machine according to the present invention, the body of the rotor carrying the or the magnets and being surrounded by a fret to this figure,
  • FIG. 3 is a schematic representation of a top view of a permanent magnet tile forming part of a plurality of permanent magnets that can be secured to the rotor body for an axial flow electric machine according to FIG. present invention.
  • the present invention relates to a rotor 1 for an axial flow electromagnetic machine.
  • the rotor 1 is a rotor 1 for an axial flow electromagnetic machine.
  • I comprises a body 2 in the form of a disc having two circular faces connected by a thickness, one of the two faces being visible in FIG.
  • the rotor 1 comprises a hub 7 intended to drive a shaft in rotation, this shaft not being shown in the figures.
  • the rotor 1 carries at least one permanent magnet 3, visible in FIG. 2, borne circumferentially on at least one of the two faces while being held on said face by securing means 4, visible in FIG. 1.
  • the body 2 of the rotor 1 carries a hoop 5 forming a composite material ring, the hoop 5 being provided at the periphery of the body 2 for its frame. This hoop 5 serves essentially to absorb the centrifugal forces.
  • the body 2 of the rotor 1 is metal-based.
  • the magnet or magnets 3 extend to the periphery of the face of the body 2 of the rotor 1 bearing or protruding radially from the periphery of said face.
  • the hoop 5 directly surrounds the edge of said at least one magnet 3 outside the rotor 1 and is therefore in direct contact with the outermost edge of the magnet or magnets 3.
  • the securing means 4 hold the magnet or the magnets 3 in the axial direction of the rotor 1 while they leave it a limited clearance in radial direction allowing it to perform a work in compression against the hoop 5.
  • the magnet or magnets are in the form of a plurality of magnets 3 arranged directly adjacent to one another or separated by an empty spacing 8 in order to form a circular ring on the at least one face .
  • the magnets 3 are sixteen in number, which is not limiting. It is also possible to keep a separation between the magnets made of a branch or a flange interposed between two adjacent magnets. In this case, this branch or flange is advantageously of a smaller thickness than the magnet so that it is further from the stator than the magnets and there is less magnetic losses due to the circulation of currents within of these branches.
  • the magnets 3 can take various forms, for example by being in the form of polygonal tiles, for example triangular tiles or quadrilaterals.
  • a vertex of the triangle may advantageously point towards the center of the rotor 1.
  • this tile is a unitary magnet 3 forming part of a plurality of magnets forming a ring on at least one face of the body 2 of the rotor.
  • This tile may have a small circular side 9 forming the innermost base to the face of the body 2 of the rotor 1.
  • the succession of small circular sides 9 of the plurality of magnets defines the inner circumference of the ring formed by the succession of magnets.
  • This tile may have a larger circular side 10 forming the outermost edge of the magnet 3 to the rotor 1, the larger circular sides 10 of the magnets 3 forming the outer edge of the magnets in direct contact with the hoop 5.
  • the magnets 3 are in the form of polygonal tiles may have some of their rounded sides.
  • each vertex angle of each magnet 3 may be associated with a torque recovery element 4, the torque recovery elements 4 forming at least in part the means for securing the magnets 3 , the torque recovery elements 4 being visible in FIG.
  • the torque is thus taken up both by the securing means, preferably by gluing, and also by the branches which transmit the force to the shaft.
  • the torque recovery elements 4 may have elasticity in the radial direction of the rotor 1 and in particular towards the outside of the rotor 1 in order to allow the magnet or magnets 3 a limited play in radial direction allowing them to perform a work in compression against the band 5.
  • the securing means 4 are formed by an adhesive applied between the magnet or magnets and the associated face of the body 2 of the rotor 1.
  • the glue is resistant to delamination of the magnet or the magnets 3 in the axial direction of the rotor 1 while still having radial elasticity to allow the magnet or magnets 3 a limited radial clearance allowing them to perform compression work against the hoop 5.
  • the body 2 of the rotor 1 may be based on iron, iron alloy, titanium, titanium oxide or an alloy containing titanium. Titanium may not be the dominant part of the alloy.
  • the hoop 5 of composite material may be formed of fibers or strips selected from glass fibers, carbon, polymer or mineral fibers.
  • the consecutive fibers or bands may be of different nature or size. It may, for example, be mixed glass fibers of different composition, plastic fibers, for example PEEK, polyaramid or composite fibers.
  • the fibers are advantageously long fibers entwined on the outer edge of the magnet or magnets with preferably the use of a thermosetting or thermoplastic resin.
  • Various methods of positioning and hardening of the fibers or bands may be implemented, the fibers or strips may be pre-impregnated or not.
  • the body 2 may be pierced with holes 6 regularly distributed around a circle concentric with the circular faces of the body 2 of the rotor 1, the holes passing through the body 2 from one end to the other on each circular face.
  • the two circular faces of the body 2 of the rotor 1 may respectively carry at least one magnet 3 distributed circularly on its associated face.
  • Said at least one magnet 3 may be chosen from ferrite magnets, rare earth magnets such as neodymium iron boron magnets or samarium cobalt magnets, magnets based on aluminum, nickel and cobalt, with or without thermoplastic binder.
  • a rotor 1 may be part of an electromagnetic machine having at least one stator bearing a series of winding elements and at least one rotor 1 carrying at least one magnet 3.
  • said at least one rotor 1 When said at least one rotor 1 has its two circular faces carrying respectively at least one magnet 3 distributed circularly on its associated face, said at least one rotor 1 is framed on each side by a stator.
  • the arrangement of the magnets may be chosen to establish an increased magnetic field on the side intended to be turned towards the associated stator vis-a-vis, while the magnetic field is decreased or canceled on its opposite side. This reduces the loss of the magnetic field.
  • the stators may be so-called coiled stators, that is to say they may have a series of successive winding elements respectively composed of a wire winding good conductor of electricity, for example aluminum or copper, a tooth and two notches framing each tooth on each of its sides.
  • Such an electric machine of a reduced weight and delivering a high power due to the rotational speeds allowed to the rotor can advantageously be used as an electric motor and generator in a motor vehicle, but this is not limiting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

La présente invention porte sur un rotor (1) destiné à une machine électromagnétique à flux axial comportant un corps (2) présentant deux faces circulaires et au moins un aimant (3) porté circulairement sur au moins une des deux faces en étant maintenu par des moyens de solidarisation, une frette (5) formant couronne en matériau composite étant prévue à la périphérie du corps (2) pour son encadrement. Le corps (2) est à base de métal, ledit au moins un aimant (3) s'étend jusqu'à ou fait saillie radialement de la périphérie de ladite face, la frette (5) entourant directement le bord dudit au moins un aimant (3) extérieur au rotor (1), les moyens de solidarisation maintenant ledit au moins un aimant (3) en direction axiale du rotor (1) tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette (5).

Description

« Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor»
La présente invention concerne un rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et une machine électromagnétique équipée d'un tel rotor.
Avantageusement mais non limitativement, la machine électrique peut comprendre au moins un rotor encadré par deux stators.
La présente invention trouve une application avantageuse mais non limitative dans un moteur électrique délivrant une forte puissance avec une vitesse de rotation du rotor élevée ce qui est obtenu par les caractéristiques spécifiques du rotor selon la présente invention. Un tel moteur peut être utilisé par exemple comme moteur électrique dans un véhicule automobile totalement électrique ou hybride.
Une machine électromagnétique comprend au moins un stator et au moins un rotor, un entrefer séparant ces deux éléments. Le rotor porte au moins un aimant permanent, avantageusement une série d'aimants permanents, tandis qu'au moins une série d'éléments de bobinage est portée par le stator.
De manière classique, chacun des éléments de bobinage comprend une dent portant une bobine, la dent étant encadrée sur chacun de ses côtés par une encoche, un fil métallique bon conducteur étant enroulé sur la dent pour former la bobine.
Quand la série ou les séries de bobinages sont alimentées électriquement, le rotor qui est solidarisé à l'arbre de sortie du moteur est soumis à un couple résultant du champ magnétique, le flux magnétique créé étant un flux axial pour une machine électrique à flux axial.
La demande de machines électriques pouvant délivrer une puissance élevée tout en gardant un poids et un encombrement réduits est actuellement très forte.
Il est connu que la puissance P délivrée par une machine électrique est égale au couple C de la machine que multiplie la vitesse angulaire de rotation ω de la machine soit : P = C. ω
Pour augmenter la puissance, il convient d'augmenter le couple ou la vitesse angulaire ou vitesse de rotation ou les deux à la fois.
On différencie ainsi des moteurs « coupleux » des moteurs
« puissants ». Les moteurs « coupleux » sont des moteurs qui ne tournent pas forcément vite, mais pour lesquels la valeur du couple compense la faiblesse de cette vitesse de rotation. Les moteurs dits puissants sont ceux pour lesquels la valeur du couple n'est pas forcément très élevée mais qui tournent vite.
Pour l'obtention d'un moteur « coupleux », il convient d'avoir une surface d'aimant portée par le rotor et une série de bobinages sur le stator suffisamment importantes pour créer un fort couple. Cela présente des désavantages notoires.
Le premier désavantage est le poids d'un tel moteur avec des surfaces d'aimant et de bobinage importantes. Un tel moteur pèse lourd et présente un encombrement important.
Le deuxième désavantage est aussi son prix, le prix des aimants étant élevé de même que le prix des bobinages fréquemment fait à base de fils de cuivre.
Ces deux désavantages et principalement le premier freinent l'utilisation de moteurs électriques pour la propulsion de véhicules automobiles, étant donné que l'encombrement et le poids d'un tel moteur sont très préjudiciables à son embarquement dans un véhicule automobile pour lequel la diminution du poids et de l'encombrement des éléments embarqués est cruciale.
Le troisième désavantage d'un moteur « coupleux » est son refroidissement étant donné que les pertes en effet Joule d'un tel moteur sont importantes.
Ainsi, pour réduire l'encombrement d'un tel moteur en lui conférant une structure compacte, le risque de surchauffe du rotor est augmenté, d'autant plus que ce rotor comprend une surface d'aimants élevée pour obtenir un fort couple. Il se crée des courants de Foucault dans le moteur avec augmentation de la température dans le moteur et éventuellement perturbation des flux magnétiques créés, ce qui présente aussi le risque de diminution du rendement du moteur.
Dans ce cas, il convient de procéder au refroidissement du moteur et donc de le munir d'un dispositif de refroidissement ce qui augmente son poids et son encombrement de même que sa complexité.
Le principal désavantage d'un moteur à forte vitesse de rotation réside dans la probabilité élevée de détachement de l'aimant ou des aimants du rotor ainsi que de casse au moins partielle du rotor. Le rotor d'un tel moteur doit donc être apte à supporter des vitesses de rotation élevées.
Le document FR-A-3 004 025 divulgue une machine électrique à flux axial censée concilier compacité, robustesse et performance. La machine électrique est dotée d'un rotor qui comprend une pluralité de pôles d'aimant disposés sur la partie périphérique du corps sous forme de disque du rotor. Les pôles d'aimant sont noyés dans un support rigidifié. Il est aussi prévu un élément d'arbre pour l'entraînement en rotation d'un arbre, cet élément d'arbre comprenant une série de butées, chaque butée étant aussi noyée dans le support, ces butées absorbant au moins les efforts de couple lors de la rotation du rotor. Ce document montre aussi l'utilisation d'une frette à la périphérie du corps du rotor.
Dans ce document, il est indiqué que le support rigidifié est en matériau composite, en résine thermodurcissable ou thermoplastique. Les butées présentent des surfaces sur lesquelles viennent buter le support rigidifié en matériau composite. Il s'ensuit des risques de rupture du corps en forme de disque du rotor à sa périphérie.
Le demandeur de la présente demande a constaté qu'un matériau composite noyant les aimants portés par le rotor ne permettait pas de rigidifier de manière suffisante et homogène, aussi bien dans un sens axial que dans un sens radial, le rotor d'où des risques de rupture élevés du rotor ou de détachement des aimants du rotor à grande vitesse de rotation.
Le document EP-A-2 773 023 décrit un rotor destiné à une machine électromagnétique à flux axial, le rotor comportant un corps sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur ainsi qu'au moins un aimant permanent porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation, le corps étant à base de métal, ledit au moins un aimant s'étendant jusqu'à la périphérie de ladite face ou faisant saillie radialement de la périphérie de ladite face.
Ce document propose d'utiliser un réseau de fibres pour fixer les aimants sur le rotor. Un tel réseau de fibres ne permet pas d'obtenir automatiquement une liberté en déplacement radial ou axial pour les aimants si le réseau de fibres n'est pas spécifiquement configuré pour permettre un tel déplacement. Aucune indication n'est donnée à ce sujet dans ce document. Ainsi, un tel rotor n'est donc pas spécifiquement adapté à résister aux efforts dans toutes les directions de l'espace qu'il subit lors de vitesses de rotation élevées.
Le problème à la base de la présente invention est de concevoir un rotor pour une machine électromagnétique à flux axial qui puisse résister aux efforts dans toutes les directions de l'espace qu'il subit lors de vitesses de rotation élevées ou non de son rotor, tout en permettant d'évacuer les éventuelles pertes dues à des échauffements des aimants et de maximiser le flux magnétique dans l'entrefer.
A cet effet, on prévoit selon l'invention un rotor destiné à une machine électromagnétique à flux axial, le rotor comportant un corps sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur ainsi qu'au moins un aimant permanent porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation, le corps étant à base de métal, ledit au moins un aimant s'étendant jusqu'à la périphérie de ladite face ou faisant saillie radialement de la périphérie de ladite face, caractérisé en ce que :
- une frette formant couronne en matériau composite est prévue à la périphérie du corps pour son encadrement, la frette entourant directement le bord dudit au moins un aimant extérieur au rotor,
- les moyens de solidarisation maintiennent ledit au moins un aimant en direction axiale du rotor tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette.
L'effet technique obtenu est une meilleure tenue du rotor aussi bien axialement que radialement et résulte d'un effet de synergie procuré par l'association de ces caractéristiques. D'une part, un corps à base de métal confère au rotor une bien meilleure tenue axiale qu'un corps en matériau composite.
De plus, il s'est avéré que le ou les aimants résistaient mieux à une sollicitation en compression plutôt qu'à une sollicitation en traction. En laissant un jeu radial limité à l'aimant ou aux aimants, il est possible que cet ou ces aimants travaillent en compression directement contre la frette.
Ainsi, il est évité des ruptures de zones du rotor pouvant fréquemment se trouver vers sa périphérie, ce qui était courant dans des rotors en matériau composite selon l'état de la technique.
Une frette déjà présente pour l'absorption des forces centrifuges sert de plus comme butée à l'aimant ou aux aimants pour effectuer leur travail en compression, ce qui est une économie de moyens.
De manière facultative, l'invention comprend en outre au moins l'une quelconque des caractéristiques suivantes :
- ledit au moins un aimant est sous la forme d'une pluralité d'aimants disposés directement adjacents l'un à l'autre ou séparés par un espacement vide ou par une branche d'épaisseur moindre que les aimants, la pluralité d'aimants formant un anneau circulaire sur ladite au moins une face. Selon l'état de la technique il était prévu des bordures ou branches entre les aimants quand ceux-ci n'étaient pas entièrement noyés dans un matériau composite formant corps de rotor, ces bordures présentant une épaisseur plus grande que ou égale à celles des aimants. Il s'est avéré que ces bordures formaient des zones de fragilisation du rotor pouvant casser à cause des vibrations et plus principalement des forces centrifuges et peuvent également être le siège de pertes magnétiques importantes en cas d'épaisseur axiale importante. Un espacement vide ou une branche d'épaisseur réduite par rapport à celle des aimants concourt à une bonne rigidification du rotor tout en minimisant les pertes magnétiques qui pourraient être générées dans ces branches, notamment aux vitesses de rotation élevées.
- les aimants présentent des angles au sommet en étant sous la forme de tuiles polygonales, chaque angle au sommet de chaque aimant étant associé à un élément de reprise de couple, les éléments de reprise de couple formant au moins en partie les moyens de solidarisation des aimants. Ainsi, des éléments déjà présents sur le rotor, à savoir les éléments de reprise de couple peuvent occuper une fonction supplémentaire à savoir permettre de maintenir le ou les aimants tout en leur laissant un jeu radial limité. Les formes des aimants permettent de diminuer les pertes engendrées par les courants de Foucault, notamment à des vitesses de rotation élevées ce qui peut être avantageusement combiné avec la présence de branches d'épaisseur réduite par rapport à celle des aimants, avantageusement en métal, permettant de rigidifier axialement le rotor en limitant sa masse dans un volume donné et de permettre une reprise de couple importante.
- les éléments de reprise de couple présentent une élasticité en direction radiale du rotor.
- les moyens de solidarisation sont formés par une colle appliquée entre ledit au moins un aimant et la face associée du corps du rotor, la colle étant résistante à un décollement dudit au moins un aimant en direction axiale du rotor tout en permettant une élasticité en direction radiale. Ces moyens de solidarisation peuvent être pris en alternative ou en complément avec les moyens de solidarisation formés par les éléments de reprise de couple.
- le corps est en fer ou en un alliage à base de fer, en titane ou en oxyde de titane ou en un alliage à base de titane. Le fer présente l'avantage d'un prix bas mais le titane ou un alliage contenant du titane peut être préféré pour garantir une meilleure tenue axiale du rotor.
- la frette en matériau composite est formée de fibres choisies parmi les fibres de verre, de carbone, de fibres polymères ou minérales.
- le corps est percé de trous répartis autour d'un cercle concentrique aux faces circulaires du corps du rotor. Ces trous permettent la ventilation du rotor tout en allégeant son poids.
- les deux faces circulaires portent respectivement au moins un aimant réparti circulairement sur la face associée du corps du rotor. Ainsi, il peut être obtenu un rotor pouvant être associé à deux stators, chaque stator étant disposé sur un côté respectif du rotor.
- ledit au moins un aimant est choisi parmi les aimants ferrites, les aimants à base de terres rares comme des aimants néodyme-fer-bore ou des aimants samarium cobalt, des aimants à base d'aluminium, de nickel et de cobalt, avec ou sans liant thermoplastique. Avec un rotor à base de titane ou d'un mélange contenant du titane, de par le choix d'aimants sans fer, il peut être obtenu un rotor comportant un minimum de fer, ce qui est avantageux pour la diminution des courants de Foucault. Dans le cadre de l'invention, on prévoit une machine électromagnétique présentant au moins un stator portant une série d'éléments de bobinage et au moins un rotor portant au moins un aimant, caractérisée en ce que ledit au moins un rotor est un rotor tel que précédemment décrit. Une telle machine électromagnétique peut présenter un rotor spécifiquement adapté pour tourner à des vitesses élevées d'où un surcroît de puissance produite.
Avantageusement, quand ledit au moins un rotor présente les deux faces circulaires de son corps portant respectivement au moins un aimant réparti circulairement sur sa face associée, ledit au moins un rotor est encadré de chaque côté par un stator.
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront à la lecture de la description détaillée qui va suivre et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1 est une représentation schématique d'une vue en perspective d'un mode de réalisation d'une face d'un corps de rotor destiné à une machine électrique à flux axial selon la présente invention, le ou les aimants portés par cette face du corps du rotor ayant été omis à cette figure,
- la figure 2 est une représentation schématique d'une vue en perspective du même mode de réalisation qu'illustré à la figure 1 montrant un corps de rotor destiné à une machine électrique à flux axial selon la présente invention, le corps du rotor portant le ou les aimants et étant entouré d'une frette à cette figure,
- la figure 3 est une représentation schématique d'une vue de dessus d'une tuile formant un aimant permanent faisant partie d'une pluralité d'aimants permanents pouvant être solidarisés avec le corps du rotor destiné à une machine électrique à flux axial selon la présente invention .
Les figures sont données à titre d'exemples et ne sont pas limitatives de l'invention. Elles constituent des représentations schématiques de principe destinées à faciliter la compréhension de l'invention et ne sont pas nécessairement à l'échelle des applications pratiques. En particulier les dimensions des différentes pièces ne sont pas représentatives de la réalité.
En se référant aux figures 1 à 3, la présente invention concerne un rotor 1 destiné à une machine électromagnétique à flux axial. Le rotor 1
I comporte un corps 2 sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur, une des deux faces étant visibles à la figure 1 .
Le rotor 1 comprend un moyeu 7 destiné à entraîner un arbre en rotation, cet arbre n'étant pas montré aux figures.
Le rotor 1 porte au moins un aimant 3 permanent, visible à la figure 2, porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation 4, visibles à la figure 1 .
A la figure 2, un seul aimant est référencé 3 mais ce qui est énoncé pour un aimant 3 s'applique à tous les aimants représentés à cette figure. Il en va de même pour les moyens de solidarisation 4 qui sont référencés à la figure 1 pour un seul groupe de moyens de solidarisation destiné à être solidarisé à un même aimant.
Le corps 2 du rotor 1 porte une frette 5 formant couronne en matériau composite, la frette 5 étant prévue à la périphérie du corps 2 pour son encadrement. Cette frette 5 sert essentiellement à absorber les forces centrifuges.
Selon la présente invention, le corps 2 du rotor 1 est à base de métal. De plus, le ou les aimants 3 s'étendent jusqu'à la périphérie de la face du corps 2 du rotor 1 les portant ou font saillie radialement de la périphérie de ladite face.
La frette 5 entoure directement le bord dudit au moins un aimant 3 extérieur au rotor 1 et est donc en contact direct avec le bord le plus externe de l'aimant ou des aimants 3.
Les moyens de solidarisation 4 maintiennent l'aimant ou les aimants 3 en direction axiale du rotor 1 tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette 5.
Ceci permet de faire travailler l'aimant ou les aimants en compression plutôt qu'un étirement ce qui est plus favorable pour leur résistance mécanique en compression qui peut être dix fois supérieure en compression qu'en traction.
A la figure 2, le ou les aimants sont sous la forme d'une pluralité d'aimants 3 disposés directement adjacents l'un à l'autre ou séparés par un espacement vide 8 afin de former un anneau circulaire sur ladite au moins une face. Dans l'exemple de réalisation montré à la figure 2, les aimants 3 sont au nombre de seize, ce qui n'est pas limitatif. Il est aussi possible de conserver une séparation entre les aimants faite d'une branche ou d'une bride intercalée entre deux aimants adjacents. Dans ce cas, cette branche ou bride est avantageusement d'une épaisseur moindre que l'aimant afin qu'elle soit plus éloignée du stator que les aimants et ainsi qu'il y ait moins de pertes magnétiques dues à la circulation de courants au sein de ces branches.
Les aimants 3 peuvent prendre diverses formes, par exemple en étant sous la forme de tuiles polygonales, par exemple des tuiles triangulaires ou en forme de quadrilatères.
Pour une tuile triangulaire, un sommet du triangle peut pointer avantageusement vers le centre du rotor 1 .
Comme il peut être particulièrement bien vu à la figure 3 tout en se référant aux autres figures pour les références, pour une tuile en forme de quadrilatère, cette tuile est un aimant unitaire 3 faisant partie d'une pluralité d'aimants formant un anneau sur au moins une face du corps 2 du rotor.
Cette tuile peut présenter un petit côté circulaire 9 formant base le plus interne à la face du corps 2 du rotor 1 . La succession des petits côtés circulaires 9 de la pluralité d'aimants délimite la circonférence interne de l'anneau formé par la succession d'aimants.
Cette tuile peut présenter un plus grand côté circulaire 10 formant le bord le plus externe de l'aimant 3 au rotor 1 , les plus grands côtés circulaires 10 des aimants 3 formant le bord externe des aimants en contact direct avec la frette 5.
Ainsi, de manière générale, les aimants 3 sont sous la forme de tuiles polygonales en pouvant présenter certains de leurs côtés arrondis.
Dans une première forme de réalisation de la présente invention, chaque angle au sommet de chaque aimant 3 peut être associé à un élément de reprise de couple 4, les éléments de reprise de couple 4 formant au moins en partie les moyens de solidarisation des aimants 3, les éléments de reprise de couple 4 étant visibles à la figure 1 .
Le couple est donc ainsi repris à la fois par les moyens de solidarisation, avantageusement par collage, et également par les branches qui transmettent l'effort à l'arbre.
Les éléments de reprise de couple 4 peuvent présenter une élasticité en direction radiale du rotor 1 et notamment vers l'extérieur du rotor 1 afin de permettre à l'aimant ou aux aimants 3 un jeu limité en direction radiale leur permettant d'effectuer un travail en compression contre la frette 5.
Dans une deuxième forme de réalisation de la présente invention, les moyens de solidarisation 4 sont formés par une colle appliquée entre le ou les aimants et la face associée du corps 2 du rotor 1 .
La colle est résistante à un décollement de l'aimant ou les aimants 3 en direction axiale du rotor 1 tout en présentant une élasticité en direction radiale toujours afin de permettre à l'aimant ou aux aimants 3 un jeu limité en direction radiale leur permettant d'effectuer un travail en compression contre la frette 5.
Le corps 2 du rotor 1 peut être à base de fer, en alliage de fer, en titane, en oxyde de titane ou en un alliage contenant du titane. La part de titane peut ne pas être la part prépondérante dans l'alliage.
La frette 5 en matériau composite peut être formée de fibres ou de bandes choisies parmi les fibres de verre, de carbone, de fibres polymères ou minérales.
Les fibres ou bandes consécutives peuvent être de nature ou de dimensions différentes. Il peut, par exemple, être mélangé des fibres de verre de composition différente, des fibres de plastique, par exemple en PEEK, en polyaramide ou des fibres de composite.
Les fibres sont avantageusement des fibres longues enlacées sur le bord externe de l'aimant ou des aimants avec de préférence l'utilisation d'une résine thermodurcissable ou thermoplastique. Divers procédés de positionnement et durcissement des fibres ou bandes peuvent être mis en œuvre, les fibres ou bandes pouvant être pré-imprégnées ou non.
Le corps 2 peut être percé de trous 6 régulièrement répartis autour d'un cercle concentrique aux faces circulaires du corps 2 du rotor 1 , les trous traversant le corps2 de part en part en débouchant sur chaque face circulaire.
Les deux faces circulaires du corps 2 du rotor 1 peuvent porter respectivement au moins un aimant 3 réparti circulairement sur sa face associée.
Ledit au moins un aimant 3 peut être choisi parmi les aimants ferrites, les aimants à base de terres rares comme des aimants néodyme-fer-bore ou des aimants samarium cobalt, des aimants à base d'aluminium, de nickel et de cobalt, avec ou sans liant thermoplastique. Un tel rotor 1 peut faire partie d'une machine électromagnétique présentant au moins un stator portant une série d'éléments de bobinage et au moins un rotor 1 portant au moins un aimant 3.
Quand ledit au moins un rotor 1 présente ses deux faces circulaires portant respectivement au moins un aimant 3 réparti circulairement sur sa face associée, ledit au moins un rotor 1 est encadré de chaque côté par un stator.
La disposition des aimants peut être choisie pour établir un champ magnétique augmenté du côté destiné à être tourné vers le stator associé en vis-à-vis, tandis que le champ magnétique est diminué ou annulé sur son côté opposé. On réduit ainsi la déperdition du champ magnétique.
Les stators peuvent être des stators dits bobinés, c'est-à-dire qu'ils peuvent présenter une série d'éléments de bobinage successifs composés respectivement d'un bobinage de fil métallique bon conducteur d'électricité, par exemple en aluminium ou en cuivre, d'une dent et de deux encoches encadrant chaque dent sur chacun de ses côtés.
Une telle machine électrique d'un poids réduit et délivrant une forte puissance du fait des vitesses de rotation permises au rotor peut avantageusement être utilisée comme moteur et génératrice électrique dans un véhicule automobile, mais ceci n'est pas limitatif.
L'invention n'est nullement limitée aux modes de réalisation décrits et illustrés qui n'ont été donnés qu'à titre d'exemples.

Claims

REVENDICATIONS
1. Rotor (1) destiné à une machine électromagnétique à flux axial, le rotor (1 ) comportant un corps (2) sous forme d'un disque présentant deux faces circulaires reliées par une épaisseur ainsi qu'au moins un aimant (3) permanent porté circulairement sur au moins une des deux faces en étant maintenu sur ladite face par des moyens de solidarisation (4), le corps (2) étant à base de métal, ledit au moins un aimant (3) s'étendant jusqu'à la périphérie de ladite face ou faisant saillie radialement de la périphérie de ladite face, caractérisé en ce que :
- une frette (5) formant couronne en matériau composite est prévue à la périphérie du corps (2) pour son encadrement, la frette (5) entourant directement le bord dudit au moins un aimant (3) extérieur au rotor (1),
- les moyens de solidarisation (4) maintiennent ledit au moins un aimant (3) en direction axiale du rotor (1 ) tandis qu'ils lui laissent un jeu limité en direction radiale lui permettant d'effectuer un travail en compression contre la frette (5).
2. Rotor (1) selon la revendication précédente, dans lequel ledit au moins un aimant (3) est sous la forme d'une pluralité d'aimants (3) disposés directement adjacents l'un à l'autre ou séparés par un espacement vide (8) ou par une branche d'épaisseur moindre que les aimants (3), la pluralité d'aimants (3) formant un anneau circulaire sur ladite au moins une face.
3. Rotor (1) selon la revendication précédente, dans lequel les aimants (3) présentent des angles au sommet en étant sous la forme de tuiles polygonales, chaque angle au sommet de chaque aimant (3) étant associé à un élément de reprise de couple (4), les éléments de reprise de couple (4) formant au moins en partie les moyens de solidarisation des aimants (3).
4. Rotor (1) selon la revendication précédente, dans lequel les éléments de reprise de couple (4) présentent une élasticité en direction radiale du rotor
(1).
5. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel les moyens de solidarisation (4) sont formés par une colle appliquée entre ledit au moins un aimant (3) et la face associée du corps (2) du rotor (1), la colle étant résistante à un décollement dudit au moins un aimant (3) en direction axiale du rotor (1) tout en présentant une élasticité en direction radiale.
6. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel le corps (2) est en fer ou en un alliage à base de fer, en titane ou en oxyde de titane ou en un alliage à base de titane.
7. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel la frette (5) en matériau composite est formée de fibres choisies parmi les fibres de verre, de carbone, de fibres polymères ou minérales.
8. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel le corps (2) est percé de trous (6) répartis autour d'un cercle concentrique aux faces circulaires du corps (2) du rotor (1).
9. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel les deux faces circulaires du corps (2) du rotor (1) portent respectivement au moins un aimant (3) réparti circulairement sur sa face associée.
10. Rotor (1) selon l'une quelconque des revendications précédentes, dans lequel ledit au moins un aimant (3) est choisi parmi les aimants ferrites, les aimants à base de terres rares comme des aimants néodyme-fer-bore ou des aimants samarium cobalt, des aimants à base d'aluminium, de nickel et de cobalt, avec ou sans liant thermoplastique.
11. Machine électromagnétique présentant au moins un stator portant une série d'éléments de bobinage et au moins un rotor (1) portant au moins un aimant (3), caractérisée en ce que ledit au moins un rotor est un rotor (1) selon l'une quelconque des revendications précédentes.
12. Machine électromagnétique selon la revendication précédente, dans laquelle, quand ledit au moins un rotor (1 ) présente les deux faces circulaires de son corps (2) portant respectivement au moins un aimant (3) réparti circulairement sur sa face associée, ledit au moins un rotor (1 ) est encadré de chaque côté par un stator.
PCT/FR2016/000004 2015-01-19 2016-01-18 Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor WO2016116678A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1500104 2015-01-19
FR1500104A FR3031848B1 (fr) 2015-01-19 2015-01-19 Rotor pour machine electromagnetique a flux axial tournant a des vitesses de rotation elevees et machine electromagnetique equipee d'un tel rotor

Publications (1)

Publication Number Publication Date
WO2016116678A1 true WO2016116678A1 (fr) 2016-07-28

Family

ID=53269592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/000004 WO2016116678A1 (fr) 2015-01-19 2016-01-18 Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor

Country Status (2)

Country Link
FR (1) FR3031848B1 (fr)
WO (1) WO2016116678A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107492962A (zh) * 2017-08-31 2017-12-19 杭州中豪电动科技股份有限公司 一种盘式电机的磁钢固定结构
WO2018172633A1 (fr) * 2017-03-22 2018-09-27 Whylot Sas Moteur ou génératrice électromagnétique comportant un rotor à structures aimantées comprenant des aimants unitaires et un stator à bobinages concentriques
CN111615779A (zh) * 2017-12-18 2020-09-01 万络公司 用于电机或电磁发电机、具有卡扣配合到相关联齿上的单个绕组支撑件的定子
US11404942B2 (en) 2018-08-16 2022-08-02 Otis Elevator Company Stator assembly of a motor, a synchronous motor and a passenger conveying device
RU2813257C2 (ru) * 2017-03-22 2024-02-08 Уайлот Сас Электромагнитная машина, содержащая ротор с магнитными структурами, включающими в себя отдельные магниты, и статор с концентричными обмотками

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077414B1 (fr) * 2018-01-26 2022-03-11 Whylot Sas Aimant unitaire a configuration ovoide et structure d'aimant a plusieurs aimants unitaires

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001619A1 (fr) * 1983-10-03 1985-04-11 Micro-Electric Ag Servomoteur synchrone a courant alternatif
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
WO2007091727A1 (fr) * 2006-02-08 2007-08-16 Honda Motor Co., Ltd. Rotor pour moteur électrique
EP2773023A1 (fr) 2013-02-27 2014-09-03 Yasa Motors Ltd Moteur à flux axial
FR3004025A1 (fr) 2013-03-29 2014-10-03 Renault Sa Rotor discoide pour un moteur electrique a flux axial

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1985001619A1 (fr) * 1983-10-03 1985-04-11 Micro-Electric Ag Servomoteur synchrone a courant alternatif
US4996457A (en) * 1990-03-28 1991-02-26 The United States Of America As Represented By The United States Department Of Energy Ultra-high speed permanent magnet axial gap alternator with multiple stators
WO2007091727A1 (fr) * 2006-02-08 2007-08-16 Honda Motor Co., Ltd. Rotor pour moteur électrique
EP2773023A1 (fr) 2013-02-27 2014-09-03 Yasa Motors Ltd Moteur à flux axial
FR3004025A1 (fr) 2013-03-29 2014-10-03 Renault Sa Rotor discoide pour un moteur electrique a flux axial

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128187B2 (en) 2017-03-22 2021-09-21 Whylot Sas Rotor for an electromagnetic motor or generator with radial flux comprising a mesh structure housing individual magnets
WO2018172633A1 (fr) * 2017-03-22 2018-09-27 Whylot Sas Moteur ou génératrice électromagnétique comportant un rotor à structures aimantées comprenant des aimants unitaires et un stator à bobinages concentriques
FR3064422A1 (fr) * 2017-03-22 2018-09-28 Whylot Sas Moteur ou generatrice electromagnetique comportant un rotor a structures aimantees comprenant des aimants unitaires et un stator a bobinages concentriques
CN110447161A (zh) * 2017-03-22 2019-11-12 万络机电公司 包括用于容置单元磁体的网格结构的径向通量式电磁发动机或发电机的转子
CN110506380A (zh) * 2017-03-22 2019-11-26 万络机电公司 包括具有包括单元磁体的经磁化结构的转子以及具有同心的绕组的定子的电磁发动机或发电机
US11128186B2 (en) 2017-03-22 2021-09-21 Whylot Sas Electromagnetic motor or generator comprising a rotor with magnetized structures comprising individual magnets and a stator with concentric windings
US11239716B2 (en) 2017-03-22 2022-02-01 Whylot Sas Magnet structure having a plurality of individual magnets integrated into a mesh structure
US11509177B2 (en) 2017-03-22 2022-11-22 Whylot Sas Magnet structure with a plurality of individual magnets in the form of blocks
RU2813257C2 (ru) * 2017-03-22 2024-02-08 Уайлот Сас Электромагнитная машина, содержащая ротор с магнитными структурами, включающими в себя отдельные магниты, и статор с концентричными обмотками
CN107492962A (zh) * 2017-08-31 2017-12-19 杭州中豪电动科技股份有限公司 一种盘式电机的磁钢固定结构
CN111615779A (zh) * 2017-12-18 2020-09-01 万络公司 用于电机或电磁发电机、具有卡扣配合到相关联齿上的单个绕组支撑件的定子
CN111615779B (zh) * 2017-12-18 2023-03-24 万络公司 用于电机或电磁发电机、具有卡扣配合到相关联齿上的单个绕组支撑件的定子
US11404942B2 (en) 2018-08-16 2022-08-02 Otis Elevator Company Stator assembly of a motor, a synchronous motor and a passenger conveying device

Also Published As

Publication number Publication date
FR3031848B1 (fr) 2018-03-16
FR3031848A1 (fr) 2016-07-22

Similar Documents

Publication Publication Date Title
EP3602740B1 (fr) Moteur ou génératrice électromagnétique comportant un rotor à structures aimantées comprenant des aimants unitaires et un stator à bobinages concentriques
WO2016116678A1 (fr) Rotor pour machine électromagnétique à flux axial tournant à des vitesses de rotation élevées et machine électromagnétique équipée d'un tel rotor
WO2020065488A1 (fr) Rotor a flux axial aux aimants et corps en couches de composite avec fibres d'orientations differentes
EP3430706B1 (fr) Rotor pour moteur ou génératrice électromagnétique à flux axial à aimants semi-enterrés avec des moyens de maintien axial
EP3811498A1 (fr) Rotor pour moteur ou génératrice électromagnétique avec branches effilées
EP3387742B1 (fr) Rotor d'un moteur électromagnétique à flux axial à aimant monobloc de forme ondulée
FR3022706A1 (fr) Moteur synchrone electromagnetique a flux magnetiques combines axial et radial.
FR3042329A1 (fr) Direction assistee de vehicule automobile avec un moteur electromagnetique a flux magnetique axial
FR2837631A1 (fr) Machine electrique a stator et/ou rotor modulaire, ensemble comprenant une telle machine et un echangeur de chaleur et vehicule automobile correspondant
WO2014122374A1 (fr) Moteur ou génératrice électromagnétique polyentrefers à aimants permanents et élément à bobinage sans fer
FR3008539A1 (fr) Actionneur electromagnetique polyentrefers a aimants permanents et elements de bobinage sans fer
EP2824800A1 (fr) Corps de rotor à aimants permanents et machine électrique tournante comportant un tel corps
WO2019073128A1 (fr) Rotor pour moteur ou génératrice électromagnétique à rigidité diminuée
FR2486730A1 (fr) Accumulateur d'energie a volant
US20240055921A1 (en) Element with magnetic poles for the rotor of an axial flux electric machine
WO2015193563A1 (fr) Moteur synchrone électromagnétique à flux magnétiques combinés axial et radial avec double excitation
FR2837632A1 (fr) Machine electrique a dent distincte de support d'un enroulement et vehicule automobile correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16707828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16707828

Country of ref document: EP

Kind code of ref document: A1