WO2016116637A1 - Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión - Google Patents

Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión Download PDF

Info

Publication number
WO2016116637A1
WO2016116637A1 PCT/ES2015/070030 ES2015070030W WO2016116637A1 WO 2016116637 A1 WO2016116637 A1 WO 2016116637A1 ES 2015070030 W ES2015070030 W ES 2015070030W WO 2016116637 A1 WO2016116637 A1 WO 2016116637A1
Authority
WO
WIPO (PCT)
Prior art keywords
mbar
fluoroketones
electrical
switchgear
medium
Prior art date
Application number
PCT/ES2015/070030
Other languages
English (en)
French (fr)
Inventor
Jesus Izcara Zurro
Javier Larrieta Zubia
Original Assignee
Ormazabal Corporate Technology, A.I.E.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT157088477T priority Critical patent/PT3249656T/pt
Priority to HUE15708847A priority patent/HUE049238T2/hu
Application filed by Ormazabal Corporate Technology, A.I.E. filed Critical Ormazabal Corporate Technology, A.I.E.
Priority to US15/544,208 priority patent/US10607748B2/en
Priority to PL15708847T priority patent/PL3249656T3/pl
Priority to BR112017015599-0A priority patent/BR112017015599B1/pt
Priority to DK15708847.7T priority patent/DK3249656T3/da
Priority to EP15708847.7A priority patent/EP3249656B1/en
Priority to CN201580074010.2A priority patent/CN107210156A/zh
Priority to MX2017009000A priority patent/MX2017009000A/es
Priority to PCT/ES2015/070030 priority patent/WO2016116637A1/es
Priority to AU2015378898A priority patent/AU2015378898A1/en
Priority to ES15708847T priority patent/ES2788161T3/es
Priority to ARP160100131A priority patent/AR103452A1/es
Publication of WO2016116637A1 publication Critical patent/WO2016116637A1/es
Priority to HK18104046.6A priority patent/HK1244587A1/zh
Priority to CY20201100412T priority patent/CY1123352T1/el

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/56Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/22Selection of fluids for arc-extinguishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/56Gas reservoirs
    • H01H2033/566Avoiding the use of SF6
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/055Features relating to the gas

Definitions

  • the present invention is framed in the field of electrical insulation systems for use in medium and high voltage electrical switchgear. More particularly, the invention relates to an electrical insulation system comprising two fundamental elements: a) a gaseous medium formed by one or more highly fluorinated fluoroketones of between 4 and 12 carbons, for at least one additional dielectric gas, other than fluoroketones, with a vapor pressure of 0
  • the invention relates to the use of the electrical insulation system, as well as to the medium or high voltage electrical switchgear comprising a closed enclosure whose electrical components are under tension and an electrical insulation system according to the invention. . BACKGROUND OF THE INVENTION
  • the electrical insulation in the medium and high voltage equipment is normally guaranteed by the use of a dielectric gas that is introduced into a closed and sealed enclosure where the live components of the electrical equipment are located.
  • fluoroketones not only because they have a good dielectric strength but also because some of them are not toxic to humans and have an environmental impact that is much lower than that of SF 6 gas.
  • Other documents such as WO2012160158 and WO2012160155 describe mixtures of fluoroketones with vector gases such as C0 2 , N 2 , 0 2 , air or mixtures thereof.
  • Another problem that negatively affects the dielectric capacity of gaseous insulation systems is the presence of water molecules from the materials with which some electrical components of the switchgear itself are manufactured. Water can appear in the enclosed and sealed enclosure of the switchgear where the insulating gas is located because some thermoplastic materials used in the manufacture of electrical components such as, for example, polyamides can contain water inside. For example in the case of polyamides they can have absorbed between 4.5 and 7.5% by weight of water. The presence of water in the gaseous medium decreases its dielectric properties, so its presence should be avoided.
  • a molecular sieve is a material that contains small pores of a precise and uniform size, and is used as an adsorbent agent for gases and liquids. Molecules that are small enough to pass through the pores are adsorbed, while the larger molecules are not. Unlike a filter, the process operates at the molecular level. For example, one molecule of water may be small enough to pass, while other larger molecules cannot.
  • gases that act as vectors C0 2 , N 2 , air, 0 2 etc.
  • gases that act as vectors have molecular sizes similar to those of the water molecule and sieves can adsorb part of these gases instead of water molecules.
  • the main object of the present invention is an electrical isolation system for medium or high voltage electrical switchgear comprising: a) a gaseous medium comprising a mixture of one or more highly fluorinated fluoroketones of between 4 and 12 carbons , at least one additional dielectric gas, other than fluoroketones, with a vapor pressure at 0 ° C greater than 500 mbar and less than 15,000 mbar, and one or more vector gases, and b) a molecular sieve with a pore size of 3 to 6 ⁇ and a polar surface
  • Another object of the invention is the use of the electrical insulation system of the invention for electrical insulation and / or for the extinction of electric arcs in medium or high voltage electrical switchgear.
  • a further object of the invention is a method for electrical insulation and / or the extinction of electric arcs in medium and high voltage electrical switchgear comprising the introduction of the electrical insulation system in a closed and sealed enclosure where the electrical components are located under tension of said medium or high voltage electrical switchgear.
  • a final object of the present invention is a medium or high voltage electrical switchgear comprising a closed enclosure whose electrical components are under tension and an electrical insulation system in accordance with the present invention.
  • Figure 1 representation of the structure of zeolite A.
  • Figure 2 representation of the location of sodium cations in structure A of the zeolite.
  • Figure 3 BAUR DTA-100E equipment used to determine the dielectric strength of gaseous electrical insulation systems.
  • a first object of the invention relates to an electrical isolation system for medium or high voltage electrical switchgear comprising: a) a gaseous medium comprising a mixture of:
  • the first element of the electrical insulation system of the invention is the gaseous medium.
  • one of the essential elements is the fluoroketones of between 4 and 12 carbons which according to the present invention have the general formula (I):
  • R CO-R 2 (I) where and R 2 represent linear or branched carbon chains of between 1 and 10 at least partially fluorinated carbons.
  • the definition of formula (I) includes both perfluorinated ketones and hydrofluorinated ketones.
  • fluoroketones may have between 4 and 10 carbons and even more particularly between 4 and 8 carbons.
  • the fluoroketones have 5 or 6 carbons and more particularly and preferably the fluoroketones respectively have the structural formulas CF 3 -CO-CF- (CF 3 ) 2 (which we will refer to as C5K ) and CF 3 -CF2-CO-CF- (CF 3 ) 2 (which we will refer to as C6K) respectively.
  • C5K CF 3 -CO-CF- (CF 3 ) 2
  • C6K very low greenhouse effect
  • the second essential element of the gaseous medium is the additional dielectric gas, other than fluoroketones, with a vapor pressure at 0 ° C greater than 500 mbar and less than 15,000 mbar, such as fluoronitrile.
  • additional dielectric gas with a vapor pressure at 0 ° C greater than 0.5 bar and less than 15 bar, such as fluoronitrile to a fluoroketone-based insulation system provides a Significant increase in the dielectric strength of the gas mixture without adversely affecting other operating parameters.
  • the additional dielectric gas is a fluoronitrile and more preferably heptafluoroisobutyronitrile, whose chemical formula is (CF 3 ) 2 -CF-CN and which has a low environmental impact (GWP value about 10% of the value of SF 6 ) and very good dielectric properties.
  • the other element of the gaseous mixture of the electrical insulation system of the invention is the vector gas or gases. Gas vectors are known as the gases used to dilute the fluoroketones or additional dielectric gas, and although they have a lower dielectric strength, they allow the gaseous medium to behave as such at low temperatures. On the other hand, they are usually completely harmless (non-toxic) gases and generally with a reduced environmental impact.
  • the vector gases are selected from N 2 , C0 2 , 0 2 , dry air, helium or mixtures thereof.
  • a particular and preferred embodiment of the invention relates to an electrical isolation system where the gas mixture comprises a 4 to 12 carbon fluoroketone, preferably 5 or 6 carbons, more preferably C5K fluoroketone, a fluoronitrile, preferably heptafluoroisobutyronitrile, and one or more vector gases.
  • the vector gases are preferably selected from N 2 , C0 2 , 0 2 , dry air, helium or mixtures thereof.
  • Another particular and preferred embodiment of the invention relates to an electrical isolation system where the gas mixture comprises two fluoro ketones of 4 to
  • the vector gases are preferably selected from N 2 , C0 2 , 0 2 , dry air, helium or mixtures thereof.
  • the total dielectric strength of the gas mixture will be influenced by the amount of fluoroketone or fluoroketones and additional dielectric gas (such as fluoronitrile), so that the more fluoroketone and additional dielectric gas in the gas mixture, the greater its dielectric strength.
  • additional dielectric gas such as fluoronitrile
  • the amount of fluoroketone and additional dielectric gas in the gas mixture is conditioned by the minimum operating temperature of the switchgear where it is to be used.
  • the lower the minimum operating temperature of the electrical switchgear the less amount of fluoroketones and additional dielectric gas can be put into the gas mixture since it is desirable to avoid partial condensation at low temperatures.
  • the other fundamental element of the electrical insulation system of the invention apart from the gaseous medium, is a molecular sieve with a pore size of 3 to 6 ⁇ and a polar surface.
  • a molecular sieve as already noted above is a material that contains small pores of a precise and uniform size that is used as an adsorbent for gases and liquids. Molecular sieves are able to discriminate at the level of molecular size so that molecules that are small enough to pass through the pores are adsorbed while the larger molecules are not.
  • Molecular sieves have a high water adsorption capacity that in some cases can reach up to 22% of their own weight in water.
  • the molecules of the vector gases (N 2 , C0 2 , 0 2 , dry air or helium) of the gas mixture of the insulation system have a molecular size similar to that of the water molecule, it is necessary that The molecular sieve has the ability to selectively separate water molecules from those of these gases.
  • the inventors have discovered that the use of a molecular sieve with a pore size of 3 to 6 ⁇ and a polar surface allows this discrimination and selectively adsorb water molecules against molecules of N 2 , C0 2 , 0 2 , dry air or helium, causing the electrical insulation system of the invention not to see its dielectric strength altered or impaired.
  • This selective water capacity of the sieves of the electrical insulation system of the invention comes not only from the pore size but also, and especially in the case of molecules of similar size to water, from the polar surface of the molecular sieves .
  • the fact that the surface is polar makes it more appealing to those more polar molecules with preference over the less polar ones.
  • Table 1 describes both the size and polarity of certain molecules: Table 1.
  • molecular sieves of different nature such as zeolites that are aluminosilicates, porous glasses, clays, microporous carbons, activated carbons, etc.
  • any molecular sieve is suitable for use in the electrical insulation system of the invention as long as it complies with the pore size being between 3 to 6 ⁇ and having a polar surface.
  • the molecular sieve has a pore size of 3 to 4 ⁇ .
  • the molecular sieve is a zeolite sieve.
  • the zeolite can be natural and preferably synthetic zeolite.
  • the zeolites are aluminosilicates that can have different structures such as zeolite A, zeolite X, zeolite Y, etc.
  • the zeolite has structure A.
  • Figure 1 the structure of the Zeolite can be observed.
  • the atoms of aluminum, silicon and oxygen combine to form truncated octahedra called sodalite cages.
  • the sodalite cages are combined in the Zeolite A in the form of a simple cube leaving an interior space called cage ⁇ with a cavity of 1 1.5 ⁇ in diameter accessible from the openings of the six sides of the cube. These entrances are surrounded by 8 oxygen atoms and one or more interchangeable cations partially block the frontal area.
  • the cations are of Sodium (Na + ) (see figure 2)
  • the ring of oxygen atoms provides a "window" of 4.2 A in diameter to enter the interior of the structure (cage a).
  • Sodium cations can be partially substituted by other cations in synthetic zeolites such as potassium (K + ) or calcium (Ca 2+ ), giving rise to openings of 3 ⁇ and 5 ⁇ respectively.
  • zeolite In addition to contributing to determine the opening diameter of the pores that, without a doubt, is relevant in the molecular discrimination of gases adsorbed by the Zeolites, they contribute to the rigidly established positive and negative charges in the crystalline structure of the zeolite that they result in an unequal distribution of charges which creates a polar surface. This characteristic of zeolite is precisely what allows water molecules to be adsorbed with preference to other vector gas molecules such as N 2 , C0 2 , 0 2 , dry air or helium.
  • Another additional object of the invention is represented by the use of an electrical insulation system as described above for electrical insulation and / or for the extinction of electric arcs in medium or high voltage electrical switchgear.
  • the gaseous medium comprising a mixture of one or more fluoroketones of between 4 and 12 carbons, an additional dielectric gas with a vapor pressure at 0 ° C greater than 500 mbar and less than 15,000 mbar (for example a fluoronitrile) and one or plus Gas vectors, provides a dielectric strength to the system that the molecular sieve with a pore size of 3 to 6 ⁇ and a polar surface is responsible for maintaining because it is capable of selectively adsorbing water molecules that may appear in the gaseous medium coming from some of the elements of the medium and high voltage electrical switchgear that are in the enclosed and sealed enclosure of said switchgear. That is why the system of the invention is very useful in electrical insulation and is capable of extinguishing electric arcs in this type of electrical switchgear.
  • Another additional object of the invention in some way related to the use of the electrical insulation system of the invention relates to a method for electrical isolation and / or the extinction of electric arcs in high and medium voltage electrical switchgear comprising the introduction of an electrical insulation system comprising: a) a gaseous medium comprising a mixture of
  • a final object of the invention relates to medium or high voltage electrical switchgear comprising a closed enclosure whose electrical components are under tension and an electrical isolation system comprising: a) a gaseous medium comprising a mixture of
  • Figure 3 is a test system for experimental determination of the dielectric strength of gaseous insulation systems.
  • said switchgear may be a secondary distribution cell for electrical distribution networks of up to 72 kV.
  • an electrical isolation system is proposed within a closed and sealed enclosure that is part of a medium or high voltage electrical switchgear, comprising a zeolitic molecular sieve with a size between 3 to 6 ⁇ , preferably between 3 ⁇ and 4 ⁇ and also a gas mixture comprising: a) a fully fluorinated fluoroketone with structural formula CF 3 -CO-CF- (CF 3 ) 2 (which will be called C5K) and b) optionally also another fully fluorinated fluoroketone with structural formula CF 3 -CF2-CO-CF- (CF 3 ) 2 (to be called C6K), c) At least one additional dielectric gas other than fluoroketones, with a vapor pressure at 0 ° C greater than 500 mbar and less than 15,000 mbar, such as a fluoronitrile, particularly heptafluoroisobutyronitrile with chemical formula (CF 3 ) 2 -CF-CN
  • the dielectric strength of the insulation system in addition to being improved by the presence of the selective molecular sieve used due to the reduction of water therein, will also be influenced by the percentage of fluoroketone or fluoroketones and the other additional dielectric gas (such as fluoronitrile) employees in the gas mixture. So that the more fluoroketone and additional dielectric gas in the gas mixture, the greater its dielectric strength, for a given final filling pressure. However, as mentioned above, the amount of fluoroketone and additional dielectric gas in the gas mixture is conditioned by the minimum operating temperature of the switchgear if it is desired to avoid condensation at low temperatures (which would lead to a reduction in the properties dielectrics of the gas mixture at those low temperatures).
  • Pvs, C5k and Pvs, C6K and Pvs, FN are the saturation vapor pressures of C5K and C6K fluoroketones, and of heptafluoroisobutyronitrile at different temperature values
  • X, C5K and X, C6K and X, FN are the molar fractions of fluoroketones and heptafluoroisobutyronitrile in the final mixture (for a final filling pressure of
  • Example 2 Dielectric strength test of gas mixtures The dielectric strength of different gas mixtures was evaluated by measuring the "dielectric breakdown voltage" in a BAUR DTA-100E device equipped with a gas test cell with two electrodes according to ASTM D2477 (one of the electrodes is a flat-faced disk 1.50 inches in diameter and the other electrode is a spherical ball of 0.75 inches in diameter) and with a distance between electrodes of 8 mm.
  • the gaseous mixtures tested were the following:
  • Example 3 Environmental impact (greenhouse effect) of an example of a gas mixture
  • the greenhouse effect potential (GWP or global warming potential) of a gas mixture is calculated, in accordance with the European Regulation of fluorinated greenhouse gases, such as the weighted average derived from the sum of the fractions by weight of each of the substances multiplied by their GWP value.
  • the greenhouse effect potential (GWP) of a mixture with 9% C5K fluoroketone, 8% heptafluoroisobutyronitrile and 83% C0 2 would be approximately 454, that is, 2% of the effect potential greenhouse (GWP) of SF6 gas (taking into account that the GWP of C5K is 1 and that of heptafluoroisobutyronitrile is 2210, and that the molecular weight of C5K is 266, that of heptafluoroisobutyronitrile is 195 and that of C0 2 is 44).

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Organic Insulating Materials (AREA)

Abstract

La invención que se refiere a un sistema de aislamiento eléctrico de bajo impacto ambiental que comprende dos elementos fundamentales a) un medio gaseoso formado por una o más fluorocetonas altamente fluoradas de entre 4 y 12 carbonos, por al menos otro gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares como por ejemplo el fluoronitrilo (CF3)2-CF-CN, y por uno o más gases vectores y b) un tamiz molecular capaz de discriminar las moléculas de agua frente a moléculas de otros gases presentes en el medio gaseoso del sistema. Asimismo, la invención se refiere al uso del sistema de aislamiento, así como a aparamenta eléctrica de media o alta tensión que comprende un recinto cerrado en cuyo interior se encuentran componentes eléctricos bajo tensión y un sistema de aislamiento eléctrico de acuerdo con la invención.

Description

ELECTRICA!. INSULATION SYSTEM FOR MEDIUM- AND HIGH-VOLTAGE ELECTRICAL SWITCHGEAR
CAMPO DE LA INVENCION
La presente invención se enmarca en el campo de los sistemas de aislamiento eléctrico para su uso en aparamenta eléctrica de media y alta tensión. Más particularmente, la invención se refiere a un sistema de aislamiento eléctrico que comprende dos elementos fundamentales: a) un medio gaseoso formado por una o más fluorocetonas altamente fluoradas de entre 4 y 12 carbonos, por al menos otro gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0
°C mayor de 500 mbares y menor de 15000 mbares, y por uno o más gases vectores y b) un tamiz molecular capaz de adsorber de forma preferente las moléculas de agua frente a las moléculas de los gases vectores presentes en el medio gaseoso del sistema. Asimismo, la invención se refiere al uso del sistema de aislamiento eléctrico, así como a la aparamenta eléctrica de media o alta tensión que comprende un recinto cerrado en cuyo interior se encuentran componentes eléctricos bajo tensión y un sistema de aislamiento eléctrico de acuerdo con la invención. ANTECEDENTES DE LA INVENCIÓN
El aislamiento eléctrico en los equipos de media y alta tensión se garantiza normalmente mediante el uso de un gas dieléctrico que se introduce en un recinto cerrado y estanco donde se encuentran los componentes en tensión de los equipos eléctricos.
El gas dieléctrico más empleado en los últimos años es el gas SF6 debido a sus excelentes propiedades dieléctricas y, entre otras muchas ventajas más, a que no es tóxico para las personas. Sin embargo, este gas presenta un gran impacto ambiental debido a su alto potencial de efecto invernadero (GWP = 22800).
Por esta razón, en los últimos años se buscan gases alternativos que puedan sustituir a este gas en este tipo de equipos. Se han barajado diferentes gases alternativos al SF6 con buenas propiedades dieléctricas pero por una u otra razón (toxicidad no aceptable, alto poder de efecto invernadero, etc.) no han sido implantados finalmente.
Asimismo, el empleo como medio dieléctrico en estos equipos únicamente de gases más amigables con el medio ambiente como el aire seco, el N2, el 02 o el C02 supondría un considerable aumento del tamaño de estos equipos para un nivel de tensión dada, debido a la menor rigidez dieléctrica de estos gases frente al SF6. Otra opción en este caso sería aumentar la presión de llenado de los equipos a valores superiores a los empleados con SF6 (alrededor de 1300 mbares), pero ello implicaría condicionar el diseño al cumplimiento de los distintos Reglamentos nacionales existentes para recipientes con presiones superiores a 1500 mbares con el consiguiente aumento de costo del equipo.
Una alternativa prometedora son las fluorocetonas no solo porque poseen una buena rigidez dieléctrica sino también porque algunas de ellas no son tóxicas para el ser humano y presentan un impacto ambiental muy inferior al del gas SF6. Los documentos WO2010/1460022 o WO2010142346 ya describen de hecho el uso de fluorocetonas para el aislamiento eléctrico en aparatos de media y alta tensión. Otros documentos como WO2012160158 y WO2012160155 describen mezclas de fluorocetonas con gases vectores como C02, el N2, el 02, el aire o mezclas de ellos.
Otra alternativa prometedora son los nitrilos fluorados o fluoronitrilos que también poseen una buena rigidez dieléctrica. El documento WO 2013/151741 describe el uso de dos fluoronitrilos como fluido dieléctrico en equipos eléctricos
Otro problema que afecta negativamente a la capacidad dieléctrica de los sistemas gaseosos de aislamiento es la presencia de moléculas de agua procedentes de los materiales con los que se fabrican algunos componentes eléctricos de la propia aparamenta. El agua puede aparecer en el recinto cerrado y estanco de la aparamenta donde se encuentra el gas aislante porque algunos materiales termoplásticos empleados en la fabricación de componentes eléctricos como, por ejemplo, las poliamidas pueden contener agua en su interior. Por ejemplo en el caso de las poliamidas pueden tener absorbidas entre un 4.5 y un 7.5% en peso de agua. La presencia de agua en el medio gaseoso hace disminuir las propiedades dieléctricas del mismo por lo que se debe evitar su presencia.
Para solventar el problema del agua presente en las aparamentas eléctricas se han usado desecantes y también tamices moleculares. Un tamiz molecular es un material que contiene poros pequeños de un tamaño preciso y uniforme, y que se usa como agente adsorbente para gases y líquidos. Las moléculas que son lo suficientemente pequeñas para pasar a través de los poros son adsorbidas, mientras que las moléculas mayores no. A diferencia de un filtro, el proceso opera a nivel molecular. Por ejemplo, una molécula de agua puede ser lo suficientemente pequeña para pasar, mientras que otras moléculas más grandes no pueden hacerlo.
En sistemas de aislamiento con gas SF6 como único gas aislante la separación del agua es relativamente sencilla mediante tamices moleculares ya que el tamaño de la molécula de SF6 es sustancialmente mayor que el de la molécula de agua y por tanto la selección por tamaños de molécula no representa un problema importante. Sin embargo, este problema no es tan fácil de resolver en sistemas gaseosos de aislamiento en los cuales existen moléculas de tamaños comparables a los de la molécula de agua como por ejemplo gases vectores como el N2, C02, aire seco junto con aislantes como fluorocetonas o fluoronitrilos.. En este tipo de aislantes dieléctricos los gases que actúan como vectores (C02, N2, aire, 02 etc.) tienen tamaños moleculares similares a los de la molécula del agua y los tamices pueden adsorber parte de estos gases en vez de las moléculas de agua.
Por tanto, existe la necesidad de desarrollar sistemas gaseosos de aislamiento dieléctrico para aparamenta de media y alta tensión que posean una rigidez dieléctrica adecuada (similar a la del SF6), que no resulten tóxicos para el ser humano, cuyo impacto ambiental sea mínimo y cuya capacidad de aislamiento no se vea afectada por el posible agua que puede aparecer en el interior de los recintos cerrados de dicha aparamenta eléctrica, donde se encuentran los componentes eléctricos aislados con los gases dieléctricos. OBJETO DE LA INVENCIÓN
Es por tanto un objeto de la invención un sistema de aislamiento eléctrico de bajo impacto ambiental para aparamenta eléctrica de media o alta tensión que representa una solución a los problemas antes planteados. De manera más particular el objeto principal de la presente invención es un sistema de aislamiento eléctrico para aparamenta eléctrica de media o alta tensión que comprende: a) un medio gaseoso que comprende una mezcla de una o más fluorocetonas altamente fluoradas de entre 4 y 12 carbonos, al menos otro gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares, y uno o más gases vectores, y b) un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar
Otro objeto de la invención es el uso del sistema de aislamiento eléctrico de la invención para el aislamiento eléctrico y/o para la extinción de arcos eléctricos en aparamenta eléctrica de media o alta tensión. Un objeto adicional de la invención es un método para el aislamiento eléctrico y/o la extinción de arcos eléctricos en aparamenta eléctrica de media y alta tensión que comprende la introducción del sistema de aislamiento eléctrico en un recinto cerrado y estanco donde se hallen los componentes eléctricos bajo tensión de dicha aparamenta eléctrica de media o alta tensión.
Un último objeto de la presente invención es una aparamenta eléctrica de media o alta tensión que comprende un recinto cerrado en cuyo interior se encuentran componentes eléctricos bajo tensión y un sistema de aislamiento eléctrico de acuerdo con la presente invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : representación de la estructura de la zeolita A. Figura 2: representación de la ubicación de los cationes de sodio en la estructura A de la zeolita.
Figura 3: equipo BAUR DTA-100E que sirve para la determinación de la rigidez dieléctrica de sistemas gaseosos de aislamiento eléctrico.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Un primer objeto de la invención se refiere a un sistema de aislamiento eléctrico para aparamenta eléctrica de media o alta tensión que comprende: a) un medio gaseoso que comprende una mezcla de:
- una o más fluorocetonas de entre 4 y 12 carbonos
- al menos otro gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares
- uno o más gases vectores, y b) un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar.
El primer elemento del sistema de aislamiento eléctrico de la invención es el medio gaseoso. Dentro de este medio gaseoso uno de los elementos esenciales son las fluorocetonas de entre 4 y 12 carbonos que de acuerdo con la presente invención tienen la fórmula general (I):
R CO-R2 (I) donde y R2 representan cadenas carbonadas lineales o ramificadas de entre 1 y 10 carbonos al menos parcialmente fluoradas. La definición de la formula (I) incluye tanto cetonas perfluoradas como cetonas hidrofluoradas.
De manera más particular las fluorocetonas pueden poseer entre 4 y 10 carbonos y aún más particularmente entre 4 y 8 carbonos. En una realización particular y preferida de la invención la fluorocetonas poseen 5 o 6 carbonos y de manera más particular y preferida las fluorocetonas tienen respectivamente las formulas estructurales CF3-CO-CF-(CF3)2 (a la que nos referiremos como C5K) y CF3-CF2-CO-CF-(CF3)2 (a la que nos referiremos como C6K) respectivamente. La razón por la cual estas dos fluorocetonas son especialmente preferidas es porque son productos con una buena rigidez dieléctrica, con muy bajo poder de efecto invernadero (GWP=1) y además no son tóxicas. Por ejemplo, para la fluorocetona C5K el valor límite ambiental de exposición diaria, VLA-ED (8 horas), es de 225 ppmv.
El segundo elemento esencial del medio gaseoso es el gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares, como por ejemplo el fluoronitrilo. Los autores de la presente invención han descubierto que la incorporación del gas dieléctrico adicional con una presión de vapor a 0 °C mayor de 0.5 bares y menor de 15 bares, como por ejemplo el fluoronitrilo a un sistema de aislamiento con base de fluorocetonas proporciona un aumento significativo de la rigidez dieléctrica de la mezcla gaseosa sin afectar negativamente a otros parámetros operativos. En una realización particular y preferida de la invención el gas dieléctrico adicional es un fluoronitrilo y más preferiblemente el heptafluoroisobutironitrilo, cuya formula química es (CF3)2-CF-CN y que tiene un bajo impacto ambiental (valor de GWP cerca del 10% del valor del SF6) y unas muy buenas propiedades dieléctricas. El otro elemento de la mezcla gaseosa del sistema de aislamiento eléctrico de la invención es el o los gases vectores. Como gases vectores se conocen a los gases usados para diluir la o las fluorocetonas y el gas dieléctrico adicional, y que aunque poseen una rigidez dieléctrica menor permiten que el medio gaseoso se comporte como tal a bajas temperaturas. Por otro lado, suelen ser gases completamente inocuos (no tóxicos) y generalmente con un impacto ambiental reducido.
En una realización particular los gases vectores se seleccionan entre N2, C02, 02, aire seco, helio o mezclas de los mismos. Una realización particular y preferida de la invención se refiere a un sistema de aislamiento eléctrico donde la mezcla gaseosa comprende una fluorocetona de 4 a 12 carbonos, preferiblemente de 5 o 6 carbonos, más preferiblemente la fluorocetona C5K, un fluoronitrilo, preferiblemente el heptafluoroisobutironitrilo, y uno o más gases vectores. En esta realización de manera preferente los gases vectores se seleccionan entre N2, C02, 02, aire seco, helio o mezclas de los mismos.
Otra realización particular y preferida de la invención se refiere a un sistema de aislamiento eléctrico donde la mezcla gaseosa comprende dos fluorocetonas de 4 a
12 carbonos, preferiblemente de 5 o 6 carbonos, más preferiblemente las fluorocetonas C5K y C6K, un fluoronitrilo, preferiblemente el heptafluoroisobutironitrilo, y uno o más gases vectores. En esta realización de manera preferente los gases vectores se seleccionan entre N2, C02, 02, aire seco, helio o mezclas de los mismos.
La rigidez dieléctrica total de la mezcla gaseosa vendrá influenciada por la cantidad de fluorocetona o fluorocetonas y de gas dieléctrico adicional (como por ejemplo fluoronitrilo), de manera que cuanta más fluorocetona y gas dieléctrico adicional haya en la mezcla gaseosa mayor será su rigidez dieléctrica.
Sin embargo, la cantidad de fluorocetona y de gas dieléctrico adicional en la mezcla gaseosa viene condicionada por la temperatura mínima de funcionamiento de la aparamenta donde se vaya a emplear. De manera general, cuanto menor sea la temperatura mínima de funcionamiento de la aparamenta eléctrica menor cantidad de fluorocetonas y de gas dieléctrico adicional se podrá meter en la mezcla gaseosa ya que es deseable evitar su condensación parcial a bajas temperaturas.
El otro elemento fundamental del sistema de aislamiento eléctrico de la invención, aparte del medio gaseoso, es un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar.
Un tamiz molecular como ya se apuntaba más arriba es un material que contiene poros pequeños de un tamaño preciso y uniforme que se usa como adsorbente para gases y para líquidos. Los tamices moleculares son capaces de discriminar a nivel de tamaño molecular de modo que las moléculas que son lo suficientemente pequeñas para pasar a través de los poros son adsorbidas mientras que las moléculas mayores no lo son.
El uso del tamiz molecular en el sistema de aislamiento eléctrico de la invención, se justifica por la necesidad de adsorber las moléculas de agua presentes en los materiales de algunos componentes que forman la aparamenta eléctrica ya que la presencia de dichas moléculas afecta negativamente a la rigidez dieléctrica y por tanto a la capacidad como aislante de la mezcla gaseosa con fluorocetonas y fluoronitrilo.
Los tamices moleculares tienen una gran capacidad de adsorción de agua que en algunos casos puede llegar hasta el 22% de su propio peso en agua. No obstante, debido a que las moléculas de los gases vectores (N2, C02, 02, aire seco o helio) de la mezcla gaseosa del sistema de aislamiento tienen un tamaño molecular similar al de la molécula de agua, es preciso que el tamiz molecular tenga capacidad de separar selectivamente las moléculas de agua frente a las de estos gases.
Para ello los inventores han descubierto que el uso de un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar permite hacer esta discriminación y adsorber selectivamente las moléculas de agua frente a moléculas de N2, C02, 02, aire seco o helio, haciendo que el sistema de aislamiento eléctrico de la invención no vea alterada o deteriorada su rigidez dieléctrica.
Esta capacidad selectiva hacia el agua de los tamices del sistema de aislamiento eléctrico de la invención proviene no solo del tamaño del poro sino además, y especialmente para el caso de moléculas de tamaño similar a la de agua, de la superficie polar de los tamices moleculares. El hecho de que la superficie sea polar hace que atraiga con más apetencia aquellas moléculas más polares con preferencia sobre las menos polares.
La tabla 1 describe tanto el tamaño como la polaridad de determinadas moléculas: Tabla 1.
Figure imgf000010_0001
A partir de estos datos es fácil entender que por ejemplo será fácil discriminar por tamaño la adsorción de las moléculas de agua frente a moléculas de por ejemplo SF6 o de fluorocetona, sin embargo no lo es tanto frente a moléculas de los gases vectores como helio, 02, N2, C02 o aire cuyos tamaños son parecidos. Frente a estas moléculas si es relevante la polaridad del agua mucho mayor que la de los otros gases vectores. Esta característica de las moléculas de agua es la que hace que estas sean adsorbidas de manera preferente frente al resto cuando la superficie del tamiz es polar.
Hay tamices moleculares de diferente naturaleza como las zeolitas que son aluminosilicatos, vidrios porosos, arcillas, carbones microporosos, carbones activados, etc. En principio cualquier tamiz molecular es apropiado para su uso en el sistema de aislamiento eléctrico de la invención siempre y cuando cumpla con que el tamaño de poro sea de entre 3 a 6 Á y posea una superficie polar.
No obstante, en una realización preferida de la invención el tamiz molecular posee un tamaño de poro de 3 a 4 Á.
También en una realización preferida el tamiz molecular es un tamiz de zeolita. La zeolita puede ser natural y preferiblemente zeolita sintética. Las zeolitas son aluminosilicatos que pueden presentar diferentes estructuras como la zeolita A, zeolita X, zeolita Y, etc.
En la realización preferida de la invención la zeolita tiene estructura A. En la figura 1 se puede observar la estructura de la Zeolita A. Los átomos de aluminio, silicio y oxigeno se asocian para formar unos octaedros truncados llamadas jaulas de sodalita. Las jaulas de sodalita se combinan en la Zeolita A en forma de cubo simple dejando un espacio interior llamado jaula α con una cavidad de 1 1.5 Á de diámetro accesible desde las aperturas de los seis lados del cubo. Estas entradas están rodeadas por 8 átomos de oxígeno y uno o más cationes intercambiables bloquean parcialmente el área frontal. Cuando los cationes son de Sodio (Na+) (ver figura 2) el anillo de átomos de oxigeno proporciona una "ventana" de 4,2 Á de diámetro para entrar al interior de la estructura (jaula a). Los cationes de sodio pueden ser parcialmente sustituidos por otros cationes en zeolitas sintéticas como por ejemplo por potasio (K+) o calcio (Ca2+) dando lugar a aperturas de 3 Á y 5 Á respectivamente.
Además de contribuir a determinar el diámetro de apertura de los poros que, sin duda, es de relevancia en la discriminación molecular de los gases adsorbidos por las Zeolitas, contribuyen a que haya en la estructura cristalina de la zeolita cargas positivas y negativas rígidamente establecidas que resultan en una distribución desigual de las cargas lo que crea que la superficie sea polar. Esta característica de la zeolita es precisamente la que permite adsorber con preferencia moléculas de agua frente a otras moléculas de gases vectores como N2, C02, 02, aire seco o helio.
Otro objeto adicional de la invención viene representado por el uso de un sistema de aislamiento eléctrico como el anteriormente descrito para el aislamiento eléctrico y/o para la extinción de arcos eléctricos en aparamenta eléctrica de media o alta tensión.
El medio gaseoso que comprende una mezcla de una o más fluorocetonas de entre 4 y 12 carbonos, un gas dieléctrico adicional con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares (por ejemplo un fluoronitrilo) y uno o más gases vectores, proporciona una rigidez dieléctrica al sistema que el tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar se encarga de mantener debido a que es capaz de adsorber selectivamente las moléculas de agua que pueden aparecer en el medio gaseoso procedentes de algunos de los elementos de la aparamenta eléctrica de media y alta tensión que se encuentran en el recinto cerrado y estanco de dicha aparamenta. Es por ello, que el sistema de la invención es de gran utilidad en el aislamiento eléctrico y es capaz de extinguir arcos eléctricos en este tipo de aparamenta eléctrica.
Otro objeto adicional de la invención de alguna manera relacionado con el uso del sistema de aislamiento eléctrico de la invención se refiere a un método para el aislamiento eléctrico y/o la extinción de arcos eléctricos en aparamenta eléctrica de alta y media tensión que comprende la introducción de un sistema de aislamiento eléctrico que comprende: a) un medio gaseoso que comprende una mezcla de
- una o más fluorocetonas altamente fluoradas de entre 4 y 12 carbonos
- al menos un gas dieléctrico adicional con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares (por ejemplo un fluoronitrilo)
- y uno o más gases vectores, y b) un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar en un recinto cerrado y estanco donde se hallen los elementos a aislar de dicha aparamenta eléctrica de media o alta tensión.
Para ello inicialmente se colocan dentro del recinto una o más bolsas permeables a los gases y que contienen el tamiz molecular. Posteriormente se cierra el recinto de manera que sea perfectamente estanco y se le hace vacío. A continuación se introduce la mezcla gaseosa con la o las fluorocetonas, el gas dieléctrico adicional y el o los gases vectores hasta alcanzar la presión deseada. Un último objeto de la invención se refiere a aparamenta eléctrica de media o alta tensión que comprende un recinto cerrado en cuyo interior se encuentran componentes eléctricos bajo tensión y un sistema de aislamiento eléctrico que comprende: a) un medio gaseoso que comprende una mezcla de
- una o más fluorocetonas altamente fluoradas de entre 4 y 12 carbonos
- al menos un gas dieléctrico adicional con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares (por ejemplo un fluoronitrilo)
- uno o más gases vectores, y b) un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar
La figura 3 es un sistema de ensayo para la determinación experimental de la rigidez dieléctrica de sistemas gaseosos de aislamiento.
En una realización particular de la invención dicha aparamenta puede ser una celda de distribución secundaria para redes de distribución eléctrica de hasta 72 kV.
A continuación se presentan ejemplos que permiten entender las posibles realizaciones de la invención:
Ejemplo 1 : exposición detallada sobre modos de realización de la invención
Como realización preferente de esta invención se propone un sistema de aislamiento eléctrico dentro de un recinto cerrado y estanco que forma parte de una aparamenta eléctrica de media o alta tensión, que comprende un tamiz molecular zeolitico con un tamaño de entre 3 a 6 Á, preferentemente entre 3Á y 4Á y además una mezcla gaseosa que comprende: a) una fluorocetona completamente fluorada con formula estructural CF3-CO- CF-(CF3)2 (que se denominará C5K) y b) opcionalmente también otra fluorocetona completamente fluorada con formula estructural CF3-CF2-CO-CF-(CF3)2 (que se denominará C6K), c) Al menos otro gas dieléctrico adicional distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares, como por ejemplo un fluoronitrilo, particularmente el heptafluoroisobutironitrilo con formula química (CF3)2-CF-CN
d) y además de otro gas o gases vectores como por ejemplo, N2, C02, aire seco, 02 o helio o cualquier combinación de ellos. Las dos fluorocetonas mencionadas son productos con una buena rigidez dieléctrica, con muy bajo poder de efecto invernadero (GWP=1) y además no son tóxicas. Por ejemplo, para la fluorocetona C5K el valor límite ambiental de exposición diaria, VLA-ED (8horas), es de 225 ppmv. La presencia en la mezcla gaseosa de otro gas dieléctrico adicional como por ejemplo el fluoronitrilo con formula química (CF3)2-CF-CN, permite aumentar de manera sustancial la rigidez dieléctrica de la mezcla sin afectar negativamente a otros parámetros operativos. La rigidez dieléctrica del sistema de aislamiento además de verse mejorada por la presencia del tamiz molecular selectivo empleado debido a la reducción de agua en el mismo también vendrá influenciada por el porcentaje de fluorocetona o fluorocetonas y del otro gas dieléctrico adicional (como por ejemplo fluoronitrilo) empleados en la mezcla gaseosa. De manera que cuanta más fluorocetona y gas dieléctrico adicional haya en la mezcla gaseosa mayor será su rigidez dieléctrica, para una presión final de llenado determinada. Sin embargo, como se ha mencionado anteriormente la cantidad de fluorocetona y de gas dieléctrico adicional en la mezcla gaseosa viene condicionada por la temperatura mínima de funcionamiento de la aparamenta si se quiere evitar su condensación a bajas temperaturas (lo que conllevaría una reducción de las propiedades dieléctricas de la mezcla gaseosa a esas bajas temperaturas).
En las dos siguientes tablas se muestran los valores de fracción molar de las fluorocetonas C5K y C6K, y del heptafluoroisobutironitrilo (FN) que se podrían emplear en la mezcla gaseosa sin que se produjera condensación de la misma para diferentes temperaturas mínimas de funcionamiento de la aparamenta, suponiendo una temperatura de llenado de la aparamenta de 20 °C y con una presión total de llenado de la mezcla de 1400 mbares.
Tabla 2. Mezclas con fluorocetona C5K
Figure imgf000015_0001
Tabla 3. Mezclas con fluorocetona C6K
Temp. (°C) Pvs, C6K (bar) P, C6K (bar) X, C6K
-40 0,015 0,018 0,0131
-35 0,020 0,025 0,0177
-30 0,027 0,033 0,0235
-25 0,037 0,043 0,0309
-20 0,049 0,056 0,0401
-15 0,064 0,072 0,0516
-10 0,083 0,092 0,0657
-5 0, 106 0, 116 0,0829
0 0, 135 0, 145 0,1037 Tabla 4. Mezclas con heptafluoroisobutironitrilo (FN)
Figure imgf000016_0001
dónde:
Pvs,C5k y Pvs,C6K y Pvs,FN son las presiones de vapor de saturación de las fluorocetonas C5K y C6K, y del heptafluoroisobutironitrilo a diferentes valores de temperatura, P,C5K y P,C6K y P,FN son los valores de presión de las fluorocetonas y del heptafluoroisobutironitrilo en la aparamenta a la temperatura de llenado de 20°C (P,C5K = Pvs,C5K x 293.15/Tmin(K) )
X,C5K y X,C6K y X,FN son las fracciones molares de las fluorocetonas y del heptafluoroisobutironitrilo en la mezcla final (para una presión de llenado final de
1400 mbares) que podrían emplearse sin que se produjera condensación de las mismas incluso a la temperatura mínima de funcionamiento de la aparamenta.
Por ejemplo, para una aparamenta de media tensión con una presión de llenado a 20°C de 1.40 bares y con una temperatura mínima de funcionamiento de -15°C podría emplearse: a) una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 17.60% de C5K b) o bien una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 5.16% de C6K, c) o bien una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 51.43% de FN, d) o bien una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 17.60% de C5K , un 5.16% de C6K y un 51.43% de FN sin que se produjera condensación de las fluorocetonas ni del heptafluoroisobutironitrilo hasta -15°C.
Por debajo de esa temperatura de -15 °C las fluorocetonas y el heptafluoroisobutironitrilo empezarían a condensarse parcialmente reduciéndose su porcentaje en la mezcla gaseosa y por tanto disminuyendo la rigidez dieléctrica del sistema de aislamiento inicial.
De la misma manera, para una aparamenta de media tensión con una presión de llenado a 20°C de 1.40 bares y con una temperatura mínima de funcionamiento de - 25°C podría emplearse: a) una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 11.48% de C5K b) o bien una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 3.09% de C6K, c) o bien una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 33.33% de FN, d) o bien una mezcla de N2 (o C02, o aire seco o 02 o helio o una mezcla de ellos) con un 1 1.48% de C5K y un 3.09% de C6K y un 33.33% de FN sin que se produjera condensación de las fluorocetonas ni del heptafluoroisobutironitrilo hasta -25°C.
Por debajo de esa temperatura de -25°C las fluorocetonas y el heptafluoroisobutironitrilo empezarían a condensarse parcialmente reduciéndose su porcentaje en la mezcla gaseosa y por tanto disminuyendo la rigidez dieléctrica del sistema de aislamiento inicial.
Y así sucesivamente para otras temperaturas mínimas de funcionamiento de la aparamenta.
Si las presiones finales de la mezcla en la aparamenta fueran diferentes a 1.40 bares los porcentajes de C5K y de C6K y heptafluoroisobutironitrilo también se verían modificados de forma acorde y de acuerdo con la siguiente fórmula:
X.C5K = P.C5K / Ptotal mezcla
X.C6K = P.C6K / Ptotal mezcla
X,FN = P,FN / Ptotal mezcla siendo Ptotal mezcla la presión final de la mezcla.
Si en el momento del llenado de la aparamenta se emplean mayores porcentajes de fluorocetonas y fluoronitrilo en las mezclas que los indicados para cada temperatura, lógicamente la rigidez dieléctrica será mayor, pero habrá que tener en consideración que a las temperaturas mínimas de funcionamiento la rigidez dieléctrica del sistema de aislamiento se vería reducida y sería menor que si se hubieran empleado los porcentajes de fluorocetona y fluoronitrilo indicados en las tablas 1 , 2 y 3 para cada temperatura, debido a la condensación de parte de la fluorocetona o fluorocetonas y/o del fluoronitrilo.
Ejemplo 2: Ensayo de rigidez dieléctrica de mezclas gaseosas Se evaluó la rigidez dieléctrica de diferentes mezclas gaseosas midiendo la "tensión de ruptura dieléctrica" en un equipo BAUR DTA-100E dotado de una célula para ensayo de gases con dos electrodos según norma ASTM D2477 (uno de los electrodos es un disco con cara plana de 1.50 pulgadas de diámetro y el otro electrodo es una bola esférica de 0.75 pulgadas de diámetro) y con una distancia entre electrodos de 8 mm.
Las mezclas gaseosas ensayadas fueron las siguientes:
a) 1400 m bares de C02
b) 1400 mbares de mezcla C02 + 9% C5K
c) 1400 mbares de mezcla C02 + 9% C5K + 8% FN
Los resultados de estos ensayos se muestran en la tabla 5:
Tabla 5: Valores de tensión de ruptura dieléctrica de las mezclas gaseosas
Figure imgf000019_0001
Como se puede observar en la tabla la adición de un 8% de heptafluoroisobutironitrilo a la mezcla de fluorocetona con C02 proporciona un incremento en la tensión de ruptura dieléctrica de dicha mezcla de entorno al 25% lo cual hace que una mezcla gaseosa de estas características sea aún más idónea para aplicaciones de aislamiento eléctrico en aparamenta eléctrica de media o alta tensión.
Ejemplo 3: Impacto ambiental (efecto invernadero) de un ejemplo de mezcla gaseosa
El potencial de efecto invernadero (GWP o global warming potential) de una mezcla gaseosa se calcula, de acuerdo con lo indicado en el Reglamento Europeo de gases fluorados de efecto invernadero, como la media ponderada derivada de la suma de las fracciones en peso de cada una de las sustancias multiplicadas por su valor de GWP. De esta forma, el potencial de efecto invernadero (GWP) de una mezcla con un 9% de fluorocetona C5K, un 8% de heptafluoroisobutironitrilo y un 83% de C02 sería de aproximadamente 454, es decir, un 2% del potencial de efecto invernadero (GWP) del gas SF6 (teniendo en cuenta que el GWP del C5K es 1 y el del heptafluoroisobutironitrilo es 2210, y que el peso molecular del C5K es 266, el del heptafluoroisobutironitrilo es 195 y el del C02 es 44).

Claims

REIVINDICACIONES
1- Sistema de aislamiento eléctrico para aparamenta eléctrica de media o alta tensión de bajo impacto ambiental, que comprende: a) un medio gaseoso que comprende una mezcla de
una o más fluorocetonas de entre 4 y 12 carbonos
al menos otro gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares
uno o más gases vectores, y b) un tamiz molecular con un tamaño de poro de 3 a 6 Á y una superficie polar
2- Un sistema de acuerdo con la reivindicación 1 donde el medio gaseoso comprende una fluorocetona de 4 a 12 carbonos, un fluoronitrilo con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares como gas dieléctrico adicional, y uno o más gases vectores.
3- Un sistema de acuerdo con la reivindicación 2 donde el medio gaseoso comprende una fluorocetona de 5 o 6 carbonos, un fluoronitrilo con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares como gas dieléctrico adicional, y uno o más gases vectores.
4- Un sistema de acuerdo con la reivindicación 3 donde la fluorocetona es la (CF3)2-CF-CO-CF3 y el fluoronitrilo es el (CF3)2-CF-CN.
5- Un sistema de acuerdo con la reivindicación 1 donde el medio gaseoso comprende dos fluorocetonas de 4 a 12 carbonos, un fluoronitrilo con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares como gas dieléctrico adicional, y uno o más gases vectores. 6- Un sistema de acuerdo con la reivindicación 5 donde el medio gaseoso comprende dos fluorocetonas de 5 o 6 carbonos, un fluoronitrilo con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares como gas dieléctrico adicional, y uno o más gases vectores.
7- Un sistema de acuerdo con la reivindicación 6 donde las dos fluorocetonas son (CF3)2-CF-CO-CF3 y (CF3)2-CF-CO-CF2-CF3, y donde el fluoronitrilo es (CF3)2-CF-CN.
8- Un sistema de acuerdo con cualquiera de las reivindicaciones anteriores donde los gases vectores se seleccionan entre N2, C02, 02, aire seco, helio o mezclas de los mismos.
9- Un sistema de acuerdo con cualquiera de las reivindicaciones anteriores donde la fracción molar de la o las fluorocetonas y del gas dieléctrico adicional, distinto de las fluorocetonas, con una presión de vapor a 0 °C mayor de 500 mbares y menor de 15000 mbares en la mezcla gaseosa es de al menos un 1 % o de al menos un 2% o de al menos un 5% o de al menos un 10% o de al menos un 15%.
10- Un sistema de acuerdo con cualquiera de las reivindicaciones anteriores donde el tamiz molecular posee un tamaño de poro de 3 a 4 Á.
1 1- Un sistema de acuerdo con cualquiera de las reivindicaciones anteriores donde el tamiz molecular se selecciona entre unas zeolitas naturales o zeolitas sintéticas.
12- Un sistema de acuerdo con la reivindicación 1 1 donde la zeolita posee una estructura A.
13- Uso de un sistema de aislamiento eléctrico de acuerdo con cualquiera de las reivindicaciones anteriores para el aislamiento eléctrico y/o para la extinción de arcos eléctricos en aparamenta eléctrica de media o alta tensión. 14- Método para el aislamiento eléctrico y/o la extinción de arcos eléctricos en aparamenta eléctrica de alta y media tensión que comprende la introducción del sistema de aislamiento eléctrico de acuerdo con cualquiera de las reivindicaciones 1 a 12 en un recinto cerrado y estanco donde se hallen los elementos a aislar de dicha aparamenta eléctrica de media o alta tensión.
15- Aparamenta eléctrica de media o alta tensión que comprende un recinto cerrado en cuyo interior se encuentran componentes eléctricos bajo tensión y un sistema de aislamiento eléctrico de acuerdo con cualquiera de las reivindicaciones 1 a 12.
16- Aparamenta eléctrica de acuerdo con la reivindicación 13 donde la aparamenta puede ser una aparamenta de distribución de energía eléctrica en redes de hasta 72 kV.
PCT/ES2015/070030 2015-01-20 2015-01-20 Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión WO2016116637A1 (es)

Priority Applications (15)

Application Number Priority Date Filing Date Title
MX2017009000A MX2017009000A (es) 2015-01-20 2015-01-20 Sistema de aislamiento electrico para aparamenta electrica de media y alta tension.
CN201580074010.2A CN107210156A (zh) 2015-01-20 2015-01-20 用于中高压电气开关设备的电气绝缘系统
US15/544,208 US10607748B2 (en) 2015-01-20 2015-01-20 Electrical insulation system for medium- and high-voltage electrical switchgear
HUE15708847A HUE049238T2 (hu) 2015-01-20 2015-01-20 Eljárás horganyzott-lágyított acéllemez gyártására, valamint az így nyert horganyzott-lágyított acéllemez
BR112017015599-0A BR112017015599B1 (pt) 2015-01-20 2015-01-20 Sistema de isolamento elétrico para aparelhagem elétrica de média ou alta tensão de baixo impacto ambiental, seu uso, método para o isolamento elétrico e extinção de arcos em aparelhagem elétrica de média e alta tensão e aparelhagem elétrica de média ou alta tensão
DK15708847.7T DK3249656T3 (en) 2015-01-20 2015-01-20 Electrical insulation system for medium- and high-voltage electrical switchgear
PCT/ES2015/070030 WO2016116637A1 (es) 2015-01-20 2015-01-20 Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión
PT157088477T PT3249656T (pt) 2015-01-20 2015-01-20 Sistema de isolamento elétrico para comutador elétrico de média e alta tensão
PL15708847T PL3249656T3 (pl) 2015-01-20 2015-01-20 System izolacji elektrycznej dla rozdzielnic elektrycznych średniego i wysokiego napięcia
EP15708847.7A EP3249656B1 (en) 2015-01-20 2015-01-20 Electrical insulation system for medium- and high-voltage electrical switchgear
AU2015378898A AU2015378898A1 (en) 2015-01-20 2015-01-20 Electrical insulation system for medium- and high-voltage electrical switchgear
ES15708847T ES2788161T3 (es) 2015-01-20 2015-01-20 Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión
ARP160100131A AR103452A1 (es) 2015-01-20 2016-01-20 Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión
HK18104046.6A HK1244587A1 (zh) 2015-01-20 2018-03-23 用於中高壓電氣開關設備的電氣絕緣系統
CY20201100412T CY1123352T1 (el) 2015-01-20 2020-05-05 Συστημα ηλεκτρικης μονωσης για ηλεκτρικο εξοπλισμο διακοπτη μεσης-και υψηλης-τασης

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070030 WO2016116637A1 (es) 2015-01-20 2015-01-20 Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión

Publications (1)

Publication Number Publication Date
WO2016116637A1 true WO2016116637A1 (es) 2016-07-28

Family

ID=52633295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070030 WO2016116637A1 (es) 2015-01-20 2015-01-20 Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión

Country Status (15)

Country Link
US (1) US10607748B2 (es)
EP (1) EP3249656B1 (es)
CN (1) CN107210156A (es)
AR (1) AR103452A1 (es)
AU (1) AU2015378898A1 (es)
BR (1) BR112017015599B1 (es)
CY (1) CY1123352T1 (es)
DK (1) DK3249656T3 (es)
ES (1) ES2788161T3 (es)
HK (1) HK1244587A1 (es)
HU (1) HUE049238T2 (es)
MX (1) MX2017009000A (es)
PL (1) PL3249656T3 (es)
PT (1) PT3249656T (es)
WO (1) WO2016116637A1 (es)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671764A1 (en) 2018-12-18 2020-06-24 Ormazabal Corporate Technology, A.I.E. Low environmental impact electrical insulation system for medium and high voltage electrical switchgear
WO2020174114A1 (es) 2019-02-27 2020-09-03 Ormazabal Corporate Technology, A.I.E. Sistema de aislamiento eléctrico de bajo impacto ambiental para aparamenta eléctrica de media y alta tensión
US11535579B2 (en) 2017-12-13 2022-12-27 3M Innovative Properties Company Hydrofluoroolefin ethers, compositions, apparatuses and methods for using same
US11551827B2 (en) 2017-12-13 2023-01-10 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes in dielectric fluids and electrical devices
US11673861B2 (en) 2017-12-13 2023-06-13 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes, compositions, and methods and apparatuses for using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188196B1 (fr) * 2015-12-28 2020-03-04 General Electric Technology GmbH Appareil électrique moyenne ou haute tension à isolation hybride de faible épaisseur

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142346A1 (en) 2009-06-12 2010-12-16 Abb Technology Ag Dielectric insulation medium
WO2010146022A1 (en) 2009-06-17 2010-12-23 Ormazabal Anlagentechnik Gmbh Fluorinated ketones as a high-voltage insutlating medium
WO2012160158A1 (fr) 2011-05-24 2012-11-29 Schneider Electric Industries Sas Melange de decafluoro-2-methylbutan-3-one et d'un gaz vecteur comme milieu d'isolation electrique et/ou d'extinction des arcs electriques en moyenne tension
WO2012160155A1 (fr) 2011-05-24 2012-11-29 Alstom Technology Ltd Mélange de décafluoro-2-méthylbutan-3-one et d'un gaz vecteur comme milieu d'isolation électrique et/ou d'extinction des arcs électriques en haute tension
WO2013151741A1 (en) 2012-04-04 2013-10-10 3M Innovative Properties Company Fluorinated nitriles as dielectric gases
WO2014173776A1 (en) * 2013-04-22 2014-10-30 Abb Technology Ag Process for providing a contamination-reducing component to an electrical apparatus
WO2015071303A1 (en) * 2013-11-12 2015-05-21 Abb Technology Ag Water and contamination absorber for c02 insulated electrical apparatus for the generation, transmission, distribution and/or usage of electrical energy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6228917B1 (en) * 1998-06-16 2001-05-08 Union Carbide Chemicals & Plastics Technology Corporation Polyethylene crosslinkable composition
US8956556B2 (en) * 2008-07-02 2015-02-17 Eaton Corporation Dielectric isolators
BRPI0915738B1 (pt) * 2008-07-10 2019-09-24 Borealis Ag Composição de polímero reticulável, artigo compreendendo uma composição de polímero, processo para produzir um cabo e cabo reticulável
ES2534468T5 (es) * 2009-11-11 2022-10-31 Borealis Ag Composición polimérica y cable eléctrico que comprende la composición polimérica
KR20130128433A (ko) * 2010-12-14 2013-11-26 에이비비 리써치 리미티드 유전성 절연 매질
US9245666B2 (en) * 2011-09-20 2016-01-26 E I Du Pont De Nemours And Company Thermoformable polymer thick film silver conductor and its use in capacitive switch circuits
FR2980628B1 (fr) * 2011-09-22 2014-07-25 Schneider Electric Ind Sas Melange d'hydrofluoroolefine et de fluorocetone pour l'utilisation comme milieu d'isolation et/ou d'extinction d'arc et appareil electrique moyenne tension a isolation gazeuse le comprenant
KR102084820B1 (ko) 2012-10-05 2020-03-04 에이비비 슈바이쯔 아게 유기 불소 화합물을 포함한 유전성 절연 가스를 담은 장치
CN103956673A (zh) * 2014-05-07 2014-07-30 Abb技术有限公司 用于产生、分配和/或使用电能的装置或这样的装置的部件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010142346A1 (en) 2009-06-12 2010-12-16 Abb Technology Ag Dielectric insulation medium
WO2010146022A1 (en) 2009-06-17 2010-12-23 Ormazabal Anlagentechnik Gmbh Fluorinated ketones as a high-voltage insutlating medium
WO2012160158A1 (fr) 2011-05-24 2012-11-29 Schneider Electric Industries Sas Melange de decafluoro-2-methylbutan-3-one et d'un gaz vecteur comme milieu d'isolation electrique et/ou d'extinction des arcs electriques en moyenne tension
WO2012160155A1 (fr) 2011-05-24 2012-11-29 Alstom Technology Ltd Mélange de décafluoro-2-méthylbutan-3-one et d'un gaz vecteur comme milieu d'isolation électrique et/ou d'extinction des arcs électriques en haute tension
WO2013151741A1 (en) 2012-04-04 2013-10-10 3M Innovative Properties Company Fluorinated nitriles as dielectric gases
WO2014173776A1 (en) * 2013-04-22 2014-10-30 Abb Technology Ag Process for providing a contamination-reducing component to an electrical apparatus
WO2015071303A1 (en) * 2013-11-12 2015-05-21 Abb Technology Ag Water and contamination absorber for c02 insulated electrical apparatus for the generation, transmission, distribution and/or usage of electrical energy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11535579B2 (en) 2017-12-13 2022-12-27 3M Innovative Properties Company Hydrofluoroolefin ethers, compositions, apparatuses and methods for using same
US11551827B2 (en) 2017-12-13 2023-01-10 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes in dielectric fluids and electrical devices
US11673861B2 (en) 2017-12-13 2023-06-13 3M Innovative Properties Company Perfluorinated 1-alkoxypropenes, compositions, and methods and apparatuses for using same
EP3671764A1 (en) 2018-12-18 2020-06-24 Ormazabal Corporate Technology, A.I.E. Low environmental impact electrical insulation system for medium and high voltage electrical switchgear
WO2020174114A1 (es) 2019-02-27 2020-09-03 Ormazabal Corporate Technology, A.I.E. Sistema de aislamiento eléctrico de bajo impacto ambiental para aparamenta eléctrica de media y alta tensión

Also Published As

Publication number Publication date
US20180315520A1 (en) 2018-11-01
CN107210156A (zh) 2017-09-26
MX2017009000A (es) 2018-01-26
BR112017015599A2 (pt) 2018-03-13
HK1244587A1 (zh) 2018-08-10
BR112017015599B1 (pt) 2022-07-05
AU2015378898A1 (en) 2017-08-03
US10607748B2 (en) 2020-03-31
PT3249656T (pt) 2020-05-08
EP3249656B1 (en) 2020-02-05
HUE049238T2 (hu) 2020-09-28
DK3249656T3 (en) 2020-05-04
PL3249656T3 (pl) 2020-08-10
AR103452A1 (es) 2017-05-10
EP3249656A1 (en) 2017-11-29
CY1123352T1 (el) 2021-12-31
ES2788161T3 (es) 2020-10-20

Similar Documents

Publication Publication Date Title
ES2788161T3 (es) Sistema de aislamiento eléctrico para aparamenta eléctrica de media y alta tensión
ES2501815T3 (es) Aparato de corte de una corriente eléctrica de media o alta tensión y su procedimiento de fabricación
RU2645846C2 (ru) Устройство, содержащее диэлектрический изоляционный газ, включающий фторорганическое соединение
RU2623458C2 (ru) Смесь гидрофторолефина и фторкетона для использования в качестве среды изоляции и/или гашения дуги и электрическое устройство среднего напряжения с газовой изоляцией, содержащее ее
ES2522515T3 (es) Conector de alimentación encapsulado
US20180005727A1 (en) Apparatus containing a dielectric insulation gas comprising an organofluorine compound
ES2920149T3 (es) Sistema de aislamiento eléctrico de bajo impacto ambiental para aparellaje eléctrico de conmutación de media y alta tensión
ES2951430T3 (es) Sistema de aislamiento eléctrico de bajo impacto medioambiental para aparamenta eléctrica de media y alta tensión
EP2904617B1 (en) Apparatus containing a dielectric insulation gas comprising an organofluorine compound
KR102603005B1 (ko) Co 흡착용 금속 유기 구조체 재료를 포함하는 회로 차단기
CN109196600A (zh) 直链八氟丁烯在环境安全的介电绝缘或灭弧流体中作为介电化合物的用途
TWI322547B (es)
CN102351154A (zh) 采取膜分离和选择性吸附回收六氟化硫的方法
KR102608855B1 (ko) Sf6 가스를 대체하여 전기 절연 또는 아크 소호에 사용되는 절연 가스와 이를 이용한 전기 장치
JP7311803B2 (ja) 絶縁ガス用吸着剤、及びガス絶縁電力機器
WO2024032959A1 (en) Electric apparatus for the generation, the transmission and/or the distribution of electrical energy
JP2007088274A (ja) ガス絶縁変圧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15708847

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/009000

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015708847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12017550048

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015599

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015378898

Country of ref document: AU

Date of ref document: 20150120

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15544208

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112017015599

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170720