WO2016115926A1 - Led模组及其控制方法以及led驱动电路 - Google Patents

Led模组及其控制方法以及led驱动电路 Download PDF

Info

Publication number
WO2016115926A1
WO2016115926A1 PCT/CN2015/091588 CN2015091588W WO2016115926A1 WO 2016115926 A1 WO2016115926 A1 WO 2016115926A1 CN 2015091588 W CN2015091588 W CN 2015091588W WO 2016115926 A1 WO2016115926 A1 WO 2016115926A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
constant current
current source
signal
driving circuit
Prior art date
Application number
PCT/CN2015/091588
Other languages
English (en)
French (fr)
Inventor
赵启永
陈帮勇
杨小中
楼俊伟
陈日仪
Original Assignee
杭州士兰微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州士兰微电子股份有限公司 filed Critical 杭州士兰微电子股份有限公司
Publication of WO2016115926A1 publication Critical patent/WO2016115926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of LED display technology, and more particularly to an LED module and a control method thereof, and an LED driving circuit.
  • the LED module is the main component of the LED display, corresponding to a display area of the LED display.
  • the LED modules can be used individually, or multiple LED modules can be cascaded in turn.
  • the display control terminal can provide multiple control signals to respectively control the corresponding group of cascaded LED modules, thereby displaying text and characters in a specific display area of the LED display screen. pattern.
  • an expandable display component can be formed.
  • FIG. 1 shows a schematic structural view of an LED display system according to the prior art.
  • the LED display system includes a control terminal 100 and a plurality of cascaded LED modules.
  • two LED modules 210 and 310 are shown in the figures.
  • the LED modules 210 and 310 are cascaded and have a similar circuit structure.
  • the LED module 210 includes a buffer circuit 211, a decoding circuit 212, a switch transistor array 213, an LED lamp matrix 214, and a drive circuit matrix 215.
  • the control terminal 100 provides a control signal to the LED module 210.
  • the buffer circuit 211 drives the control signal to be enhanced. For dynamic scanning screens, it is also necessary to decode the scanning related signals in the control signals.
  • the decoding circuit 212 generates a scan signal from the scan correlation signal.
  • the LED lamp matrix 214 includes a plurality of LED lamps that are matrixed in rows and columns.
  • the drive circuit matrix 215 includes a plurality of constant current drive circuits, each of which includes a plurality of constant current sources.
  • the driving circuit matrix 215 controls the turning on and off of the constant current source according to the constant current source signal in the control signal. The magnitude of the constant current and the on-time duty cycle of the constant current source together determine the brightness of the LED.
  • the conduction and the off between each row of the LED lamp and the power source are controlled by the scanning signal, and the conduction and the off between the LED lamp and the constant current source of each column are controlled by the constant current source signal.
  • the scanning signal the conduction and the off between the LED lamp and the constant current source of each column are controlled by the constant current source signal.
  • the LED module 210 requires various circuits, except The constant current driving circuit also needs a buffer circuit, and the dynamic scanning screen also needs a decoding circuit and a switching tube. The more the number of scans, the more the buffer and decode circuits may need.
  • a 16-line dynamic display such as the 74HC138 as a decoding circuit, requires one 74HC138 circuit for one module to decode the 16 scan signals required to generate a 16-line dynamic display.
  • the module of the traditional LED display system requires a plurality of different types of circuits, the module design is complicated, and the material management is cumbersome, so that the module production management cost is increased.
  • the number of LEDs in an LED module is limited by the layout of a plurality of different types of circuits, and the expandability is poor.
  • An object of the present invention is to provide an LED module, a control method thereof, and an LED driving circuit which can simplify the layout of the LED module and enhance the expandability.
  • an LED module includes: at least one LED driving circuit; and a matrix of LED lamps, including a plurality of LED lamps arranged in a row, wherein the at least one LED driving circuit respectively comprises: a communication input port for receiving a control signal; a communication control module for generating a scan signal and a constant current source signal according to the control signal; a communication output port for obtaining and outputting a control signal of the next stage from the communication control module; a scan signal output port, and an external The scan signal lines are connected; and the constant current source output port is connected to the external constant current source signal line, and the scan signal output port of the at least one LED drive circuit supplies the scan signal to the plurality of LED lights via the scan signal line At a first end, the constant current source output port of the at least one LED driving circuit supplies the constant current source signal to the second end of the plurality of LED lamps via the constant current source signal line.
  • the conduction and the off between the LED lamps of each row and the power source are controlled by a scan signal, and the LED lamps of each column are turned on and off between the constant current sources. Controlled by a constant current source signal, it is possible to control the lighting, extinction and brightness of each LED.
  • the LED driving circuit is further included in a configuration module, the configuration module configuring a scan signal output port and a constant current source output port according to the configuration signal, enabling a predetermined number of scan signal lines and a constant current source signal line, and The driving order of the scanning signal line and the constant current source signal line coincides with the timing of the control signal at the control terminal of the display system.
  • the on and off between the LED lamps of each column and the power source are controlled by a scan signal, and the conduction and the off between each row of the LED lamps and the constant current source are controlled. Controlled by a constant current source signal, it is possible to control the lighting, extinction and brightness of each LED.
  • the at least one LED driving circuit comprises a first LED driving circuit, the first LED driving The circuit provides n scan signals and m constant current source signals to drive n x m LED lamps, where n and m are natural numbers.
  • the at least one LED driving circuit comprises a first LED driving circuit to a kth LED driving circuit, and the first LED driving circuit to the kth LED driving circuit respectively provide n scanning signals and m constant current sources Signal to drive k ⁇ n ⁇ m LED lights, where k, n and m are natural numbers.
  • the at least one LED driving circuit comprises a first LED driving circuit to a kth LED driving circuit, and the first LED driving circuit to the kth LED driving circuit respectively provide n scanning signals and m constant current sources Signal to drive k 2 ⁇ n ⁇ m LED lamps, where k, n and m are natural numbers.
  • a control method for the LED module described above comprising: providing a scan signal to a first end of a plurality of LED lamps via a scan signal line; and a signal line via a constant current source And supplying a constant current source signal to the second end of the plurality of LED lamps.
  • the conduction and the off between the LED lamps of each row and the power source are controlled by a scan signal, and the LED lamps of each column are turned on and off between the constant current sources. Controlled by a constant current source signal, it is possible to control the lighting, extinction and brightness of each LED.
  • the on and off between the LED lamps of each column and the power source are controlled by a scan signal, and the conduction and the off between each row of the LED lamps and the constant current source are controlled. Controlled by a constant current source signal, it is possible to control the lighting, extinction and brightness of each LED.
  • the first LED driving circuit is used to provide n scanning signals and m constant current source signals to drive n ⁇ m LED lamps, where n and m are natural numbers.
  • the method further comprises: configuring the scan signal output port and the constant current source output port according to the configuration signal, enabling a predetermined number of scan signal lines and constant current source signal lines, and making the scan signal line and the constant current source signal line
  • the driving sequence is consistent with the timing of the control signals on the display system control terminal.
  • the method further comprises: configuring the scan signal output port and the constant current source output port according to the configuration signal, enabling a predetermined number of scan signal lines and constant current source signal lines, and making the scan signal line and the constant current source signal line
  • the driving sequence is consistent with the timing of the control signals on the display system control terminal.
  • the first LED driving circuit to the kth LED driving circuit respectively provide n scanning signals and m constant current source signals to drive k ⁇ n ⁇ m LED lamps, wherein k, n and m are natural numbers.
  • the first LED driving circuit to the kth LED driving circuit respectively provide n scanning signals and m constant current source signals to drive k 2 ⁇ n ⁇ m LED lamps, wherein k, n and m are natural numbers .
  • an LED driving circuit comprising: a communication input port, and receiving control a communication control module that generates a scan signal and a constant current source signal according to the control signal; a communication output port that obtains and outputs a control signal of the next stage from the communication control module; and a scan signal output port that is connected to the external scan signal line; And a constant current source output port connected to an external constant current source signal line.
  • the LED driving circuit further includes a configuration module, the configuration module configuring the scan signal output port and the constant current source output port according to the configuration signal, enabling a predetermined number of scan signal lines and constant current source signal lines, and enabling scanning
  • the driving sequence of the signal line and the constant current source signal line is consistent with the timing of the control signal at the control terminal of the display system.
  • the LED driving circuit of the present invention since the LED driving circuit includes a scanning signal output port for connecting a plurality of LEDs and a constant current source output port, the LED mode is formed
  • the group only needs to be connected to the LED light matrix.
  • the LED driver simplifies LED module design while simplifying material management and reducing production management costs.
  • a plurality of LED driving circuits are included in one LED module, and a plurality of LED driving circuits are matched to work, and a larger number of LED lamps can be loaded compared with the independent driving, thereby enhancing the LED module. Scalability and load capacity.
  • FIG. 1 shows a schematic block diagram of an LED display system in accordance with the prior art.
  • FIG. 2 is a schematic block diagram of a first example of a driving circuit in accordance with the present invention.
  • FIG. 3 is a schematic block diagram of a second example of a driving circuit in accordance with the present invention.
  • FIG. 4 is a schematic circuit diagram of an embodiment of an LED module in accordance with the present invention.
  • Figure 5 is a schematic block diagram of a first example of an LED display system constructed using an LED module in accordance with the present invention.
  • FIG. 6 is a schematic block diagram of a second example of an LED display system constructed using an LED module in accordance with the present invention.
  • the present invention can be embodied in various forms, some of which are described below.
  • the drive circuit 150 includes a communication control module 151, a communication input port 152, a communication output port 153, a scan signal output port 154, and a constant current source output port 155.
  • the communication input port 152 receives a control signal from the control terminal of the display system or the LED module of the upper stage, and supplies it to the communication control module 151.
  • the communication control module 151 generates a scan signal and a constant current source signal based on the received control signal.
  • the scan signal output port 154 and the constant current source output port 155 supply the scan signal and the constant current source signal to the external LED lamps, respectively.
  • the scan signal is the S1 to Sn signal
  • the constant current source signal is the T1 to Tm signal, so that n ⁇ m LED lamps can be driven.
  • the communication output port 153 obtains a control signal from the communication control module and transmits the control signal to the next-stage LED module.
  • the driving circuit 150 does not require a peripheral buffer circuit, a decoding circuit, a switch tube, etc., and can be used to construct an LED module.
  • the use of the drive circuit 150 simplifies the design of the LED module while simplifying material management and reducing production management costs.
  • the drive circuit 150 includes a communication control module 151, a communication input port 152, a communication output port 153, a scan signal output port 154, a constant current source output port 155, and a configuration module 158.
  • the communication input port 152 receives a control signal from the control terminal of the display system or the LED module of the upper stage, and supplies it to the communication control module 151.
  • the communication control module 151 generates a configuration signal in the configuration phase according to the received control signal, and generates a scan signal and a constant current source signal in the display phase.
  • the scan signal output port 154 and the constant current source output port 155 supply the scan signal and the constant current source signal to the external LED lamps, respectively.
  • the scan signal is an S1 to Sn signal
  • the constant current source signal is a T1 to Tm signal, so that n ⁇ m LED lamps can be driven.
  • the configuration module 158 receives the configuration signal from the communication control module 151, and configures the scan signal output port 154 and the constant current source output port 155 according to the configuration signal.
  • the configuration module 158 enables a predetermined number of scan signal lines and constant current source signal lines, and drives the scan sequence and the constant current source signal line to drive the display sequence and display system
  • the timing of the control signals at the control end is consistent.
  • the load capacity of the drive circuit 150 is n x m LED lamps. With the configuration module 158, the drive circuit 150 can be caused to actually drive x x y LED lamps, where x ⁇ n, y ⁇ m.
  • the communication output port 153 obtains a control signal from the communication control module 151 and transmits the control signal to the next-stage LED module.
  • the driving circuit 150 does not require a peripheral buffer circuit, a decoding circuit, a switch tube, etc., and can be used to construct an LED module.
  • the use of the drive circuit 150 simplifies the design of the LED module while simplifying material management and reducing production management costs.
  • the configuration module 158 can further adjust the load quantity of the driving circuit, so that the driving circuit can flexibly configure the requirements applicable to different LED display systems, and reduce the use of the dedicated driving circuit, thereby further simplifying material management and reducing production management costs.
  • the LED module 310 includes the above-described driving circuit 150 and an LED lamp matrix 314 connected to the driving circuit 150.
  • the scan signal output port 154 of the drive circuit 150 provides the scan signals for the S1 to S4 signals
  • the constant current source output port 155 provides the constant current source signals for the T1 to T12 signals, thereby being driven. 4 x 12 LED lights.
  • the LED lights in the LED lamp matrix 314 are arranged in rows and columns.
  • the scanning signals S1 to S4 are respectively supplied to the anodes of the LED lamps of the respective rows, and the constant current source signals T1 to T12 are respectively supplied to the cathodes of the LED lamps of the respective columns.
  • the conduction and turn-off between the LED lamp and the power supply of each row is controlled by the scanning signal, and the conduction and the off between each column of the LED lamp and the constant current source are controlled by the constant current source signal, so that each LED can be controlled. Lights up, off, and brightness.
  • the constant current source signal of the driving circuit 150 may be a constant current source signal of the same color LED lamp, or may be a constant current source signal of different color LED lamps, such as a constant current source of three colors of R, G, and B. signal.
  • the 12 constant current source signals may be constant current sources of 4 R, 4 G, and 4 B, respectively.
  • the driver circuit 150 is still used to drive 4 x 12 LED lamps so that the LED lamp matrix 314 can display 4 x 4 color display pixels.
  • FIG. 5 is a schematic block diagram of a first example of an LED display system constructed using an LED module in accordance with the present invention.
  • the LED display system includes a control terminal 100 and a plurality of cascaded LED modules.
  • two LED modules 310 and 320 are shown in the figures.
  • the LED modules 310 and 320 are cascaded and have a similar circuit structure.
  • the LED module 310 includes a drive circuit 150 and an LED lamp matrix 314.
  • the control terminal 100 provides a control signal to the LED module 310.
  • the communication input port 152 receives a control signal from the control terminal 100 of the display system and is supplied to the communication control module 151 of the drive circuit 150.
  • the communication control module 151 of the drive circuit 150 generates a scan signal and a constant current source signal based on the received control signal.
  • Scan signal output port of drive circuit 150 The 154 and constant current source output ports 155 provide the scan signal and the constant current source signal to the external LED lamps, respectively.
  • the scanning signals are, for example, S1 to Sn signals, and the constant current source signals are T1 to Tm signals, so that n ⁇ m LED lamps can be driven.
  • the conduction and the off between the LED lamps of each row and the power source are controlled by the scanning signals, and the conduction and the off between the LED lamps of each column and the constant current source are controlled by the constant current source signal.
  • FIG. 6 is a schematic block diagram of a second example of an LED display system constructed using an LED module in accordance with the present invention.
  • the LED display system includes a control terminal 100 and a plurality of cascaded LED modules. As an example, only one LED module 350 is shown in the figures. In this example, LED module 350 is expanded by two drive circuits to drive a greater number of LED lamps.
  • the LED module 350 includes a first drive circuit 150, a second drive circuit 250, and an LED lamp matrix 354.
  • the control terminal 100 provides a control signal to the first drive circuit 150 of the LED module 350.
  • the communication output port of the first drive circuit 150 is coupled to the communication input port of the second drive circuit 250, thereby transmitting control signals from the first drive circuit 150 to the second drive circuit 250.
  • the communication output port of the second driving circuit 250 provides a control signal to the LED module of the next stage.
  • the first drive circuit 150 provides the first set of scan signals and the first set of constant current source signals to the LED lamp matrix 354, respectively.
  • the first set of scan signals are, for example, S1 to Sn signals
  • the first set of constant current source signals are T1 to Tm signals.
  • the second drive circuit 250 provides the second set of scan signals and the second set of constant current source signals to the LED lamp matrix 354, respectively.
  • the second set of scan signals are, for example, Sn+1 to S2n road signals
  • the second set of constant current source signals are Tm+1 to T2m road signals.
  • the scan signal output ports of the first driver circuit 150 and the second driver circuit 250 operate independently, such that the respective scan signals of the first driver circuit 150 and the second driver circuit 250 can be active simultaneously, thereby
  • the LED lamp line connected to the scanning signal line is electrically connected to the power source.
  • the signal driving method can be divided into two parts by the LED lamp in the LED lamp matrix 354, and driven by the first driving circuit 150 and the second driving circuit 250, respectively, so that 2n ⁇ m LED lamps can be driven.
  • the scan signal output ports of the first driver circuit 150 and the second driver circuit 250 cooperate together such that only one scan signal is active at a time, so that only one scan signal line is connected to the LED lamp row at a time. Conducted with the power supply.
  • the signal driving method can use the first driving circuit 150 for driving the first to nth scanning signal lines, and the second driving circuit 250 for driving the n+1th to 2nth scanning signal lines, thereby driving 2n. ⁇ 2m LED lights.
  • the number of LED lamps driven by the LED module 350 of the preferred embodiment is 4n ⁇ m, which is larger than the number of LED lamps of the two LED modules 310 and 320 of the first example. And 2n ⁇ m is much larger.
  • the control terminal 100 performs the configuration of the first driving circuit 150 and the second driving circuit 250 before the display phase of the LED module 350.
  • the control terminal 100 supplies configuration signals to the first driving circuit 150 and the second driving circuit 250 such that the configuration modules of the respective driving circuits configure the number of scanning signal lines in accordance with the configuration signals.
  • the number of scanning signal lines of the LED module as 8 as an example, as shown in Table 1:
  • the communication control module of the first driving circuit 150 and the second driving circuit 250 will generate the ns to ne scanning signals of the eight scanning signals and output them to the respective scanning signal output ports. That is, the second driving circuit 250 controls the first to fourth rows of LED lamps by using the first to fourth scanning signals of the eight scanning signals as the scanning signals, and the first driving circuit 150 is the fifth of the eight scanning signals. Up to 8 scanning signals are used as scanning signals to control the fifth to eighth rows of LED lamps.
  • the scanning signals can be prevented from overlapping by various means, such as increasing the delay before the scanning output of the different driving circuits, the present invention does not Narration.
  • the respective communication control modules of the first driving circuit 150 and the second driving circuit 250 may respectively include two timers, that is, The first timer and the second timer. Each timer contains a timer count register.
  • the control terminal 100 calculates the number of clocks required for the completion of the display of all the eight scan data, the number of clocks required for the completion of the display of the first to fourth scan data, and the number of clocks required for the completion of the display of the fifth to eighth scan data, respectively. 1 clock number, The second clock number and the third clock number.
  • the control terminal 100 writes the number of clocks required for the display of all the scan data to the first drive circuit 150 and the second drive circuit 250 on the LED module through the communication input port.
  • Counting register of the timer writing a value of 0 to the counting register of the second timer of the second driving circuit 250; counting the number of clocks required to complete the display of the 8 scan data and the number of clocks required for the display of the 5 to 8 scan data
  • the difference between the first clock count and the third clock count is written in the count register of the second timer of the first drive circuit 150.
  • the communication control module inside each drive circuit determines whether to output a scan signal based on the timing counts of the two timers.
  • the first timer and the second timer are started synchronously, and the value set in the count register is used as an initial value, and starts to decrease with the clock cycle.
  • the scan signal starts to be output.
  • the count of the first timer reaches 0, the value of the count register corresponding to the two timers is reloaded, the timer is restarted, and the above is repeated. step.
  • the conduction and the off between each row of the LED lamp and the power source are controlled by the scanning signal, and the conduction and the off between the LED lamp and the constant current source of each column are controlled by the constant current source signal.
  • the LED module 350 uses the first driving circuit 150 and the second driving circuit 250 to expand the load capacity of the LED lamp, wherein no additional circuit is needed, thereby simplifying the LED module design, simplifying material management and reducing production management costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种LED模组及其控制方法以及LED驱动电路(150)。LED模组包括:至少一个LED驱动电路(150);以及LED灯矩阵,包括排列成行列的多个LED灯,其中,至少一个LED驱动电路(150)分别包括:通信输入端口(152),接收控制信号;通信控制模块,根据控制信号产生扫描信号(S1,...,Sn)和恒流源信号(T1,...,Tm);通信输出端口(153),从通信控制模块获得并且输出下一级的控制信号;扫描信号输出端口(154),与外部的扫描信号线相连接;以及恒流源输出端口(155),与外部的恒流源信号线相连接,至少一个LED驱动电路(150)的扫描信号输出端口(154)经由扫描信号线,将扫描信号(S1,...,Sn)提供给多个LED灯的第一端,至少一个LED驱动电路(150)的恒流源输出端口(155)经由恒流源信号线,将恒流源信号(T1,...,Tm)提供给多个LED灯的第二端。LED模组可以提高扩展性和负载能力。

Description

LED模组及其控制方法以及LED驱动电路
本申请要求了2015年1月21日提交的、申请号为CN201510029816.1、发明名称为“LED模组及其控制方法以及LED驱动电路”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及LED显示技术领域,更具体地涉及LED模组及其控制方法以及LED驱动电路。
背景技术
LED显示屏广泛地用于显示文字和图案。LED模组是组成LED显示屏的主要部件,对应于LED显示屏的一块显示区域。LED模组可以单个使用,或者多个LED模组依次级联成一组。在LED显示屏包含多组级联LED模组的情形下,显示屏控制端可以提供多路控制信号,分别控制相应组的级联LED模组,从而在LED显示屏的特定显示区域显示文字和图案。利用级联LED模组,可以形成可扩展的显示部件。
图1示出根据现有技术的LED显示系统的结构示意图。该LED显示系统包括控制端100和多个级联的LED模组。作为示例,在图中示出两个LED模组210和310。LED模组210和310级联并且电路结构类似。
LED模组210包括缓冲电路211、译码电路212、开关管阵列213、LED灯矩阵214和驱动电路矩阵215。控制端100将控制信号提供至LED模组210。缓冲电路211对控制信号进行驱动增强。对于动态扫描屏,还需要对控制信号中的扫描相关信号进行译码。译码电路212从扫描相关信号中产生扫描信号。LED灯矩阵214包括按行列组成矩阵的多个LED灯。驱动电路矩阵215包括多个恒流驱动电路,每个恒流驱动电路包括多个恒流源。驱动电路矩阵215根据控制信号中的恒流源信号控制恒流源的开启与关断。恒定电流的大小和恒流源的开启时间占空比共同决定LED的亮度。
在LED灯矩阵214中,每行的LED灯与电源之间的导通和关断由扫描信号控制,每列的LED灯与恒流源之间的导通和关断由恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
如图1所示,在上述现有的LED显示系统中,LED模组210需要多种电路,除了 恒流驱动电路,还需要缓冲电路,动态扫描屏还需要译码电路和开关管。扫描数越多,缓冲电路和译码电路可能需要的数量越多。例如16行动态显示屏,如使用74HC138作为译码电路,则一个模组需要2个74HC138电路,才能译码产生16行动态显示屏所需的16个扫描信号。
因此,传统LED显示系统的模组需要多个不同种类的电路,模组设计复杂,且物料管理繁琐,使模组生产管理成本增加。LED模组中的LED数量受到多个不同种类的电路的布局限制,扩展性差。
发明内容
本发明的目的是提供一种可以简化LED模组的布局并且增强扩展性的LED模组及其控制方法以及LED驱动电路。
根据本发明的第一方面,提供一种LED模组,包括:至少一个LED驱动电路;以及LED灯矩阵,包括排列成行列的多个LED灯,其中,所述至少一个LED驱动电路分别包括:通信输入端口,接收控制信号;通信控制模块,根据控制信号产生扫描信号和恒流源信号;通信输出端口,从通信控制模块获得并且输出下一级的控制信号;扫描信号输出端口,与外部的扫描信号线相连接;以及恒流源输出端口,与外部的恒流源信号线相连接,所述至少一个LED驱动电路的扫描信号输出端口经由扫描信号线,将扫描信号提供给多个LED灯的第一端,所述至少一个LED驱动电路的恒流源输出端口经由恒流源信号线,将恒流源信号提供给多个LED灯的第二端。
优选地,在所述多个LED灯中,每行的LED灯与电源之间的导通和关断由一个扫描信号控制,每列的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
优选地,所述LED驱动电路还包括在配置模块,所述配置模块根据配置信号配置扫描信号输出端口和恒流源输出端口,使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
优选地,在所述多个LED灯中,每列的LED灯与电源之间的导通和关断由一个扫描信号控制,每行的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
优选地,所述至少一个LED驱动电路包括第一LED驱动电路,所述第一LED驱动 电路提供n个扫描信号和m个恒流源信号,以驱动n×m个LED灯,其中n和m为自然数。
优选地,所述至少一个LED驱动电路包括第一LED驱动电路至第k个LED驱动电路,所述第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,以驱动k×n×m个LED灯,其中k、n和m为自然数。
优选地,所述至少一个LED驱动电路包括第一LED驱动电路至第k个LED驱动电路,所述第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,以驱动k2×n×m个LED灯,其中k、n和m为自然数。
根据本发明的第二方面,提供一种用于上述的LED模组的控制方法,包括:经由扫描信号线,将扫描信号提供给多个LED灯的第一端;以及经由恒流源信号线,将恒流源信号提供给多个LED灯的第二端。
优选地,在所述多个LED灯中,每行的LED灯与电源之间的导通和关断由一个扫描信号控制,每列的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
优选地,在所述多个LED灯中,每列的LED灯与电源之间的导通和关断由一个扫描信号控制,每行的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
优选地,采用第一LED驱动电路提供n个扫描信号和m个恒流源信号,以驱动n×m个LED灯,其中n和m为自然数。
优选地,所述方法还包括:根据配置信号配置扫描信号输出端口和恒流源输出端口,使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
优选地,所述方法还包括:根据配置信号配置扫描信号输出端口和恒流源输出端口,使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
优选地,采用第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,以驱动k×n×m个LED灯,其中k、n和m为自然数。
优选地,采用第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,以驱动k2×n×m个LED灯,其中k、n和m为自然数。
根据本发明的第三方面,提供一种LED驱动电路,包括:通信输入端口,收控制 信号;通信控制模块,根据控制信号产生扫描信号和恒流源信号;通信输出端口,从通信控制模块获得并且输出下一级的控制信号;扫描信号输出端口,与外部的扫描信号线相连接;以及恒流源输出端口,与外部的恒流源信号线相连接。
优选地,所述LED驱动电路还包括配置模块,所述配置模块根据配置信号配置扫描信号输出端口和恒流源输出端口,使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
根据本发明的LED驱动电路,以及包含LED驱动电路的LED模组及其控制方法,由于LED驱动电路包括用于连接多个LED的扫描信号输出端口和恒流源输出端口,因此在形成LED模组时仅需要与LED灯矩阵相连接。该LED驱动可以简化LED模组设计,同时简化物料管理,降低生产管理成本。
在进一步优选的实施例中,在一个LED模组中包含多个LED驱动电路,将多个LED驱动电路配合工作,与独立驱动相比可以负载更多数量的LED灯,从而增强LED模组的扩展性和负载能力。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1示出根据现有技术的LED显示系统的示意性框图。
图2为根据本发明的驱动电路的第一实例的示意性框图。
图3为根据本发明的驱动电路的第二实例的示意性框图。
图4为根据本发明的LED模组的实施例的示意性电路图。
图5为采用根据本发明的LED模组组成的LED显示系统的第一实例的示意性框图。
图6为采用根据本发明的LED模组组成的LED显示系统的第二实例的示意性框图。
具体实施方式
以下将参照附图更详细地描述本发明。在各个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。此外,可能未示出某些公知的部分。
应当理解,在描述某个结构时,当将一层、一个区域称为位于另一层、另一个区域“上面”或“上方”时,可以指直接位于另一层、另一个区域上面,或者在其与另一层、另一个区域之间还包含其它的层或区域。并且,如果将该结构翻转,该一层、一个区域将位于另一层、另一个区域“下面”或“下方”。如果为了描述直接位于另一层、另一个区域上面的情形,本文将采用“A直接在B上面”或“A在B上面并与之邻接”的表述方式。
本发明可以各种形式呈现,以下将描述其中一些示例。
图2为根据本发明的驱动电路的第一实例的示意性框图。该驱动电路150包括通信控制模块151、通信输入端口152、通信输出端口153、扫描信号输出端口154和恒流源输出端口155。通信输入端口152从显示系统的控制端或者上一级的LED模组接收控制信号,并且提供给通信控制模块151。通信控制模块151根据接收的控制信号,产生扫描信号和恒流源信号。扫描信号输出端口154和恒流源输出端口155分别将扫描信号和恒流源信号提供给外部的LED灯。如图2所示,扫描信号为S1至Sn路信号,恒流源信号为T1至Tm路信号,从而可以驱动n×m个LED灯。
此外,通信输出端口153从通信控制模块获得控制信号,并且将控制信号传送至下一级LED模组。
如下文结合图4所示,该驱动电路150不需要外围的缓冲电路、译码电路、开关管等电路,即可以用于构建LED模组。采用驱动电路150可以简化LED模组设计,同时简化物料管理,降低生产管理成本。
图3为根据本发明的驱动电路的第二实例的示意性框图。该驱动电路150包括通信控制模块151、通信输入端口152、通信输出端口153、扫描信号输出端口154、恒流源输出端口155和配置模块158。通信输入端口152从显示系统的控制端或者上一级的LED模组接收控制信号,并且提供给通信控制模块151。通信控制模块151根据接收的控制信号,在配置阶段产生配置信号,在显示阶段产生扫描信号和恒流源信号。扫描信号输出端口154和恒流源输出端口155分别将扫描信号和恒流源信号提供给外部的LED灯。如图3所示,扫描信号为S1至Sn路信号,恒流源信号为T1至Tm路信号,从而可以驱动n×m个LED灯。
在配置阶段,配置模块158从通信控制模块151接收配置信号,根据配置信号配置扫描信号输出端口154和恒流源输出端口155。配置模块158使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统 控制端的控制信号的时序一致。例如,驱动电路150的负载能力为n×m个LED灯。采用配置模块158,可以使得驱动电路150实际驱动x×y个LED灯,其中x<n,y<m。
此外,通信输出端口153从通信控制模块151获得控制信号,并且将控制信号传送至下一级LED模组。
如下文结合图4所示,该驱动电路150不需要外围的缓冲电路、译码电路、开关管等电路,即可以用于构建LED模组。采用驱动电路150可以简化LED模组设计,同时简化物料管理,降低生产管理成本。采用配置模块158可以进一步地调整驱动电路的负载数量,使得驱动电路可以灵活配置适用于不同LED显示系统的需求,减少专用驱动电路的使用,从而进一步简化物料管理,降低生产管理成本。
图4为根据本发明的LED模组的实施例的示意性电路图。该LED模组310包括上述的驱动电路150以及与驱动电路150相连的LED灯矩阵314。在图4所示的实例中,驱动电路150的扫描信号输出端口154提供扫描信号为S1至S4路信号,恒流源输出端口155提供的恒流源信号为T1至T12路信号,从而可以驱动4×12个LED灯。
LED灯矩阵314中的LED灯排列成行列。扫描信号S1至S4分别提供给各行LED灯的阳极,恒流源信号T1至T12分别提供给各列LED灯的阴极。每行的LED灯与电源之间的导通和关断由扫描信号控制,每列的LED灯与恒流源之间的导通和关断由恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
更进一步地,驱动电路150的恒流源信号可以为同一种颜色LED灯的恒流源信号,也可以是不同颜色LED灯的恒流源信号,如R、G、B三色的恒流源信号。
仍以上述提供4路扫描信号、12路恒流源信号的驱动电路150为例,其12路恒流源信号可以分别为4路R、4路G、4路B的恒流源。驱动电路150仍然用于驱动4×12个LED灯,从而LED灯矩阵314恰好可以显示4×4个彩色的显示屏象素。
图5为采用根据本发明的LED模组组成的LED显示系统的第一实例的示意性框图。该LED显示系统包括控制端100和多个级联的LED模组。作为示例,在图中示出两个LED模组310和320。LED模组310和320级联并且电路结构类似。
LED模组310包括驱动电路150和LED灯矩阵314。控制端100将控制信号提供至LED模组310。
在驱动电路150中,通信输入端口152从显示系统的控制端100接收控制信号,并且提供给驱动电路150的通信控制模块151。驱动电路150的通信控制模块151根据接收的控制信号,产生扫描信号和恒流源信号。驱动电路150的扫描信号输出端口 154和恒流源输出端口155分别将扫描信号和恒流源信号提供给外部的LED灯。扫描信号例如为S1至Sn路信号,恒流源信号为T1至Tm路信号,从而可以驱动n×m个LED灯。
在LED灯矩阵314中,每行的LED灯与电源之间的导通和关断由扫描信号控制,每列的LED灯与恒流源之间的导通和关断由恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
图6为采用根据本发明的LED模组组成的LED显示系统的第二实例的示意性框图。该LED显示系统包括控制端100和多个级联的LED模组。作为示例,在图中示出仅一个LED模组350。在该实例中,LED模组350通过两个驱动电路扩展以驱动更多数量的LED灯。
LED模组350包括第一驱动电路150、第二驱动电路250和LED灯矩阵354。控制端100将控制信号提供至LED模组350的第一驱动电路150。在LED模组350内部,第一驱动电路150的通信输出端口与第二驱动电路250的通信输入端口相连接,从而将控制信号从第一驱动电路150传送到第二驱动电路250。第二驱动电路250的通信输出端口向下一级的LED模组提供控制信号。
第一驱动电路150分别将第一组扫描信号和第一组恒流源信号提供给LED灯矩阵354。第一组扫描信号例如为S1至Sn路信号,第一组恒流源信号为T1至Tm路信号。
第二驱动电路250分别将第二组扫描信号和第二组恒流源信号提供给LED灯矩阵354。第二组扫描信号例如为Sn+1至S2n路信号,第二组恒流源信号为Tm+1至T2m路信号。
在一个实施例中,第一驱动电路150和第二驱动电路250的扫描信号输出端口独立工作,使得第一驱动电路150和第二驱动电路250各自的扫描信号可以同时有效,从而每次两条扫描信号线相连的LED灯行与电源导通。该信号驱动方式可以LED灯矩阵354中的LED灯分为两个部分,分别由第一驱动电路150和第二驱动电路250独立驱动,从而可以驱动2n×m个LED灯。
在优选的实施例中,第一驱动电路150和第二驱动电路250的扫描信号输出端口一起配合,使得每次只有一个扫描信号是有效的,从而每次仅一条扫描信号线相连的LED灯行与电源导通。该信号驱动方式可以将第一驱动电路150用于第1至n个扫描信号线的驱动,将第二驱动电路250用于第n+1至第2n个扫描信号线的驱动,从而可以驱动2n×2m个LED灯。
在上述使用两个驱动电路的情形下,该优选实施例的LED模组350驱动的LED灯的数量为4n×m,比第一实例的两个LED模组310和320的LED灯的数量之和2n×m大得多。
优选地,在LED模组350的显示阶段之前,控制端100执行对第一驱动电路150和第二驱动电路250的配置。在该配置阶段,控制端100向第一驱动电路150和第二驱动电路250提供配置信号,使得各个驱动电路的配置模块根据配置信号来配置扫描信号线的数量。以LED模组的扫描信号线的数量为8作为例子,如表1所示:
表1、第一和第二驱动电路的扫描端口配置
LED模组的扫描数 8
第二驱动电路的起始扫描数ns 1
第二驱动电路的结束扫描数ne 4
第一驱动电路的起始扫描数ns 5
第一驱动电路的结束扫描数ne 8
在显示阶段,第一驱动电路150和第二驱动电路250的通信控制模块将产生8路扫描信号中的第ns至ne路扫描信号,输出到各自的扫描信号输出端口。也即,第二驱动电路250将8路扫信号中的第1至4路扫描信号作为扫描信号,控制第一至第四行LED灯,第一驱动电路150将8路扫信号中的第5至8路扫描信号作为扫描信号,控制第五至第八行LED灯。
当第一驱动电路150和第二驱动电路250之间的同步性较好时,可确保上述两个驱动电路输出的8路扫描信号中每次仅有一路扫描信号是有效的。当第一驱动电路150和第二驱动电路250之间的同步性较差时,可通过多种手段确保扫描信号不交叠出现,如不同驱动电路的扫描输出前增加延时,本发明不加以赘述。
在一个实施例中,为了实现第一驱动电路150和第二驱动电路250之间的配合工作,第一驱动电路150和第二驱动电路250各自的通信控制模块可以分别包括两个定时器,即第1定时器和第2定时器。每个定时器包含一个定时器计数寄存器。
控制端100计算得出8扫描数据全部完成显示所需的时钟数、第1~4扫描数据完成显示所需的时钟数、第5~8扫描数据完成显示所需的时钟数,分别记为第1时钟数、 第2时钟数、第3时钟数。
在配置阶段,控制端100通过通信输入端口将8扫描数据全部完成显示所需的时钟数即第1时钟数写入LED模组上的第一驱动电路150和第二驱动电路250各自的第1定时器的计数寄存器;将0值写入第二驱动电路250的第2定时器的计数寄存器;将8扫描数据全部完成显示所需的时钟数与5~8扫描数据完成显示所需的时钟数的差值,即第1时钟数减第3时钟数的结果写入第一驱动电路150的第2定时器的计数寄存器。
在显示阶段,各个驱动电路内部的通信控制模块根据这两个定时器的定时计数来确定是否输出扫描信号。第1定时器和第2定时器同步启动,将计数寄存器内配置的值作为初始值,开始随着时钟周期递减。当第2定时器的计数到0时,扫描信号开始输出,当第1定时器的计数到0时,重新载入两个定时器对应的计数寄存器配置的值,重新启动定时器,并重复上述步骤。
在LED灯矩阵354中,每行的LED灯与电源之间的导通和关断由扫描信号控制,每列的LED灯与恒流源之间的导通和关断由恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
该LED模组350采用第一驱动电路150和第二驱动电路250扩展LED灯的负载能力,其中不需要采用附加的电路,从而可以简化LED模组设计,同时简化物料管理,降低生产管理成本。
在以上的描述中,对公知的结构要素和步骤并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来实现相应的结构要素和步骤。另外,为了形成相同的结构要素,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。
以上对本发明的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本发明的范围。本发明的范围由所附权利要求及其等价物限定。不脱离本发明的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本发明的范围之内。

Claims (14)

  1. 一种LED模组,包括:
    至少一个LED驱动电路;以及
    LED灯矩阵,包括排列成行列的多个LED灯,
    其中,所述至少一个LED驱动电路分别包括:通信输入端口,接收控制信号;通信控制模块,根据控制信号产生扫描信号和恒流源信号;通信输出端口,从通信控制模块获得并且输出下一级的控制信号;扫描信号输出端口,与外部的扫描信号线相连接;以及恒流源输出端口,与外部的恒流源信号线相连接,
    所述至少一个LED驱动电路的扫描信号输出端口经由扫描信号线,将扫描信号提供给多个LED灯的第一端,所述至少一个LED驱动电路的恒流源输出端口经由恒流源信号线,将恒流源信号提供给多个LED灯的第二端,
    所述LED模组还包括配置模块,所述配置模块根据配置信号配置扫描信号输出端口和恒流源输出端口,使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
  2. 根据权利要求1所述的LED模组,其中在所述多个LED灯中,每行的LED灯与电源之间的导通和关断由一个扫描信号控制,每列的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
  3. 根据权利要求1所述的LED模组,其中在所述多个LED灯中,每列的LED灯与电源之间的导通和关断由一个扫描信号控制,每行的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
  4. 根据权利要求1所述的LED模组,其中所述至少一个LED驱动电路包括第一LED驱动电路,所述第一LED驱动电路提供n个扫描信号和m个恒流源信号,以驱动n×m个LED灯,其中n和m为自然数。
  5. 根据权利要求1所述的LED模组,其中所述至少一个LED驱动电路包括第一LED驱动电路至第k个LED驱动电路,所述第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,以驱动k×n×m个LED灯,其中k、n和m为自然数。
  6. 根据权利要求1所述的LED模组,其中所述至少一个LED驱动电路包括第一LED驱动电路至第k个LED驱动电路,所述第一LED驱动电路至第k个LED驱动电路 分别提供n个扫描信号和m个恒流源信号,以驱动k2×n×m个LED灯,其中k、n和m为自然数。
  7. 一种用于权利要求1所述的LED模组的控制方法,包括:
    经由扫描信号线,将扫描信号提供给多个LED灯的第一端;以及
    经由恒流源信号线,将恒流源信号提供给多个LED灯的第二端,
    其中,所述方法还包括根据配置信号配置扫描信号输出端口和恒流源输出端口,使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
  8. 根据权利要求7所述的方法,其中在所述多个LED灯中,每行的LED灯与电源之间的导通和关断由一个扫描信号控制,每列的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
  9. 根据权利要求7所述的方法,其中在所述多个LED灯中,每列的LED灯与电源之间的导通和关断由一个扫描信号控制,每行的LED灯与恒流源之间的导通和关断由一个恒流源信号控制,从而可以控制每个LED灯的点亮、熄灭和亮度。
  10. 根据权利要求7所述的方法,其中采用第一LED驱动电路提供n个扫描信号和m个恒流源信号,以驱动n×m个LED灯,其中n和m为自然数。
  11. 根据权利要求7所述的方法,其中采用第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,所述第一LED驱动电路至第k个LED驱动电路同时工作以驱动k×n×m个LED灯,其中k、n和m为自然数。
  12. 根据权利要求7所述的方法,其中采用第一LED驱动电路至第k个LED驱动电路分别提供n个扫描信号和m个恒流源信号,所述第一LED驱动电路至第k个LED驱动电路依次工作以驱动k2×n×m个LED灯,其中k、n和m为自然数。
  13. 一种LED驱动电路,包括:
    通信输入端口,接收控制信号;
    通信控制模块,根据控制信号产生扫描信号和恒流源信号;
    通信输出端口,从通信控制模块获得并且输出下一级的控制信号;
    扫描信号输出端口,与外部的扫描信号线相连接;以及
    恒流源输出端口,与外部的恒流源信号线相连接。
  14. 根据权利要求13所述的LED驱动电路,还包括:
    配置模块,所述配置模块根据配置信号配置扫描信号输出端口和恒流源输出端口, 使能预定数量的扫描信号线和恒流源信号线,并且使得扫描信号线和恒流源信号线的驱动顺序与显示系统控制端的控制信号的时序一致。
PCT/CN2015/091588 2015-01-21 2015-10-09 Led模组及其控制方法以及led驱动电路 WO2016115926A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510029816.1 2015-01-21
CN201510029816.1A CN104537986A (zh) 2015-01-21 2015-01-21 Led模组及其控制方法以及led驱动电路

Publications (1)

Publication Number Publication Date
WO2016115926A1 true WO2016115926A1 (zh) 2016-07-28

Family

ID=52853503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091588 WO2016115926A1 (zh) 2015-01-21 2015-10-09 Led模组及其控制方法以及led驱动电路

Country Status (2)

Country Link
CN (1) CN104537986A (zh)
WO (1) WO2016115926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652888A (zh) * 2016-11-28 2017-05-10 深圳市富满电子集团股份有限公司 一种led显示屏及其扫描控制电路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104537986A (zh) * 2015-01-21 2015-04-22 杭州士兰微电子股份有限公司 Led模组及其控制方法以及led驱动电路
CN110390904B (zh) * 2018-04-13 2021-05-14 比亚迪半导体股份有限公司 电子设备以及led阵列的驱动装置和方法
CN113012624B (zh) * 2020-07-31 2022-04-29 重庆康佳光电技术研究院有限公司 一种led显示装置及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309855A1 (en) * 2006-07-03 2009-12-17 Jongmin Wang LED Matrix Driving Device
CN201655248U (zh) * 2010-04-15 2010-11-24 上海凌犀电子科技有限公司 Led点阵扫描驱动控制电路及led点阵扫描控制芯片
CN101908315A (zh) * 2010-02-11 2010-12-08 杭州士兰微电子股份有限公司 一种led显示系统
CN201805596U (zh) * 2010-09-28 2011-04-20 深圳市长运通光电技术有限公司 一种led阵列扫描芯片、led设备及led扫描电路
CN104537986A (zh) * 2015-01-21 2015-04-22 杭州士兰微电子股份有限公司 Led模组及其控制方法以及led驱动电路
CN204375396U (zh) * 2015-01-21 2015-06-03 杭州士兰微电子股份有限公司 Led模组以及led驱动电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100507997C (zh) * 2005-06-27 2009-07-01 康佳集团股份有限公司 一种led显示屏信号互联方法
CN101567162B (zh) * 2009-05-27 2011-08-03 西安诺瓦电子科技有限公司 一种高分辨率led显示屏控制系统及控制方法
CN101916543B (zh) * 2010-07-07 2012-06-27 杭州士兰微电子股份有限公司 一种led显示系统的数据通信方法
CN102682702A (zh) * 2012-05-17 2012-09-19 苏州君嬴电子科技有限公司 一种led显示屏的配置方法及配置系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090309855A1 (en) * 2006-07-03 2009-12-17 Jongmin Wang LED Matrix Driving Device
CN101908315A (zh) * 2010-02-11 2010-12-08 杭州士兰微电子股份有限公司 一种led显示系统
CN201655248U (zh) * 2010-04-15 2010-11-24 上海凌犀电子科技有限公司 Led点阵扫描驱动控制电路及led点阵扫描控制芯片
CN201805596U (zh) * 2010-09-28 2011-04-20 深圳市长运通光电技术有限公司 一种led阵列扫描芯片、led设备及led扫描电路
CN104537986A (zh) * 2015-01-21 2015-04-22 杭州士兰微电子股份有限公司 Led模组及其控制方法以及led驱动电路
CN204375396U (zh) * 2015-01-21 2015-06-03 杭州士兰微电子股份有限公司 Led模组以及led驱动电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106652888A (zh) * 2016-11-28 2017-05-10 深圳市富满电子集团股份有限公司 一种led显示屏及其扫描控制电路

Also Published As

Publication number Publication date
CN104537986A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2020186811A1 (zh) 像素电路及驱动方法、显示面板及驱动方法、显示装置
US9089027B2 (en) LED display systems
KR100986862B1 (ko) 발광제어선 구동부 및 이를 이용한 유기전계발광 표시장치
US8963810B2 (en) LED display systems
KR101056213B1 (ko) 구동부 및 이를 이용한 유기전계발광 표시장치
TWI595470B (zh) 顯示裝置及配置其影像資料之方法
WO2016115926A1 (zh) Led模组及其控制方法以及led驱动电路
WO2017107290A1 (zh) Oled显示装置及源极驱动器
KR20130143318A (ko) 스테이지 회로 및 이를 이용한 유기전계발광 표시장치
KR20210099973A (ko) 공통 led 구동 회로를 포함하는 발광 소자 기반 디스플레이 패널 및 발광 소자 디스플레이 장치
CN106710523B (zh) 有机发光显示器的驱动方法
US9818337B2 (en) LED display control circuit with PWM circuit for driving a plurality of LED channels
CN111627383B (zh) 一种led驱动电路、灯板及显示面板
CN113012624B (zh) 一种led显示装置及其驱动方法
JPH07129100A (ja) 集合ランプパネルモジュール
US20230282156A1 (en) Led driver circuit, multi-wire communication device and method for led display system
CN113906489A (zh) 像素结构及其驱动方法、显示装置
KR100759100B1 (ko) 발광다이오드 조명 디스플레이장치의 구동장치 및 방법
US11409163B2 (en) Common delay for LCD backlighting using LEDs
US11468851B2 (en) Organic light-emitting diode display device and driving method thereof
US10804333B2 (en) Display, circuit arrangement for a display and method of operating a display
JP3564359B2 (ja) 発光ダイオード駆動回路
TWM452576U (zh) 發光二極體驅動電路與驅動系統
CN204375396U (zh) Led模组以及led驱动电路
KR102577291B1 (ko) 로컬 디밍을 위한 led 구동 장치 및 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878595

Country of ref document: EP

Kind code of ref document: A1