WO2016115679A1 - 预编码信息的获取方法和设备 - Google Patents

预编码信息的获取方法和设备 Download PDF

Info

Publication number
WO2016115679A1
WO2016115679A1 PCT/CN2015/071108 CN2015071108W WO2016115679A1 WO 2016115679 A1 WO2016115679 A1 WO 2016115679A1 CN 2015071108 W CN2015071108 W CN 2015071108W WO 2016115679 A1 WO2016115679 A1 WO 2016115679A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
precoded
precoding
group
groups
Prior art date
Application number
PCT/CN2015/071108
Other languages
English (en)
French (fr)
Inventor
王磊
库拉斯马丁
席勒拉斯
豪斯泰因托马斯
陈大庚
吴晔
乔德礼
Original Assignee
华为技术有限公司
弗劳恩霍夫应用研究促进协会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 弗劳恩霍夫应用研究促进协会 filed Critical 华为技术有限公司
Priority to CN201580073369.8A priority Critical patent/CN107431576B/zh
Priority to CA2974624A priority patent/CA2974624C/en
Priority to PCT/CN2015/071108 priority patent/WO2016115679A1/zh
Priority to JP2017538412A priority patent/JP6472886B2/ja
Priority to BR112017015524-9A priority patent/BR112017015524B1/pt
Priority to EP15878357.1A priority patent/EP3249839B1/en
Publication of WO2016115679A1 publication Critical patent/WO2016115679A1/zh
Priority to US15/655,189 priority patent/US10516516B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0482Adaptive codebooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and an apparatus for acquiring precoding information.
  • the channel state affects the communication quality between the network device and the terminal device, and the channel state experienced by the data transmitted at different transmission locations in the transmission resource is different.
  • the network device sends a pilot for channel measurement to the terminal device on the RB (resource block) of the schedulable resource block to obtain precoding information.
  • the terminal device determines, according to the received pilot, a channel state experienced by the pilots on each RB, and then the terminal device traverses the configured precoding codebook according to the state of the channel experienced by the pilots on each RB.
  • Each precoding vector determines a precoding vector applicable to each RB, and feeds back an index of a precoding vector applicable to each RB to the network device, so that the network device subsequently sends data information to the terminal device on each RB, which is applicable.
  • the precoding vector guarantees the quality of communication with the terminal device.
  • MIMO Multiple-Input Multiple-Output
  • MIMO Multiple-Input Multiple-Output
  • the number of pilots transmitted by the network device on each RB is also increasing, and the overhead of the pilot signal is compared in the process of one channel measurement. Large, reducing communication efficiency.
  • the present invention provides a method and a device for acquiring precoding information, which are used to optimize the acquisition process of precoding information and improve communication efficiency.
  • an embodiment of the present invention provides a method for acquiring precoding information, including:
  • the network device uses N subcodebooks to precode the pilot groups including K pilots respectively. Obtaining N precoded pilot groups; wherein the subcodebook is a subset of precoding codebooks, the precoding codebook includes M precoding vectors, and each subcodebook includes K precoding vectors Where K is a positive integer, N, M are integers greater than 1, and M is greater than K;
  • the network device sends, on each RB group of the W resource block RB groups, one pre-coded pilot group to the terminal device, where W is a positive integer;
  • the network device receives precoding information fed back by the terminal device for any one of the precoded pilot groups of the W precoded pilot groups.
  • the precoding information fed back by the precoded pilot group of any one of the W precoded pilot groups includes a pilot index, where The pilot index is an index of one of the K precoded pilots included in the precoded pilot group.
  • the precoding information fed back by each precoded pilot group in the W precoded pilot groups includes an index of the precoding vector, precoding
  • the index of the vector is an index of a precoding vector corresponding to one of the K precoded pilots included in the precoded pilot group.
  • the method further includes:
  • the network device notifies the terminal device of the value of K.
  • the network device updates the N subcodebooks according to the precoding information fed back by the terminal device for the pilot group pre-coded by any one of the W precoded pilot groups.
  • any two subcodebooks of the N subcodebooks are different.
  • the network device sends, to the terminal device, one of the W resource block RB groups
  • the pre-coded pilot group includes:
  • the pre-coded pilot group sent by the network device to the terminal device on at least two RB groups of the W RB groups is obtained by precoding using the same sub-codebook.
  • the transmitting operation is performed on each of the W RB groups on each downlink subframe.
  • an embodiment of the present invention provides a method for acquiring precoding information, including:
  • the terminal device receives, on any one of the W resource block RB groups, a precoded pilot group sent by the network device, where the precoded pilot group is the network device adopts N children.
  • Any subcodebook in the codebook is obtained by precoding a pilot group containing K pilots; the subcodebook is a subset of precoding codebooks, and the precoding codebook includes M precodings Vector, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, M is greater than K, and W is a positive integer;
  • the terminal device feeds back, to the network device, precoding information of any one of the precoded pilot groups according to any received precoded pilot group.
  • the precoding information of the precoded pilot group includes a pilot index, where the pilot index is K included in the precoded pilot group An index of a precoded pilot in the precoded pilot.
  • the pre-coded precoding information includes an index of a precoding vector, where an index of the precoding vector is K included in the precoded pilot group An index of a precoding vector corresponding to a precoded pilot in the precoded pilot.
  • one of the K precoded pilots included in any one of the precoded pilot groups is precoded.
  • the method of determination includes:
  • the effective channel value is a ratio of the precoded pilot received by the terminal device to the pilot before precoding
  • the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups .
  • one of the K precoded pilots included in any one of the precoded pilot groups is precoded.
  • Determine Methods include:
  • K equivalent channel values corresponding to K pre-coded pilots according to the K pre-coded pilots included in the received pre-coded pilot group the equivalent channel
  • the value is a ratio of a precoded pilot received by the terminal device to a sum of pilot and channel noise before precoding
  • the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups .
  • the pilot before precoding is stored in advance in the terminal device.
  • the acquiring method further includes:
  • the terminal device Receiving, by the terminal device, a value of K sent by the network device, the terminal device receiving, on a RB group of any one of the W resource block RB groups, a pre-coded pilot group terminal sent by the network device Equipment, including:
  • the terminal device receives, on any one of the W RB groups, a pilot group that includes K precoded pilots that are sent by the network device.
  • an embodiment of the present invention provides a device, where the device is a network device, and includes:
  • a precoding module configured to precode the pilot group including K pilots by using N subcodebooks to obtain N precoded pilot groups; wherein the subcodebook is a precoded codebook a subset, the precoding codebook includes M precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, and M is greater than K;
  • a sending module configured to send, by using each of the W resource block RB groups, one pre-coded pilot group to the terminal device, where W is a positive integer;
  • a receiving module configured to receive precoding information fed back by the terminal device for the pilot group that is precoded by any one of the W precoded pilot groups.
  • the precoding information fed back by the precoded pilot group of any one of the W precoded pilot groups includes a pilot index, where The pilot index is an index of one of the K precoded pilots included in the precoded pilot group.
  • the method is for the W precoded pilot groups
  • the precoding information fed back by each precoded pilot group includes an index of a precoding vector, and the index of the precoding vector is in the K precoded pilots included in the precoded pilot group.
  • the index of the precoding vector corresponding to a precoded pilot.
  • the method further includes:
  • the sending module is further configured to notify the terminal device of the value of K.
  • the device further includes an update module, configured to update the N subcodebooks according to the precoding information fed back by the terminal device for the pilot group that is precoded by any one of the W precoded pilot groups.
  • any two subcodebooks of the N subcodebooks are different.
  • the sending module sends the to the terminal device on at least two RB groups of the W RB groups
  • the precoded pilot set is obtained by precoding with the same subcodebook.
  • the transmitting operation performed by the sending module is performed on each of the W RB groups on each downlink subframe.
  • the embodiment of the present invention provides a device, where the device is a terminal device, and includes:
  • a receiving module configured to receive, by using one of the W resource block RB groups, a precoded pilot group sent by the network device, where the precoded pilot group is the network device Precoding the pilot group including K pilots by using any one of the N subcodebooks; the subcodebook is a subset of the precoding codebook, and the precoding codebook includes M Precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, M is greater than K, and W is a positive integer;
  • a sending module configured to feed back, to the network device, precoding information of any one of the precoded pilot groups according to any received precoded pilot group.
  • the precoding signal of the precoded pilot group The information includes a pilot index, and the pilot index is an index of one of the K precoded pilots included in the precoded pilot group.
  • the pre-coded precoding information includes an index of a precoding vector, where an index of the precoding vector is K included in the precoded pilot group An index of a precoding vector corresponding to a precoded pilot in the precoded pilot.
  • the apparatus further includes a determining module, configured to: according to the received K pre-coded pilots included in the pre-coded pilot group Frequency, determining K equivalent channel values corresponding to the K precoded pilots, where the equivalent channel value is a ratio of the precoded pilot received by the terminal device to the pilot before precoding;
  • the determining module is configured to determine a maximum value among the K equivalent channel values
  • the determining module is configured to determine that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups Pilot.
  • the apparatus further includes a determining module, configured to: according to the K pre-coded pilots included in the received pre-coded pilot group, Determining K equivalent channel values corresponding to the K precoded pilots, where the equivalent channel value is the sum of the precoded pilot received by the terminal device and the pilot and channel noise before precoding ratio;
  • the determining module is configured to determine a maximum value among the K equivalent channel values
  • the determining module is configured to determine that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups Pilot.
  • the apparatus further includes a storage module, configured to pre-store the pre-coded pilot.
  • the receiving module is further configured to receive a value of K sent by the network device, where the receiving module is specifically used in W A pilot group including K precoded pilots transmitted by the network device is received on any one of the RB groups.
  • an embodiment of the present invention provides a device, where the device is a network device, and includes:
  • a processor configured to precode the pilot group including K pilots by using N subcodebooks to obtain N precoded pilot groups; wherein the subcodebook is a subcoded preamble a set, the precoding codebook includes M precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, and M is greater than K;
  • a transmitter configured to send, by using each of the W resource block RB groups, one pre-coded pilot group to the terminal device, where W is a positive integer;
  • a receiver configured to receive, by the terminal device, precoding information fed back by the pilot group that is precoded by any one of the W precoded pilot groups.
  • the precoding information fed back by the precoded pilot group of any one of the W precoded pilot groups includes a pilot index, where The pilot index is an index of one of the K precoded pilots included in the precoded pilot group.
  • the precoding information fed back by each precoded pilot group in the W precoded pilot groups includes an index of the precoding vector, precoding
  • the index of the vector is an index of a precoding vector corresponding to one of the K precoded pilots included in the precoded pilot group.
  • the method further includes:
  • the transmitter is further configured to notify the terminal device of the value of K.
  • the processor is further configured to update the N subcodebooks according to the precoding information fed back by the terminal device for the pilot group precoded by any one of the W precoded pilot groups.
  • any two subcodebooks of the N subcodebooks are different.
  • the transmitter sends the to the terminal device on at least two RB groups of the W RB groups
  • the precoded pilot set is obtained by precoding with the same subcodebook.
  • the transmitting operation performed by the transmitter is performed on each of the W RB groups on each downlink subframe.
  • the embodiment of the present invention provides a device, where the device is a terminal device, and includes:
  • a receiver configured to receive, on a RB group of any one of the W resource block RB groups, a precoded pilot group sent by the network device, where the precoded pilot group is the network device Precoding the pilot group including K pilots by using any one of the N subcodebooks; the subcodebook is a subset of the precoding codebook, and the precoding codebook includes M Precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, M is greater than K, and W is a positive integer;
  • a transmitter configured to feed back, to the network device, precoding information of any one of the precoded pilot groups according to any received precoded pilot group.
  • the precoding information of the precoded pilot group includes a pilot index, where the pilot index is K included in the precoded pilot group.
  • An index of a precoded pilot in the precoded pilot is K included in the precoded pilot group.
  • the pre-coded precoding information includes an index of a precoding vector, where an index of the precoding vector is K included in the precoded pilot group An index of a precoding vector corresponding to a precoded pilot in the precoded pilot.
  • the apparatus further includes a processor, configured to: according to the received K pre-coded pilots included in the pre-coded pilot group Frequency, determining K equivalent channel values corresponding to the K precoded pilots, where the equivalent channel value is a ratio of the precoded pilot received by the terminal device to the pilot before precoding;
  • the processor is configured to determine a maximum value among the K equivalent channel values
  • the processor is configured to determine that the precoded pilot corresponding to the maximum value is a precoded pilot of the K precoded pilots included in any one of the precoded pilot groups frequency.
  • the apparatus further includes a processor, configured to: according to the K pre-coded pilots included in the received pre-coded pilot group, Determining K equivalent channel values corresponding to the K precoded pilots, where the equivalent channel value is the sum of the precoded pilot received by the terminal device and the pilot and channel noise before precoding ratio;
  • the processor is configured to determine a maximum value among the K equivalent channel values
  • the processor is configured to determine that the precoded pilot corresponding to the maximum value is a precoded pilot of the K precoded pilots included in any one of the precoded pilot groups frequency.
  • the apparatus further includes a memory for pre-storing the pre-coded pilot.
  • the receiver is further configured to receive a value of K sent by the network device, where the receiver is specifically used in W A pilot group including K precoded pilots transmitted by the network device is received on any one of the RB groups.
  • An embodiment of the present invention provides a method and a device for acquiring precoding information, where a network device divides a precoding codebook into multiple subcodebooks, and the number of precoding vectors in each subcodebook is small, and then the network The number of pilot signals transmitted by the device on each RB group is reduced, which reduces the pilot overhead on each RB group.
  • the resources for transmitting data are added, which is beneficial to improving the communication capacity of the communication system. .
  • FIG. 1 is a schematic diagram of an application scenario of a method for acquiring precoding information according to the present invention
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for acquiring precoding information according to the present invention
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a method for acquiring precoding information according to the present invention
  • Embodiment 4 is a schematic flowchart of Embodiment 3 of a method for acquiring precoding information according to the present invention
  • FIG. 5 is a schematic diagram of a neutron codebook according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic flowchart diagram of Embodiment 4 of a method for acquiring precoding information according to the present invention.
  • Figure 7 is a schematic structural view of Embodiment 1 of the device of the present invention.
  • Figure 8 is a schematic structural diagram of Embodiment 2 of the device of the present invention.
  • Embodiment 3 of a device according to the present invention is a schematic structural diagram of Embodiment 3 of a device according to the present invention.
  • Embodiment 4 of the device according to the present invention is a schematic structural diagram of Embodiment 4 of the device according to the present invention.
  • Figure 11 is a schematic structural view of Embodiment 5 of the device of the present invention.
  • Embodiment 6 is a schematic structural diagram of Embodiment 6 of the device according to the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 7 of the device according to the present invention.
  • FIG. 1 is a schematic diagram of an application scenario of a method for acquiring precoding information according to the present invention.
  • a network device is provided with multiple antennas, and one antenna or multiple antennas may be disposed on each terminal device that communicates with the network device, and the network device may transmit the signal to be transmitted by each antenna on the network device.
  • the terminal device After the signals transmitted by the respective antennas pass through the channel between the network device and the terminal device, they are received by the antenna of the terminal device, and the terminal device analyzes the received signal to know the channel state between the antenna and the network device; understandably, the network The channel state between the device and the terminal device changes in real time, and the network device transmits information at each transmission location in the resource block RB (resource block), so the channel state experienced by the information at different transmission locations may be different. However, the channel state that is transmitted by the information in the vicinity of the information is similar. Therefore, in this embodiment, the channel state between the network device and the terminal device is determined by using one RB or a plurality of adjacent RBs as one RB group in units of RB groups. Take measurements to get pre-encoded information.
  • resource block resource block
  • the network device may be a device for communicating with a mobile device, and the network device may be a BTS (Base Transceiver) in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access).
  • Station, base station may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or an eNB or eNodeB in LTE (Long Term Evolution) (Evolutional) Node B, an evolved base station) or an access point, or an in-vehicle device, a wearable device, a network-side device in a future 5G network, or a network device in a future evolved PLMN (Public Land Mobile Network) network.
  • BTS Base Transceiver
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Station, base station may be an NB (NodeB, base station) in WCDMA (Wideband Code Division Multiple Access), or an eNB or eNodeB in LTE (Long Term Evolution
  • a terminal device may also be called a user equipment (User Equipment), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • User Equipment User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, WLL (Wireless Local Loop) station, PDA (Personal Digital Assistant, personal digital processing), handheld device with wireless communication function, computing device or other processing device connected to wireless modem, in-vehicle device, wearable device A terminal device in a future 5G network or a terminal device in a future evolved PLMN (Public Land Mobile Network) network.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant, personal digital processing
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a method for acquiring precoding information according to the present invention. As shown in FIG. 2, this embodiment includes:
  • the network device uses the N subcodebooks to precode the pilot groups including the K pilots to obtain N precoded pilot groups.
  • the subcodebook is a subset of a precoding codebook, the precoding codebook includes M precoding vectors, and each subcodebook includes K precoding vectors, where K is a positive integer, and N and M are greater than 1. The integer, M is greater than K.
  • the network device may generate a pilot group including K pilots, and the network device pre-codes the pilot group by using the first sub-codebook of the N sub-codebooks to obtain a pre-coded pilot.
  • the group uses the second subcodebook of the N subcodebooks to precode the pilot group, and then obtains a precoded pilot group, and so on, and the N subcodebooks respectively correspond to the same pilot.
  • the frequency group is pre-coded to obtain N pre-coded pilot groups; wherein each pilot in the pilot group can be in one-to-one correspondence with each pre-coding vector in each of the sub-codebooks;
  • each pre-coding vector in the sub-codebook is used to pre-code each pilot in the pilot group one by one, that is, for the same sub-
  • the precoding vector used for precoding different pilots is different; for example, the first pilot in the pilot group is precoded by using a precoding vector in the subcodebook to obtain the first precoding.
  • the code vector pre-codes the second pilot in the pilot group to obtain the second pre-coded pilot, and so on, obtains K pre-coded pilots, that is, obtains one K.
  • the precoded pilot set of the precoded pilot is, obtains one K.
  • the precoding codebook may be configured by the communication system to the network device according to the communication protocol, and the network device may divide the precoding codebook to obtain N subcodebooks; when the network device is configured with T antennas, precoding
  • Each of the precoding vectors in the codebook includes T elements; further, preferably, each pilot in the pilot group is orthogonal to each other.
  • the network device sends, to each terminal group, one of the W RB groups.
  • the pre-coded pilot group is not limited to, one of the W RB groups.
  • the foregoing RB groups are in the same downlink subframe, and any RB group may include at least one RB or at least two adjacent RBs; the RBs included in the W RB groups in the same downlink subframe are network devices. All the RBs that can be scheduled on the downlink subframe; that is, the network device groups the RBs that can be scheduled in one downlink subframe to form W RB groups, where W is a positive integer.
  • the network device receives precoding information fed back by the terminal device for the pilot group that is precoded by any one of the W precoded pilot groups.
  • the network device sends a pre-coded pilot group to the terminal device on each of the W RB groups; and after receiving the pre-coded pilot group on any RB group, the terminal device receives the pre-coded pilot group.
  • the precoding information of the RB group is fed back to the network device.
  • the pre-coded pilot group sent by the network device on any one of the RB groups is obtained by the network device precoding the pilot group by using one sub-codebook of the N sub-codebooks, which may be equivalent to the network device giving the RB group. If the sub-codebook is allocated, the K pre-coded pilots to be sent on the RB group are the network device that pre-codes the pilot group including the K pilots by using the sub-codebook allocated to the RB group. Obtained; optionally, considering that there is a difference in channel state experienced by information on different RB groups, in order to obtain precoding information more accurately, any two subcodebooks in the N subcodebooks are different; The probability that a group is assigned to the same subcodebook is small, which facilitates accurate acquisition of precoding information.
  • the child allocated to the RB group can be known. Which precoding vector in the codebook is applicable to the RB group, and it can be said that the current channel state is estimated by the precoding information, so that the network device determines the current channel state for the RB group. Precoding vector.
  • the network device divides the precoding codebook into multiple subcodebooks, and the number of precoding vectors in each subcodebook is small, and the number of pilot signals transmitted by the network device on each RB group is reduced.
  • the pilot overhead on each RB group is reduced, and the resources for transmitting data are added while the channel measurement is completed, which is beneficial to improving the communication capacity of the communication system.
  • FIG. 3 is a schematic flowchart diagram of Embodiment 2 of a method for acquiring precoding information according to the present invention. As shown in FIG. 3, this embodiment includes
  • the terminal device receives a precoding on any one of the W RB groups. Pilot group.
  • the pre-coded pilot group is obtained by the network device precoding the pilot group including K pilots by using any one of the N subcodebooks; the subcodebook is a subset of the precoding codebook, the precoding codebook includes M precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, and M is greater than K ;W is a positive integer.
  • the executor of the embodiment is a terminal device corresponding to the network device, and the S201 corresponds to S103 in the foregoing embodiment shown in FIG. 2, so the pilot group, the subcodebook, and the precoded pilot group are used.
  • the foregoing S101 to S103 refer to the foregoing S101 to S103.
  • the terminal device feeds back, to the network device, precoding information of any one of the precoded pilot groups according to any received precoded pilot group.
  • the network device sends the pre-coded pilot group on the W RB groups, and the terminal device only receives the pre-coded pilot group sent by the network device on any one of the W RB groups.
  • the precoding information of the precoded pilot group is fed back to the network device; for example, the terminal device receives the precoded pilot group on the first RB group of the W RB groups, and the terminal device sends the network device to the network device.
  • the precoding information of the precoded pilot group is fed back, specifically, the precoding information of the precoded pilot group sent by the feedback network device on the first RB is performed, and when the terminal device is in the W RB group.
  • the terminal device feeds back the precoding information of the precoded pilot group to the network device, specifically, the feedback network device sends the Wth RB.
  • Precoding information of the precoded pilot group it can be understood that when the terminal device receives the precoded pilot group sent by the network device on the W RB groups, the terminal device feeds back the precoded guide.
  • the precoding information of the frequency group is for the W RB groups, to the network Precoding information of W precoded pilot set of co-feedback apparatus.
  • the pre-coded pilot group transmitted by the network device on one RB is transmitted through a channel between the network device and the terminal device, and the pre-coded pilot group is affected by the channel state, so the terminal device is
  • the pre-coded pilot group received on the RB group is different from the pre-coded pilot group sent by the network device on the RB, but before implementing the embodiment, the terminal device may have negotiated with the network device.
  • Each pilot in the pilot group used for precoding (which may also be said to be a pilot before precoding), or the terminal device and the network device may have previously stored the above pilot group or precoding for precoding Encoding the codebook or subcodebook, so the terminal device receives any precoding
  • the pre-coded pilot group may determine precoding information of any one of the pre-coded pilot groups, and then, in S202, feed back the pre-coded information of the pre-coded pilot group to the network device.
  • the precoded pilot group sent by the network device on each RB is obtained by precoding using a subcodebook, and the precoding vector included in the subcodebook is a precoding included in the precoding codebook.
  • the number of precoding vectors included in the subcodebook may be less than the number of precoding vectors included in the precoding codebook, such that the precoded pilot groups transmitted on each RB group
  • the number of precoded pilots included in the preamble is also small, that is, K, which is equal to the number of precoding vectors included in the subcodebook, and the terminal device determines the precoded pilot for any RB group.
  • the precoding information of the group is determined based on the K precoded pilots sent by the network device on the RB group, and in the prior art, the number of pilots on each RB group and the precoding code are determined.
  • the number of the precoding vectors in the RB group is equal. Therefore, the terminal device needs to determine the network device in the RB group based on a large number of pilots on the RB group and traverse all the precoding vectors in the precoding codebook.
  • Preamble of the pilot group sent on the cost of the pilot on each RB group is reduced, so that the terminal device only needs to determine the precoding information based on fewer pilots on the RB group, so in this embodiment, The amount of calculation required by the terminal device to complete the feedback is small, which reduces the burden on the terminal device.
  • the number of precoding vectors required for precoding is reduced for each RB group, and then the network device is on each RB group.
  • the number of transmitted pilots is reduced, so that the terminal device only needs to determine the precoding information based on fewer pilots on each RB group. Therefore, the calculation amount required for the terminal device to complete the feedback of the precoding information is compared in this embodiment. Small, reducing the burden on the terminal device.
  • FIG. 4 is a schematic flowchart diagram of Embodiment 3 of a method for acquiring precoding information according to the present invention. As shown in FIG. 4, this embodiment includes:
  • the network device uses the N subcodebooks to precode the pilot groups including the K pilots to obtain N precoded pilot groups.
  • one pilot group includes K pilots
  • one subcodebook includes K precoding vectors
  • the subcodebook includes K precoding vectors and multiplies K pilots in the pilot group one by one to obtain K pilot signals, that is, a set of precoded pilot groups are obtained.
  • the network device sends, on each RB group of the W resource block RB groups, one pre-coded pilot group to the terminal device.
  • the network device has 100 RBs that can be scheduled on one downlink subframe. If 100 RBs are divided into 100 groups, each RB group has one RB; one RB can be further divided into transmission positions.
  • the transmission location may be represented by an index of an OFDM (Orthogonal Frequency Division Multiplexing) symbol and an index of a subcarrier; a transmission location is used to transmit a precoded pilot in a precoded pilot group.
  • the pre-coded pilot group obtained in S301 includes K pre-coded pilots, and when the pre-coded pilot group is transmitted on one RB group, the pre-coded pilot group is used.
  • the included K precoded pilots are respectively transmitted on the transmission positions of the K WTRUs for transmitting pilots (ie, precoded pilots);
  • FIG. 5 is a schematic diagram of a neutron codebook according to Embodiment 3 of the present invention.
  • the precoded pilot group transmitted on the first RB group is obtained by precoding using subcodebook 1
  • the precoded pilot group transmitted on the second RB group is Obtained by using subcodebook 2 for precoding, and so on
  • the precoded pilot group transmitted on the sixth RB group is obtained by precoding using subcodebook 6, and then starts from the 7th RB group.
  • the pilot group is precoded by subcodebook 1 to subcodebook 6 to obtain the precoded pilot group to be transmitted on the 7th to 12th RB groups, and so on, 6 subcodebooks.
  • N subcodebooks can be allocated to each RB group, that is, when W is greater than N, then the W RB group is allocated to the RB group.
  • the subcodebooks of the RB groups are the same as the subcodebooks assigned to the i th RB group, where "[]" represents a rounding operation, and i is any one of 1 to W.
  • the foregoing sending operation is performed on each of the W RB groups in each downlink subframe, and it can be said that the number of pilots that need to be transmitted on each RB group in this embodiment.
  • the S1 or S301 is performed on each of the downlink RB groups.
  • the network device can measure the channel between the network device and the terminal device in time, obtain the precoding information, and improve the timeliness of the network device acquiring the precoding information.
  • the terminal device receives, on any one of the W RB groups, a pre-coded pilot group sent by the network device.
  • the network device sends k pre-coded pilots on any RB group, and before S303, optionally, the network device notifies the terminal device of the value of K, so the terminal device receives the information sent by the network device. After the value of K, the terminal device will have W on each downlink subframe.
  • the terminal device feeds back the precoding information of the precoded pilot group to the network device according to the precoded pilot group received on the any one of the RB groups.
  • the precoding information of the precoded pilot group includes a pilot index, where the pilot index is the K precoded pilots included in the precoded pilot group.
  • An index of a precoded pilot; or the precoded precoding information includes an index of a precoding vector, the index of the precoding vector being K included in the precoded pilot group
  • An index of a precoding vector corresponding to a precoded pilot in the precoded pilot it can be understood that the index of the preambled pilot or the index of the precoding vector can be used first
  • the index of the index or its corresponding precoding vector is selected as a pre-coded pilot that is fed back as precoding information, that is, the pre-coded pilot group is required.
  • a pre-coded pilot of the K pre-coded pilots wherein, optionally, one of the K pre-coded pilots included in the pre-coded pilot group
  • a precoded pilot group on an RB group there can be a lot of methods for determining a precoded pilot.
  • the following is an example of a pre-coded pilot group on an RB group:
  • the terminal device determines, according to the received K precoded pilots included in the precoded pilot group, K equivalent channel values corresponding to the K precoded pilots.
  • the above equivalent channel value may be a ratio of the precoded pilot received by the terminal device to the pilot before precoding.
  • the network device sends a pre-coded pilot group to the terminal device in each of the first to the Wth RB groups, that is, the first to the Wth precoding are jointly sent.
  • the terminal device can receive the first to the Wth pre-coded pilot groups on the 1st to the Wth RB groups; the terminal device is now received on the ith RB group.
  • the ith pre-coded pilot group in the first to the Wth pre-coded pilot groups is described in detail as an example, where the terminal device receives the ith pre-coded pilot group.
  • the rth precoded pilot is and x r is the pre-coded pilot of the rth (r is an integer from 1 to K) in the pilot group before precoding, and
  • the channel state experienced by any data is reflected by the channel matrix H i , so the r th pre-coded pilot in the ith pre-coded pilot group transmitted by the network device on the ith RB group is experiencing the channel.
  • the rth precoded pilot in the ith precoded pilot group received by the terminal device is the above and The precoding vector used by the network device to precode x r .
  • the network device and the terminal device have negotiated to determine each RB group, or the network device and the terminal device have previously specified each RB group for transmitting each pilot (or after precoding)
  • the network device uses the first S (S is an integer from 1 to N) subcodebook pair to the pilot group (ie, the pilot group before precoding) to the first to
  • the Kth pilot preamble pre-coded pilot
  • the network device will first to Kth precoded pilots Transmitting at the transmission positions of the K pilots for transmitting the precoded pilots in the i-th RB group, the terminal device will receive K pre-transmissions at the transmission positions of the K pilots for transmitting the pre-coded pilots.
  • the coded pilot, and known K pre-coded pilots for example, the terminal device is known to be at the qth (q is a positive integer, and not greater than the total number of transmission positions in the i-th RB group) Transmitting the rth precoded pilot in the i-th precoded pilot group at the transmission location, and the terminal device Q-th precoded pilot received transmission frequency of the position And the terminal device has learned that the pre-coded pilot transmitted by the network device on the qth transmission position on the i-th RB group is obtained by pre-coding the pre-coded pilot x r , so according to the formula determine Corresponding equivalent channel value Further, the K equivalent channel values corresponding to the K precoded pilots in the received ith precoded RB group are determined.
  • the above equivalent channel value is a ratio of a precoded pilot received by the terminal device to a sum of pilot and channel noise before precoding, for example, mathematically expressed as determine Corresponding equivalent channel value, where N 0 is channel noise.
  • the terminal device can determine the maximum value among the K equivalent channel values. Of course, you can also use the maximum value in the implementation process, such as using the next largest.
  • the maximum value may be one or more, for example, the terminal device may determine that the largest one of the K equivalent channel values is the maximum value, or may determine the K equivalent channel values.
  • the largest pre-Z (Z is a positive integer, and less than K) values are the maximum values.
  • the terminal device determines that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups. .
  • the pre-coded information to be fed back may be determined, for example, the terminal device passes the C1. ⁇ C3 determined The corresponding equivalent channel value is the maximum value, then it is determined It is understood that one of the K pre-coded pilots included in the ith pre-coded pilot group is pre-coded.
  • the pre-coded pilot corresponding to the maximum value may also refer to However, the foregoing C1 to C3 are executed by the terminal device, and the pre-coded pilot corresponding to the maximum value is Further, the precoding information of the ith precoded pilot group determined in S304 is r, that is, the rth precoded pilot transmitted by the network device on the i th RB group is notified.
  • the index which can also be said to be the index of the r-th pre-coded pilot received by the network device terminal device on the ith RB group ( Yes
  • the pre-coded pilot that is transmitted for the network device after the channel state is formed.
  • the index is r, and the precoded pilot received with the terminal device The same index);
  • the precoding information of the ith precoded pilot group determined in S304 is r, it can be regarded as an index of a precoding vector, because the network device uses the precoding vector in the Sth subcodebook.
  • Precoding the x r to obtain the rth precoded pilot so when the network device receives the precoding information r, it can determine in the Sth subcodebook to obtain the rth precoding.
  • Post-pilot precoding vector Can also be said to be pre-coded pilot (or Corresponding precoding vector, so the above r is also a precoding vector index of.
  • the precoding vector used when the network device precodes x r is written as That is Only the precoding vector used for precoding the x r is indicated, even if each precoding vector in the above S subcodebook has a fixed order, It is not limited to the rth precoding vector in the Sth subcodebook; flexible, according to the selection of the precoding in the network device, Specifically, the precoding vector used for precoding the x r may be selected by the network device for any one of the Sth subcodebooks.
  • the terminal device when performing the S304, the terminal device further feeds back a CQI (channel quality indication) corresponding to the RB group.
  • CQI channel quality indication
  • the precoding information of each of the precoded pilot groups includes a pilot index
  • the pilot information of each precoding may not be known.
  • the specific content of the precoding vector does not need to specifically calculate the specific content of the precoded pilot transmitted by the network device and the channel state (channel matrix) it experiences, and only needs to be based on the K received precoded
  • the pilot determines the K equivalent channel values, and then the feedback of the precoding information is completed according to the maximum of the K equivalent channel values.
  • the network device after the network device receives the precoding information for each of the precoded pilot groups of the W precoded pilot groups, the network device further performs the following steps:
  • the network device determines a preferred precoding vector for the RB group used to send the precoded pilot group according to the precoding information of the precoded pilot group fed back by the terminal device.
  • the pre-coding information for the pre-coded pilot group on the i-th RB group is received at S304 is r, it is determined to obtain the pre-coded pilot.
  • Precoding vector For the preferred precoding vector, it can also be said that the r th precoding vector in the Sth subcodebook is directly determined. It is a preferred precoding vector.
  • the network device uses the preferred precoding vector of each RB group to precode the data to be sent on the RB group.
  • the preferred precoding vector of each RB group is adapted to the RB group, when the network device schedules a certain RB group to send data to the terminal device, the data to be sent is precoded by using the preferred precoding vector adapted by the RB group. This data can be made less affected by the channel state during transmission.
  • the network device divides the precoding codebook into multiple subcodebooks, and the number of precoding vectors in each subcodebook is small, and the number of pilot signals transmitted by the network device on each RB group is reduced.
  • the pilot overhead on each RB group is reduced, and the resources for transmitting data are added while the channel measurement is completed, which is beneficial to improving the communication capacity of the communication system.
  • FIG. 6 is a schematic flowchart diagram of Embodiment 4 of a method for acquiring precoding information according to the present invention. As shown in FIG. 6, this embodiment is further described based on the foregoing Embodiments 1 to 3.
  • the network device updates the N subcodebooks according to the precoding information fed back by the terminal equipment for the pilot group that is precoded by any one of the W precoded pilot groups.
  • the network device and each terminal device implement the foregoing S301-S304 in the downlink subframe; that is, the network device is in the preset feedback times according to each terminal device.
  • the precoding information fed back by the precoded pilot group of any one of the W precoded pilot groups determines the precoding vector to be replaced in the N subcodebooks.
  • the network device may send the pre-coded pilot group of the network device to the terminal device on each of the W RB groups on each downlink subframe, and then the network device may continuously collect statistics of each terminal device. Pre-coding information that is fed back multiple times, and determining a pre-coding vector to be replaced in the N sub-codebooks; wherein, in all the pre-coding information fed back by the terminal device in the preset feedback times, the network device is not used.
  • the index of the pilot obtained by the precoding vector to be replaced; or the precoding information fed back by the terminal device in the preset number of feedbacks, the index of the precoding vector to be replaced does not exist; that is, the The precoding vector to be replaced is a precoding vector involved in the precoding information that is not fed back by the terminal device in the preset number of feedbacks. It is known that the precoding performance of the precoding vector to be replaced is poor and needs to be replaced. Update the subcodebook;
  • the network device counts the two terminal devices in the five feedbacks, and the index of all the precoded pilots that are fed back does not appear after the precoding of the network device adopts the Kth precoding vector in the second subcodebook.
  • the index of the pilot so that the Kth precoding vector in the second subcodebook can be determined as the precoding vector to be replaced; or the network device counts all the precoding vectors fed back by the 2 terminal devices in 5 feedbacks.
  • the index of the Kth precoding vector in the second subcodebook does not appear in the index, so the Kth precoding vector in the second subcodebook can be determined as the precoding vector to be replaced.
  • the network device performs a precoding operation by using the updated N subcodebooks.
  • the network device in this embodiment dynamically dynamically changes based on the channel state. Adjusting the precoding vector or each subcodebook, so that the degree of adaptation of the precoding vector and the channel state used by the network device for precoding is continuously improved, and the precoding performance of the network device can be improved.
  • the network device may further forward the precoding information fed back by each of the precoded pilot groups in the W precoded pilot groups according to the preset feedback times of each terminal device, and may also be in the N subcodes. Determining a first sub-codebook in which the precoding vector included in the first subcodebook is preferred The number of precoding vectors satisfies a preset value. Specifically, according to the foregoing S305 and S306, the network device is configured to determine a preferred precoding vector applicable to each RB group according to the feedback precoding information, for example, a network device statistics terminal device.
  • the precoding performance of the fourth subcodebook is considered to be good, and the precoded pilot obtained by precoding the fourth subcodebook may be transmitted on at least two RB groups. That is, according to the precoding information fed back by the terminal device continuously received by the network device, the network device can flexibly update the subcodebook, and can also send the pilot group again according to the feedback precoding information, that is, When S301 and S302 are performed again, the precoded pilot group transmitted to the terminal device on at least two RB groups of the W RB groups is a terminal device obtained by precoding using the same subcodebook.
  • the network device can flexibly adjust the subcodebook used for precoding by using the received precoding information fed back by the terminal device, so that the network device performs the precoding of the precoding vector and the channel state. Continuous improvement can improve the precoding performance of network devices.
  • FIG. 7 is a schematic structural diagram of Embodiment 1 of a device according to the present invention. As shown in FIG. 7, the device is a network device, and includes:
  • the precoding module 11 is configured to precode the pilot group including the K pilots by using N subcodebooks to obtain N precoded pilot groups, where the subcodebook is a precoded codebook.
  • a subset of the precoding codebook includes M precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, and M is greater than K;
  • the sending module 12 is configured to send, on each RB group of the W resource block RB groups, one pre-coded pilot group to the terminal device, where W is a positive integer;
  • the receiving module 13 is configured to receive precoding information fed back by the terminal device for the pilot group that is precoded by any one of the W precoded pilot groups.
  • the network device divides the precoding codebook into multiple subcodebooks, and the number of precoding vectors in each subcodebook is small, and the pilot information sent by the network device on each RB group is further The number of numbers is reduced, and the pilot overhead on each RB group is reduced.
  • the resources for transmitting data are added, which is beneficial to improving the communication capacity of the communication system.
  • FIG. 8 is a schematic structural diagram of Embodiment 2 of the device according to the present invention. As shown in FIG. 8, the embodiment is further described on the basis of the embodiment shown in FIG. 7, and the details are as follows:
  • the precoding information fed back by the precoded pilot group of any one of the W precoded pilot groups includes a pilot index, where the pilot index is the precoded pilot group An index of one of the precoded pilots included in the K precoded pilots.
  • the precoding information fed back by each of the precoded pilot groups in the W precoded pilot groups includes an index of the precoding vector, and the index of the precoding vector is the precoded pilot.
  • An index of a precoding vector corresponding to one of the K precoded pilots included in the group; and optionally, the above W is greater than N.
  • the sending module 12 is further configured to notify the terminal device of the value of K.
  • the device further includes an update module 14, configured to update the N subcodebooks according to the precoding information fed back by the terminal device for the pilot group that is precoded by any one of the W precoded pilot groups. .
  • any two subcodebooks in the N subcodebooks are different.
  • the pre-coded pilot group sent by the sending module 12 to the terminal device on the at least two RB groups of the W RB groups is pre-coded by using the same sub-codebook.
  • the sending operation performed by the sending module 12 is performed on each of the W RB groups on each downlink subframe.
  • the network device divides the precoding codebook into multiple subcodebooks, and the number of precoding vectors in each subcodebook is small, and the number of pilot signals transmitted by the network device on each RB group is reduced.
  • the pilot overhead on each RB group is reduced, and the resources for transmitting data are added while the channel measurement is completed, which is beneficial to improving the communication capacity of the communication system.
  • FIG. 9 is a schematic structural diagram of Embodiment 3 of the device of the present invention. As shown in FIG. 9, the device in this embodiment is a terminal device, and includes:
  • the receiving module 21 is configured to receive, on any one of the W resource block RB groups, a precoded pilot group sent by the network device, where the precoded pilot group is the network
  • the apparatus obtains, by using any one of the N subcodebooks, precoding the pilot group including the K pilots; the subcodebook is a subset of the precoding codebook, and the precoding codebook includes M pre-edited a code vector, each subcodebook comprising K precoding vectors, where K is a positive integer, N, M are integers greater than 1, M is greater than K, and W is a positive integer;
  • the sending module 22 is configured to feed back, according to any one of the received pre-coded pilot groups, precoding information of the pre-coded pilot group to the network device.
  • the number of precoding vectors required for precoding is reduced for each RB group, and then the network device is on each RB group.
  • the number of transmitted pilots is reduced, so that the terminal device only needs to determine the precoding information based on fewer pilots on each RB group. Therefore, the calculation amount required for the terminal device to complete the feedback of the precoding information is compared in this embodiment. Small, reducing the burden on the terminal device.
  • FIG. 10 is a schematic structural diagram of Embodiment 4 of the apparatus of the present invention. As shown in FIG. 10, this embodiment is further described on the basis of the embodiment shown in FIG. 9, and the details are as follows:
  • the precoding information of the precoded pilot group includes a pilot index, where the pilot index is one of the K precoded pilots included in the precoded pilot group.
  • An index of the pilot; or the precoded precoding information includes an index of a precoding vector, where the index of the precoding vector is K precoded pilots included in the precoded pilot group An index of a precoding vector corresponding to a precoded pilot in the frequency.
  • the device further includes a determining module 23, configured to determine, according to the received K precoded pilots included in the precoded pilot group, corresponding to the K precoded pilots.
  • K equivalent channel values the equivalent channel value being a ratio of precoded pilots received by the terminal device to pilots before precoding;
  • the determining module 23 is configured to determine a maximum value among the K equivalent channel values
  • the determining module 23 is configured to determine that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups. Pilots.
  • the determining module 23 is configured to determine, according to the K pre-coded pilots included in the received pre-coded pilot group, K equivalent channel values corresponding to the K pre-coded pilots,
  • the equivalent channel value is a ratio of a precoded pilot received by the terminal device to a sum of pilot and channel noise before precoding;
  • the determining module 23 is configured to determine a maximum value among the K equivalent channel values
  • the determining module 23 is configured to determine that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups. Pilots.
  • the device further includes a storage module 24, configured to pre-store the pre-coded pilot.
  • the receiving module 21 is further configured to receive the value of the K sent by the network device, where the receiving module is specifically configured to send, by the network device, one of the K RB groups.
  • the pilot group of the precoded pilot is further configured to receive the value of the K sent by the network device, where the receiving module is specifically configured to send, by the network device, one of the K RB groups.
  • the number of precoding vectors required for precoding is reduced for each RB group, and then the network device is on each RB group.
  • the number of transmitted pilots is reduced, so that the terminal device only needs to determine the precoding information based on fewer pilots on each RB group. Therefore, the calculation amount required for the terminal device to complete the feedback of the precoding information is compared in this embodiment. Small, reducing the burden on the terminal device.
  • Figure 11 is a schematic structural view of Embodiment 5 of the device of the present invention.
  • the device is a network device, and includes:
  • the processor 31 is configured to precode the pilot group including the K pilots by using N subcodebooks to obtain N precoded pilot groups, where the subcodebook is a precoded codebook. a subset, the precoding codebook includes M precoding vectors, each subcodebook includes K precoding vectors, where K is a positive integer, N, M are integers greater than 1, and M is greater than K;
  • the transmitter 32 is configured to send, on each RB group of the W resource block RB groups, one pre-coded pilot group to the terminal device, where W is a positive integer;
  • the receiver 33 is configured to receive precoding information fed back by the terminal equipment for the pilot group that is precoded by any one of the W precoded pilot groups.
  • the precoding information fed back by the precoded pilot group of any one of the W precoded pilot groups includes a pilot index, and the pilot index is the precoded An index of one of the K precoded pilots included in the pilot group.
  • the precoding information fed back by each of the precoded pilot groups of the W precoded pilot groups includes an index of the precoding vector, and the index of the precoding vector is the precoded pilot.
  • An index of a precoding vector corresponding to one of the K precoded pilots included in the frequency group; flexible, W is greater than N.
  • the sender 32 is further configured to notify the terminal device of the value of K.
  • the processor 31 is further configured to update the N subcodebooks according to the precoding information fed back by the terminal device for the pilot group precoded by any one of the W precoded pilot groups.
  • any two subcodebooks in the N subcodebooks are different.
  • the pre-coded pilot group sent by the transmitter 32 to the terminal device on at least two RB groups of the W RB groups is obtained by precoding using the same sub-codebook.
  • the sending operation performed by the transmitter 32 is performed on each of the W RB groups on each downlink subframe.
  • the network device divides the precoding codebook into multiple subcodebooks, and the number of precoding vectors in each subcodebook is small, and the number of pilot signals transmitted by the network device on each RB group is reduced.
  • the pilot overhead on each RB group is reduced, and the resources for transmitting data are added while the channel measurement is completed, which is beneficial to improving the communication capacity of the communication system.
  • FIG. 12 is a schematic structural diagram of Embodiment 6 of the apparatus of the present invention. As shown in FIG. 12, the device is a terminal device, and includes:
  • the receiver 41 is configured to receive, on any one of the W resource block RB groups, a precoded pilot group sent by the network device, where the precoded pilot group is the network
  • the apparatus obtains, by using any one of the N subcodebooks, precoding the pilot group including the K pilots; the subcodebook is a subset of the precoding codebook, and the precoding codebook includes M precoding vectors, each subcodebook comprising K precoding vectors, where K is a positive integer, N, M are integers greater than 1, M is greater than K, and W is a positive integer;
  • the transmitter 42 is configured to feed back, to the network device, precoding information of any one of the precoded pilot groups according to any received precoded pilot group.
  • the number of precoding vectors required for precoding is reduced for each RB group, and then the network device is on each RB group.
  • the number of transmitted pilots is reduced, so that the terminal device only needs to determine the precoding information based on fewer pilots on each RB group. Therefore, the calculation amount required for the terminal device to complete the feedback of the precoding information is compared in this embodiment. Small, reducing the burden on the terminal device.
  • FIG. 13 is a schematic structural diagram of Embodiment 7 of the device according to the present invention. As shown in FIG. 13, this embodiment is further described on the basis of the embodiment shown in FIG. 12, as follows:
  • the precoding information of the precoded pilot group includes a pilot index, where the pilot index is one of the K precoded pilots included in the precoded pilot group.
  • An index of the pilot; or the precoded precoding information includes an index of a precoding vector, where the index of the precoding vector is K precoded pilots included in the precoded pilot group One of the frequencies The index of the precoding vector corresponding to the precoded pilot.
  • the device further includes a processor 43, configured to determine, according to the received K precoded pilots included in the precoded pilot group, corresponding to the K precoded pilots.
  • K equivalent channel values the equivalent channel value being a ratio of precoded pilots received by the terminal device to pilots before precoding;
  • the processor 43 is configured to determine a maximum value among the K equivalent channel values
  • the processor 43 is configured to determine that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups. Pilots.
  • the processor 43 is configured to: determine, according to the K pre-coded pilots included in the received pre-coded pilot group, K equivalent channels corresponding to the K pre-coded pilots. a value, the equivalent channel value being a ratio of a precoded pilot received by the terminal device to a sum of pilot and channel noise before precoding;
  • the processor 43 is configured to determine a maximum value among the K equivalent channel values
  • the processor 43 is configured to determine that the precoded pilot corresponding to the maximum value is one of the K precoded pilots included in any one of the precoded pilot groups. Pilots.
  • the device further includes a memory 44 for pre-storing the pre-coded pilots.
  • the receiver 41 is further configured to receive the value of the K sent by the network device, where the receiver 41 is specifically configured to receive, by using the network device, one of the W groups of the W RB groups.
  • the pilot group of precoded pilots is further configured to receive the value of the K sent by the network device, where the receiver 41 is specifically configured to receive, by using the network device, one of the W groups of the W RB groups.
  • the number of precoding vectors required for precoding is reduced for each RB group, and then the network device is on each RB group.
  • the number of transmitted pilots is reduced, so that the terminal device only needs to determine the precoding information based on fewer pilots on each RB group. Therefore, the calculation amount required for the terminal device to complete the feedback of the precoding information is compared in this embodiment. Small, reducing the burden on the terminal device.
  • each of the above-mentioned various device embodiments such as a processor, a transmitter, a receiver, and the like, are configured to perform the foregoing various method embodiments.
  • a processor such as a processor, a transmitter, a receiver, and the like.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明实施例提供一种预编码信息的获取方法和设备,包括:网络设备采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;子码本是预编码码本的子集,预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,网络设备在W个RB组中的每一个RB组上,向终端设备发送一个预编码后的导频组;网络设备接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息;通过上述预编码信息的获取方法和设备,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信号的数目减少,降低了各个RB组上的导频开销。

Description

预编码信息的获取方法和设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种预编码信息的获取方法和设备。
背景技术
通常通信系统中网络设备在与终端设备通信的过程中,信道状态影响网络设备与终端设备之间的通信质量,而传输资源中不同传输位置上传输的数据所经历的信道状态有所不同,为保障与终端设备之间的通信质量,通常在下行时隙中,网络设备在可调度的各个资源块RB(resource block)上向终端设备发送用于进行信道测量的导频,以获得预编码信息;具体的,终端设备根据接收的导频,确定各个RB上的导频所经历的信道状态,随后终端设备根据各个RB上的导频所经历的信道的状态,遍历配置的预编码码本中每一个预编码向量,确定各个RB适用的预编码向量,并将各个RB适用的预编码向量的索引反馈至网络设备,以便网络设备随后在各个RB上向该终端设备发送数据信息时,采用适用的预编码向量,保障与终端设备之间的通信质量。
随着移动通信的不断发展,提升系统吞吐量已是下一代蜂窝通信系统的迫切需求,其中MIMO(Multiple-Input Multiple-Output,多输入多输出)是常用技术,即在网络设备侧部署大量天线来提高系统的吞吐量;相应的,随着网络设备侧天线数量的增多,网络设备在各个RB上发送的导频的数量也不断增多,则在一次信道测量的过程中导频信号的开销较大,降低了通信效率。
发明内容
本发明提供一种预编码信息的获取方法和设备,用于优化预编码信息的获取过程,提高通信效率。
第一方面,本发明实施例提供一种预编码信息的获取方法,包括:
网络设备采用N个子码本分别对包含K个导频的导频组进行预编码,获 得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
网络设备在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
网络设备接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
结合第一方面,在第一实施方式中,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
结合第一方面,在第二实施方式中,所述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
结合第一方面至第一方面第二实施方式中任意一种实施方式,在第三实施方式中,还包括:
所述网络设备向所述终端设备通知K的取值。
结合第一方面至第一方面第三实施方式中任意一种实施方式,在第四实施方式中,
所述网络设备根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
结合第一方面至第一方面第四实施方式中任意一种实施方式,在第五实施方式中,所述N个子码本中任意两个子码本不相同。
结合第一方面至第一方面第五实施方式中任意一种实施方式,在第六实施方式中,所述网络设备在W个资源块RB组中的任一个RB组上,向终端设备发送一个所述预编码后的导频组,包括:
所述网络设备在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
结合第一方面第六实施方式,在第七实施方式中,其中所述W大于N。
结合第一方面至第一方面第七实施方式中任意一种实施方式,在第八实施方式中,
所述发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
第二方面,本发明实施例提供一种预编码信息的获取方法,包括:
终端设备在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
所述终端设备根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
结合第二方面,在第一实施方式中,所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
结合第二方面,在第二实施方式中,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
结合第二方面第一或第二实施方式,在三实施方式中,所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的确定方法包括:
所述终端设备根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
所述终端设备在所述K个等效信道值中,确定最大值;
所述终端设备确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
结合第二方面第一或第二实施方式,在四实施方式中,所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的确定 方法包括:
所述终端设备根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
所述终端设备在所述K个等效信道值中,确定最大值;
所述终端设备确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
结合第二方面第三或第四实施方式,在第五实施方式中,所述预编码前的导频预先存储于终端设备中。
结合第二方面至第二方面第五实施方式,在第六实施方式中,所述获取方法还包括:
所述终端设备接收所述网络设备发送的K的取值,则所述终端设备在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组终端设备,具体包括:
所述终端设备在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
第三方面,本发明实施例提供一种设备,所述设备为网络设备,包括:
预编码模块,用于采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
发送模块,用于在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
接收模块,用于接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
结合第三方面,在第一实施方式中,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
结合第三方面,在第二实施方式中,所述针对W个预编码后的导频组中 的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
结合第三方面至第三方面第二实施方式中任意一种实施方式,在第三实施方式中,还包括:
所述发送模块还用于向所述终端设备通知K的取值。
结合第三方面至第三方面第三实施方式中任意一种实施方式,在第四实施方式中,
所述设备还包括更新模块,用于根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
结合第三方面至第三方面第四实施方式中任意一种实施方式,在第五实施方式中,所述N个子码本中任意两个子码本不相同。
结合第三方面至第三方面第五实施方式中任意一种实施方式,在第六实施方式中,所述发送模块在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
结合第三方面第六实施方式,在第七实施方式中,其中所述W大于N。
结合第三方面至第三方面第七实施方式中任意一种实施方式,在第八实施方式中,
所述发送模块执行的发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
第四方面,本发明实施例提供一种设备,所述设备为终端设备,包括:
接收模块,用于在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
发送模块,用于根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
结合第四方面,在第一实施方式中,所述预编码后的导频组的预编码信 息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
结合第四方面,在第二实施方式中,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
结合第四方面第一或第二实施方式,在三实施方式中,所述设备还包括确定模块,用于根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
所述确定模块用于在所述K个等效信道值中,确定最大值;
所述确定模块用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
结合第四方面第一或第二实施方式,在四实施方式中,所述设备还包括确定模块,用于根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
所述确定模块用于在所述K个等效信道值中,确定最大值;
所述确定模块用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
结合第四方面第三或第四实施方式,在第五实施方式中,所述设备还包括存储模块,用于预先存储所述预编码前的导频。
结合第四方面至第四方面第五实施方式,在第六实施方式中,所述接收模块还用于接收所述网络设备发送的K的取值,则所述接收模块具体用于在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
第五方面,本发明实施例提供一种设备,所述设备为网络设备,包括:
处理器,用于采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
发送器,用于在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
接收器,用于接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
结合第五方面,在第一实施方式中,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
结合第五方面,在第二实施方式中,所述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
结合第五方面至第五方面第二实施方式中任意一种实施方式,在第三实施方式中,还包括:
所述发送器还用于向所述终端设备通知K的取值。
结合第五方面至第五方面第三实施方式中任意一种实施方式,在第四实施方式中,
所述处理器还用于根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
结合第五方面至第五方面第四实施方式中任意一种实施方式,在第五实施方式中,所述N个子码本中任意两个子码本不相同。
结合第五方面至第五方面第五实施方式中任意一种实施方式,在第六实施方式中,所述发送器在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
结合第五方面第六实施方式,在第七实施方式中,其中所述W大于N。
结合第五方面至第五方面第七实施方式中任意一种实施方式,在第八实施方式中,
所述发送器执行的发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
第六方面,本发明实施例提供一种设备,所述设备为终端设备,包括:
接收器,用于在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
发送器,用于根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
结合第六方面,在第一实施方式中,所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
结合第六方面,在第二实施方式中,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
结合第六方面第一或第二实施方式,在三实施方式中,所述设备还包括处理器,用于根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
所述处理器用于在所述K个等效信道值中,确定最大值;
所述处理器用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
结合第六方面第一或第二实施方式,在四实施方式中,所述设备还包括处理器,用于根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
所述处理器用于在所述K个等效信道值中,确定最大值;
所述处理器用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
结合第六方面第三或第四实施方式,在第五实施方式中,所述设备还包括存储器,用于预先存储所述预编码前的导频。
结合第六方面至第六方面第五实施方式,在第六实施方式中,所述接收器还用于接收所述网络设备发送的K的取值,则所述接收器具体用于在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
本发明实施例提供了一种预编码信息的获取方法和设备,其中,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信号的数目减少,降低了各个RB组上的导频开销,在完成对信道测量的同时,增加了用于传输数据的资源,利于提升通信系统的通信容量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明预编码信息的获取方法的应用场景示意图;
图2为本发明预编码信息的获取方法实施例一的流程示意图;
图3为本发明预编码信息的获取方法实施例二的流程示意图;
图4为本发明预编码信息的获取方法实施例三的流程示意图;
图5为本发明实施例三中子码本的示意图;
图6为本发明预编码信息的获取方法实施例四的流程示意图;
图7为本发明设备实施例一的结构示意图;
图8为本发明设备实施例二的结构示意图;
图9为本发明设备实施例三的结构示意图;
图10为本发明设备实施例四的结构示意图;
图11为本发明设备实施例五的结构示意图;
图12为本发明设备实施例六的结构示意图;
图13为本发明设备实施例七的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明预编码信息的获取方法的应用场景示意图。如图1所示,网络设备设置了多根天线,与该网络设备通信的各个终端设备上可以设置1根天线或多根天线,网络设备可将待发送的信号由网络设备上的各个天线发射,各个天线发射的信号经过网络设备与终端设备之间的信道后,被终端设备的天线接收,终端设备对接收的信号进行分析,获知天线与网络设备之间的信道状态;可以理解的,网络设备与终端设备之间的信道状态是实时变化的,而网络设备是在资源块RB(resource block)内的各个传输位置上发送信息,故不同传输位置上的信息经历的信道状态会有差异,但传输位置较近的信息所经历的信道状态相似;因此本实施例以一个RB或相邻的多个RB作为一个RB组,以RB组为单位,对网络设备和终端设备之间的信道状态进行测量,获取预编码信息。
上述网络设备可以是用于与移动设备通信的设备,网络侧设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站)或接入点,或者车载设备、可穿戴设备,未来5G网络中的网络侧设备或者未来演进的PLMN(Public Land Mobile Network,公共陆地移动网络)网络中的网络设备。
终端设备也可以称为用户设备(User Equipment)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、 WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN(Public Land Mobile Network,公共陆地移动网络)网络中的终端设备。
具体的,图2为本发明预编码信息的获取方法实施例一的流程示意图。如图2所示,本实施例包括:
S101、网络设备采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组。
所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K。
具体的,网络设备可自行生成包括K个导频的导频组,网络设备采用N个子码本中的第1个子码本对该导频组进行预编码,便获得一个预编码后的导频组,采用N个子码本中的第2个子码本再对该导频组进行预编码,便又获得一个预编码后的导频组,以此类推,N个子码本分别对同一个上述导频组进行预编码,获得N个预编码后的导频组;其中,上述导频组中各个导频与每一个所述子码本中各个预编码向量可以一一对应;可以理解为在采用一个子码本对上述导频组进行预编码时,是采用该子码本中的各个预编码向量对导频组中的各个导频一一对应的进行预编码,也就是说,针对同一个子码本,对不同导频进行预编码所采用的预编码向量不相同;例如采用子码本中一个预编码向量对导频组中第1个导频进行预编码,获得第1个预编码后的导频,随后采用另一个预编码向量对导频组中的第2个导频进行预编码,获得第2个预编码后的导频,以此类推,获得了K个预编码后的导频,即获得了一个包含K个预编码后的导频的预编码后的导频组。
上述预编码码本可以是通信系统依据通信协议给网络设备配置的,也可以说网络设备对上述预编码码本进行划分,获得了N个子码本;当网络设备配置了T个天线,预编码码本中每一个预编码向量中包括T个元素;另外,优选的,上述导频组中的各个导频相互正交。
S102、网络设备在W个RB组中的每一个RB组上,向终端设备发送一 个所述预编码后的导频组。
上述W个RB组是在同一个下行子帧上,任一个RB组可以包括至少一个RB或相邻的至少两个RB;同一个下行子帧上的W个RB组所包括的RB为网络设备在该下行子帧上可调度的全部RB;也就是说,该网络设备将一个下行子帧上可调度的RB进行分组,形成W个RB组,W为正整数。
S103、网络设备接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
在S102中,网络设备在W个RB组中的每一个RB组上向终端设备发送一个预编码后的导频组;而终端设备在任一个RB组上接收到预编码后的导频组后,向网络设备反馈该RB组的预编码信息。
网络设备在任一个RB组上发送的预编码后的导频组是网络设备采用了N个子码本中的一个子码本对导频组进行预编码获得的,可以相当于网络设备给该RB组分配了子码本,则该RB组上待发送的K个预编码后的导频便是网络设备采用给该RB组分配的子码本对前述包含K个导频的导频组进行预编码获得的;可选的,考虑到不同RB组上的信息所经历的信道状态存在差异,为了较准确的获得预编码信息,上述N个子码本中任意两个子码本不相同;则W个RB组被分配到同一子码本的概率较小,利于准确获取预编码信息。
进一步的,在网络设备接收到终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,便可获知分配给该任一个RB组的子码本中哪一个预编码向量适用于该RB组,也可以说,通过预编码信息,对当前的信道状态进行估计,从而网络设备针对该任一个RB组,确定了与当前信道状态适配的预编码向量。
本实施例中,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信号的数目减少,降低了各个RB组上的导频开销,在完成对信道测量的同时,增加了用于传输数据的资源,利于提升通信系统的通信容量。
图3为本发明预编码信息的获取方法实施例二的流程示意图。如图3所示,本实施例包括,
S201、终端设备在W个RB组中的任一个RB组上,接收一个预编码后 的导频组。
其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;W为正整数。
本实施例的执行主体是与网络设备对应的终端设备,则上述S201与前述图2所示的实施例中的S103相对应,故上述导频组、子码本及预编码后的导频组的具体描述可参见前述S101~S103。
S202、终端设备根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
网络设备是在W个RB组上均发送了预编码后的导频组,终端设备只要在W个RB组中的任一个RB组上接收到网络设备发送的预编码后的导频组,便会向网络设备反馈该预编码后的导频组的预编码信息;例如终端设备在W个RB组中的第1个RB组上接收到预编码后的导频组,则终端设备向网络设备反馈该预编码后的导频组的预编码信息时,具体是反馈网络设备在第1个RB上发送的预编码后的导频组的预编码信息,而当终端设备在W个RB组中的第W个RB组上接收到预编码后的导频组,则终端设备向网络设备反馈该预编码后的导频组的预编码信息时,具体是反馈网络设备在第W个RB上发送的预编码后的导频组的预编码信息;可以理解的,当终端设备在W个RB组上均接收到网络设备发送的预编码后的导频组,则终端设备反馈预编码后的导频组的预编码信息时,是针对W个RB组,向网络设备共反馈W个预编码后的导频组的预编码信息。
进一步的,网络设备在一个RB上发送的预编码后的导频组,在经过网络设备与终端设备之间的信道传输,该预编码后的导频组受信道状态的影响,故终端设备在一个RB组上接收到的预编码后的导频组与网络设备在该RB上发送的预编码后的导频组不同,但在实施本实施例之前,所述终端设备可以已与网络设备协商用于进行预编码的导频组中的各个导频(也可以说是预编码前的导频),或者,终端设备和网络设备可以事先已经存储上述用于进行预编码的导频组或预编码码本或子码本,故终端设备在接收到任一个预编码 后的导频组,可以确定所述任一个预编码后的导频组的预编码信息,进而在S202中向网络设备反馈所述任一个预编码后的导频组的预编码信息。
具体的,由于网络设备在每个RB上发送的预编码后的导频组是采用子码本进行预编码获得的,而子码本所包括的预编码向量为预编码码本所包括的预编码向量的子集,该子码本中包括的预编码向量的数目可以是小于预编码码本所包括的预编码向量的数目,从而在每个RB组上发送的预编码后的导频组中所包括的预编码后的导频的数目也较少,即为K个,与子码本中包括的预编码向量的数目相等,则终端设备针对任一个RB组确定预编码后的导频组的预编码信息时,是基于网络设备在该RB组上发送的K个预编码后的导频进行确定的,而在现有技术中,各个RB组上的导频的数目与预编码码本中预编码向量的数目相等,因此终端设备针对任一个RB组,需要基于该RB组上大量的导频,遍历预编码码本中的全部预编码向量,才可确定网络设备在该RB组上发送的导频组的预编码信息;本实施例与现有技术相比,由于各个RB组上的导频的开销降低,所以终端设备仅需基于RB组上较少的导频,确定预编码信息,因此本实施例中终端设备完成反馈时所需的计算量较小,减小了终端设备的负担。
本实施例中,由于通过采用子码本对导频组进行预编码,则对每个RB组来说,需要用于进行预编码的预编码向量的数目减少,进而网络设备在各个RB组上发送的导频的数目减少,从而终端设备仅需基于每个RB组上较少的导频,确定预编码信息,因此本实施例中终端设备完成预编码信息的反馈时所需的计算量较小,减小了终端设备的负担。
图4为本发明预编码信息的获取方法实施例三的流程示意图。如图4所示,本实施例包括:
S301、网络设备采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组。
具体的,一个导频组包含K个导频,而一个子码本包含K个预编码向量,子码本包含K个预编码向量与导频组中的K个导频一一相乘,获得K个导频信号,即获得一组预编码后的导频组。
S302、网络设备在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组。
举例来说,网络设备在一个下行子帧上可调度的RB共有100个,如果将100个RB分为100组,则每一个RB组有1个RB;一个RB进一步可划分为各个传输位置,该传输位置可使用OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号的索引和子载波的索引表示;一个传输位置用于传输一个预编码后的导频组中的一个预编码后的导频,例如S301中获得的预编码后的导频组包括K个预编码后的导频,进而在一个RB组上发送该预编码后的导频组时,该预编码后的导频组所包括的K个预编码后的导频分别在该RB组上K个用于传输导频(也即预编码后的导频)的传输位置上发送;
图5为本发明实施例三中子码本的示意图。如图5所示,第1个RB组上发送的预编码后的导频组是采用子码本1进行预编码获得的,而第2个RB组上发送的预编码后的导频组是采用子码本2进行预编码获得的,依次类推,第6个RB组上发送的预编码后的导频组是采用子码本6进行预编码获得的,随后由第7个RB组开始,再次依次采用子码本1~子码本6对导频组进行预编码,获得需在第7~第12个RB组上发送的预编码后的导频组,以此类推,6个子码本可循环使用,也可以说,在实际应用中,可将N个子码本循环分配给各个RB组,即当W大于N时,则在所述W个RB组中,分配给第
Figure PCTCN2015071108-appb-000001
个RB组的子码本与分配给第i个RB组的子码本相同,其中“[]”表示取整运算,i为1至W中任意一个整数。
可选的,上述发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行,也可以说,由于本实施例中每个RB组上需要传输的导频的数目减少,便于实现在每个下行子帧上的W个RB组中的每一个RB组上执行预编码后的导频组的发送操作,故在每个下行子帧上,均执行前述S302或S301和S302,网络设备可及时地对网络设备和终端设备之间的信道进行测量,获得具体为预编码信息,提升了网络设备获取预编码信息的及时性。
S303、终端设备在W个RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组。
需要说明的是,网络设备在任一个RB组上发送k个预编码后的导频,而在S303之前,可选的,网络设备向终端设备通知K的取值,故终端设备接收网络设备发送的K的取值后,终端设备会在每个下行子帧上的W个 RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组;更具体的,各个RB组上用于传输预编码后的导频的传输位置与预编码前的导频组中的K个预编码前的导频的内容、大小等信息在网络设备和终端设备实施本实施例之前,网络设备和终端设备已协商确定,也就是说,针对任一个RB组,终端设备已知K的取值及K个用于传输预编码后的导频的传输位置,终端设备则会在任一个RB组上K个用于传输预编码后的导频的传输位置上,接收K个预编码后的导频,即在任一个RB组上,接收到网络设备发送的一个预编码后的导频组。
S304、终端设备根据在所述任一个RB组上接收的预编码后的导频组,向所述网络设备反馈该预编码后的导频组的预编码信息。
本实施例中,所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引;或者,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引;可以理解的,无论反馈预编码后的导频的索引或预编码向量的索引,可以先在所述预编码后的导频组中,选择出其索引或其对应的预编码向量的索引可作为预编码信息进行反馈的预编码后的导频,即需要在所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频,其中,可选的,一种所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的确定方法可以有很多种,下面以针对在一个RB组上的预编码后的导频组为例,进行如下举例说明:
C1、终端设备根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值。
上述等效信道值可以为终端设备接收的预编码后的导频与预编码前的导频的比值。
具体的,在S302中,网络设备分别在第一至第W个RB组中每一个RB组上向终端设备发送一个预编码后的导频组,即共发送了第1至第W个预编码后的导频组,相应的,终端设备可在第1至第W个RB组上共接收第1至第W个预编码后的导频组;现以终端设备在第i个RB组上接收到上述第1 至第W个预编码后的导频组中的第i个预编码后的导频组为例进行详细说明,其中终端设备接收的第i个预编码后的导频组中的第r个预编码后的导频为
Figure PCTCN2015071108-appb-000002
Figure PCTCN2015071108-appb-000003
xr为预编码前的导频组中的第r(r为1至K中任意一个整数)个预编码前的导频,而
Figure PCTCN2015071108-appb-000004
为网络设备所发送的第1至第W个预编码后的导频组中第i个预编码后的导频组中的第r个预编码后的导频;第i个RB组上传输的任意数据所经历的信道状态用信道矩阵Hi反映,故网络设备在第i个RB组上发送的第i个预编码后的导频组中第r个预编码后的导频在经历了信道状态的影响后,终端设备所接收的第i个预编码后的导频组中第r个预编码后的导频为上述
Figure PCTCN2015071108-appb-000005
Figure PCTCN2015071108-appb-000006
为网络设备对xr进行预编码时所采用的预编码向量。
可选的,在实施本实施例之前,网络设备与终端设备已协商确定每一个RB组,或者网络设备和终端设备已经事先规定了每个RB组,用于传输各个导频(或预编码后的导频)的传输位置;例如在S302中,网络设备采用第S(S为1至N中任意一个整数)个子码本对导频组(即预编码前的导频组)中第1至第K个导频(预编码前的导频)进行预编码,获得了对应的第1至第K个预编码后的导频,随后网络设备将第1至第K个预编码后的导频在第i个RB组内的K个用于传输预编码后的导频的传输位置上发送,故终端设备会在该K个用于传输预编码后的导频的传输位置上去接收K个预编码后的导频,并已知K个预编码前的导频,例如终端设备已知在网络设备会在第q(q为正整数,且不大于第i个RB组中传输位置的总数)个传输位置上发送第i个预编码后的导频组中的第r个预编码后的导频,而终端设备在第q个传输位置上接收的预编码后的导频为
Figure PCTCN2015071108-appb-000007
且终端设备已获知网络设备在第i个RB组上的第q个传输位置上所发送的预编码后的导频是对预编码前的导频xr进行预编码获得的,故根据式子
Figure PCTCN2015071108-appb-000008
确定
Figure PCTCN2015071108-appb-000009
对应的等效信道值
Figure PCTCN2015071108-appb-000010
进一步的,确定出接收的第i个预编码后的RB组中K个预编码后的导频所对应K个等效信道值。
另外,上述等效信道值为终端设备接收的预编码后的导频与预编码前的导频和信道噪声之和的比值,比如数学上可以表示为
Figure PCTCN2015071108-appb-000011
确定
Figure PCTCN2015071108-appb-000012
对 应的等效信道值,其中N0为信道噪声。
对于其他RB组,可参照上述第i个RB组的示例,执行S304。
C2、终端设备在K个等效信道值中,可以确定最大值。当然在实现过程中也可以不用最大值,比如用次大的。
灵活的,上述最大值可为一个,也可为多个,例如终端设备可在K个等效信道值中确定最大的一个值为所述最大值,也可在K个等效信道值中确定最大的前Z(Z为正整数,且小于K)个值为所述最大值。
C3、终端设备确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
在确定所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频后,便可确定需反馈的预编码信息,例如终端设备通过C1~C3确定
Figure PCTCN2015071108-appb-000013
对应的等效信道值为最大值,则确定
Figure PCTCN2015071108-appb-000014
为第i个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频,可以理解的,
Figure PCTCN2015071108-appb-000015
Figure PCTCN2015071108-appb-000016
经历了信道状态形成的,故上述最大值所对应的预编码后的导频也可指
Figure PCTCN2015071108-appb-000017
但上述C1~C3由终端设备执行,以终端设备的视角,上述最大值所对应的预编码后的导频为
Figure PCTCN2015071108-appb-000018
进一步的,在S304中确定的第i个预编码后的导频组的预编码信息即为r,即告知了网络设备其在第i个RB组上发送的第r个预编码后的导频的索引,也可以说是告知了网络设备终端设备在第i个RB组上接收的第r个预编码后的导频的索引(
Figure PCTCN2015071108-appb-000019
Figure PCTCN2015071108-appb-000020
经历了信道状态形成的,对于网络设备来说,发送的预编码后的导频
Figure PCTCN2015071108-appb-000021
的索引为r,与终端设备接收的预编码后的导频
Figure PCTCN2015071108-appb-000022
的索引相同);
或者,在S304中确定的第i个预编码后的导频组的预编码信息为r时,可看做是一个预编码向量的索引,由于网络设备采用第S个子码本中的预编码向量
Figure PCTCN2015071108-appb-000023
对xr进行预编码,获得了第r个预编码后的导频,故在网络设备收到预编码信息r时,便可在第S个子码本中确定了用于获得第r个预编码后的导频的预编码向量
Figure PCTCN2015071108-appb-000024
也可以说是预编码后的导频
Figure PCTCN2015071108-appb-000025
(或
Figure PCTCN2015071108-appb-000026
)对应的预编码向量,因此上述r也为预编码向量
Figure PCTCN2015071108-appb-000027
的索引。
需要补充说明的是,为了便于描述,故将网络设备对xr进行预编码时所采用的预编码向量写为
Figure PCTCN2015071108-appb-000028
也就是说
Figure PCTCN2015071108-appb-000029
仅表示用于对xr进行预编码时所采用的预编码向量,即使在上述第S个子码本中各个预编码向量有固定的次序时, 上述
Figure PCTCN2015071108-appb-000030
并不限制为第S个子码本中的第r个预编码向量;灵活的,根据网络设备进行预编码时的选择,
Figure PCTCN2015071108-appb-000031
具体可以为第S个子码本中的任意一个被网络设备选择用于对xr进行预编码的预编码向量。
可选的,终端设备在执行S304时,还反馈RB组对应的CQI(channel quality indication,信道质量指标)。
需要补充说明的是,当每一个所述预编码后的导频组的预编码信息包括导频索引时,终端设备在完成预编码信息的反馈时,可以不用获知各个预编码后的导频对应的预编码向量的具体内容,也不需具体计算出网络设备发送的预编码后的导频的具体内容及其经历的信道状态(信道矩阵),仅需根据K个接收到的预编码后的导频,确定K个等效信道值,随后根据K个等效信道值中的最大值便可完成预编码信息的反馈。
可选的,在网络设备接收到针对W个预编码后的导频组中的每一个所述预编码后的导频组的预编码信息后,网络设备还会执行下述各个步骤:
S305、网络设备根据终端设备反馈的预编码后的导频组的预编码信息,为用于发送该预编码后的导频组的RB组确定优选预编码向量。
以第i个RB组示例,当在S304接收到针对第i个RB组上的预编码后的导频组的预编码信息为r,则确定用于获得预编码后的导频
Figure PCTCN2015071108-appb-000032
的预编码向量
Figure PCTCN2015071108-appb-000033
为优选预编码向量,也可以说,直接确定第S个子码本中的第r个预编码向量
Figure PCTCN2015071108-appb-000034
为优选预编码向量。
S306、网络设备采用每个RB组的优选预编码向量,对在该RB组上待发送的数据进行预编码。
由于每个RB组的优选预编码向量适配该RB组,则网络设备调度某个RB组向终端设备发送数据时,采用该RB组适配的优选预编码向量对待发送的数据进行预编码,可使该数据在传输过程中受信道状态影响较小。
本实施例中,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信号的数目减少,降低了各个RB组上的导频开销,在完成对信道测量的同时,增加了用于传输数据的资源,利于提升通信系统的通信容量。
图6为本发明预编码信息的获取方法实施例四的流程示意图。如图6所示,本实施例是结合前述实施例一至实施例三的基础上,做出进一步的描述:
S401、网络设备根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
可以理解的,通信网络中的终端设备有多个,则网络设备和每个终端设备在下行子帧上均会实施前述S301~S304;即网络设备根据每个终端设备在预设反馈次数中,针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,在N个子码本中确定待更换的预编码向量。
具体的,网络设备可以在每个下行子帧上的W个RB组中的每个RB组上,向终端设备发送网络设备预编码后的导频组,随后网络设备可以持续统计各个终端设备的多次反馈的预编码信息,并在N个子码本中确定待更换的预编码向量;其中,任一个终端设备在预设反馈次数中反馈的全部预编码信息中,不存在所述网络设备采用待更换的预编码向量所获得的导频的索引;或者任一个终端设备在预设反馈次数中反馈的预编码信息中,不存在所述待更换的预编码向量的索引;也就是说,待更换的预编码向量为在预设反馈次数中,均未被终端设备反馈的预编码信息涉及到的预编码向量;则可知该待更换的预编码向量的预编码性能较差,需要更换,以更新子码本;
例如网络设备统计2个终端设备在5次反馈中,反馈的全部预编码后的导频的索引中,没有出现过网络设备采用第2个子码本中第K个预编码向量获得的预编码后的导频的索引,故可确定第2个子码本中第K个预编码向量为待更换的预编码向量;或者,网络设备统计2个终端设备在5次反馈中,反馈的全部预编码向量的索引中,均没有出现过第2个子码本中第K个预编码向量的索引,故可确定第2个子码本中第K个预编码向量为待更换的预编码向量。
S402、网络设备采用更新后的N个子码本执行预编码操作。
由于子码本是预编码码本的子集,故在子码本发生更新时,也相当于预编码码本发生更新;故本实施例中的网络设备及时地基于信道状态的变化,动态地调整预编码向量或各个子码本,使得网络设备进行预编码所采用的预编码向量与信道状态的适配度不断提高,可以提升网络设备的预编码性能
另外,网络设备根据每个终端设备在预设反馈次数中,针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息,还可在N个子码本中确定第一子码本,该第一子码本所包括的预编码向量中,作为优选 预编码向量的数目满足预设值;具体的,根据前述S305和S306可知,网络设备根据反馈的预编码信息,是用于确定适用于各个RB组的优选预编码向量,例如网络设备统计终端设备针对采用第1至第N个子码本进行预编码所获得预编码后的导频组,反馈了预编码信息,根据该预编码信息,分别在每一个子码本中确定了一个优选预编码向量;而各个子码本为预编码码本的子集,可能的,任意两个不同的子码本中所包括的预编码向量中,存在相同的预编码向量,因此在网络设备在每一个子码本中确定了一个优选预编码向量后,发现确定的N个优选预编码向量中,超过预设数目个优选预编码向量均是第4个子码本(仅用于示例)中的预编码向量,则可认为该第4个子码本的预编码性能较好,可在至少两个RB组上均发送将采用第4个子码本进行预编码获得的预编码后的导频组,也就是说,依据网络设备不断接收的终端设备所反馈的预编码信息,网络设备可灵活的更新子码本,并且还可根据反馈的预编码信息,再次对发送导频组时,也就是再次执行S301和S302时,在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的终端设备。
本实施例中,网络设备通过接收的终端设备反馈的预编码信息,可灵活调整用于进行预编码的子码本,使得网络设备进行预编码所采用的预编码向量与信道状态的适配度不断提高,可以提升网络设备的预编码性能。
图7为本发明设备实施例一的结构示意图。如图7所示,所述设备为网络设备,包括:
预编码模块11,用于采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
发送模块12,用于在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
接收模块13,用于接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
本实施例中,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信 号的数目减少,降低了各个RB组上的导频开销,在完成对信道测量的同时,增加了用于传输数据的资源,利于提升通信系统的通信容量。
图8为本发明设备实施例二的结构示意图。如图8所示,本实施例是在图7所示的实施例的基础上,做出进一步的描述,具体如下:
上述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
或者,上述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引;另外,可选的,上述W大于N。
进一步的,所述发送模块12还用于向所述终端设备通知K的取值。
进一步的,所述设备还包括更新模块14,用于根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
可选的,所述N个子码本中任意两个子码本不相同。
灵活的,上述发送模块12在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
灵活的,所述发送模块12执行的发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
本实施例中,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信号的数目减少,降低了各个RB组上的导频开销,在完成对信道测量的同时,增加了用于传输数据的资源,利于提升通信系统的通信容量。
图9为本发明设备实施例三的结构示意图。如图9所示,本实施例的设备为终端设备,包括:
接收模块21,用于在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编 码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
发送模块22,用于根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
本实施例中,由于通过采用子码本对导频组进行预编码,则对每个RB组来说,需要用于进行预编码的预编码向量的数目减少,进而网络设备在各个RB组上发送的导频的数目减少,从而终端设备仅需基于每个RB组上较少的导频,确定预编码信息,因此本实施例中终端设备完成预编码信息的反馈时所需的计算量较小,减小了终端设备的负担。
图10为本发明设备实施例四的结构示意图。如图10所示,本实施例是在图9所示的实施例的基础上,做出进一步的描述,具体如下:
所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引;或者所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
灵活的,所述设备还包括确定模块23,用于根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
所述确定模块23用于在所述K个等效信道值中,确定最大值;
所述确定模块23用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
可选的,确定模块23用于根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
所述确定模块23用于在所述K个等效信道值中,确定最大值;
所述确定模块23用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
可选的,所述设备还包括存储模块24,用于预先存储所述预编码前的导频。
所述接收模块21还用于接收所述网络设备发送的K的取值,则所述接收模块具体用于在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
本实施例中,由于通过采用子码本对导频组进行预编码,则对每个RB组来说,需要用于进行预编码的预编码向量的数目减少,进而网络设备在各个RB组上发送的导频的数目减少,从而终端设备仅需基于每个RB组上较少的导频,确定预编码信息,因此本实施例中终端设备完成预编码信息的反馈时所需的计算量较小,减小了终端设备的负担。
图11为本发明设备实施例五的结构示意图。如图11所示,所述设备为网络设备,包括:
处理器31,用于采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
发送器32,用于在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
接收器33,用于接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
进一步的,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。或者,所述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引;灵活的,W大于N。
进一步的,所述发送器32还用于向所述终端设备通知K的取值。
所述处理器31还用于根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
可选的,所述N个子码本中任意两个子码本不相同。
可选的,所述发送器32在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
可选的,所述发送器32执行的发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
本实施例中,网络设备通过将预编码码本划分为多个子码本,每个子码本中的预编码向量的数目较少,进而网络设备在各个RB组上发送的导频信号的数目减少,降低了各个RB组上的导频开销,在完成对信道测量的同时,增加了用于传输数据的资源,利于提升通信系统的通信容量。
图12为本发明设备实施例六的结构示意图。如图12所示,所述设备为终端设备,包括:
接收器41,用于在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
发送器42,用于根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
本实施例中,由于通过采用子码本对导频组进行预编码,则对每个RB组来说,需要用于进行预编码的预编码向量的数目减少,进而网络设备在各个RB组上发送的导频的数目减少,从而终端设备仅需基于每个RB组上较少的导频,确定预编码信息,因此本实施例中终端设备完成预编码信息的反馈时所需的计算量较小,减小了终端设备的负担。
图13为本发明设备实施例七的结构示意图。如图13所示,本实施例是在图12所示的实施例的基础上做出进一步的描述,具体如下:
所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引;或者所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一 个预编码后的导频所对应的预编码向量的索引。
进一步的,所述设备还包括处理器43,用于根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
所述处理器43用于在所述K个等效信道值中,确定最大值;
所述处理器43用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
或者所述设备包括的处理器43用于根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
所述处理器43用于在所述K个等效信道值中,确定最大值;
所述处理器43用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
进一步的,所述设备还包括存储器44,用于预先存储所述预编码前的导频。
所述接收器41还用于接收所述网络设备发送的K的取值,则所述接收器41具体用于在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
本实施例中,由于通过采用子码本对导频组进行预编码,则对每个RB组来说,需要用于进行预编码的预编码向量的数目减少,进而网络设备在各个RB组上发送的导频的数目减少,从而终端设备仅需基于每个RB组上较少的导频,确定预编码信息,因此本实施例中终端设备完成预编码信息的反馈时所需的计算量较小,减小了终端设备的负担。
需要说明的是,上述各个设备实施例中的各个模块、器件(如处理器、发送器、接收器等)对应执行前述各个方法实施例,具体的实施细节及技术效果可参见前述各个方法实施例。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读 取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (48)

  1. 一种预编码信息的获取方法,其特征在于,包括:
    网络设备采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
    网络设备在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
    网络设备接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
  2. 根据权利要求1所述的获取方法,其特征在于,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
  3. 根据权利要求1所述的获取方法,其特征在于,所述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
  4. 根据权利要求1至3任一所述的获取方法,其特征在于,还包括:
    所述网络设备向所述终端设备通知K的取值。
  5. 根据权利要求1至4任一项所述的获取方法,其特征在于,
    所述网络设备根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
  6. 根据权利要求1至5任一所述的获取方法,其特征在于,所述N个子码本中任意两个子码本不相同。
  7. 根据权利要求1至6任一项所述的获取方法,其特征在于,所述网络设备在W个资源块RB组中的任一个RB组上,向终端设备发送一个所述预编码后的导频组,包括:
    所述网络设备在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
  8. 根据权利要求7所述的获取方法,其特征在于,其中所述W大于N。
  9. 根据权利要求1至8任一项所述的获取方法,其特征在于,所述发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
  10. 一种预编码信息的获取方法,其特征在于,包括:
    终端设备在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
    所述终端设备根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
  11. 根据权利要求10所述的获取方法,其特征在于,所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
  12. 根据权利要求10所述的获取方法,其特征在于,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
  13. 根据权利要求11或12所述的获取方法,其特征在于,所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的确定方法包括:
    所述终端设备根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
    所述终端设备在所述K个等效信道值中,确定最大值;
    所述终端设备确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
  14. 根据权利要求11或12所述的获取方法,其特征在于,所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的确定方法包括:
    所述终端设备根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
    所述终端设备在所述K个等效信道值中,确定最大值;
    所述终端设备确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
  15. 根据权利要求13或14所述的获取方法,其特征在于,所述预编码前的导频预先存储于终端设备中。
  16. 根据权利要求10至15任一项所述的获取方法,其特征在于,所述获取方法还包括:
    所述终端设备接收所述网络设备发送的K的取值,则所述终端设备在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组终端设备,具体包括:
    所述终端设备在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
  17. 一种设备,其特征在于,所述设备为网络设备,包括:
    预编码模块,用于采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
    发送模块,用于在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
    接收模块,用于接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
  18. 根据权利要求17所述的设备,其特征在于,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
  19. 根据权利要求17所述的设备,其特征在于,所述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向 量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
  20. 根据权利要求17至19任一所述的设备,其特征在于,还包括:
    所述发送模块还用于向所述终端设备通知K的取值。
  21. 根据权利要求17至20任一项所述的设备,其特征在于,所述设备还包括更新模块,用于根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
  22. 根据权利要求17至21任一所述的设备,其特征在于,所述N个子码本中任意两个子码本不相同。
  23. 根据权利要求17至22任一项所述的设备,其特征在于,所述发送模块在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
  24. 根据权利要求23所述的设备,其特征在于,其中所述W大于N。
  25. 根据权利要求17至24任一项所述的设备,其特征在于,所述发送模块执行的发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
  26. 一种设备,其特征在于,所述设备为终端设备,包括:
    接收模块,用于在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K,W为正整数;
    发送模块,用于根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
  27. 根据权利要求26所述的设备,其特征在于,所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
  28. 根据权利要求26所述的设备,其特征在于,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频 组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
  29. 根据权利要求27或28任一项所述的设备,其特征在于,所述设备还包括确定模块,用于根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
    所述确定模块用于在所述K个等效信道值中,确定最大值;
    所述确定模块用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
  30. 根据权利要求27或28任一项所述的设备,其特征在于,所述设备还包括确定模块,用于根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
    所述确定模块用于在所述K个等效信道值中,确定最大值;
    所述确定模块用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
  31. 根据权利要求29或30所述的设备,其特征在于,所述设备还包括存储模块,用于预先存储所述预编码前的导频。
  32. 根据权利要求26至31任一项所述的设备,其特征在于,所述接收模块还用于接收所述网络设备发送的K的取值,则所述接收模块具体用于在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
  33. 一种设备,其特征在于,所述设备为网络设备,包括:
    处理器,用于采用N个子码本分别对包含K个导频的导频组进行预编码,获得N个预编码后的导频组;其中,所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的整数,M大于K;
    发送器,用于在W个资源块RB组中的每一个RB组上,向终端设备发送一个所述预编码后的导频组,W为正整数;
    接收器,用于接收终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息。
  34. 根据权利要求33所述的设备,其特征在于,所述针对W个预编码后的导频组中的任一个所述预编码后的导频组所反馈的预编码信息包括导频索引,所述导频索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
  35. 根据权利要求33所述的设备,其特征在于,所述针对W个预编码后的导频组中的每一个预编码后的导频组所反馈的预编码信息包括预编码向量的索引,预编码向量的索引为该预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
  36. 根据权利要求33至35任一所述的设备,其特征在于,还包括:
    所述发送器还用于向所述终端设备通知K的取值。
  37. 根据权利要求33至36任一项所述的设备,其特征在于,
    所述处理器还用于根据终端设备针对W个预编码后的导频组中的任一个预编码后的导频组所反馈的预编码信息,更新N个子码本。
  38. 根据权利要求33至37任一所述的设备,其特征在于,所述N个子码本中任意两个子码本不相同。
  39. 根据权利要求33至38任一项所述的设备,其特征在于,所述发送器在W个RB组中的至少两个RB组上向终端设备发送的所述预编码后的导频组是采用相同的子码本进行预编码获得的。
  40. 根据权利要求39所述的设备,其特征在于,其中所述W大于N。
  41. 根据权利要求33至40任一项所述的设备,其特征在于,所述发送器执行的发送操作是在每个下行子帧上的W个RB组中的每一个RB组上执行。
  42. 一种设备,其特征在于,所述设备为终端设备,包括:
    接收器,用于在W个资源块RB组中的任一个RB组上,接收网络设备发送的一个预编码后的导频组;其中,所述预编码后的导频组是所述网络设备采用N个子码本中的任一个子码本对包含K个导频的导频组进行预编码获得的;所述子码本是预编码码本的子集,所述预编码码本包括M个预编码向量,每个子码本包括K个预编码向量,其中K为正整数,N、M为大于1的 整数,M大于K,W为正整数;
    发送器,用于根据任一个接收的预编码后的导频组,向所述网络设备反馈所述任一个预编码后的导频组的预编码信息。
  43. 根据权利要求42所述的设备,其特征在于,所述预编码后的导频组的预编码信息包括导频索引,所述导频索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频的索引。
  44. 根据权利要求42所述的设备,其特征在于,所述预编码后的预编码信息包括预编码向量的索引,所述预编码向量的索引为所述预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频所对应的预编码向量的索引。
  45. 根据权利要求43或44任一项所述的设备,其特征在于,所述设备还包括处理器,用于根据接收的所述预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收的预编码后的导频与预编码前的导频的比值;
    所述处理器用于在所述K个等效信道值中,确定最大值;
    所述处理器用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
  46. 根据权利要求43或44任一项所述的设备,其特征在于,所述设备还包括处理器,用于根据接收的预编码后的导频组所包含的K个预编码后的导频,确定K个预编码后的导频所对应的K个等效信道值,所述等效信道值为终端设备接收到的预编码后的导频与预编码前的导频和信道噪声之和的比值;
    所述处理器用于在所述K个等效信道值中,确定最大值;
    所述处理器用于确定所述最大值所对应的预编码后的导频为所述任一个预编码后的导频组所包括的K个预编码后的导频中的一个预编码后的导频。
  47. 根据权利要求45或46所述的设备,其特征在于,所述设备还包括存储器,用于预先存储所述预编码前的导频。
  48. 根据权利要求42至47任一项所述的获取方法,其特征在于,所述接收器还用于接收所述网络设备发送的K的取值,则所述接收器具体用于在W个RB组中的任一个RB组上,接收网络设备发送的一个包括K个预编码后的导频的导频组。
PCT/CN2015/071108 2015-01-20 2015-01-20 预编码信息的获取方法和设备 WO2016115679A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580073369.8A CN107431576B (zh) 2015-01-20 2015-01-20 预编码信息的获取方法和设备
CA2974624A CA2974624C (en) 2015-01-20 2015-01-20 Precoding information obtaining method, and device
PCT/CN2015/071108 WO2016115679A1 (zh) 2015-01-20 2015-01-20 预编码信息的获取方法和设备
JP2017538412A JP6472886B2 (ja) 2015-01-20 2015-01-20 プリコーディング情報取得方法、及び装置
BR112017015524-9A BR112017015524B1 (pt) 2015-01-20 Métodos e dispositivos de obtenção de informações de pré- codificação
EP15878357.1A EP3249839B1 (en) 2015-01-20 2015-01-20 Method and device for acquiring pre-coding information
US15/655,189 US10516516B2 (en) 2015-01-20 2017-07-20 Precoding information obtaining method, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071108 WO2016115679A1 (zh) 2015-01-20 2015-01-20 预编码信息的获取方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/655,189 Continuation US10516516B2 (en) 2015-01-20 2017-07-20 Precoding information obtaining method, and device

Publications (1)

Publication Number Publication Date
WO2016115679A1 true WO2016115679A1 (zh) 2016-07-28

Family

ID=56416264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071108 WO2016115679A1 (zh) 2015-01-20 2015-01-20 预编码信息的获取方法和设备

Country Status (6)

Country Link
US (1) US10516516B2 (zh)
EP (1) EP3249839B1 (zh)
JP (1) JP6472886B2 (zh)
CN (1) CN107431576B (zh)
CA (1) CA2974624C (zh)
WO (1) WO2016115679A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017510A (ko) * 2017-06-16 2020-02-18 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 파일럿 프리코딩 모드를 지시하기 위한 방법, 네트워크 측 장치 및 단말

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131794A1 (en) * 2017-05-05 2023-02-08 Apple Inc. Management of mimo communication systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594208A (zh) * 2009-06-24 2009-12-02 中兴通讯股份有限公司 一种配置预编码矩阵的方法
CN102158315A (zh) * 2010-02-10 2011-08-17 马维尔国际贸易有限公司 使用多级码本的mimo通信系统中的码本自适应
WO2014073805A1 (en) * 2012-11-09 2014-05-15 Lg Electronics Inc. Method for feeding back channel state information in wireless communication system and apparatus therefor
CN104144027A (zh) * 2013-05-07 2014-11-12 北京三星通信技术研究有限公司 一种信道状态信息的反馈方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056505B1 (en) * 2006-07-07 2014-08-27 Mitsubishi Electric Corporation Wireless communication system
MX2009010074A (es) * 2007-03-21 2010-03-03 Interdigital Tech Corp Metodo y aparato de comunicacion inalambrico (mimo) para transmitir y descodificar estructuras de bloque de recurso en base en un modo de señal de referencia dedicado.
US7957701B2 (en) * 2007-05-29 2011-06-07 Alcatel-Lucent Usa Inc. Closed-loop multiple-input-multiple-output scheme for wireless communication based on hierarchical feedback
EP2412101A1 (en) * 2009-03-27 2012-02-01 Nokia Corp. System and method for signaling of interfering spatial layers with dedicated reference signal
US20110026459A1 (en) * 2009-07-28 2011-02-03 Samsung Electronics Co., Ltd. Method and apparatus for closed-loop transformed codebook based antenna beamforming
CN102035619B (zh) * 2009-09-29 2016-05-25 电信科学技术研究院 信道质量信息反馈的方法、系统和设备
CN101777968B (zh) * 2010-01-08 2015-05-20 中兴通讯股份有限公司 一种传输信道信息的方法及系统及移动终端
US9148205B2 (en) * 2010-01-25 2015-09-29 Qualcomm Incorporated Feedback for supporting SU-MIMO and MU-MIMO operation in wireless communication
CN101931513B (zh) * 2010-05-18 2016-06-15 中兴通讯股份有限公司 信道状态信息的反馈方法及终端
JP2012004609A (ja) * 2010-06-14 2012-01-05 Sharp Corp 基地局装置、端末装置、通信システムおよび通信方法
KR102109655B1 (ko) * 2012-02-23 2020-05-12 한국전자통신연구원 대규모 안테나 시스템에서의 다중 입력 다중 출력 통신 방법
CN104184506A (zh) * 2013-05-24 2014-12-03 北京三星通信技术研究有限公司 一种自适应的码本类型选择方法及终端
CN104202073A (zh) * 2014-03-04 2014-12-10 中兴通讯股份有限公司 信道信息的反馈方法、导频及波束发送方法、系统及装置
CN105322988B (zh) * 2014-08-01 2018-09-07 电信科学技术研究院 一种三维波束预编码信息确定方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101594208A (zh) * 2009-06-24 2009-12-02 中兴通讯股份有限公司 一种配置预编码矩阵的方法
CN102158315A (zh) * 2010-02-10 2011-08-17 马维尔国际贸易有限公司 使用多级码本的mimo通信系统中的码本自适应
WO2014073805A1 (en) * 2012-11-09 2014-05-15 Lg Electronics Inc. Method for feeding back channel state information in wireless communication system and apparatus therefor
CN104144027A (zh) * 2013-05-07 2014-11-12 北京三星通信技术研究有限公司 一种信道状态信息的反馈方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200017510A (ko) * 2017-06-16 2020-02-18 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 파일럿 프리코딩 모드를 지시하기 위한 방법, 네트워크 측 장치 및 단말
TWI718381B (zh) * 2017-06-16 2021-02-11 大陸商電信科學技術研究院有限公司 一種指示導頻預編碼方式的方法、網路側設備及終端
KR102265166B1 (ko) * 2017-06-16 2021-06-14 차이나 아카데미 오브 텔레커뮤니케이션즈 테크놀로지 파일럿 프리코딩 모드를 지시하기 위한 방법, 네트워크 측 장치 및 단말
US11063650B2 (en) 2017-06-16 2021-07-13 China Academy Of Telecommunications Technology Method, network side device and terminal for indicating pilot precoding mode

Also Published As

Publication number Publication date
CN107431576B (zh) 2020-06-16
US20170317795A1 (en) 2017-11-02
EP3249839B1 (en) 2019-12-18
JP2018510530A (ja) 2018-04-12
CA2974624C (en) 2020-03-24
EP3249839A4 (en) 2018-02-28
CA2974624A1 (en) 2016-07-28
BR112017015524A2 (zh) 2018-01-30
JP6472886B2 (ja) 2019-02-20
EP3249839A1 (en) 2017-11-29
US10516516B2 (en) 2019-12-24
CN107431576A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
KR102401001B1 (ko) 부분 프리코딩 csi-rs 및 csi 피드백을 위한 다운링크 시그널링 방법 및 장치
KR102525602B1 (ko) 다중 안테나를 이용하는 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 장치
RU2559706C2 (ru) Способ и терминал для передачи информации о состоянии канала по обратной связи
US11909466B2 (en) Channel state information feedback in wireless communication
CN102835054B (zh) 预编码方法和系统
KR101489879B1 (ko) 코드북의 배치 방법, 장치 및 시스템
US8588324B2 (en) Precoding for coordinated multi-point joint transmission
CN110034797B (zh) 一种预编码矩阵指示的反馈方法及装置
US20120270535A1 (en) Implicit CSI Feedback for DL Multiuser MIMO Transmission
KR20130027549A (ko) 채널 상태 정보의 피드백 방법 및 단말
WO2018202071A1 (zh) 数据传输方法、终端设备和网络设备
US11277184B2 (en) Method and apparatus for high rand CSI reporting in wireless communications systems
JP5744833B2 (ja) Mimoネットワークにおいて通信するための方法
WO2018024157A1 (zh) 信道状态信息的发送方法、接收方法、装置和系统
EP2557719B1 (en) Method and system for providing correlation matrix feedback for systems having antenna arrays
JP5498856B2 (ja) チャネル情報フィードバック方法、プリコーディング方法、受信局及び送信局
WO2011090105A1 (ja) 移動局装置、チャネル情報フィードバック方法
US11082108B2 (en) Channel state information transmission method, access network device, and terminal device
WO2016115679A1 (zh) 预编码信息的获取方法和设备
EP3629504A1 (en) Method for transmitting channel state information, access network device and terminal device
CN102299776B (zh) 信道信息反馈方法、装置及信号预处理方法、装置
CN114514723A (zh) 针对版本16类型ii信道状态信息(csi)的csi省略过程
BR112017015524B1 (pt) Métodos e dispositivos de obtenção de informações de pré- codificação

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2974624

Country of ref document: CA

Ref document number: 2017538412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015524

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015878357

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017015524

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170719