WO2016114627A1 - Metallic nanotube and method for preparing same - Google Patents

Metallic nanotube and method for preparing same Download PDF

Info

Publication number
WO2016114627A1
WO2016114627A1 PCT/KR2016/000463 KR2016000463W WO2016114627A1 WO 2016114627 A1 WO2016114627 A1 WO 2016114627A1 KR 2016000463 W KR2016000463 W KR 2016000463W WO 2016114627 A1 WO2016114627 A1 WO 2016114627A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanotemplate
metal
plastic
aluminum oxide
nanotube
Prior art date
Application number
PCT/KR2016/000463
Other languages
French (fr)
Korean (ko)
Inventor
김영근
김수효
전유상
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016114627A1 publication Critical patent/WO2016114627A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds

Definitions

  • the present invention relates to metal nanotubes and a method of manufacturing the same, and more particularly, after the precursors containing metal ions are charged to anodized aluminum oxide or plastic nanotemplates with nanopores by electroplating to synthesize nanotubes.
  • the present invention relates to a technology for manufacturing metal nanotubes by a simple process of removing nanotemplates and applying them to various fields such as nanosensors.
  • Nanotechnology is a new technology that emerged with the discovery of new quantum phenomena and excellent characteristics in the nanometer level at the end of the 20th century.In the field of telecommunications, medicine, materials, environment and energy, the 21st century It is spotlighted as a future science and technology to lead.
  • structures such as nanotubes have excellent characteristics such as high sensitivity and high selectivity, and thus are used in biochips, semiconductors, light emitting diodes, secondary batteries, environmental catalysts, and sensors.
  • Patent Document 1 Korean Patent Publication No. 10-2013-0026106
  • Patent Document 4 Korean Unexamined Patent Publication No. 10-2013-0047244.
  • the present inventors synthesized nanotubes by electroplating by filling a precursor containing metal ions in anodized aluminum oxide or plastic nanotemplates with nanopores, and then removing the nanotemplates without requiring a high temperature in a simple process.
  • the present invention has been completed by focusing on being able to produce metal nanotubes in a short time.
  • the present invention has been made in view of the above problems, and an object of the present invention is to charge a precursor containing metal ions in anodized aluminum oxide or plastic nanotemplate with nanopores to synthesize nanotubes by electroplating. Then, to provide a method for producing a metal nanotube and a metal nanotube produced thereby by a simple process of removing the nano-template.
  • the present invention for achieving the object as described above, I) obtaining anodized aluminum oxide or plastic nanotemplate with nanopores; II) forming a precursor solution containing metal ions; III) depositing metal nanotube lines by immersing the anodized aluminum oxide or plastic nanotemplate with nanopores in the precursor solution; And IV) removing the anodized aluminum oxide or plastic nanotemplate.
  • the anodized aluminum oxide or plastic nanotemplate is characterized in that the average diameter of the pores is 5 to 500 nm.
  • the anodized aluminum oxide or plastic nanotemplate is formed by depositing platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu) or an alloy thereof as a working electrode on one surface thereof. It features.
  • the plastic nanotemplate is characterized in that the polycarbonate (PC) nanotemplate.
  • the metal ion is characterized in that it is derived from a transition metal oxide.
  • the concentration of the precursor solution is characterized in that 0.001 to 50 M.
  • the precursor solution is characterized in that the pH is 1 to 10.
  • step III the metal nanotube line is electroplated using a counter electrode as platinum (Pt) or iridium (Ir).
  • step IV the anodized aluminum oxide nanotemplate is removed with 1-5 M sodium hydroxide or potassium hydroxide aqueous solution.
  • step IV the plastic nanotemplate is removed with chloroform.
  • the present invention provides a metal nanotube produced by the above production method.
  • the present invention provides a nano-part comprising the metal nanotube.
  • a precursor containing metal ions without requiring a high temperature is charged by electroplating into an anodized aluminum oxide or plastic nanotemplate having nanopores, and then a nanotube is removed.
  • the process can produce metal nanotubes at low cost in a short time, and thus the metal nanotubes prepared according to the present invention can be applied to various fields including nanoparts.
  • FIG. 1 is a manufacturing process diagram of a metal nanotube according to the present invention ((a) anodized aluminum oxide or plastic nanotemplate, (b) one surface of the platinum (Pt), palladium (Pd), gold (Au), silver ( Ag), copper (Cu) or alloys thereof, (c) immersion of anodized aluminum oxide or plastic nanotemplates in the precursor solution to deposit metal nanotubes, and (d) metal nanotubes by nanotemplate removal].
  • FIG. 2 is a scanning electron microscope (SEM) photograph of cobalt-vanadium nanotubes prepared from Example 1 of the present invention.
  • SEM scanning electron microscope
  • Example 3 is a transmission electron microscope (TEM) photograph of cobalt-vanadium nanotubes prepared from Example 1 of the present invention.
  • FIG. 4 is an elemental mapping photograph and a component analysis table of the cobalt-vanadium nanotubes prepared from Example 1 of the present invention with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Example 5 is a scanning electron microscope (SEM) photograph and a component analysis table of nickel-vanadium nanotubes prepared from Example 2 of the present invention.
  • FIG. 1 is a manufacturing process diagram of a metal nanotube according to the present invention ((a) anodized aluminum oxide or plastic nanotemplate, (b) one surface of the platinum (Pt), palladium (Pd), gold (Au), silver ( Ag), copper (Cu) or alloys thereof, (c) immersion of anodized aluminum oxide or plastic nanotemplates in the precursor solution to deposit metal nanotubes, and (d) metal nanotube fabrication by removing nanotemplates. Indicated.
  • the present invention comprises the steps of: I) obtaining anodized aluminum oxide or plastic nanotemplate with nanopores; II) forming a precursor solution containing metal ions; III) depositing metal nanotube lines by immersing the anodized aluminum oxide or plastic nanotemplate with nanopores in the precursor solution; And IV) removing the anodized aluminum oxide or plastic nanotemplate.
  • the anodic aluminum oxide nanotemplate is obtained by anodizing aluminum, and anodization may be performed using a method known in the art, for example, a two-step anodization process. It can be carried out through, the detailed description thereof will be omitted herein.
  • the anodized aluminum oxide nanotemplate may be purchased and used commercially available nanotube template.
  • plastic nano-templates can be used, in particular polycarbonate (PC) nano-templates are preferably used.
  • the anodized aluminum oxide or plastic nanotemplate preferably has an average diameter of pores of several hundreds to several hundred nm, and particularly preferably 5 to 500 nm. If the average diameter of pores is less than 5 nm, ultimately uniform shape is obtained. If the nanotubes are difficult to form and the average diameter of the pores exceeds 500 nm, the pores may be too large to be easily utilized as nanoparts.
  • platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu) or alloys thereof are deposited on one surface of the anodized aluminum nanotemplate.
  • the material is deposited on one surface of the anodized aluminum oxide nanotemplate with a thickness of 250 to 350 nm using an electron beam evaporator.
  • any metal ion is not limited, but considering the electrical, magnetic and thermal conductivity nickel (Ni), cobalt (Co), vanadium (V), It is more preferable to use those derived from transition metal oxides containing transition metals such as iron (Fe) and chromium (Cr).
  • the concentration of the precursor solution containing the metal ion is 0.001 to 50 M. If the concentration of the precursor solution is less than 0.001 M, the concentration is too small to be effectively adsorbed onto the anodized aluminum or plastic nano template. If the concentration of the precursor solution exceeds 50 M, there is a problem in that the economic efficiency as the metal nanotubes, which is the object of the present invention.
  • the precursor solution is adjusted to a pH of 1 to 10 by the addition of an acid solution such as nitric acid (HNO 3 ).
  • the anodized aluminum oxide or plastic nanotemplate is immersed in the precursor solution to deposit metal nanotube lines, wherein a counter electrode is formed of platinum (Pt) or iridium ( Ir) electroplating the nanotubes by electroplating for 1 minute to 48 hours. If the electroplating time is less than 1 minute, it is difficult to deposit metal nanotube lines sufficiently, and if the time exceeds 48 hours, The process can be lengthy, which can hamper commercialization.
  • a counter electrode is formed of platinum (Pt) or iridium ( Ir) electroplating the nanotubes by electroplating for 1 minute to 48 hours. If the electroplating time is less than 1 minute, it is difficult to deposit metal nanotube lines sufficiently, and if the time exceeds 48 hours, The process can be lengthy, which can hamper commercialization.
  • anodized aluminum oxide or plastic nano-template to prepare a metal nanotubes of the object of the present invention
  • an aqueous solution of 1 to 5 M sodium hydroxide (NaOH) or potassium hydroxide (KOH) anodized Aluminum oxide nanotemplates can be easily removed, and in the case of plastic nanotemplates, they can also be easily removed by dissolving them in an organic solvent such as chloroform.
  • the present invention provides a metal nanotube manufactured by the above method, the metal nanotube according to the present invention can be applied to nano-components using electrical conductivity.
  • anodized aluminum oxide nanotemplate having an average pore diameter of 150 nm
  • silver (Ag) was deposited on one surface of the anodized aluminum oxide nanotemplate as a working electrode using an electron beam evaporator.
  • 40 mmol of cobalt (II) sulfate heptahydrate (CoSO 4 ⁇ 7H 2 O) and 10 mmol of vanadium (IV) oxide sulfate (VOSO 4 ⁇ xH 2 O) were mixed, and then nitric acid was added to pH 1.5-.
  • the anodized aluminum oxide nanotemplate was immersed in a precursor solution adjusted to 2.5, and nanotube wires were deposited by electroplating for 24 hours using platinum (Pt) as a counter electrode. Cobalt-vanadium nanotubes were then prepared by dissolving and removing the anodized aluminum oxide nanotemplate with 1 M aqueous sodium hydroxide solution.
  • Nickel-vanadium nanotubes were prepared by the method.
  • FIG. 2 is a scanning electron microscope (SEM) photograph of a cobalt-vanadium nanotube manufactured from Example 1 of the present invention
  • FIG. 3 is a transmission electron microscope of a cobalt-vanadium nanotube prepared from Example 1 of the present invention. (TEM) Photographs show that nanotube structures were formed.
  • the metal nanotube according to the present invention can be applied to a nano sensor or the like using electrical conductivity, and according to the manufacturing method of the present invention, a precursor containing metal ions without requiring a high temperature is anodized aluminum oxide or plastic After filling the nano-templates to synthesize the nanotubes by electroplating, there is an advantage that can be produced in a short time by a simple process of removing the nano-templates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to techniques for preparing a metallic nanotube by a simple process of synthesizing a nanotube by charging, by an electroplating method, a precursor including a metallic ion to an anodic aluminium oxide or plastic nanotemplate having nanopores and then removing the nanotemplate, and for applying the metallic nanotube to diverse fields such as nano-components. The preparation method according to the present invention enables preparation of a metallic nanotube within a short period of time by a simple process without requiring a high temperature.

Description

금속 나노튜브 및 그 제조방법Metal Nanotubes and Manufacturing Method Thereof
본 발명은 금속 나노튜브 및 그 제조방법에 관한 것으로, 보다 상세하게는 금속 이온이 포함되어 있는 전구체를 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿에 전기도금 방식으로 충전시켜 나노튜브를 합성한 후, 나노템플릿을 제거하는 단순한 공정으로 금속 나노튜브를 제조하고, 이를 나노센서 등의 다양한 분야에 응용하는 기술에 관한 것이다.The present invention relates to metal nanotubes and a method of manufacturing the same, and more particularly, after the precursors containing metal ions are charged to anodized aluminum oxide or plastic nanotemplates with nanopores by electroplating to synthesize nanotubes. In addition, the present invention relates to a technology for manufacturing metal nanotubes by a simple process of removing nanotemplates and applying them to various fields such as nanosensors.
나노기술(Nanotechnology, NT)은 20세기 말 나노미터 수준의 극미세 영역에서 새로운 양자 현상과 우수한 특성이 발견되면서 나타난 새로운 기술로, 정보통신, 의약, 소재, 환경 및 에너지 등의 다양한 분야에서 21세기를 선도해갈 미래 과학기술로 각광받고 있다.Nanotechnology (NT) is a new technology that emerged with the discovery of new quantum phenomena and excellent characteristics in the nanometer level at the end of the 20th century.In the field of telecommunications, medicine, materials, environment and energy, the 21st century It is spotlighted as a future science and technology to lead.
그 중 나노튜브와 같은 구조체는 고감도, 고선택성 등의 우수한 특성이 있어, 바이오 칩, 반도체, 발광다이오드, 이차전지, 환경촉매 및 센서 등에 쓰이고 있다.Among them, structures such as nanotubes have excellent characteristics such as high sensitivity and high selectivity, and thus are used in biochips, semiconductors, light emitting diodes, secondary batteries, environmental catalysts, and sensors.
현재 나노튜브를 제조하는 방법으로서는 열 또는 플라즈마 화학기상증착법(Chemical Vapor Deposition, CVD), 원자층 증착법(Atomic Layer Deposition, ALD), 수열합성법(Hydrothermal Method), 레이저 증착법(Laser Ablation) 또는 전기방전법(Electrical Discharge) 등이 주로 사용되고 있다.Current methods for manufacturing nanotubes include thermal or plasma chemical vapor deposition (CVD), atomic layer deposition (ALD), hydrothermal method, laser ablation, or electrical discharge method. (Electrical Discharge) is mainly used.
상기 나노튜브의 제조방법과 관련하여, 종래의 양극산화법과는 달리 원자층 증착법에 의해 금속산화물 나노튜브를 이용한 센서를 제조함으로써 원자층 단위로 나노튜브의 벽두께 조절이 가능하고 나노튜브의 구조변화를 용이하게 할 수 있는 기술이 공지되어 있으나, 전체적으로 고가의 장치를 이용하거나 공정속도가 매우 느리다는 단점이 있다(특허문헌 1: 대한민국 공개특허공보 제10-2013-0026106호).In relation to the manufacturing method of the nanotube, unlike the conventional anodization method, by manufacturing a sensor using a metal oxide nanotube by atomic layer deposition method, it is possible to control the wall thickness of the nanotube by atomic layer unit and change the structure of the nanotube There is a known technique that can facilitate the use, but as a whole has the disadvantage of using an expensive device or a very slow process speed (Patent Document 1: Korean Patent Publication No. 10-2013-0026106).
또한, 양극 산화알루미늄(Anodized Aluminium Oxide, AAO) 템플릿(Template)을 이용한 산화니켈 나노튜브의 제조방법도 알려져 있으나, 감압건조과정을 포함하여 산화, 열처리 등 여러 단계의 공정과 그에 따른 나노튜브의 제조에 많은 시간이 소요되는 문제점이 있다(특허문헌 2: 대한민국 등록특허공보 제10-0759895호).In addition, a method for producing nickel oxide nanotubes using an anodized aluminum oxide (AAO) template is also known, but several steps including oxidation and heat treatment including a reduced pressure drying process and the preparation of nanotubes accordingly There is a problem that takes a long time (Patent Document 2: Republic of Korea Patent Publication No. 10-0759895).
그리고 수열합성법에 의해 나노와이어 표면에 금속산화물 층이 형성된 나노와이어-금속산화물 나노튜브 복합체를 합성한 후, 나노와이어를 제거하는 방식으로 금속산화물 나노튜브를 제조하는 방법도 공지되어 있으나, 수열반응을 위하여 100 내지 130℃의 고온이 필요하고, 역시 전체적인 공정을 고려할 때 나노튜브의 제조시간이 길다는 단점이 존재한다(특허문헌 3: 대한민국 공개특허공보 제10-2014-0114162호).In addition, a method of preparing a metal oxide nanotube by synthesizing a nanowire-metal oxide nanotube composite having a metal oxide layer formed on the surface of the nanowire by a hydrothermal synthesis method and then removing the nanowire is known. In order to have a high temperature of 100 to 130 ℃, and also considering the overall process there is a disadvantage that the manufacturing time of the nanotube is long (Patent Document 3: Republic of Korea Patent Publication No. 10-2014-0114162).
또한, 산화구리 나노와이어에 열을 가함으로써 산화구리 나노튜브를 형성하고, 이어서 환원제와 함께 레이저(Laser)를 조사하여 환원된 나노튜브를 제조하는 방법도 알려져 있으나, 산화구리 나노튜브를 형성하는데 400℃ 이상의 고온이 필요하고 레이져를 사용하여 정교한 작업이 수반되어야 하는 문제가 있다(특허문헌 4: 대한민국 공개특허공보 제10-2013-0047244호).In addition, a method of forming copper oxide nanotubes by applying heat to copper oxide nanowires and then irradiating a laser with a reducing agent to produce reduced nanotubes is known. There is a problem that a high temperature of ℃ or more is required and sophisticated work is involved using a laser (Patent Document 4: Korean Unexamined Patent Publication No. 10-2013-0047244).
따라서 본 발명자들은 금속이온이 포함되어 있는 전구체를 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿에 충전시켜 전기도금 방식으로 나노튜브를 합성한 후 나노템플릿을 제거하면 고온을 필요로 하지 않고 단순한 공정으로 짧은 시간에 금속 나노튜브를 제조할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.Therefore, the present inventors synthesized nanotubes by electroplating by filling a precursor containing metal ions in anodized aluminum oxide or plastic nanotemplates with nanopores, and then removing the nanotemplates without requiring a high temperature in a simple process. The present invention has been completed by focusing on being able to produce metal nanotubes in a short time.
본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 금속 이온이 포함되어 있는 전구체를 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿에 충전시켜 전기도금 방식으로 나노튜브를 합성한 후, 나노템플릿을 제거하는 단순한 공정으로 금속 나노튜브를 제조하는 방법 및 그에 의하여 제조되는 금속 나노튜브를 제공하고자 하는 것이다.The present invention has been made in view of the above problems, and an object of the present invention is to charge a precursor containing metal ions in anodized aluminum oxide or plastic nanotemplate with nanopores to synthesize nanotubes by electroplating. Then, to provide a method for producing a metal nanotube and a metal nanotube produced thereby by a simple process of removing the nano-template.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, I) 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿을 얻는 단계; II) 금속이온들이 포함되어 있는 전구체 용액을 형성하는 단계; III) 상기 전구체 용액에 나노기공을 가진 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 침지하여 금속 나노튜브 선을 증착시키는 단계; 및 IV) 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 제거하는 단계;를 포함하는 금속 나노튜브의 제조방법을 제공한다.The present invention for achieving the object as described above, I) obtaining anodized aluminum oxide or plastic nanotemplate with nanopores; II) forming a precursor solution containing metal ions; III) depositing metal nanotube lines by immersing the anodized aluminum oxide or plastic nanotemplate with nanopores in the precursor solution; And IV) removing the anodized aluminum oxide or plastic nanotemplate.
상기 양극 산화알루미늄 또는 플라스틱 나노템플릿은 기공의 평균 직경이 5 내지 500 nm인 것을 특징으로 한다.The anodized aluminum oxide or plastic nanotemplate is characterized in that the average diameter of the pores is 5 to 500 nm.
상기 양극 산화알루미늄 또는 플라스틱 나노템플릿은 일면에 작업 전극(working electrode)으로써 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금이 증착된 것을 특징으로 한다.The anodized aluminum oxide or plastic nanotemplate is formed by depositing platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu) or an alloy thereof as a working electrode on one surface thereof. It features.
상기 플라스틱 나노템플릿은 폴리카보네이트(PC) 나노템플릿인 것을 특징으로 한다.The plastic nanotemplate is characterized in that the polycarbonate (PC) nanotemplate.
상기 금속이온은 전이금속산화물로부터 유래하는 것을 특징으로 한다.The metal ion is characterized in that it is derived from a transition metal oxide.
상기 전구체 용액의 농도는 0.001 내지 50 M인 것을 특징으로 한다.The concentration of the precursor solution is characterized in that 0.001 to 50 M.
상기 전구체 용액은 pH가 1 내지 10인 것을 특징으로 한다.The precursor solution is characterized in that the pH is 1 to 10.
상기 III) 단계에서 상대 전극(counter electrode)을 백금(Pt) 또는 이리디움(Ir)으로 하여 금속 나노튜브 선을 전기도금하는 것을 특징으로 한다.In step III), the metal nanotube line is electroplated using a counter electrode as platinum (Pt) or iridium (Ir).
상기 IV) 단계에서 1 내지 5 M 수산화나트륨 또는 수산화칼륨 수용액으로 양극 산화알루미늄 나노템플릿을 제거하는 것을 특징으로 한다.In step IV), the anodized aluminum oxide nanotemplate is removed with 1-5 M sodium hydroxide or potassium hydroxide aqueous solution.
상기 IV) 단계에서 클로로포름으로 플라스틱 나노템플릿을 제거하는 것을 특징으로 한다.In step IV), the plastic nanotemplate is removed with chloroform.
또한, 본 발명은 상기 제조방법에 의하여 제조된 금속 나노튜브를 제공한다.In addition, the present invention provides a metal nanotube produced by the above production method.
또한, 본 발명은 상기 금속 나노튜브를 포함하는 나노부품을 제공한다. In addition, the present invention provides a nano-part comprising the metal nanotube.
본 발명에 따르면, 고온을 필요로 하지 않고 금속이온이 포함되어 있는 전구체를 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿에 전기도금 방식으로 충전시켜 나노튜브를 합성한 후, 나노템플릿을 제거하는 단순한 공정으로 짧은 시간에 저비용으로 금속 나노튜브를 제조할 수 있으며, 따라서 본 발명에 따라 제조되는 금속 나노튜브는 나노부품을 비롯한 다양한 분야에 적용될 수 있다. According to the present invention, a precursor containing metal ions without requiring a high temperature is charged by electroplating into an anodized aluminum oxide or plastic nanotemplate having nanopores, and then a nanotube is removed. The process can produce metal nanotubes at low cost in a short time, and thus the metal nanotubes prepared according to the present invention can be applied to various fields including nanoparts.
도 1은 본 발명에 따른 금속 나노튜브의 제조공정도[(a) 양극 산화알루미늄 또는 플라스틱 나노템플릿, (b) 나노템플릿 일면에 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금을 증착, (c) 전구체 용액에 양극 산화알루미늄 또는 플라스틱 나노템플릿을 침지하여 금속 나노튜브 선 증착, (d) 나노템플릿 제거로 금속 나노튜브 제조]. 1 is a manufacturing process diagram of a metal nanotube according to the present invention ((a) anodized aluminum oxide or plastic nanotemplate, (b) one surface of the platinum (Pt), palladium (Pd), gold (Au), silver ( Ag), copper (Cu) or alloys thereof, (c) immersion of anodized aluminum oxide or plastic nanotemplates in the precursor solution to deposit metal nanotubes, and (d) metal nanotubes by nanotemplate removal].
도 2는 본 발명의 실시예 1로부터 제조된 코발트-바나듐 나노튜브의 주사전자현미경(SEM) 사진. FIG. 2 is a scanning electron microscope (SEM) photograph of cobalt-vanadium nanotubes prepared from Example 1 of the present invention. FIG.
도 3은 본 발명의 실시예 1로부터 제조된 코발트-바나듐 나노튜브의 투과전자현미경(TEM) 사진.3 is a transmission electron microscope (TEM) photograph of cobalt-vanadium nanotubes prepared from Example 1 of the present invention.
도 4는 본 발명의 실시예 1로부터 제조된 코발트-바나듐 나노튜브를 투과전자현미경(TEM)으로 분석한 원소 맵핑(Elemental Mapping) 사진과 성분 분석표.FIG. 4 is an elemental mapping photograph and a component analysis table of the cobalt-vanadium nanotubes prepared from Example 1 of the present invention with a transmission electron microscope (TEM). FIG.
도 5는 본 발명의 실시예 2로부터 제조된 니켈-바나듐 나노튜브의 주사전자현미경(SEM) 사진과 성분 분석표. 5 is a scanning electron microscope (SEM) photograph and a component analysis table of nickel-vanadium nanotubes prepared from Example 2 of the present invention.
이하에서는 본 발명에 따른 금속 나노튜브의 제조방법 및 그에 의하여 제조되는 금속 나노튜브에 관하여 첨부된 도면과 함께 상세히 설명하기로 한다. 도 1에 본 발명에 따른 금속 나노튜브의 제조공정도[(a) 양극 산화알루미늄 또는 플라스틱 나노템플릿, (b) 나노템플릿 일면에 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금을 증착, (c) 전구체 용액에 양극 산화알루미늄 또는 플라스틱 나노템플릿을 침지하여 금속 나노튜브 선 증착, (d) 나노템플릿 제거로 금속 나노튜브 제조]를 간략히 나타내었다.Hereinafter, a method of manufacturing a metal nanotube according to the present invention and a metal nanotube manufactured thereby will be described in detail with the accompanying drawings. 1 is a manufacturing process diagram of a metal nanotube according to the present invention ((a) anodized aluminum oxide or plastic nanotemplate, (b) one surface of the platinum (Pt), palladium (Pd), gold (Au), silver ( Ag), copper (Cu) or alloys thereof, (c) immersion of anodized aluminum oxide or plastic nanotemplates in the precursor solution to deposit metal nanotubes, and (d) metal nanotube fabrication by removing nanotemplates. Indicated.
먼저, 본 발명은 I) 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿을 얻는 단계; II) 금속이온들이 포함되어 있는 전구체 용액을 형성하는 단계; III) 상기 전구체 용액에 나노기공을 가진 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 침지하여 금속 나노튜브 선을 증착시키는 단계; 및 IV) 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 제거하는 단계;를 포함하는 금속 나노튜브의 제조방법을 제공한다.First, the present invention comprises the steps of: I) obtaining anodized aluminum oxide or plastic nanotemplate with nanopores; II) forming a precursor solution containing metal ions; III) depositing metal nanotube lines by immersing the anodized aluminum oxide or plastic nanotemplate with nanopores in the precursor solution; And IV) removing the anodized aluminum oxide or plastic nanotemplate.
상기 양극 산화알루미늄 나노템플릿은 알루미늄을 양극산화(Anodization) 함으로써 얻어지는 것인데, 양극산화는 당업계에 공지된 방법을 이용하여 수행될 수 있으며, 예를 들어 2단계 산화공정(two-step anodization process)을 통하여 수행될 수 있는 것인바, 본 명세서에서는 그 구체적인 기재를 생략하기로 한다. 게다가 상기 양극 산화알루미늄 나노템플릿은 상업화된 나노튜브 주형체를 구입하여 사용하여도 무방하다. 아울러 플라스틱 나노템플릿도 사용할 수 있는데, 특히 폴리카보네이트(PC) 나노템플릿을 바람직하게 사용한다. The anodic aluminum oxide nanotemplate is obtained by anodizing aluminum, and anodization may be performed using a method known in the art, for example, a two-step anodization process. It can be carried out through, the detailed description thereof will be omitted herein. In addition, the anodized aluminum oxide nanotemplate may be purchased and used commercially available nanotube template. In addition, plastic nano-templates can be used, in particular polycarbonate (PC) nano-templates are preferably used.
또한, 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿은 기공의 평균 직경이 수 내지 수백 nm인 것이 바람직하고, 특히 5 내지 500 nm인 것이 바람직한바, 기공의 평균 직경이 5 nm 미만이면 궁극적으로 균일한 형상의 나노튜브가 형성되기 어렵고, 기공의 평균 직경이 500 nm를 초과하면 기공의 크기가 너무 커서 나노부품으로서 활용하는 것이 용이하지 않을 수 있다.In addition, the anodized aluminum oxide or plastic nanotemplate preferably has an average diameter of pores of several hundreds to several hundred nm, and particularly preferably 5 to 500 nm. If the average diameter of pores is less than 5 nm, ultimately uniform shape is obtained. If the nanotubes are difficult to form and the average diameter of the pores exceeds 500 nm, the pores may be too large to be easily utilized as nanoparts.
그리고 도 1(b)에 나타낸 바와 같이, 양극 산화알루미늄 나노템플릿 일면에 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금을 증착하는 바, 작업 전극(working electrode)으로서 상기 소재를 전자빔 증착기를 사용하여 250 내지 350 nm 두께로 양극 산화알루미늄 나노템플릿의 일면에 증착한다. As shown in FIG. 1 (b), platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu) or alloys thereof are deposited on one surface of the anodized aluminum nanotemplate. As the working electrode, the material is deposited on one surface of the anodized aluminum oxide nanotemplate with a thickness of 250 to 350 nm using an electron beam evaporator.
한편으로, 금속이온이 포함되어 있는 전구체 용액을 형성하는바, 금속이온이라면 어느 것이든 제한이 없으나, 전기, 자기 및 열 전도성을 고려하면 니켈(Ni), 코발트(Co), 바나듐(V), 철(Fe), 크롬(Cr)과 같은 전이금속을 함유하는 전이금속산화물로부터 유래하는 것을 더욱 바람직하게 사용할 수 있다.On the other hand, to form a precursor solution containing a metal ion, any metal ion is not limited, but considering the electrical, magnetic and thermal conductivity nickel (Ni), cobalt (Co), vanadium (V), It is more preferable to use those derived from transition metal oxides containing transition metals such as iron (Fe) and chromium (Cr).
상기 금속이온이 포함되어 있는 전구체 용액은 그 농도가 0.001 내지 50 M인 것이 바람직한데, 전구체 용액의 농도가 0.001 M 미만이면 그 농도가 너무 미미하여 양극 산화알루미늄 또는 플라스틱 나노템플릿에 효율적으로 흡착되지 않으며, 전구체 용액의 농도가 50 M을 초과하면 본 발명에 따른 목적물인 금속 나노튜브로서의 경제성이 떨어지는 문제가 있다.It is preferable that the concentration of the precursor solution containing the metal ion is 0.001 to 50 M. If the concentration of the precursor solution is less than 0.001 M, the concentration is too small to be effectively adsorbed onto the anodized aluminum or plastic nano template. If the concentration of the precursor solution exceeds 50 M, there is a problem in that the economic efficiency as the metal nanotubes, which is the object of the present invention.
또한, 상기 전구체 용액은 질산(HNO3)과 같은 산 용액을 첨가하여 pH를 1 내지 10으로 조절한다.In addition, the precursor solution is adjusted to a pH of 1 to 10 by the addition of an acid solution such as nitric acid (HNO 3 ).
이어서, 도 1(c)에 나타낸 바와 같이 상기 전구체 용액에 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 침지하여 금속 나노튜브 선을 증착시키는데, 이때 상대 전극(counter electrode)을 백금(Pt) 또는 이리디움(Ir)으로 하여 1분 내지 48시간 동안 전기도금 방식으로 나노튜브를 전기도금하는 바, 전기도금 시간이 1분 미만이면 충분하게 금속 나노튜브 선이 증착되기 어렵고, 그 시간이 48시간을 초과하면 제조공정이 길어져 상용화에 걸림돌이 될 수 있다. Subsequently, as illustrated in FIG. 1 (c), the anodized aluminum oxide or plastic nanotemplate is immersed in the precursor solution to deposit metal nanotube lines, wherein a counter electrode is formed of platinum (Pt) or iridium ( Ir) electroplating the nanotubes by electroplating for 1 minute to 48 hours. If the electroplating time is less than 1 minute, it is difficult to deposit metal nanotube lines sufficiently, and if the time exceeds 48 hours, The process can be lengthy, which can hamper commercialization.
마지막으로, 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 제거함으로써 본 발명의 목적물인 금속 나노튜브를 제조하게 되며, 이때 1 내지 5 M 수산화나트륨(NaOH) 또는 수산화칼륨(KOH) 수용액을 사용하여 용해시키면 양극 산화알루미늄 나노템플릿을 쉽게 제거할 수 있고, 플라스틱 나노템플릿의 경우에는 클로로포름과 같은 유기용매에 용해시키면 역시 쉽게 제거가 가능하다.Finally, by removing the anodized aluminum oxide or plastic nano-template to prepare a metal nanotubes of the object of the present invention, when dissolved using an aqueous solution of 1 to 5 M sodium hydroxide (NaOH) or potassium hydroxide (KOH) anodized Aluminum oxide nanotemplates can be easily removed, and in the case of plastic nanotemplates, they can also be easily removed by dissolving them in an organic solvent such as chloroform.
또한, 본 발명은 상기 제조방법에 의하여 제조된 금속 나노튜브를 제공하는바, 본 발명에 따른 금속 나노튜브는 전기전도성을 이용하는 나노부품 등에 적용할 수 있다. In addition, the present invention provides a metal nanotube manufactured by the above method, the metal nanotube according to the present invention can be applied to nano-components using electrical conductivity.
이하 구체적인 실시예를 상세히 설명한다. Hereinafter, specific embodiments will be described in detail.
(실시예 1) 코발트-바나듐 나노튜브의 제조Example 1 Preparation of Cobalt-Vanadium Nanotubes
평균 기공직경이 150 nm인 양극 산화알루미늄 나노템플릿을 얻은 후, 전자빔 증착기를 시용하여 작업 전극으로서 은(Ag)을 300 nm 두께로 양극 산화알루미늄 나노템플릿의 일면에 증착시켰다. 한편으로, 코발트(II) 설페이트 헵타하이드레이트(CoSO4·7H2O) 40 mmol과 바나듐(IV) 옥사이드 설페이트(VOSO4·xH2O) 10 mmol을 혼합한 후, 질산을 첨가하여 pH를 1.5~2.5로 조절한 전구체 용액에 상기 양극 산화알루미늄 나노템플릿을 침지하고 상대 전극으로서 백금(Pt)을 사용하여 24시간 동안 전기도금 방식으로 나노튜브 선을 증착시켰다. 이어서 상기 양극 산화알루미늄 나노템플릿을 1 M 수산화나트륨 수용액으로 용해시켜 제거함으로써 코발트-바나듐 나노튜브를 제조하였다.After obtaining an anodized aluminum oxide nanotemplate having an average pore diameter of 150 nm, silver (Ag) was deposited on one surface of the anodized aluminum oxide nanotemplate as a working electrode using an electron beam evaporator. On the other hand, 40 mmol of cobalt (II) sulfate heptahydrate (CoSO 4 · 7H 2 O) and 10 mmol of vanadium (IV) oxide sulfate (VOSO 4 · xH 2 O) were mixed, and then nitric acid was added to pH 1.5-. The anodized aluminum oxide nanotemplate was immersed in a precursor solution adjusted to 2.5, and nanotube wires were deposited by electroplating for 24 hours using platinum (Pt) as a counter electrode. Cobalt-vanadium nanotubes were then prepared by dissolving and removing the anodized aluminum oxide nanotemplate with 1 M aqueous sodium hydroxide solution.
* (실시예 2) 니켈-바나듐 나노튜브의 제조 Example 2 Preparation of Nickel-Vanadium Nanotubes
전구체 용액으로서 니켈(II) 설페이트 헥사하이드레이트(NiSO4·6H2O) 20 mmol과 바나듐(IV) 옥사이드 설페이트(VOSO4·xH2O) 10 mmol을 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 니켈-바나듐 나노튜브를 제조하였다.Same as Example 1, except that 20 mmol of nickel (II) sulfate hexahydrate (NiSO 4 · 6H 2 O) and 10 mmol of vanadium (IV) oxide sulfate (VOSO 4 · xH 2 O) were used as a precursor solution. Nickel-vanadium nanotubes were prepared by the method.
또한, 도 2에는 본 발명의 실시예 1로부터 제조된 코발트-바나듐 나노튜브의 주사전자현미경(SEM) 사진을, 도 3에는 본 발명의 실시예 1로부터 제조된 코발트-바나듐 나노튜브의 투과전자현미경(TEM) 사진을 나타내었는바, 나노튜브 구조체가 형성되었음을 알 수 있다. 2 is a scanning electron microscope (SEM) photograph of a cobalt-vanadium nanotube manufactured from Example 1 of the present invention, and FIG. 3 is a transmission electron microscope of a cobalt-vanadium nanotube prepared from Example 1 of the present invention. (TEM) Photographs show that nanotube structures were formed.
아울러 도 4에 나타낸 본 발명의 실시예 1로부터 제조된 코발트-바나듐 나노튜브를 투과전자현미경(TEM)으로 분석한 원소 맵핑(Elemental Mapping) 사진과 성분 분석표 및 도 5에 나타낸 본 발명의 실시예 2로부터 제조된 니켈-바나듐 나노튜브의 주사전자현미경(SEM) 사진과 성분 분석표로부터는 각각 코발트-바나듐 나노튜브 및 니켈-바나듐 나노튜브가 제조되었음을 확인할 수 있다.In addition, the elemental mapping picture and component analysis table of the cobalt-vanadium nanotubes prepared from Example 1 of the present invention shown in FIG. 4 by transmission electron microscope (TEM) and Example 2 of the present invention shown in FIG. Scanning electron microscopy (SEM) photographs and component analysis tables of nickel-vanadium nanotubes prepared from it can be seen that cobalt-vanadium nanotubes and nickel-vanadium nanotubes were prepared, respectively.
따라서 본 발명에 따른 금속 나노튜브는 전기전도성을 이용하는 나노센서 등에 적용할 수 있고, 또한, 본 발명의 제조방법에 따르면, 고온을 필요로 하지 않고 금속이온이 포함되어 있는 전구체를 양극 산화알루미늄 또는 플라스틱 나노템플릿에 충전시켜 전기도금 방식으로 나노튜브를 합성한 후, 나노템플릿을 제거하는 단순한 공정으로 짧은 시간에 금속 나노튜브를 제조할 수 있는 장점이 있다.Therefore, the metal nanotube according to the present invention can be applied to a nano sensor or the like using electrical conductivity, and according to the manufacturing method of the present invention, a precursor containing metal ions without requiring a high temperature is anodized aluminum oxide or plastic After filling the nano-templates to synthesize the nanotubes by electroplating, there is an advantage that can be produced in a short time by a simple process of removing the nano-templates.

Claims (12)

  1. I) 나노기공을 가진 양극 산화알루미늄 또는 플라스틱 나노템플릿을 얻는 단계;I) obtaining anodized aluminum oxide or plastic nanotemplate with nanopores;
    II) 금속이온들이 포함되어 있는 전구체 용액을 형성하는 단계;II) forming a precursor solution containing metal ions;
    III) 상기 전구체 용액에 나노기공을 가진 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 침지하여 금속 나노튜브 선을 증착시키는 단계; 및III) depositing metal nanotube lines by immersing the anodized aluminum oxide or plastic nanotemplate with nanopores in the precursor solution; And
    IV) 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿을 제거하는 단계;를 포함하는 금속 나노튜브의 제조방법.IV) removing the anodized aluminum oxide or plastic nanotemplate; manufacturing method of a metal nanotube comprising a.
  2. 제1항에 있어서, 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿은 기공의 평균 직경이 5 내지 500 nm인 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein the anodized aluminum oxide or plastic nanotemplate has an average diameter of pores of 5 to 500 nm.
  3. 제1항에 있어서, 상기 양극 산화알루미늄 또는 플라스틱 나노템플릿은 일면에 작업 전극으로써 백금(Pt), 팔라듐(Pd), 금(Au), 은(Ag), 구리(Cu) 또는 이들의 합금이 증착된 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein the anodized aluminum oxide or plastic nano-template is deposited on one surface of platinum (Pt), palladium (Pd), gold (Au), silver (Ag), copper (Cu) or alloys thereof. Method for producing a metal nanotube, characterized in that the.
  4. 제1항에 있어서, 상기 플라스틱 나노템플릿은 폴리카보네이트(PC) 나노템플릿인 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein the plastic nanotemplate is a polycarbonate (PC) nanotemplate.
  5. 제1항에 있어서, 상기 금속이온은 전이금속산화물로부터 유래하는 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein the metal ion is derived from a transition metal oxide.
  6. 제1항에 있어서, 상기 전구체 용액의 농도는 0.001 내지 50 M인 것을 특징으로 하는 금속 나노튜브의 제조방법.According to claim 1, wherein the concentration of the precursor solution is a method of producing a metal nanotube, characterized in that 0.001 to 50 M.
  7. 제1항에 있어서, 상기 전구체 용액은 pH가 1 내지 10인 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein the precursor solution has a pH of 1 to 10. 11.
  8. 제1항에 있어서, 상기 III) 단계에서 상대 전극(counter electrode)을 백금(Pt) 또는 이리디움(Ir)으로 하여 금속 나노튜브 선을 전기도금하는 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein in the step III), the metal nanotube line is electroplated using a counter electrode as platinum (Pt) or iridium (Ir).
  9. 제1항에 있어서, 상기 IV) 단계에서 1 내지 5 M 수산화나트륨 또는 수산화칼륨 수용액으로 양극 산화알루미늄 나노템플릿을 제거하는 것을 특징으로 하는 금속나노튜브의 제조방법.The method of claim 1, wherein the anodizing aluminum oxide nanotemplate is removed with 1-5 M sodium hydroxide or potassium hydroxide solution in step IV).
  10. 제1항에 있어서, 상기 IV) 단계에서 클로로포름으로 플라스틱 나노템플릿을 제거하는 것을 특징으로 하는 금속 나노튜브의 제조방법.The method of claim 1, wherein in step IV), the plastic nanotemplate is removed with chloroform.
  11. 제1항 내지 제10항 중 어느 한 항의 제조방법으로 제조된 금속 나노튜브.Metal nanotubes prepared by the method of any one of claims 1 to 10.
  12. 제11항에 따른 금속 나노튜브를 포함하는 나노부품.Nanoparts comprising the metal nanotubes according to claim 11.
PCT/KR2016/000463 2015-01-16 2016-01-15 Metallic nanotube and method for preparing same WO2016114627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150007744A KR101711888B1 (en) 2015-01-16 2015-01-16 Metallic nanotube and preparation method thereof
KR10-2015-0007744 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016114627A1 true WO2016114627A1 (en) 2016-07-21

Family

ID=56406098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000463 WO2016114627A1 (en) 2015-01-16 2016-01-15 Metallic nanotube and method for preparing same

Country Status (2)

Country Link
KR (1) KR101711888B1 (en)
WO (1) WO2016114627A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683580B2 (en) * 2017-05-15 2020-06-16 Korea University Research And Business Foundation Metallic nanospring and method for manufacturing of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101967213B1 (en) * 2017-07-20 2019-04-10 한국기계연구원 Method of manufacturing magnetic porous membrane
KR102370279B1 (en) * 2020-05-29 2022-03-04 고려대학교 산학협력단 Co-w alloy and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032727A (en) * 2001-10-19 2003-04-26 엘지전자 주식회사 Composition Method for Carbonnanotube
KR100759895B1 (en) * 2005-10-27 2007-09-18 한국기초과학지원연구원 Methods for Manufacturing nickel oxide nanotube by anodic aluminum oxide template
KR20100056191A (en) * 2008-11-19 2010-05-27 경원대학교 산학협력단 Method for preparing capped nanotube and the same thereof
KR20120118587A (en) * 2011-04-19 2012-10-29 이화여자대학교 산학협력단 Hybrid carbonaceous nanotube, and preparing method of the same
KR20130026106A (en) * 2011-09-05 2013-03-13 국민대학교산학협력단 Sensor using metal oxide nanotube and preparing method of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100087864A (en) * 2009-01-29 2010-08-06 성균관대학교산학협력단 Nano-composite with linear stretching actuation and method for preparing the same
KR101107396B1 (en) * 2009-11-04 2012-01-19 서울대학교산학협력단 Method For Manufacturing Nanotubes With Nanoparticles And Depositing Nanoparticles On Nanopores
KR101357187B1 (en) 2011-10-31 2014-02-03 한국과학기술원 Manufacturing method of nanotube, pattern forming method, and nanotube using the same
KR101449643B1 (en) 2013-03-18 2014-10-13 공주대학교 산학협력단 Fabrication Method of Metal Oxide Nanotube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030032727A (en) * 2001-10-19 2003-04-26 엘지전자 주식회사 Composition Method for Carbonnanotube
KR100759895B1 (en) * 2005-10-27 2007-09-18 한국기초과학지원연구원 Methods for Manufacturing nickel oxide nanotube by anodic aluminum oxide template
KR20100056191A (en) * 2008-11-19 2010-05-27 경원대학교 산학협력단 Method for preparing capped nanotube and the same thereof
KR20120118587A (en) * 2011-04-19 2012-10-29 이화여자대학교 산학협력단 Hybrid carbonaceous nanotube, and preparing method of the same
KR20130026106A (en) * 2011-09-05 2013-03-13 국민대학교산학협력단 Sensor using metal oxide nanotube and preparing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10683580B2 (en) * 2017-05-15 2020-06-16 Korea University Research And Business Foundation Metallic nanospring and method for manufacturing of the same

Also Published As

Publication number Publication date
KR20160088548A (en) 2016-07-26
KR101711888B1 (en) 2017-03-03

Similar Documents

Publication Publication Date Title
Xu et al. Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates
TWI478185B (en) Super capacitor and method for manufacturing the same
WO2015194850A1 (en) Silver-coated copper nanowire and preparation method therefor
JP6518307B2 (en) Metal nanospring and method of manufacturing the same
Chen et al. Fabrication and characterization of highly-ordered valve-metal oxide nanotubes and their derivative nanostructures
CN109778249B (en) Preparation method for preparing metal core-shell nanowire
CN109778250B (en) Method for preparing magnetic metal nanotube by controlling electrodeposition conditions
CN105014091B (en) A kind of overlength corronil nano wire and preparation method thereof
WO2016114627A1 (en) Metallic nanotube and method for preparing same
CN110453204A (en) Aluminium sheet
CN101469453B (en) Alloy nanotube and manufacturing method thereof
CN105603469A (en) CuO/Ni core-shell nanowire and preparation method thereof
Yu et al. Electrochemical synthesis of palladium nanostructures with controllable morphology
An et al. Facile processes for producing robust, transparent, conductive platinum nanofiber mats
Fahim et al. Electrochemical growth of vertically-oriented high aspect ratio titania nanotubes by rabid anodization in fluoride-free media
CN105908220A (en) Method for manufacturing micro-nano-silver dendritic crystal through liquid-phase electrodeposition
Margaret et al. A comparative study of nanostructures of CuO/Cu2O fabricated via potentiostatic and galvanostatic anodization
US20240158919A1 (en) Method for aluminum electroless deposition
Inguanta et al. Fabrication and characterization of metal and metal oxide nanostructures grown by metal displacement deposition into anodic alumina membranes
CN108360026A (en) A kind of method that direct electro-deposition prepares metal nano-tube array
Chatterjee et al. Template-based fabrication of Ag–ZnO core–shell nanorod arrays
Mazare et al. Embedded palladium activation as a facile method for TiO2-nanotube nanoparticle decoration: Cu2O-induced visible-light photoactivity
CN108500292B (en) Preparation method of chain-like metallic nickel nano powder
CN1147427C (en) Process for synthesizing nm carbon tubes containing nm metal wires
Davi et al. Fabrication of hierarchically ordered porous scheelite-related monoclinic BiVO4 nanotubes by electrochemical deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737591

Country of ref document: EP

Kind code of ref document: A1