WO2016113903A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016113903A1
WO2016113903A1 PCT/JP2015/051073 JP2015051073W WO2016113903A1 WO 2016113903 A1 WO2016113903 A1 WO 2016113903A1 JP 2015051073 W JP2015051073 W JP 2015051073W WO 2016113903 A1 WO2016113903 A1 WO 2016113903A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid level
compressor
sealed container
level sensor
oil
Prior art date
Application number
PCT/JP2015/051073
Other languages
French (fr)
Japanese (ja)
Inventor
森田 慎也
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/051073 priority Critical patent/WO2016113903A1/en
Priority to JP2016569198A priority patent/JP6305569B2/en
Priority to EP15877855.5A priority patent/EP3246571B1/en
Publication of WO2016113903A1 publication Critical patent/WO2016113903A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Definitions

  • the present invention relates to a compressor.
  • a first temperature detection element and a second temperature detection element are provided, and the oil level inside the hermetic container of the compressor is detected based on the detection values of the first temperature detection element and the second temperature detection element.
  • an oil level sensor see, for example, Patent Document 1.
  • Patent Document 1 since the invention described in Patent Document 1 is intended to detect the oil level, it cannot directly detect the state of the liquid refrigerant stored in the sealed container. In such a case, although liquid refrigerant is actually stored in the sealed container, it is erroneously detected that the liquid refrigerant is not stored in the sealed container, and liquid compression is possible. There was a problem that there was sex.
  • the present invention has been made against the background of the above-described problems, and an object of the present invention is to obtain a compressor that suppresses liquid compression more than before.
  • the compressor according to the present invention is a compressor whose outer shell is constituted by a sealed container, and is connected to a side surface portion of the sealed container and passes a refrigerant flowing through the suction side of the compressor, and the sealed container
  • a control means for controlling the liquid level in the inside, a heating means provided inside the sealed container, and driving the heating means when the liquid level obtained by the liquid level sensor is equal to or higher than a reference level.
  • the control means for driving the heating means when the liquid level obtained by the liquid level sensor is equal to or higher than the reference level is provided. For this reason, it can suppress that a liquid refrigerant is compressed in the inside of an airtight container. Therefore, liquid compression can be suppressed more than before.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. It is a figure which shows the control action of the compressor 100 which concerns on Embodiment 1 of this invention. It is a figure which shows the control action of the compressor 100 which concerns on Embodiment 2 of this invention. It is a figure which shows the control action of the compressor 100 which concerns on Embodiment 3 of this invention.
  • Embodiment 1 FIG.
  • the size relationship of each component may be different from the actual one.
  • the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification.
  • the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
  • FIG. 1 is a diagram showing an outline of a compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the compressor 100 is a scroll compressor.
  • the compressor 100 includes a suction pipe 1, a compression mechanism unit 2, an oil draining unit 4, a liquid level sensor 10, a temperature sensor 20, and a heating unit 30.
  • the outer shell of the compressor 100 is composed of a sealed container 100A. Refrigerating machine oil (hereinafter sometimes simply referred to as oil) is stored below the sealed container 100A.
  • the suction pipe 1 is a pipe provided at the upper part of the side surface of the sealed container 100A.
  • the inside of the suction pipe 1 communicates with the inside of the sealed container 100A.
  • a refrigerant flowing on the suction side of the compressor 100 is supplied to the suction pipe 1.
  • the compression mechanism 2 is a part that compresses the refrigerant supplied into the sealed container 100 ⁇ / b> A through the suction pipe 1.
  • the compression mechanism 2 is provided with a suction port 2a.
  • the refrigerant flowing inside the sealed container 100A is supplied to the compression mechanism unit 2 through the suction port 2a.
  • An oil sump 3 is provided at the bottom of the sealed container 100A. Oil is stored in the oil reservoir 3.
  • the oil draining means 4 is a member for discharging the oil stored in the oil reservoir 3 to the outside of the sealed container 100A, and is provided, for example, at the lower part of the side surface of the sealed container 100A.
  • the oil draining means 4 is composed of, for example, a hollow cylindrical member.
  • a valve (not shown) that can be freely opened and closed is provided inside the oil draining means 4.
  • the oil draining means 4 By adjusting the oil draining means 4, the amount of oil flowing inside the oil draining means 4 can be adjusted.
  • the oil draining means 4 is opened, the oil stored in the lower part of the sealed container 100A is discharged to the outside of the sealed container 100A through the oil draining means 4.
  • the oil draining means 4 is closed, the oil stored in the lower part of the sealed container 100A continues to be stored in the sealed container 100A without passing through the oil draining means 4.
  • the liquid level sensor 10 is a detecting means for detecting the liquid level of the liquid refrigerant stored in the sealed container 100A, and is provided at a height position of the suction pipe 1, for example.
  • the liquid level sensor 10 is provided, for example, below the upper end 1A of the suction pipe 1 and above the lower end 1B of the suction pipe 1.
  • the liquid level sensor 10 is attached near the suction port 2a, for example.
  • the temperature sensor 20 is a temperature detection means provided in the lower part in the sealed container 100A. The temperature sensor 20 detects the temperature of the lower part of the sealed container 100A.
  • the heating means 30 is a heating means for heating the liquid refrigerant stored in the sealed container 100A, and is provided, for example, in the lower part of the sealed container 100A. By driving the heating unit 30, the liquid refrigerant stored in the sealed container 100A is heated and vaporized, and the liquid level of the liquid refrigerant stored in the sealed container 100A is lowered.
  • the control means (not shown) drives the heating means 30 when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level. Specifically, for example, the control means drives the heating means 30 when the liquid level in the sealed container 100A is equal to or higher than the height of the suction pipe 1.
  • a control means is provided in the machine room formed in the inside of an outdoor unit, for example.
  • the control means controls the opening and closing of the oil draining means 4.
  • the control means may be capable of controlling the oil draining means 4 only in the two states of “open” and “closed”, and the ratio of opening the oil draining means 4 is changed in a plurality of stages. You may be able to do that.
  • the control means is configured by, for example, hardware such as a circuit device that realizes this function, or software executed on an arithmetic device such as a microcomputer or a CPU.
  • FIG. 3 is a diagram showing a control operation of the compressor 100 according to Embodiment 1 of the present invention.
  • the liquid refrigerant stagnates because the compressor 100 has been stopped for a long period of time, and before the compressor 100 is activated (when the compressor 100 is activated and controlled). )
  • the liquid level in the sealed container 100A of the compressor 100 is measured. Below, the operation
  • step S21 when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S21), the control unit moves to step S32 and drives the heating unit 30. Alternatively, the liquid discharge operation is performed, and the process proceeds to step S21.
  • step S21 when it is determined that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S21), the control unit proceeds to step S22 and starts the compressor 100.
  • the compressor 100 is the compressor 100 whose outer shell is configured by the sealed container 100A, and is connected to the side surface portion of the sealed container 100A so that the suction side of the compressor 100 is connected.
  • the suction pipe 1 through which the flowing refrigerant passes, the liquid level sensor 10 for detecting the liquid level in the sealed container 100A, the heating means 30 provided in the sealed container 100A, and the liquid before the compressor 100 is activated.
  • the liquid level sensor 10 at the height position of the suction pipe 1, the possibility that the liquid refrigerant stored in the sealed container 100A flows to the suction side of the compressor 100 through the suction pipe 1 is further suppressed. can do. Therefore, it is possible to prevent the compressor 100 from being damaged due to liquid compression activation (sleeping activation) of the liquid refrigerant that has fallen.
  • the liquid level of the liquid refrigerant inside the sealed container 100A can be directly detected using the liquid level sensor 10, the detected value of the temperature detecting means provided at the lower part in the sealed container 100A is used as in the conventional case. Accordingly, it is not necessary to indirectly detect the liquid level of the liquid refrigerant inside the sealed container 100A. Accordingly, the startup time of the compressor 100 can be shortened by grasping the liquid level inside the sealed container 100A in real time.
  • Embodiment 2 FIG. In the second embodiment, unlike the first embodiment, the control means controls the compressor 100 during the operation of the compressor 100.
  • items that are not particularly described are the same as those in the second embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 4 is a diagram showing a control operation of the compressor 100 according to Embodiment 2 of the present invention.
  • the control unit drives and controls the heating unit 30 so as not to compress the liquid.
  • the operation of the compressor 100 according to the second embodiment will be described with reference to FIG.
  • step S11 the control means performs start control of the compressor 100, and proceeds to step S21.
  • step S21 the control means determines whether or not the liquid level obtained by the liquid level sensor 10 is equal to or higher than a reference level.
  • step S21 when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S21), the control unit proceeds to step S31.
  • step S21 when the control means determines that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S21), the control means moves to step S23, and the control means moves to the compressor 100. Continue driving.
  • step S31 the control means stops the compressor 100 and proceeds to step S32.
  • step S32 the control means drives the heating means 30 or performs a liquid discharge operation, and proceeds to step S41.
  • step S41 the control means starts the compressor 100 and proceeds to step S21. In addition, you may make it abbreviate
  • the control unit is configured when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level.
  • the heating means 30 is driven. For this reason, only the gas refrigerant is taken into the compression mechanism section 2 and liquid compression can be suppressed as compared with the conventional case. Therefore, it is possible to prevent the compressor 100 from being damaged due to the liquid compression operation.
  • Embodiment 3 FIG. In the third embodiment, unlike the first embodiment, the control means controls the compressor 100 during the operation of the compressor 100.
  • items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
  • FIG. 5 is a diagram showing a control operation of the compressor 100 according to Embodiment 3 of the present invention.
  • the control means controls the oil discharge means 4 so as not to compress oil.
  • the operation of the compressor 100 according to the third embodiment will be described with reference to FIG.
  • step S11 the control means performs start control of the compressor 100, and proceeds to step S21.
  • step S21 the control means determines whether or not the liquid level obtained by the liquid level sensor 10 is equal to or higher than a reference level.
  • step S21 when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S21), the control unit proceeds to step S31.
  • step S21 when the control means determines that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S21), the control means moves to step S23, and the control means moves to the compressor 100. Continue driving.
  • step S31 the control means stops the compressor 100 and proceeds to step S32.
  • step S32 the control means drives the heating means 30 or performs a liquid discharge operation for a predetermined time, and proceeds to step S33.
  • step S33 the control means determines whether or not the liquid level obtained by the liquid level sensor 10 is equal to or higher than a reference level.
  • step S33 when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S33), the control unit proceeds to step S34.
  • step S33 when the control means determines that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S33), the control means moves to step S23, and the control means moves to the compressor 100. Continue driving.
  • step S34 the control means controls the oil draining means 4 to perform the oil draining operation, and the process proceeds to step S41.
  • the oil draining operation is, for example, an operation in which the oil stored in the oil reservoir 3 is discharged to the outside of the sealed container 100A through the oil draining means 4.
  • step S41 the control means starts the compressor 100 and proceeds to step S21. In addition, you may make it abbreviate
  • control unit may continuously control the driving of the heating unit 30 during the oil draining operation, or may control the driving of the heating unit 30 during the oil draining operation. You may stop.
  • the control unit drives the heating unit 30 when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level, and the heating unit 30 ,
  • the oil draining means 4 is controlled so that the oil is discharged to the outside of the sealed container 100A when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level.
  • liquid level sensor 10 Although an example in which only one liquid level sensor 10 is provided has been described, the present invention is not limited to this, and a plurality of liquid level sensors 10 may be provided. By providing a plurality of liquid level sensors 10 in this manner, the liquid level inside the sealed container 100A can be detected more accurately than in the case where one liquid level sensor 10 is provided.
  • liquid level sensor 10 for example, a capacitance type sensor and a float type sensor can be adopted.
  • a capacitance type sensor is employed as the liquid level sensor 10
  • the liquid level inside the sealed container 100A can be detected even under a harsh environment such as a high pressure inside the sealed container 100A.
  • a float type sensor is employed as the liquid level sensor 10
  • the liquid level inside the sealed container 100A can be detected with a simple structure and at low cost.
  • the present invention is not limited to this.
  • the reference level used in step S33 may be set lower than the reference level used in step S21. In this way, even when the oil reaches the height position of the suction pipe 1, even when the liquid level inside the sealed container 100A is somewhat lowered by driving the heating means 30 in step S32, In step S33, it is determined that the control means is excessive in oil, and the oil stored in the sealed container 100A can be discharged.
  • the reference level used in step S33 is determined as follows, for example.
  • the control means stores the degree of decrease in the liquid level inside the sealed container 100A with respect to the time when the heating means 30 is driven when the liquid refrigerant is accumulated inside the sealed container 100A.
  • the control means stores the liquid level lowering level with respect to the time when the heating means 30 is driven, stored in the control means, and the liquid level inside the sealed container 100A with respect to the time when the heating means 30 is driven. If the level is lower than the degree of decrease, the process proceeds to step S34.
  • suction pipe 1 suction pipe, 1A upper end, 1B lower end, 2 compression mechanism, 2a suction port, 3 oil sump, 4 oil draining means, 10 liquid level sensor, 20 temperature sensor, 30 heating means, 100 compressor, 100A sealed container.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a compressor (100) with an outer contour constituted by an airtight container (100A), said compressor comprising: a suction pipe (1) that is connected to a side face portion of the airtight container (100A) and that passes a refrigerant flowing in the suction side of the compressor (100); a liquid level sensor (10) that detects a liquid level in the airtight container (100A); a heating means (30) provided within the airtight container (100A); and a control means for driving the heating means (30) when the liquid level obtained by the liquid level sensor (10) is equal to or greater than a reference level.

Description

圧縮機Compressor
 本発明は、圧縮機に関する。 The present invention relates to a compressor.
 従来、第1の温度検知素子及び第2の温度検知素子を備え、第1の温度検知素子及び第2の温度検知素子の検知値に基づいて圧縮機の密閉容器の内部のオイルレベルを検知するオイルレベルセンサがあった(例えば、特許文献1参照)。 Conventionally, a first temperature detection element and a second temperature detection element are provided, and the oil level inside the hermetic container of the compressor is detected based on the detection values of the first temperature detection element and the second temperature detection element. There was an oil level sensor (see, for example, Patent Document 1).
 また従来、温度検知素子の検知値に基づいて加熱手段を駆動する圧縮機があった。このような圧縮機においては、温度検知素子の検知値が所定条件を満たした場合に加熱手段を駆動して密閉容器の内部に溜められた液冷媒を気化する。 Conventionally, there has been a compressor that drives the heating means based on the detection value of the temperature detection element. In such a compressor, when the detection value of the temperature detection element satisfies a predetermined condition, the heating means is driven to vaporize the liquid refrigerant stored in the sealed container.
特開2006-47133号公報JP 2006-47133 A
 しかしながら、特許文献1に記載の発明は、オイルレベルを検知対象とするものであるため、密閉容器の内部に溜められた液冷媒の状態を直接検知することはできない。このような場合には、実際には密閉容器の内部に液冷媒が溜められているにも関わらず、密閉容器の内部に液冷媒が溜められていないと誤検知してしまい、液圧縮する可能性があるという課題があった。 However, since the invention described in Patent Document 1 is intended to detect the oil level, it cannot directly detect the state of the liquid refrigerant stored in the sealed container. In such a case, although liquid refrigerant is actually stored in the sealed container, it is erroneously detected that the liquid refrigerant is not stored in the sealed container, and liquid compression is possible. There was a problem that there was sex.
 本発明は、上述のような課題を背景としてなされたものであり、従来よりも液圧縮を抑制する圧縮機を得ることを目的としている。 The present invention has been made against the background of the above-described problems, and an object of the present invention is to obtain a compressor that suppresses liquid compression more than before.
 本発明に係る圧縮機は、外郭が密閉容器で構成される圧縮機であって、前記密閉容器の側面部に接続され、前記圧縮機の吸入側を流れる冷媒を通す吸入管と、前記密閉容器内の液面レベルを検知する液面センサと、前記密閉容器の内部に設けられる加熱手段と、前記液面センサによって得られた前記液面レベルが基準レベル以上である場合に前記加熱手段を駆動する制御手段と、を備えたものである。 The compressor according to the present invention is a compressor whose outer shell is constituted by a sealed container, and is connected to a side surface portion of the sealed container and passes a refrigerant flowing through the suction side of the compressor, and the sealed container A liquid level sensor for detecting the liquid level in the inside, a heating means provided inside the sealed container, and driving the heating means when the liquid level obtained by the liquid level sensor is equal to or higher than a reference level. And a control means.
 本発明によれば、液面センサによって得られた液面レベルが基準レベル以上である場合に加熱手段を駆動する制御手段を備える。このため、液冷媒が密閉容器の内部において圧縮されることを抑制することができる。したがって、従来よりも液圧縮を抑制することができる。 According to the present invention, the control means for driving the heating means when the liquid level obtained by the liquid level sensor is equal to or higher than the reference level is provided. For this reason, it can suppress that a liquid refrigerant is compressed in the inside of an airtight container. Therefore, liquid compression can be suppressed more than before.
本発明の実施の形態1に係る圧縮機100の概略を示す図である。It is a figure which shows the outline of the compressor 100 which concerns on Embodiment 1 of this invention. 図1のA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 本発明の実施の形態1に係る圧縮機100の制御動作を示す図である。It is a figure which shows the control action of the compressor 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る圧縮機100の制御動作を示す図である。It is a figure which shows the control action of the compressor 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る圧縮機100の制御動作を示す図である。It is a figure which shows the control action of the compressor 100 which concerns on Embodiment 3 of this invention.
実施の形態1.
 以下、図面に基づいて本発明の実施の形態1について説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. In the following drawings, the size relationship of each component may be different from the actual one. In the following drawings, the same reference numerals denote the same or corresponding parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 図1は本発明の実施の形態1に係る圧縮機100の概略を示す図である。図2は図1のA-A断面図である。本発明においては、圧縮機100がスクロール圧縮機である例について説明する。 FIG. 1 is a diagram showing an outline of a compressor 100 according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along the line AA in FIG. In the present invention, an example in which the compressor 100 is a scroll compressor will be described.
 図1に示されるように、圧縮機100は、吸入管1と、圧縮機構部2と、排油手段4と、液面センサ10と、温度センサ20と、加熱手段30と、を備える。圧縮機100の外郭は、密閉容器100Aで構成される。密閉容器100A内の下方には冷凍機油(以下、単に油と称することがある)が溜められている。 As shown in FIG. 1, the compressor 100 includes a suction pipe 1, a compression mechanism unit 2, an oil draining unit 4, a liquid level sensor 10, a temperature sensor 20, and a heating unit 30. The outer shell of the compressor 100 is composed of a sealed container 100A. Refrigerating machine oil (hereinafter sometimes simply referred to as oil) is stored below the sealed container 100A.
 図1に示されるように、吸入管1は、密閉容器100Aの側面上部に設けられる管である。吸入管1の内部と密閉容器100Aの内部とが連通している。吸入管1には、圧縮機100の吸入側を流れる冷媒が供給される。圧縮機構部2は、吸入管1を通じて密閉容器100Aの内部に供給された冷媒を圧縮する部分である。図2に示されるように、圧縮機構部2には吸入ポート2aが設けられている。密閉容器100Aの内部を流れる冷媒は、吸入ポート2aを通じて圧縮機構部2に供給される。密閉容器100Aの下部には、油溜め部3が設けられている。油溜め部3には油が溜められる。 As shown in FIG. 1, the suction pipe 1 is a pipe provided at the upper part of the side surface of the sealed container 100A. The inside of the suction pipe 1 communicates with the inside of the sealed container 100A. A refrigerant flowing on the suction side of the compressor 100 is supplied to the suction pipe 1. The compression mechanism 2 is a part that compresses the refrigerant supplied into the sealed container 100 </ b> A through the suction pipe 1. As shown in FIG. 2, the compression mechanism 2 is provided with a suction port 2a. The refrigerant flowing inside the sealed container 100A is supplied to the compression mechanism unit 2 through the suction port 2a. An oil sump 3 is provided at the bottom of the sealed container 100A. Oil is stored in the oil reservoir 3.
 排油手段4は、油溜め部3に溜められた油を密閉容器100Aの外部に排出するための部材であり、例えば、密閉容器100Aの側面下部に設けられている。排油手段4は、例えば中空筒状の部材で構成されている。排油手段4の内部には、例えば開閉自在なバルブ(図示省略)が設けられている。排油手段4を調整することで排油手段4の内部を流れる油の量を調整することができる。排油手段4が開放されると、密閉容器100Aの下部に溜められた油は、排油手段4を通って密閉容器100Aの外部へ排出される。排油手段4が閉止されると、密閉容器100Aの下部に溜められた油は、排油手段4を通らないで密閉容器100A内に貯留し続ける。 The oil draining means 4 is a member for discharging the oil stored in the oil reservoir 3 to the outside of the sealed container 100A, and is provided, for example, at the lower part of the side surface of the sealed container 100A. The oil draining means 4 is composed of, for example, a hollow cylindrical member. For example, a valve (not shown) that can be freely opened and closed is provided inside the oil draining means 4. By adjusting the oil draining means 4, the amount of oil flowing inside the oil draining means 4 can be adjusted. When the oil draining means 4 is opened, the oil stored in the lower part of the sealed container 100A is discharged to the outside of the sealed container 100A through the oil draining means 4. When the oil draining means 4 is closed, the oil stored in the lower part of the sealed container 100A continues to be stored in the sealed container 100A without passing through the oil draining means 4.
 液面センサ10は、密閉容器100A内に溜められた液冷媒の液面を検知するための検知手段であり、例えば、吸入管1の高さ位置に設けられている。液面センサ10は、例えば、吸入管1の上端部1Aよりも下方で且つ吸入管1の下端部1Bよりも上方に設けられている。液面センサ10は、例えば、吸入ポート2a付近に取り付けられている。温度センサ20は、密閉容器100A内の下部に設けられる温度検知手段である。温度センサ20は、密閉容器100Aの下部の温度を検知する。 The liquid level sensor 10 is a detecting means for detecting the liquid level of the liquid refrigerant stored in the sealed container 100A, and is provided at a height position of the suction pipe 1, for example. The liquid level sensor 10 is provided, for example, below the upper end 1A of the suction pipe 1 and above the lower end 1B of the suction pipe 1. The liquid level sensor 10 is attached near the suction port 2a, for example. The temperature sensor 20 is a temperature detection means provided in the lower part in the sealed container 100A. The temperature sensor 20 detects the temperature of the lower part of the sealed container 100A.
 加熱手段30は、密閉容器100A内に溜められた液冷媒を加熱する加熱手段であり、例えば、密閉容器100Aの下部に設けられている。加熱手段30が駆動されることで、密閉容器100A内に溜められた液冷媒が加熱されて気化し、密閉容器100A内に溜められた液冷媒の液面が低下する。 The heating means 30 is a heating means for heating the liquid refrigerant stored in the sealed container 100A, and is provided, for example, in the lower part of the sealed container 100A. By driving the heating unit 30, the liquid refrigerant stored in the sealed container 100A is heated and vaporized, and the liquid level of the liquid refrigerant stored in the sealed container 100A is lowered.
 制御手段(図示省略)は、液面センサ10によって得られた液面レベルが基準レベル以上である場合に加熱手段30を駆動するものである。具体的には例えば、制御手段は、密閉容器100A内の液面高さが吸入管1の高さ以上である場合に加熱手段30を駆動するものである。制御手段は、例えば、室外機の内部に形成される機械室に設けられる。また、制御手段は、排油手段4の開閉を制御する。なお、制御手段は、排油手段4を「開」状態及び「閉」状態の2状態のみ制御することができるものであってもよいし、排油手段4の開放する割合を複数段階に変更することができるようになっていてもよい。制御手段は、例えば、この機能を実現する回路デバイスなどのハードウェア、又はマイコン若しくはCPUなどの演算装置上で実行されるソフトウェアで構成される。 The control means (not shown) drives the heating means 30 when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level. Specifically, for example, the control means drives the heating means 30 when the liquid level in the sealed container 100A is equal to or higher than the height of the suction pipe 1. A control means is provided in the machine room formed in the inside of an outdoor unit, for example. The control means controls the opening and closing of the oil draining means 4. The control means may be capable of controlling the oil draining means 4 only in the two states of “open” and “closed”, and the ratio of opening the oil draining means 4 is changed in a plurality of stages. You may be able to do that. The control means is configured by, for example, hardware such as a circuit device that realizes this function, or software executed on an arithmetic device such as a microcomputer or a CPU.
 図3は本発明の実施の形態1に係る圧縮機100の制御動作を示す図である。本実施の形態1においては、圧縮機100を長期間停止している等の理由で液冷媒が寝込んでしまう場合を想定し、圧縮機100の起動前に(圧縮機100を起動制御した際に)圧縮機100の密閉容器100A内の液面高さを計測するものである。以下に、本実施の形態1に係る圧縮機100の起動前の動作について、図3を用いて説明する。 FIG. 3 is a diagram showing a control operation of the compressor 100 according to Embodiment 1 of the present invention. In the first embodiment, it is assumed that the liquid refrigerant stagnates because the compressor 100 has been stopped for a long period of time, and before the compressor 100 is activated (when the compressor 100 is activated and controlled). ) The liquid level in the sealed container 100A of the compressor 100 is measured. Below, the operation | movement before starting of the compressor 100 which concerns on this Embodiment 1 is demonstrated using FIG.
 ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であると判定した場合には(ステップS21においてYES)、ステップS32に移行し、加熱手段30を駆動する又は液追い出し運転を行い、ステップS21に移行する。
 ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上でないと判定した場合には(ステップS21においてNO)、ステップS22に移行し、圧縮機100を起動する。
In step S21, when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S21), the control unit moves to step S32 and drives the heating unit 30. Alternatively, the liquid discharge operation is performed, and the process proceeds to step S21.
In step S21, when it is determined that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S21), the control unit proceeds to step S22 and starts the compressor 100.
 以上のように、本実施の形態1に係る圧縮機100は、外郭が密閉容器100Aで構成される圧縮機100であって、密閉容器100Aの側面部に接続され、圧縮機100の吸入側を流れる冷媒を通す吸入管1と、密閉容器100A内の液面レベルを検知する液面センサ10と、密閉容器100Aの内部に設けられる加熱手段30と、圧縮機100が起動される前において、液面センサ10によって得られた液面レベルが基準レベル以上である場合に加熱手段30を駆動する制御手段と、を備えた。このため、圧縮機100を起動した後、ガス冷媒のみが圧縮機構部2の内部に取り込まれ、従来よりも液圧縮を抑制することができる。したがって、寝込んだ液冷媒の液圧縮起動(寝込み起動)に起因して圧縮機100が破損することを抑制することができる。 As described above, the compressor 100 according to the first embodiment is the compressor 100 whose outer shell is configured by the sealed container 100A, and is connected to the side surface portion of the sealed container 100A so that the suction side of the compressor 100 is connected. The suction pipe 1 through which the flowing refrigerant passes, the liquid level sensor 10 for detecting the liquid level in the sealed container 100A, the heating means 30 provided in the sealed container 100A, and the liquid before the compressor 100 is activated. And a control means for driving the heating means 30 when the liquid level obtained by the surface sensor 10 is equal to or higher than the reference level. For this reason, after starting the compressor 100, only a gas refrigerant is taken in the compression mechanism part 2, and liquid compression can be suppressed rather than before. Therefore, it is possible to prevent the compressor 100 from being damaged due to liquid compression activation (sleeping activation) of the liquid refrigerant that has fallen.
 また、液面センサ10を吸入管1の高さ位置に設けることで、密閉容器100Aの内に溜められた液冷媒が吸入管1を通って圧縮機100の吸入側に流れる可能性を一層抑制することができる。したがって、寝込んだ液冷媒の液圧縮起動(寝込み起動)に起因して圧縮機100が破損することを抑制することができる。 Further, by providing the liquid level sensor 10 at the height position of the suction pipe 1, the possibility that the liquid refrigerant stored in the sealed container 100A flows to the suction side of the compressor 100 through the suction pipe 1 is further suppressed. can do. Therefore, it is possible to prevent the compressor 100 from being damaged due to liquid compression activation (sleeping activation) of the liquid refrigerant that has fallen.
 また、液面センサ10を用いて密閉容器100Aの内部の液冷媒の液面を直接検知することができるため、従来のように、密閉容器100A内の下部に設けられる温度検知手段の検知値に基づいて密閉容器100Aの内部の液冷媒の液面を間接検知する必要がなくなる。したがって、リアルタイムに密閉容器100Aの内部の液面を把握して圧縮機100の起動時間を短縮することができる。 Further, since the liquid level of the liquid refrigerant inside the sealed container 100A can be directly detected using the liquid level sensor 10, the detected value of the temperature detecting means provided at the lower part in the sealed container 100A is used as in the conventional case. Accordingly, it is not necessary to indirectly detect the liquid level of the liquid refrigerant inside the sealed container 100A. Accordingly, the startup time of the compressor 100 can be shortened by grasping the liquid level inside the sealed container 100A in real time.
実施の形態2.
 本実施の形態2においては、実施の形態1とは異なり、圧縮機100の運転中において、制御手段が圧縮機100を制御するものである。なお、本実施の形態2において、特に記述しない項目については実施の形態2と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In the second embodiment, unlike the first embodiment, the control means controls the compressor 100 during the operation of the compressor 100. In the second embodiment, items that are not particularly described are the same as those in the second embodiment, and the same functions and configurations are described using the same reference numerals.
 図4は本発明の実施の形態2に係る圧縮機100の制御動作を示す図である。本実施の形態2においては、圧縮機100を運転している場合に、制御手段は、液圧縮しないように加熱手段30を駆動制御する。以下に、本実施の形態2に係る圧縮機100の動作について図4を用いて説明する。 FIG. 4 is a diagram showing a control operation of the compressor 100 according to Embodiment 2 of the present invention. In the second embodiment, when the compressor 100 is operated, the control unit drives and controls the heating unit 30 so as not to compress the liquid. Hereinafter, the operation of the compressor 100 according to the second embodiment will be described with reference to FIG.
 ステップS11において、制御手段は、圧縮機100の起動制御を行い、ステップS21に移行する。ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であるか否かを判定する。 In step S11, the control means performs start control of the compressor 100, and proceeds to step S21. In step S21, the control means determines whether or not the liquid level obtained by the liquid level sensor 10 is equal to or higher than a reference level.
 ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であると判定した場合には(ステップS21においてYES)、ステップS31に移行する。
 ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上でないと判定した場合には(ステップS21においてNO)、ステップS23に移行し、制御手段は圧縮機100の駆動を継続する。
In step S21, when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S21), the control unit proceeds to step S31.
In step S21, when the control means determines that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S21), the control means moves to step S23, and the control means moves to the compressor 100. Continue driving.
 ステップS31において、制御手段は、圧縮機100を停止して、ステップS32に移行する。ステップS32において、制御手段は、加熱手段30を駆動する又は液追い出し運転を行い、ステップS41に移行する。ステップS41において、制御手段は、圧縮機100を起動し、ステップS21に移行する。なお、ステップS31及びステップS41の処理を省略するようにしてもよい。 In step S31, the control means stops the compressor 100 and proceeds to step S32. In step S32, the control means drives the heating means 30 or performs a liquid discharge operation, and proceeds to step S41. In step S41, the control means starts the compressor 100 and proceeds to step S21. In addition, you may make it abbreviate | omit the process of step S31 and step S41.
 以上のように、本実施の形態2に係る圧縮機100は、制御手段は、圧縮機100が起動された後において、液面センサ10によって得られた液面レベルが基準レベル以上である場合に加熱手段30を駆動する。このため、ガス冷媒のみが圧縮機構部2の内部に取り込まれ、従来よりも液圧縮を抑制することができる。したがって、液圧縮運転に起因して圧縮機100が破損することを抑制することができる。 As described above, in the compressor 100 according to the second embodiment, after the compressor 100 is started, the control unit is configured when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level. The heating means 30 is driven. For this reason, only the gas refrigerant is taken into the compression mechanism section 2 and liquid compression can be suppressed as compared with the conventional case. Therefore, it is possible to prevent the compressor 100 from being damaged due to the liquid compression operation.
実施の形態3.
 本実施の形態3においては、実施の形態1とは異なり、圧縮機100の運転中において、制御手段が圧縮機100を制御するものである。なお、本実施の形態3において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 3 FIG.
In the third embodiment, unlike the first embodiment, the control means controls the compressor 100 during the operation of the compressor 100. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
 図5は本発明の実施の形態3に係る圧縮機100の制御動作を示す図である。本実施の形態3においては、圧縮機100を運転している場合に、制御手段は、油圧縮しないように排油手段4を制御する。以下に、本実施の形態3に係る圧縮機100の動作について図5を用いて説明する。 FIG. 5 is a diagram showing a control operation of the compressor 100 according to Embodiment 3 of the present invention. In the third embodiment, when the compressor 100 is operating, the control means controls the oil discharge means 4 so as not to compress oil. Hereinafter, the operation of the compressor 100 according to the third embodiment will be described with reference to FIG.
 ステップS11において、制御手段は、圧縮機100の起動制御を行い、ステップS21に移行する。ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であるか否かを判定する。 In step S11, the control means performs start control of the compressor 100, and proceeds to step S21. In step S21, the control means determines whether or not the liquid level obtained by the liquid level sensor 10 is equal to or higher than a reference level.
 ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であると判定した場合には(ステップS21においてYES)、ステップS31に移行する。
 ステップS21において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上でないと判定した場合には(ステップS21においてNO)、ステップS23に移行し、制御手段は圧縮機100の駆動を継続する。
In step S21, when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S21), the control unit proceeds to step S31.
In step S21, when the control means determines that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S21), the control means moves to step S23, and the control means moves to the compressor 100. Continue driving.
 ステップS31において、制御手段は、圧縮機100を停止して、ステップS32に移行する。ステップS32において、制御手段は、加熱手段30を駆動する又は液追い出し運転を所定時間行い、ステップS33に移行する。ステップS33において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であるか否かを判定する。 In step S31, the control means stops the compressor 100 and proceeds to step S32. In step S32, the control means drives the heating means 30 or performs a liquid discharge operation for a predetermined time, and proceeds to step S33. In step S33, the control means determines whether or not the liquid level obtained by the liquid level sensor 10 is equal to or higher than a reference level.
 ステップS33において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上であると判定した場合には(ステップS33においてYES)、ステップS34に移行する。
 ステップS33において、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上でないと判定した場合には(ステップS33においてNO)、ステップS23に移行し、制御手段は圧縮機100の駆動を継続する。
In step S33, when it is determined that the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level (YES in step S33), the control unit proceeds to step S34.
In step S33, when the control means determines that the liquid level obtained by the liquid level sensor 10 is not equal to or higher than the reference level (NO in step S33), the control means moves to step S23, and the control means moves to the compressor 100. Continue driving.
 ステップS34において、制御手段は排油運転を行うように排油手段4を制御し、ステップS41に移行する。ここで、排油運転とは、例えば、油溜め部3に溜められた油を排油手段4を通って密閉容器100Aの外部に排出する運転である。ステップS41において、制御手段は、圧縮機100を起動し、ステップS21に移行する。なお、ステップS31及びステップS41の処理を省略するようにしてもよい。 In step S34, the control means controls the oil draining means 4 to perform the oil draining operation, and the process proceeds to step S41. Here, the oil draining operation is, for example, an operation in which the oil stored in the oil reservoir 3 is discharged to the outside of the sealed container 100A through the oil draining means 4. In step S41, the control means starts the compressor 100 and proceeds to step S21. In addition, you may make it abbreviate | omit the process of step S31 and step S41.
 なお、ステップS34において、制御手段は、排油運転を行っている間において加熱手段30を継続して駆動制御してもよいし、排油運転を行っている間において加熱手段30の駆動制御を停止してもよい。 In step S34, the control unit may continuously control the driving of the heating unit 30 during the oil draining operation, or may control the driving of the heating unit 30 during the oil draining operation. You may stop.
 以上のように、本実施の形態3に係る圧縮機100は、制御手段は、液面センサ10によって得られた液面レベルが基準レベル以上である場合に加熱手段30を駆動し、加熱手段30を駆動した後、液面センサ10によって得られた液面レベルが前記基準レベル以上である場合に油を密閉容器100Aの外部に排出するように排油手段4を制御する。
 このため、圧縮機100の運転中において、油の量が多いために密閉容器100Aの内部の液面が高くなっている場合でも、油を排出して、液面を吸入管1の高さ以下とすることができる。したがって、油が圧縮機構部2に導入されることを抑制することができる。このようにして、油を圧縮して圧縮機100の性能が低下したり圧縮機100の運転範囲が縮小することを抑制することができる。
As described above, in the compressor 100 according to the third embodiment, the control unit drives the heating unit 30 when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level, and the heating unit 30 , The oil draining means 4 is controlled so that the oil is discharged to the outside of the sealed container 100A when the liquid level obtained by the liquid level sensor 10 is equal to or higher than the reference level.
For this reason, during operation of the compressor 100, even when the liquid level inside the closed container 100 </ b> A is high due to a large amount of oil, the oil is discharged and the liquid level is below the height of the suction pipe 1. It can be. Therefore, it can suppress that oil is introduce | transduced into the compression mechanism part 2. FIG. In this way, it is possible to suppress the performance of the compressor 100 from being reduced by compressing the oil and the operating range of the compressor 100 from being reduced.
 なお、液面センサ10が一つのみ設けられる例について説明したがこれに限定されず、液面センサ10が複数設けられるようにしてもよい。このように液面センサ10を複数設けることで、液面センサ10を一つ設ける場合に比べて、密閉容器100Aの内部の液面を一層正確に検知することができる。 Although an example in which only one liquid level sensor 10 is provided has been described, the present invention is not limited to this, and a plurality of liquid level sensors 10 may be provided. By providing a plurality of liquid level sensors 10 in this manner, the liquid level inside the sealed container 100A can be detected more accurately than in the case where one liquid level sensor 10 is provided.
 また、液面センサ10としては、例えば、静電容量式のセンサ及びフロート式のセンサを採用することができる。液面センサ10として静電容量式のセンサを採用した場合には、密閉容器100Aの内部が高圧である等の過酷な環境下においても、密閉容器100Aの内部の液面を検知することができる。また、液面センサ10としてフロート式のセンサを採用した場合には、単純な構造で低コストで、密閉容器100Aの内部の液面を検知することができる。 Further, as the liquid level sensor 10, for example, a capacitance type sensor and a float type sensor can be adopted. When a capacitance type sensor is employed as the liquid level sensor 10, the liquid level inside the sealed container 100A can be detected even under a harsh environment such as a high pressure inside the sealed container 100A. . When a float type sensor is employed as the liquid level sensor 10, the liquid level inside the sealed container 100A can be detected with a simple structure and at low cost.
 また、ステップS21において用いられる基準レベルと、ステップS33において用いられる基準レベルと、が同一である例について説明したが、これに限定されない。例えば、ステップS21において用いられる基準レベルよりも、ステップS33において用いられる基準レベルを低くするようにしてもよい。このようにすれば、油が吸入管1の高さ位置まで達しているもののステップS32で加熱手段30を駆動することで多少なりとも密閉容器100Aの内部の液面レベルが低くなる場合においても、ステップS33において制御手段が油多過であると判定して、密閉容器100A内部に溜められた油を排出することができる。 Further, although an example in which the reference level used in step S21 and the reference level used in step S33 are the same has been described, the present invention is not limited to this. For example, the reference level used in step S33 may be set lower than the reference level used in step S21. In this way, even when the oil reaches the height position of the suction pipe 1, even when the liquid level inside the sealed container 100A is somewhat lowered by driving the heating means 30 in step S32, In step S33, it is determined that the control means is excessive in oil, and the oil stored in the sealed container 100A can be discharged.
 ステップS21において用いられる基準レベルよりも、ステップS33において用いられる基準レベルを低くする場合には、ステップS33において用いられる基準レベルを例えば以下のように決定する。制御手段は、液冷媒が密閉容器100Aの内部に溜まっている場合において加熱手段30を駆動した時間に対する密閉容器100Aの内部の液面レベルの低下具合を記憶しておく。そして、ステップS33において、制御手段は、加熱手段30を駆動した時間に対する液面レベルの低下具合が、制御手段において記憶している、加熱手段30を駆動した時間に対する密閉容器100Aの内部の液面レベルの低下具合よりも小さい場合に、ステップS34に移行する。 When the reference level used in step S33 is set lower than the reference level used in step S21, the reference level used in step S33 is determined as follows, for example. The control means stores the degree of decrease in the liquid level inside the sealed container 100A with respect to the time when the heating means 30 is driven when the liquid refrigerant is accumulated inside the sealed container 100A. In step S33, the control means stores the liquid level lowering level with respect to the time when the heating means 30 is driven, stored in the control means, and the liquid level inside the sealed container 100A with respect to the time when the heating means 30 is driven. If the level is lower than the degree of decrease, the process proceeds to step S34.
 1 吸入管、1A 上端部、1B 下端部、2 圧縮機構部、2a 吸入ポート、3 油溜め部、4 排油手段、10 液面センサ、20 温度センサ、30 加熱手段、100 圧縮機、100A 密閉容器。 1 suction pipe, 1A upper end, 1B lower end, 2 compression mechanism, 2a suction port, 3 oil sump, 4 oil draining means, 10 liquid level sensor, 20 temperature sensor, 30 heating means, 100 compressor, 100A sealed container.

Claims (6)

  1.  外郭が密閉容器で構成される圧縮機であって、
     前記密閉容器の側面部に接続され、前記圧縮機の吸入側を流れる冷媒を通す吸入管と、
     前記密閉容器内の液面レベルを検知する液面センサと、
     前記密閉容器の内部に設けられる加熱手段と、
     前記液面センサによって得られた前記液面レベルが基準レベル以上である場合に前記加熱手段を駆動する制御手段と、を備えた
     圧縮機。
    A compressor whose outer shell is formed of a sealed container,
    A suction pipe connected to a side surface portion of the sealed container and passing a refrigerant flowing on a suction side of the compressor;
    A liquid level sensor for detecting a liquid level in the sealed container;
    Heating means provided inside the sealed container;
    And a control unit that drives the heating unit when the liquid level obtained by the liquid level sensor is equal to or higher than a reference level.
  2.  前記制御手段は、
     前記圧縮機が起動される前において、前記液面センサによって得られた前記液面レベルが前記基準レベル以上である場合に前記加熱手段を駆動する
     請求項1に記載の圧縮機。
    The control means includes
    The compressor according to claim 1, wherein the heating unit is driven when the liquid level obtained by the liquid level sensor is equal to or higher than the reference level before the compressor is started.
  3.  前記制御手段は、
     前記圧縮機が起動された後において、前記液面センサによって得られた前記液面レベルが前記基準レベル以上である場合に前記加熱手段を駆動する
     請求項1に記載の圧縮機。
    The control means includes
    The compressor according to claim 1, wherein after the compressor is started, the heating means is driven when the liquid level obtained by the liquid level sensor is equal to or higher than the reference level.
  4.  前記密閉容器に溜められた油を前記密閉容器の外部に排出する排油手段を備え、
     前記制御手段は、
     前記圧縮機が起動された後において、前記液面センサによって得られた前記液面レベルが前記基準レベル以上である場合に前記加熱手段を駆動し、前記加熱手段を駆動した後、前記液面センサによって得られた前記液面レベルが前記基準レベル以上である場合に前記油を前記密閉容器の外部に排出するように前記排油手段を制御する
     請求項1に記載の圧縮機。
    Oil draining means for discharging the oil stored in the sealed container to the outside of the sealed container,
    The control means includes
    After the compressor is started, when the liquid level obtained by the liquid level sensor is equal to or higher than the reference level, the heating unit is driven, and after the heating unit is driven, the liquid level sensor 2. The compressor according to claim 1, wherein the oil draining unit is controlled to discharge the oil to the outside of the hermetic container when the liquid level obtained by the step is equal to or higher than the reference level.
  5.  前記基準レベルは、
     前記吸入管の下端部以上で且つ前記吸入管の上端部以下である
     請求項1~請求項4の何れか一項に記載の圧縮機。
    The reference level is
    The compressor according to any one of claims 1 to 4, wherein the compressor is not less than a lower end portion of the suction pipe and not more than an upper end portion of the suction pipe.
  6.  前記吸入管から吸入した冷媒を圧縮する圧縮機構部を備え、
     前記圧縮機構部は、
     前記吸入管から吸入した冷媒が導入される吸入ポートを有し、
     前記液面センサは前記圧縮機構部の吸入ポートに設けられている
     請求項1~請求項5の何れか一項に記載の圧縮機。
    A compression mechanism for compressing the refrigerant sucked from the suction pipe;
    The compression mechanism is
    A suction port through which the refrigerant sucked from the suction pipe is introduced;
    The compressor according to any one of claims 1 to 5, wherein the liquid level sensor is provided in a suction port of the compression mechanism section.
PCT/JP2015/051073 2015-01-16 2015-01-16 Compressor WO2016113903A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/051073 WO2016113903A1 (en) 2015-01-16 2015-01-16 Compressor
JP2016569198A JP6305569B2 (en) 2015-01-16 2015-01-16 Compressor
EP15877855.5A EP3246571B1 (en) 2015-01-16 2015-01-16 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051073 WO2016113903A1 (en) 2015-01-16 2015-01-16 Compressor

Publications (1)

Publication Number Publication Date
WO2016113903A1 true WO2016113903A1 (en) 2016-07-21

Family

ID=56405464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051073 WO2016113903A1 (en) 2015-01-16 2015-01-16 Compressor

Country Status (3)

Country Link
EP (1) EP3246571B1 (en)
JP (1) JP6305569B2 (en)
WO (1) WO2016113903A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766747A (en) * 1972-01-06 1973-10-23 Lennox Ind Inc Liquid sensor for reciprocating refrigerant compressor
JPS62180U (en) * 1985-06-18 1987-01-06
JP2006523285A (en) * 2003-04-04 2006-10-12 キャリア コーポレイション Protection against compressor liquid failure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3744267A (en) * 1972-03-15 1973-07-10 Borg Warner Liquid level protection system for refrigeration compressor
US20030077179A1 (en) * 2001-10-19 2003-04-24 Michael Collins Compressor protection module and system and method incorporating same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766747A (en) * 1972-01-06 1973-10-23 Lennox Ind Inc Liquid sensor for reciprocating refrigerant compressor
JPS62180U (en) * 1985-06-18 1987-01-06
JP2006523285A (en) * 2003-04-04 2006-10-12 キャリア コーポレイション Protection against compressor liquid failure

Also Published As

Publication number Publication date
EP3246571B1 (en) 2020-12-23
JP6305569B2 (en) 2018-04-04
EP3246571A4 (en) 2018-06-20
EP3246571A1 (en) 2017-11-22
JPWO2016113903A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP5224474B2 (en) Compressor capacity control method and compressor
US11105537B2 (en) Refrigeration cycle apparatus
WO2010036480A3 (en) Flash tank economizer cycle control
US20200318640A1 (en) Method of Pumping in a System of Vacuum Pumps and System of Vacuum Pumps
CN107965937B (en) Refrigerating unit and evacuation shutdown control method thereof
JP6367645B2 (en) Bellows pump device
EP2741031A1 (en) Refrigerator and working method thereof
JP2017072099A5 (en)
JP2009036440A (en) Refrigerator
JP6305569B2 (en) Compressor
KR101728404B1 (en) Multi-stage compression system and control method of the same
JP6254678B2 (en) air compressor
US20180291901A1 (en) Gas Compressor
JP2012097618A (en) Compression apparatus and operation control method for the same
US11454254B2 (en) State determination device of liquid pumping apparatus, and liquid pumping apparatus
JP2010281465A (en) Refrigerator
KR20170005410A (en) Method of Pumping in a Pumping System And Vacuum Pump System
US11306952B2 (en) Refrigeration cycle apparatus
JP2018031335A (en) Compressor
KR101172484B1 (en) Hydraulic device for pressure control
CN109984565A (en) Cooking apparatus and its vacuum reserve fresh-keeping control method
TW201910703A (en) Refrigerator having a low-pressure chamber with high reliability and a simple configuration without using a pressure switch
CA3042117C (en) Refrigeration apparatus
JP2005042562A (en) Control device and gas supply device
JP2006250491A (en) Cold generating system, air conditioning system, refrigerating plant and cold generating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569198

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877855

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE