WO2016112854A1 - 确定信息的传输路径的方法和节点 - Google Patents

确定信息的传输路径的方法和节点 Download PDF

Info

Publication number
WO2016112854A1
WO2016112854A1 PCT/CN2016/070824 CN2016070824W WO2016112854A1 WO 2016112854 A1 WO2016112854 A1 WO 2016112854A1 CN 2016070824 W CN2016070824 W CN 2016070824W WO 2016112854 A1 WO2016112854 A1 WO 2016112854A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
type
current node
determining
current
Prior art date
Application number
PCT/CN2016/070824
Other languages
English (en)
French (fr)
Inventor
袁泉
李扬
张惠敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016112854A1 publication Critical patent/WO2016112854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • Embodiments of the present invention relate to the field of communications and, more particularly, to methods and nodes for determining a transmission path for information.
  • NoC Network-on-chip
  • nodes When the number of nodes increases, some nodes may be necrotic during the production process of the chip, and some nodes will become hot spots in actual use, and the lifetime will be smaller than other nodes.
  • node partition region or region on NoC is proposed, that is, some of the nodes form a small area system to complete a certain task independently. At this time, neighboring nodes need to communicate through sub-areas, which is not allowed. .
  • the related art sets the transmission path of information according to the type of information to be transmitted.
  • Nodes located on the fault ring and fault chain need to record the coordinate information of their reference nodes.
  • the transmission information encounters the fault ring and the fault chain, according to the type of the fault ring and the fault chain (whether it is s-chain), the coordinate information of the reference node, and the type of information, it is set clockwise or reverse along the fault ring and the fault chain.
  • the hour hand carries out information transmission.
  • the node determines the transmission path of the information through the method in the communication process, the link resources are wasted and the communication is reduced. The real-time validity of the letter.
  • the present invention provides a method and a node for determining a transmission path of information, in which an optimized fault-tolerant transmission path can be determined, thereby saving link resources and ensuring real-time validity of communication.
  • a first aspect provides a method for determining a transmission path of information, including: determining a type of the current node according to a positional relationship between a current node and a faulty ring; determining, according to the type, a next hop node that transmits the information; Information is transmitted to the next hop node.
  • determining the type of the current node according to a location relationship between the current node and the faulty ring including:
  • the type of the current node is determined according to the positional relationship between the previous hop node of the current node and the fault ring.
  • determining the type of the current node according to the location relationship between the current node and the faulty ring including:
  • the type of the current node is the third type.
  • determining, according to the type, the next hop node that transmits the information includes: the type of the current node is In the second type, determining the relative position of the destination node relative to the current node; The relative position determines the next hop node.
  • determining the next hop node according to the relative position including: according to coordinate information of the current node, The coordinate information of the destination node and the coordinate information of the first node and the coordinate information of the second node on the fault ring where the current node is located determine the next hop node, wherein the first node and the second node are connected The line is the diagonal of the fault ring where the current node is located.
  • the hop node includes: when the type of the current node is the third type, determining the next hop node according to the location information of the current node, the location information of the destination node, and the location information of the previous hop node of the current node.
  • the determining the next transmission of the information according to the type The hopping node includes: determining, when the type of the current node is the first type, a preset transmission rule; determining, according to the preset transmission rule, the next hop node.
  • a node including: a determining module, configured to determine a type of the current node according to a positional relationship between a current node and a faulty ring; the determining module is further configured to determine, according to the type, the information to be transmitted a hop node; a sending module, configured to transmit the information to the next hop node determined by the determining module.
  • the determining module is specifically configured to:
  • the type of the current node is determined according to the positional relationship between the previous hop node of the current node and the fault ring.
  • the determining module is specifically configured to:
  • the type of the current node is the third type.
  • the determining module is further configured to: when the type of the current node is the second type, determine that the target node is relatively The relative position of the current node; determining the next hop node according to the relative position.
  • the determining module is further configured to:
  • the connection between the node and the second node is the diagonal of the fault ring where the current node is located.
  • the determining module is further configured to: at the current node When the type is the third type, the next hop node is determined according to the location information of the current node, the location information of the destination node, and the location information of the previous hop node of the current node.
  • the determining module is further configured to: at the current node When the type is the first type, a preset transmission rule is determined; and the next hop node is determined according to the preset transmission rule.
  • a method and a node for determining a transmission path of information determine a type of the current node according to a positional relationship between a current node and a faulty ring; Type, determine the next hop node that transmits the information; transmit the information to the next hop node.
  • FIG. 1 is a schematic diagram of an architecture example of an on-chip internetworking network according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for determining a transmission path of information according to an embodiment of the present invention
  • FIG. 3 is another schematic flowchart of a method for determining a transmission path of information according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of types of fault rings in an on-chip internetwork according to an embodiment of the present invention.
  • FIG. 5(a) is a schematic diagram of a transmission path of information determined according to a method of determining a transmission path of information in the related art
  • FIG. 5(b) is a schematic diagram of a transmission path of information determined by a method of determining a transmission path of information according to an embodiment of the present invention
  • FIG. 6 is a schematic block diagram of a node according to an embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a node in accordance with another embodiment of the present invention.
  • the technical solution of the embodiment of the present invention may be applied to a network communication system based on a mesh mesh structure, and may be, for example, a Network-on-Chip (NoC), or may be applied to other network-based networks.
  • NoC Network-on-Chip
  • the network of the cell structure but for convenience of description, the embodiment of the present invention will be described by taking NoC as an example, but the present invention is not limited thereto.
  • the on-chip internetwork may include several different nodes, namely, an active node, a deactivated node, an unsafe node, and a faulty node.
  • the abnormal node refers to a normal node connected to two or more faulty nodes or abnormal nodes; the unsecure node refers to an abnormal node connected to at least one normal node.
  • a rectangular area composed of connected abnormal nodes and fault nodes is called a faulty region, and a normal node surrounding the fault region constitutes a faulty ring.
  • FIG. 2 shows a schematic flow chart of a method of determining a transmission path of information according to an embodiment of the present invention. As shown in FIG. 2, the method 100 includes:
  • S120 Determine, according to the type, a next hop node that transmits the information.
  • the node when the information is transmitted to a node, the node becomes the current node, and the current node determines the type of the current node according to the positional relationship between itself and the faulty ring; according to the type, the transmission is determined.
  • the next hop node of the information and transmits the information to the next hop node.
  • the node determines the type of the current node according to the positional relationship between the current node and the faulty ring; according to the type, determines the next hop node that transmits the information; and transmits the information. Give the next hop node.
  • an optimized fault-tolerant transmission path can be determined during the communication process, thereby saving link resources and ensuring real-time validity of communication.
  • the positional relationship between the current node and the faulty ring refers to whether the current node is located on the faulty ring.
  • the next hop node refers to a node that directly receives information transmitted by the current node, and the last hop node of the current node refers to a node that directly transmits information to the current node.
  • the fault loop can be generated by using a generation algorithm existing in the prior art.
  • Each node has a self-detection function, and can send its own state information to the connected adjacent nodes, thereby generating a fault ring having a rectangular shape.
  • Sequence (1) and Table 1 generate a faulty ring, but the present invention is not limited thereto.
  • the program (1) of the method for generating a fault ring in the embodiment of the present invention is:
  • the current node when the current node is on the fault ring and the last hop node of the current node is not on the fault ring, it is determined that the type of the current node is the second type; or, the current node is on the fault ring and the The current hop node of the current node determines that the type of the current node is the second type when the fault ring of the current node is different from the fault ring where the current node is located; or, the current node is on the fault ring and the current node is When the last hop node is on the fault ring where the current node is located, it is determined that the current node type is the third type.
  • the route transmission rule on the normal node may be preset as an XY route.
  • the current node determines the relationship between the horizontal coordinate of the current node and the horizontal coordinate of the destination node. If the two are not equal, The current node continues to transmit information along the horizontal direction, and the next hop node is the next node along the original horizontal direction. If the two horizontal directions are the same, the next hop node is in the vertical direction and at the current node and destination. The next node between the nodes.
  • the invention is not limited to this.
  • the current node may also determine the next hop node according to the relative position of the destination node with respect to the current node, and may further determine the next according to other manners.
  • the hop node is not limited by the present invention.
  • the current node determines, according to the location information of the current node, the location information of the destination node, and the location information of the previous hop node of the current node. Next hop node.
  • the node determines whether the two have equal horizontal coordinates or vertical coordinates by comparing the coordinates of the own with the coordinates of the destination node. If the horizontal coordinates of the two are equal, Then the next hop node is the next node in the same vertical direction as the current coordinate and between the node and the destination node. If the vertical coordinates of the two are equal, the next hop node is at the same node. The next node in the same horizontal direction and between the node and the destination node. If the horizontal coordinate and the vertical direction of the two are not equal, the next hop node is the next node along the direction (clockwise or counterclockwise) determined by the previous hop node of the node and the node.
  • S120 in the method 100 of determining a transmission path of information according to an embodiment of the present invention may be as follows.
  • the node may determine a relative position of the destination node relative to the current node according to the relative position relationship table, where the relative position relationship table may be a table that is pre-generated and stored inside the node.
  • the node may also determine the relative position of the destination node relative to the current node by calculation according to the coordinate information of the current node and the coordinate information of the destination node, but the present invention is not limited thereto.
  • the current node may determine a next hop node of the transmission information according to the correspondence table between the relative location and the routing rule, where the correspondence table between the relative location and the routing rule may be pre-generated and stored in the node.
  • the correspondence table between the relative location and the routing rule may be pre-generated and stored in the node.
  • the current node may determine the type of the faulty ring in which it is located, and determine the next hop node according to the type of the faulty ring and the relative position of the destination node with respect to the current node.
  • the relationship between the type of the fault ring where the current node is located, the relative position of the destination node relative to the current node, and the routing rule may be preset, and stored in the node, and the current node may determine the next according to the relationship table.
  • One hop node but the invention is not limited thereto.
  • the node may determine the type of the fault ring according to coordinate information of all nodes included in the fault ring.
  • the node may determine the type of the faulty ring by determining coordinate information of at least two nodes on the faulty ring, wherein a connection between the first node and the second node of the at least two nodes is the faulty ring diagonal.
  • the type of the fault ring may be determined according to the coordinate information of the northeast corner node of the fault ring and the coordinate information of the southwest corner node; or, according to the coordinate information of the northwest corner node of the fault ring and the coordinate information of the southeast corner node, Determine the type of the faulty ring.
  • the location of any node in the network may be determined as a coordinate origin, and any two of the east, west, south, and north directions associated with the arbitrary node are not on the same horizontal line.
  • the two directions are the horizontal direction X and the vertical direction Y.
  • a location of any one of a southwest corner node, a northeast corner node, a northwest corner node, and a southeast corner node in the network may be determined as a coordinate origin, and two boundaries associated with the node are respectively used as a horizontal direction. And vertical direction.
  • the position of the southwest corner node of the network may be determined as a coordinate origin; the south boundary of the network is determined to be the horizontal direction X, and the horizontal rightward is the positive direction of X; the west boundary of the network is determined to be the vertical direction Y The vertical direction is the positive direction of Y.
  • the type of the faulty ring can be determined according to the coordinates (x 1 , y 1 ) of the northeast corner node of the fault ring and the coordinates (x 2 , y 2 ) of the southwest corner node of the fault ring.
  • the invention is not limited to this.
  • the four boundaries of the normal ring are located inside the network; the east boundary of the east ring is the east boundary of the network, and the other boundaries are located inside the network; the east boundary of the northeast ring is the east boundary of the network and the northern boundary is the network
  • the northern boundary, the other boundaries are located inside the network; the northern boundary of the northern ring is the northern boundary of the network, and the other boundaries are located inside the network; the northern boundary of the northwest ring is the northern boundary of the network and the western boundary is the western boundary of the network, other The boundaries are all located inside the network; the western boundary of the Western Ring is the western boundary of the network, the other boundaries are located inside the network, and the western boundary of the soiled ring is the western boundary of the network and south.
  • the boundary is the southern boundary of the network, and the other boundaries are located inside the network;
  • the southern boundary of the southern ring is the southern boundary of the network, and the other boundaries are located inside the network;
  • the south boundary of the southeast ring is the southern boundary of the network and the east boundary is the east of the network. Boundaries, other boundaries are located inside the network.
  • the current node determines, according to the coordinate information of the current node, the coordinate information of the destination node, and the coordinate information of the first node on the fault ring where the current node is located, and the coordinate information of the second node.
  • a hop node wherein a connection between the first node and the second node is a diagonal of a fault ring where the current node is located.
  • the first node may be a northeast corner node of the fault ring, and correspondingly, the second node may be a southwest corner node of the fault ring; the first node may also be a northwest corner node of the fault ring, and correspondingly, the second node
  • the node can also be the southeast corner node of the fault ring.
  • the current node is located on the south boundary of the fault ring, and the destination node is located in the north or northeast or northwest of the current node.
  • the current node can be determined by the northeast corner node of the fault ring and the northeast corner node.
  • the node is in the counterclockwise or clockwise direction of the current node. If the former is greater than the latter, the next hop node is the first node in the clockwise direction of the current node, otherwise the next hop node is the first node in the counterclockwise direction of the current node.
  • the current node when the type of the current node is the first type, the current node may determine the transmission path of the information according to the following pseudo code, but the present invention is not limited thereto.
  • the pseudo code of the method for determining the path of the transmission information in the embodiment of the present invention is:
  • 5(a) and 5(b) respectively show schematic diagrams of a transmission path determined by a method of determining a transmission path of information according to the prior art and a method of determining a transmission path of information according to an embodiment of the present invention.
  • S1(9,1), D1(7,8), S2(5,9), and D2(9,4) represent the first source node, respectively.
  • the method of determining the transmission path of the information in the embodiment of the present invention will be described below by taking the information in FIG. 5(b) from S1 to D1 as an example.
  • the route transmission method of setting the normal node is XY routing, and the type of the node S1 (9, 1) is the first type, so the information is first transmitted normally along the X axis, and then the node (8, 1) on the fault ring is encountered.
  • the type of the node (8, 1) is the second type, and the destination node is in the northwest of the current node (8, 1), so the information can only be transmitted counterclockwise along the fault ring, and the information is transmitted to the coordinates (8, 2).
  • the node, the type of the node (8, 2) is the third type, and the horizontal coordinates and vertical coordinates of the node with the coordinates (8, 2) are not the same as the destination node, so continue along the counterclockwise direction
  • the fault ring transmits information to the node with coordinates (7, 2).
  • the horizontal coordinate of the node is the same as the destination node, so the information begins to transmit in the Y direction and is transmitted to the node with coordinates (7, 3).
  • (7, 3) is the node on the fault ring, and the destination node is in the north of the node (7, 3), so it needs to be based on the coordinates of the current node, the coordinates of the destination node, the coordinates of the northeast corner node, and the coordinates of the southwest corner node.
  • Determine which distance between the east and west boundaries is smaller than the current node and the destination node.
  • the east boundary of the fault ring is smaller than the distance between the current node and the destination node, so the information needs to be transmitted counterclockwise on the fault ring, so the information is transmitted to the node (8, 3), and the horizontal coordinates and vertical of the current node at this time.
  • the coordinates are not the same as the destination node, so the information is transmitted along the fault ring in the counterclockwise direction and transmitted to the node (8, 4). Based on the same method of determining the next hop node, the information is transmitted to the node (7, 7). At this time, the current node and the destination node have the same horizontal coordinate, so the information is transmitted in the Y direction to the destination node D1 (7, 8).
  • the method for determining the information transmission path by using the method of the embodiment of the present invention can save link resources and ensure communication. Real-time effectiveness.
  • the node determines the type of the current node according to the positional relationship between the current node and the faulty ring; according to the type, determines the next hop node that transmits the information; and transmits the information. Give the next hop node.
  • an optimized fault-tolerant transmission path can be determined during the communication process, thereby saving link resources and ensuring real-time validity of communication.
  • FIG. 6 shows a node 10 in accordance with an embodiment of the present invention. As shown in FIG. 6, the node 10 includes:
  • a determining module 11 configured to determine a type of the current node according to a positional relationship between the current node and the faulty ring;
  • the determining module 11 is further configured to determine, according to the type, a next hop node that transmits the information
  • the sending module 12 is configured to transmit the information to the next hop node.
  • the node when the information is transmitted to a node, the node becomes the current node, and the current node determines the type of the current node according to the positional relationship between itself and the faulty ring; according to the type, the transmission is determined.
  • the next hop node of the information and transmits the information to the next hop node.
  • the node in the embodiment of the present invention determines the type of the current node according to the positional relationship between the current node and the faulty ring; according to the type, determines a next hop node that transmits the information; and transmits the information to the next hop node.
  • an optimized fault-tolerant transmission path can be determined during the communication process, thereby saving link resources and ensuring real-time validity of communication.
  • the determining module 11 is specifically configured to: when the current node is not on the faulty ring, determine that the type of the current node is the first type; or, when the current node is on the faulty ring, The type of the current node is determined according to the positional relationship between the previous hop node of the current node and the fault ring.
  • the determining module 11 is specifically configured to: when the current node is on the fault ring and the last hop node of the current node is not on the fault ring, determine that the current node type is Or the type of the current node is determined to be the second type when the current node is on the fault ring and the last hop node of the current node is different from the fault ring where the current node is located; Or, when the current node is on the fault ring and the last hop node of the current node is on the fault ring where the current node is located, it is determined that the type of the current node is the third type.
  • the determining module 11 is further configured to: when the type of the current node is the second type, determine a relative position of the target node with respect to the current node; and determine, according to the relative position, The next hop node.
  • the determining module 11 is further configured to: according to coordinate information of the current node, coordinate information of the destination node, and coordinate information of the first node on the fault ring where the current node is located And determining, by the coordinate information of the second node, the next hop node, where the connection between the first node and the second node is a diagonal of the fault ring where the current node is located.
  • the determining module 11 is further configured to: when the type of the current node is the third type, according to the location information of the current node, the location information of the destination node, and the current node. The location information of the last hop node determines the next hop node.
  • the determining module 11 is further configured to: when the type of the current node is the first type, determine a preset transmission rule; and determine the next hop according to the preset transmission rule. node.
  • the node 10 may correspond to the method 100 of performing the path of determining the transmission information in the embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the node 10 are respectively implemented for 2 and the corresponding flow in FIG. 3, for brevity, will not be repeated here.
  • the node in the embodiment of the present invention determines the type of the current node according to the positional relationship between the current node and the faulty ring; according to the type, determines a next hop node that transmits the information; and transmits the information to the next hop node.
  • an optimized fault-tolerant transmission path can be determined during the communication process, thereby saving link resources and ensuring real-time validity of communication.
  • FIG. 7 shows a node 20 in accordance with another embodiment of the present invention.
  • the node 20 includes a processor 21, a memory 22, a bus system 23, and a transmitter 24.
  • the processor 21, the memory 22, and the transmitter 24 are connected by a bus system 23 for storing instructions, and the processor 21 is configured to execute the instructions stored by the memory 22 to control the transmitter 24 to send signals;
  • the processor 21 is configured to determine a type of the current node according to a positional relationship between a current node and a faulty ring; the processor 21 is further configured to determine, according to the type, a next hop node that transmits the information; the transmitter 24 is configured to: This information is transmitted to the next hop node determined by the processor 21.
  • the node in the embodiment of the present invention determines the type of the current node according to the positional relationship between the current node and the faulty ring; according to the type, determines a next hop node that transmits the information; Lost to the next hop node.
  • an optimized fault-tolerant transmission path can be determined during the communication process, thereby saving link resources and ensuring real-time validity of communication.
  • the processor 21 may be a central processing unit (“CPU"), and the processor 21 may also be other general-purpose processors and digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 22 can include read only memory and random access memory and provides instructions and data to the processor 21. A portion of the memory 22 may also include a non-volatile random access memory. For example, the memory 22 can also store information of the device type.
  • the bus system 23 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as the bus system 23 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 21 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 22, and the processor 21 reads the information in the memory 22 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the processor 21 is specifically configured to: when the current node is not on the faulty ring, determine that the type of the current node is the first type; or, when the current node is on the faulty ring, Determining the type of the current node according to the positional relationship between the previous hop node of the current node and the fault ring.
  • the processor 21 is specifically configured to: when the current node is on the fault ring and the last hop node of the current node is not on the fault ring, determine that the current node type is The second type; or, when the current node is on the fault ring and the last hop node of the current node is on a fault ring different from the fault ring where the current node is located, determining that the current node type is the second type Or, when the current node is on the fault ring and the last hop node of the current node is on the fault ring where the current node is located, it is determined that the type of the current node is the third type.
  • the processor 21 is further configured to determine, when the type of the current node is the second type, a relative position of the target node with respect to the current node, and determine, according to the relative position, the lower position. One hop node.
  • the processor 21 is further configured to: according to coordinate information of the current node, coordinate information of the destination node, and coordinate information of the first node on the fault ring where the current node is located, and The coordinate information of the two nodes determines the next hop node, wherein the connection between the first node and the second node is a diagonal of the fault ring where the current node is located.
  • the processor 21 is further configured to: when the type of the current node is the third type, according to the location information of the current node, the location information of the destination node, and the previous one of the current node.
  • the location information of the hop node is determined to determine the next hop node.
  • the processor 21 is further configured to: when the type of the current node is the first type, determine a preset transmission rule; and determine, according to the preset transmission rule, the next hop node.
  • the node 20 may correspond to the node 10 in the embodiment of the present invention, and may correspond to the corresponding body in the method according to the embodiment of the present invention, and the above-mentioned sum of each module in the node 20.
  • Other operations and/or functions are respectively implemented in order to implement the corresponding processes in FIG. 2 and FIG. 3, and are not described herein again for brevity.
  • the node in the embodiment of the present invention determines the type of the current node according to the positional relationship between the current node and the faulty ring; according to the type, determines a next hop node that transmits the information; and transmits the information to the next hop node.
  • an optimized fault-tolerant transmission path can be determined during the communication process, thereby saving link resources and ensuring real-time validity of communication.
  • an embodiment or “an embodiment” referred to throughout the specification means an embodiment. Specific features, structures, or characteristics are included in at least one embodiment of the invention. Thus, “in one embodiment” or “in an embodiment” or “an” In addition, these particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • system and “network” are used interchangeably herein. It should be understood that the term “and/or” herein is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B exist simultaneously. There are three cases of B alone. In addition, the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined from A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or a CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明提供了一种确定信息的传输路径的方法和节点,该方法包括:根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。

Description

确定信息的传输路径的方法和节点
本申请要求于2015年1月14日提交中国专利局、申请号为201510017300.5、发明名称为“确定信息的传输路径的方法和节点”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及确定信息的传输路径的方法和节点。
背景技术
片上互联网络(network-on-chip,简称为“NoC”)成为当前众核系统的发展趋势。网格Mesh结构和平面的硅片几何结构可以很好的匹配,并且提供比一维的总线或者是单环结构更好的可测量性和更高的带宽。目前NoC系统一般采用2D-mesh结构,比如Teraflop80核和Tilera64核。
当节点的数量增多,有些节点在芯片的生产过程中可能会坏死,而且在实际使用中有些节点会成为热点,寿命也会小于其他节点。当前提出针对NoC上节点分区域(partition或者region)的概念,即把其中的一部分节点组成一个小区域系统独立完成某一任务,此时临近节点需要经过分区域进行通信时,是不被允许的。
针对上述问题,相关技术根据待传输的信息的类型设定信息的传输路径。位于故障环(fault ring)和故障链(fault chain)上的节点需要记录其参考(reference)节点的坐标信息。当传输信息遇到故障环和故障链时,根据故障环和故障链的类型(是否为s-chain)、参考节点的坐标信息以及信息的类型设定沿故障环和故障链顺时针或者是逆时针进行信息传输。在通信过程中节点通过该方法确定信息的传输路径时,会造成链路资源的浪费,降低通 信的实时有效性。
发明内容
本发明提供了一种确定信息的传输路径的方法和节点,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
第一方面,提供了一种确定信息的传输路径的方法,包括:根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。
结合第一方面,在第一方面的第一种可能的实现方式中,该根据当前节点与故障环的位置关系确定该当前节点的类型,包括:
在该当前节点不在故障环上时,确定该当前节点的类型为第一类型;或,
在该当前节点在故障环上时,根据该当前节点的上一跳节点与故障环的位置关系确定该当前节点的类型。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该根据当前节点与故障环的位置关系确定该当前节点的类型,包括:
在该当前节点在故障环上且该当前节点的上一跳节点不在故障环上时,确定该当前节点的类型为第二类型;或,
在该当前节点在故障环上且该当前节点的上一跳节点在与该当前节点所在的故障环不相同的故障环上时,确定该当前节点的类型为第二类型;或,
在该当前节点在故障环上且该当前节点的上一跳节点在该当前节点所在的故障环上时,确定该当前节点的类型为第三类型。
结合第一方面的第二种可能的实现方式,在第一方面的三种可能的实现方式中,该根据该类型,确定传输该信息的下一跳节点,包括:在该当前节点的类型为第二类型时,确定目的节点相对于该当前节点的相对位置;根据 该相对位置,确定该下一跳节点。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,该根据该相对位置,确定该下一跳节点,包括:根据该当前节点的坐标信息、该目的节点的坐标信息和该当前节点所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定该下一跳节点,其中,该第一节点和该第二节点的连线为该当前节点所在的故障环的对角线。
结合第一方面的第二种至第四种可能的实现方式中任一可能的实现方式,在第一方面的第五种可能的实现方式中,该根据该类型,确定传输该信息的下一跳节点,包括:在该当前节点的类型为第三类型时,根据该当前节点的位置信息、目的节点的位置信息和该当前节点的上一跳节点的位置信息,确定该下一跳节点。
结合第一方面的第一种至第五种可能的实现方式中任一可能的实现方式,在第一方面的第六种可能的实现方式中,该根据该类型,确定传输该信息的下一跳节点,包括:在该当前节点的类型为第一类型时,确定预设传输规则;根据该预设传输规则,确定该下一跳节点。
第二方面,提供了一种节点,包括:确定模块,用于根据当前节点与故障环的位置关系确定该当前节点的类型;该确定模块,还用于根据该类型,确定传输该信息的下一跳节点;发送模块,用于将该信息传输给该确定模块确定的该下一跳节点。
结合第二方面,在第二方面的第一种可能的实现方式中,该确定模块具体用于:
在该当前节点不在故障环上时,确定该当前节点的类型为第一类型;或,
在该当前节点在故障环上时,根据该当前节点的上一跳节点与故障环的位置关系确定该当前节点的类型。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,该确定模块具体用于:
在该当前节点在故障环上且该当前节点的上一跳节点不在故障环上时,确定该当前节点的类型为第二类型;或,
在该当前节点在故障环上且该当前节点的上一跳节点在与该当前节点所在的故障环不相同的故障环上时,确定该当前节点的类型为第二类型;或,
在该当前节点在故障环上且该当前节点的上一跳节点在该当前节点所在的故障环上时,确定该当前节点的类型为第三类型。
结合第二方面的第二种可能的实现方式,在第二方面的三种可能的实现方式中,该确定模块还具体用于:在该当前节点的类型为第二类型时,确定目的节点相对于该当前节点的相对位置;根据该相对位置,确定该下一跳节点。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,该确定模块还具体用于:
根据该当前节点的坐标信息、该目的节点的坐标信息和该当前节点所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定该下一跳节点,其中,该第一节点和该第二节点的连线为该当前节点所在的故障环的对角线。
结合第二方面的第二种至第四种可能的实现方式中任一可能的实现方式,在第二方面的第五种可能的实现方式中,该确定模块还具体用于:在该当前节点的类型为第三类型时,根据该当前节点的位置信息、目的节点的位置信息和该当前节点的上一跳节点的位置信息,确定该下一跳节点。
结合第二方面的第一种至第五种可能的实现方式中任一可能的实现方式,在第二方面的第六种可能的实现方式中,该确定模块还具体用于:在该当前节点的类型为第一类型时,确定预设传输规则;根据该预设传输规则,确定该下一跳节点。
基于上述技术方案,本发明实施例提供的确定信息的传输路径的方法和节点,根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类 型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本发明实施例的片上互联网络的架构实例的示意图;
图2是本发明实施例的确定信息的传输路径的方法的示意性流程图;
图3是本发明实施例的确定信息的传输路径的方法的另一示意性流程图;
图4是本发明实施例的片上互联网络中故障环的类型的示意图;
图5(a)是根据相关技术中确定信息的传输路径的方法确定的信息的传输路径的示意图;
图5(b)是根据本发明实施例的确定信息的传输路径的方法确定的信息的传输路径的示意图;
图6是本发明实施例节点的示意性框图;
图7是本发明另一实施例的节点的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
应理解,本发明实施例的技术方案可以应用于基于网格mesh结构的网络通信系统,例如可以是片上互联网络(Network-on-Chip,简称为“NoC”),也可以应用于其他基于网格结构的网络,但为描述方便,本发明实施例将以NoC为例进行说明,但本发明并不限于此。
图1是根据本发明实施例的片上互联网络的架构实例的示意图。如图1所示,片上互联网络中可以包括几种不同的节点,分别为正常(active)节点、非正常(deactivated)节点、不安全(unsafe)节点和故障(faulty)节点。其中,非正常节点是指连接到两个或多个故障节点或非正常节点的正常节点;不安全节点是指连接到至少一个正常节点的非正常节点。相连接的非正常节点和故障节点组成的矩形区域称为故障区域(faulty region),包围环绕该故障区域的正常节点组成故障环(faulty ring)。
图2示出了根据本发明实施例的确定信息的传输路径的方法的示意性流程图。如图2所示,该方法100包括:
S110,根据当前节点与故障环的位置关系确定该当前节点的类型;
S120,根据该类型,确定传输该信息的下一跳节点;
S130,将该信息传输给该下一跳节点。
具体而言,在信息传输的过程中,当信息传递到一个节点时,该节点即成为当前节点,该当前节点根据自身与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;并将该信息传输给该下一跳节点。
因此,本发明实施例的确定信息的传输路径的方法,节点根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
应理解,在本发明实施例中,当前节点与故障环的位置关系是指当前节点是否位于故障环上。下一跳节点是指直接接收当前节点传输的信息的节点,当前节点的上一跳节点指直接向该当前节点传输信息的节点。
还应理解,在本发明实施例中,可以采用现有技术中已有的生成算法生成故障环。其中,每个节点都有自我检测功能,并能将自身的状态信息发送给相连接的相邻节点,由此可以生成形状为矩形的故障环。例如可以根据程 序(1)和表1生成故障环,但本发明并不限于此。本发明实施例中生成故障环的方法的程序(1)为:
Procedure Form-Ring/*current node is X*/
if(E_X or W_X is faulty,unsafe,or deactivated)
Send status information to S_X and N_X);
if(S_X or N_X is faulty,unsafe,or deactivated)
Send status information to E_X and W_X);
Receive from all active neighbors their status information;
Determine whether X is corner nodes of fault rings according to Table 1;
表1
Figure PCTCN2016070824-appb-000001
可选地,在S110中,在该当前节点不在故障环上时,确定该当前节点的类型为第一类型;或,在该当前节点在故障环上时,根据该当前节点的上一跳节点与故障环的位置关系确定该当前节点的类型。
具体而言,在该当前节点在故障环上且该当前节点的上一跳节点不在故障环上时,确定该当前节点的类型为第二类型;或,在该当前节点在故障环上且该当前节点的上一跳节点在与该当前节点所在的故障环不相同的故障环上时,确定该当前节点的类型为第二类型;或,在该当前节点在故障环上且该当前节点的上一跳节点在该当前节点所在的故障环上时,确定该当前节点的类型为第三类型。
可选地,在S120中,在该当前节点的类型为第一类型时,确定预设传输规则;根据该预设传输规则,确定该下一跳节点。例如,可以预先设定正常节点上的路由传输规则为XY路由,当信息传输到当前节点时,当前节点判断自身的水平坐标与目的节点的水平坐标之间的关系,如果两者不相等,则当前节点沿着水平方向继续传输信息,下一跳节点即为沿原水平方向的下一个节点,若两者水平方向相同,则下一跳节点即为沿竖直方向并且在该当前节点和目的节点之间的下一个节点。但本发明并不限于此。
可选地,在S120中,在该当前节点的类型为第一类型时,当前节点也可以根据目的节点相对于当前节点的相对位置,确定下一跳节点,还可以根据其他的方式确定下一跳节点,本发明对此不作限定。
可选地,在S120中,在该当前节点的类型为第三类型时,当前节点根据该当前节点的位置信息、目的节点的位置信息和该当前节点的上一跳节点的位置信息,确定该下一跳节点。
具体而言,当信息传输到第三类型的节点时,该节点通过比较自身的坐标与目的节点的坐标,确定两者是否存在相等的水平坐标或竖直坐标,如果两者的水平坐标相等,则下一跳节点即为与当前坐标在同一竖直方向上且在该节点和目的节点之间的下一个节点,如果两者的竖直坐标相等,则下一跳节点即为与该节点在同一水平方向上且在该节点和目的节点之间的下一个节点。如果两者的水平坐标和竖直方向均不相等,则下一跳节点即为沿着该节点的上一跳节点与该节点确定的方向(顺时针或逆时针)上的下一个节点。
可选地,如图3所示,在根据本发明实施例的确定信息的传输路径的方法100中的S120可以如下所述。
S121,在该当前节点的类型为第二类型时,确定目的节点相对于该当前节点的相对位置;
S122,根据该相对位置,确定该下一跳节点。
可选地,在S121中,节点可以根据相对位置关系表确定目的节点相对于当前节点的相对位置,该相对位置关系表可以是预先生成并存储在节点内部的表格。节点还可以根据当前节点的坐标信息和目的节点的坐标信息,通过计算确定出目的节点相对于当前节点的相对位置,但本发明并不限于此。
可选地,在S122中,当前节点可以根据相对位置与路由规则的对应关系表确定传输信息的下一跳节点,该相对位置与路由规则的对应关系表可以是预先生成并存储在节点内部的表格,但本发明并不限于此。
可选地,在S122中,当前节点可以确定其所在的故障环的类型,根据该故障环的类型和目的节点相对于当前节点的相对位置确定下一跳节点。可选地,可以预先设置当前节点所在的故障环的类型、目的节点相对于当前节点的相对位置和路由规则之间的关系表,并存储在节点中,当前节点根据该关系表即可确定下一跳节点,但本发明并不限于此。
在本发明实施例中,可选地,节点可以根据故障环包括的所有节点的坐标信息,确定该故障环的类型。优选地,节点可以通过确定故障环上的至少两个节点的坐标信息,确定该故障环的类型,其中,该至少两个节点中的第一节点和第二节点的连线为该故障环的对角线。例如,可以根据该故障环的东北角节点的坐标信息和西南角节点的坐标信息,确定该故障环的类型;或,根据该故障环的西北角节点的坐标信息和东南角节点的坐标信息,确定该故障环的类型。
在本发明实施例中,可选的,可以将网络中任意节点所在的位置确定为坐标原点,与该任意节点相关联的东、西、南、北四个方向中任意两个不在 同一水平线上的两个方向作为水平方向X和竖直方向Y。优选的,可以将该网络中的西南角节点、东北角节点、西北角节点和东南角节点中的任一节点所在的位置确定为坐标原点,与该节点相关联的两个边界分别作为水平方向和竖直方向。例如,可以将该网络的西南角节点的位置确定为坐标原点;将该网络的南边界确定为水平方向X,水平向右为X的正方向;将该网络的西边界确定为竖直方向Y,竖直向上为Y的正方向。则此时可以根据故障环的东北角节点的坐标(x1,y1)和故障环的西南角节点的坐标(x2,y2),确定该故障环的类型。但本发明并不限于此。
具体而言,假设一个片上互联网络包括M×N个节点,其中,网络的水平方向有M个节点,竖直方向有N个节点,如图4所示,若0≤x1≤(M-1),0≤y1≤(N-1),0≤x2≤(M-1),0≤y2≤(N-1),则该故障环为正常环;若x1=M,0≤y1≤(N-1),0≤x2≤(M-1),0≤y2≤(N-1),则该故障环为东环;若x1=M,y1=N,0≤x2≤(M-1),0≤y2≤(N-1),则该故障环为东北环;若0≤x1≤(M-1),y1=N,0≤x2≤(M-1),0≤y2≤(N-1),则该故障环为北环;若0≤x1≤(M-1),y1=N,x2=-1,0≤y2≤(N-1),则该故障环为西北环;若0≤x1≤(M-1),0≤y1≤(N-1),x2=-1,0≤y2≤(N-1),则该故障环为西环;若0≤x1≤(M-1),0≤y1≤(N-1),x2=-1,y2=-1,则该故障环为西南环;若0≤x1≤(M-1),0≤y1≤(N-1),0≤x2≤(M-1),y2=-1,则该故障环为南环;若x1=M,0≤y1≤(N-1),0≤x2≤(M-1),y2=-1,则该故障环为东南环。
也就是说,正常环的四条边界均位于网络的内部;东环的东边界为网络的东边界,其他边界均位于网络的内部;东北环的东边界为网络的东边界且北边界为网络的北边界,其他边界均位于网络的内部;北环的北边界为网络的北边界,其他边界均位于网络的内部;西北环的北边界为网络的北边界且西边界为网络的西边界,其他边界均位于网络的内部;西环的西边界为网络的西边界,其他边界均位于网络内部,西南环的西边界为网络的西边界且南 边界为网络的南边界,其他边界均位于网络的内部;南环的南边界为网络的南边界,其他边界均位于网络的内部,东南环的南边界为网络的南边界且东边界为网络的东边界,其他边界均位于网络的内部。
优选地,在S122中,当前节点根据该当前节点的坐标信息、该目的节点的坐标信息和该当前节点所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定该下一跳节点,其中,该第一节点和该第二节点的连线为该当前节点所在的故障环的对角线。例如该第一节点可以为故障环的东北角节点,相应地,该第二节点可以为故障环的西南角节点;该第一节点还可以为故障环的西北角节点,相应地,该第二节点还可以为故障环的东南角节点。
具体而言,假设当前节点位于故障环的南边界上,目的节点位于当前节点的北方或东北方或西北方,此时可以通过判断当前节点到该故障环的东北角节点及该东北角节点到该目的节点在水平方向上需要经过的总路径的长度和当前节点到该故障环的西南角节点及该西南角节点该到目的节点在水平方向上需要经过的总路径的长度,确定下一跳节点是在当前节点的逆时针方向还是顺时针方向。若前者大于后者,则下一跳节点为在该当前节点的顺时针方向上的第一个节点,否则,该下一跳节点为在该当前节点的逆时针方向上的第一个节点。
优选地,在本发明实施例中,在当前节点的类型为第一类型时,当前节点可以根据下列伪代码确定信息的传输路径,但本发明并不限于此。本发明实施例的确定传输信息的路径的方法的伪代码为:
(W:west,N:north,S:south,E:east,NE:northeast,NW:northwest,SW:southwest,SE:southeast,Cur:current node,Dst:destination node)
If(Cur is on E-side)and(Dst is W,or NW,or SW)
If(2Y_NE-Y_Cur-Y_Dst>Y_Dst+Y_Cur-2Y_SW and Y_SW>-1)or(Y_NE=N)
Clockwise
Else
Counter-clockwise
If(Cur is on N-side)and(Dst is S,or SE,or SW)
If(2X_NE-X_Cur-X_Dst>X_Cur+X_Dst-2X_SW and X_NE<M)or(X_SW<0)
Clockwise
Else
Counter-clockwise
If(Cur is on W-side)and(Dst is E,or NE,or SE)
If(2Y_NE-Y_Cur-Y_Dst<Y_Dst+Y_Cur-2Y_SW and Y_NE<N)or(Y_SW<0)
Clockwise
Else
Counter-clockwise
If(Cur is on S-side)and(Dst is N,or NE,or NW)
If(2X_NE-X_Cur-X_Dst>X_Cur+X_Dst-2X_SW and X_SW>-1)or(X_NE=M)
Clockwise
Else
Counter-clockwise
Else
Normal route
图5(a)和图5(b)分别示出了根据现有技术中确定信息的传输路径的方法和根据本发明实施例的确定信息的传输路径的方法确定的传输路径的示意图。
如图5(a)和5(b)所示,S1(9,1)、D1(7,8)、S2(5,9)、D2(9,4)分别代表第一源节点、第一目的节点、第二源节点和第二目的节点。下面将以图5(b)中信息从S1传输到D1为例,描述本发明实施例的确定信息的传输路径的方法。
设定正常节点的路由传输方法为XY路由,节点S1(9,1)的类型为第一类型,因此信息首先沿X轴正常传输,之后遇到故障环上的节点(8,1),该节点(8,1)的类型为第二类型,并且目的节点在该当前节点(8,1)的西北方,所以信息只能沿该故障环逆时针传输,信息传到坐标为(8,2)的节点,该节点(8,2)的类型为第三类型,并且坐标为(8,2)的节点的水平坐标和竖直坐标均与目的节点不相同,所以继续沿逆时针方向沿该故障环传输信息,传输到坐标为(7,2)的节点,该节点的水平坐标与目的节点相同,所以信息开始沿Y方向继续传输,传到坐标为(7,3)的节点,该节点(7,3)是故障环上的节点,并且目的节点在该节点(7,3)的北方,因此需要根据当前节点的坐标、目的节点的坐标、东北角节点的坐标和西南角节点的坐标确定东西边界距离当前节点和目的节点的距离哪个更小,经过判断故障环的东边界距离当前节点和目的节点的距离更小,所以信息在该故障环上需沿逆时针传输,因此信息传输到节点(8,3),此时当前节点的水平坐标和竖直坐标均与目的节点不相同,所以继续沿逆时针方向沿该故障环传输信息,传输到节点(8,4),基于相同的确定下一跳节点的方法,信息传输至节点(7,7),此时当前节点和目的节点水平方向坐标相同,所以信息沿Y方向进行传输到目的节点D1(7,8)。
通过对比图5(a)和图5(b)可以看出,当节点间有多次跨故障环通信时,采用本发明实施例的方法确定信息的传输路径,可以节省链路资源,确保通信的实时有效性。
因此,本发明实施例的确定信息的传输路径的方法,节点根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
上文中结合图2至图5(a)以及图5(b),详细描述了根据本发明实施例的确定信息的传输路径的方法,下面将结合图6,描述根据本发明实施例的节点。
图6示出了根据本发明实施例的节点10。如图6所示,该节点10包括:
确定模块11,用于根据当前节点与故障环的位置关系确定该当前节点的类型;
该确定模块11,还用于根据该类型,确定传输该信息的下一跳节点;
发送模块12,用于将该信息传输给该下一跳节点。
具体而言,在信息传输的过程中,当信息传递到一个节点时,该节点即成为当前节点,该当前节点根据自身与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;并将该信息传输给该下一跳节点。
因此,本发明实施例的节点,根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
在本发明实施例中,可选地,该确定模块11具体用于:在该当前节点不在故障环上时,确定该当前节点的类型为第一类型;或,在该当前节点在故障环上时,根据该当前节点的上一跳节点与故障环的位置关系确定该当前节点的类型。
在本发明实施例中,可选地,该确定模块11具体用于:在该当前节点在故障环上且该当前节点的上一跳节点不在故障环上时,确定该当前节点的类型为第二类型;或,在该当前节点在故障环上且该当前节点的上一跳节点在与该当前节点所在的故障环不相同的故障环上时,确定该当前节点的类型为第二类型;或,在该当前节点在故障环上且该当前节点的上一跳节点在该当前节点所在的故障环上时,确定该当前节点的类型为第三类型。
在本发明实施例中,可选地,该确定模块11还具体用于:在该当前节点的类型为第二类型时,确定目的节点相对于该当前节点的相对位置;根据该相对位置,确定该下一跳节点。
在本发明实施例中,可选地,该确定模块11还具体用于:根据该当前节点的坐标信息、该目的节点的坐标信息和该当前节点所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定该下一跳节点,其中,该第一节点和该第二节点的连线为该当前节点所在的故障环的对角线。
在本发明实施例中,可选地,该确定模块11还具体用于:在该当前节点的类型为第三类型时,根据该当前节点的位置信息、目的节点的位置信息和该当前节点的上一跳节点的位置信息,确定该下一跳节点。
在本发明实施例中,可选地,该确定模块11还具体用于:在该当前节点的类型为第一类型时,确定预设传输规则;根据该预设传输规则,确定该下一跳节点。
应理解,根据本发明实施例的节点10可对应于执行本发明实施例中的确定传输信息的路径的方法100,并且节点10中的各个模块的上述和其它操作和/或功能分别为了实现图2和图3中的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的节点,根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
图7示出了根据本发明另一实施例的节点20。如图7所示,该节点20包括处理器21、存储器22、总线系统23和发送器24。其中,处理器21、存储器22、发送器24通过总线系统23相连,该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以控制发送器24发送信号;其中,该处理器21用于根据当前节点与故障环的位置关系确定该当前节点的类型;该处理器21还用于根据该类型,确定传输该信息的下一跳节点;该发送器24用于将该信息传输给该处理器21确定的该下一跳节点。
因此,本发明实施例的节点,根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传 输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
应理解,在本发明实施例中,该处理器21可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器21还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器22可以包括只读存储器和随机存取存储器,并向处理器21提供指令和数据。存储器22的一部分还可以包括非易失性随机存取存储器。例如,存储器22还可以存储设备类型的信息。
该总线系统23除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统23。
在实现过程中,上述方法的各步骤可以通过处理器21中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器22,处理器21读取存储器22中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该处理器21具体用于:在该当前节点不在故障环上时,确定该当前节点的类型为第一类型;或,在该当前节点在故障环上时,根据该当前节点的上一跳节点与故障环的位置关系确定该当前节点的类型。
可选地,作为一个实施例,该处理器21具体用于:在该当前节点在故障环上且该当前节点的上一跳节点不在故障环上时,确定该当前节点的类型为 第二类型;或,在该当前节点在故障环上且该当前节点的上一跳节点在与该当前节点所在的故障环不相同的故障环上时,确定该当前节点的类型为第二类型;或,在该当前节点在故障环上且该当前节点的上一跳节点在该当前节点所在的故障环上时,确定该当前节点的类型为第三类型。
可选地,作为一个实施例,该处理器21还具体用于:在该当前节点的类型为第二类型时,确定目的节点相对于该当前节点的相对位置;根据该相对位置,确定该下一跳节点。
可选地,作为一个实施例,该处理器21还具体用于:根据该当前节点的坐标信息、该目的节点的坐标信息和该当前节点所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定该下一跳节点,其中,该第一节点和该第二节点的连线为该当前节点所在的故障环的对角线。
可选地,作为一个实施例,该处理器21还具体用于:在该当前节点的类型为第三类型时,根据该当前节点的位置信息、目的节点的位置信息和该当前节点的上一跳节点的位置信息,确定该下一跳节点。
可选地,作为一个实施例,该处理器21还具体用于:在该当前节点的类型为第一类型时,确定预设传输规则;根据该预设传输规则,确定该下一跳节点。
应理解,根据本发明实施例的节点20可对应于本发明实施例中的节点10,并可以对应于执行根据本发明实施例的方法中的相应主体,并且节点20中的各个模块的上述和其它操作和/或功能分别为了实现图2和图3中的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的节点,根据当前节点与故障环的位置关系确定该当前节点的类型;根据该类型,确定传输该信息的下一跳节点;将该信息传输给该下一跳节点。由此,在通信过程中能够确定出优化的容错传输路径,从而能够节省链路资源,确保通信的实时有效性。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例 有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本发明的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常可互换使用。应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和 方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种确定信息的传输路径的方法,其特征在于,包括:
    根据当前节点与故障环的位置关系确定所述当前节点的类型;
    根据所述类型,确定传输所述信息的下一跳节点;
    将所述信息传输给所述下一跳节点。
  2. 根据权利要求1所述的方法,其特征在于,所述根据当前节点与故障环的位置关系确定所述当前节点的类型,包括:
    在所述当前节点不在故障环上时,确定所述当前节点的类型为第一类型;或,
    在所述当前节点在故障环上时,根据所述当前节点的上一跳节点与故障环的位置关系确定所述当前节点的类型。
  3. 根据权利要求2所述的方法,其特征在于,所述根据当前节点与故障环的位置关系确定所述当前节点的类型,包括:
    在所述当前节点在故障环上且所述当前节点的上一跳节点不在故障环上时,确定所述当前节点的类型为第二类型;或,
    在所述当前节点在故障环上且所述当前节点的上一跳节点在与所述当前节点所在的故障环不相同的故障环上时,确定所述当前节点的类型为第二类型;或,
    在所述当前节点在故障环上且所述当前节点的上一跳节点在所述当前节点所在的故障环上时,确定所述当前节点的类型为第三类型。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述类型,确定传输所述信息的下一跳节点,包括:
    在所述当前节点的类型为第二类型时,确定目的节点相对于所述当前节点的相对位置;
    根据所述相对位置,确定所述下一跳节点。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述相对位置,确定所述下一跳节点,包括:
    根据所述当前节点的坐标信息、所述目的节点的坐标信息和所述当前节点 所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定所述下一跳节点,其中,所述第一节点和所述第二节点的连线为所述当前节点所在的故障环的对角线。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述根据所述类型,确定传输所述信息的下一跳节点,包括:
    在所述当前节点的类型为第三类型时,根据所述当前节点的位置信息、目的节点的位置信息和所述当前节点的上一跳节点的位置信息,确定所述下一跳节点。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述根据所述类型,确定传输所述信息的下一跳节点,包括:
    在所述当前节点的类型为第一类型时,确定预设传输规则;
    根据所述预设传输规则,确定所述下一跳节点。
  8. 一种节点,其特征在于,包括:
    确定模块,用于根据当前节点与故障环的位置关系确定所述当前节点的类型;
    所述确定模块,还用于根据所述类型,确定传输所述信息的下一跳节点;
    发送模块,用于将所述信息传输给所述确定模块确定的所述下一跳节点。
  9. 根据权利要求8所述的节点,其特征在于,所述确定模块具体用于:
    在所述当前节点不在故障环上时,确定所述当前节点的类型为第一类型;或,
    在所述当前节点在故障环上时,根据所述当前节点的上一跳节点与故障环的位置关系确定所述当前节点的类型。
  10. 根据权利要求9所述的节点,其特征在于,所述确定模块具体用于:
    在所述当前节点在故障环上且所述当前节点的上一跳节点不在故障环上时,确定所述当前节点的类型为第二类型;或,
    在所述当前节点在故障环上且所述当前节点的上一跳节点在与所述当前节点所在的故障环不相同的故障环上时,确定所述当前节点的类型为第二类型;或,
    在所述当前节点在故障环上且所述当前节点的上一跳节点在所述当前节点所在的故障环上时,确定所述当前节点的类型为第三类型。
  11. 根据权利要求10所述的节点,其特征在于,所述确定模块还具体用于:
    在所述当前节点的类型为第二类型时,确定目的节点相对于所述当前节点的相对位置;
    根据所述相对位置,确定所述下一跳节点。
  12. 根据权利要求11所述的节点,其特征在于,所述确定模块还具体用于:
    根据所述当前节点的坐标信息、所述目的节点的坐标信息和所述当前节点所在的故障环上的第一节点的坐标信息和第二节点的坐标信息,确定所述下一跳节点,其中,所述第一节点和所述第二节点的连线为所述当前节点所在的故障环的对角线。
  13. 根据权利要求10至12中任一项所述的节点,其特征在于,所述确定模块还具体用于:
    在所述当前节点的类型为第三类型时,根据所述当前节点的位置信息、目的节点的位置信息和所述当前节点的上一跳节点的位置信息,确定所述下一跳节点。
  14. 根据权利要求9至13中任一项所述的节点,其特征在于,所述确定模块还具体用于:
    在所述当前节点的类型为第一类型时,确定预设传输规则;
    根据所述预设传输规则,确定所述下一跳节点。
PCT/CN2016/070824 2015-01-14 2016-01-13 确定信息的传输路径的方法和节点 WO2016112854A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510017300.5A CN105846949B (zh) 2015-01-14 2015-01-14 确定信息的传输路径的方法和节点
CN201510017300.5 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016112854A1 true WO2016112854A1 (zh) 2016-07-21

Family

ID=56405252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070824 WO2016112854A1 (zh) 2015-01-14 2016-01-13 确定信息的传输路径的方法和节点

Country Status (2)

Country Link
CN (1) CN105846949B (zh)
WO (1) WO2016112854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063512A (zh) * 2021-02-25 2021-07-02 鲁洪宝 物联网管网平衡技术同步温度采集方法及系统
CN114584507A (zh) * 2022-02-23 2022-06-03 中山大学 基于类脑处理器的数据处理方法、路由器及网络系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341328B (zh) * 2016-08-24 2019-06-25 东南大学 一种网格结构量子通信网络的路由方法
CN106792257B (zh) * 2016-11-22 2019-12-10 北京大米科技有限公司 用于流媒体转发的方法及装置、路由方法及装置
CN110048943A (zh) * 2018-01-17 2019-07-23 清华大学 适用于神经形态电路的路由容错方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095946A1 (en) * 2002-11-18 2004-05-20 Baker Albert D. Logical star topologies for non-star networks
CN101364926A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种网络保护的方法和设备
CN101674217A (zh) * 2008-09-10 2010-03-17 中兴通讯股份有限公司 一种在mesh网络中实现永久环网保护的方法
CN102387077A (zh) * 2011-10-19 2012-03-21 西安电子科技大学 具有容错功能的热量均衡片上网络路径选择方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078347B2 (ja) * 2006-12-28 2012-11-21 インターナショナル・ビジネス・マシーンズ・コーポレーション 複数のノードを有するコンピュータ・システムの故障ノードをフェイルオーバー(修復)する方法
CN104202241A (zh) * 2014-08-06 2014-12-10 长春理工大学 2D-Mesh拓补结构下的片上网络偏转容错路由算法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095946A1 (en) * 2002-11-18 2004-05-20 Baker Albert D. Logical star topologies for non-star networks
CN101364926A (zh) * 2007-08-08 2009-02-11 华为技术有限公司 一种网络保护的方法和设备
CN101674217A (zh) * 2008-09-10 2010-03-17 中兴通讯股份有限公司 一种在mesh网络中实现永久环网保护的方法
CN102387077A (zh) * 2011-10-19 2012-03-21 西安电子科技大学 具有容错功能的热量均衡片上网络路径选择方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063512A (zh) * 2021-02-25 2021-07-02 鲁洪宝 物联网管网平衡技术同步温度采集方法及系统
CN114584507A (zh) * 2022-02-23 2022-06-03 中山大学 基于类脑处理器的数据处理方法、路由器及网络系统
CN114584507B (zh) * 2022-02-23 2023-07-04 中山大学 基于类脑处理器的数据处理方法、路由器及网络系统

Also Published As

Publication number Publication date
CN105846949B (zh) 2019-03-26
CN105846949A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016112854A1 (zh) 确定信息的传输路径的方法和节点
US8819616B2 (en) Asymmetric mesh NoC topologies
US11748535B2 (en) System and method to generate a network-on-chip (NoC) description using incremental topology synthesis
US9479196B2 (en) High performance interconnect link layer
TWI482454B (zh) 記憶體網路方法、裝置及系統
US8825986B2 (en) Switches and a network of switches
US7080156B2 (en) Message routing in a torus interconnect
WO2020134827A1 (zh) 一种用于片上网络的路径创建方法、装置及电子设备
Fukushima et al. A Region-based Fault-Tolerant Routing Algorithmfor 2D Irregular Mesh Network-on-Chip
CN117241337B (zh) 双路径无线网格网络的路由方法、装置、设备和存储介质
CN107171954B (zh) 容错路由方法、装置及片上网络
JP2016032288A (ja) バッファを有しないnocのデータ処理方法、及びnoc電子素子
JP5754504B2 (ja) 管理装置、情報処理装置、情報処理システム及びデータ転送方法
CN116915708A (zh) 路由数据包的方法、处理器及可读存储介质
WO2015165280A1 (zh) 一种确定中间路由节点的方法、装置及系统
CN115297060A (zh) 片上网络、数据转发方法和电子设备
WO2022178675A1 (zh) 一种互联系统、数据传输方法以及芯片
CN114448862A (zh) 基于3d片上网络的数据传输方法、装置、设备和介质
US10797897B2 (en) Multi-step remote packet broadcasting/multicasting mechanism for cognitive systems
US20240048508A1 (en) Mixed-Dimension Order Routing
US9697122B2 (en) Data processing device
WO2016127892A1 (zh) 一种基于3D-mesh网络的点对多点通信方法及通信节点
Kurokawa et al. Design of an extended 2D mesh network‐on‐chip and development of A fault‐tolerantrouting method
Anirudh et al. Routing Algorithm for Application-Specific Network-on-Chip with Irregular Core Sizes
US11722364B1 (en) Network backup path detection using geospatial data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737079

Country of ref document: EP

Kind code of ref document: A1