WO2016112670A1 - 小区切换优化评估方法及装置 - Google Patents

小区切换优化评估方法及装置 Download PDF

Info

Publication number
WO2016112670A1
WO2016112670A1 PCT/CN2015/084236 CN2015084236W WO2016112670A1 WO 2016112670 A1 WO2016112670 A1 WO 2016112670A1 CN 2015084236 W CN2015084236 W CN 2015084236W WO 2016112670 A1 WO2016112670 A1 WO 2016112670A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimization
target cell
handover
fault
ratio value
Prior art date
Application number
PCT/CN2015/084236
Other languages
English (en)
French (fr)
Inventor
孙杨
刘旭文
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016112670A1 publication Critical patent/WO2016112670A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • This document relates to the field of communications, and in particular, to a cell handover optimization evaluation method and apparatus.
  • 3GPP 3rd Generation Partners Project
  • LTE Long Term Evolution
  • 3GPP proposed SON in order to minimize the labor cost when configuring and managing an enhanced Node B (eNB).
  • eNB enhanced Node B
  • MRO Mobile Robust Optimization
  • Mobile robust optimization optimizes switching conditions by optimizing switching parameters, reducing switching failures in the network, and improving network performance.
  • the mobile robustness identifies the type of handover fault and optimizes the handover parameters, how to determine the optimization effect and whether the handover performance is improved or deteriorated, there is no better way to solve the above problem. problem.
  • This paper provides a cell handover optimization evaluation method and device, which solves the problem that the correlation technology fails to effectively evaluate the optimization effect after optimizing the cell handover parameters.
  • a cell handover optimization evaluation method includes:
  • the optimized fault information when the fault type is a premature handover type or a too late handover type, includes the number of failures and optimization of the fault type occurring after the target cell pair is optimized.
  • the first proportional value of the total number of post-switches and the total number of faults that occurred and after optimization Switching a second ratio value of the total number of times;
  • the fault information before the optimization includes a third ratio value of the number of failures of the fault type occurring before the optimization of the target cell to the total number of times before the optimization, and the total number of faults occurring and the optimization
  • the fourth ratio of the total number of previous switches; the comparison rule is:
  • determining whether the optimization of the target cell pair is successful according to the comparison result includes:
  • first ratio value is less than the third ratio value, and the second ratio value is less than or equal to the fourth ratio value, determining that the optimization of the target cell pair is successful; If the third ratio value is greater than or equal to, or the second ratio value is greater than the fourth ratio value, determining that the optimization of the target cell pair fails.
  • the optimized fault information when the fault type is a ping-pong handover type, includes a fifth occurrence of a ping-pong switch type fault number and a total number of optimized switch times after the target cell pair is optimized. a ratio value and a sixth ratio value of the number of times of late failures and the total number of times of switching after optimization;
  • the failure information before optimization includes a seventh ratio of the number of times the ping-pong switch type failure occurs before the optimization of the target cell to the total number of times before the optimization Value;
  • the comparison rule is:
  • determining whether the optimization of the target cell pair is successful according to the comparison result includes:
  • the fifth ratio value is smaller than the seventh ratio value, and the sixth ratio value is less than or equal to the preset too late proportional threshold, determining that the optimization of the target cell pair is successful; If the fifth ratio value is greater than or equal to the seventh ratio value, or the sixth ratio value is greater than the preset late ratio threshold, it is determined that the optimization of the target cell pair fails.
  • the optimizing the handover parameter for the target cell adopts mobile robustness optimization.
  • the fault information before the optimization is: performing faults on the target cell pair in a fault detection statistical period before the target cell optimizes the handover parameters. Statistics obtained information.
  • the optimized fault information is: information obtained by collecting statistics on faults of the target cell pair in an evaluation period after the target cell optimizes handover parameters;
  • the evaluation period is equal to or greater than the failure detection statistical period.
  • the method when it is determined that the optimization of the target cell pair fails according to the comparison result, the method further includes performing a rollback process on the handover parameter of the target cell pair.
  • a cell handover optimization evaluation apparatus includes a first fault information acquisition module, a second fault information acquisition module, and a processing module:
  • the first fault information obtaining module is configured to: acquire fault information before the target cell is optimized;
  • the second fault information acquiring module is configured to: obtain the optimized fault information of the target cell, and optimize the target cell pair to optimize the handover parameter of the target cell according to the fault type of the target cell pair;
  • the processing module is configured to compare the optimized fault information with the target cell to the pre-optimization fault information according to a comparison rule corresponding to the fault type, and determine, according to the comparison result, the target cell pair optimization. whether succeed.
  • the first fault information acquiring module includes a first specific fault information acquiring submodule and a first total fault information acquiring submodule; and the second fault information acquiring module includes acquiring the second specific fault information. a submodule and a second total fault information acquisition submodule;
  • the first specific fault information obtaining sub-module is configured to: when the fault type is a premature handover type or a too late handover type, acquire the fault number of the fault type that occurs before the optimization of the target cell pair and optimize the total switchover before optimization The third ratio of the number of times;
  • the second specific fault information obtaining sub-module is configured to: when the fault type is a premature handover type or a too late handover type, obtain the fault number of the fault type after the optimization of the target cell pair optimization, and optimize the total handover The first ratio value of the number of times;
  • the first total fault information acquisition sub-module is configured to: when the fault type is a premature handover type or a late handover type, obtain a fourth ratio value of the target cell to the total number of handovers before optimization and before optimization;
  • the second total fault information acquisition sub-module is configured to: when the fault type is a premature handover type or a late handover type, obtain the second total fault number of the target cell after optimization and the second total number of optimized handovers Proportional value
  • the comparison rule is:
  • the processing module includes a first determining submodule, configured to: when the first ratio value is less than the third ratio value, and the second ratio value is less than or equal to the And determining, by the fourth ratio value, that the optimization of the target cell pair is successful; if the first proportional value is greater than or equal to the third proportional value, or the second proportional value is greater than the fourth proportional value, determining The optimization of the target cell pair fails.
  • the first fault information acquiring module includes a third specific fault information acquiring submodule; the second fault information acquiring module includes a fourth specific fault information acquiring submodule and the late switching fault information acquiring Submodule
  • the third specific fault information acquisition sub-module is configured to: obtain, when the fault type is a ping-pong handover type, a seventh ratio value of the number of times the ping-pong switch type fault occurs before the optimization is optimized and the total number of times before the optimization is performed;
  • the fourth specific fault information acquisition sub-module is configured to: obtain, when the fault type is a ping-pong handover type, a fifth ratio value of the number of times the ping-pong switch type fault occurs after the target cell is optimized and the total number of times after the optimized switch;
  • the too late handover fault information acquisition sub-module is configured to: when the fault type is a ping-pong handover type, obtain a sixth ratio value of the target cell to the number of late handover faults after optimization and the total number of handovers after optimization;
  • the comparison rule is:
  • the processing module includes a second determining submodule, configured to: when the fifth ratio value is smaller than the seventh ratio value, and the sixth ratio value is less than or equal to Determining that the optimization of the target cell pair is successful when the preset late proportion threshold is used; if the fifth ratio value is greater than or equal to the seventh ratio value, or the sixth ratio value is greater than the pre- If the late proportion threshold is set, it is determined that the optimization of the target cell pair fails.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the cell handover optimization evaluation method and device provided by the embodiment of the present invention, after optimizing the handover parameter of the target cell according to the fault type of the target cell pair, acquiring the optimized fault information of the target cell;
  • the optimized fault information is compared with the target cell for the fault information before the optimization according to the comparison rule corresponding to the fault type, and according to the comparison result, it is judged whether the optimization of the target cell pair is successful.
  • the solution provided by the embodiment of the present invention can effectively evaluate the optimization effect of the cell after the optimization of the handover parameter, so that the optimization effect after optimization can be clearly known, and whether the handover performance improved or deteriorated can be found in time. It provides a favorable basis for subsequent processing and optimization.
  • FIG. 1 is a schematic flowchart of a cell handover optimization evaluation method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a cell handover optimization evaluation apparatus according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of another cell handover optimization evaluation apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a target cell in which a premature handover failure occurs according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of an optimization evaluation process of a premature handover failure type according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a target cell in which a ping-pong handover failure occurs according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of an optimization evaluation process of a ping-pong handover fault type according to Embodiment 3 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the method includes:
  • Step 101 Optimize handover parameters of the target cell according to a fault type of the target cell pair.
  • Step 102 Acquire optimized fault information of the target cell pair after optimization.
  • Step 103 Compare the optimized fault information of the target cell with the fault information of the target cell pair before optimization according to a comparison rule corresponding to the fault type, and determine, according to the comparison result, whether the optimization of the target cell pair is successful.
  • the optimization of the handover parameters for the target cell in the above step 101 may employ mobile robustness optimization, but it should be understood that it is not limited to mobile robust optimization.
  • the target cell pair here refers to two cells to be optimized selected when performing optimization, and the two cells to be optimized are one target cell pair.
  • the fault information of the target cell pair before optimization is obtained by collecting statistics on the fault of the target cell pair in the fault detection statistical period before the target cell optimizes the handover parameter.
  • the optimized fault information of the target cell is: information obtained by collecting statistics on the fault of the target cell pair in the evaluation period after the target cell optimizes the handover parameter; in order to make the fault information before and after the optimization comparable
  • the evaluation period is set to be equal to or greater than the fault detection statistical period.
  • the fault information counted here is information of a fault that occurs when the terminal UE switches between two cells of the target cell pair.
  • the handover parameter of the target cell pair may be backed off to improve the handover performance, and the problem may be further avoided in time.
  • the method before the comparison between the optimized fault information and the target cell-to-optimization fault information according to the comparison rule corresponding to the fault type, the method further includes:
  • Determining whether the total number of times the target cell has failed is greater than or equal to the threshold value of the number of handover samples when the optimized fault information is obtained. If not, the current fault information is not available.
  • the meaning of the table needs to be reacquired, or accumulated after one or more evaluation cycles, and the total number of failures of the target cell pair after the accumulation of one or more evaluation cycles is still less than the threshold value of the cell to handover samples. It can be determined that the evaluation failed.
  • the fault type in this embodiment is a premature handover type, a too late handover type, or a ping-pong handover type.
  • the optimized fault information of the acquired target cell pair includes: The first ratio of the number of failures of the fault type (ie, premature handover type or too late handover type) to the total number of handovers after optimization and the second ratio of the total number of failures and the total number of handovers after optimization
  • the acquired fault information of the target cell pair before optimization includes a third ratio value of the target cell to the number of fault types before the optimization and the total number of times before the optimization, and a ratio of the total number of faults to the total number of times before the optimization;
  • the comparison rules are:
  • Comparing the first ratio value with the third ratio value, and comparing the second ratio value with the fourth ratio value; determining whether the optimization of the target cell pair is successful according to the comparison result includes:
  • the optimization of the target cell pair is successful; otherwise, the optimization of the target cell pair is determined to be unsuccessful.
  • the optimized fault information includes a fifth ratio value of the number of times the ping-pong switch type fault occurs after the target cell is optimized and the total number of times of the optimized switch, and the number of late faults and the total number of optimized handovers.
  • Comparing the fifth ratio value with the seventh ratio value, and comparing the sixth ratio value with the preset late ratio threshold value; determining whether the optimization of the target cell pair is successful according to the comparison result includes:
  • the fifth ratio value is less than the seventh ratio value, and the sixth ratio value is less than or equal to the preset too late proportional threshold, determining that the optimization of the target cell pair is successful; otherwise, determining that the optimization of the target cell pair fails .
  • this embodiment sets the threshold of the number of cells to switch samples.
  • the threshold value of the too late proportional value caused by the ping-pong optimization we also design the threshold value of the too late proportional value caused by the ping-pong optimization, and cut according to the optimization fault. Change the early, switch too late or ping-pong switch to evaluate and analyze separately:
  • the handover fault information in the evaluation period before the optimization of the handover parameters in the evaluation period and the target cell are respectively obtained, and it is determined whether the total number of handovers of the cell pair meets the threshold of the number of handover samples of the cell, and if not, the cumulative After an evaluation period, the evaluation is performed. If the handover sample requirement is still not met, the evaluation fails. If it is satisfied, the following assessment is made:
  • the ratio of the number of premature failures of the cell to the cell is decreased (that is, the first ratio is smaller than the third ratio), and the ratio of the cell to the total number of failures does not rise ( That is, the second ratio value is less than or equal to the fourth ratio value), indicating that the optimization effect has appeared, the handover performance is improved, and the evaluation is successful; if the ratio of the cell to the number of premature failures is not decreased or the ratio of the cell to the total number of failures is If there is an increase, the optimization effect is not obvious, the switching performance is not improved, and even after optimization, the other faults are caused to rise and the performance is deteriorated. If the evaluation fails, it is necessary to roll back the optimized processing parameters, such as the cell individual offset Ocn.
  • the switching fault information in the evaluation period and the parameter detection before the parameter optimization is obtained, and the total number of handovers of the cell pair is determined to meet the threshold of the number of handover samples. If not, the evaluation period is accumulated. If the evaluation is still not met, the evaluation fails. If it is satisfied, the following assessment is made:
  • the cell is too late to switch
  • the ratio of the number of times has decreased (that is, the first ratio value is smaller than the third ratio value), and the ratio of the cell to the total number of failures does not rise (ie, the second ratio value is less than or equal to the fourth ratio value), indicating that the optimization effect has appeared.
  • the handover performance is improved and the evaluation is successful. If the ratio of the number of times the cell fails to switch late is not decreased or the ratio of the number of cells to the total number of failures increases, the optimization effect is not obvious, the handover performance is not improved, and even after optimization. Causes the rise of other faults to deteriorate the performance, the evaluation fails, and the parameters need to be rolled back.
  • the switching fault information in the evaluation period and the parameter detection before the parameter optimization is obtained, and the total number of handovers of the cell pair is determined to meet the threshold of the number of handover samples. If not, the evaluation period is accumulated. If the evaluation is still not met, the evaluation fails. If it is satisfied, the following assessment is made:
  • the ratio of the number of times the cell has a ping-pong handover failure is decreased (that is, the fifth ratio is smaller than the seventh ratio), and the proportion of the cell to the number of late handover failures in the evaluation period is The value does not exceed the too late proportional threshold caused by ping-pong optimization (that is, the sixth proportional value is less than or equal to the preset too late proportional threshold), indicating that the optimization effect has appeared, the handover performance is improved, and the evaluation is successful; If the ratio of the number of ping-pong switching failures does not decrease or the ratio of the number of failures of the cell to the late switching is greater than the proportion of the late-time proportional threshold, the optimization effect is not obvious, the switching performance is not improved, and even the large-scale switching failure is caused. The rise is deteriorating, the evaluation fails, and the parameters need to be rolled back.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the present embodiment provides a cell handover optimization evaluation apparatus, which can be set on a base station.
  • the first fault information acquisition module 21, the second fault information acquisition module 22, and the processing module 23 are included:
  • the first fault information obtaining module 21 is configured to: acquire fault information before the target cell pair is optimized;
  • the second fault information obtaining module 22 is configured to: obtain the optimized fault information of the target cell, and optimize the target cell pair to optimize the handover parameter of the target cell according to the fault type of the target cell pair;
  • the processing module 23 is configured to compare the optimized fault information with the target cell-to-optimization fault information according to a comparison rule corresponding to the fault type, and determine, according to the comparison result, whether the optimization of the target cell pair is successful.
  • the target cell is optimized for handover parameters using mobile robustness optimization, but it should be understood that it is not limited to mobile robust optimization.
  • the fault information of the target cell pair before the optimization in the embodiment is: the information obtained by the first fault information obtaining module 21 on the fault of the target cell pair in the fault detection statistical period before the target cell optimizes the handover parameter.
  • the optimized fault information of the target cell pair is: the information obtained by the second fault information obtaining module 22 on the fault of the target cell pair in the evaluation period after the target cell optimizes the handover parameter;
  • the fault information before and after is comparable.
  • the evaluation period is set to be equal to or greater than the fault detection statistical period.
  • the processing module 23 may perform a rollback process on the handover parameter of the target cell pair to improve the handover performance, and the problem may be further avoided in time.
  • the cell handover optimization evaluation apparatus in this embodiment may further include a determining module 24,
  • the method is further configured to: before the processing module 23 compares the optimized fault information with the target cell to the pre-optimization fault information according to the comparison rule corresponding to the fault type, the method further includes: determining, when the optimized fault information is obtained, the target cell pair Whether the total number of failures is greater than or equal to the threshold value of the number of handover samples. If not, it indicates that the currently acquired fault information is not representative, and needs to be re-acquired, or accumulate one or more evaluation cycles before acquiring. After the cumulative number of failures of the target cell pair after one or more evaluation cycles is still less than the cell-to-switching sample number threshold, it may be determined that the evaluation fails.
  • the fault type in this embodiment is a premature handover type, a too late handover type, or a ping pong handover type.
  • the first fault information acquiring module 21 includes a first specific fault information acquiring submodule and a first total fault information acquiring submodule.
  • the second fault information acquiring module 22 includes a second specific fault information acquiring submodule and a second total fault information acquiring subroutine.
  • the first specific fault information acquisition sub-module is configured to: when the fault type is a premature handover type or a late handover type, obtain a third ratio value of the target cell to the number of failure types before the optimization and the total number of handovers before the optimization;
  • the second specific fault information obtaining sub-module is configured to: obtain, when the fault type is a premature handover type or a late handover type, obtain a first ratio value of the number of failure types of the target cell after optimization and the total number of handovers after optimization;
  • the first total fault information obtaining sub-module is configured to: obtain a fourth ratio value of the target cell to the total number of times before the optimization and before the optimization, when the fault type is a premature handover type or a late handover type;
  • the second total fault information obtaining sub-module is configured to: obtain, when the fault type is a premature handover type or a late handover type, obtain a second ratio value of the target cell to the total number of faults after optimization and the total number of handovers after optimization;
  • the comparison rule at this time is:
  • the first proportional value is compared to the third proportional value, and the second proportional value and the fourth proportional value are compared.
  • the processing module 23 includes a first determining sub-module, configured to: when the first proportional value is less than the third proportional value, and the second proportional value is less than or equal to the fourth proportional value, determining that the optimization of the target cell pair is successful; otherwise, determining the pair The optimization of the target cell pair failed.
  • the first fault information acquiring module 21 in this embodiment further includes a third specific fault information acquiring submodule;
  • the second fault information acquiring module 22 further includes a fourth specific fault information acquiring submodule and a late switching fault information acquiring submodule;
  • the third specific fault information obtaining sub-module is configured to: when the fault type is a ping-pong switching type, obtain a seventh ratio value of the number of times the ping-pong switching type fault occurs before the optimization of the target cell and the total number of times before the optimization;
  • the fourth specific fault information acquisition sub-module is set to: when the fault type is a ping-pong handover type, obtain a fifth ratio value of the number of times the ping-pong switch type fault occurs after the target cell is optimized and the total number of times after the optimized switch;
  • the too late handover fault information acquisition sub-module is set to: when the fault type is the ping-pong handover type, obtain a sixth ratio value of the target cell to the number of late switching faults after optimization and the total number of handovers after optimization;
  • the comparison rule at this time is:
  • the fifth proportional value is compared with the seventh proportional value, and the sixth proportional value is compared with a preset too late proportional threshold.
  • the processing module 23 includes a second determining sub-module, and is configured to determine that the optimization of the target cell pair is successful when the fifth ratio value is less than the seventh ratio value and the sixth ratio value is less than or equal to the preset too late proportional threshold value. Otherwise, it is determined that the optimization of the target cell pair fails.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • This embodiment uses two application scenarios as an example for description.
  • the optimization and effect evaluation scenario of the premature handover fault is shown in Figure 4.
  • the target cell pair is Cell A (Cell A) + Cell B (Cell B).
  • Figure 5 For the processing procedure, see Figure 5, including:
  • Step 501 A user that resides in the LTE cell Cell A in a large amount moves to the LTE cell Cell B in different directions of the arrow through the inter-cell handover area, and the base station detects and counts the handover failure according to the handover behavior of the terminal UE.
  • Step 503 Calculate the optimization value of the switching parameter according to the fault type and report it to the network management OMC to take effect;
  • Step 504 Start an evaluation period, in which a large number of users move from the LTE cell Cell A
  • the LTE cell Cell B moves, and the base station continues to detect and count the handover fault according to the terminal UE handover behavior;
  • Step 506 Analyze the statistical data of the fault detection statistical period and the evaluation period, and evaluate the change of the premature handover failure probability rate and the total failure probability rate, for example, in this example, the probability of occurrence of the premature handover failure decreases, and the total failure probability It also declined, the optimization effect was obvious, and the evaluation was successful.
  • the ping-pong switching fault optimization and effect evaluation scenario is shown in Figure 6.
  • the target cell pair is Cell A+Cell B.
  • Step 701 In addition to the user camping on the LTE cell Cell A, moving to the LTE cell Cell B in the different directions of the arrow, there are some users in the handover overlapping area of the cell Cell A and the LTE cell Cell B, which is easy to meet the handover on both sides.
  • the condition generates a large number of back and forth handovers, and the base station detects and counts the ping-pong handovers according to the handover behavior of the terminal UE;
  • Step 702 After the fault detection statistics period expires, the switch data and the fault statistics in the statistics period are obtained, for example, the ratio of the number of ping-pong switch failures to the total number of handovers in the fault detection statistics period is 80%, and the proportion is too late.
  • the threshold value is 10%. Since the ping-pong switching fault occupies the main position, the optimization type is the ping-pong switching type;
  • Step 703 Calculate the switching parameter optimization value according to the optimization type and report it to the network management OMC to take effect;
  • Step 704 Start an evaluation period, in which the base station continues to detect the switching behavior of the normally moving user and the user in the overlapping area to detect and count the switching failure.
  • Step 706 analyzing the statistics of the fault detection statistical period and the evaluation period by using the cell pair as a unit Data, evaluate the probability of occurrence of ping-pong switching failure and the change of probability of late switching failure. For example, in this example, the probability of ping-pong switching failure decreases, but the probability of late switching failure increases sharply, performance deteriorates, and evaluation fails. ; Switching parameter fallback optimization processing is required.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment of the present invention can effectively evaluate the optimization effect of the cell after the optimization of the handover parameter, so that the effect of the optimization after optimization can be clearly known, and whether the handover performance improved or deteriorated can be found in time, and then The processing and optimization provide a favorable basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种小区切换优化评估方法及装置,在根据目标小区对的故障类型对所述目标小区对切换参数进行优化后,获取该目标小区对优化后的故障信息;将得到的优化后的故障信息与该目标小区对优化前的故障信息按照与故障类型对应的比较规则进行比较,根据比较结果判断对目标小区对的优化是否成功。

Description

小区切换优化评估方法及装置 技术领域
本文涉及通信领域,尤其涉及一种小区切换优化评估方法及装置。
背景技术
在3GPP(3rd Generation Partners Project,第三代合作伙伴计划)LTE(Long Term Evolution,长期演进)项目中,为了尽量减少配置和管理基站(enhanced Node B,eNB)时的人力成本,3GPP提出了SON(Self-Organizing Networks,自组织网络),它引入了自动化机制来配置和管理基站,减少人工参与,从而降低了成本。移动鲁棒性优化(MRO)是SON的重要功能。移动鲁棒性优化通过优化切换参数,来改变切换条件,减少网络中的切换故障,改善网络性能。但是,在移动鲁棒性识别切换故障类型并进行切换参数优化之后,如何去判定优化的效果,以及带来的切换性能是否改善或者恶化等问题,目前还没有一种较好的方式可以解决上述问题。
发明内容
本文提供一种小区切换优化评估方法及装置,解决相关技术对小区切换参数进行优化后对于优化效果未能进行有效评估的问题。
一种小区切换优化评估方法,包括:
在根据目标小区对的故障类型对所述目标小区对切换参数进行优化后,获取所述目标小区对优化后的故障信息;
将所述优化后的故障信息与所述目标小区对优化前的故障信息按与所述故障类型对应的比较规则进行比较,根据比较结果判断所述目标小区对的优化是否成功。
在本发明的一种实施例中,所述故障类型为过早切换类型或过晚切换类型时,所述优化后的故障信息包含所述目标小区对优化后发生所述故障类型故障次数与优化后切换总次数的第一比例值以及发生的总故障次数与优化后 切换总次数的第二比例值;所述优化前的故障信息包含所述目标小区对优化前发生所述故障类型故障次数与优化前切换总次数的第三比例值以及发生的总故障次数与优化前切换总次数的第四比例值;所述比较规则为:
将所述第一比例值与所述第三比例值进行比较,并将所述第二比例值和所述第四比例值进行比较。
在本发明的一种实施例中,根据比较结果判断对所述目标小区对的优化是否成功包括:
如所述第一比例值小于所述第三比例值,且所述第二比例值小于等于所述第四比例值,则判定对所述目标小区对的优化成功;如所述第一比例值大于等于所述第三比例值,或所述第二比例值大于所述第四比例值,则判定对所述目标小区对的优化失败。
在本发明的一种实施例中,所述故障类型为乒乓切换类型时,所述优化后的故障信息包含所述目标小区对优化后发生乒乓切换类型故障次数与优化后切换总次数的第五比例值以及过晚故障次数与优化后切换总次数的第六比例值;所述优化前的故障信息包含所述目标小区对优化前发生乒乓切换类型故障次数与优化前切换总次数的第七比例值;所述比较规则为:
将所述第五比例值与所述第七比例值进行比较,并将所述第六比例值和预设的过晚比例门限值进行比较。
在本发明的一种实施例中,根据比较结果判断对所述目标小区对的优化是否成功包括:
如所述第五比例值小于所述第七比例值,且所述第六比例值小于等于所述预设的过晚比例门限值,则判定对所述目标小区对的优化成功;如所述第五比例值大于等于所述第七比例值,或所述第六比例值大于所述预设的过晚比例门限值,则判定对所述目标小区对的优化失败。
在本发明的一种实施例中,所述对所述目标小区对切换参数进行优化采用移动鲁棒性优化。
在本发明的一种实施例中,所述优化前的故障信息为:对所述目标小区对切换参数进行优化前的故障检测统计周期内对所述目标小区对的故障进行 统计得到的信息。
在本发明的一种实施例中,所述优化后的故障信息为:对所述目标小区对切换参数进行优化后的评估周期内对所述目标小区对的故障进行统计得到的信息;所述评估周期等于或大于所述故障检测统计周期。
在本发明的一种实施例中,根据比较结果判断对所述目标小区对的优化失败时,还包括对所述目标小区对的切换参数进行回退处理。
一种小区切换优化评估装置,包括第一故障信息获取模块、第二故障信息获取模块和处理模块:
所述第一故障信息获取模块设置为:获取目标小区对优化前的故障信息;
所述第二故障信息获取模块设置为:获取目标小区对优化后的故障信息,所述目标小区对的优化为根据目标小区对的故障类型对所述目标小区对切换参数进行优化;
所述处理模块设置为:将所述优化后的故障信息与所述目标小区对优化前的故障信息按与所述故障类型对应的比较规则进行比较,根据比较结果判断所述目标小区对的优化是否成功。
在本发明的一种实施例中,第一故障信息获取模块包括第一特定故障信息获取子模块和第一总故障信息获取子模块;所述第二故障信息获取模块包括第二特定故障信息获取子模块和第二总故障信息获取子模块;
所述第一特定故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化前发生所述故障类型故障次数与优化前切换总次数的第三比例值;
所述第二特定故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化后发生所述故障类型故障次数与优化后切换总次数的第一比例值;
所述第一总故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化前与优化前切换总次数的第四比例值;
所述第二总故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化后总故障次数与优化后切换总次数的第二比例值;
所述比较规则为:
将所述第一比例值与所述第三比例值进行比较,并将所述第二比例值和所述第四比例值进行比较。
在本发明的一种实施例中,所述处理模块包括第一判断子模块,设置为:在所述第一比例值小于所述第三比例值,且所述第二比例值小于等于所述第四比例值时,判定对所述目标小区对的优化成功;如所述第一比例值大于等于所述第三比例值,或所述第二比例值大于所述第四比例值,则判定对所述目标小区对的优化失败。
在本发明的一种实施例中,第一故障信息获取模块包括第三特定故障信息获取子模块;所述第二故障信息获取模块包括第四特定故障信息获取子模块和过晚切换故障信息获取子模块;
所述第三特定故障信息获取子模块设置为:在所述故障类型为乒乓切换类型时,获取所述目标小区对优化前发生乒乓切换类型故障次数与优化前切换总次数的第七比例值;
所述第四特定故障信息获取子模块设置为:在所述故障类型为乒乓切换类型时,获取所述目标小区对优化后发生乒乓切换类型故障次数与优化后切换总次数的第五比例值;
所述过晚切换故障信息获取子模块设置为:在所述故障类型为乒乓切换类型时,获取所述目标小区对优化后过晚切换故障次数与优化后切换总次数的第六比例值;
所述比较规则为:
将所述第五比例值与所述第七比例值进行比较,并将所述第六比例值和预设的过晚比例门限值进行比较。
在本发明的一种实施例中,所述处理模块包括第二判断子模块,设置为:在所述第五比例值小于所述第七比例值,且所述第六比例值小于等于所 述预设的过晚比例门限值时,判定对所述目标小区对的优化成功;如所述第五比例值大于等于所述第七比例值,或所述第六比例值大于所述预设的过晚比例门限值,则判定对所述目标小区对的优化失败。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明实施例提供的一种小区切换优化评估方法及装置,在根据目标小区对的故障类型对所述目标小区对切换参数进行优化后,获取该目标小区对优化后的故障信息;将得到的优化后的故障信息与该目标小区对优化前的故障信息按照与故障类型对应的比较规则进行比较,根据比较结果判断对目标小区对的优化是否成功。本发明实施例提供的方案可以对小区对切换参数优化后的优化效果进行有效的评估,因此可以明确得知优化后优化的效果,并可以及时发现带来的切换性能是否改善或者恶化等问题,进而为后续的处理和优化提供有利依据。
附图概述
图1为本发明实施例一提供的小区切换优化评估方法流程示意图;
图2为本发明实施例二提供的小区切换优化评估装置结构示意图;
图3为本发明实施例二提供的另一小区切换优化评估装置结构示意图;
图4为本发明实施例三提供的发生过早切换故障的目标小区示意图;
图5为本发明实施例三提供的过早切换故障类型的优化评估过程示意图;
图6为本发明实施例三提供的发生乒乓切换故障的目标小区示意图;
图7为本发明实施例三提供的乒乓切换故障类型的优化评估过程示意图。
本发明的实施方式
下面结合附图对本发明的实施方式进行说明。
实施例一:
本实施例针对在移动鲁棒性识别目标小区对的切换故障类型并进行切换参数优化之后,如何去判定优化的效果,以及带来的切换性能是否改善或者恶化等问题,提出了小区切换优化评估方法,请参见图1所示,包括:
步骤101:根据目标小区对的故障类型对该目标小区对切换参数进行优化;
步骤102:获取优化后的所述目标小区对优化后的故障信息;
步骤103:将目标小区对优化后的故障信息与该目标小区对优化前的故障信息按照与上述故障类型对应的比较规则进行比较,根据比较结果判断对目标小区对的优化是否成功。
上述步骤101中对目标小区对切换参数进行优化可采用移动鲁棒性优化,但应当理解的是并不限于移动鲁棒性优化。此处的目标小区对是指进行优化时所选择的两个待优化小区,这两个待优化小区即为一个目标小区对。
本实施例中目标小区对优化前的故障信息为:对目标小区对切换参数进行优化前的故障检测统计周期内对该目标小区对的故障进行统计得到的信息。本实施例中目标小区对优化后的故障信息为:对目标小区对切换参数进行优化后的评估周期内对该目标小区对的故障进行统计得到的信息;为了使优化前后的故障信息具有可比性,本实施例中设置评估周期等于或大于故障检测统计周期。此处所统计的故障信息为终端UE在目标小区对的两个小区之间进行切换时所发生故障的信息。
在本实施例中,当上述步骤103中根据比较结果判断对目标小区对的优化失败时,还可对目标小区对的切换参数进行回退处理,以改善切换性能,可及时避免问题进一步恶化。
在上述步骤103中,将优化后的故障信息与目标小区对优化前的故障信息按照与故障类型对应的比较规则进行比对之前,还包括:
判断获取优化后的故障信息时该目标小区对发生故障的总次数是否大于等于小区对切换样本数门限值,如否,则表明当前获取的故障信息不具备代 表意义,需重新获取,或再累积一个或多个评估周期后再获取,当累积一个或多个评估周期后该目标小区对发生故障的总次数仍小于小区对切换样本数门限值,则可判定评估失败。
本实施例中的故障类型为过早切换类型、过晚切换类型或乒乓切换类型;当故障类型为过早切换类型或过晚切换类型时,获取的目标小区对的优化后的故障信息包含:目标小区对优化后发生所述故障类型(即过早切换类型或过晚切换类型)故障次数与优化后切换总次数的第一比例值以及总故障次数与优化后切换总次数的第二比例值;获取的目标小区对优化前的故障信息包含目标小区对优化前发生故障类型故障次数与优化前切换总次数的第三比例值以及总故障次数与优化前切换总次数的四比例值;此时的比较规则为:
将第一比例值与第三比例值进行比较,并将第二比例值和第四比例值进行比较;根据比较结果判断对所述目标小区对的优化是否成功包括:
如第一比例值小于第三比例值,且第二比例值小于等于第四比例值,则判定对目标小区对的优化成功;否则,判定对目标小区对的优化失败。
当故障类型为乒乓切换类型时,优化后的故障信息包含所述目标小区对优化后发生乒乓切换类型故障次数与优化后切换总次数的第五比例值以及过晚故障次数与优化后切换总次数的第六比例值;优化前的故障信息包含目标小区对优化前发生乒乓切换类型故障次数与优化前切换总次数的第七比例值;此时的比较规则为:
将第五比例值与第七比例值进行比较,并将第六比例值和预设的过晚比例门限值进行比较;根据比较结果判断对目标小区对的优化是否成功包括:
如第五比例值小于第七比例值,且第六比例值小于等于预设的过晚比例门限值,则判定对目标小区对的优化成功;否则,判定对所述目标小区对的优化失败。
下面分别对上述三种故障类型的处理方式进行示例说明。为更好的分析比较评估周期的故障数据,本实施例设置了小区对切换样本数门限,针对乒乓切换我们还设计了乒乓优化导致的过晚比例值门限,并根据优化故障是切 换过早、切换过晚还是乒乓切换分别进行评估分析:
1)切换过早故障类型优化的评估
切换过早优化的效果评估主要考虑以下指标:
a)目标小区对切换过早故障次数与切换总次数的比例值
b)目标小区对总故障次数与切换总次数的比例值
c)目标小区对切换总次数
在评估周期超时以后,分别获取评估周期内和目标小区对切换参数优化前故障检测统计周期内的切换故障信息,判断小区对的切换总次数是否满足小区对切换样本数门限,如果不满足则累积一个评估周期后再进行评估,若仍不满足切换样本要求,则评估失败,如果满足,则进入如下评估判断:
与优化前故障检测统计周期的故障统计比较,如果小区对切换过早故障次数的比例值存在下降(即第一比例值小于第三比例值),并且小区对总故障次数的比例值不上升(即第二比例值小于等于第四比例值),则说明优化效果已显现,切换性能得到改善,评估成功;如果小区对切换过早故障次数的比例值无下降或者小区对总故障次数的比例值存在上升,则说明优化效果不明显,切换性能未得到改善,甚至优化后引起了其他故障的上升而使性能恶化,评估失败,需要回退优化处理过的参数,例如小区个体偏移Ocn。
2)切换过晚故障类型优化的评估
切换过晚优化的效果评估主要考虑以下指标:
a)目标小区对切换过晚故障次数与切换总次数的比例值
b)目标小区对总故障次数与切换总次数的比例值
c)目标小区对切换总次数
在评估周期超时以后,分别获取评估周期内和参数优化前故障检测统计周期内的切换故障信息,判断小区对的切换总次数是否满足小区对切换样本数门限,如果不满足则累积一个评估周期后再进行评估,若仍不满足切换样本要求,则评估失败,如果满足,则进入如下评估判断:
与优化前故障检测统计周期的故障统计比较,如果小区对切换过晚故障 次数的比例值存在下降(即第一比例值小于第三比例值),并且小区对总故障次数的比例值不上升(即第二比例值小于等于第四比例值),则说明优化效果已显现,切换性能得到改善,评估成功;如果小区对切换过晚故障次数的比例值无下降或者小区对总故障次数的比例值存在上升,则说明优化效果不明显,切换性能未得到改善,甚至优化后引起了其他故障的上升而使性能恶化,评估失败,需要回退参数。
3)乒乓切换优化类型的评估
乒乓切换优化的效果评估主要考虑以下指标:
a)目标小区对乒乓切换故障次数与切换总次数的比例值
b)目标小区对切换过晚故障次数与切换总次数的比例值
c)目标小区对切换总次数
在评估周期超时以后,分别获取评估周期内和参数优化前故障检测统计周期内的切换故障信息,判断小区对的切换总次数是否满足小区对切换样本数门限,如果不满足则累积一个评估周期后再进行评估,若仍不满足切换样本要求,则评估失败,如果满足,则进入如下评估判断:
与优化前故障检测统计周期的故障统计比较,如果小区对乒乓切换故障次数的比例值存在下降(即第五比例值小于第七比例值),并且评估周期内小区对切换过晚故障次数的比例值不超过乒乓优化导致的过晚比例门限值(即第六比例值小于等于预设的过晚比例门限值),则说明优化效果已显现,切换性能得到改善,评估成功;如果小区对乒乓切换故障次数的比例值无下降或者小区对切换过晚故障次数的比例值大于过晚比例门限值,则说明优化效果不明显,切换性能未得到改善,甚至引起了切换过晚故障的大幅上升而使性能恶化,评估失败,需要回退参数。
实施例二:
本实施例提供了一种小区切换优化评估装置,其可设置于基站上,请参见图2所示,包括第一故障信息获取模块21、第二故障信息获取模块22和处理模块23:
第一故障信息获取模块21设置为:获取目标小区对优化前的故障信息;
第二故障信息获取模块22设置为:获取目标小区对优化后的故障信息,目标小区对的优化为根据目标小区对的故障类型对目标小区对切换参数进行优化;
处理模块23设置为:将优化后的故障信息与目标小区对优化前的故障信息按照与故障类型对应的比较规则进行比较,根据比较结果判断对所述目标小区对的优化是否成功。
本实施例中对目标小区对切换参数进行优化采用移动鲁棒性优化,但应当理解的是并不限于移动鲁棒性优化。
本实施例中目标小区对优化前的故障信息为:第一故障信息获取模块21对目标小区对切换参数进行优化前的故障检测统计周期内对该目标小区对的故障进行统计得到的信息。本实施例中目标小区对优化后的故障信息为:第二故障信息获取模块22对目标小区对切换参数进行优化后的评估周期内对该目标小区对的故障进行统计得到的信息;为了使优化前后的故障信息具有可比性,本实施例中设置评估周期等于或大于故障检测统计周期。
在本实施例中,处理模块23根据比较结果判断对目标小区对的优化失败时,还可对目标小区对的切换参数进行回退处理,以改善切换性能,可及时避免问题进一步恶化。
请参见图3所示,本实施例中的小区切换优化评估装置还可包括判断模块24,
设置为:在处理模块23将优化后的故障信息与目标小区对优化前的故障信息按照与故障类型对应的比较规则进行比对之前,还包括:判断获取优化后的故障信息时该目标小区对发生故障的总次数是否大于等于小区对切换样本数门限值,如否,则表明当前获取的故障信息不具备代表意义,需重新获取,或再累积一个或多个评估周期后再获取,当累积一个或多个评估周期后该目标小区对发生故障的总次数仍小于小区对切换样本数门限值,则可判定评估失败。
本实施例中的故障类型为过早切换类型、过晚切换类型或乒乓切换类型。
第一故障信息获取模块21包括第一特定故障信息获取子模块和第一总故障信息获取子模块;第二故障信息获取模块22包括第二特定故障信息获取子模块和第二总故障信息获取子模块;
第一特定故障信息获取子模块设置为:在故障类型为过早切换类型或过晚切换类型时,获取目标小区对优化前发生故障类型故障次数与优化前切换总次数的第三比例值;
第二特定故障信息获取子模块设置为:在故障类型为过早切换类型或过晚切换类型时,获取目标小区对优化后发生故障类型故障次数与优化后切换总次数的第一比例值;
第一总故障信息获取子模块设置为:在故障类型为过早切换类型或过晚切换类型时,获取目标小区对优化前与优化前切换总次数的第四比例值;
第二总故障信息获取子模块设置为:在故障类型为过早切换类型或过晚切换类型时,获取目标小区对优化后总故障次数与优化后切换总次数的第二比例值;
此时的比较规则为:
将第一比例值与第三比例值进行比较,并将第二比例值和第四比例值进行比较。
处理模块23包括第一判断子模块,设置为:在第一比例值小于第三比例值,且第二比例值小于等于第四比例值时,判定对目标小区对的优化成功;否则,判定对目标小区对的优化失败。
本实施例中的第一故障信息获取模块21还包括第三特定故障信息获取子模块;第二故障信息获取模块22还包括第四特定故障信息获取子模块和过晚切换故障信息获取子模块;
第三特定故障信息获取子模块设置为:在故障类型为乒乓切换类型时,获取目标小区对优化前发生乒乓切换类型故障次数与优化前切换总次数的第七比例值;
第四特定故障信息获取子模块设置为:在故障类型为乒乓切换类型时,获取目标小区对优化后发生乒乓切换类型故障次数与优化后切换总次数的第五比例值;
过晚切换故障信息获取子模块设置为:在故障类型为乒乓切换类型时,获取目标小区对优化后过晚切换故障次数与优化后切换总次数的第六比例值;
此时的比较规则为:
将第五比例值与第七比例值进行比较,并将第六比例值和预设的过晚比例门限值进行比较。
处理模块23包括第二判断子模块,设置为:在第五比例值小于第七比例值,且第六比例值小于等于预设的过晚比例门限值时,判定对目标小区对的优化成功;否则,判定对目标小区对的优化失败。
实施例三:
本实施例以两种应用场景为例进行说明。
过早切换故障的优化和效果评估场景如图4所示:目标小区对为Cell A(小区A)+Cell B(小区B),此时的处理过程请参见图5所示,包括:
步骤501:大量驻留在LTE小区Cell A的用户,经过小区间切换区沿着箭头的不同方向往LTE小区Cell B移动,基站根据终端UE的切换行为来检测和统计的切换故障;
步骤502:故障检测统计周期超时后,获取统计周期内该目标小区对切换数据和故障统计数据,比如:过早切换故障次数与故障检测统计周期内的总切换次数相比的比例值=50%,总切换故障次数与故障检测统计周期内的总切换次数相比的比例值=60%,由于过早切换故障占主要位置,故故障类型为过早切换类型;
步骤503:根据故障类型计算切换参数优化值并上报网管OMC下发生效;
步骤504:启动评估周期,在评估周期内大量用户从LTE小区Cell A往 LTE小区Cell B移动,基站继续根据终端UE切换行为来检测和统计切换故障;
步骤505:评估周期超时后,获取评估周期内的切换数据和故障统计数据,比如:过早切换故障次数与评估周期内的总切换次数相比的比例值=20%,总切换故障次数与评估周期内的总切换次数相比的比例值=40%;
步骤506:分析故障检测统计周期和评估周期内的统计数据,评估比较发生过早切换故障概率率和总故障概率率的变化,比如:这个实例中,发生过早切换故障概率下降,总故障概率也下降,优化效果明显,评估成功。
过晚切换故障的优化和效果评估的过程与过早切换故障的优化和效果评估过程类似,本实施例不再赘述。
乒乓切换故障的优化和效果评估场景如图6所示,目标小区对为Cell A+Cell B,此时的处理过程请参见图7所示,包括:
步骤701:除了驻留在LTE小区Cell A的用户沿着箭头不同方向正常往LTE小区Cell B移动,存在部分用户处于小区Cell A和LTE小区Cell B的切换交叠区,极易满足两边的切换条件产生大量的来回切换,基站根据终端UE的切换行为来检测和统计这些乒乓切换;
步骤702:故障检测统计周期超时后,获取统计周期内的切换数据和故障统计数据,比如:乒乓切换故障次数与故障检测统计周期内的总切换次数相比的比例值=80%,过晚比例门限值=10%,由于乒乓切换故障占主要位置,故优化类型为乒乓切换类型;
步骤703:根据优化类型计算切换参数优化值并上报网管OMC下发生效;
步骤704:启动评估周期,在评估周期内基站继续检测正常移动的用户和重叠区内的用户的切换行为,来检测和统计切换故障;
步骤705:评估周期超时后,获取评估周期内的切换数据和故障统计数据,比如:乒乓切换故障次数与评估周期内的总切换次数相比的比例值=20%,过晚切换故障次数与评估周期内的总切换次数相比的比例值=40%;
步骤706:以小区对为单位分析故障检测统计周期和评估周期内的统计 数据,评估比较发生乒乓切换故障的概率和发生过晚切换故障概率的变化,比如:这个实例中,发生乒乓切换故障的概率下降,但却导致过晚切换故障概率大幅上升,性能恶化,评估失败;需进行切换参数回退优化处理。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明实施例可以对小区对切换参数优化后的优化效果进行有效的评估,因此可以明确得知优化后优化的效果,并可以及时发现带来的切换性能是否改善或者恶化等问题,进而为后续的处理和优化提供有利依据。

Claims (15)

  1. 一种小区切换优化评估方法,包括:
    在根据目标小区对的故障类型对所述目标小区对切换参数进行优化后,获取所述目标小区对优化后的故障信息;
    将所述优化后的故障信息与所述目标小区对优化前的故障信息按与所述故障类型对应的比较规则进行比较,根据比较结果判断所述目标小区对的优化是否成功。
  2. 如权利要求1所述的小区切换优化评估方法,其中,所述故障类型为过早切换类型或过晚切换类型时,所述优化后的故障信息包含所述目标小区对优化后发生所述故障类型故障次数与优化后切换总次数的第一比例值以及发生的总故障次数与优化后切换总次数的第二比例值;所述优化前的故障信息包含所述目标小区对优化前发生所述故障类型故障次数与优化前切换总次数的第三比例值以及发生的总故障次数与优化前切换总次数的第四比例值;所述比较规则为:
    将所述第一比例值与所述第三比例值进行比较,并将所述第二比例值和所述第四比例值进行比较。
  3. 如权利要求2所述的小区切换优化评估方法,其中,根据比较结果判断对所述目标小区对的优化是否成功包括:
    如所述第一比例值小于所述第三比例值,且所述第二比例值小于等于所述第四比例值,则判定对所述目标小区对的优化成功;如所述第一比例值大于等于所述第三比例值,或所述第二比例值大于所述第四比例值,则判定对所述目标小区对的优化失败。
  4. 如权利要求1所述的小区切换优化评估方法,其中,所述故障类型为乒乓切换类型时,所述优化后的故障信息包含所述目标小区对优化后发生乒乓切换类型故障次数与优化后切换总次数的第五比例值以及过晚故障次数与优化后切换总次数的第六比例值;所述优化前的故障信息包含所述目标小区对优化前发生乒乓切换类型故障次数与优化前切换总次数的第七比例值;所述比较规则为:
    将所述第五比例值与所述第七比例值进行比较,并将所述第六比例值和预设的过晚比例门限值进行比较。
  5. 如权利要求4所述的小区切换优化评估方法,其中,根据比较结果判断对所述目标小区对的优化是否成功包括:
    如所述第五比例值小于所述第七比例值,且所述第六比例值小于等于所述预设的过晚比例门限值,则判定对所述目标小区对的优化成功;如所述第五比例值大于等于所述第七比例值,或所述第六比例值大于所述预设的过晚比例门限值,则判定对所述目标小区对的优化失败。
  6. 如权利要求1-5任一项所述的小区切换优化评估方法,其中,所述对所述目标小区对切换参数进行优化采用移动鲁棒性优化。
  7. 如权利要求1-5任一项所述的小区切换优化评估方法,其中,所述优化前的故障信息为:对所述目标小区对切换参数进行优化前的故障检测统计周期内对所述目标小区对的故障进行统计得到的信息。
  8. 如权利要求7所述的小区切换优化评估方法,其中,所述优化后的故障信息为:对所述目标小区对切换参数进行优化后的评估周期内对所述目标小区对的故障进行统计得到的信息;所述评估周期等于或大于所述故障检测统计周期。
  9. 如权利要求1-5任一项所述的小区切换优化评估方法,其中,根据比较结果判断对所述目标小区对的优化失败时,还包括对所述目标小区对的切换参数进行回退处理。
  10. 一种小区切换优化评估装置,包括第一故障信息获取模块、第二故障信息获取模块和处理模块:
    所述第一故障信息获取模块设置为:获取目标小区对优化前的故障信息;
    所述第二故障信息获取模块设置为:获取目标小区对优化后的故障信息,所述目标小区对的优化为根据目标小区对的故障类型对所述目标小区对切换参数进行优化;
    所述处理模块设置为:将所述优化后的故障信息与所述目标小区对优化 前的故障信息按与所述故障类型对应的比较规则进行比较,根据比较结果判断所述目标小区对的优化是否成功。
  11. 如权利要求10所述的小区切换优化评估装置,其中,第一故障信息获取模块包括第一特定故障信息获取子模块和第一总故障信息获取子模块;所述第二故障信息获取模块包括第二特定故障信息获取子模块和第二总故障信息获取子模块;
    所述第一特定故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化前发生所述故障类型故障次数与优化前切换总次数的第三比例值;
    所述第二特定故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化后发生所述故障类型故障次数与优化后切换总次数的第一比例值;
    所述第一总故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化前与优化前切换总次数的第四比例值;
    所述第二总故障信息获取子模块设置为:在所述故障类型为过早切换类型或过晚切换类型时,获取所述目标小区对优化后总故障次数与优化后切换总次数的第二比例值;
    所述比较规则为:
    将所述第一比例值与所述第三比例值进行比较,并将所述第二比例值和所述第四比例值进行比较。
  12. 如权利要求11所述的小区切换优化评估装置,其中,所述处理模块包括第一判断子模块,设置为:在所述第一比例值小于所述第三比例值,且所述第二比例值小于等于所述第四比例值时,判定对所述目标小区对的优化成功;如所述第一比例值大于等于所述第三比例值,或所述第二比例值大于所述第四比例值,则判定对所述目标小区对的优化失败。
  13. 如权利要求11或12所述的小区切换优化评估装置,其中,第一故障信息获取模块包括第三特定故障信息获取子模块;所述第二故障信息获取 模块包括第四特定故障信息获取子模块和过晚切换故障信息获取子模块;
    所述第三特定故障信息获取子模块设置为:在所述故障类型为乒乓切换类型时,获取所述目标小区对优化前发生乒乓切换类型故障次数与优化前切换总次数的第七比例值;
    所述第四特定故障信息获取子模块设置为:在所述故障类型为乒乓切换类型时,获取所述目标小区对优化后发生乒乓切换类型故障次数与优化后切换总次数的第五比例值;
    所述过晚切换故障信息获取子模块设置为:在所述故障类型为乒乓切换类型时,获取所述目标小区对优化后过晚切换故障次数与优化后切换总次数的第六比例值;
    所述比较规则为:
    将所述第五比例值与所述第七比例值进行比较,并将所述第六比例值和预设的过晚比例门限值进行比较。
  14. 如权利要求13所述的小区切换优化评估装置,其中,所述处理模块包括第二判断子模块,设置为:在所述第五比例值小于所述第七比例值,且所述第六比例值小于等于所述预设的过晚比例门限值时,判定对所述目标小区对的优化成功;如所述第五比例值大于等于所述第七比例值,或所述第六比例值大于所述预设的过晚比例门限值,则判定对所述目标小区对的优化失败。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-9任一项的方法。
PCT/CN2015/084236 2015-01-16 2015-07-16 小区切换优化评估方法及装置 WO2016112670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510023549.7 2015-01-16
CN201510023549.7A CN105848179A (zh) 2015-01-16 2015-01-16 小区切换优化评估方法及装置

Publications (1)

Publication Number Publication Date
WO2016112670A1 true WO2016112670A1 (zh) 2016-07-21

Family

ID=56405196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084236 WO2016112670A1 (zh) 2015-01-16 2015-07-16 小区切换优化评估方法及装置

Country Status (2)

Country Link
CN (1) CN105848179A (zh)
WO (1) WO2016112670A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111065127A (zh) * 2020-01-21 2020-04-24 维沃移动通信有限公司 一种测量报告的上报方法及电子设备
CN112906999A (zh) * 2019-11-19 2021-06-04 中国移动通信集团安徽有限公司 话务指标优化效果评估方法、装置及计算设备
CN114040460A (zh) * 2021-11-23 2022-02-11 新华三技术有限公司成都分公司 乒乓切换抑制方法及装置
WO2023236548A1 (zh) * 2022-06-06 2023-12-14 中兴通讯股份有限公司 网络配置参数的调整方法、装置及网管系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107995652B (zh) * 2017-11-30 2020-07-31 Oppo广东移动通信有限公司 网络接入结果的检测方法及装置、计算机存储介质
CN107969013B (zh) * 2017-11-30 2020-08-18 Oppo广东移动通信有限公司 网络接入结果的检测方法及装置、计算机存储介质
CN108156637B (zh) * 2017-12-29 2020-04-24 Oppo 广东移动通信有限公司 检测方法及装置、计算机存储介质
CN114206760A (zh) * 2020-03-09 2022-03-18 株式会社日立大厦系统 电梯信息显示装置以及电梯信息显示方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635942A (zh) * 2009-08-04 2010-01-27 中国科学技术大学 引入ue特定切换参数的移动鲁棒性优化方法
CN102131215A (zh) * 2010-01-13 2011-07-20 中兴通讯股份有限公司 切换参数优化方法及系统
CN102143515A (zh) * 2010-01-29 2011-08-03 中国移动通信集团公司 无线网络切换优化系统及方法
WO2013010565A1 (en) * 2011-07-15 2013-01-24 Nokia Siemens Networks Oy Network element and method of operating the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841835B (zh) * 2009-03-17 2012-12-19 电信科学技术研究院 切换优化方法、设备及系统
CN102098712B (zh) * 2011-03-24 2013-04-24 东南大学 移动通信系统中的切换参数自优化方法
US8744449B2 (en) * 2012-03-16 2014-06-03 Blackberry Limited Mobility parameter adjustment and mobility state estimation in heterogeneous networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635942A (zh) * 2009-08-04 2010-01-27 中国科学技术大学 引入ue特定切换参数的移动鲁棒性优化方法
CN102131215A (zh) * 2010-01-13 2011-07-20 中兴通讯股份有限公司 切换参数优化方法及系统
CN102143515A (zh) * 2010-01-29 2011-08-03 中国移动通信集团公司 无线网络切换优化系统及方法
WO2013010565A1 (en) * 2011-07-15 2013-01-24 Nokia Siemens Networks Oy Network element and method of operating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GE, HUAINING: "Research On Self-Optimisation Of Technologies Handover On LTE System", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE , CHINA MASTER'S THESES FULL-TEXT, 15 September 2011 (2011-09-15) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112906999A (zh) * 2019-11-19 2021-06-04 中国移动通信集团安徽有限公司 话务指标优化效果评估方法、装置及计算设备
CN112906999B (zh) * 2019-11-19 2023-08-18 中国移动通信集团安徽有限公司 话务指标优化效果评估方法、装置及计算设备
CN111065127A (zh) * 2020-01-21 2020-04-24 维沃移动通信有限公司 一种测量报告的上报方法及电子设备
CN111065127B (zh) * 2020-01-21 2022-11-08 维沃移动通信有限公司 一种测量报告的上报方法及电子设备
CN114040460A (zh) * 2021-11-23 2022-02-11 新华三技术有限公司成都分公司 乒乓切换抑制方法及装置
WO2023236548A1 (zh) * 2022-06-06 2023-12-14 中兴通讯股份有限公司 网络配置参数的调整方法、装置及网管系统

Also Published As

Publication number Publication date
CN105848179A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016112670A1 (zh) 小区切换优化评估方法及装置
US9629056B2 (en) Method of controlling handover by user equipment
US9668186B2 (en) Method, device and system for processing radio link failure report and for statistically processing abnormal event
CN105517023B (zh) 评估网络性能的方法和装置
JP6283077B2 (ja) 自己組織化ネットワークの協調方法、装置、及びシステム
EP3029996B1 (en) Target cell selection during handover
JP5978515B2 (ja) 無線リンク障害統計方法、関連する装置、および通信システム
CN104717703B (zh) 一种切换参数自优化方法和装置
WO2016090961A1 (zh) 一种网络关联分析方法及装置
KR20170115506A (ko) 데이터 전송 채널을 관리하는 방법 및 장치
CN104080105B (zh) 动态仿真平台中的切换性能优化方法和装置
US8553650B2 (en) Methods and devices for controlling handover
KR20140045580A (ko) 확장된 키 성능 표시자 메시지를 이용한 이동성 견고성 최적화
EP2663118A1 (en) Switching parameter optimization method and system
US20130053065A1 (en) Method and apparatus for determing mobility state of terminal
CN107404728B (zh) 一种网络问题定位的方法及装置
WO2016055099A1 (en) Connection establishment robustness optimization
WO2014094280A1 (zh) 一种小区切换方法及相关设备
US20210195480A1 (en) System and method for handover management in mobile networks
CN103906102A (zh) 短暂驻留检测优化方法和系统
US9894571B2 (en) Enhanced mobility robustness optimization
US11652682B2 (en) Operations management apparatus, operations management system, and operations management method
Fehér et al. Ping-pong reduction using sub cell movement detection
CN106792882B (zh) 网络评估方法及装置
CN102595484B (zh) 最小化路测处理方法和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877584

Country of ref document: EP

Kind code of ref document: A1