WO2016111213A1 - In-vehicle relay device and relay method - Google Patents

In-vehicle relay device and relay method Download PDF

Info

Publication number
WO2016111213A1
WO2016111213A1 PCT/JP2015/086445 JP2015086445W WO2016111213A1 WO 2016111213 A1 WO2016111213 A1 WO 2016111213A1 JP 2015086445 W JP2015086445 W JP 2015086445W WO 2016111213 A1 WO2016111213 A1 WO 2016111213A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
processor
operation state
control program
communication
Prior art date
Application number
PCT/JP2015/086445
Other languages
French (fr)
Japanese (ja)
Inventor
正志 渡部
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2016111213A1 publication Critical patent/WO2016111213A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3243Power saving in microcontroller unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an in-vehicle relay device that relays communication between a plurality of communication lines to which in-vehicle devices are connected, and a relay method using the in-vehicle relay device.
  • in-vehicle networks for transmitting and receiving information between in-vehicle devices are becoming large-scale. For this reason, in-vehicle networks are divided into a plurality of parts, and information transmission / reception between the in-vehicle networks is relayed using an in-vehicle relay device such as a gateway.
  • each vehicle-mounted device is supplied with electric power generated by the engine while the vehicle engine is operating, but is supplied with electric power stored in the battery while the engine is stopped. Therefore, while the engine is stopped, power consumption by the in-vehicle device is reduced by stopping unnecessary in-vehicle devices.
  • the structure which reduces the power consumption by a vehicle-mounted apparatus is proposed by lowering
  • the clock frequency in the in-vehicle device is increased or decreased.
  • gateways that relay between multiple in-vehicle networks often do not have an ignition switch.
  • a vehicle-mounted device such as a gateway that does not include an ignition switch
  • the clock frequency cannot be changed in accordance with an operation on the ignition switch. Therefore, such an in-vehicle device has a limit in reducing power consumption.
  • the present invention has been made in view of such circumstances. And the place made into the objective is to provide the vehicle-mounted relay apparatus and the relay method which can further reduce the power consumption in a vehicle-mounted apparatus.
  • the in-vehicle relay device includes a processor having a plurality of processor cores and executing a control program at a predetermined clock frequency in at least one of the processor cores, and at least one in-vehicle device is connected thereto.
  • a processor having a plurality of processor cores and executing a control program at a predetermined clock frequency in at least one of the processor cores, and at least one in-vehicle device is connected thereto.
  • an acquisition unit that acquires information via the communication line, and an operation state of a vehicle on which the device is mounted is determined based on the information acquired by the acquisition unit.
  • an in-vehicle relay device that relays communication between a plurality of communication lines includes a processor having a plurality of processor cores.
  • the in-vehicle relay device detects the operation state of the vehicle based on the information acquired through the communication line, and the number of cores and / or the clock of the processor core when the processor executes the control program according to the detected operation state Switch the frequency.
  • the number of processor cores to be used is small or the clock frequency is low, the power consumption by the in-vehicle relay device can be reduced.
  • the processing capability of the in-vehicle relay device is high, so that the control program can be reliably executed. Therefore, according to the operation state of the vehicle, it is possible to switch between giving priority to power saving and giving priority to execution of the control program.
  • the detection unit of the in-vehicle relay device is characterized in that the operation state of the vehicle is detected based on information related to the operation state of the in-vehicle device.
  • the in-vehicle relay device relays transmission / reception of information related to the operation state of the in-vehicle device between a plurality of communication lines.
  • the in-vehicle relay device detects the operation state of the vehicle based on such information. Therefore, the in-vehicle relay device can switch between the operation with low power consumption and the operation with high processing capacity according to the operation state of the vehicle detected based on the operation state of the in-vehicle device.
  • the detection unit of the in-vehicle relay device is configured to detect an operation state of the vehicle based on information related to an operation on an ignition switch, a brake pedal, or a shift lever of the vehicle. To do.
  • the in-vehicle relay device relays transmission / reception of information related to an operation of an ignition switch, a brake pedal, or a shift lever of a vehicle between a plurality of communication lines.
  • the in-vehicle relay device detects the operation state of the vehicle based on such information.
  • the power state (power supply state) of the vehicle changes. For example, when the ignition switch is turned on while the brake pedal is depressed while the engine is stopped, the engine is driven.
  • in-vehicle devices such as a car audio and a car navigation device. Therefore, it is possible to switch between the operation with low power consumption and the operation with high processing capacity in accordance with the operation state including the power supply state of the vehicle.
  • the in-vehicle relay device further includes a connection unit capable of connecting an output device that outputs a rewriting program for rewriting a control program executed in the in-vehicle device, and the detection unit outputs the output to the connection unit.
  • a connection unit capable of connecting an output device that outputs a rewriting program for rewriting a control program executed in the in-vehicle device
  • the detection unit outputs the output to the connection unit.
  • the in-vehicle relay device can be connected to an output device that outputs a rewriting program for rewriting a control program executed in the in-vehicle device.
  • the output device is connected to the connection unit, the in-vehicle relay device detects that the control program is being rewritten and switches to the number of processor cores and / or the clock frequency according to the detected operation state. . Therefore, when the control program is rewritten, it is possible to perform processing with the number of cores and / or the clock frequency suitable for the rewriting processing.
  • the relay method includes a plurality of processor cores, and an in-vehicle relay device including a processor that executes a control program at a predetermined clock frequency in at least one of the processor cores.
  • the on-vehicle relay device detects an operation state of a vehicle on which the device is mounted based on information acquired via the communication line; The step of determining the number of cores and / or the clock frequency of the processor core used when the processor executes the control program according to the detected operating state, and the vehicle-mounted relay device determines A processor instructing the processor to execute a control program at the number of processor cores and / or clock frequency.
  • Tsu characterized in that it comprises a flop.
  • the present invention it is possible to switch between an operation with low power consumption and an operation with high processing capability in the in-vehicle relay device according to the operation state of the vehicle.
  • power consumption can be reduced even in an in-vehicle relay device that relays communication between a plurality of communication lines. Further, it is possible to realize an in-vehicle relay device that can switch between an operation with low power consumption and an operation with high processing capacity in accordance with the operation state of the vehicle.
  • FIG. 1 is a block diagram showing a configuration example of an in-vehicle communication system including an in-vehicle relay device according to the present invention.
  • the in-vehicle communication system according to the present embodiment includes a plurality of communication buses (communication lines) 2 to 5 and a plurality of ECUs (Electronic Control Units) 2a to 2c, 3a to 3c, and 4a to each of the communication buses 2 to 5. 4c, 5a to 5c, and a gateway (on-vehicle relay device) 1 that relays communication between the communication buses 2 to 5 and the like.
  • each of the communication buses 2 to 5 has three ECUs (vehicle equipment) 2a to 2c, 3a to 3c, 4a to 4c, and 5a to 5c. Is connected.
  • the number of communication buses is not limited to four if the number is two or more, and is not limited to three if the number of ECUs connected to each of the communication buses 2 to 5 is one or more.
  • the ECUs 2a to 2c, 3a to 3c, 4a to 4c, and 5a to 5c may be simply referred to as ECUs.
  • Communication via the communication buses 2 to 5 is performed based on communication standards such as CAN (Controller Area Network) or LIN (Local Interconnect Network).
  • Each of the communication buses 2 to 5 is classified according to the type of control target of the connected ECU.
  • each of the communication buses 2 to 5 includes a control system ECU that controls an engine control mechanism, a transmission mechanism, and the like, a chassis ECU that controls a power control mechanism, a travel control mechanism, a door lock mechanism, a power ADAS (Advanced Driver Assistance ⁇ ⁇ System) for controlling advanced driver assistance systems such as body ECUs for controlling windows, lamp control mechanisms, etc., information system ECUs for controlling car audio and car navigation systems, and collision avoidance mechanisms ) System ECU or the like is connected.
  • a control system ECU that controls an engine control mechanism, a transmission mechanism, and the like
  • a chassis ECU that controls a power control mechanism, a travel control mechanism, a door lock mechanism, a power ADAS (Advanced Driver Assistance ⁇
  • the ECUs connected to the respective communication buses 2 to 5 implement various processes by exchanging data with each other via the communication buses 2 to 5.
  • Each communication bus 2 to 5 may be connected not only to the ECU but also to in-vehicle devices such as various motors, actuators, and sensors.
  • Each ECU includes a microcomputer (hereinafter referred to as a microcomputer) and a communication interface (not shown), and is connected to the communication buses 2 to 5 through the communication interface.
  • the microcomputer of each ECU includes a processor such as an MPU (Micro Processing Unit) or a CPU (Central Processing Unit), a memory or the like (not shown) that stores a control program for the processor to realize an operation as each ECU. Prepare.
  • the processor of each microcomputer implement
  • the microcomputer of each ECU has a communication controller function, and receives data transmitted via the communication buses 2 to 5 and transmits data to be transmitted.
  • Each ECU may be connected to a sensor or an actuator (not shown). In this case, the microcomputer of each ECU transmits data including information acquired by the sensor or the like to the communication buses 2 to 5, and based on the information included in the data received via the communication buses 2 to 5, Control the behavior.
  • an ignition switch (IG switch) 6 is connected to the ECU 5a
  • a brake pedal 7 is connected to the ECU 5b
  • a shift lever 8 is connected to the ECU 5c.
  • a sensor for detecting an operation on the brake pedal 7 is actually connected to the ECU 5b
  • a sensor for detecting an operation on the shift lever 8 is connected to the ECU 5c.
  • the parking switch is also connected to the ECU 5c. In the configuration shown in FIG.
  • the ECU 5 a detects that an operation has been performed on the ignition switch 6, the ECU 5 a transmits data indicating that the ignition switch 6 has been operated to the communication bus 5.
  • the ECU 5b detects whether the brake pedal 7 is operated, and transmits data indicating whether the brake pedal 7 is operated (whether the brake pedal 7 is depressed) to the communication bus 5.
  • the ECU 5b may transmit data indicating the amount of depression of the brake pedal 7 to the communication bus 5.
  • the ECU 5 c detects that the operation has been performed on the shift lever 8 the ECU 5 c transmits data indicating the shift position of the shift lever 8 after the operation to the communication bus 5.
  • the ignition switch 6 is, for example, a push button type switch, and is a switch for starting a vehicle engine.
  • the ignition switch 6 is configured to allow stepwise operation. For example, when the ignition switch 6 is operated (pressed) while the ignition switch 6 is off (engine stopped), the engine does not start and power is supplied to in-vehicle devices such as a car audio and a car navigation device mounted on the vehicle. Transitions to a state in which is supplied and activated. When the ignition switch 6 is operated again from this state, the engine is not started, and a transition is made to a state in which electric power is supplied to in-vehicle devices such as an air conditioner and a power window. Further, when the ignition switch 6 is operated with the brake pedal 7 being depressed, the engine is started.
  • the ignition switch 6, the brake pedal 7, and the shift lever 8 are not limited to the configuration connected to the ECUs 5a to 5c connected to the same communication bus 5, but may be connected to ECUs connected to different communication buses 2 to 5, respectively. Good.
  • the gateway 1 includes a control unit 10, a storage unit 15, a communication interface 16, and the like, and each unit is connected via a bus.
  • the control unit 10 includes a processor 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a clock generation unit 14, and the like.
  • the processor 11 is configured by an MPU, a CPU, or the like, and is a multiprocessor having a plurality of processor cores. In the example shown in FIG. 1, the processor 11 of the present embodiment has three processor cores of the first core to the third core, but the number of processor cores included in the processor 11 is not limited to three.
  • the processor 11 reads out the control program stored in the ROM 12 or the storage unit 15 to the RAM 13 and executes it using at least one of the three processor cores. Thereby, the processor 11 controls the operation of each part of the gateway 1 to realize the operation as the gateway 1.
  • the ROM 12 is a non-volatile memory such as a mask ROM or an EEPROM (Electrically Erasable Programmable ROM), and stores in advance a control program and various data for the processor 11 to realize the operation as the gateway 1.
  • the RAM 13 is a rewritable memory such as DRAM (Dynamic RAM) or SRAM (Static RAM), and temporarily stores data generated when the processor 11 executes the control program.
  • the clock generation unit 14 includes, for example, an oscillation circuit that uses a crystal resonator or a ceramic resonator, and a frequency dividing circuit that divides a clock signal generated by the oscillation circuit.
  • the clock generation unit 14 supplies the clock signal frequency-divided to a predetermined clock frequency by the frequency dividing circuit to each unit of the gateway 1. In FIG. 1, only the clock signal supply path from the clock generator 14 to the processor 11 is shown.
  • the processor 11 executes the control program according to the clock signal supplied from the clock generation unit 14.
  • the clock generation unit 14 can change the clock frequency of the output clock signal in accordance with an instruction from the processor 11.
  • the clock frequency is changed, for example, by changing the frequency division number of the clock signal by the frequency dividing circuit.
  • the storage unit 15 is an EEPROM or a flash memory, and stores various data such as a control program to be executed by the processor 11 and an execution condition table 15a.
  • FIG. 2 is a schematic diagram illustrating a configuration example of the execution condition table 15a.
  • the execution condition table 15a the number of processor cores and the clock frequency used when the processor 11 executes the control program in association with the operation state of the vehicle on which the in-vehicle communication system of this embodiment is mounted (the two are combined). Are called execution conditions).
  • FIG. 1 the number of processor cores and the clock frequency used when the processor 11 executes the control program in association with the operation state of the vehicle on which the in-vehicle communication system of this embodiment is mounted
  • the ignition switch 6 is in an off state (IG-OFF), a state in which electric power is supplied to in-vehicle devices such as a car audio and a car navigation device (ACC), and an air conditioner
  • IG-OFF an off state
  • ACC car audio and a car navigation device
  • ACC car audio and a car navigation device
  • an air conditioner a state in which electric power is supplied to an in-vehicle device such as a power window (IG-ON), a state in which the engine is driven (START), and a control program executed by each ECU or the processor 11 of the gateway 1 is rewritten.
  • IG-ON power window
  • START a state in which the engine is driven
  • control program executed by each ECU or the processor 11 of the gateway 1 There is a state (during program rewriting).
  • the operation state of the vehicle is not limited to these states, and for example, various states with different types or number of in-vehicle devices to which power is supplied may be used.
  • the clock frequency can be switched, for example, in three stages.
  • each operation state has a low level (for example, less than 4 MHz), a medium level (for example, 4 MHz or more and less than 20 MHz), and a high level (for example, 20 MHz or more). ) Is associated.
  • the processor 11 has three processor cores. Therefore, in the example illustrated in FIG. 2, one, two, or three is associated as the number of cores corresponding to each operation state.
  • the clock frequency is not limited to the configuration switched in three stages, and each clock frequency is not limited to the above frequency.
  • the execution condition table 15a is stored in the storage unit 15 in advance, but may be rewritten by an external device that can be connected to the gateway 1, for example.
  • the communication interface 16 has a connection part to which each of the communication buses 2 to 5 is connected, and transmits / receives data to / from each ECU via the connected communication buses 2 to 5.
  • the communication interface 16 sends the data received via the communication buses 2 to 5 to the control unit 10 (processor 11), and the data given from the control unit 10 (processor 11) is one of the communication buses 2 to 5 ( Transmit to at least one communication bus 2-5).
  • the gateway 1 relays communication between the respective communication buses 2 to 5 by transmitting information received via any of the communication buses 2 to 5 to the other communication buses 2 to 5.
  • the gateway 1 receives the information transmitted by the ECU 2a via the communication bus 2 and transmits it to the communication bus 3 as necessary. In this case, communication (information transmission / reception) between the ECU 2a connected to the communication bus 2 and the ECUs 3a to 3c connected to the communication bus 3 becomes possible.
  • the communication interface 16 is connected to an external device connection unit (connection unit) 17 capable of connecting an external device.
  • the external device connection unit 17 can connect an external device via a connection cable, for example.
  • the external device is, for example, a rewriting device (output device) 9 that outputs a rewriting program for rewriting a control program stored in the storage unit 15 of the gateway 1 or the memory of each ECU.
  • the rewriting device 9 is, for example, a personal computer, and includes a connection unit connected to the external device connection unit 17 via a connection cable, a control unit such as an MPU or a CPU, a storage unit that stores a rewriting program, and the like.
  • the gateway 1 When the rewrite device 9 is connected to the gateway 1 (external device connection unit 17) via the connection cable, data is transmitted and received between the control unit of the rewrite device 9 and the control unit 10 of the gateway 1. Thereby, the gateway 1 can detect that the rewriting device 9 is connected to the external device connection unit 17.
  • the rewriting device 9 outputs a rewriting program to the storage unit 15 of the gateway 1 or the memory of each ECU via the external device connection unit 17 and the communication interface 16, and is stored in the storage unit 15 or the memory of each ECU.
  • the gateway 1 may be configured to rewrite the control program in the storage unit 15 when the processor 11 executes the rewrite program acquired from the rewrite device 9.
  • each ECU may be configured to rewrite the memory control program by executing the rewrite program acquired from the rewrite device 9 by the processor of the microcomputer.
  • the gateway 1 and the rewriting device 9 are not limited to being connected via a connection cable, and may be configured to perform wireless communication.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the gateway 1.
  • the processor 11 of the gateway 1 implements the functions of the relay processing unit 11a, the operation state determination unit 11b, and the execution condition switching unit 11c by executing the control program.
  • the processor 11 uses the RAM 13 as a reception buffer 13a and a transmission buffer 13b.
  • the processor (acquisition unit) 11 acquires data received by the communication interface 16 via the communication buses 2 to 5 and stores the data in the reception buffer 13a.
  • the relay processing unit 11a generates data to be transmitted to the communication buses 2 to 5 from the data stored in the reception buffer 13a, and stores the data in the transmission buffer 13b.
  • the data stored in the transmission buffer 13b is transmitted to any one of the communication buses 2 to 5 (at least one communication bus 2 to 5) at a predetermined timing. Therefore, the data received via the communication buses 2 to 5 and stored in the reception buffer 13a is stored as transmission data in the transmission buffer 13b and transmitted to the communication buses 2 to 5, so that each communication bus 2 to 5 Communication between them is relayed.
  • the relay processing unit 11a performs processing for storing the data received through one of the communication buses 2 to 5 and stored in the reception buffer 13a as it is in the transmission buffer 13a, and via a plurality of different communication buses 2 to 5, respectively.
  • a process of storing a plurality of received data in the transmission buffer 13b as one transmission data is performed. Further, the relay processing unit 11a has a configuration in which the data stored in the reception buffer 13a is processed according to the communication buses 2 to 5 or the ECU of the transmission destination, and the processed data is stored in the transmission buffer 13b. May be.
  • the operation state determination unit (detection unit) 11b determines the operation state of the vehicle based on the data stored in the reception buffer 13a. Specifically, the operation state determination unit 11b determines the operation state to be changed from now on, based on the current vehicle state and data received via any one of the communication buses 2-5.
  • the operation state determination unit 11b determines which of the operation states stored in the execution condition table 15a illustrated in FIG. For example, when data indicating that the ignition switch 6 has been operated is received when the ignition switch 6 of the vehicle is in an off state (engine stop state), the operation state determination unit 11b transmits the data to the car audio, the car navigation device, and the like. It determines with changing to the state (ACC) in which electric power is supplied.
  • the operation state determination unit 11b is in a state in which electric power is supplied to the air conditioner and the power window (IG-ON). It is determined that the transition to When the data indicating that the brake pedal 7 is operated (depressed) and the data indicating that the ignition switch 6 is operated are received, the operation state determination unit 11b causes the engine to drive. It is determined that the current state (START) is transitioned to. Further, when data indicating that the shift lever 8 has been operated to the parking position is received, the operation state determination unit 11b determines to shift to the engine stop state (parking state).
  • the data received by the communication interface 16 includes data transmitted from the rewriting device 9 connected to the external device connection unit 17. Therefore, when the operation state determination unit 11b receives the data transmitted from the rewrite device 9, that is, when it is detected that the rewrite device 9 is connected, the rewrite device 9 performs a rewrite process of the control program. It is determined that the transition is made. In addition, when the rewriting process of the control program is completed (specifically, when the transmission of the rewriting program is completed), the control unit of the rewriting device 9 transmits data indicating the end of the rewriting process to the gateway 1. Thereby, the gateway 1 can detect that the rewriting process of the control program by the rewriting device 9 is completed. The operation state determination unit 11b notifies the determined operation state to the execution condition switching unit 11c.
  • the execution condition switching unit (determination unit) 11c determines an execution condition (clock frequency and number of cores) corresponding to the operation state determined by the operation state determination unit 11b based on the contents of the execution condition table 15a.
  • the execution condition switching unit (execution control unit) 11c reads the determined execution condition from the execution condition table 15a, and relays the control program to execute the control program according to the read clock signal of the clock frequency using the number of cores read.
  • the processing unit 11a is instructed. Specifically, the execution condition switching unit 11c instructs the clock generation unit 14 to generate a clock signal having the clock frequency read from the execution condition table 15a.
  • each unit of the gateway 1 starts processing according to the clock signal of the clock frequency switched by the execution condition switching unit 11c.
  • the relay processing unit 11a starts executing the control program using the number of cores instructed by the execution condition switching unit 11c.
  • the processor 11 is configured to operate each function of the relay processing unit 11a, the operation state determination unit 11b, and the execution condition switching unit 11c using the number of cores instructed by the execution condition switching unit 11c. Have. Specifically, when the execution condition switching unit 11c is instructed to switch to processing using two processor cores, the processor 11 uses two processor cores, for example, a first core and a second core. Switch to the configuration that performs the function.
  • the processor 11 performs the operation of the operation state determination unit 11b and the execution condition switching unit 11c, for example, using the first core, and uses the number of cores instructed by the execution condition switching unit 11c to use the relay processing unit.
  • movement of 11a may be sufficient. In this case, only the operation of the relay processing unit 11a is switched to processing using the number of cores instructed by the execution condition switching unit 11c.
  • FIG. 4 is a flowchart showing a procedure of processing performed by the gateway 1.
  • the gateway 1 performs the following processing while performing the relay processing between the communication buses 2 to 5. Further, it is assumed that the gateway 1 knows the current operation state of the vehicle.
  • the control unit 10 of the gateway 1 determines whether or not the communication interface 16 has received data via any one of the communication buses 2 to 5 (S1), and determines that the data has not been received (S1: NO), wait until receiving.
  • the control unit 10 stores the received data in the reception buffer 13a. Then, the control unit 10 (operation state determination unit 11b) determines the operation state of the vehicle based on the data stored in the reception buffer 13a (S2). The operation state determination unit 11b determines an operation state to be changed from now on based on the current operation state of the vehicle and the received data. The control unit 10 determines whether or not the vehicle operation state transitions based on the vehicle operation state (current operation state) ascertained in advance and the operation state determined in step S2 (S3). . When it is determined that the operation state does not change (S3: NO), the control unit 10 returns the process to step S1.
  • the control unit 10 determines whether or not the operation state after the transition is a state in which a rewriting process of the control program by the rewriting device 9 is performed (S4). .
  • the control unit 10 executesution condition switching unit 11c
  • the process is switched to the process under the determined execution condition (S5). Then, the control part 10 returns to the process of step S1.
  • the control unit 10 executes the execution condition corresponding to the state in which the rewriting process is performed. Based on the condition table 15a, the process is switched to the process under the determined execution condition (S6).
  • the control unit 10 determines whether or not the rewriting process of the control program by the rewriting device 9 has been completed (S7). For example, the control unit 10 determines whether or not the rewriting process by the rewriting device 9 is completed based on the data received from the rewriting device 9. For example, when the control unit 10 detects that the connection (communication) between the external device connection unit 17 and the rewriting device 9 via the connection cable has been interrupted, the control unit 10 determines that the rewriting process by the rewriting device 9 has ended. Also good. If it is determined that the rewriting process has not ended (S7: NO), the control unit 10 waits until the rewriting process ends.
  • control unit 10 When it is determined that the rewriting process has been completed (S7: YES), the control unit 10 returns the execution condition switched in step S6 to the execution condition before switching (S8), and then returns to the process of step S1.
  • the control unit 10 stores the operation state before the transition or the execution condition corresponding to this operation state in the RAM 13. Thereby, after the rewriting process is completed, it is possible to return to the process under the original execution condition.
  • the gateway 1 relays communication between the communication buses 2-5 by transmitting the data received via the communication buses 2-5 to the other communication buses 2-5.
  • the gateway 1 determines the operation state of the vehicle (specifically, the operation state to be shifted from now on) based on the data received via the communication buses 2 to 5 when relaying communication.
  • the gateway 1 switches the execution conditions (the number of cores of a processor core, and a clock frequency) when the processor 11 of the control part 10 performs a control program according to the operation state of a vehicle.
  • the execution conditions the number of cores of a processor core, and a clock frequency
  • in the ACC state power is supplied to in-vehicle devices such as car audio and car navigation devices
  • in the IG-ON state power is further supplied to in-vehicle devices such as air conditioners and power windows.
  • in-vehicle devices such as car audio and car navigation devices
  • in the IG-ON state power is further supplied to in-vehicle devices such as air conditioners and power windows.
  • the processor 11 of the gateway 1 increases the number of processor cores used when the control program is executed, and the processing of the gateway 1 is performed by increasing the clock frequency. Increase ability. Therefore, the control program can be reliably executed.
  • the gateway 1 can reduce unnecessary power consumption while maintaining the relay performance between the communication buses 2 to 5, and can contribute to improving the fuel efficiency of the vehicle. In this way, by switching the execution conditions when the processor 11 of the gateway 1 executes the control program in accordance with the operation state of the vehicle, the processor 11 can be operated under conditions optimal for the operation state of the vehicle. .
  • the gateway 1 can operate with higher processing capacity and with lower power consumption.
  • the gateway 1 may be configured to increase or decrease only the clock frequency according to the operation state of the vehicle, or may be configured to increase or decrease only the number of processor cores to be used.
  • the processor 11 of the gateway 1 executes the control program under an appropriate execution condition, so that the control program can be rewritten more reliably.
  • the gateway 1 may further include a configuration for switching the execution condition at the time of the rewriting process by the rewriting device 9 according to the data amount of the rewriting program output from the rewriting device 9.
  • the control unit 10 of the gateway 1 acquires the data amount of the rewriting program from the rewriting device 9, and switches to the execution condition according to the data amount.
  • the gateway 1 (processor 11) can operate with a processing capability corresponding to the data amount of the rewriting program output from the rewriting device 9.
  • the gateway 1 may be configured to perform processing under an execution condition that considers not only the data amount of the rewrite program but also the operation state of the vehicle at this time.
  • the gateway 1 when the gateway 1 according to the present embodiment receives data indicating that the ignition switch 6 has been operated, the gateway 1 has detected the transition to the ACC state or the IG-ON state.
  • the gateway 1 includes not only data indicating whether or not the ignition switch 6 has been operated, but also data indicating whether or not the brake pedal 7 has been operated and / or data indicating whether or not the shift lever 8 has been operated. Based on this, the operating state of the vehicle may be determined. Further, the gateway 1 may determine the operation state of the vehicle based on data indicating whether any of the in-vehicle devices has been operated.
  • the gateway 1 determines the operation state of the vehicle based on data indicating whether any in-vehicle device is operating instead of data indicating whether any in-vehicle device has been operated. May be. Since the in-vehicle device starts the operation when the operation start instruction is performed, the execution condition in the gateway 1 (processor 11) can be switched similarly even when such data is used. Become.
  • the vehicle automatically switches to the ACC state when the vehicle has an idling stop function that automatically stops the engine when it is stopped due to a signal, or when the door is unlocked while the door is locked.
  • the gateway 1 can detect that the vehicle transitions to the engine stop state based on data indicating that the engine has been stopped by the idling stop function. Further, the gateway 1 can detect that the vehicle transitions to the ACC state based on the data indicating that the unlock operation has been performed or the data indicating that the unlock operation has been performed. Therefore, even if the operation state of the vehicle is automatically changed, the execution condition in the gateway 1 (processor 11) can be switched according to the changed operation state of the vehicle.
  • the rewrite device 9 is connected to the external device connection unit 17 of the gateway 1, but is not limited to such a configuration.
  • the external device connection unit 17 may be provided in any one of the communication buses 2 to 5, and the rewriting device 9 may be connected to any one of the communication buses 2 to 5 via the external device connection unit 17.
  • an external device connection unit 17 is provided in any ECU, and the rewriting device 9 is connected to any ECU through the external device connection unit 17, and any communication bus 2 is connected through the connected ECU. It may be configured to be connected to .about.5.
  • Gateway on-vehicle relay device
  • Communication bus communication line
  • 9 Rewriting device output device
  • 11 processor acquisition part
  • 11b Operation state determination unit detection unit
  • 11c execution condition switching unit determination unit, execution control unit
  • External device connection connection
  • 2a-2c, 3a-3c, 4a-4c, 5a-5c ECU on-vehicle equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

Provided are an in-vehicle relay device and a relay method that enable switching between a low-power-consumption operation and a high-throughput operation in accordance with an operating state of a vehicle. A gateway transmits data received via each communication bus to other communication buses to relay communication between the communication buses. The gateway determines an operating state of the vehicle on the basis of data received via the respective communication buses during the relay processing. The gateway determines, in accordance with the determined operating state, an execution condition for a processor to execute a control program and switches to processing to be performed under the determined execution condition.

Description

車載中継装置及び中継方法In-vehicle relay device and relay method
 本発明は、車載機器がそれぞれ接続された複数の通信線間の通信を中継する車載中継装置及び該車載中継装置による中継方法に関する。 The present invention relates to an in-vehicle relay device that relays communication between a plurality of communication lines to which in-vehicle devices are connected, and a relay method using the in-vehicle relay device.
 従来、車輌に搭載される車載機器の増加に伴って、車載機器間で情報を送受信するための車内ネットワークが大規模化している。このため、車内ネットワークを複数に分割し、ゲートウェイ等の車載中継装置を用いて車内ネットワーク間における情報の送受信を中継することが行われている。 Conventionally, with the increase of in-vehicle devices mounted on vehicles, in-vehicle networks for transmitting and receiving information between in-vehicle devices are becoming large-scale. For this reason, in-vehicle networks are divided into a plurality of parts, and information transmission / reception between the in-vehicle networks is relayed using an in-vehicle relay device such as a gateway.
 ところで、各車載機器には、車輌のエンジン動作中はエンジンにより発電される電力が供給されるが、エンジン停止中はバッテリに蓄電された電力が供給される。よって、エンジン停止中は、不要な車載機器を停止させることにより、車載機器による消費電力の削減が行われている。また、エンジン停止中に車載機器内のクロック周波数を下げて車載機器における処理速度を低下させることにより、車載機器による消費電力を低減する構成が提案されている(例えば特許文献1参照)。特許文献1に開示された構成では、イグニッションスイッチに対してオン状態への操作又はオフ状態への操作が行われた場合に、車載機器内のクロック周波数が増減される。 By the way, each vehicle-mounted device is supplied with electric power generated by the engine while the vehicle engine is operating, but is supplied with electric power stored in the battery while the engine is stopped. Therefore, while the engine is stopped, power consumption by the in-vehicle device is reduced by stopping unnecessary in-vehicle devices. Moreover, the structure which reduces the power consumption by a vehicle-mounted apparatus is proposed by lowering | hanging the clock frequency in a vehicle-mounted apparatus and reducing the processing speed in a vehicle-mounted apparatus during an engine stop (for example, refer patent document 1). In the configuration disclosed in Patent Document 1, when the operation to the on state or the operation to the off state is performed on the ignition switch, the clock frequency in the in-vehicle device is increased or decreased.
特開2009-40280号公報JP 2009-40280 A
 しかしながら、複数の車内ネットワーク間を中継するゲートウェイでは、イグニッションスイッチを備えていない場合が多い。イグニッションスイッチを備えないゲートウェイ等の車載機器では、イグニッションスイッチに対する操作に応じてクロック周波数を変更できない。従って、このような車載機器においては消費電力の低減に限界があった。 However, gateways that relay between multiple in-vehicle networks often do not have an ignition switch. In a vehicle-mounted device such as a gateway that does not include an ignition switch, the clock frequency cannot be changed in accordance with an operation on the ignition switch. Therefore, such an in-vehicle device has a limit in reducing power consumption.
 本発明は、斯かる事情に鑑みてなされたものである。そして、その目的とするところは、車載機器における消費電力の更なる低減が可能である車載中継装置及び中継方法を提供することにある。 The present invention has been made in view of such circumstances. And the place made into the objective is to provide the vehicle-mounted relay apparatus and the relay method which can further reduce the power consumption in a vehicle-mounted apparatus.
 本発明に係る車載中継装置は、複数のプロセッサコアを有し、該プロセッサコアの少なくとも1つにて所定のクロック周波数で制御プログラムを実行するプロセッサを備え、少なくとも1つの車載機器がそれぞれ接続された複数の通信線間の通信を中継する車載中継装置において、前記通信線を介して情報を取得する取得部と、該取得部が取得した情報に基づいて、自装置を搭載する車輌の動作状態を検出する検出部と、該検出部が検出した動作状態に応じて、前記プロセッサが制御プログラムを実行する際に用いるプロセッサコアのコア数及び/又はクロック周波数を決定する決定部と、該決定部が決定したコア数のプロセッサコア及び/又はクロック周波数での制御プログラムの実行を前記プロセッサに指示する実行制御部とを備えることを特徴とする。 The in-vehicle relay device according to the present invention includes a processor having a plurality of processor cores and executing a control program at a predetermined clock frequency in at least one of the processor cores, and at least one in-vehicle device is connected thereto. In an in-vehicle relay device that relays communication between a plurality of communication lines, an acquisition unit that acquires information via the communication line, and an operation state of a vehicle on which the device is mounted is determined based on the information acquired by the acquisition unit. A detecting unit for detecting, a determining unit for determining a core number and / or a clock frequency of a processor core used when the processor executes a control program according to an operation state detected by the detecting unit; A processor core having the determined number of cores and / or an execution control unit that instructs the processor to execute a control program at a clock frequency. And wherein the door.
 本発明によれば、複数の通信線間の通信を中継する車載中継装置は、複数のプロセッサコアを有するプロセッサを備える。車載中継装置は、通信線を介して取得する情報に基づいて車輌の動作状態を検出し、検出した動作状態に応じて、プロセッサが制御プログラムを実行する際のプロセッサコアのコア数及び/又はクロック周波数を切り替える。使用するプロセッサコアが少ない場合又はクロック周波数が低い場合、車載中継装置による消費電力の低減が可能である。また、使用するプロセッサコアが多い場合又はクロック周波数が高い場合、車載中継装置の処理能力が高いので制御プログラムの確実な実行が可能となる。よって、車輌の動作状態に応じて、省電力性を優先するか、制御プログラムの実行の確実性を優先するかを切り替えることができる。 According to the present invention, an in-vehicle relay device that relays communication between a plurality of communication lines includes a processor having a plurality of processor cores. The in-vehicle relay device detects the operation state of the vehicle based on the information acquired through the communication line, and the number of cores and / or the clock of the processor core when the processor executes the control program according to the detected operation state Switch the frequency. When the number of processor cores to be used is small or the clock frequency is low, the power consumption by the in-vehicle relay device can be reduced. Further, when there are many processor cores to be used or when the clock frequency is high, the processing capability of the in-vehicle relay device is high, so that the control program can be reliably executed. Therefore, according to the operation state of the vehicle, it is possible to switch between giving priority to power saving and giving priority to execution of the control program.
 本発明に係る車載中継装置の前記検出部は、前記車載機器の動作状態に係る情報に基づいて、前記車輌の動作状態を検出するようにしてあることを特徴とする。 The detection unit of the in-vehicle relay device according to the present invention is characterized in that the operation state of the vehicle is detected based on information related to the operation state of the in-vehicle device.
 本発明によれば、車載中継装置は、複数の通信線間において、車載機器の動作状態に係る情報の送受信を中継する。車載中継装置は、このような情報に基づいて車輌の動作状態を検出する。よって、車載中継装置は、車載機器の動作状態に基づいて検出された車輌の動作状態に応じて、低消費電力での動作と高処理能力での動作との切り替えが可能である。 According to the present invention, the in-vehicle relay device relays transmission / reception of information related to the operation state of the in-vehicle device between a plurality of communication lines. The in-vehicle relay device detects the operation state of the vehicle based on such information. Therefore, the in-vehicle relay device can switch between the operation with low power consumption and the operation with high processing capacity according to the operation state of the vehicle detected based on the operation state of the in-vehicle device.
 本発明に係る車載中継装置の前記検出部は、前記車輌のイグニッションスイッチ、ブレーキペダル、又はシフトレバーに対する操作に係る情報に基づいて、前記車輌の動作状態を検出するようにしてあることを特徴とする。 The detection unit of the in-vehicle relay device according to the present invention is configured to detect an operation state of the vehicle based on information related to an operation on an ignition switch, a brake pedal, or a shift lever of the vehicle. To do.
 本発明によれば、車載中継装置は、複数の通信線間において、車輌のイグニッションスイッチ、ブレーキペダル、又はシフトレバーに対する操作に係る情報の送受信を中継する。車載中継装置は、このような情報に基づいて車輌の動作状態を検出する。イグニッションスイッチ、ブレーキペダル、又はシフトレバーに対する操作が行われた場合、車輌の電源状態(電力供給状態)が遷移する。例えば、エンジン停止中にブレーキペダルが踏まれた状態でイグニッションスイッチがオン操作された場合、エンジンが駆動する。また、エンジン停止中にブレーキペダルが踏まれていない状態でイグニッションスイッチがオン操作された場合、カーオーディオ及びカーナビゲーション装置等の車載機器に電力が供給される状態となる。よって、車輌の電源状態を含む動作状態に応じて、低消費電力での動作と高処理能力での動作との切り替えが可能となる。 According to the present invention, the in-vehicle relay device relays transmission / reception of information related to an operation of an ignition switch, a brake pedal, or a shift lever of a vehicle between a plurality of communication lines. The in-vehicle relay device detects the operation state of the vehicle based on such information. When an operation is performed on the ignition switch, the brake pedal, or the shift lever, the power state (power supply state) of the vehicle changes. For example, when the ignition switch is turned on while the brake pedal is depressed while the engine is stopped, the engine is driven. In addition, when the ignition switch is turned on while the brake pedal is not depressed while the engine is stopped, power is supplied to in-vehicle devices such as a car audio and a car navigation device. Therefore, it is possible to switch between the operation with low power consumption and the operation with high processing capacity in accordance with the operation state including the power supply state of the vehicle.
 本発明に係る車載中継装置は、前記車載機器にて実行される制御プログラムを書き換える書換プログラムを出力する出力装置の接続が可能な接続部を更に備え、前記検出部は、前記接続部に前記出力装置が接続された場合、前記車載機器にて実行される制御プログラムの書き換えが行われる状態であることを検出するようにしてあることを特徴とする。 The in-vehicle relay device according to the present invention further includes a connection unit capable of connecting an output device that outputs a rewriting program for rewriting a control program executed in the in-vehicle device, and the detection unit outputs the output to the connection unit. When the apparatus is connected, it is detected that the control program executed by the in-vehicle device is being rewritten.
 本発明によれば、車載中継装置は、車載機器にて実行される制御プログラムを書き換える書換プログラムを出力する出力装置の接続が可能である。車載中継装置は、接続部に出力装置が接続された場合、制御プログラムの書き換えが行われる状態であることを検出し、検出した動作状態に応じたプロセッサコアのコア数及び/又はクロック周波数に切り替える。よって、制御プログラムの書き換えが行われる場合に、書き換え処理に適したコア数及び/又はクロック周波数での処理が可能となる。 According to the present invention, the in-vehicle relay device can be connected to an output device that outputs a rewriting program for rewriting a control program executed in the in-vehicle device. When the output device is connected to the connection unit, the in-vehicle relay device detects that the control program is being rewritten and switches to the number of processor cores and / or the clock frequency according to the detected operation state. . Therefore, when the control program is rewritten, it is possible to perform processing with the number of cores and / or the clock frequency suitable for the rewriting processing.
 本発明に係る中継方法は、複数のプロセッサコアを有し、該プロセッサコアの少なくとも1つにて所定のクロック周波数で制御プログラムを実行するプロセッサを備える車載中継装置が、少なくとも1つの車載機器がそれぞれ接続された複数の通信線間の通信を中継する中継方法において、前記車載中継装置が、前記通信線を介して取得した情報に基づいて、自装置を搭載する車輌の動作状態を検出するステップと、前記車載中継装置が、検出した動作状態に応じて、前記プロセッサが制御プログラムを実行する際に用いるプロセッサコアのコア数及び/又はクロック周波数を決定するステップと、前記車載中継装置が、決定したコア数のプロセッサコア及び/又はクロック周波数での制御プログラムの実行を前記プロセッサに指示するステップとを含むことを特徴とする。 The relay method according to the present invention includes a plurality of processor cores, and an in-vehicle relay device including a processor that executes a control program at a predetermined clock frequency in at least one of the processor cores. In the relay method for relaying communication between a plurality of connected communication lines, the on-vehicle relay device detects an operation state of a vehicle on which the device is mounted based on information acquired via the communication line; The step of determining the number of cores and / or the clock frequency of the processor core used when the processor executes the control program according to the detected operating state, and the vehicle-mounted relay device determines A processor instructing the processor to execute a control program at the number of processor cores and / or clock frequency. Tsu, characterized in that it comprises a flop.
 本発明によれば、車輌の動作状態に応じて、車載中継装置において、低消費電力での動作と高処理能力での動作とを切り替えることができる。 According to the present invention, it is possible to switch between an operation with low power consumption and an operation with high processing capability in the in-vehicle relay device according to the operation state of the vehicle.
 本発明では、複数の通信線間の通信を中継する車載中継装置においても消費電力の低減が可能である。また、車輌の動作状態に応じて、低消費電力での動作と高処理能力での動作とを切り替えることができる車載中継装置を実現できる。 In the present invention, power consumption can be reduced even in an in-vehicle relay device that relays communication between a plurality of communication lines. Further, it is possible to realize an in-vehicle relay device that can switch between an operation with low power consumption and an operation with high processing capacity in accordance with the operation state of the vehicle.
本発明に係る車載中継装置を含む車載通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the vehicle-mounted communication system containing the vehicle-mounted relay apparatus which concerns on this invention. 実行条件テーブルの構成例を示す模式図である。It is a schematic diagram which shows the structural example of an execution condition table. ゲートウェイの機能構成例を示すブロック図である。It is a block diagram which shows the function structural example of a gateway. ゲートウェイが行う処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which a gateway performs.
 以下に、本発明に係る車載中継装置及び中継方法について、その実施形態を示す図面に基づいて詳述する。図1は、本発明に係る車載中継装置を含む車載通信システムの構成例を示すブロック図である。本実施形態の車載通信システムは、複数の通信バス(通信線)2~5、それぞれの通信バス2~5に接続された複数のECU(Electronic Control Unit)2a~2c,3a~3c,4a~4c,5a~5c、通信バス2~5間の通信を中継するゲートウェイ(車載中継装置)1等を含む。図1に示す例では、4つの通信バス2~5が設けてあり、各通信バス2~5にはそれぞれ3つのECU(車載機器)2a~2c,3a~3c,4a~4c,5a~5cが接続してある。しかし、通信バスの数は2つ以上であれば4つに限らず、各通信バス2~5に接続されるECUの数は1つ以上であれば3つに限らない。以下では、ECU2a~2c,3a~3c,4a~4c,5a~5cを単にECUと記載することもある。 Hereinafter, an in-vehicle relay device and a relay method according to the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a block diagram showing a configuration example of an in-vehicle communication system including an in-vehicle relay device according to the present invention. The in-vehicle communication system according to the present embodiment includes a plurality of communication buses (communication lines) 2 to 5 and a plurality of ECUs (Electronic Control Units) 2a to 2c, 3a to 3c, and 4a to each of the communication buses 2 to 5. 4c, 5a to 5c, and a gateway (on-vehicle relay device) 1 that relays communication between the communication buses 2 to 5 and the like. In the example shown in FIG. 1, four communication buses 2 to 5 are provided, and each of the communication buses 2 to 5 has three ECUs (vehicle equipment) 2a to 2c, 3a to 3c, 4a to 4c, and 5a to 5c. Is connected. However, the number of communication buses is not limited to four if the number is two or more, and is not limited to three if the number of ECUs connected to each of the communication buses 2 to 5 is one or more. Hereinafter, the ECUs 2a to 2c, 3a to 3c, 4a to 4c, and 5a to 5c may be simply referred to as ECUs.
 通信バス2~5を介した通信は、例えばCAN(Controller Area Network)又はLIN(Local Interconnect Network)等の通信規格に基づいて行われる。それぞれの通信バス2~5は、接続されるECUの制御対象の種類で区分されている。例えば、通信バス2~5のそれぞれには、エンジン制御機構、変速機構等の制御を行う制御系のECU、動力制御機構、走行制御機構等の制御を行うシャシー系のECU、ドアロック機構、パワーウィンドウ、ランプ制御機構等の制御を行うボディ系のECU、カーオーディオ、カーナビゲーション装置等の制御を行う情報系のECU、衝突回避機構等の先進運転支援システムの制御を行うADAS(Advanced Driver Assistance System)系のECU等が接続されている。それぞれの通信バス2~5に接続されたECUは、通信バス2~5を介して相互にデータ交換することにより、種々の処理を実現している。各通信バス2~5には、ECUだけでなく、各種のモータ、アクチュエータ及びセンサ等の車載機器が接続されていてもよい。 Communication via the communication buses 2 to 5 is performed based on communication standards such as CAN (Controller Area Network) or LIN (Local Interconnect Network). Each of the communication buses 2 to 5 is classified according to the type of control target of the connected ECU. For example, each of the communication buses 2 to 5 includes a control system ECU that controls an engine control mechanism, a transmission mechanism, and the like, a chassis ECU that controls a power control mechanism, a travel control mechanism, a door lock mechanism, a power ADAS (Advanced Driver Assistance 制 御 System) for controlling advanced driver assistance systems such as body ECUs for controlling windows, lamp control mechanisms, etc., information system ECUs for controlling car audio and car navigation systems, and collision avoidance mechanisms ) System ECU or the like is connected. The ECUs connected to the respective communication buses 2 to 5 implement various processes by exchanging data with each other via the communication buses 2 to 5. Each communication bus 2 to 5 may be connected not only to the ECU but also to in-vehicle devices such as various motors, actuators, and sensors.
 ECUのそれぞれは、マイクロコンピュータ(以下、マイコンという)及び通信インタフェース等(図示せず)を備え、通信インタフェースを介して通信バス2~5に接続されている。各ECUのマイコンは、MPU(Micro Processing Unit)又はCPU(Central Processing Unit)等のプロセッサ、プロセッサが各ECUとしての動作を実現するための制御プログラムを記憶しているメモリ等(図示せず)を備える。各マイコンのプロセッサは、メモリに記憶されている制御プログラムを実行することにより、それぞれのECUとしての動作を実現する。
 また各ECUのマイコンは、通信コントローラ機能を有し、それぞれの通信バス2~5を介して伝送されてくるデータの受信、及び伝送すべきデータの送信を行う。各ECUには、センサ又はアクチュエータ等(図示せず)が接続してある場合がある。この場合、各ECUのマイコンは、センサ等にて取得した情報を含むデータを通信バス2~5へ送信し、通信バス2~5を介して受信したデータに含まれる情報に基づいてアクチュエータ等の動作を制御する。
Each ECU includes a microcomputer (hereinafter referred to as a microcomputer) and a communication interface (not shown), and is connected to the communication buses 2 to 5 through the communication interface. The microcomputer of each ECU includes a processor such as an MPU (Micro Processing Unit) or a CPU (Central Processing Unit), a memory or the like (not shown) that stores a control program for the processor to realize an operation as each ECU. Prepare. The processor of each microcomputer implement | achieves operation | movement as each ECU by running the control program memorize | stored in memory.
The microcomputer of each ECU has a communication controller function, and receives data transmitted via the communication buses 2 to 5 and transmits data to be transmitted. Each ECU may be connected to a sensor or an actuator (not shown). In this case, the microcomputer of each ECU transmits data including information acquired by the sensor or the like to the communication buses 2 to 5, and based on the information included in the data received via the communication buses 2 to 5, Control the behavior.
 図1に示す例では、ECU5aにイグニッションスイッチ(IGスイッチ)6が接続してあり、ECU5bにブレーキペダル7が接続してあり、ECU5cにシフトレバー8が接続してある。なお、ブレーキペダル7及びシフトレバー8については、実際には、ブレーキペダル7に対する操作を検出するセンサがECU5bに接続してあり、シフトレバー8に対する操作を検出するセンサがECU5cに接続してある。また車輌がシフトレバー8のパーキングポジションの代わりにパーキングスイッチ(パーキングボタン)を備える場合、パーキングスイッチもECU5cに接続してある。図1に示す構成では例えば、ECU5aはイグニッションスイッチ6に対して操作が行われたことを検知した場合、イグニッションスイッチ6が操作されたことを示すデータを通信バス5へ送信する。ECU5bはブレーキペダル7に対して操作が行われているか否かを検知し、ブレーキペダル7が操作されているか否か(踏み込まれているか否か)を示すデータを通信バス5へ送信する。なお、ブレーキペダル7の踏み込み量を検出できるセンサがECU5bに接続してある場合、ECU5bは、ブレーキペダル7に対する踏み込み量を示すデータを通信バス5へ送信してもよい。ECU5cはシフトレバー8に対して操作が行われたことを検知した場合、操作後のシフトレバー8のシフトポジションを示すデータを通信バス5へ送信する。 In the example shown in FIG. 1, an ignition switch (IG switch) 6 is connected to the ECU 5a, a brake pedal 7 is connected to the ECU 5b, and a shift lever 8 is connected to the ECU 5c. As for the brake pedal 7 and the shift lever 8, a sensor for detecting an operation on the brake pedal 7 is actually connected to the ECU 5b, and a sensor for detecting an operation on the shift lever 8 is connected to the ECU 5c. When the vehicle includes a parking switch (parking button) instead of the parking position of the shift lever 8, the parking switch is also connected to the ECU 5c. In the configuration shown in FIG. 1, for example, when the ECU 5 a detects that an operation has been performed on the ignition switch 6, the ECU 5 a transmits data indicating that the ignition switch 6 has been operated to the communication bus 5. The ECU 5b detects whether the brake pedal 7 is operated, and transmits data indicating whether the brake pedal 7 is operated (whether the brake pedal 7 is depressed) to the communication bus 5. When a sensor capable of detecting the amount of depression of the brake pedal 7 is connected to the ECU 5b, the ECU 5b may transmit data indicating the amount of depression of the brake pedal 7 to the communication bus 5. When the ECU 5 c detects that the operation has been performed on the shift lever 8, the ECU 5 c transmits data indicating the shift position of the shift lever 8 after the operation to the communication bus 5.
 イグニッションスイッチ6は、例えば押しボタン式のスイッチであり、車輌のエンジンを始動するためのスイッチである。イグニッションスイッチ6は段階的な操作が可能に構成してある。例えば、イグニッションスイッチ6がオフの状態(エンジン停止状態)でイグニッションスイッチ6が操作(押下)された場合、エンジンは始動せずに車輌に搭載されたカーオーディオ及びカーナビゲーション装置等の車載機器に電力が供給されて起動される状態に遷移する。この状態からイグニッションスイッチ6が再度操作された場合、エンジンは始動せずに更に空調装置及びパワーウィンドウ等の車載機器に電力が供給されて起動される状態に遷移する。また、ブレーキペダル7が踏まれた状態でイグニッションスイッチ6が操作された場合、エンジンが始動する。イグニッションスイッチ6、ブレーキペダル7、シフトレバー8は同一の通信バス5に接続されたECU5a~5cに接続される構成に限らず、それぞれ異なる通信バス2~5に接続されたECUに接続されてもよい。 The ignition switch 6 is, for example, a push button type switch, and is a switch for starting a vehicle engine. The ignition switch 6 is configured to allow stepwise operation. For example, when the ignition switch 6 is operated (pressed) while the ignition switch 6 is off (engine stopped), the engine does not start and power is supplied to in-vehicle devices such as a car audio and a car navigation device mounted on the vehicle. Transitions to a state in which is supplied and activated. When the ignition switch 6 is operated again from this state, the engine is not started, and a transition is made to a state in which electric power is supplied to in-vehicle devices such as an air conditioner and a power window. Further, when the ignition switch 6 is operated with the brake pedal 7 being depressed, the engine is started. The ignition switch 6, the brake pedal 7, and the shift lever 8 are not limited to the configuration connected to the ECUs 5a to 5c connected to the same communication bus 5, but may be connected to ECUs connected to different communication buses 2 to 5, respectively. Good.
 ゲートウェイ1は、制御部10、記憶部15、通信インタフェース16等を備え、各部はバスを介して接続されている。
 制御部10は、プロセッサ11、ROM(Read Only Memory)12、RAM(Random Access Memory)13、クロック生成部14等を有する。プロセッサ11は、MPU又はCPU等で構成されており、複数のプロセッサコアを有するマルチプロセッサである。図1に示す例では、本実施形態のプロセッサ11は、第1コア~第3コアの3つのプロセッサコアを有するが、プロセッサ11が有するプロセッサコアの数は3つに限定されない。
The gateway 1 includes a control unit 10, a storage unit 15, a communication interface 16, and the like, and each unit is connected via a bus.
The control unit 10 includes a processor 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, a clock generation unit 14, and the like. The processor 11 is configured by an MPU, a CPU, or the like, and is a multiprocessor having a plurality of processor cores. In the example shown in FIG. 1, the processor 11 of the present embodiment has three processor cores of the first core to the third core, but the number of processor cores included in the processor 11 is not limited to three.
 プロセッサ11は、3つのプロセッサコアのうちの少なくとも1つを用いて、ROM12又は記憶部15に記憶してある制御プログラムをRAM13に読み出して実行する。これにより、プロセッサ11は、ゲートウェイ1の各部の動作を制御し、ゲートウェイ1としての動作を実現する。
 ROM12は、マスクROM又はEEPROM(Electrically Erasable Programmable ROM)等の不揮発性メモリであり、プロセッサ11がゲートウェイ1としての動作を実現するための制御プログラム及び各種データを予め記憶している。RAM13は、DRAM(Dynamic RAM)、SRAM(Static RAM)等の書き換え可能なメモリであり、プロセッサ11による制御プログラムの実行時に発生するデータを一時的に記憶する。
The processor 11 reads out the control program stored in the ROM 12 or the storage unit 15 to the RAM 13 and executes it using at least one of the three processor cores. Thereby, the processor 11 controls the operation of each part of the gateway 1 to realize the operation as the gateway 1.
The ROM 12 is a non-volatile memory such as a mask ROM or an EEPROM (Electrically Erasable Programmable ROM), and stores in advance a control program and various data for the processor 11 to realize the operation as the gateway 1. The RAM 13 is a rewritable memory such as DRAM (Dynamic RAM) or SRAM (Static RAM), and temporarily stores data generated when the processor 11 executes the control program.
 クロック生成部14は例えば、水晶振動子又はセラミック振動子等を利用した発振回路と、発振回路にて生成されたクロック信号を分周する分周回路とを備える。クロック生成部14は、分周回路にて所定のクロック周波数に分周されたクロック信号をゲートウェイ1の各部へ供給する。なお、図1では、クロック生成部14からプロセッサ11へのクロック信号の供給経路のみを示す。プロセッサ11は、クロック生成部14から供給されるクロック信号に従って制御プログラムを実行する。
 またクロック生成部14は、プロセッサ11からの指示に従って、出力するクロック信号のクロック周波数を変更できるようにしてある。クロック周波数の変更は例えば、分周回路によるクロック信号の分周数を変更することにより行われる。
The clock generation unit 14 includes, for example, an oscillation circuit that uses a crystal resonator or a ceramic resonator, and a frequency dividing circuit that divides a clock signal generated by the oscillation circuit. The clock generation unit 14 supplies the clock signal frequency-divided to a predetermined clock frequency by the frequency dividing circuit to each unit of the gateway 1. In FIG. 1, only the clock signal supply path from the clock generator 14 to the processor 11 is shown. The processor 11 executes the control program according to the clock signal supplied from the clock generation unit 14.
The clock generation unit 14 can change the clock frequency of the output clock signal in accordance with an instruction from the processor 11. The clock frequency is changed, for example, by changing the frequency division number of the clock signal by the frequency dividing circuit.
 記憶部15は、EEPROM又はフラッシュメモリ等であり、プロセッサ11が実行すべき制御プログラム、及び実行条件テーブル15a等の各種データを記憶している。図2は、実行条件テーブル15aの構成例を示す模式図である。実行条件テーブル15aには、本実施形態の車載通信システムが搭載された車輌の動作状態に対応付けて、プロセッサ11が制御プログラムを実行する際に用いるプロセッサコアのコア数及びクロック周波数(2つ合わせて実行条件という)が記憶されている。図2に示す例では、車輌の動作状態として、イグニッションスイッチ6がオフの状態(IG-OFF)、カーオーディオ及びカーナビゲーション装置等の車載機器に電力が供給される状態(ACC)、更に空調装置及びパワーウィンドウ等の車載機器に電力が供給される状態(IG-ON)、エンジンが駆動している状態(START)、各ECU又はゲートウェイ1のプロセッサ11が実行する制御プログラムの書き換えが行われている状態(プログラム書換時)がある。車輌の動作状態はこれらの状態に限らず、例えば電力が供給される車載機器の種類又は数等が異なる各状態を用いてもよい。クロック周波数は、例えば3段階の切り替えが可能であり、図2に示す例では、それぞれの動作状態に低レベル(例えば4MHz未満)、中レベル(例えば4MHz以上20MHz未満)、高レベル(例えば20MHz以上)のいずれかが対応付けられている。また、本実施形態ではプロセッサ11は3つのプロセッサコアを有するので、図2に示す例では、それぞれの動作状態に応じたコア数として1つ、2つ又は3つが対応付けられている。なお、クロック周波数は3段階で切り替える構成に限らず、各クロック周波数は上記の周波数に限らない。実行条件テーブル15aは、予め記憶部15に記憶されているが、例えばゲートウェイ1に接続可能な外部機器によって書き換えできるようにしてもよい。 The storage unit 15 is an EEPROM or a flash memory, and stores various data such as a control program to be executed by the processor 11 and an execution condition table 15a. FIG. 2 is a schematic diagram illustrating a configuration example of the execution condition table 15a. In the execution condition table 15a, the number of processor cores and the clock frequency used when the processor 11 executes the control program in association with the operation state of the vehicle on which the in-vehicle communication system of this embodiment is mounted (the two are combined). Are called execution conditions). In the example shown in FIG. 2, as the operation state of the vehicle, the ignition switch 6 is in an off state (IG-OFF), a state in which electric power is supplied to in-vehicle devices such as a car audio and a car navigation device (ACC), and an air conditioner In addition, a state in which electric power is supplied to an in-vehicle device such as a power window (IG-ON), a state in which the engine is driven (START), and a control program executed by each ECU or the processor 11 of the gateway 1 is rewritten. There is a state (during program rewriting). The operation state of the vehicle is not limited to these states, and for example, various states with different types or number of in-vehicle devices to which power is supplied may be used. The clock frequency can be switched, for example, in three stages. In the example shown in FIG. 2, each operation state has a low level (for example, less than 4 MHz), a medium level (for example, 4 MHz or more and less than 20 MHz), and a high level (for example, 20 MHz or more). ) Is associated. Further, in the present embodiment, the processor 11 has three processor cores. Therefore, in the example illustrated in FIG. 2, one, two, or three is associated as the number of cores corresponding to each operation state. Note that the clock frequency is not limited to the configuration switched in three stages, and each clock frequency is not limited to the above frequency. The execution condition table 15a is stored in the storage unit 15 in advance, but may be rewritten by an external device that can be connected to the gateway 1, for example.
 通信インタフェース16は、通信バス2~5のそれぞれが接続される接続部を有し、接続された各通信バス2~5を介して各ECUとの間でデータを送受信する。通信インタフェース16は、通信バス2~5を介して受信したデータを制御部10(プロセッサ11)へ送出し、制御部10(プロセッサ11)から与えられたデータを通信バス2~5のいずれか(少なくとも1つの通信バス2~5)へ送信する。従って、ゲートウェイ1は、通信バス2~5のいずれかを介して受信した情報を他の通信バス2~5へ送信することにより、それぞれの通信バス2~5間の通信を中継する。例えば、ゲートウェイ1は、ECU2aが送信した情報を通信バス2を介して受信し、必要に応じて通信バス3へ送信する。この場合、通信バス2に接続されたECU2aと、通信バス3に接続されたECU3a~3cとの通信(情報の送受信)が可能となる。 The communication interface 16 has a connection part to which each of the communication buses 2 to 5 is connected, and transmits / receives data to / from each ECU via the connected communication buses 2 to 5. The communication interface 16 sends the data received via the communication buses 2 to 5 to the control unit 10 (processor 11), and the data given from the control unit 10 (processor 11) is one of the communication buses 2 to 5 ( Transmit to at least one communication bus 2-5). Accordingly, the gateway 1 relays communication between the respective communication buses 2 to 5 by transmitting information received via any of the communication buses 2 to 5 to the other communication buses 2 to 5. For example, the gateway 1 receives the information transmitted by the ECU 2a via the communication bus 2 and transmits it to the communication bus 3 as necessary. In this case, communication (information transmission / reception) between the ECU 2a connected to the communication bus 2 and the ECUs 3a to 3c connected to the communication bus 3 becomes possible.
 また、通信インタフェース16には、外部機器の接続が可能な外部機器接続部(接続部)17が接続してある。外部機器接続部17は、例えば接続ケーブルを介して外部機器を接続できるようにしてある。外部機器は例えば、ゲートウェイ1の記憶部15又は各ECUのメモリに記憶してある制御プログラムの書き換えを行う書換プログラムを出力する書換装置(出力装置)9である。書換装置9は、例えばパーソナルコンピュータであり、接続ケーブルを介して外部機器接続部17に接続される接続部、MPU又はCPU等の制御部、書換プログラムを記憶する記憶部等を備える。書換装置9が接続ケーブルを介してゲートウェイ1(外部機器接続部17)に接続された場合、書換装置9の制御部とゲートウェイ1の制御部10との間でデータの送受信が行われる。これにより、ゲートウェイ1は、外部機器接続部17に書換装置9が接続されたことを検知できる。書換装置9は、外部機器接続部17及び通信インタフェース16を介してゲートウェイ1の記憶部15又は各ECUのメモリへ書換プログラムを出力し、記憶部15又は各ECUのメモリに記憶してある制御プログラムの書き換えを行う。なお、ゲートウェイ1は、書換装置9から取得した書換プログラムをプロセッサ11が実行することにより、記憶部15の制御プログラムを書き換える構成でもよい。同様に各ECUも、書換装置9から取得した書換プログラムをマイコンのプロセッサが実行することにより、メモリの制御プログラムを書き換える構成でもよい。
 ゲートウェイ1と書換装置9とは接続ケーブルを介して接続される構成に限らず、無線通信を行うように構成されていてもよい。
The communication interface 16 is connected to an external device connection unit (connection unit) 17 capable of connecting an external device. The external device connection unit 17 can connect an external device via a connection cable, for example. The external device is, for example, a rewriting device (output device) 9 that outputs a rewriting program for rewriting a control program stored in the storage unit 15 of the gateway 1 or the memory of each ECU. The rewriting device 9 is, for example, a personal computer, and includes a connection unit connected to the external device connection unit 17 via a connection cable, a control unit such as an MPU or a CPU, a storage unit that stores a rewriting program, and the like. When the rewrite device 9 is connected to the gateway 1 (external device connection unit 17) via the connection cable, data is transmitted and received between the control unit of the rewrite device 9 and the control unit 10 of the gateway 1. Thereby, the gateway 1 can detect that the rewriting device 9 is connected to the external device connection unit 17. The rewriting device 9 outputs a rewriting program to the storage unit 15 of the gateway 1 or the memory of each ECU via the external device connection unit 17 and the communication interface 16, and is stored in the storage unit 15 or the memory of each ECU. Rewrite. The gateway 1 may be configured to rewrite the control program in the storage unit 15 when the processor 11 executes the rewrite program acquired from the rewrite device 9. Similarly, each ECU may be configured to rewrite the memory control program by executing the rewrite program acquired from the rewrite device 9 by the processor of the microcomputer.
The gateway 1 and the rewriting device 9 are not limited to being connected via a connection cable, and may be configured to perform wireless communication.
 以下に、上述した構成のゲートウェイ1において、プロセッサ11がROM12又は記憶部15に記憶してある制御プログラムを実行することによって実現する機能について説明する。図3は、ゲートウェイ1の機能構成例を示すブロック図である。ゲートウェイ1のプロセッサ11は、制御プログラムを実行することによって中継処理部11a、動作状態判定部11b、実行条件切替部11cの各機能を実現する。
 プロセッサ11は、RAM13を受信バッファ13a及び送信バッファ13bとして使用する。プロセッサ(取得部)11は、通信インタフェース16が通信バス2~5を介して受信したデータを取得し、受信バッファ13aに記憶する。
Hereinafter, in the gateway 1 having the above-described configuration, functions realized by the processor 11 executing a control program stored in the ROM 12 or the storage unit 15 will be described. FIG. 3 is a block diagram illustrating a functional configuration example of the gateway 1. The processor 11 of the gateway 1 implements the functions of the relay processing unit 11a, the operation state determination unit 11b, and the execution condition switching unit 11c by executing the control program.
The processor 11 uses the RAM 13 as a reception buffer 13a and a transmission buffer 13b. The processor (acquisition unit) 11 acquires data received by the communication interface 16 via the communication buses 2 to 5 and stores the data in the reception buffer 13a.
 中継処理部11aは、受信バッファ13aに記憶されたデータから通信バス2~5へ送信すべきデータを生成し、送信バッファ13bに記憶する。送信バッファ13bに記憶されたデータは所定のタイミングでいずれかの通信バス2~5(少なくとも1つの通信バス2~5)へ送信される。よって、通信バス2~5を介して受信して受信バッファ13aに記憶されたデータが、送信データとして送信バッファ13bに記憶されて通信バス2~5へ送信されるので、各通信バス2~5間の通信が中継される。中継処理部11aは、いずれかの通信バス2~5を介して受信して受信バッファ13aに記憶されたデータをそのまま送信バッファ13aに記憶する処理、異なる複数の通信バス2~5を介してそれぞれ受信した複数のデータをまとめて1つの送信データとして送信バッファ13bに記憶する処理等を行う。また中継処理部11aは、受信バッファ13aに記憶されたデータに対して、送信先の通信バス2~5又はECUに応じた処理を行い、処理後のデータを送信バッファ13bに記憶する構成を有してもよい。 The relay processing unit 11a generates data to be transmitted to the communication buses 2 to 5 from the data stored in the reception buffer 13a, and stores the data in the transmission buffer 13b. The data stored in the transmission buffer 13b is transmitted to any one of the communication buses 2 to 5 (at least one communication bus 2 to 5) at a predetermined timing. Therefore, the data received via the communication buses 2 to 5 and stored in the reception buffer 13a is stored as transmission data in the transmission buffer 13b and transmitted to the communication buses 2 to 5, so that each communication bus 2 to 5 Communication between them is relayed. The relay processing unit 11a performs processing for storing the data received through one of the communication buses 2 to 5 and stored in the reception buffer 13a as it is in the transmission buffer 13a, and via a plurality of different communication buses 2 to 5, respectively. A process of storing a plurality of received data in the transmission buffer 13b as one transmission data is performed. Further, the relay processing unit 11a has a configuration in which the data stored in the reception buffer 13a is processed according to the communication buses 2 to 5 or the ECU of the transmission destination, and the processed data is stored in the transmission buffer 13b. May be.
 動作状態判定部(検出部)11bは、受信バッファ13aに記憶されたデータに基づいて、車輌の動作状態を判定する。具体的には、動作状態判定部11bは、現在の車輌の状態と、いずれかの通信バス2~5を介して受信したデータとに基づいて、これから遷移すべき動作状態を判定する。本実施形態の動作状態判定部11bは、図2に示す実行条件テーブル15aに記憶してある動作状態のいずれに遷移するかを判定する。例えば、車輌のイグニッションスイッチ6がオフの状態(エンジン停止状態)の時に、イグニッションスイッチ6が操作されたことを示すデータを受信した場合、動作状態判定部11bは、カーオーディオ及びカーナビゲーション装置等に電力が供給される状態(ACC)へ遷移すると判定する。また、ACCの状態の時に、イグニッションスイッチ6が更に操作されたことを示すデータを受信した場合、動作状態判定部11bは、空調装置及びパワーウィンドウ等に電力が供給される状態(IG-ON)へ遷移すると判定する。また、ブレーキペダル7が操作されている(踏み込まれている)ことを示すデータと、イグニッションスイッチ6が操作されたことを示すデータとを受信した場合、動作状態判定部11bは、エンジンが駆動している状態(START)へ遷移すると判定する。また、シフトレバー8がパーキングポジションに操作されたことを示すデータを受信した場合、動作状態判定部11bは、エンジン停止状態(駐車状態)へ遷移すると判定する。 The operation state determination unit (detection unit) 11b determines the operation state of the vehicle based on the data stored in the reception buffer 13a. Specifically, the operation state determination unit 11b determines the operation state to be changed from now on, based on the current vehicle state and data received via any one of the communication buses 2-5. The operation state determination unit 11b according to the present embodiment determines which of the operation states stored in the execution condition table 15a illustrated in FIG. For example, when data indicating that the ignition switch 6 has been operated is received when the ignition switch 6 of the vehicle is in an off state (engine stop state), the operation state determination unit 11b transmits the data to the car audio, the car navigation device, and the like. It determines with changing to the state (ACC) in which electric power is supplied. Further, when data indicating that the ignition switch 6 is further operated is received in the ACC state, the operation state determination unit 11b is in a state in which electric power is supplied to the air conditioner and the power window (IG-ON). It is determined that the transition to When the data indicating that the brake pedal 7 is operated (depressed) and the data indicating that the ignition switch 6 is operated are received, the operation state determination unit 11b causes the engine to drive. It is determined that the current state (START) is transitioned to. Further, when data indicating that the shift lever 8 has been operated to the parking position is received, the operation state determination unit 11b determines to shift to the engine stop state (parking state).
 また、通信インタフェース16が受信するデータには、外部機器接続部17に接続された書換装置9から送信されたデータも含まれる。よって、動作状態判定部11bは、書換装置9から送信されたデータを受信した場合、即ち、書換装置9が接続されたことを検知した場合、書換装置9による制御プログラムの書き換え処理が行われる状態へ遷移すると判定する。また、書換装置9の制御部は、制御プログラムの書き換え処理が終了した場合(具体的には、書換プログラムの送信が完了した場合)、書き換え処理の終了を示すデータをゲートウェイ1へ送信する。これにより、ゲートウェイ1は、書換装置9による制御プログラムの書き換え処理が終了したことを検知できる。
 動作状態判定部11bは、判定した動作状態を実行条件切替部11cに通知する。
The data received by the communication interface 16 includes data transmitted from the rewriting device 9 connected to the external device connection unit 17. Therefore, when the operation state determination unit 11b receives the data transmitted from the rewrite device 9, that is, when it is detected that the rewrite device 9 is connected, the rewrite device 9 performs a rewrite process of the control program. It is determined that the transition is made. In addition, when the rewriting process of the control program is completed (specifically, when the transmission of the rewriting program is completed), the control unit of the rewriting device 9 transmits data indicating the end of the rewriting process to the gateway 1. Thereby, the gateway 1 can detect that the rewriting process of the control program by the rewriting device 9 is completed.
The operation state determination unit 11b notifies the determined operation state to the execution condition switching unit 11c.
 実行条件切替部(決定部)11cは、実行条件テーブル15aの内容に基づいて、動作状態判定部11bによって判定された動作状態に対応する実行条件(クロック周波数及びコア数)を決定する。実行条件切替部(実行制御部)11cは、決定した実行条件を実行条件テーブル15aから読み出し、読み出したコア数のプロセッサコアを用い、読み出したクロック周波数のクロック信号に従って制御プログラムを実行するように中継処理部11aに指示する。具体的には、実行条件切替部11cは、実行条件テーブル15aから読み出したクロック周波数のクロック信号の生成をクロック生成部14に指示する。これにより、中継処理部11aだけでなく、ゲートウェイ1の各部が、実行条件切替部11cによって切り替えられたクロック周波数のクロック信号に従った処理を開始する。また、中継処理部11aは、実行条件切替部11cから指示されたコア数のプロセッサコアを用いた制御プログラムの実行を開始する。例えば、プロセッサ11は、実行条件切替部11cにて指示されたコア数のプロセッサコアを用いて、中継処理部11a、動作状態判定部11b及び実行条件切替部11cの各機能の動作を行う構成を有する。具体的には、実行条件切替部11cにて2つのプロセッサコアを用いた処理への切り替えを指示された場合、プロセッサ11は、例えば第1コア及び第2コアの2つのプロセッサコアを用いて各機能の動作を行う構成に切り替える。また、プロセッサ11は、例えば第1コアにて動作状態判定部11b及び実行条件切替部11cの動作を行い、実行条件切替部11cにて指示されたコア数のプロセッサコアを用いて、中継処理部11aの動作を行う構成でもよい。この場合、中継処理部11aの動作のみが、実行条件切替部11cにて指示されたコア数のプロセッサコアを用いた処理に切り替えられる。 The execution condition switching unit (determination unit) 11c determines an execution condition (clock frequency and number of cores) corresponding to the operation state determined by the operation state determination unit 11b based on the contents of the execution condition table 15a. The execution condition switching unit (execution control unit) 11c reads the determined execution condition from the execution condition table 15a, and relays the control program to execute the control program according to the read clock signal of the clock frequency using the number of cores read. The processing unit 11a is instructed. Specifically, the execution condition switching unit 11c instructs the clock generation unit 14 to generate a clock signal having the clock frequency read from the execution condition table 15a. Thereby, not only the relay processing unit 11a but also each unit of the gateway 1 starts processing according to the clock signal of the clock frequency switched by the execution condition switching unit 11c. Further, the relay processing unit 11a starts executing the control program using the number of cores instructed by the execution condition switching unit 11c. For example, the processor 11 is configured to operate each function of the relay processing unit 11a, the operation state determination unit 11b, and the execution condition switching unit 11c using the number of cores instructed by the execution condition switching unit 11c. Have. Specifically, when the execution condition switching unit 11c is instructed to switch to processing using two processor cores, the processor 11 uses two processor cores, for example, a first core and a second core. Switch to the configuration that performs the function. In addition, the processor 11 performs the operation of the operation state determination unit 11b and the execution condition switching unit 11c, for example, using the first core, and uses the number of cores instructed by the execution condition switching unit 11c to use the relay processing unit. The structure which performs operation | movement of 11a may be sufficient. In this case, only the operation of the relay processing unit 11a is switched to processing using the number of cores instructed by the execution condition switching unit 11c.
 以下に、本実施形態のゲートウェイ1が行う処理についてフローチャートに基づいて詳述する。図4は、ゲートウェイ1が行う処理の手順を示すフローチャートである。ゲートウェイ1は、通信バス2~5間の中継処理を行いつつ、以下の処理を行う。また、ゲートウェイ1は現在の車輌の動作状態を把握しているものとする。
 ゲートウェイ1の制御部10は、通信インタフェース16がいずれかの通信バス2~5を介してデータを受信したか否かを判断しており(S1)、受信していないと判断した場合(S1:NO)、受信するまで待機する。
Below, the process which the gateway 1 of this embodiment performs is explained in full detail based on a flowchart. FIG. 4 is a flowchart showing a procedure of processing performed by the gateway 1. The gateway 1 performs the following processing while performing the relay processing between the communication buses 2 to 5. Further, it is assumed that the gateway 1 knows the current operation state of the vehicle.
The control unit 10 of the gateway 1 determines whether or not the communication interface 16 has received data via any one of the communication buses 2 to 5 (S1), and determines that the data has not been received (S1: NO), wait until receiving.
 通信インタフェース16がデータを受信したと判断した場合(S1:YES)、制御部10は、受信したデータを受信バッファ13aに記憶する。そして、制御部10(動作状態判定部11b)は、受信バッファ13aに記憶したデータに基づいて、車輌の動作状態を判定する(S2)。動作状態判定部11bは、現在の車輌の動作状態と、受信したデータとに基づいて、これから遷移すべき動作状態を判定する。制御部10は、予め把握している車輌の動作状態(現在の動作状態)と、ステップS2で判定した動作状態とに基づいて、車輌の動作状態が遷移するか否かを判断する(S3)。動作状態が遷移しないと判断した場合(S3:NO)、制御部10は、ステップS1に処理を戻す。 When it is determined that the communication interface 16 has received data (S1: YES), the control unit 10 stores the received data in the reception buffer 13a. Then, the control unit 10 (operation state determination unit 11b) determines the operation state of the vehicle based on the data stored in the reception buffer 13a (S2). The operation state determination unit 11b determines an operation state to be changed from now on based on the current operation state of the vehicle and the received data. The control unit 10 determines whether or not the vehicle operation state transitions based on the vehicle operation state (current operation state) ascertained in advance and the operation state determined in step S2 (S3). . When it is determined that the operation state does not change (S3: NO), the control unit 10 returns the process to step S1.
 動作状態が遷移すると判断した場合(S3:YES)、制御部10は、遷移後の動作状態が、書換装置9による制御プログラムの書き換え処理が行われる状態であるか否かを判断する(S4)。遷移後の動作状態が、書き換え処理が行われる状態ではないと判断した場合(S4:NO)、制御部10(実行条件切替部11c)は、ステップS2で判定した動作状態に対応する実行条件を実行条件テーブル15aに基づいて決定し、決定した実行条件での処理に切り替える(S5)。その後、制御部10は、ステップS1の処理に戻る。遷移後の動作状態が、書き換え処理が行われる状態であると判断した場合(S4:YES)、制御部10(実行条件切替部11c)は、書き換え処理が行われる状態に対応する実行条件を実行条件テーブル15aに基づいて決定し、決定した実行条件での処理に切り替える(S6)。 When it is determined that the operation state transitions (S3: YES), the control unit 10 determines whether or not the operation state after the transition is a state in which a rewriting process of the control program by the rewriting device 9 is performed (S4). . When it is determined that the operation state after the transition is not a state in which the rewriting process is performed (S4: NO), the control unit 10 (execution condition switching unit 11c) sets the execution condition corresponding to the operation state determined in step S2. Based on the execution condition table 15a, the process is switched to the process under the determined execution condition (S5). Then, the control part 10 returns to the process of step S1. When it is determined that the operation state after the transition is a state in which the rewriting process is performed (S4: YES), the control unit 10 (execution condition switching unit 11c) executes the execution condition corresponding to the state in which the rewriting process is performed. Based on the condition table 15a, the process is switched to the process under the determined execution condition (S6).
 制御部10(動作状態判定部11b)は、書換装置9による制御プログラムの書き換え処理が終了したか否かを判断する(S7)。例えば制御部10は、書換装置9から受信したデータに基づいて、書換装置9による書き換え処理が終了したか否かを判断する。また制御部10は、例えば、接続ケーブルを介した外部機器接続部17と書換装置9との接続(通信)が途絶えたことを検知した場合、書換装置9による書き換え処理が終了したと判断してもよい。書き換え処理が終了していないと判断した場合(S7:NO)、制御部10は、書き換え処理が終了するまで待機する。書き換え処理が終了したと判断した場合(S7:YES)、制御部10は、ステップS6で切り替えた実行条件を切り替え前の実行条件に戻し(S8)、その後、ステップS1の処理に戻る。なお、書換装置9による書き換え処理が行われる状態への遷移を検知した場合、制御部10は、遷移前の動作状態又はこの動作状態に対応する実行条件をRAM13に記憶しておく。これにより、書き換え処理が終了した後に、元の実行条件での処理に戻すことができる。 The control unit 10 (operation state determination unit 11b) determines whether or not the rewriting process of the control program by the rewriting device 9 has been completed (S7). For example, the control unit 10 determines whether or not the rewriting process by the rewriting device 9 is completed based on the data received from the rewriting device 9. For example, when the control unit 10 detects that the connection (communication) between the external device connection unit 17 and the rewriting device 9 via the connection cable has been interrupted, the control unit 10 determines that the rewriting process by the rewriting device 9 has ended. Also good. If it is determined that the rewriting process has not ended (S7: NO), the control unit 10 waits until the rewriting process ends. When it is determined that the rewriting process has been completed (S7: YES), the control unit 10 returns the execution condition switched in step S6 to the execution condition before switching (S8), and then returns to the process of step S1. When the transition to the state where the rewriting process is performed by the rewriting device 9 is detected, the control unit 10 stores the operation state before the transition or the execution condition corresponding to this operation state in the RAM 13. Thereby, after the rewriting process is completed, it is possible to return to the process under the original execution condition.
 上述したように、ゲートウェイ1は、通信バス2~5を介して受信したデータを他の通信バス2~5へ送信することにより、通信バス2~5間の通信を中継する。ゲートウェイ1は、通信を中継する際に各通信バス2~5を介して受信したデータに基づいて、車輌の動作状態(具体的には、これから遷移する動作状態)を判定する。そして、ゲートウェイ1は、車輌の動作状態に応じて、制御部10のプロセッサ11が制御プログラムを実行する際の実行条件(プロセッサコアのコア数及びクロック周波数)を切り替える。
 車輌の動作状態が遷移した場合、電力が供給されて動作する車載機器の数が異なる。例えば、ACC状態ではカーオーディオ及びカーナビゲーション装置等の車載機器に電力が供給され、IG-ON状態では更に空調装置及びパワーウィンドウ等の車載機器に電力が供給される。動作する車載機器の数が多いほど、ゲートウェイ1が中継すべきデータ量が増加する。従って、動作する車載機器の数が多い状態では、ゲートウェイ1のプロセッサ11が制御プログラムを実行する際に使用するプロセッサコアのコア数を多く、また、クロック周波数を高くすることにより、ゲートウェイ1の処理能力を高める。よって、制御プログラムの確実な実行が可能となる。また、動作する車載機器の数が少ない状態では、ゲートウェイ1のプロセッサ11が制御プログラムを実行する際に使用するプロセッサコアのコア数を少なく、また、クロック周波数を低くすることにより、ゲートウェイ1による消費電力を低減する。よって、ゲートウェイ1は、通信バス2~5間の中継性能を維持しつつ、不要な消費電力を低減でき、車輌の燃費向上に貢献できる。このように、車輌の動作状態に応じて、ゲートウェイ1のプロセッサ11が制御プログラムを実行する際の実行条件を切り替えることにより、車輌の動作状態に最適な条件にてプロセッサ11を動作させることができる。
As described above, the gateway 1 relays communication between the communication buses 2-5 by transmitting the data received via the communication buses 2-5 to the other communication buses 2-5. The gateway 1 determines the operation state of the vehicle (specifically, the operation state to be shifted from now on) based on the data received via the communication buses 2 to 5 when relaying communication. And the gateway 1 switches the execution conditions (the number of cores of a processor core, and a clock frequency) when the processor 11 of the control part 10 performs a control program according to the operation state of a vehicle.
When the operation state of the vehicle transitions, the number of in-vehicle devices that operate by supplying power is different. For example, in the ACC state, power is supplied to in-vehicle devices such as car audio and car navigation devices, and in the IG-ON state, power is further supplied to in-vehicle devices such as air conditioners and power windows. As the number of in-vehicle devices operating increases, the amount of data that the gateway 1 should relay increases. Therefore, when the number of in-vehicle devices that operate is large, the processor 11 of the gateway 1 increases the number of processor cores used when the control program is executed, and the processing of the gateway 1 is performed by increasing the clock frequency. Increase ability. Therefore, the control program can be reliably executed. Further, in a state where the number of in-vehicle devices that operate is small, the number of processor cores used when the processor 11 of the gateway 1 executes the control program is small, and the consumption by the gateway 1 is reduced by lowering the clock frequency. Reduce power. Therefore, the gateway 1 can reduce unnecessary power consumption while maintaining the relay performance between the communication buses 2 to 5, and can contribute to improving the fuel efficiency of the vehicle. In this way, by switching the execution conditions when the processor 11 of the gateway 1 executes the control program in accordance with the operation state of the vehicle, the processor 11 can be operated under conditions optimal for the operation state of the vehicle. .
 本実施形態では、クロック周波数の増減だけでなく、使用するプロセッサコアのコア数も増減させるので、ゲートウェイ1において、より高処理能力での動作と、より低消費電力での動作とが可能となる。なお、ゲートウェイ1は、車輌の動作状態に応じてクロック周波数のみを増減させる構成でもよく、また、使用するプロセッサコアのコア数のみを増減させる構成でもよい。 In this embodiment, not only the clock frequency is increased but also the number of processor cores to be used is increased or decreased, so that the gateway 1 can operate with higher processing capacity and with lower power consumption. . The gateway 1 may be configured to increase or decrease only the clock frequency according to the operation state of the vehicle, or may be configured to increase or decrease only the number of processor cores to be used.
 本実施形態では、書換装置9によって制御プログラムの書き換え処理が行われる場合に、適切な実行条件でゲートウェイ1のプロセッサ11が制御プログラムを実行するので、より確実に制御プログラムの書き換え処理が可能となる。また、ゲートウェイ1は、書換装置9による書き換え処理の際の実行条件を、書換装置9から出力される書換プログラムのデータ量に応じて切り替える構成を更に備えてもよい。この場合、ゲートウェイ1の制御部10は、書換装置9から書換プログラムのデータ量を取得し、データ量に応じた実行条件に切り替える。これにより、ゲートウェイ1(プロセッサ11)は、書換装置9から出力される書換プログラムのデータ量に応じた処理能力での動作が可能となる。また、ゲートウェイ1は、書換プログラムのデータ量だけでなく、この時点での車輌の動作状態を考慮した実行条件での処理を行う構成でもよい。 In this embodiment, when the control program is rewritten by the rewriting device 9, the processor 11 of the gateway 1 executes the control program under an appropriate execution condition, so that the control program can be rewritten more reliably. . Further, the gateway 1 may further include a configuration for switching the execution condition at the time of the rewriting process by the rewriting device 9 according to the data amount of the rewriting program output from the rewriting device 9. In this case, the control unit 10 of the gateway 1 acquires the data amount of the rewriting program from the rewriting device 9, and switches to the execution condition according to the data amount. As a result, the gateway 1 (processor 11) can operate with a processing capability corresponding to the data amount of the rewriting program output from the rewriting device 9. The gateway 1 may be configured to perform processing under an execution condition that considers not only the data amount of the rewrite program but also the operation state of the vehicle at this time.
 本実施形態のゲートウェイ1は例えば、イグニッションスイッチ6が操作されたことを示すデータを受信した場合に、ACC状態又はIG-ON状態へ遷移することを検知していた。ゲートウェイ1は、イグニッションスイッチ6が操作されたか否かを示すデータだけでなく、ブレーキペダル7が操作されたか否かを示すデータ、及び/又は、シフトレバー8が操作されたか否かを示すデータに基づいて車輌の動作状態を判定してもよい。また、ゲートウェイ1は、いずれかの車載機器が操作されたか否かを示すデータに基づいて車輌の動作状態を判定してもよい。例えば、カーオーディオ及びカーナビゲーション装置等の車載機器への電力供給が可能であるACC状態において、カーオーディオ又はカーナビゲーション装置に対して動作開始指示の操作が行われたか否かに応じて、異なる動作状態と判定してもよい。これにより、同じACC状態であっても、カーオーディオ又はカーナビゲーション装置が動作中であるか非動作中であるかに応じてゲートウェイ1(プロセッサ11)における実行条件を切り替えることができる。また、ゲートウェイ1は、いずれかの車載機器が操作されたか否かを示すデータの代わりに、いずれかの車載機器が動作中であるか否かを示すデータに基づいて車輌の動作状態を判定してもよい。車載機器は、動作開始指示の操作が行われた場合に動作を開始するので、このようなデータを用いた場合であっても同様にゲートウェイ1(プロセッサ11)における実行条件を切り替えることが可能となる。 For example, when the gateway 1 according to the present embodiment receives data indicating that the ignition switch 6 has been operated, the gateway 1 has detected the transition to the ACC state or the IG-ON state. The gateway 1 includes not only data indicating whether or not the ignition switch 6 has been operated, but also data indicating whether or not the brake pedal 7 has been operated and / or data indicating whether or not the shift lever 8 has been operated. Based on this, the operating state of the vehicle may be determined. Further, the gateway 1 may determine the operation state of the vehicle based on data indicating whether any of the in-vehicle devices has been operated. For example, in an ACC state in which power can be supplied to in-vehicle devices such as a car audio and a car navigation device, different operations are performed depending on whether or not an operation start instruction is performed on the car audio or the car navigation device. You may determine with a state. Thereby, even in the same ACC state, the execution condition in the gateway 1 (processor 11) can be switched depending on whether the car audio or the car navigation device is operating or not operating. Further, the gateway 1 determines the operation state of the vehicle based on data indicating whether any in-vehicle device is operating instead of data indicating whether any in-vehicle device has been operated. May be. Since the in-vehicle device starts the operation when the operation start instruction is performed, the execution condition in the gateway 1 (processor 11) can be switched similarly even when such data is used. Become.
 また、信号待ち等で停車している場合に自動的にエンジンを停止させるアイドリングストップ機能を有する車輌や、ドアがロック状態の駐車中にドアがアンロックされた場合に自動的にACC状態に遷移する機能を有する車輌がある。このような車輌の場合例えば、ゲートウェイ1は、アイドリングストップ機能によってエンジンが停止されたことを示すデータに基づいて、車輌がエンジン停止状態に遷移することを検知できる。また、ゲートウェイ1は、アンロック操作が行われたことを示すデータ、又はアンロックが実行されたことを示すデータに基づいて、車輌がACC状態に遷移することを検知できる。よって、車輌の動作状態が自動的に変更される構成であっても、変更後の車輌の動作状態に応じてゲートウェイ1(プロセッサ11)における実行条件を切り替えることが可能となる。 In addition, the vehicle automatically switches to the ACC state when the vehicle has an idling stop function that automatically stops the engine when it is stopped due to a signal, or when the door is unlocked while the door is locked. Some vehicles have a function to In the case of such a vehicle, for example, the gateway 1 can detect that the vehicle transitions to the engine stop state based on data indicating that the engine has been stopped by the idling stop function. Further, the gateway 1 can detect that the vehicle transitions to the ACC state based on the data indicating that the unlock operation has been performed or the data indicating that the unlock operation has been performed. Therefore, even if the operation state of the vehicle is automatically changed, the execution condition in the gateway 1 (processor 11) can be switched according to the changed operation state of the vehicle.
 上述した実施形態では、書換装置9は、ゲートウェイ1の外部機器接続部17に接続される構成であるが、このような構成に限らない。例えば、通信バス2~5のいずれかに外部機器接続部17が設けてあり、書換装置9は外部機器接続部17を介していずれかの通信バス2~5に接続される構成でもよい。また、いずれかのECUに外部機器接続部17が設けてあり、書換装置9は外部機器接続部17を介していずれかのECUに接続され、接続されたECUを介していずれかの通信バス2~5に接続される構成でもよい。 In the above-described embodiment, the rewrite device 9 is connected to the external device connection unit 17 of the gateway 1, but is not limited to such a configuration. For example, the external device connection unit 17 may be provided in any one of the communication buses 2 to 5, and the rewriting device 9 may be connected to any one of the communication buses 2 to 5 via the external device connection unit 17. In addition, an external device connection unit 17 is provided in any ECU, and the rewriting device 9 is connected to any ECU through the external device connection unit 17, and any communication bus 2 is connected through the connected ECU. It may be configured to be connected to .about.5.
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiment disclosed this time is illustrative in all respects and not restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 ゲートウェイ(車載中継装置)
 2~5 通信バス(通信線)
 9 書換装置(出力装置)
 11 プロセッサ(取得部)
 11b 動作状態判定部(検出部)
 11c 実行条件切替部(決定部、実行制御部)
 17 外部機器接続部(接続部)
 2a~2c,3a~3c,4a~4c,5a~5c ECU(車載機器)
1 Gateway (on-vehicle relay device)
2-5 Communication bus (communication line)
9 Rewriting device (output device)
11 processor (acquisition part)
11b Operation state determination unit (detection unit)
11c execution condition switching unit (determination unit, execution control unit)
17 External device connection (connection)
2a-2c, 3a-3c, 4a-4c, 5a-5c ECU (on-vehicle equipment)

Claims (5)

  1.  複数のプロセッサコアを有し、該プロセッサコアの少なくとも1つにて所定のクロック周波数で制御プログラムを実行するプロセッサを備え、少なくとも1つの車載機器がそれぞれ接続された複数の通信線間の通信を中継する車載中継装置において、
     前記通信線を介して情報を取得する取得部と、
     該取得部が取得した情報に基づいて、自装置を搭載する車輌の動作状態を検出する検出部と、
     該検出部が検出した動作状態に応じて、前記プロセッサが制御プログラムを実行する際に用いるプロセッサコアのコア数及び/又はクロック周波数を決定する決定部と、
     該決定部が決定したコア数のプロセッサコア及び/又はクロック周波数での制御プログラムの実行を前記プロセッサに指示する実行制御部と
     を備えることを特徴とする車載中継装置。
    It has a processor having a plurality of processor cores, and at least one of the processor cores executes a control program at a predetermined clock frequency, and relays communication between a plurality of communication lines to which at least one in-vehicle device is connected. In-vehicle relay device
    An acquisition unit for acquiring information via the communication line;
    Based on the information acquired by the acquisition unit, a detection unit that detects an operation state of a vehicle equipped with the device,
    A determination unit that determines a core number and / or a clock frequency of a processor core used when the processor executes a control program according to an operation state detected by the detection unit;
    An in-vehicle relay device comprising: a processor core of the number of cores determined by the determination unit and / or an execution control unit that instructs the processor to execute a control program at a clock frequency.
  2.  前記検出部は、前記車載機器の動作状態に係る情報に基づいて、前記車輌の動作状態を検出するようにしてあることを特徴とする請求項1に記載の車載中継装置。 The in-vehicle relay device according to claim 1, wherein the detection unit detects an operation state of the vehicle based on information related to an operation state of the in-vehicle device.
  3.  前記検出部は、前記車輌のイグニッションスイッチ、ブレーキペダル、又はシフトレバーに対する操作に係る情報に基づいて、前記車輌の動作状態を検出するようにしてあることを特徴とする請求項1に記載の車載中継装置。 The on-vehicle device according to claim 1, wherein the detection unit detects an operation state of the vehicle based on information related to an operation on an ignition switch, a brake pedal, or a shift lever of the vehicle. Relay device.
  4.  前記車載機器にて実行される制御プログラムを書き換える書換プログラムを出力する出力装置の接続が可能な接続部を更に備え、
     前記検出部は、前記接続部に前記出力装置が接続された場合、前記車載機器にて実行される制御プログラムの書き換えが行われる状態であることを検出するようにしてあることを特徴とする請求項1から3までのいずれかひとつに記載の車載中継装置。
    A connection unit capable of connecting an output device that outputs a rewriting program for rewriting a control program executed by the in-vehicle device;
    The detection unit detects that the control program executed in the in-vehicle device is being rewritten when the output device is connected to the connection unit. The in-vehicle relay device according to any one of Items 1 to 3.
  5.  複数のプロセッサコアを有し、該プロセッサコアの少なくとも1つにて所定のクロック周波数で制御プログラムを実行するプロセッサを備える車載中継装置が、少なくとも1つの車載機器がそれぞれ接続された複数の通信線間の通信を中継する中継方法において、
     前記車載中継装置が、前記通信線を介して取得した情報に基づいて、自装置を搭載する車輌の動作状態を検出するステップと、
     前記車載中継装置が、検出した動作状態に応じて、前記プロセッサが制御プログラムを実行する際に用いるプロセッサコアのコア数及び/又はクロック周波数を決定するステップと、
     前記車載中継装置が、決定したコア数のプロセッサコア及び/又はクロック周波数での制御プログラムの実行を前記プロセッサに指示するステップと
     を含むことを特徴とする中継方法。
    An in-vehicle relay device having a plurality of processor cores and having a processor that executes a control program at a predetermined clock frequency in at least one of the processor cores, between a plurality of communication lines to which at least one in-vehicle device is connected In the relay method to relay the communication of
    The vehicle-mounted relay device detects an operation state of a vehicle equipped with the device based on information acquired through the communication line;
    Determining the number of cores and / or the clock frequency of the processor core used when the processor executes the control program according to the detected operating state of the in-vehicle relay device;
    A relay method comprising: instructing the processor to execute a control program at a determined number of processor cores and / or clock frequency.
PCT/JP2015/086445 2015-01-06 2015-12-26 In-vehicle relay device and relay method WO2016111213A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015000943A JP2016124455A (en) 2015-01-06 2015-01-06 On-vehicle relay device and relay method
JP2015-000943 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016111213A1 true WO2016111213A1 (en) 2016-07-14

Family

ID=56358195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086445 WO2016111213A1 (en) 2015-01-06 2015-12-26 In-vehicle relay device and relay method

Country Status (2)

Country Link
JP (1) JP2016124455A (en)
WO (1) WO2016111213A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077904A1 (en) * 2018-02-09 2019-08-16 Continental Automotive France METHOD FOR CONTROLLING AN ELECTRONIC CONTROL UNIT COMPRISING AT LEAST TWO HEADS OF EXECUTION

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107277B4 (en) * 2017-04-05 2024-06-13 Hanon Systems Procedure for updating control software in a high-voltage control unit
CN107472169B (en) * 2017-07-31 2019-07-09 北京新能源汽车股份有限公司 Control system of electric automobile and automobile
JP7076997B2 (en) * 2017-12-12 2022-05-30 矢崎総業株式会社 In-vehicle system and detector hub
JP6878324B2 (en) * 2018-01-31 2021-05-26 日立Astemo株式会社 In-vehicle network system, electronic control device
JP7247803B2 (en) * 2019-07-23 2023-03-29 トヨタ自動車株式会社 In-vehicle device controller
DE102021213187A1 (en) * 2021-11-23 2023-05-25 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Method for operating a control unit of a motor vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040280A (en) * 2007-08-09 2009-02-26 Auto Network Gijutsu Kenkyusho:Kk In-vehicle control device
JP2009265843A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Multi-core system, and gateway device for vehicle
JP2011176517A (en) * 2010-02-24 2011-09-08 Hitachi Ltd Wireless base station device, and control method of communication processing in wireless base station device
JP2011250008A (en) * 2010-05-25 2011-12-08 Toyota Motor Corp Gateway apparatus
JP2012103802A (en) * 2010-11-08 2012-05-31 Toyota Motor Corp Information processor and electronic control unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040280A (en) * 2007-08-09 2009-02-26 Auto Network Gijutsu Kenkyusho:Kk In-vehicle control device
JP2009265843A (en) * 2008-04-23 2009-11-12 Toyota Motor Corp Multi-core system, and gateway device for vehicle
JP2011176517A (en) * 2010-02-24 2011-09-08 Hitachi Ltd Wireless base station device, and control method of communication processing in wireless base station device
JP2011250008A (en) * 2010-05-25 2011-12-08 Toyota Motor Corp Gateway apparatus
JP2012103802A (en) * 2010-11-08 2012-05-31 Toyota Motor Corp Information processor and electronic control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077904A1 (en) * 2018-02-09 2019-08-16 Continental Automotive France METHOD FOR CONTROLLING AN ELECTRONIC CONTROL UNIT COMPRISING AT LEAST TWO HEADS OF EXECUTION

Also Published As

Publication number Publication date
JP2016124455A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
WO2016111213A1 (en) In-vehicle relay device and relay method
JP5958445B2 (en) In-vehicle network system, management device
JP5776779B2 (en) In-vehicle gateway device and vehicle communication system
JP4483694B2 (en) Vehicle communication system
EP2615779B1 (en) In-vehicle communication system comprising gateway apparatus
JP2010285001A (en) Electronic control system and functional agency method
CN112449322A (en) Vehicle-mounted control device
US8832053B2 (en) Relay device, communication system and communication method
JP2004064626A (en) Communication system for vehicle
CN112208467B (en) Vehicle-mounted network system
JP2004038766A (en) Communication system for vehicle
JP2014204315A (en) Relay device
JP2008113211A (en) Communication system for vehicle
WO2021100548A1 (en) Onboard relay device and relay method
JP2009040280A (en) In-vehicle control device
JP7503013B2 (en) Electronic control device and method for starting electronic control device
JP2020021506A (en) Electronic controller and session establishing program
JP6981114B2 (en) Vehicle network system
JP2013116652A (en) Onboard control system
JP4954832B2 (en) In-vehicle communication system
WO2021177019A1 (en) On-board relay apparatus and computer program
JP2019009678A (en) On-vehicle communication network system
JP2009124480A (en) Onboard gateway and vehicle communication system
JP5867350B2 (en) Electronic control device for vehicle
JP2004040649A (en) On-vehicle communication equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877085

Country of ref document: EP

Kind code of ref document: A1