WO2016111212A1 - Ion/ozone wind generating device and method - Google Patents

Ion/ozone wind generating device and method Download PDF

Info

Publication number
WO2016111212A1
WO2016111212A1 PCT/JP2015/086427 JP2015086427W WO2016111212A1 WO 2016111212 A1 WO2016111212 A1 WO 2016111212A1 JP 2015086427 W JP2015086427 W JP 2015086427W WO 2016111212 A1 WO2016111212 A1 WO 2016111212A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter electrode
electrode
ion
wind
ozone
Prior art date
Application number
PCT/JP2015/086427
Other languages
French (fr)
Japanese (ja)
Inventor
明夫 片野
Original Assignee
株式会社 片野工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 片野工業 filed Critical 株式会社 片野工業
Publication of WO2016111212A1 publication Critical patent/WO2016111212A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention is an apparatus that generates an ion wind by corona discharge, and more specifically, an ion wind generator that generates an ion wind having a larger air volume. Further, in one aspect, the present invention relates to an apparatus and method for sterilizing / deodorizing an object such as dust, and in particular, corona discharge is performed in a space different from a space where the object is disposed, thereby generating ions and ozone. The present invention relates to an apparatus and a method for generating and sterilizing / deodorizing an ion / ozone wind to a space where an object is arranged.
  • the present invention relates to a highly airtight box, for example, a waste container such as garbage or diapers, a processing odor, a shoe or a boot of a garbage disposal machine, a box / toilet / toilet tank for storing, an airtight
  • the present invention relates to an environmental device for sterilization and deodorization that is mounted on a highly-contained container with a refrigeration / refrigeration device, a vehicle with a refrigeration / refrigeration device, a refrigerator, an indoor / interior air conditioner, and the like.
  • a simple sterilization deodorant such as a spray type has been proposed.
  • a trash bin or a garbage storage box when used in a trash bin or a garbage storage box, the present situation is that a bad odor is emitted when the container is opened.
  • an air conditioner for example, spraying or circulation sterilization method
  • a method of sucking air from a space to be sterilized and deodorized and adsorbing or removing contaminants with a filter and an expensive malodor removing catalyst have been proposed.
  • maintenance such as filter replacement is indispensable due to long-term use, and because the performance of the filter is not sufficient, if the satisfactory performance is not obtained or even if the performance is good, the large and expensive catalyst body, In addition, maintenance and management costs are often high.
  • the negative ion / ozone generator according to Patent Document 1 is an apparatus that is assumed to be attached to the ceiling of a room, and is characterized in that the positive electrode is arranged below the negative electrode. According to this, a downward airflow containing negative ions and ozone can be generated without using a fan or a motor.
  • the negative ion / ozone generator according to Patent Document 2 includes a negative electrode having a needle-like tip and a cylindrical ground electrode arranged concentrically in parallel to the negative electrode, and the negative electrode and the ground electrode are relatively disposed.
  • the negative electrode or ozone is generated by adjusting the distance between the tip of the negative electrode and the end face of the ground electrode by applying a high voltage to the negative electrode.
  • the negative ion / ozone generator according to Patent Document 3 is a device that generates ozone and negative ions by applying a DC high voltage between the needle electrode and the ground electrode to cause corona discharge at the tip of the needle electrode. is there.
  • the negative ion / ozone generator according to Patent Document 4 has a positive electrode made of a metal plate provided with one or a plurality of holes having a raised portion around the periphery, and the tip of the negative electrode is the positive electrode. It is located in the vicinity of the hole. With this configuration, a sufficient air flow is generated by the discharge, so that it is possible to generate an air flow that diffuses the generated negative ions and ozone into the space without using a blower such as a fan or a pump. .
  • Patent Documents 1 to 4 describe that ions and ozone are generated and applied to an object.
  • these techniques are used in a space to be sterilized or deodorized, for example, inside a trash can. It is assumed that it is arranged and discharged.
  • odorous organic matter may be decomposed by microorganisms to produce flammable gases such as methane gas. There is a risk that will occur.
  • Patent Document 5 Development of a mold sterilization / deodorization apparatus has been studied (Patent Document 5).
  • the ozone concentration may be high in the vicinity of the jet outlet, so that the articles near the device are unintentionally bleached by the ozone that is simultaneously generated when ion wind is generated in the device.
  • a means for reducing the ozone concentration a method using a filter or the like has been proposed.
  • the ion concentration in the ion wind is also reduced or that the filter needs to be replaced. there were.
  • the present invention is made from such a viewpoint, can deliver ions over a wide range, and can blow an ion wind with a low ozone concentration in the vicinity of the jet nozzle without using a filter or the like.
  • the purpose is to provide a wind generator.
  • An electrode pair having a discharge electrode (for example, discharge electrode 120-4 in FIG. 1) and a counter electrode (for example, counter electrode 130-4 in FIG. 1) is provided, and between the discharge electrode and the counter electrode
  • the guide member includes an annular opening serving as an intake port (for example, an intake opening 142-4 in FIG. 1), and an annular narrow portion (for example, the jet port 141 in FIG. 1) in which the inner diameter of the guide member is minimized.
  • the counter electrode is an annular electrode; Ion, ozone, or ion wind in which the ring diameter (outer ring diameter) R 1 of the counter electrode, the ring diameter R B of the opening, and the ring diameter R A of the constriction are R B > R A > R 1 Generator.
  • the discharge electrode may be a needle electrode. Further, the needle axis of the discharge electrode, the ring axis of the opening, and the ring axis of the constricted part may substantially coincide.
  • the guide member may not have a cylindrical side opening. Further, the guide member may have a frustum shape or a trumpet shape.
  • the guide member further includes an enlarged diameter portion (for example, an enlarged diameter portion 140S-4 in FIG. E3) in which the inner diameter of the guide member increases from the narrowed portion toward a side different from the opening. It may be.
  • a diffusion member for example, a splitter 145-4 in FIG. E4 that can diffuse the ion wind opposed to the ion wind ejected from the guide member may be further included.
  • the counter electrode includes an annular opening serving as an intake port (for example, an intake opening 130 ⁇ -5 in FIG. 3) and an annular constriction portion (for example, the spout 130 ⁇ in FIG. 3) having the smallest inner diameter of the counter electrode. -5), a reduced diameter portion (for example, reduced diameter portion 130r-5 in FIG.
  • the inner diameter of the counter electrode decreases from the opening side toward the narrowed portion, and the reduced diameter portion.
  • a cylindrical shape having an internal space through which the ion wind can pass, and a frustum-shaped or trumpet-shaped structure, The constriction is opened to allow the ion wind to pass through,
  • the diameter R ⁇ of the opening and the diameter R ⁇ of the constriction are R ⁇ > R ⁇
  • the discharge electrode is inserted into the internal space without penetrating the surface on which the constriction exists, and is configured to be opposed to the inner wall surface of the counter electrode and the constriction. Generator.
  • the needle axis of the discharge electrode and the cylinder axis of the counter electrode may substantially coincide.
  • the counter electrode may not have an open cylindrical side.
  • the counter electrode may further include a diameter-enlarged portion in which the inner diameter of the counter electrode increases from the narrowed portion toward a side different from the opening.
  • the “sterilization / deodorization target” is not particularly limited as long as it propagates bacteria or emits a foul odor.
  • raw food such as fresh food, sewage such as manure and diapers, and stored water Specific examples are given.
  • the “space in which the object to be sterilized / deodorized is arranged” is not particularly limited as long as the object to be sterilized / deodorized is arranged.
  • a highly airtight box more specifically, garbage or Dirty containers such as diapers, highly airtight containers with refrigeration / refrigeration equipment, and vehicles with refrigeration / refrigeration equipment.
  • Annular broadly indicates a closed curved surface composed of a straight line and / or a curve having an open center, and in particular, a polygon or circle (preferably a hexagon or more) of a triangle or more (including an ellipse) .) ⁇ Or, it is desirable to have a generally circular shape.
  • Vortex means, for example, a polygon or circle (preferably hexagon or more) or a circle (including an ellipse) or a substantially circular shape that spirals toward the center.
  • mode for example, the number of windings, the winding width, or the presence or absence of an end point).
  • planar means an electrode having a small thickness with respect to the total area in the ring electrode in such a manner that it can be generally regarded as a plane. More specifically, although not particularly limited, [thickness (mm)] / [total area in the ring (cm 2 )] is preferably 1.5 or less, and is preferably 1 or less. It is more preferable that it is 0.8 or less. Although a lower limit is not specifically limited, For example, it is 0.0001.
  • the strain may be up to about the thickness. More specifically, the main annular counter electrode described later preferably has a total area of 7 cm 2 , a thickness of 7 mm or less, and a strain of 7 mm or less.
  • a plane and another plane are “same plane” means that the distance between a plane and another plane is generally regarded as the same plane. For example, when a certain planar shape and another planar shape are viewed from the side, a certain planar shape and another planar shape are parallel to each other, and there are portions where the thicknesses overlap.
  • The longest distance between the tip of the needle-like electrode and the main annular counter electrode '' is the distance between the tip of the needle-like electrode and the inner end of the ring of the main annular counter electrode and the closest part in the thickness direction, It means the longest distance.
  • the shortest distance between the tip of the needle-like electrode and the sub-annular counter electrode '' is the distance between the tip of the needle-like electrode and the inner end of the ring of the sub-annular counter electrode and the closest part in the thickness direction, Means the shortest distance.
  • Main ion wind means an ion wind emitted from the central opening of the main annular counter electrode.
  • the “subionic wind” means an ionic wind emitted from the sub annular counter electrode.
  • “Generating a potential difference between electrode pairs” can include, for example, a potential difference that occurs when a voltage is applied to the needle electrode and the counter electrode is grounded.
  • the polarity of the needle electrode is not particularly limited.
  • a member having a cylindrical shape indicates a state in which the member has an internal space and two or more openings are provided so that the internal space and the external space can conduct fluid. Therefore, the thickness of the wall surface constituting the cylinder, the axial length of the cylinder, and the like are not particularly limited (for example, a mode in which a through hole is provided in a part of a flat plate-like member may be included).
  • an ion wind generating device capable of delivering ions over a wide range and having a low ozone concentration in the vicinity of the jet nozzle.
  • FIG. 1 (a) is a conceptual cross-sectional view of an ion / ozone wind generator 100-4 according to one embodiment (fourth embodiment) of the present invention
  • FIG. 1 (b) shows the device 100-4. It is a conceptual perspective view.
  • FIG. 2A is an operation diagram relating to the ejection of ion wind of the ion / ozone wind generator 100-4 according to one embodiment (fourth embodiment) of the present invention
  • FIG. 3A is a conceptual cross-sectional view of an ion / ozone wind generator 100-5 according to the second embodiment (fifth embodiment) of the present invention
  • FIG. It is a conceptual perspective view.
  • FIG. 4 is an operation diagram relating to the ejection of ion wind of the ion / ozone wind generator 100-5 according to the second embodiment (fifth embodiment) of the present invention.
  • FIG. A1 (a) is a conceptual front view of the counter electrode of the ion / ozone wind generating apparatus 100 according to the first embodiment
  • FIG. A1 (b) is a conceptual side view of the apparatus 100.
  • FIG. A2 (a) is a diagram showing the positional relationship between the ring-shaped electrode 131 and the tip portion P of the needle-shaped electrode 120 using a cross section of the ring-shaped electrode 131 located at the innermost part
  • FIG. FIG. 4 is a diagram showing a positional relationship between a ring electrode 132 and a tip P.
  • FIG. A3 is a schematic view of a plate-like counter electrode that can be used as the counter electrode of the ion / ozone wind generating apparatus 100 according to the first embodiment.
  • FIG. B1 is a conceptual diagram of a counter electrode in another embodiment.
  • FIG. E1 is a conceptual cross-sectional view of an ion / ozone wind generator 100-4 according to the fourth embodiment.
  • FIG. E2 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment
  • FIG. E2 (b) is a conceptual perspective view of the apparatus
  • FIG. E3 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment
  • FIG. E3 (b) is a conceptual perspective view and operation diagram of the apparatus.
  • FIG. E4 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment
  • FIG. E4 (b) is a conceptual perspective view of the apparatus.
  • FIG. E5 (a) is a conceptual cross-sectional view of an ion / ozone wind generator 100-4 according to the fourth embodiment
  • Fig. E5 (b) is a conceptual perspective view of the device.
  • FIG. E6 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment
  • FIG. E6 (b) is a conceptual perspective view of the apparatus.
  • FIG. E7 (a) and FIG. E7 (b) are conceptual perspective views of an ion / ozone wind generator 100-4 according to the fourth embodiment.
  • FIG. F1 is a conceptual cross-sectional view of an ion / ozone wind generator 100-5 according to the fifth embodiment.
  • F2 (a) and F2 (b) are conceptual cross-sectional views of an ion / ozone wind generator 100-5 according to the fifth embodiment.
  • FIG. F3 is a conceptual perspective view of an ion / ozone wind generator 100-5 according to the fifth embodiment.
  • the ion / ozone wind generator according to the present invention (the fourth and fifth embodiments described later) will be described.
  • the outline of such an ion / ozone wind generator will be described.
  • the present invention is not limited to these examples.
  • the embodiments and modifications given as examples in this specification should be understood as being applied to specific ones. Any combination may be used.
  • a modification example of an embodiment is a modification example of another embodiment, and even if one modification example and another modification example are described independently, there is the modification example. It should be understood that a combination of the modified example and another modified example is also described.
  • an ion / ozone wind generator 100-4 includes a needle-like discharge electrode 120-4 and an annular counter electrode 130-4, and a gap between these electrodes.
  • a cylindrical ion wind guide member 140-4 (guide member 140-4) capable of introducing the generated ion wind is provided. More specifically, the guide member 140-4 has an outlet 141-4 (constriction 141-4) that is an opening through which ion wind is ejected (in this embodiment, the constriction that has the narrowest cross-sectional area in the member).
  • Portion 141-4 is also the jet outlet 141-4), an intake opening 142-4 serving as an inlet having a larger diameter (ring diameter) than the jet outlet 141-4, and an intake opening 142-4 A diameter-reduced portion 140r-4 (inclined portion) that is reduced in diameter toward the ejection port 141-4.
  • the diameter (ring diameter) of the intake opening 142-4 is configured to be larger than the diameter (ring diameter) of the counter electrode 130-4 (for example, the guide member 140-4).
  • the main feature is that, when viewed in the central axis direction, the counter electrode 130-4 can be visually recognized as a ring from the outlet 141-4.
  • the ion wind generated by the counter electrode 130-4 passes through the internal space of the guide member 140-4 and goes from the intake opening 142-4 side to the jet outlet 141-4 side. And ejected from the ejection port 141-4 (the principle of ion wind generation will be described later).
  • the jet outlet 141-4 (the constricted portion 141-4), the intake opening 142-4, and the like indicate each component (edge) in the guide member 140-4, but the component (edge). May also refer to the space formed by.
  • ⁇ the counter electrode has a cross-sectional diameter that decreases linearly toward the spout side (cross-sectional diameter).
  • the reason why such a truncated conical guide member is arranged is to increase the ion wind by concentrating the ion wind inside the guide member.
  • the ion / ozone wind generator 100-4 according to the present embodiment seems to be similar to such a conventional ion / ozone wind generator.
  • the guide member 140-4 according to the present embodiment is created based on a concept different from that of the conventional guide member 140.
  • the present inventor increases the shape of the outlet 141-4 of the guide member 140-4 (the diameter of the outlet 141-4). Is designed to be larger than the ring diameter of the counter electrode 130-4), as shown in FIG. 2 (a), the guide member functions (occurs) in the direction of diffusing rather than concentrating the ion wind. Ion wind diffused.
  • the present inventor predicts as follows.
  • the discharge electrode 120-4 and the counter electrode are arranged by making the ring diameter of the jet nozzle 141-4 larger than the ring diameter of the counter electrode 130-4. It is considered that the ion wind generated with respect to 130-4 is pushed forward to the vicinity of the jet outlet 141-4 of the guide member 140-4 in a form that conforms to the shape (annular shape) of the counter electrode 130-4 to some extent. ⁇ FIG.
  • FIG. 2 (b) is a conceptual cross-sectional view of the ion / ozone wind generator 100-4, where the discharge point 120x-4 of the discharge electrode 120-4, the power reception point 130x-4 of the counter electrode 130-4, and The dotted line arrow indicates that the discharge is performed at the power receiving point 130y-4. However, since the discharge point of the counter electrode 130-4 is continuously formed, the discharge electrode 120-4 is connected to the counter electrode. 130- Discharge for the entire edge portion Okonawaru ⁇ .
  • a portion through which the ion wind easily passes (a region corresponding to the counter electrode 130-4 with respect to the shadow of the ejection port 141-4 when projected in the ring axis direction of the counter electrode 130-4), and the ion wind Is difficult to pass through (a region corresponding to a portion in which the counter electrode 130-4 is cut out from the jet outlet 141-4 when projected in the ring axis direction of the counter electrode 130-4). It will be uniform. For this reason, apart from the ion wind, the wind from the intake opening 142-4 toward the jet outlet 141-4 along the inner wall surface of the guide member 140-4 (the wind that passes through the portion where the ion wind is difficult to pass) Occurs.
  • the ion wind is gathered along the inner wall of the guide member 140-4 while remaining in a state of being difficult to contact the guide member 140-4).
  • an ion wind having a sufficient air volume reaches the jet nozzle 141-4, and the ion wind is diffused at the jet nozzle 141-4. It is possible to deliver ions over a wide range while reducing the ozone concentration. It should be noted that the difference in ion concentration between the ion wind and the wind flowing in from the intake opening 142-4 is also involved in the generation of turbulent flow that diffuses the ion wind, further enhancing the ion wind diffusion effect. There is a possibility.
  • the ring diameter of the jet nozzle 141 of the guide member 140 is equal to or less than the ring diameter of the counter electrode, as in the conventional apparatus shown in FIG.
  • the wind that wraps around from the outside of the electrode joins the ion wind inside the guide member 140.
  • the integrated wind is ejected from the jet outlet 141 as a whole, it is considered that the turbulent flow that pulls the ion wind in the outer peripheral direction of the jet outlet 141 is unlikely to occur (as a result, the jet The ozone concentration in the vicinity of the outlet 141 remains high).
  • the guide member 140 and the ion wind are easily in contact with each other, the ion wind is attenuated inside the guide member 140.
  • the generated ion wind may be poor in wind power, and ions (ion wind) are delivered over a wide range. It becomes difficult to let you.
  • the ion / ozone wind generating apparatus 100-4 changes the shape of the guide member 140-4 to perform efficient diffusion without separately providing a blower or the like and deliver it to the target space.
  • the ozone concentration in the vicinity of the jet nozzle 141-4 is lowered while maintaining the amount of ions to be generated (the ions are blown over a wide range).
  • an ion / ozone wind generator 100-5 includes a cylindrical counter electrode 130-5 having an internal space, and a part of the internal space of the counter electrode 130-5 (front end). ) In a state of being inserted into the needle-shaped discharge electrode 120-5. More specifically, the counter electrode 130-5 has an outlet 130 ⁇ -5 (constriction 130 ⁇ -5) that is an opening through which ion wind is ejected (in this embodiment, the constriction that has the narrowest cross-sectional area in the member).
  • Portion 130 ⁇ -5 is also the outlet 130 ⁇ -5), an intake opening 130 ⁇ -5 serving as an intake port having a larger diameter (ring diameter) than the outlet 130 ⁇ -5, and an injection from the intake opening 130 ⁇ -5 A reduced diameter portion 130r-5 (inclined portion) that is reduced in diameter toward the outlet 130 ⁇ -5.
  • the main feature of the present embodiment is that the diameter (ring diameter) of the intake opening 130 ⁇ -5 is larger than the diameter (ring diameter) of the jet outlet 130 ⁇ -5.
  • the jet outlet 130 ⁇ -5, the intake opening 130 ⁇ -5, and the like indicate each component (edge) in the counter electrode 130-5, but indicate a space formed by the component (edge). In some cases.
  • the discharge electrode 120-5 and the entire inner wall surface of the counter electrode 130-5 (In this embodiment, discharge is mainly performed from the tip of the needle serving as the end thereof. However, since the discharge point can be other than the tip of the needle, the discharge electrode 120 in FIG. The -5 discharge point is schematically depicted so that it is not just the tip of the needle). More specifically, the distance between the inner wall surface and edge portion of the counter electrode 130-5 and the discharge electrode 120-5 (particularly, the tip of the discharge electrode 120-5) is determined from the intake opening 130 ⁇ -5 and the jet outlet 130 ⁇ -5.
  • the discharge is not locally generated only at the edge portion of the counter electrode 130-5, but is dispersedly and stably repeated over a wide area of the entire inner wall surface of the counter electrode 130-5. Discharge (surface discharge) is performed. As a result, local discharge is reduced, and the ozone concentration contained in the generated ion wind can be reduced. Furthermore, since the counter electrode 130-5 has a shape in which the cross-sectional area gradually decreases from the intake opening 130 ⁇ -5 side toward the jet outlet 130 ⁇ -5, the counter electrode 130-5 occurs in the vicinity of the intake opening 130 ⁇ -5. The ions (ion wind) generated inside the counter electrode 130-5 including the ions are surely guided to the vicinity of the jet outlet 130 ⁇ -5. As a result, an ion wind having a high ion concentration and torque is ejected.
  • the ion / ozone wind generator 100-5 designs the shape of the counter electrode 130-5 while paying attention to the facing relationship between the counter electrode 130-5 and the discharge electrode 120-5.
  • the ozone generation amount itself is suppressed, and an ion wind with torque is generated.
  • Examples of the ion / ozone wind generator according to the present invention include the above-described configurations (ion / ozone wind generator 100-4 and ion / ozone wind generator 100-5).
  • Various ion / ozone wind generators have been created.
  • such an example will be referred to as the first embodiment, and the ion / ozone wind generator according to the first embodiment will be described in detail to first explain the principle that ion wind is generated.
  • the ion / ozone wind generator (ion / ozone wind generator 100-4 and ion) according to the present invention, which has been created after repeated efforts based on various theories found in the creation of the ozone wind generator,
  • the ozone wind generator 100-5) and other components that serve as peripheral technology will be described in detail in the fourth and fifth embodiments.
  • the ion / ozone wind generator has an electrode pair having a needle-like electrode and a counter electrode, generates a potential difference between the needle-like electrode and the counter electrode, and generates corona discharge. Generates ions, ozone and ionic wind. Further, the ion / ozone wind generating apparatus according to the present embodiment includes a main annular counter electrode having a planar shape and a sub-annular counter electrode having a planar shape surrounding the main annular counter electrode. The longest distance between the tip of the electrode and the main annular counter electrode is shorter than the shortest distance between the tip of the needle electrode and the sub annular counter electrode.
  • This configuration provides a large volume of ionic wind.
  • the discharge discharges in a donut shape along the inner side of the cylindrical electrode of the counter electrode at the shortest distance or the inner side of the flat circular electrode, and a donut ion wind is generated.
  • the center of the donut is windless. Therefore, the ionic wind becomes weak as a result of the loss that uses the energy that the generated ionic wind induces the windless center.
  • the problem is solved by providing the main annular counter electrode and the sub annular counter electrode as in this embodiment.
  • the ion / ozone wind generator has an electrode pair having a needle electrode and a counter electrode, generates a potential difference between the needle electrode and the counter electrode, and generates ion / ozone by corona discharge. And an ionic wind is generated.
  • an ion wind is generated by repeatedly colliding with air molecules while ions emitted from the needle electrode during the corona discharge migrate toward the counter electrode, so that the needle winds from the needle electrode toward the counter electrode. It is said that the resulting air flow. That is, it is an air flow generated according to the flow direction of ions generated during discharge.
  • the detailed structure of the ion / ozone wind generator according to the present embodiment will be described.
  • FIG. A1 (a) is a conceptual front view of the counter electrode of the apparatus
  • FIG. A1 (b) is a conceptual side view of the ion / ozone wind generating apparatus 100.
  • the ion / ozone wind generator 100 includes an electrode pair 110 having a needle electrode 120 and a counter electrode 130.
  • the counter electrode 130 includes a circular annular electrode 131 located on the innermost side disposed on the extension line axis of the needle-like electrode 120, and an outer circular annular electrode 132 having a different radius arranged coaxially with the electrode. .
  • these annular electrodes are disposed so as to be perpendicular to the annular plane and to be positioned on an axis passing through the center of gravity (circular center) of the ring.
  • the distance from the tip of the needle-like counter electrode to each part of the counter electrode becomes substantially equal, so that discharge unevenness is reduced.
  • the needle-like electrodes are arranged on the axis of the ring in this way, the ionic wind generated from the main annular counter electrode is particularly strong.
  • each annular electrode 131 and 132 are preferably bridged so as to be energized by a connecting member such as a bridge 139.
  • a connecting member such as a bridge 139.
  • each annular electrode can be made equipotential, It becomes easy to adjust the positional relationship between these electrodes.
  • a portion having a substantially triangular shape is formed between the main annular counter electrode and the sub-annular counter electrode, so that unevenness occurs in corona discharge and a large amount of ion wind is forward. Will not be pushed out.
  • a conceptual straight line connecting the connecting portion between the connecting member and the secondary annular counter electrode and the connecting portion between the connecting member and the main annular counter electrode passes through the center of gravity of the main annular counter electrode so as not to interfere with the generation of ion wind. It is preferable to arrange the connecting members as described above. By connecting in this way, the generation unevenness of the ionic wind due to the discharge unevenness is less likely to occur.
  • the main annular counter electrode and the sub annular counter electrode constituting the counter electrode are arranged in the same plane. Since it is the distance that makes the discharge efficiency of the sub-annular counter electrode gradually weaker than that of the main annular counter electrode, it is preferable to arrange the same on the same plane because the distance can be easily changed.
  • the needle electrode 120 and the counter electrode 130 are connected to a voltage applying means or a ground, respectively, and in use, a potential difference is generated between the electrodes to discharge.
  • the positional relationship between the distal end portion P of the needle-like electrode 120 and the innermost main annular counter electrode 131 is preferably a positional relationship that is most suitable for emitting ion wind, and such a distance is set.
  • annular counter electrode may be distribute
  • annular counter electrode in the figure shows the ion migration direction by corona discharge.
  • FIG. A2 (a) the positional relationship between the annular counter electrode 131 and the tip portion P of the needle electrode 120 is shown using the cross section of the annular counter electrode 131 located in the innermost part.
  • FIG. The positional relationship between the annular counter electrode 132 and the tip portion P is shown.
  • the ion wind is theoretically generated at an angle of ⁇ 2 from the tip P. Become. That is, since the angle becomes larger, the ionic wind derived from this electrode has more components emitted toward the outer side of the annular counter electrode, and the volume of the ionic wind pushed toward the front surface becomes smaller.
  • corona discharge is likely to occur with respect to the counter electrode located near the needle electrode.
  • the distance from the distal end portion P of the needle electrode becomes closer. That is, since the probability of occurrence of corona discharge is higher in the annular counter electrode positioned at the center, the absolute counter pressure of the generated ion wind is also higher in the annular counter electrode positioned at the center.
  • the annular counter electrode 131 located at the innermost portion is advantageous in the direction in which the ion wind is generated, and the absolute wind pressure in which the ion wind is generated is also large. Therefore, the counter electrode as shown in FIG. A1 is in a state in which the ion wind emitted from the annular counter electrode becomes stronger as the radius of the annular electrode becomes smaller.
  • the distance between the annular counter electrode 131 located at the innermost part and the tip end portion P is maintained at a distance that is most easily discharged in corona discharge.
  • the diameter of the annular portion of the counter electrode is simply made large, a large discharge reaction occurs, but since the discharge occurs in a donut shape, the central portion of the windless area is also large due to the absence of the counter electrode portion at the annular center of the counter electrode. As a result, discharge unevenness occurs and a donut-like ion wind is generated.
  • the outer periphery and the central portion of the generated ion wind are in a no-wind state, and the donut-like ion wind induces a no-wind region so that no strong wind is generated.
  • the diameter of the annular part is small, an ion wind with strong wind pressure is emitted, but the amount of generation is small.
  • the outer circumference has a large diameter and weak wind pressure but emits a side stream with a large air volume.
  • the counter electrode according to the present embodiment has a large air diameter, the wind pressure is weak but the air volume is large, and if the diameter is small, the wind pressure is strong but the air volume is small.
  • the shape is compatible with wind pressure and large amount of generation.
  • the ionic wind generated from the counter electrode is not decelerated due to the reaction between the obstacles such as the wall surface and the ionic wind, and the main ionic wind generated from the main annular counter electrode; Since the secondary ion wind generated from the secondary annular counter electrode is immediately synthesized, the main ion wind can quickly obtain the synergistic effect of the tail wind by the surrounding secondary ion wind immediately after the generation, so that a larger volume of ion wind can be generated. Obtainable.
  • the counter electrode is, for example, cylindrical, a wall surface is present in the counter electrode, so that the ion wind generated from the counter electrode is decelerated due to the reaction between the wall surface and the ion wind.
  • each counter electrode is not annular, and the planar normal vector in each counter electrode is not substantially in the same direction.
  • the ion wind generated from the counter electrode is decelerated due to the fact that uneven discharge is likely to occur and the ion wind generated from the counter electrode is not uniform, etc. (the ion wind generated at each counter electrode is optimal) Not synthesized), which is not preferable.
  • the longest distance between the tip of the needle electrode and the main annular counter electrode is shorter than the shortest distance between the tip of the needle electrode and the sub annular counter electrode.
  • the ion wind When deviating from the positional relationship between the needle-like electrode and the counter annular electrode, the ion wind is mainly generated from the space between the main annular counter electrode and the sub-annular counter electrode, resulting in uniform wind. For this reason, the ionic wind released in the air becomes weak, and a reaction also occurs when a guide member is provided.
  • the number of annular counter electrodes constituting the counter electrode 130 is not limited to two as shown in FIG. A1, and many annular counter electrodes may be provided.
  • the counter electrode according to the present embodiment may be polygonal.
  • a plurality of needle-like electrodes may be provided.
  • FIG. A3 is a schematic view showing an example of a counter electrode according to the present embodiment.
  • the counter electrode is formed by providing a hole in the plate.
  • FIG. A3 (c) is a conceptual diagram of a plate-like counter electrode 130c having a circular counter electrode.
  • the counter electrode includes a first counter electrode 130c-1 and a second counter electrode 130c-2.
  • the first counter electrode 130c-1 is formed with a circular main annular counter electrode 131c-1 at the center, and a circular sub annular counter electrode 132c-1 is formed around it.
  • Sub-circular counter electrodes 133c-1, 134c-1, and 135c-1 are further formed on the outer periphery of the electrode 132c-1.
  • a connecting member 139c-1 is formed between these counter electrodes.
  • the second counter electrode is also formed with a circular main annular counter electrode 131c-2 in the center, and a circular sub annular counter electrode 132c-2 is formed around it.
  • Sub-circular counter electrodes 133c-2 and 134c-2 are further formed on the outer periphery of the electrode 132c-2.
  • a connecting member 139c-2 is formed between these counter electrodes. Needle-like electrodes are arranged at appropriate positions with respect to these plate-like counter electrodes.
  • FIG. A3 (b) is a diagram showing a schematic configuration of the plate-like counter electrode 130b.
  • the main annular counter electrode has a circular shape
  • the surrounding sub-annular counter electrode has a hexagonal shape.
  • the plate-like counter electrode 130b includes a first counter electrode 130b-1 and a second counter electrode 130b-2.
  • a circular main annular counter electrode 131b-1 is formed at the center of the first counter electrode 130b-1, and a hexagonal sub-annular counter electrode 132b-1 is formed around it.
  • Sub-circular counter electrodes 133b-1, 134b-1, and 135b-1 are formed on the outer periphery. These counter electrodes are connected by a connecting member 139b-1.
  • a circular main annular counter electrode 131b-2 is formed at the center of the second counter electrode 130b-2, and hexagonal sub-annular counter electrodes 132b-2 to 134b-2 are formed around it. These electrodes are connected by a connecting member 139b-2.
  • FIG. A3 (a) is a diagram showing a schematic configuration of the plate-like counter electrode 130a.
  • the plate-like counter electrode 130a includes a first counter electrode 130a-1 and a second counter electrode 130a-2.
  • a circular main annular counter electrode 131a-1 is formed at the center of the first counter electrode 130a-1, and a plurality of sub-annular counter electrodes 132a-1 are formed around it.
  • FIG. A3 (a) a representative example of the sub annular counter electrode 132a-1 is shown, but 132a-1 formed around the main annular counter electrode 131a-1 is also a sub annular counter electrode. is there.
  • the member formed between the sub-annular counter electrodes is in a state of spreading radially from the main annular counter electrode, so in addition to the ion wind generated from the main annular counter electrode, As the distance from the main annular counter electrode increases, the amount of ion wind continuously decreases.
  • the second counter electrode 132a-2 has a main annular counter electrode 131a-2 and a sub-annular counter electrode 132a-2 at the center.
  • FIG. A3 (d) is a common side view of the plate-like counter electrodes 130a to 130c.
  • An ion / ozone wind generator having a plurality of electrode pairs 110 according to this embodiment may be used.
  • a truncated conical ion wind guide member may be provided.
  • a plurality of electrode pairs 110 provided with these guide members may be provided.
  • the counter electrode in the main electrode pair and / or the sub electrode pair is not limited to a polygonal shape, a circular shape, and a substantially circular shape, but is a spiral shape (the number of turns and the winding width are It may be an example only).
  • the difference between the spiral shape as shown in FIG. B1 (a) and the spiral shape as shown in FIG. B1 (b) is the presence or absence of the end point of the spiral when the spiral shape is formed toward the center. .
  • each counter electrode has a spiral shape as shown in FIG. B1 (b)
  • the counter electrode When the counter electrode has such a spiral shape, there is a concern that unevenness may occur in the corona discharge as compared with the case of the multi-ring structure.
  • the diameter of the counter electrode is about 1 cm
  • the distance error peeling from the multiple ring structure
  • the basic configuration of the ion / ozone wind generator 100-4 is as shown in FIG. That is, as described above, the cylindrical guide member 140-4 having the needle-like discharge electrode 120-4 and the annular counter electrode 130-4 and capable of introducing the ion wind generated between these electrodes is provided.
  • the guide member 140-4 has an outlet 141-4 (constriction 141-4) which is an opening through which ion wind is ejected, and a diameter (ring diameter) larger than the constriction 141-4.
  • An intake opening 142-4 that serves as a wind intake port, and a reduced diameter portion 140r-4 that is reduced in diameter from the intake opening 142-4 toward the narrowed portion 141-4.
  • the diameter (ring diameter) of the portion 142-4 is configured to be larger than that of the counter electrode 130-4.
  • the guide member 140-4 may be fixed to the ion / ozone wind generator 100-4 by an appropriate method.
  • the diameter (ring diameter) of the jet outlet 141-4 is R A
  • the diameter (ring diameter) of the intake opening 142-4 is R B
  • the diameter of the counter electrode 130-4 (the ring diameter) upon the R 1, R a / R 1 is greater than 1, preferably 1.1 to 3.5, more preferably 1.2 to 3, particularly preferably 1.3 to 1.8.
  • R A / R 1 is not particularly limited, but is less than 4, for example.
  • R A / R B is more than 1, preferably 1.1 to 3, and more preferably 1.2 to 3.
  • R A / d is not particularly limited, but is preferably 0.1 to 2, more preferably 0.3 to 1.5.
  • the guide member 140-4 is not limited to a frustum shape (conical frustum shape) as shown in FIGS. 1 and E1, and for example, as shown in FIGS. E2 (a) and E2 (b).
  • the diameter-reduced portion 140r-4 of the guide member 140-4 is curved in cross section from the intake opening 142-4 toward the jet outlet 141-4 ⁇ the cross section here refers to the member axis (the direction in which the ion wind travels) A vertical section of the internal space with respect to the (axis) direction is shown. ⁇ May change (the cross-sectional area of the opening gradually decreases while increasing the rate of change).
  • the narrowed portion (the narrowed portion 141-4) in the above-described configuration may be a portion in the member (guide member 140-4) where the cross-sectional area of the internal space with respect to the central axis direction is substantially minimum.
  • the narrowed portion 141-4 may not coincide with the ejection port. More specifically, for example, as shown in FIGS. E3 (a) and E3 (b), a constricted portion 141-4 is provided between the intake opening 142-4 and the outlet (outlet 143-4).
  • the shape of the enlarged diameter portion 140S-4 and / or the reduced diameter portion 140r-4 in the case of providing the enlarged diameter portion 140S-4 is not particularly limited, and the cross-sectional diameter is independently increased in a curved line ( The shape may be selected from a shape in which the diameter of the cross section increases, a frustum shape in which the cross section diameter increases linearly, and the like.
  • the enlarged diameter portion 140S-4 has a shape (so-called trumpet shape) whose cross-sectional diameter changes in a curved manner.
  • a shape so-called trumpet shape
  • an air pocket (a portion circled by a dotted line in FIG. E3 (a)) in which an ion wind after passing through the constricted portion 141-4 is difficult to occur is generated. That is, since the inner wall of the guide member 140-4 becomes a curved surface whose diameter increases from the narrowed portion 141-4 toward the jet outlet 143-4, the ion wind directed near the narrowed portion 141-4 gradually increases. As a result, the ionic wind hardly exists and air pockets with non-uniform air pressure are generated. As a result, a turbulent flow is generated in the pocket portion, and the ion wind ejected from the ejection port 143-4 is further diffused.
  • the structure in which the air pocket is formed by the enlarged diameter portion 140S-4 may be a structure in which the enlarged diameter portion 140S-4 is rapidly expanded.
  • a structure in which an annular plane member is provided with the jet nozzle 141-4 serving as an inner peripheral edge (a structure in which the enlarged diameter portion 140S-4 extends in a direction substantially perpendicular to the axial direction of the ion wind) is adopted. Even in this case, it is considered that an air pocket is formed in the vicinity of the outer peripheral edge of the ring.
  • a member capable of diffusing the ion wind by facing the ion wind may be provided so as to inhibit the progress of the ion wind.
  • a conical splitter 145-4 is provided at the outlet 143-4 of the ion / ozone wind generator 100-4 according to FIG. E3 described above. It is. In such a configuration, the ion wind ejected from the ejection port 143-4 spreads by the splitter 145-4 and is forcibly diffused.
  • the shape of such a splitter 145-4 is not particularly limited. From the tip (where the ion wind can first contact), the shape is such that the ion wind is diffused efficiently but does not interfere with the ejection of the ion wind. It is preferable that the cross-sectional area gradually increases (the cross-section increases in diameter) from the rear end (where the ion wind can finally contact) (for example, a weight shape as shown in FIG. E4) (Conical) ⁇ .
  • the diameter of the maximum diameter portion of the splitter 145-4 (the bottom surface of the splitter 145-4 when it is conical) is not particularly limited, and may be set as appropriate according to the degree of diffusion of the ion wind.
  • the diameter can be appropriately changed, for example, a diameter of 1/1 to 1/4 with respect to the diameter of 141-4.
  • the splitter 145-4 is arranged in such a manner that all of them are inserted into the internal space of the guide member 140-4; some of them are inserted into the internal space of the guide member 140-4. Any of the forms existing outside the internal space of the guide member 140-4; the forms existing all outside the internal space of the guide member 140-4 may be used.
  • the splitter 145-4 may be fixed to the ion / ozone wind generator 100-4 by an appropriate method.
  • the splitter 145-4 is not shown in FIG. 1 or FIG.
  • the ion / ozone wind generator 100-4 (that is, the structure not provided with the enlarged diameter portion 140S-4) can be similarly installed. An ionic wind diffusion effect can be achieved.
  • the counter electrode 130-4 exists in the internal space of the guide member 140-4 (the counter electrode 130-4 is covered with the guide member 140-4).
  • the present invention is not limited to this, and a part or all of the counter electrode 130-4 may be configured to exist outside the internal space of the guide member 140-4 (that is, the counter electrode 130-4).
  • the electrode 130-4 may be present in a region opposite to the narrowed portion 141-4 side in the plane where the intake opening 142-4 exists.
  • the intake opening 142-4 and the jet outlet 141-4 have substantially similar shapes.
  • the present invention is not limited to this, and the intake opening 142-4 and the jet outlet 141-4 may have an asymmetric shape (for example, the intake opening 142-4 may have a circular shape).
  • the nozzle 141-4 has a rectangular shape).
  • the shape of the reduced diameter portion 140r-4 can be changed as appropriate in accordance with the shapes of the intake opening 142-4 and the jet outlet 141-4.
  • the shape of the intake opening 142-4 is preferably substantially similar to the shape of the annular electrode 130-4, but is not limited thereto, and the shape of the intake electrode 142-4 and the intake opening 142- 4 may be formed in a similar shape (for example, the annular electrode 130-4 is circular and the intake opening 142-4 is rectangular).
  • the axis of the constricted portion 141-4 (annular axis), the axis of the intake opening 142-4 (annular axis), and the axis of the counter electrode 130-4 are substantially aligned with each other.
  • the positions of these axes may be deviated as long as the effects of the invention are not impaired.
  • the counter electrode 130-4 has a monocyclic structure, but is not limited to this, and may have a multi-ring structure.
  • a double ring structure having a main ring electrode 131-4 and a sub ring electrode 132-4 may be used.
  • the ring diameter of the jet outlet of the guide member 140-4 is the ring of the main ring electrode 131-4 which is a counter electrode capable of generating main ion wind.
  • the main ion wind and the secondary ion wind have different flow rates, and the main ion wind is the main factor. Therefore, the main ion wind is not the entire ion wind generated by the multi-ring electrode, but the main ion wind. Just focusing on the wind can produce the above effects).
  • the counter electrode 130-4 which is a multiple annular electrode, and the guide member 140-4 according to the present embodiment are combined, it may be configured to be larger than the ring diameter of a plurality of annular electrodes including the main annular electrode.
  • the diameter may be larger than the entire diameter of the multiple annular electrode.
  • the ring diameter R 1 of the primary annular electrode 131-4, the ring diameter R 2 of the secondary annular electrodes 132-4, with respect to the ring diameter R B ring diameter R A and the intake opening 142-4 jets 141-4 The ion / ozone wind generator 100-4 shown in FIG. E5 assumes the relationship of R B > R A > R 2 > R 1 , and the ion / ozone wind generator 100-4 shown in FIG.
  • a relationship of B > R 2 > R A > R 1 is assumed.
  • the main annular electrode 131-4 is also provided.
  • the diameter of the electrode 131-4 and the diameter of the ejection port of the guide member 140-4 need only satisfy the above relationship.
  • the ion / ozone wind generating apparatus 100-4 includes a configuration having a plurality of electrode pairs (a counter electrode 130a-4 including 132a-4 and 131a-4, and a discharge electrode 120a-4). It is good also as a structure which has multiple electrode pairs.
  • the guide member 140-4 may be arranged as follows: (1) As shown in FIG. E7 (a), a plurality of counter electrodes are combined into one counter electrode. A method of arranging the catch guide member 140-4; (2) a method of arranging the guide member 140-4 on each of the counter electrodes as shown in FIG.
  • the form (2) is that the ion wind ejected from the outlet of a certain guide member is mixed with the ion wind from the adjacent guide member, so that the ion wind in the entire apparatus is more easily diffused. Is preferred.
  • the guide member 140-4 may be arranged only for an arbitrary electrode pair (counter electrode).
  • a plurality of electrode pairs each having a discharge electrode and a counter electrode in this example, a main electrode pair and 6 pairs of sub-electrode pairs
  • the counter electrode in each electrode pair is annular or spiral
  • the ion / ozone wind generator is provided with a plurality of pairs of sub-electrodes that are electrode pairs in which the counter electrodes are positioned, and the planar normal vectors in all the counter electrodes are substantially in the same direction. (Also Furthermore, it may be the shortest distance between the outer periphery of the counter electrode adjacent at least the sub-electrode pairs as less than or equal to the diameter of the counter electrode). In this case, each discharge electrode (each counter electrode) may be in a conductive state or a non-conductive state by appropriate means such as bridging the electrodes with a conductive material.
  • the guide member itself is configured to diffuse the ion / ozone wind. It is possible to suppress the attenuation of ion wind inside the guide member. As a result, it is possible to reduce the amount of ozone in direct contact with the object in the vicinity of the jet outlet while diffusing ions in the target space (as a result, it is also used in the vicinity of objects where the bleaching effect by ozone is not desirable). Can do).
  • the ion / ozone wind generating apparatus reduces the ozone concentration in the vicinity of the jet port by changing the configuration of the jet port, which is a location where the ion / ozone wind jets as a guide member, It was a configuration that allowed ion wind to reach a wide area.
  • the ion / ozone wind generating apparatus 100 according to the fifth embodiment mainly intended to reduce the concentration of ozone generated during corona discharge. -5 will be described in detail.
  • the ion / ozone wind generator 100-5 includes a cylindrical (frustum-shaped) counter electrode 130-5 having an internal space, and a part of the counter electrode 130-5.
  • a reduced diameter portion 130r-5 is shown in FIG. That is, as described above, the ion / ozone wind generator 100-5 according to the present embodiment includes a cylindrical (frustum-shaped) counter electrode 130-5 having an internal space, and a part of the counter electrode 130-5.
  • the positional relationship between the discharge electrode 120-5 and the counter electrode 130-5 is not particularly limited, and the discharge is performed outside the internal space of the counter electrode 130-5.
  • the electrode 120-5 may be provided (that is, the discharge electrode 120-5 is opposite to the region where the intake opening 130 ⁇ -5 exists when viewed from the plane where the intake opening 130 ⁇ -5 exists). May be provided in the area). Note that, as in the present embodiment, the tip of the discharge electrode 120-5 is inserted into the internal space of the counter electrode 130-5, so that the local area of the counter electrode 130-5 with the intake opening 130 ⁇ -5 is local.
  • the discharge electrode 120-5 when the discharge electrode 120-5 is arranged outside the internal space of the counter electrode 130-5, discharge from the edge portion (for example, the intake opening 130 ⁇ -5) of the counter electrode 130-5 is performed. In some cases, the ratio increases, and it is difficult for the discharge to the inner wall surface of the counter electrode 130-5 to occur (that is, local discharge to the intake opening 130 ⁇ -5 tends to occur). Therefore, from the viewpoint of further reducing the ozone generation rate, it is preferable to dispose at least a part (tip) of the discharge electrode 120-5 so as to be inserted into the internal space of the counter electrode 130-5.
  • the discharge electrode 120-5 does not penetrate to the outlet 130 ⁇ -5.
  • the discharge electrode 120-5 penetrates to the jet outlet 130 ⁇ -5 side (when the tip of the discharge electrode 120-5 is in a region opposite to the intake opening 130 ⁇ -5 when viewed from the plane where the jet outlet 130 ⁇ -5 exists) ) Since an ion wind in the opposite direction from the jet outlet 130 ⁇ -5 toward the intake opening 130 ⁇ -5 may be generated, the momentum of the ion wind may be cut off.
  • the distance from the tip of the discharge electrode 120-5 to the jet port 130 ⁇ -5 is z (jet port) in a situation where the tip of the discharge electrode 120-5 does not penetrate to the jet port 130 ⁇ -5 side. 4/5 or less, more preferably 3/4 or less, and 2/3 or less, based on the distance between the outlet 130 ⁇ -5 and the intake opening 130 ⁇ -5) It is particularly preferred.
  • the main traction force of the ion wind generated from the jet outlet is the discharge electrode 120-5 and the jet that are directional from the inlet opening 130 ⁇ -5 side to the jet outlet 130 ⁇ -5 side. Ion wind generated between the vicinity of the outlet 130 ⁇ -5.
  • the tip of the discharge electrode 120-5 does not penetrate to the jet outlet 130 ⁇ -5 side, and the jet outlet 130 ⁇ is discharged from the tip of the discharge electrode 120-5.
  • the distance to ⁇ 5 is preferably 1/5 or more with reference to z (distance between the jet outlet 130 ⁇ -5 and the intake opening 130 ⁇ -5), and more preferably 1/4 or more. It is suitable and it is especially suitable that it is 1/3 or more.
  • the counter electrode 130-5 is not limited to the frustum shape (conical frustum shape) shown in FIGS. 3 and F1, and the reduced diameter portion 130r-5 of the counter electrode 130-5 is an intake opening portion 130 ⁇ -5.
  • the cross-sectional diameter may be changed in a curved manner from the jet outlet 130 ⁇ -5.
  • the shape of the counter electrode 130-5 is as follows: (1) As shown in FIG. F2 (a), a shape convex to the outside of the counter electrode 130-5 ⁇ similar to a part of a sphere (sphere crown) (Shape) ⁇ ; (2) As shown in FIG. F2 (b), any of a convex shape (so-called trumpet shape) on the inner side of the counter electrode 130-5 may be used.
  • the counter electrode 130-5 has a frustum shape or a trumpet shape
  • slight unevenness can be generated in the discharge location (the relationship between the discharge electrode 120-5 and the counter electrode 130-5) to such an extent that the ozone concentration does not increase.
  • a discharge relationship close to that when the counter electrode is a multiple ring is formed inside the counter electrode, and further, the ion wind generated inside the counter electrode is smoothly guided toward the jet outlet 130 ⁇ -5. It is preferable that the momentum of the ion wind is strengthened. From the viewpoint of forming a multiple ring inside the counter electrode due to the structure of the counter electrode, a structure such as providing a groove or a projection that is substantially concentric with the electrode inside the counter electrode is also conceivable.
  • the ion / ozone wind generator 100-5 has a configuration having a plurality of electrode pairs (an electrode pair including a counter electrode 130a-5 and a discharge electrode 120a-5). It is good also as a structure which has multiple.
  • this figure is an example at the time of applying the structure of electrode arrangement as the counter electrode 130a-5, and is not limited at all.
  • the jet outlet 130 ⁇ -5 may have a multi-ring structure (the jet outlet 130 ⁇ -5 is regarded as a sub-annular electrode, and an annular shape that serves as a main annular electrode therein) An electrode may be further provided).
  • the ion wind generated by the discharge between the main annular electrode and the discharge electrode provided at the jet outlet 130 ⁇ -5 is changed to the ion wind generated inside the counter electrode 130-5. It is considered that the momentum of the ion wind that is pulled in the five directions and ejected from the ejection port 130 ⁇ -5 increases.
  • the discharge electrode 120-5 according to the present embodiment is not limited to the needle-like electrode, and an annular discharge electrode may be used.
  • the generated ozone concentration is lowered, and ions (ion wind) generated inside the counter electrode are guided to the jet outlet. Therefore, it is possible to reduce the amount of ozone in direct contact with the object in the vicinity of the ejection port while ejecting torque ion wind and sufficiently diffusing ions in the target space (as a result, the bleaching effect by ozone It can also be used near objects that are not desirable).

Abstract

[Problem] To provide an ion wind generating device capable of delivering ions across a wide range and capable of delivering ion wind with reduced ozone concentration near an outlet without using a filter or the like. [Solution] An ion, ozone or ion wind generating device that comprises a pair of electrodes having a discharging electrode and a counter electrode, and is configured such that a potential difference is generated between the discharging electrode and the counter electrode and such that ions, ozone and ion wind are generated by corona discharge. The counter electrode has an opening that serves as an inlet, a narrow portion that has the smallest inner diameter of the counter electrode, a reduced-diameter portion wherein an inner diameter of the counter electrode is reduced from the side of the opening toward the narrow portion, and an inner space formed by the reduced-diameter portion and through which ion wind can pass. The diameter Rβ of the opening and the diameter Rα of the narrow portion satisfy the equation Rβ > Rα, and the discharge electrode may be opposite an inner wall surface of the counter electrode and the narrow portion.

Description

イオン・オゾン風発生装置及び方法Ion / ozone wind generator and method
 本発明は、コロナ放電によりイオン風を発生させる装置であり、より詳細には、より大きな風量のイオン風を発生させるイオン風発生装置である。また、ある側面では本発明は、ゴミ等の対象物を殺菌・消臭するための装置及び方法に関し、特に、対象物の配される空間とは別空間でコロナ放電を行い、イオン及びオゾンを発生させて対象物の配されている空間にイオン・オゾン風を送給し、殺菌・消臭する装置及び方法に関する。より具体的に、本発明は、気密性の高いボックス、例えば、生ゴミやオムツ等汚物入れ、生ごみ処理機の処理臭・靴・ブーツ等や収納する為のボックス・トイレ及びトイレタンク、気密性の高い冷凍・冷蔵装置付のコンテナ及び冷凍・冷蔵装置付車両、冷蔵庫、室内・車両内の空調装置等に装着し殺菌・消臭を目的とした環境装置に関するものである。 The present invention is an apparatus that generates an ion wind by corona discharge, and more specifically, an ion wind generator that generates an ion wind having a larger air volume. Further, in one aspect, the present invention relates to an apparatus and method for sterilizing / deodorizing an object such as dust, and in particular, corona discharge is performed in a space different from a space where the object is disposed, thereby generating ions and ozone. The present invention relates to an apparatus and a method for generating and sterilizing / deodorizing an ion / ozone wind to a space where an object is arranged. More specifically, the present invention relates to a highly airtight box, for example, a waste container such as garbage or diapers, a processing odor, a shoe or a boot of a garbage disposal machine, a box / toilet / toilet tank for storing, an airtight The present invention relates to an environmental device for sterilization and deodorization that is mounted on a highly-contained container with a refrigeration / refrigeration device, a vehicle with a refrigeration / refrigeration device, a refrigerator, an indoor / interior air conditioner, and the like.
 高齢化社会に伴い、要介護人口と比例してオムツ等の汚物入れの需要も高くなっているが、開放の都度、悪臭を放つ為、介護人及び周囲への負担や不快感がある上に不衛生である。また、各家庭や飲食店等には生ゴミの保管ボックスも存在しているが、開放の都度、雑菌増殖に伴い悪臭を放つ為、主婦等・従事者の負担が大きい。生ゴミ処理機もバイオ技術の成長に伴い増加しているが稼働中は処理機周辺に放つ悪臭が非常に問題となっている。加えて、海外・国内の冷凍・冷蔵・常温品等の物流には輸送用コンテナ及びトラック等での輸送が主流であり空調装置付海上コンテナ・陸上コンテナ・コンテナ型トラック等が多数あるが、積載貨物品の残臭・空調装置内のカビ臭が問題となっている。更に、倉庫・冷蔵庫・室内・車両等の空調装置も、保管物質等使用状況によって臭気が問題となっている。 Along with the aging society, demand for filth containers such as diapers is increasing in proportion to the population requiring nursing care. It is unsanitary. In addition, each household, restaurant, and the like also have a garbage storage box, but each time it is opened, it emits a bad odor due to the growth of various germs, which is a heavy burden on housewives and workers. Garbage disposal machines are also increasing along with the growth of biotechnology, but the bad smell emitted around the disposal machines is a serious problem during operation. In addition, overseas and domestic logistics such as refrigeration, refrigeration, and room temperature products are mainly transported by transport containers and trucks, and there are many marine containers with air conditioners, land containers, container-type trucks, etc. Residual odors in cargo and mold odors in air conditioners are problematic. Furthermore, odors are also a problem in air conditioners such as warehouses, refrigerators, rooms, and vehicles depending on the usage of stored materials.
 ここで、上記問題の一解決手法として、従来からスプレー式等、簡易型の殺菌消臭剤が提案されている。しかしながら、汚物入れや生ゴミの保管ボックスに使用した場合、当該容器を開放した時に悪臭を放つのが現状である。また、空調装置に使用(例えば散布や循環殺菌方式)した場合、空調装置内部に洗浄出来ない部位、又は洗浄しても異臭・カビ臭が残った場合、次期積載貨物に臭気が移る等、問題となっている。更に、別の解決手法として、殺菌消臭の対象となる空間から空気を吸引してフィルタにより汚染物質を吸着若しくは除去する方法や高価な悪臭除去触媒が提案されている。しかしながら、長期の使用によりフィルタの交換等のメンテナンスが不可欠であり、しかもフィルタの性能が十分でないため、満足のいく性能が得られていない場合や例え性能が良くても大型で高価な触媒本体、更には維持・管理費が高額な場合が多い。 Here, as a method for solving the above problem, a simple sterilization deodorant such as a spray type has been proposed. However, when used in a trash bin or a garbage storage box, the present situation is that a bad odor is emitted when the container is opened. In addition, when used in an air conditioner (for example, spraying or circulation sterilization method), the parts that cannot be cleaned inside the air conditioner, or if an odor or mold odor remains even after cleaning, the odor will be transferred to the next loaded cargo. It has become. Furthermore, as another solution technique, a method of sucking air from a space to be sterilized and deodorized and adsorbing or removing contaminants with a filter and an expensive malodor removing catalyst have been proposed. However, maintenance such as filter replacement is indispensable due to long-term use, and because the performance of the filter is not sufficient, if the satisfactory performance is not obtained or even if the performance is good, the large and expensive catalyst body, In addition, maintenance and management costs are often high.
 ところで近年、室内の空気清浄やリフレッシュのためにマイナスイオンやオゾンを発生する空気清浄機やエアコンなどが普及している。そして、消臭効果のあるマイナスイオンとオゾンとを同時発生させるマイナスイオン・オゾン発生装置を用いて対象空間を消臭等する技術が多数提案されている。 In recent years, air cleaners and air conditioners that generate negative ions and ozone have become widespread for indoor air purification and refreshment. Many techniques have been proposed for deodorizing the target space using a negative ion / ozone generator that simultaneously generates negative ions and ozone having a deodorizing effect.
 まず、特許文献1に係るマイナスイオン・オゾン発生装置は、部屋の天井に取り付けることを想定した装置であり、正電極が負電極より下方に位置するように配されていることを特徴とする。これによれば、ファンやモータを用いなくてもマイナスイオンとオゾンを含んだ下向きの気流を発生させることができる。 First, the negative ion / ozone generator according to Patent Document 1 is an apparatus that is assumed to be attached to the ceiling of a room, and is characterized in that the positive electrode is arranged below the negative electrode. According to this, a downward airflow containing negative ions and ozone can be generated without using a fan or a motor.
 次に、特許文献2に係るマイナスイオン・オゾン発生装置は、先端が針状のマイナス電極と、それに平行して同心円状に設置された円筒型のグランド電極を備え、マイナス電極とグランド電極を相対的に移動可能とし、マイナス電極に高電圧を印加して、マイナス電極の先端部とグランド電極の端面との距離を調整することによりマイナスイオン又はオゾンを発生することを特徴とする。 Next, the negative ion / ozone generator according to Patent Document 2 includes a negative electrode having a needle-like tip and a cylindrical ground electrode arranged concentrically in parallel to the negative electrode, and the negative electrode and the ground electrode are relatively disposed. The negative electrode or ozone is generated by adjusting the distance between the tip of the negative electrode and the end face of the ground electrode by applying a high voltage to the negative electrode.
 次に、特許文献3に係るマイナスイオン・オゾン発生装置は、針電極とアース電極間に直流高電圧を印加して針電極尖端部でコロナ放電を生起させ、オゾン及びマイナスイオンを発生させる装置である。 Next, the negative ion / ozone generator according to Patent Document 3 is a device that generates ozone and negative ions by applying a DC high voltage between the needle electrode and the ground electrode to cause corona discharge at the tip of the needle electrode. is there.
 次に、特許文献4に係るマイナスイオン・オゾン発生装置は、周囲に立上部を有した穴を1カ所又は複数箇所備えた金属板からなる正電極を有し、負電極の先端が前記正電極の穴近傍に位置していることを特徴とする。このように構成することで、放電により十分な気流が生じるため、ファン,ポンプ等の送風装置を別途使用しなくても発生したマイナスイオンとオゾンを空間内に拡散させる気流を発生させることができる。 Next, the negative ion / ozone generator according to Patent Document 4 has a positive electrode made of a metal plate provided with one or a plurality of holes having a raised portion around the periphery, and the tip of the negative electrode is the positive electrode. It is located in the vicinity of the hole. With this configuration, a sufficient air flow is generated by the discharge, so that it is possible to generate an air flow that diffuses the generated negative ions and ozone into the space without using a blower such as a fan or a pump. .
 特許文献1~4に係る発明は、イオン及びオゾンを発生させて対象物に適用することが記載されているが、これらの技術は例えばごみ箱の内部などの殺菌又は脱臭の対象となる空間内に配して放電することを前提とする。例えば、ごみ箱の中であれば、悪臭を放つ有機物が微生物により分解されてメタンガス等、引火性ガスを生成する場合があり、このような状況下で放電を行なうと、火花の発生によって火災や爆発が起こる危険性がある。 The inventions according to Patent Documents 1 to 4 describe that ions and ozone are generated and applied to an object. However, these techniques are used in a space to be sterilized or deodorized, for example, inside a trash can. It is assumed that it is arranged and discharged. For example, in a trash can, odorous organic matter may be decomposed by microorganisms to produce flammable gases such as methane gas. There is a risk that will occur.
 そこで、このような危険性を取り除くために、対象物の配された空間外で放電を行ないイオン・オゾンを発生させて、対象物の配された空間内にこれらの生成物を導入する外付け型殺菌・消臭装置の開発が検討されている(特許文献5)。 Therefore, in order to remove such dangers, external discharge is performed outside the space where the object is placed to generate ions and ozone and introduce these products into the space where the object is placed. Development of a mold sterilization / deodorization apparatus has been studied (Patent Document 5).
実用新案登録第3100754号Utility model registration No. 3100754 特開2003-342005号公報JP 2003-342005 A 特開2004-18348号公報JP 2004-18348 A 特開2005-13831号公報JP 2005-13831 A 実用新案登録第3155540号Utility model registration No. 3155540
 しかしながら、特許文献1~5に係る発明では、イオン及びオゾンを発生させることはできるが、当該発生させたイオンを部屋全体に行き亘らせるよう構成することが困難であった。より具体的には、これらの技術では、当該発生させたイオン及びオゾンを含むイオン風の風力自体が弱いものであるため、イオン及びオゾンを部屋全体に行き亘らせるためには、別途送風機等を設けてイオン風を後押しする必要性があり、その結果、イオン風を後押しすることができる一方で、イオン風中に含まれるイオンが希釈されてしまうという難点がある。更に、これらの技術においては、噴出口の近傍においてオゾン濃度が高くなる場合があるため、当該装置にてイオン風を発生させた際に同時に発生するオゾンによって、装置近傍の物品を意図せず漂白してしまう場合等があった。このような場合、オゾン濃度を低下させる手段としては、フィルタ等を用いる方法が提案されているが、イオン風中のイオン濃度をも低下させてしまう、フィルタの交換が必要となる、といった問題があった。 However, in the inventions according to Patent Documents 1 to 5, although ions and ozone can be generated, it is difficult to configure the generated ions to spread throughout the room. More specifically, in these technologies, since the generated wind of the ion wind containing the generated ions and ozone is weak, in order to spread the ions and ozone throughout the room, a separate blower or the like Therefore, it is necessary to boost the ion wind. As a result, the ion wind can be boosted, but the ions contained in the ion wind are diluted. Furthermore, in these technologies, the ozone concentration may be high in the vicinity of the jet outlet, so that the articles near the device are unintentionally bleached by the ozone that is simultaneously generated when ion wind is generated in the device. There was a case where it was done. In such a case, as a means for reducing the ozone concentration, a method using a filter or the like has been proposed. However, there is a problem that the ion concentration in the ion wind is also reduced or that the filter needs to be replaced. there were.
 本発明は、このような観点から成されたものであり、イオンを広範囲に送達可能であり、フィルタ等を用いずとも噴出口近傍でのオゾン濃度が低められたイオン風を送風可能な、イオン風発生装置の提供を目的とする。
The present invention is made from such a viewpoint, can deliver ions over a wide range, and can blow an ion wind with a low ozone concentration in the vicinity of the jet nozzle without using a filter or the like. The purpose is to provide a wind generator.
 本発明の一の形態は、
 放電電極(例えば、図1における放電電極120-4)と、対向電極(例えば、図1における対向電極130-4)と、を有する電極対を備え、前記放電電極と前記対向電極との間に電位差を発生させてコロナ放電によりイオン、オゾン及びイオン風を発生させる装置であり、導入されたイオン、オゾン及びイオン風の少なくとも一部を外部に導出することが可能なガイド部材(例えば、図1におけるガイド部材140-4)を有する装置であって、
 前記ガイド部材は、吸気口となる環状の開口部(例えば、図1における吸気開口部142-4)と、当該ガイド部材の内径が最小となる環状の狭窄部(例えば、図1における噴出口141-4)と、当該開口部側から当該狭窄部へ向かって当該ガイド部材の内径が縮径する縮径部(例えば、図1における縮径部140r-4)と、当該縮径部により形成される内部空間と、を有する筒状の部材であり、
 前記対向電極は、環状の電極であり、
 前記対向電極の環径(環外径)R、前記開口部の環径R及び前記狭窄部の環径Rが、R>R>Rである、イオン、オゾン又はイオン風発生装置である。
 ここで、前記放電電極は、針状電極であってもよい。
 また、前記放電電極の針軸と、前記開口部の環軸と、前記狭窄部の環軸と、が略一致してもよい。
 また、前記ガイド部材は、筒側部が開口されていなくともよい。
 また、前記ガイド部材が、錐台状又はラッパ状であってもよい。
 また、前記ガイド部材は、前記狭窄部から前記開口部とは異なる側へ向かって当該ガイド部材の内径が拡径する拡径部(例えば、図E3における拡径部140S-4)を更に有していてもよい。
 更に、前記ガイド部材から噴出するイオン風に対向し当該イオン風を拡散可能な拡散部材(例えば、図E4におけるスプリッター145-4)を更に有していてもよい。
One aspect of the present invention is:
An electrode pair having a discharge electrode (for example, discharge electrode 120-4 in FIG. 1) and a counter electrode (for example, counter electrode 130-4 in FIG. 1) is provided, and between the discharge electrode and the counter electrode A device that generates a potential difference to generate ions, ozone, and ion wind by corona discharge, and can guide at least part of the introduced ions, ozone, and ion wind to the outside (for example, FIG. 1). Comprising a guide member 140-4)
The guide member includes an annular opening serving as an intake port (for example, an intake opening 142-4 in FIG. 1), and an annular narrow portion (for example, the jet port 141 in FIG. 1) in which the inner diameter of the guide member is minimized. -4), a reduced diameter portion (for example, a reduced diameter portion 140r-4 in FIG. 1) in which the inner diameter of the guide member decreases from the opening side toward the narrowed portion, and the reduced diameter portion. A cylindrical member having an internal space,
The counter electrode is an annular electrode;
Ion, ozone, or ion wind in which the ring diameter (outer ring diameter) R 1 of the counter electrode, the ring diameter R B of the opening, and the ring diameter R A of the constriction are R B > R A > R 1 Generator.
Here, the discharge electrode may be a needle electrode.
Further, the needle axis of the discharge electrode, the ring axis of the opening, and the ring axis of the constricted part may substantially coincide.
Further, the guide member may not have a cylindrical side opening.
Further, the guide member may have a frustum shape or a trumpet shape.
In addition, the guide member further includes an enlarged diameter portion (for example, an enlarged diameter portion 140S-4 in FIG. E3) in which the inner diameter of the guide member increases from the narrowed portion toward a side different from the opening. It may be.
Furthermore, a diffusion member (for example, a splitter 145-4 in FIG. E4) that can diffuse the ion wind opposed to the ion wind ejected from the guide member may be further included.
 本発明の二の形態は、
 針状の放電電極(例えば、図3における放電電極120-5)と、対向電極(例えば、図3における対向電極130-5)と、を有する電極対を備え、前記放電電極と前記対向電極との間に電位差を発生させてコロナ放電によりイオン、オゾン及びイオン風を発生させるよう構成されており、
 前記対向電極は、吸気口となる環状の開口部(例えば、図3における吸気開口部130β-5)と、当該対向電極の内径が最小となる環状の狭窄部(例えば、図3における噴出口130α-5)と、当該開口部側から当該狭窄部へ向かって当該対向電極の内径が縮径する縮径部(例えば、図3における縮径部130r-5)と、当該縮径部により形成されるイオン風が通過可能な内部空間を有する筒状であり、且つ、錐台状又はラッパ状の構造体であり、
 前記狭窄部は、前記イオン風が通過可能に開口されており、
 前記開口部の径Rβ及び前記狭窄部の径Rαが、Rβ>Rαであり、
 前記放電電極は、前記狭窄部の存在する面を貫通しない状態で前記内部空間に挿入され、前記対向電極の内壁面及び前記狭窄部と対向し得るよう構成されている、イオン、オゾン又はイオン風発生装置である。
 ここで、前記放電電極の針軸と、前記対向電極の筒軸と、が略一致してもよい。
 また、前記対向電極は、筒側部が開口されていなくともよい。
 更に、前記対向電極は、前記狭窄部から前記開口部とは異なる側へ向かって当該対向電極の内径が拡径する拡径部を更に有してもよい。
Two aspects of the present invention are:
An electrode pair having a needle-like discharge electrode (for example, discharge electrode 120-5 in FIG. 3) and a counter electrode (for example, counter electrode 130-5 in FIG. 3), and the discharge electrode, the counter electrode, Is configured to generate ions, ozone and ionic wind by corona discharge by generating a potential difference between
The counter electrode includes an annular opening serving as an intake port (for example, an intake opening 130β-5 in FIG. 3) and an annular constriction portion (for example, the spout 130α in FIG. 3) having the smallest inner diameter of the counter electrode. -5), a reduced diameter portion (for example, reduced diameter portion 130r-5 in FIG. 3) in which the inner diameter of the counter electrode decreases from the opening side toward the narrowed portion, and the reduced diameter portion. A cylindrical shape having an internal space through which the ion wind can pass, and a frustum-shaped or trumpet-shaped structure,
The constriction is opened to allow the ion wind to pass through,
The diameter R β of the opening and the diameter R α of the constriction are R β > R α ,
The discharge electrode is inserted into the internal space without penetrating the surface on which the constriction exists, and is configured to be opposed to the inner wall surface of the counter electrode and the constriction. Generator.
Here, the needle axis of the discharge electrode and the cylinder axis of the counter electrode may substantially coincide.
Further, the counter electrode may not have an open cylindrical side.
Furthermore, the counter electrode may further include a diameter-enlarged portion in which the inner diameter of the counter electrode increases from the narrowed portion toward a side different from the opening.
 ここで本明細書において用いられる各用語について説明する。「殺菌・消臭対象物」とは、菌の繁殖するもの又は悪臭を放つものであれば、特に限定されないが、例えば、生鮮食品等の生ゴミ、糞尿、オムツ等の汚物、貯水された水等の具体例が挙げられる。「殺菌・消臭対象物の配された空間」とは、前記殺菌・消臭対象物が配さていれば特に限定されないが、例えば、気密性の高いボックス、より具体的には、生ゴミやオムツ等の汚物入れ、気密性の高い冷凍・冷蔵装置付のコンテナ及び冷凍・冷蔵装置付車両・等が挙げられる。「環状」とは、中心部が開口した、直線及び/又は曲線で構成される閉曲面を広く示し、特には、三角形以上(好適には六角形以上)の多角形又は円形(楕円形を含む。)・もしくは概ね円形状であることが望ましい。「渦状」とは、例えば、三角形以上(好適には六角形以上)の多角形又は円形(楕円形を含む。)・もしくは概ね円形状であって、中心に向かって渦巻くものを指し、渦巻きの態様(例えば、巻き数や巻き幅、或いは、終点の有無)には特に限定されない。「平面状」とは、一般的に平面とみなせる程度に、環状電極において環内の総面積に対して、厚みが小さい電極を意味する。より具体的には、特に限定されないが、[厚み(mm)]/[環内総面積(cm)]が、1.5以下であることが好適であり、1以下であることが好適であり、0.8以下であることがより好適である。下限値は、特に限定されないが、例えば、0.0001である。尚、歪(平面に対するゆがみ)は、厚み程度まであってもよい。更に具体的には、後述の主環状対向電極においては、総面積は7cm、厚み7mm以下、歪みにおいても7mm以下であることがより好適である。ある平面状と別の平面状とが「同一平面」であるとは、ある平面状と別の平面状との距離が一般的に同一平面だとみなせる程度である。例えば、ある平面状と別の平面状とを側面から見た場合に、ある平面状と別の平面状とが平行であり、且つ、厚さが重なっている部分が存在する場合等である。「前記針状電極の先端と主環状対向電極との最長距離」とは、針状電極の先端と、主環状対向電極の環の内端であって厚み方向で最も近い部分との距離において、最も長い距離を意味する。「前記針状電極の先端と副環状対向電極との最短距離」とは、針状電極の先端と、副環状対向電極の環の内端であって厚み方向で最も近い部分との距離において、最も短い距離を意味する。「主イオン風」とは、主環状対向電極の中心の開口部から発せられるイオン風を意味する。「副イオン風」とは、副環状対向電極から発せられるイオン風を意味する。「電極対の間に電位差を発生」とは、例えば、針状電極に電圧を印加し、対向電極をグランドとした場合に生じる電位差を挙げることができ、その場合、針状電極の極性(陽極、陰極)については特に限定されない。また、部材が筒状であるとは、部材が内部空間を有し、当該内部空間と外部の空間とが流体導通可能なように、二つ以上の開口部が設けられた状態を示す。従って、筒を構成する壁面の厚みや筒の軸方向の長さ等は特に限定されない(例えば、平板状の部材の一部に貫通孔を設けた態様も含み得る)。 Here, each term used in this specification is explained. The “sterilization / deodorization target” is not particularly limited as long as it propagates bacteria or emits a foul odor. For example, raw food such as fresh food, sewage such as manure and diapers, and stored water Specific examples are given. The “space in which the object to be sterilized / deodorized is arranged” is not particularly limited as long as the object to be sterilized / deodorized is arranged. For example, a highly airtight box, more specifically, garbage or Dirty containers such as diapers, highly airtight containers with refrigeration / refrigeration equipment, and vehicles with refrigeration / refrigeration equipment. “Annular” broadly indicates a closed curved surface composed of a straight line and / or a curve having an open center, and in particular, a polygon or circle (preferably a hexagon or more) of a triangle or more (including an ellipse) .) ・ Or, it is desirable to have a generally circular shape. “Vortex” means, for example, a polygon or circle (preferably hexagon or more) or a circle (including an ellipse) or a substantially circular shape that spirals toward the center. There is no particular limitation on the mode (for example, the number of windings, the winding width, or the presence or absence of an end point). The term “planar” means an electrode having a small thickness with respect to the total area in the ring electrode in such a manner that it can be generally regarded as a plane. More specifically, although not particularly limited, [thickness (mm)] / [total area in the ring (cm 2 )] is preferably 1.5 or less, and is preferably 1 or less. It is more preferable that it is 0.8 or less. Although a lower limit is not specifically limited, For example, it is 0.0001. The strain (distortion with respect to the plane) may be up to about the thickness. More specifically, the main annular counter electrode described later preferably has a total area of 7 cm 2 , a thickness of 7 mm or less, and a strain of 7 mm or less. A plane and another plane are “same plane” means that the distance between a plane and another plane is generally regarded as the same plane. For example, when a certain planar shape and another planar shape are viewed from the side, a certain planar shape and another planar shape are parallel to each other, and there are portions where the thicknesses overlap. `` The longest distance between the tip of the needle-like electrode and the main annular counter electrode '' is the distance between the tip of the needle-like electrode and the inner end of the ring of the main annular counter electrode and the closest part in the thickness direction, It means the longest distance. `` The shortest distance between the tip of the needle-like electrode and the sub-annular counter electrode '' is the distance between the tip of the needle-like electrode and the inner end of the ring of the sub-annular counter electrode and the closest part in the thickness direction, Means the shortest distance. “Main ion wind” means an ion wind emitted from the central opening of the main annular counter electrode. The “subionic wind” means an ionic wind emitted from the sub annular counter electrode. “Generating a potential difference between electrode pairs” can include, for example, a potential difference that occurs when a voltage is applied to the needle electrode and the counter electrode is grounded. In this case, the polarity of the needle electrode (anode , Cathode) is not particularly limited. Moreover, a member having a cylindrical shape indicates a state in which the member has an internal space and two or more openings are provided so that the internal space and the external space can conduct fluid. Therefore, the thickness of the wall surface constituting the cylinder, the axial length of the cylinder, and the like are not particularly limited (for example, a mode in which a through hole is provided in a part of a flat plate-like member may be included).
 本発明によれば、イオンを広範囲に送達可能であり、噴出口近傍のオゾン濃度の低いイオン風発生装置を提供可能である。 According to the present invention, it is possible to provide an ion wind generating device capable of delivering ions over a wide range and having a low ozone concentration in the vicinity of the jet nozzle.
図1(a)は、本発明の一の形態(第4実施形態)に係るイオン・オゾン風発生装置100‐4の概念断面図であり、図1(b)は、当該装置100‐4の概念斜視図である。FIG. 1 (a) is a conceptual cross-sectional view of an ion / ozone wind generator 100-4 according to one embodiment (fourth embodiment) of the present invention, and FIG. 1 (b) shows the device 100-4. It is a conceptual perspective view. 図2(a)は、本発明の一の形態(第4実施形態)に係るイオン・オゾン風発生装置100‐4のイオン風の噴出に係る作用図であり、図2(b)は、従来技術に係るイオン・オゾン風発生装置のイオン風の噴出に係る作用図である。FIG. 2A is an operation diagram relating to the ejection of ion wind of the ion / ozone wind generator 100-4 according to one embodiment (fourth embodiment) of the present invention, and FIG. It is an effect | action figure which concerns on ejection of the ion wind of the ion ozone wind generator which concerns on a technique. 図3(a)は、本発明の二の形態(第5実施形態)に係るイオン・オゾン風発生装置100‐5の概念断面図であり、図2(b)は、当該装置100‐5の概念斜視図である。FIG. 3A is a conceptual cross-sectional view of an ion / ozone wind generator 100-5 according to the second embodiment (fifth embodiment) of the present invention, and FIG. It is a conceptual perspective view. 図4は、本発明の二の形態(第5実施形態)に係るイオン・オゾン風発生装置100‐5のイオン風の噴出に係る作用図である。FIG. 4 is an operation diagram relating to the ejection of ion wind of the ion / ozone wind generator 100-5 according to the second embodiment (fifth embodiment) of the present invention. 図A1(a)は、第1実施形態に係るイオン・オゾン風発生装置100の対向電極の概念正面図であり、図A1(b)は当該装置100の概念側面図である。FIG. A1 (a) is a conceptual front view of the counter electrode of the ion / ozone wind generating apparatus 100 according to the first embodiment, and FIG. A1 (b) is a conceptual side view of the apparatus 100. 図A2(a)は、最内部に位置する輪状電極131の断面を用いて、輪状電極131と針状電極120の先端部Pとの位置関係を示した図であり、図A2(b)は、輪状電極132と先端Pとの位置関係を示した図である。FIG. A2 (a) is a diagram showing the positional relationship between the ring-shaped electrode 131 and the tip portion P of the needle-shaped electrode 120 using a cross section of the ring-shaped electrode 131 located at the innermost part, and FIG. FIG. 4 is a diagram showing a positional relationship between a ring electrode 132 and a tip P. 図A3は、第1実施形態に係るイオン・オゾン風発生装置100の対向電極として使用可能な板状対向電極の概略図である。FIG. A3 is a schematic view of a plate-like counter electrode that can be used as the counter electrode of the ion / ozone wind generating apparatus 100 according to the first embodiment. 図B1は、別形態における、対向電極の概念図である。FIG. B1 is a conceptual diagram of a counter electrode in another embodiment. 図E1は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念断面図である。FIG. E1 is a conceptual cross-sectional view of an ion / ozone wind generator 100-4 according to the fourth embodiment. 図E2(a)は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念断面図であり、図E2(b)は、当該装置の概念斜視図である。FIG. E2 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment, and FIG. E2 (b) is a conceptual perspective view of the apparatus. 図E3(a)は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念断面図であり、図E3(b)は、当該装置の概念斜視図及び作用図である。FIG. E3 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment, and FIG. E3 (b) is a conceptual perspective view and operation diagram of the apparatus. 図E4(a)は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念断面図であり、図E4(b)は、当該装置の概念斜視図である。FIG. E4 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment, and FIG. E4 (b) is a conceptual perspective view of the apparatus. 図E5(a)は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念断面図であり、図E5(b)は、当該装置の概念斜視図である。Fig. E5 (a) is a conceptual cross-sectional view of an ion / ozone wind generator 100-4 according to the fourth embodiment, and Fig. E5 (b) is a conceptual perspective view of the device. 図E6(a)は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念断面図であり、図E6(b)は、当該装置の概念斜視図である。FIG. E6 (a) is a conceptual cross-sectional view of an ion / ozone wind generating apparatus 100-4 according to the fourth embodiment, and FIG. E6 (b) is a conceptual perspective view of the apparatus. 図E7(a)及び図E7(b)は、第4実施形態に係るイオン・オゾン風発生装置100‐4の概念斜視図である。FIG. E7 (a) and FIG. E7 (b) are conceptual perspective views of an ion / ozone wind generator 100-4 according to the fourth embodiment. 図F1は、第5実施形態に係るイオン・オゾン風発生装置100‐5の概念断面図である。FIG. F1 is a conceptual cross-sectional view of an ion / ozone wind generator 100-5 according to the fifth embodiment. 図F2(a)及び図F2(b)は、第5実施形態に係るイオン・オゾン風発生装置100‐5の概念断面図である。FIGS. F2 (a) and F2 (b) are conceptual cross-sectional views of an ion / ozone wind generator 100-5 according to the fifth embodiment. 図F3は、第5実施形態に係るイオン・オゾン風発生装置100‐5の概念斜視図である。FIG. F3 is a conceptual perspective view of an ion / ozone wind generator 100-5 according to the fifth embodiment.
 本発明に係るイオン・オゾン風発生装置の詳細を説明する前に、図1~図4を参照し、本発明に係るイオン・オゾン風発生装置(後述の第4実施形態及び第5実施形態に係るイオン・オゾン風発生装置)の概要を説明する。ここで、本発明はこれらに限定されるものではなく、例えば、本明細書中にて一例として挙げている実施形態や変更例は、特定のものに対して適用されると限定的に解すべきでなく、どのような組み合わせであってもよい。例えば、ある実施形態についての変更例は、別の実施形態の変更例であると理解すべきであり、また、ある変更例と別の変更例が独立して記載されていたとしても、当該ある変更例と当該別の変更例を組み合わせたものも記載されていると理解すべきである。更に、実施形態や変更例において示す具体的一例としての数値{例えば、後述する、放電電極や対向電極の径や長さ・厚さ、放電電極と対向電極との電圧差、放電電極と対向電極との離間距離、等}は、あくまで一例であり、各実施形態や変更例の趣旨を大きく逸脱しない限りにおいては、適宜変更してもよいものであると理解すべきである。 Before explaining the details of the ion / ozone wind generator according to the present invention, referring to FIGS. 1 to 4, the ion / ozone wind generator according to the present invention (the fourth and fifth embodiments described later) will be described. The outline of such an ion / ozone wind generator will be described. Here, the present invention is not limited to these examples. For example, the embodiments and modifications given as examples in this specification should be understood as being applied to specific ones. Any combination may be used. For example, it should be understood that a modification example of an embodiment is a modification example of another embodiment, and even if one modification example and another modification example are described independently, there is the modification example. It should be understood that a combination of the modified example and another modified example is also described. Further, numerical values as specific examples shown in the embodiments and modified examples {for example, the diameter and length / thickness of the discharge electrode and the counter electrode, the voltage difference between the discharge electrode and the counter electrode, the discharge electrode and the counter electrode, which will be described later, It is to be understood that the separation distance, etc. is merely an example, and may be appropriately changed as long as it does not significantly depart from the spirit of each embodiment or modification.
 まず、図1を参照しながら、本発明の一の形態(後述の第4実施形態)に係るイオン・オゾン風発生装置100-4の概要について説明する。 First, an outline of an ion / ozone wind generator 100-4 according to one embodiment (fourth embodiment described later) of the present invention will be described with reference to FIG.
 図1に示されるように、本形態に係るイオン・オゾン風発生装置100-4は、針状の放電電極120-4と環状の対向電極130-4とを備え、且つ、これらの電極間で発生したイオン風を導入可能な筒状のイオン風ガイド部材140-4(ガイド部材140-4)を備えている。より具体的には、ガイド部材140-4は、イオン風が噴出する開口部である噴出口141-4(狭窄部141-4)(本形態では、部材において最も断面積が狭い箇所となる狭窄部141-4が噴出口141-4でもある。)と、当該噴出口141-4よりも径(環径)が大きい、吸気口となる吸気開口部142-4と、吸気開口部142-4から噴出口141-4へ向かって縮径されている縮径部140r-4(傾斜部)と、を有する。このように、本形態においては、吸気開口部142-4の径(環径)が、対向電極130-4の径(環径)よりも大きく構成されている(例えば、ガイド部材140-4の中心軸方向で見た際に、噴出口141-4から対向電極130-4が環として視認し得るよう構成されている)ことを主な特徴とする。尚、具体的なイオン風の流路としては、対向電極130-4で発生したイオン風がガイド部材140-4の内部空間を通り、吸気開口部142-4側から噴出口141-4側へと移動し、噴出口141-4から噴出することとなる(イオン風発生の原理等は後述する)。尚、噴出口141-4(狭窄部141-4)及び吸気開口部142-4等は、ガイド部材140-4における各構成部(縁部)を指しているが、当該構成部(縁部)によって形成される空間を指す場合もある。 As shown in FIG. 1, an ion / ozone wind generator 100-4 according to this embodiment includes a needle-like discharge electrode 120-4 and an annular counter electrode 130-4, and a gap between these electrodes. A cylindrical ion wind guide member 140-4 (guide member 140-4) capable of introducing the generated ion wind is provided. More specifically, the guide member 140-4 has an outlet 141-4 (constriction 141-4) that is an opening through which ion wind is ejected (in this embodiment, the constriction that has the narrowest cross-sectional area in the member). Portion 141-4 is also the jet outlet 141-4), an intake opening 142-4 serving as an inlet having a larger diameter (ring diameter) than the jet outlet 141-4, and an intake opening 142-4 A diameter-reduced portion 140r-4 (inclined portion) that is reduced in diameter toward the ejection port 141-4. Thus, in this embodiment, the diameter (ring diameter) of the intake opening 142-4 is configured to be larger than the diameter (ring diameter) of the counter electrode 130-4 (for example, the guide member 140-4). The main feature is that, when viewed in the central axis direction, the counter electrode 130-4 can be visually recognized as a ring from the outlet 141-4. As a specific flow path of the ion wind, the ion wind generated by the counter electrode 130-4 passes through the internal space of the guide member 140-4 and goes from the intake opening 142-4 side to the jet outlet 141-4 side. And ejected from the ejection port 141-4 (the principle of ion wind generation will be described later). The jet outlet 141-4 (the constricted portion 141-4), the intake opening 142-4, and the like indicate each component (edge) in the guide member 140-4, but the component (edge). May also refer to the space formed by.
 次に、図2を参照しながら、本形態に係るイオン・オゾン風発生装置100-4の作用・効果について説明する。 Next, the operation and effect of the ion / ozone wind generator 100-4 according to this embodiment will be described with reference to FIG.
 従来のガイド部材を配したイオン・オゾン風発生装置としては、例えば、図2(b)に示すように、{対向電極に、噴出口側に向かって直線的に断面径が小さくなる(断面径が縮径する)形状を有する切頭円錐状のガイド部材140を設けた装置}が挙げられる。従来、このような切頭円錐状のガイド部材を配する理由は、ガイド部材内部でイオン風を集約することでイオン風の風力を増そうとするものであった。本形態に係るイオン・オゾン風発生装置100-4は、一見すると、このような従来型のイオン・オゾン風発生装置と類似しているように思われる。しかしながら、本形態に係るガイド部材140-4は、従来のガイド部材140とは異なる概念に基づき創作されたものである。 As an ion / ozone wind generator having a conventional guide member, for example, as shown in FIG. 2 (b), {the counter electrode has a cross-sectional diameter that decreases linearly toward the spout side (cross-sectional diameter). A device provided with a truncated conical guide member 140 having a shape). Conventionally, the reason why such a truncated conical guide member is arranged is to increase the ion wind by concentrating the ion wind inside the guide member. At first glance, the ion / ozone wind generator 100-4 according to the present embodiment seems to be similar to such a conventional ion / ozone wind generator. However, the guide member 140-4 according to the present embodiment is created based on a concept different from that of the conventional guide member 140.
 具体的には、本発明者は、ガイド部材の形状を様々に変更し実験を行った結果、ガイド部材140-4の噴出口141-4の形状を大きくする(噴出口141-4の環径を、対向電極130-4の環径よりも大きく設計する)ことで、図2(a)に示すように、ガイド部材がイオン風を集約するのではなくむしろ拡散する方向に機能する(発生するイオン風が拡散する)ことを見出した。このような本形態に係る効果の原理に関しては、本発明者は下記のように予想している。 Specifically, as a result of experiments conducted by changing the shape of the guide member in various ways, the present inventor increases the shape of the outlet 141-4 of the guide member 140-4 (the diameter of the outlet 141-4). Is designed to be larger than the ring diameter of the counter electrode 130-4), as shown in FIG. 2 (a), the guide member functions (occurs) in the direction of diffusing rather than concentrating the ion wind. Ion wind diffused. Regarding the principle of the effect according to the present embodiment, the present inventor predicts as follows.
 本形態に係るイオン・オゾン風発生装置100-4によれば、噴出口141-4の環径を対向電極130-4の環径よりも大きく構成することにより、放電電極120-4と対向電極130-4との間で発生したイオン風は、ガイド部材140-4の噴出口141-4付近まで、対向電極130-4の形状(環形)にある程度沿った形で前面に押し出されると考えられる{尚、図2(b)はイオン・オゾン風発生装置100-4の断面概念図であり、放電電極120-4の放電点120x-4と、対向電極130-4における受電点130x-4及び受電点130y-4と、において放電が行われている様を点線矢印で示しているが、対向電極130-4は放電点が連続して形成されているため、放電電極120-4から対向電極130-4のエッジ部全体に対して放電が行わる}。この場合、イオン風が通過し易い部分(対向電極130-4の環軸方向で投影した際に、噴出口141-4の影に対して対向電極130-4に該当する領域)と、イオン風が通過し難い部分(対向電極130-4の環軸方向で投影した際に、噴出口141-4から対向電極130-4を型抜きした部分に該当する領域)との間で、気圧が不均一なものとなる。そのため、イオン風とは別に、吸気開口部142-4からガイド部材140-4の内壁面に沿って噴出口141-4側へと向かう風(上記イオン風が通過し難い部分を通過する風)が生じる。その結果、噴出口141-4にて噴出口141-4の外周方向にイオン風を引張する乱流が発生し、イオン風を巻きこんでイオン風を拡散させるものと考えられる。更に、本形態によれば、ガイド部材140-4と、対向電極にて発生したイオン風との間の距離が離れ易いよう構成されているため、噴出口141-4に至るまでにイオン風がガイド部材140-4と接触し難くなり(更には、上記イオン風が通過し難い部分を通過する風が、イオン風自体を保護し)、ガイド部材140-4内部におけるイオン風の減衰が抑制されると考えらえる(更には、ガイド部材140-4と接触され難い状態のまま、イオン風がガイド部材140-4の内壁に沿った形で集約される)。その結果、噴出口141-4まで十分な風量の(十分なイオンを含む)イオン風が到達し、さらにそのイオン風が噴出口141-4にて拡散されるため、噴出口141-4近傍でのオゾン濃度を低めつつも、イオンを広範囲に送達させることが可能となる。尚、イオン風と、吸気開口部142-4側から流入する風とで、イオンの濃度が異なることも、イオン風を拡散させる乱流の発生に関与し、イオン風の拡散効果をより高めている可能性がある。 According to the ion / ozone wind generating apparatus 100-4 according to the present embodiment, the discharge electrode 120-4 and the counter electrode are arranged by making the ring diameter of the jet nozzle 141-4 larger than the ring diameter of the counter electrode 130-4. It is considered that the ion wind generated with respect to 130-4 is pushed forward to the vicinity of the jet outlet 141-4 of the guide member 140-4 in a form that conforms to the shape (annular shape) of the counter electrode 130-4 to some extent. {FIG. 2 (b) is a conceptual cross-sectional view of the ion / ozone wind generator 100-4, where the discharge point 120x-4 of the discharge electrode 120-4, the power reception point 130x-4 of the counter electrode 130-4, and The dotted line arrow indicates that the discharge is performed at the power receiving point 130y-4. However, since the discharge point of the counter electrode 130-4 is continuously formed, the discharge electrode 120-4 is connected to the counter electrode. 130- Discharge for the entire edge portion Okonawaru}. In this case, a portion through which the ion wind easily passes (a region corresponding to the counter electrode 130-4 with respect to the shadow of the ejection port 141-4 when projected in the ring axis direction of the counter electrode 130-4), and the ion wind Is difficult to pass through (a region corresponding to a portion in which the counter electrode 130-4 is cut out from the jet outlet 141-4 when projected in the ring axis direction of the counter electrode 130-4). It will be uniform. For this reason, apart from the ion wind, the wind from the intake opening 142-4 toward the jet outlet 141-4 along the inner wall surface of the guide member 140-4 (the wind that passes through the portion where the ion wind is difficult to pass) Occurs. As a result, it is considered that a turbulent flow that pulls the ion wind in the outer circumferential direction of the jet nozzle 141-4 is generated at the jet nozzle 141-4, and the ion wind is involved to diffuse the ion wind. Furthermore, according to the present embodiment, since the distance between the guide member 140-4 and the ion wind generated at the counter electrode is easily separated, the ion wind reaches the jet outlet 141-4. It becomes difficult to come into contact with the guide member 140-4 (further, the wind passing through the portion where the ionic wind is difficult to pass protects the ionic wind itself), and attenuation of the ionic wind inside the guide member 140-4 is suppressed. (Furthermore, the ion wind is gathered along the inner wall of the guide member 140-4 while remaining in a state of being difficult to contact the guide member 140-4). As a result, an ion wind having a sufficient air volume (including sufficient ions) reaches the jet nozzle 141-4, and the ion wind is diffused at the jet nozzle 141-4. It is possible to deliver ions over a wide range while reducing the ozone concentration. It should be noted that the difference in ion concentration between the ion wind and the wind flowing in from the intake opening 142-4 is also involved in the generation of turbulent flow that diffuses the ion wind, further enhancing the ion wind diffusion effect. There is a possibility.
 他方、図2(b)に係る従来の装置のように、ガイド部材140の噴出口141の環径を、対向電極の環径と同等又はそれ以下とした場合、吸気口を通過する風(対向電極の外側から回り込む風)が、ガイド部材140内部でイオン風に合流する。その結果、全体として一体となった風が噴出口141から噴出するため、上記のような、イオン風を噴出口141の外周方向に引張する乱流が生じ難いものと考えられる(その結果、噴出口141近傍でのオゾン濃度が高いままとなる)。また、ガイド部材140とイオン風が接触し易いため、ガイド部材140内部でイオン風の減衰が生じてしまう結果、発生するイオン風が風力に乏しい場合があり、イオン(イオン風)を広範囲に送達させ難くなる。 On the other hand, when the ring diameter of the jet nozzle 141 of the guide member 140 is equal to or less than the ring diameter of the counter electrode, as in the conventional apparatus shown in FIG. The wind that wraps around from the outside of the electrode joins the ion wind inside the guide member 140. As a result, since the integrated wind is ejected from the jet outlet 141 as a whole, it is considered that the turbulent flow that pulls the ion wind in the outer peripheral direction of the jet outlet 141 is unlikely to occur (as a result, the jet The ozone concentration in the vicinity of the outlet 141 remains high). In addition, since the guide member 140 and the ion wind are easily in contact with each other, the ion wind is attenuated inside the guide member 140. As a result, the generated ion wind may be poor in wind power, and ions (ion wind) are delivered over a wide range. It becomes difficult to let you.
 このように、本形態に係るイオン・オゾン風発生装置100-4は、ガイド部材140-4の形状を変更することで、送風機等を別途設けずに効率のよい拡散を行い、対象空間に送達されるイオン量を維持(イオンを広範囲に送風)しつつも、噴出口141-4の近傍でのオゾン濃度を低めるものである。 As described above, the ion / ozone wind generating apparatus 100-4 according to the present embodiment changes the shape of the guide member 140-4 to perform efficient diffusion without separately providing a blower or the like and deliver it to the target space. The ozone concentration in the vicinity of the jet nozzle 141-4 is lowered while maintaining the amount of ions to be generated (the ions are blown over a wide range).
 次に、図3を参照しながら、本発明の二の形態(後述の第5実施形態)に係るイオン・オゾン風発生装置100-5の概要について説明する。 Next, an outline of an ion / ozone wind generator 100-5 according to a second embodiment (a fifth embodiment to be described later) of the present invention will be described with reference to FIG.
 図3に示されるように、本形態に係るイオン・オゾン風発生装置100-5は、内部空間を有する筒状の対向電極130-5と、対向電極130-5の内部空間に一部(先端)が挿入された状態である、針状の放電電極120-5と、を備える。より具体的には、対向電極130-5は、イオン風が噴出する開口部である噴出口130α-5(狭窄部130α-5)(本形態では、部材において最も断面積が狭い箇所となる狭窄部130α-5が噴出口130α-5でもある)と、噴出口130α-5よりも径(環径)が大きい、吸気口となる吸気開口部130β-5と、吸気開口部130β-5から噴出口130α-5へ向かって縮径されている縮径部130r-5(傾斜部)と、を有する。このように、本形態においては、吸気開口部130β-5の径(環径)が、噴出口130α-5の径(環径)よりも大きく構成されていることを主な特徴とする。尚、噴出口130α-5や吸気開口部130β-5等は、対向電極130-5における各構成部(縁部)を指しているが、当該構成部(縁部)によって形成される空間を指す場合もある。 As shown in FIG. 3, an ion / ozone wind generator 100-5 according to this embodiment includes a cylindrical counter electrode 130-5 having an internal space, and a part of the internal space of the counter electrode 130-5 (front end). ) In a state of being inserted into the needle-shaped discharge electrode 120-5. More specifically, the counter electrode 130-5 has an outlet 130α-5 (constriction 130α-5) that is an opening through which ion wind is ejected (in this embodiment, the constriction that has the narrowest cross-sectional area in the member). Portion 130α-5 is also the outlet 130α-5), an intake opening 130β-5 serving as an intake port having a larger diameter (ring diameter) than the outlet 130α-5, and an injection from the intake opening 130β-5 A reduced diameter portion 130r-5 (inclined portion) that is reduced in diameter toward the outlet 130α-5. As described above, the main feature of the present embodiment is that the diameter (ring diameter) of the intake opening 130β-5 is larger than the diameter (ring diameter) of the jet outlet 130α-5. The jet outlet 130α-5, the intake opening 130β-5, and the like indicate each component (edge) in the counter electrode 130-5, but indicate a space formed by the component (edge). In some cases.
 次に、図4を参照しながら、上述の構造を有するイオン・オゾン風発生装置100-5の作用・効果について説明する。 Next, the action and effect of the ion / ozone wind generator 100-5 having the above-described structure will be described with reference to FIG.
 本形態に係るイオン・オゾン風発生装置100-5は、上述のような構造となっているので、図4に示すように、放電電極120-5と、対向電極130-5の内壁面全体と、の間で放電が行われる(尚、本形態においてはその端となる針の先端からの放電が主に行われるが、針の先端以外も放電点となり得るため、図4においては放電電極120-5の放電点が針の先端のみではないように模式的に描写されている)。より詳細には、対向電極130-5の内壁面及びエッジ部と放電電極120-5(特に、放電電極120-5の先端)との距離が、吸気開口部130β-5から噴出口130α-5に亘ってある程度保持されることから、対向電極130-5のエッジ部のみでの局所的な放電とならずに、対向電極130-5の内壁面全体という広い面積において分散的且つ安定的に繰り返し放電(面放電)が行われる。その結果、局部的な放電が減少し、発生するイオン風中に含まれるオゾン濃度を低減させることが可能となる。更には、対向電極130-5は、吸気開口部130β-5側から噴出口130α-5に向かって徐々に断面積が小さくなる形状となっているので、吸気開口部130β-5付近で生じたイオンを含め、対向電極130-5内部で発生したイオン(イオン風)が、噴出口130α-5付近まで確実に誘導されることとなる。その結果、イオン濃度が高くトルクのあるイオン風が噴出するのである。 Since the ion / ozone wind generator 100-5 according to this embodiment has the above-described structure, as shown in FIG. 4, the discharge electrode 120-5 and the entire inner wall surface of the counter electrode 130-5 (In this embodiment, discharge is mainly performed from the tip of the needle serving as the end thereof. However, since the discharge point can be other than the tip of the needle, the discharge electrode 120 in FIG. The -5 discharge point is schematically depicted so that it is not just the tip of the needle). More specifically, the distance between the inner wall surface and edge portion of the counter electrode 130-5 and the discharge electrode 120-5 (particularly, the tip of the discharge electrode 120-5) is determined from the intake opening 130β-5 and the jet outlet 130α-5. Therefore, the discharge is not locally generated only at the edge portion of the counter electrode 130-5, but is dispersedly and stably repeated over a wide area of the entire inner wall surface of the counter electrode 130-5. Discharge (surface discharge) is performed. As a result, local discharge is reduced, and the ozone concentration contained in the generated ion wind can be reduced. Furthermore, since the counter electrode 130-5 has a shape in which the cross-sectional area gradually decreases from the intake opening 130β-5 side toward the jet outlet 130α-5, the counter electrode 130-5 occurs in the vicinity of the intake opening 130β-5. The ions (ion wind) generated inside the counter electrode 130-5 including the ions are surely guided to the vicinity of the jet outlet 130α-5. As a result, an ion wind having a high ion concentration and torque is ejected.
 他方、単なる円筒状の対向電極と、当該筒状の入口に対向する放電電極と、を設けた従来のイオン・オゾン風発生装置の場合には、そのエッジ部(放電電極と対向する筒の端部)にて局部的な放電が行われ易い結果、オゾン濃度が高められたイオン風が発生する場合がある。更には、対向電極から発生したイオン風が、対向電極の内壁面とイオン風の反作用の影響によって減速されてしまい、対向電極内部にイオン風が滞留し易くなる。その結果、筒状電極から噴出するイオン風は、オゾン濃度が高い一方でイオン風の風力が十分ではない(周囲に拡散可能な程度の風力を持たない)場合があった。 On the other hand, in the case of a conventional ion / ozone wind generator provided with a simple cylindrical counter electrode and a discharge electrode facing the cylindrical inlet, its edge (the end of the cylinder facing the discharge electrode). As a result of local discharge being easily performed at (1), an ion wind with an increased ozone concentration may occur. Furthermore, the ion wind generated from the counter electrode is decelerated due to the reaction between the inner wall surface of the counter electrode and the ion wind, and the ion wind tends to stay inside the counter electrode. As a result, the ion wind ejected from the cylindrical electrode has a high ozone concentration, but the ion wind force is not sufficient (does not have wind force enough to diffuse around).
 このように、本形態に係るイオン・オゾン風発生装置100-5は、対向電極130-5と放電電極120-5との対向関係に着目した上で対向電極130-5の形状を設計することで、オゾンの発生量自体を抑え、且つ、トルクのあるイオン風を生じさせるものである。 As described above, the ion / ozone wind generator 100-5 according to the present embodiment designs the shape of the counter electrode 130-5 while paying attention to the facing relationship between the counter electrode 130-5 and the discharge electrode 120-5. Thus, the ozone generation amount itself is suppressed, and an ion wind with torque is generated.
 本発明に係るイオン・オゾン風発生装置は前述したような構成(イオン・オゾン風発生装置100-4及びイオン・オゾン風発生装置100-5)が例として挙げられるが、このような構成に至るまで様々な態様のイオン・オゾン風発生装置が創作された。以下、そのような一例を第1実施形態とし、第1実施形態に係るイオン・オゾン風発生装置について詳述することで、まずイオン風が発生する原理的な説明を行い、そのようなイオン・オゾン風発生装置の創作において見出された各種理論に基づき工夫を重ねた上で創作するに到った、本発明に係るイオン・オゾン風発生装置(イオン・オゾン風発生装置100-4及びイオン・オゾン風発生装置100-5)並びにその周辺技術となる他の構成について、第4実施形態及び第5実施形態にて順次詳述していくこととする。 Examples of the ion / ozone wind generator according to the present invention include the above-described configurations (ion / ozone wind generator 100-4 and ion / ozone wind generator 100-5). Various ion / ozone wind generators have been created. Hereinafter, such an example will be referred to as the first embodiment, and the ion / ozone wind generator according to the first embodiment will be described in detail to first explain the principle that ion wind is generated. The ion / ozone wind generator (ion / ozone wind generator 100-4 and ion) according to the present invention, which has been created after repeated efforts based on various theories found in the creation of the ozone wind generator, The ozone wind generator 100-5) and other components that serve as peripheral technology will be described in detail in the fourth and fifth embodiments.
≪第1実施形態≫
 まず、本実施形態に係るイオン・オゾン風発生装置は、針状電極と対向電極とを有する電極対を有し、前記針状電極と前記対向電極との間に電位差を発生させてコロナ放電によりイオン、オゾン及びイオン風を発生させる。また、本実施形態に係るイオン・オゾン風発生装置は、前記対向電極が平面状の主環状対向電極と、前記主環状対向電極を取り囲む平面状の副環状対向電極とを有し、前記針状電極の先端と前記主環状対向電極の最長距離が、前記針状電極の先端と前記副環状対向電極の最短距離よりも短いことを特徴とする。
<< First Embodiment >>
First, the ion / ozone wind generator according to the present embodiment has an electrode pair having a needle-like electrode and a counter electrode, generates a potential difference between the needle-like electrode and the counter electrode, and generates corona discharge. Generates ions, ozone and ionic wind. Further, the ion / ozone wind generating apparatus according to the present embodiment includes a main annular counter electrode having a planar shape and a sub-annular counter electrode having a planar shape surrounding the main annular counter electrode. The longest distance between the tip of the electrode and the main annular counter electrode is shorter than the shortest distance between the tip of the needle electrode and the sub annular counter electrode.
 当該構成により大風量のイオン風が得られる。単なる筒状あるいは一つの平面円形の対向電極の場合、放電は最短距離にある対極の筒状電極内側や平面円形電極の内側に沿ってドーナツ状に放電しドーナツ型イオン風が発生するので、イオン風中心のドーナツ中心部は無風状態である。したがって発したイオン風が無風中心部を誘風するエネルギーを使うロスがある結果、イオン風は弱くなる。本実施形態のように主環状対向電極と、副環状対向電極を設けることにより当該問題は解決される。 This configuration provides a large volume of ionic wind. In the case of a mere cylindrical or one flat circular counter electrode, the discharge discharges in a donut shape along the inner side of the cylindrical electrode of the counter electrode at the shortest distance or the inner side of the flat circular electrode, and a donut ion wind is generated. The center of the donut is windless. Therefore, the ionic wind becomes weak as a result of the loss that uses the energy that the generated ionic wind induces the windless center. The problem is solved by providing the main annular counter electrode and the sub annular counter electrode as in this embodiment.
 本実施形態に係るイオン・オゾン風発生装置は、針状電極と対向電極とを有する電極対を有し、前記針状電極と前記対向電極の間に電位差を発生させてコロナ放電によりイオン・オゾン、及びイオン風を発生させる。尚、イオン風は、一般的に、コロナ放電時に針状電極から放出されるイオンが対向電極へ向かって泳動する間に空気分子との衝突を繰り返すことで、針状電極から対向電極に向かって生じる空気流であるとされている。すなわち、放電時に発生するイオンの流れ方向に従って発生する気流である。以下、本実施形態に係るイオン・オゾン風発生装置の詳細な構造について説明する。 The ion / ozone wind generator according to this embodiment has an electrode pair having a needle electrode and a counter electrode, generates a potential difference between the needle electrode and the counter electrode, and generates ion / ozone by corona discharge. And an ionic wind is generated. In general, an ion wind is generated by repeatedly colliding with air molecules while ions emitted from the needle electrode during the corona discharge migrate toward the counter electrode, so that the needle winds from the needle electrode toward the counter electrode. It is said that the resulting air flow. That is, it is an air flow generated according to the flow direction of ions generated during discharge. Hereinafter, the detailed structure of the ion / ozone wind generator according to the present embodiment will be described.
 本実施形態に係るイオン・オゾン風発生装置の概略構造を、図A1に示した。ここで、図A1(a)は当該装置の対向電極の概念正面図であり、図A1(b)はイオン・オゾン風発生装置100の概念側面図である。本形態に係るイオン・オゾン風発生装置100は、針状電極120と対向電極130とを有する電極対110を有する。ここで、対向電極130は、針状電極120の延長線軸上に配された最内部に位置する円形環状電極131と、当該電極と同軸上に配された半径の異なる外側円形環状電極132を有する。すなわち、これらの環状電極は、環状平面に対して垂直であり、且つ、当該環の重心(円中心)を通る軸上に位置するように配されている。環状の対向電極の中でもこのように円形形状を有する対向電極を使用することにより、針状対向電極の先端から、対向電極の各所との距離が概ね等しくなるため、放電ムラが少なくなる。また、このように針状電極が環の軸上に配されていることにより、特に主環状対向電極から発生するイオン風が強くなる。 Schematic structure of the ion / ozone wind generating apparatus according to the present embodiment is shown in FIG. A1. Here, FIG. A1 (a) is a conceptual front view of the counter electrode of the apparatus, and FIG. A1 (b) is a conceptual side view of the ion / ozone wind generating apparatus 100. The ion / ozone wind generator 100 according to this embodiment includes an electrode pair 110 having a needle electrode 120 and a counter electrode 130. Here, the counter electrode 130 includes a circular annular electrode 131 located on the innermost side disposed on the extension line axis of the needle-like electrode 120, and an outer circular annular electrode 132 having a different radius arranged coaxially with the electrode. . That is, these annular electrodes are disposed so as to be perpendicular to the annular plane and to be positioned on an axis passing through the center of gravity (circular center) of the ring. By using the counter electrode having such a circular shape among the annular counter electrodes, the distance from the tip of the needle-like counter electrode to each part of the counter electrode becomes substantially equal, so that discharge unevenness is reduced. In addition, since the needle-like electrodes are arranged on the axis of the ring in this way, the ionic wind generated from the main annular counter electrode is particularly strong.
 これらの環状電極131及び132は、ブリッジ139等の連結部材により通電可能に架橋されていることが好適であり、このように構成することにより、各環状電極を等電位にすることができると共に、これらの電極の位置関係を調整しやすくなる。例えば、波状部材で連結した場合、主環状対向電極と、副環状対向電極の間に略三角形の形状を有する部分が形成されてしまうため、コロナ放電にムラが発生してイオン風が大量に前方に押し出されなくなる。そのため、イオン風発生の邪魔にならないように、連結部材と副環状対向電極との接続部と、連結部材と主環状対向電極との接続部を結ぶ概念直線が前記主環状対向電極の重心を通過するように連結部材を配することが好適である。このように連結することにより、放電ムラに起因する、イオン風の発生ムラが生じにくくなる。 These annular electrodes 131 and 132 are preferably bridged so as to be energized by a connecting member such as a bridge 139. With this configuration, each annular electrode can be made equipotential, It becomes easy to adjust the positional relationship between these electrodes. For example, when connected by a corrugated member, a portion having a substantially triangular shape is formed between the main annular counter electrode and the sub-annular counter electrode, so that unevenness occurs in corona discharge and a large amount of ion wind is forward. Will not be pushed out. Therefore, a conceptual straight line connecting the connecting portion between the connecting member and the secondary annular counter electrode and the connecting portion between the connecting member and the main annular counter electrode passes through the center of gravity of the main annular counter electrode so as not to interfere with the generation of ion wind. It is preferable to arrange the connecting members as described above. By connecting in this way, the generation unevenness of the ionic wind due to the discharge unevenness is less likely to occur.
 対向電極を構成する主環状対向電極及び副環状対向電極は、同一平面内に配されていることが好適である。主環状対向電極より副環状対向電極の放電効率を徐々に弱くしているのは距離であるため、同一平面に配することにより当該距離の変化をつけやすくなるため好適である。 It is preferable that the main annular counter electrode and the sub annular counter electrode constituting the counter electrode are arranged in the same plane. Since it is the distance that makes the discharge efficiency of the sub-annular counter electrode gradually weaker than that of the main annular counter electrode, it is preferable to arrange the same on the same plane because the distance can be easily changed.
 なお、針状電極120と対向電極130は、それぞれ電圧印加手段又はグランドに接続されており、使用時には当該電極間に電位差を発生させて放電が行なわれる。ここで、針状電極120の先端部Pと最内部の主環状対向電極131との位置関係が、最もイオン風を発するのに適した位置関係にあることが好適であり、このような距離に配することにより、対向電極のより中心に位置する半径の小さい環状対向電極となるにつれて比較的強いイオン風が発せられることとなり、結果的に大風量のイオン風を得ることができる。このような位置関係にあれば、環状対向電極は同一平面上に配されていてもよく、別平面に配されていてもよい。尚、図中先端部Pから環状対向電極に示した破線矢印はコロナ放電によるイオンの泳動方向を示す。 The needle electrode 120 and the counter electrode 130 are connected to a voltage applying means or a ground, respectively, and in use, a potential difference is generated between the electrodes to discharge. Here, the positional relationship between the distal end portion P of the needle-like electrode 120 and the innermost main annular counter electrode 131 is preferably a positional relationship that is most suitable for emitting ion wind, and such a distance is set. By disposing, a relatively strong ion wind is emitted as the annular counter electrode having a smaller radius located at the center of the counter electrode, and as a result, a large amount of ion wind can be obtained. If it exists in such a positional relationship, the cyclic | annular counter electrode may be distribute | arranged on the same plane and may be distribute | arranged on another plane. In addition, the broken line arrow shown from the front-end | tip part P to the cyclic | annular counter electrode in the figure shows the ion migration direction by corona discharge.
 イオン風を発するのに適した位置関係について図A2の模式図を用いて説明する。図A2(a)においては、最内部に位置する環状対向電極131の断面を用いて、環状対向電極131と針状電極120の先端部Pとの位置関係を示し、図A2(b)においては環状対向電極132と先端部Pとの位置関係を示した。 The positional relationship suitable for emitting ion wind will be described with reference to the schematic diagram of FIG. In FIG. A2 (a), the positional relationship between the annular counter electrode 131 and the tip portion P of the needle electrode 120 is shown using the cross section of the annular counter electrode 131 located in the innermost part. In FIG. The positional relationship between the annular counter electrode 132 and the tip portion P is shown.
 はじめに、先端部Pと環状対向電極131との位置関係にある場合、イオンは電極に向かって矢印の方向に従って泳動する。すなわちイオン風は、理論上、先端部Pからθの角度を持って発生することとなる。したがって、全体的にみれば、先端部Pを頂点とする円錐の頂点から底面の端部を結ぶ母線方向にイオン風が発生することとなる。すなわち、環状対向電極の外方向に向かってもイオン風が発生するが、全体としては主に環状対向電極の中心からイオン風が前面方向に押出されることとなる。一方、図A2(b)に示す環状対向電極132のように比較的大きな半径を有する輪状電極である場合、イオン風は、理論上、先端部Pからθの角度を持って発生することとなる。すなわち、当該角度がより大きくなるため、この電極に由来するイオン風は環状対向電極の外側方向に発せられる成分が多くなり、前面方向に押出されるイオン風の風量が小さくなる。 First, when there is a positional relationship between the tip portion P and the annular counter electrode 131, ions migrate toward the electrode in the direction of the arrow. That is, the ion wind is theoretically generated with an angle of θ 1 from the tip portion P. Therefore, as a whole, an ion wind is generated in the direction of the generatrix line connecting the apex of the cone having the tip P as the apex to the end of the bottom surface. That is, ion wind is generated also in the outward direction of the annular counter electrode, but as a whole, the ion wind is pushed out from the center of the annular counter electrode in the front direction. On the other hand, in the case of a ring electrode having a relatively large radius like the annular counter electrode 132 shown in FIG. A2 (b), the ion wind is theoretically generated at an angle of θ 2 from the tip P. Become. That is, since the angle becomes larger, the ionic wind derived from this electrode has more components emitted toward the outer side of the annular counter electrode, and the volume of the ionic wind pushed toward the front surface becomes smaller.
 また、コロナ放電は針状電極から近い位置にある対向電極に対して起こり易くなる。環状対向電極は中心に位置するものにつれて、針状電極の先端部Pからの距離が近くなる。すなわち、コロナ放電が起きる確率も中心に位置する環状対向電極のほうが高くなるので、発生するイオン風の絶対的風圧も中心に位置する環状対向電極のほうが大きくなる。 Also, corona discharge is likely to occur with respect to the counter electrode located near the needle electrode. As the annular counter electrode is located at the center, the distance from the distal end portion P of the needle electrode becomes closer. That is, since the probability of occurrence of corona discharge is higher in the annular counter electrode positioned at the center, the absolute counter pressure of the generated ion wind is also higher in the annular counter electrode positioned at the center.
 以上、説明したように、最内部に位置する環状対向電極131は、イオン風が発生する方向としても有利であり、更には、イオン風の発生する絶対的な風圧も大きい。したがって、図A1に示すような対向電極は、環状電極の半径が小さくなるにつれて環状対向電極から発せられるイオン風が強くなるように配されている状態にある。このように配されることによって、外部の電極から発せられるイオン風によって滞留が起きず、中心から発せられるイオン風に巻き込まれるようになるので風量が大きくなるともに、放電により発生したイオン及びオゾンをイオン風によって前面へと押出す作用が得られるため、殺菌・消臭の効果も高くなる。また、最内部に位置する環状対向電極131と先端部Pとの距離が、コロナ放電において最も良好に放電し易い距離に保たれていることがより好適である。但し、対向電極の環状部の径を単に大きな径にすると大きく放電反応するがドーナツ状に放電する為、対向電極の環状中心に対向電極部を有しない事を起因とした、無風中心部も大きくなり放電ムラが出来ドーナツ状イオン風が発生し、結果発生イオン風外周と中心部が無風状態となりドーナツ状イオン風が無風域を誘風する為に強風を発しない。環状部の径が小径だと風圧の強いイオン風を発するが発生量は少ない為、主環状対向電極外周に二次発生極である副環状対向電極を配する事で、中心は主流風を小径にて風圧を強く発しながら外周は径が大きく風圧は弱いが風量のある副流風を発する。すなわち、本実施形態に係る対向電極は、大径だと風圧は弱いが風量は多い、小径だと風圧は強いが風量は少ない現況の問題を解した、イオン風の発生を同電位にて大風圧と大発生量の両立した形状となる。 As described above, the annular counter electrode 131 located at the innermost portion is advantageous in the direction in which the ion wind is generated, and the absolute wind pressure in which the ion wind is generated is also large. Therefore, the counter electrode as shown in FIG. A1 is in a state in which the ion wind emitted from the annular counter electrode becomes stronger as the radius of the annular electrode becomes smaller. By arranging in this way, no stagnation occurs due to the ionic wind emitted from the external electrode, and the ionic wind emitted from the center is involved, so the air volume increases, and the ions and ozone generated by the discharge are reduced. Since the action of extruding to the front surface by the ionic wind is obtained, the effect of sterilization and deodorization is enhanced. Further, it is more preferable that the distance between the annular counter electrode 131 located at the innermost part and the tip end portion P is maintained at a distance that is most easily discharged in corona discharge. However, if the diameter of the annular portion of the counter electrode is simply made large, a large discharge reaction occurs, but since the discharge occurs in a donut shape, the central portion of the windless area is also large due to the absence of the counter electrode portion at the annular center of the counter electrode. As a result, discharge unevenness occurs and a donut-like ion wind is generated. As a result, the outer periphery and the central portion of the generated ion wind are in a no-wind state, and the donut-like ion wind induces a no-wind region so that no strong wind is generated. If the diameter of the annular part is small, an ion wind with strong wind pressure is emitted, but the amount of generation is small. While generating strong wind pressure, the outer circumference has a large diameter and weak wind pressure but emits a side stream with a large air volume. In other words, the counter electrode according to the present embodiment has a large air diameter, the wind pressure is weak but the air volume is large, and if the diameter is small, the wind pressure is strong but the air volume is small. The shape is compatible with wind pressure and large amount of generation.
 対向電極を平面状とすることにより、対向電極から発生したイオン風が、壁面等の障害物とイオン風の反作用の影響によって減速されること無く、主環状対向電極から発生した主イオン風と、副環状対向電極から発生した副イオン風とが、即座に合成されるため、主イオン風は発生直後に周囲の副イオン風によって追い風による相乗効果を早く得られるため、より大風量のイオン風を得ることができる。一方、対向電極が例えば筒状等の場合には、対向電極内に壁面が存在するため、対向電極から発生したイオン風が、壁面とイオン風の反作用の影響によって減速されてしまう。このように、対向電極を平面状とすることにより、筒状等にした場合と異なり、大風量のイオン風を得ることができるようになる。また、対向電極の形状を筒状等とするのではなく平面状とすることで、装置を小型化させることができ、このように装置を小型化させたとしても、従来のようにイオン風の風量を低下させることがない。また、平面状とすることにより、対向電極の洗浄が容易になる。なお、例えば、上述した特許文献9におけるような金網状の対向電極とした場合も、各対向電極が環状でない且つ各対向電極における平面状の法線ベクトルが略同一方向でないため、各対向電極における放電ムラが発生し易く且つ対向電極から発せられるイオン風の風力が均一化されない等の影響により、対向電極から発生したイオン風が減速されてしまう(各対向電極にて発生したイオン風が最適に合成されない)ため、好ましくない。 By making the counter electrode planar, the ionic wind generated from the counter electrode is not decelerated due to the reaction between the obstacles such as the wall surface and the ionic wind, and the main ionic wind generated from the main annular counter electrode; Since the secondary ion wind generated from the secondary annular counter electrode is immediately synthesized, the main ion wind can quickly obtain the synergistic effect of the tail wind by the surrounding secondary ion wind immediately after the generation, so that a larger volume of ion wind can be generated. Obtainable. On the other hand, when the counter electrode is, for example, cylindrical, a wall surface is present in the counter electrode, so that the ion wind generated from the counter electrode is decelerated due to the reaction between the wall surface and the ion wind. Thus, by making the counter electrode planar, it becomes possible to obtain a large amount of ionic wind, unlike the case of a cylindrical shape or the like. In addition, since the shape of the counter electrode is not a cylindrical shape but a flat shape, the device can be miniaturized, and even if the device is miniaturized in this way, The air volume is not reduced. In addition, the planar electrode facilitates cleaning of the counter electrode. Note that, for example, in the case of the wire mesh counter electrode as in Patent Document 9 described above, each counter electrode is not annular, and the planar normal vector in each counter electrode is not substantially in the same direction. The ion wind generated from the counter electrode is decelerated due to the fact that uneven discharge is likely to occur and the ion wind generated from the counter electrode is not uniform, etc. (the ion wind generated at each counter electrode is optimal) Not synthesized), which is not preferable.
 本実施形態に係るイオン・オゾン風発生装置は、前記針状電極の先端と前記主環状対向電極の最長距離が、前記針状電極の先端と前記副環状対向電極の最短距離よりも短い。このような距離関係に針状電極と対向電極が配されることによって、主環状対向電極の中心に形成された開口部から、最も風圧の強いイオン風が発生し、周辺の副環状対向電極から風圧の弱いイオン風が発生するため、大量のイオン風を得ることができる。このような針状電極と対向環状電極の位置関係から外れると、イオン風は主環状対向電極と副環状対向電極の間の空間から主にイオン風が発生してしまい、均等風となってしまうため、空中放出イオン風は弱くなり、更にはガイド部材を設けた場合にも反作用が起きる。 In the ion / ozone wind generating apparatus according to this embodiment, the longest distance between the tip of the needle electrode and the main annular counter electrode is shorter than the shortest distance between the tip of the needle electrode and the sub annular counter electrode. By arranging the needle-like electrode and the counter electrode in such a distance relationship, the ion wind with the strongest wind pressure is generated from the opening formed in the center of the main annular counter electrode, and from the surrounding sub-annular counter electrode. Since an ionic wind having a low wind pressure is generated, a large amount of ionic wind can be obtained. When deviating from the positional relationship between the needle-like electrode and the counter annular electrode, the ion wind is mainly generated from the space between the main annular counter electrode and the sub-annular counter electrode, resulting in uniform wind. For this reason, the ionic wind released in the air becomes weak, and a reaction also occurs when a guide member is provided.
 対向電極130を構成する環状対向電極は、図A1に示すように2つに限定されるわけではなく、環状対向電極が多数設けられていてもよい。 The number of annular counter electrodes constituting the counter electrode 130 is not limited to two as shown in FIG. A1, and many annular counter electrodes may be provided.
 本実施形態に係る対向電極は、多角形であってもよい。 The counter electrode according to the present embodiment may be polygonal.
 針状電極が複数設けられていてもよい。 A plurality of needle-like electrodes may be provided.
 図A3は、本実施形態に係る対向電極の一例を示した概略図である。ここでは、板に孔を設けることにより、対向電極を形成している。図A3(c)は、円形状の対向電極を有する板状対向電極130cの概念図である。当該対向電極は、第一対向電極130c-1と、第二対向電極130c-2とを有する。第一対向電極130c-1は、円形状の主環状対向電極131c-1が中心に形成されており、その周囲に、円形状の副環状対向電極132c-1が形成されており、副環状対向電極132c-1の外周には、更に、副環状対向電極133c-1、134c-1、135c-1が形成されている。またこれらの対向電極の間には、連結部材139c-1が形成されている。また第二対向電極も同様に、円形状の主環状対向電極131c-2が中心に形成されており、その周囲に、円形状の副環状対向電極132c-2が形成されており、副環状対向電極132c-2の外周には、更に、副環状対向電極133c-2、134c-2が形成されている。またこれらの対向電極の間には、連結部材139c-2が形成されている。これらの板状対向電極に対して適切な位置に針状電極を配して使用する。 FIG. A3 is a schematic view showing an example of a counter electrode according to the present embodiment. Here, the counter electrode is formed by providing a hole in the plate. FIG. A3 (c) is a conceptual diagram of a plate-like counter electrode 130c having a circular counter electrode. The counter electrode includes a first counter electrode 130c-1 and a second counter electrode 130c-2. The first counter electrode 130c-1 is formed with a circular main annular counter electrode 131c-1 at the center, and a circular sub annular counter electrode 132c-1 is formed around it. Sub-circular counter electrodes 133c-1, 134c-1, and 135c-1 are further formed on the outer periphery of the electrode 132c-1. A connecting member 139c-1 is formed between these counter electrodes. Similarly, the second counter electrode is also formed with a circular main annular counter electrode 131c-2 in the center, and a circular sub annular counter electrode 132c-2 is formed around it. Sub-circular counter electrodes 133c-2 and 134c-2 are further formed on the outer periphery of the electrode 132c-2. A connecting member 139c-2 is formed between these counter electrodes. Needle-like electrodes are arranged at appropriate positions with respect to these plate-like counter electrodes.
 図A3(b)は、板状対向電極130bの概略構成を示す図である。板状対向電極130bは、主環状対向電極の形状が円形状であり、周囲の副環状対向電極の形状が六角形である。板状対向電極130bは、第一対向電極130b-1、第二対向電極130b-2を有する。第一対向電極130b-1の中心部には、円形状の主環状対向電極131b-1が形成されており、その周囲には六角形状の副環状対向電極132b-1が形成されており、更にその外周には、副環状対向電極133b-1、134b-1、135b-1が形成されている。またこれらの対向電極の間は、連結部材139b-1により連結されている。
 第二対向電極130b-2も同様に、中心に円形状の主環状対向電極131b-2が形成されており、その周囲に、六角形状の副環状対向電極132b-2~134b-2が形成されており、これらの電極は連結部材139b-2によって連結されている。
FIG. A3 (b) is a diagram showing a schematic configuration of the plate-like counter electrode 130b. In the plate-like counter electrode 130b, the main annular counter electrode has a circular shape, and the surrounding sub-annular counter electrode has a hexagonal shape. The plate-like counter electrode 130b includes a first counter electrode 130b-1 and a second counter electrode 130b-2. A circular main annular counter electrode 131b-1 is formed at the center of the first counter electrode 130b-1, and a hexagonal sub-annular counter electrode 132b-1 is formed around it. Sub-circular counter electrodes 133b-1, 134b-1, and 135b-1 are formed on the outer periphery. These counter electrodes are connected by a connecting member 139b-1.
Similarly, a circular main annular counter electrode 131b-2 is formed at the center of the second counter electrode 130b-2, and hexagonal sub-annular counter electrodes 132b-2 to 134b-2 are formed around it. These electrodes are connected by a connecting member 139b-2.
 図A3(a)は、板状対向電極130aの概略構成を示す図である。板状対向電極130aにおいては、円形状の主環状対向電極と、その周辺に環状の副環状対向電極が形成されている。板状対向電極130aは、第一対向電極130a-1と、第二対向電極130a-2を有する。第一対向電極130a-1の中心部には、円形状の主環状対向電極131a-1が形成されており、その周辺に複数の副環状対向電極132a-1が形成されている。図A3(a)においては、副環状対向電極132a-1の代表的な一例を示したが、主環状対向電極131a-1の周辺に形成されている132a-1も同様に副環状対向電極である。このように形成することにより、副環状対向電極の間に形成される部材が、主環状対向電極から放射線状に広がっている状態となるため、主環状対向電極から発生するイオン風に加えて、当該主環状対向電極から遠ざかるにつれて連続的にイオン風の風量が小さくなる。第二対向電極132a-2も第一対向電極と同様に中心に主環状対向電極131a-2及び副環状対向電極132a-2を有する。 FIG. A3 (a) is a diagram showing a schematic configuration of the plate-like counter electrode 130a. In the plate-like counter electrode 130a, a circular main annular counter electrode and an annular sub-annular counter electrode are formed around it. The plate-like counter electrode 130a includes a first counter electrode 130a-1 and a second counter electrode 130a-2. A circular main annular counter electrode 131a-1 is formed at the center of the first counter electrode 130a-1, and a plurality of sub-annular counter electrodes 132a-1 are formed around it. In FIG. A3 (a), a representative example of the sub annular counter electrode 132a-1 is shown, but 132a-1 formed around the main annular counter electrode 131a-1 is also a sub annular counter electrode. is there. By forming in this way, the member formed between the sub-annular counter electrodes is in a state of spreading radially from the main annular counter electrode, so in addition to the ion wind generated from the main annular counter electrode, As the distance from the main annular counter electrode increases, the amount of ion wind continuously decreases. Similarly to the first counter electrode, the second counter electrode 132a-2 has a main annular counter electrode 131a-2 and a sub-annular counter electrode 132a-2 at the center.
 尚、図A3(d)は、上記の板状対向電極130a~cの共通の側面図である。 Note that FIG. A3 (d) is a common side view of the plate-like counter electrodes 130a to 130c.
 本形態に係る電極対110を複数有するイオン・オゾン風発生装置であってもよい。 An ion / ozone wind generator having a plurality of electrode pairs 110 according to this embodiment may be used.
 切頭円錐状のイオン風ガイド部材が設けられていてもよい。 A truncated conical ion wind guide member may be provided.
 これらのガイド部材が設けられた電極対110を複数設けてもよい。 A plurality of electrode pairs 110 provided with these guide members may be provided.
 ここで、図B1に示すように、主電極対及び/又は副電極対における対向電極は、多角形状や円形状及び略円形状に限らず、渦巻状とした態様(巻き数や巻き幅は、あくまで一例である)であってもよい。ここで、図B1(a)に示すような渦巻状と図B1(b)に示すような渦巻状との相違点は、中心に向かって渦巻状を成した際における渦巻きの終点の有無である。特に、各対向電極を、図B1(b)に示すような渦巻状とした場合、各対向電極同士を導通させることが容易となるという利点がある。尚、対向電極を、このような渦巻状とした場合、多重環状構造の場合と比較して、コロナ放電にムラが発生し得ることが懸念されるが、対向電極自体が小型化すればするほど(例えば、対向電極の径が1cm程度)、当該ムラの発生要因となる渦巻状の導線各部と針状電極との距離誤差(多重環状構造からの剥離)が小さくなるため、多重環状構造と同等の効果が得られやすくなることを補足しておく。 Here, as shown in FIG.B1, the counter electrode in the main electrode pair and / or the sub electrode pair is not limited to a polygonal shape, a circular shape, and a substantially circular shape, but is a spiral shape (the number of turns and the winding width are It may be an example only). Here, the difference between the spiral shape as shown in FIG. B1 (a) and the spiral shape as shown in FIG. B1 (b) is the presence or absence of the end point of the spiral when the spiral shape is formed toward the center. . In particular, when each counter electrode has a spiral shape as shown in FIG. B1 (b), there is an advantage that it is easy to conduct the counter electrodes. When the counter electrode has such a spiral shape, there is a concern that unevenness may occur in the corona discharge as compared with the case of the multi-ring structure. However, as the counter electrode itself becomes smaller, (For example, the diameter of the counter electrode is about 1 cm), and the distance error (peeling from the multiple ring structure) between each part of the spiral lead wire that causes the unevenness and the needle-like electrode is small, so it is equivalent to the multiple ring structure It will be supplemented that the effect of can be easily obtained.
≪第4実施形態≫
 発生するイオン(イオン風)をより空間的に拡散させることが可能なイオン・オゾン風発生装置を、第4実施形態として詳述する。
<< Fourth Embodiment >>
An ion / ozone wind generator capable of more spatially diffusing generated ions (ionic wind) will be described in detail as a fourth embodiment.
 本形態に係るイオン・オゾン風発生装置100-4の基本的な構成は、図1に示される通りである。即ち、前述の通り、針状の放電電極120-4と環状の対向電極130-4とを備え、且つ、これらの電極間で発生したイオン風を導入可能な筒状のガイド部材140-4を備えており、ガイド部材140-4は、イオン風が噴出する開口部である噴出口141-4(狭窄部141-4)と、当該狭窄部141-4よりも径(環径)が大きい、風の吸気口となる吸気開口部142-4と、吸気開口部142-4から狭窄部141-4へ向かって縮径されている縮径部140r-4と、を有し、更に、吸気開口部142-4の径(環径)が、対向電極130-4よりも大きくなるように構成されている。尚、ガイド部材140-4は、適宜の方法によりイオン・オゾン風発生装置100-4に固定されればよい。 The basic configuration of the ion / ozone wind generator 100-4 according to this embodiment is as shown in FIG. That is, as described above, the cylindrical guide member 140-4 having the needle-like discharge electrode 120-4 and the annular counter electrode 130-4 and capable of introducing the ion wind generated between these electrodes is provided. The guide member 140-4 has an outlet 141-4 (constriction 141-4) which is an opening through which ion wind is ejected, and a diameter (ring diameter) larger than the constriction 141-4. An intake opening 142-4 that serves as a wind intake port, and a reduced diameter portion 140r-4 that is reduced in diameter from the intake opening 142-4 toward the narrowed portion 141-4. The diameter (ring diameter) of the portion 142-4 is configured to be larger than that of the counter electrode 130-4. The guide member 140-4 may be fixed to the ion / ozone wind generator 100-4 by an appropriate method.
 ここで、図E1を参照し、本形態に係るイオン・オゾン風発生装置100-4のガイド部材140-4及び対向電極130-4の具体的な構成に関して詳述すると、ガイド部材140-4の噴出口141-4の径(環径)をR、吸気開口部142-4の径(環径)をR、噴出口141-4と吸気開口部142-4との距離(ガイド部材140-4の軸方向に対する高さ)をd、対向電極130-4の径(環径)をRとした際に、R/Rは、1超であり、好適には1.1~3.5であり、より好適には1.2~3であり、特に好適には1.3~1.8である。尚、R/Rの上限は特に限定されないが、例えば4未満である。また、R/Rは、1超であり、好適には1.1~3であり、より好適には1.2~3である。更に、R/dは、特に限定されないが、好適には0.1~2であり、より好適には0.3~1.5である。ガイド部材140-4の構成をこのような範囲とすることにより、本形態の効果をより高めることが可能となる。 Here, with reference to FIG. E1, the specific configuration of the guide member 140-4 and the counter electrode 130-4 of the ion / ozone wind generator 100-4 according to the present embodiment will be described in detail. The diameter (ring diameter) of the jet outlet 141-4 is R A , the diameter (ring diameter) of the intake opening 142-4 is R B , and the distance (guide member 140) between the jet outlet 141-4 and the suction opening 142-4. -4 height with respect to the axial direction) of d, the diameter of the counter electrode 130-4 (the ring diameter) upon the R 1, R a / R 1 is greater than 1, preferably 1.1 to 3.5, more preferably 1.2 to 3, particularly preferably 1.3 to 1.8. The upper limit of R A / R 1 is not particularly limited, but is less than 4, for example. R A / R B is more than 1, preferably 1.1 to 3, and more preferably 1.2 to 3. Further, R A / d is not particularly limited, but is preferably 0.1 to 2, more preferably 0.3 to 1.5. By making the configuration of the guide member 140-4 within such a range, the effect of the present embodiment can be further enhanced.
 また、ガイド部材140-4としては、図1及び図E1に示すような、錐台状(円錐台状)に限定されず、例えば、図E2(a)及び図E2(b)に示すように、ガイド部材140-4の縮径部140r-4が吸気開口部142-4から噴出口141-4に向かって曲線的に断面径{ここでいう断面とは、部材軸(イオン風の進行方向軸)方向に対する内部空間の垂直断面を示す。}が変化する(変化の割合を増しながら徐々に開口断面積が小さくなる)ような、所謂ラッパ形状としてもよい。 Further, the guide member 140-4 is not limited to a frustum shape (conical frustum shape) as shown in FIGS. 1 and E1, and for example, as shown in FIGS. E2 (a) and E2 (b). The diameter-reduced portion 140r-4 of the guide member 140-4 is curved in cross section from the intake opening 142-4 toward the jet outlet 141-4 {the cross section here refers to the member axis (the direction in which the ion wind travels) A vertical section of the internal space with respect to the (axis) direction is shown. } May change (the cross-sectional area of the opening gradually decreases while increasing the rate of change).
 ここで、前述の構成でいう狭窄部(狭窄部141-4)とは、部材(ガイド部材140-4)中において、中心軸方向に対する内部空間の断面積が略最小となる箇所であればよく、狭窄部141-4と、噴出口とは一致せずともよい。より具体的には、例えば、図E3(a)及び図E3(b)に示すように、吸気開口部142-4と噴出口(噴出口143-4)との間に狭窄部141-4を設け、吸気開口部142-4から狭窄部141-4に向かって曲線的に断面径が小さくなる(断面が縮径していく)縮径部140r-4を設けると共に、狭窄部141-4から噴出口143-4に向かって曲線的に断面径が大きくなる(断面が拡径していく)拡径部140S-4を設けた構造である。尚、拡径部140S-4を設ける場合の拡径部140S-4及び/又は縮径部140r-4の形状としては特に限定されず、各々独立して、曲線的に断面径が大きくなる(断面が拡径していく)形状や、直線的に断面径が大きくなる錐台状等から選択してもよい。 Here, the narrowed portion (the narrowed portion 141-4) in the above-described configuration may be a portion in the member (guide member 140-4) where the cross-sectional area of the internal space with respect to the central axis direction is substantially minimum. The narrowed portion 141-4 may not coincide with the ejection port. More specifically, for example, as shown in FIGS. E3 (a) and E3 (b), a constricted portion 141-4 is provided between the intake opening 142-4 and the outlet (outlet 143-4). And provided with a reduced diameter portion 140r-4 whose sectional diameter decreases in a curved manner from the intake opening 142-4 toward the narrowed portion 141-4 (the cross section is reduced in diameter), and from the narrowed portion 141-4 This is a structure provided with an enlarged diameter portion 140S-4 whose sectional diameter increases in a curved line toward the ejection port 143-4 (the sectional diameter increases). In addition, the shape of the enlarged diameter portion 140S-4 and / or the reduced diameter portion 140r-4 in the case of providing the enlarged diameter portion 140S-4 is not particularly limited, and the cross-sectional diameter is independently increased in a curved line ( The shape may be selected from a shape in which the diameter of the cross section increases, a frustum shape in which the cross section diameter increases linearly, and the like.
 また、この場合、拡径部140S-4は、曲線的に断面径が変化するような形状(所謂ラッパ形状)であることが好適である。このような形状とすることにより、狭窄部141-4を通過した後のイオン風が存在し難い空気ポケット(図E3(a)において点線で丸く囲った箇所である。)が生じる。即ち、ガイド部材140-4の内壁が、狭窄部141-4から噴出口143-4に向かって拡径していく曲面となるため、狭窄部141-4付近で方向づけられたイオン風が、徐々にガイド部材140-4の内壁曲面から外れてしまう結果、イオン風が存在し難く、気圧が不均一となる空気のポケットが生じる。その結果、当該ポケット部分にて乱流が発生し、噴出口143-4から噴出されるイオン風がより拡散されることとなる。 In this case, it is preferable that the enlarged diameter portion 140S-4 has a shape (so-called trumpet shape) whose cross-sectional diameter changes in a curved manner. By adopting such a shape, an air pocket (a portion circled by a dotted line in FIG. E3 (a)) in which an ion wind after passing through the constricted portion 141-4 is difficult to occur is generated. That is, since the inner wall of the guide member 140-4 becomes a curved surface whose diameter increases from the narrowed portion 141-4 toward the jet outlet 143-4, the ion wind directed near the narrowed portion 141-4 gradually increases. As a result, the ionic wind hardly exists and air pockets with non-uniform air pressure are generated. As a result, a turbulent flow is generated in the pocket portion, and the ion wind ejected from the ejection port 143-4 is further diffused.
 尚、同様に、拡径部140S-4によって空気ポケットを形成する構造としては、拡径部140S-4が急激に拡張する構造であってもよい。例えば、噴出口141-4が内周縁となる、環状の平面部材を設けた構造(拡径部140S-4が、イオン風の軸方向に対して略垂直方向に延伸している構造)とした場合においても、当該環の外周縁付近では空気ポケットが形成されるものと考えられる。 Similarly, the structure in which the air pocket is formed by the enlarged diameter portion 140S-4 may be a structure in which the enlarged diameter portion 140S-4 is rapidly expanded. For example, a structure in which an annular plane member is provided with the jet nozzle 141-4 serving as an inner peripheral edge (a structure in which the enlarged diameter portion 140S-4 extends in a direction substantially perpendicular to the axial direction of the ion wind) is adopted. Even in this case, it is considered that an air pocket is formed in the vicinity of the outer peripheral edge of the ring.
 ここで、本実施形態に係るイオン・オゾン風発生装置100-4においては、更に、イオン風の進行を阻害するようにイオン風と対向することでイオン風を拡散可能な部材を設けてもよい。より具体的な構成としては、例えば、図E4に示すように、前述の図E3に係るイオン・オゾン風発生装置100-4の噴出口143-4に円錐状のスプリッター145-4を設けた形態である。このような構成とした場合、噴出口143-4から噴出するイオン風がスプリッター145-4によりイオン風が広がり、強制的に拡散されることとなる。更には、スプリッター145-4の背面にて乱流が発生し得るため、よりイオン風が拡散されるものと考えらえる。このようなスプリッター145-4の形状は特に限定されないが、イオン風を効率よく拡散しつつも、イオン風の噴出を妨害しすぎない形状として、先端(イオン風が最初に接触し得る箇所)から、後端(イオン風が最後に接触し得る箇所)にかけて、徐々に断面積が大きくなる(断面が拡径する)形状であることが好適である{例えば、図E4に示すような、錘状(円錐状)である}。尚、スプリッター145-4の最大径部(スプリッター145-4を錐状とした場合、その底面)の径は特に限定されず、イオン風の拡散の程度に応じて適宜設定すればよく、狭窄部141-4の径に対して、1/1~1/4の径とする等、適宜変更可能である。また、スプリッター145-4の配し方としては、その全てがガイド部材140-4の内部空間に挿入されている形態;その一部がガイド部材140-4の内部空間に挿入されておりその他がガイド部材140-4の内部空間の外側に存在している形態;その全てがガイド部材140-4の内部空間の外側に存在している形態;のいずれであってもよい。また、スプリッター145-4は、適宜の方法によりイオン・オゾン風発生装置100-4に固定されればよい。更に、スプリッター145-4は、前述の図E3に係るイオン・オゾン風発生装置100-4(即ち、拡径部140S-4が設けられた構造)以外にも、前述の図1や図E2に係るイオン・オゾン風発生装置100-4(即ち、拡径部140S-4が設けられていない構造)に対しても同様に設置可能であり、その場合においても、噴出口付近に配置することでイオン風の拡散効果を奏し得る。 Here, in the ion / ozone wind generating apparatus 100-4 according to the present embodiment, a member capable of diffusing the ion wind by facing the ion wind may be provided so as to inhibit the progress of the ion wind. . As a more specific configuration, for example, as shown in FIG. E4, a conical splitter 145-4 is provided at the outlet 143-4 of the ion / ozone wind generator 100-4 according to FIG. E3 described above. It is. In such a configuration, the ion wind ejected from the ejection port 143-4 spreads by the splitter 145-4 and is forcibly diffused. Furthermore, since turbulent flow can occur at the back of the splitter 145-4, it can be considered that the ion wind is more diffused. The shape of such a splitter 145-4 is not particularly limited. From the tip (where the ion wind can first contact), the shape is such that the ion wind is diffused efficiently but does not interfere with the ejection of the ion wind. It is preferable that the cross-sectional area gradually increases (the cross-section increases in diameter) from the rear end (where the ion wind can finally contact) (for example, a weight shape as shown in FIG. E4) (Conical)}. The diameter of the maximum diameter portion of the splitter 145-4 (the bottom surface of the splitter 145-4 when it is conical) is not particularly limited, and may be set as appropriate according to the degree of diffusion of the ion wind. The diameter can be appropriately changed, for example, a diameter of 1/1 to 1/4 with respect to the diameter of 141-4. The splitter 145-4 is arranged in such a manner that all of them are inserted into the internal space of the guide member 140-4; some of them are inserted into the internal space of the guide member 140-4. Any of the forms existing outside the internal space of the guide member 140-4; the forms existing all outside the internal space of the guide member 140-4 may be used. The splitter 145-4 may be fixed to the ion / ozone wind generator 100-4 by an appropriate method. In addition to the ion / ozone wind generator 100-4 (that is, the structure in which the enlarged diameter portion 140S-4 is provided) according to FIG. E3 described above, the splitter 145-4 is not shown in FIG. 1 or FIG. The ion / ozone wind generator 100-4 (that is, the structure not provided with the enlarged diameter portion 140S-4) can be similarly installed. An ionic wind diffusion effect can be achieved.
 ここで、本形態においては、発明の効果を高めるために、ガイド部材140-4の内部空間内に対向電極130-4が存在する(対向電極130-4がガイド部材140-4に覆われる)よう構成しているが、これには限定されず、対向電極130-4の一部又は全てが、ガイド部材140-4の内部空間の外側に存在するように構成してもよい(即ち、対向電極130-4は、吸気開口部142-4が存在する平面で見て、狭窄部141-4側とは反対の領域に存在してもよい)。 Here, in the present embodiment, in order to enhance the effect of the invention, the counter electrode 130-4 exists in the internal space of the guide member 140-4 (the counter electrode 130-4 is covered with the guide member 140-4). However, the present invention is not limited to this, and a part or all of the counter electrode 130-4 may be configured to exist outside the internal space of the guide member 140-4 (that is, the counter electrode 130-4). The electrode 130-4 may be present in a region opposite to the narrowed portion 141-4 side in the plane where the intake opening 142-4 exists.
 また、ガイド部材140-4の噴出口付近でのイオン風の拡散効率をより高めるためには、吸気開口部142-4と噴出口141-4(狭窄部141-4)とを略相似な形状とすることが好適であるが、これには限定されず、吸気開口部142-4と噴出口141-4とを非相似の形状としてもよい(例えば、吸気開口部142-4を円形状とし、噴出口141-4を四角形状とするなどである)。この場合、吸気開口部142-4及び噴出口141-4の形状に合わせて、縮径部140r-4の形状も適宜変更可能である。同様に、吸気開口部142-4の形状を、環状電極130-4と略相似な形状とすることが好適であるが、これには限定されず、環状電極130-4と吸気開口部142-4とを非相似の形状としてもよい(例えば、環状電極130-4を円形状とし、吸気開口部142-4を四角形状とするなどである)。 Further, in order to further increase the diffusion efficiency of the ion wind in the vicinity of the jet outlet of the guide member 140-4, the intake opening 142-4 and the jet outlet 141-4 (constriction 141-4) have substantially similar shapes. However, the present invention is not limited to this, and the intake opening 142-4 and the jet outlet 141-4 may have an asymmetric shape (for example, the intake opening 142-4 may have a circular shape). For example, the nozzle 141-4 has a rectangular shape). In this case, the shape of the reduced diameter portion 140r-4 can be changed as appropriate in accordance with the shapes of the intake opening 142-4 and the jet outlet 141-4. Similarly, the shape of the intake opening 142-4 is preferably substantially similar to the shape of the annular electrode 130-4, but is not limited thereto, and the shape of the intake electrode 142-4 and the intake opening 142- 4 may be formed in a similar shape (for example, the annular electrode 130-4 is circular and the intake opening 142-4 is rectangular).
 更に、本形態においては、狭窄部141-4の軸(環軸)と、吸気開口部142-4の軸(環軸)と、対向電極130-4の軸と、が各々略一致するよう構成されているが、発明の効果を阻害しない範囲で、これらの軸の位置がずれたものとしてもよい。 Further, in the present embodiment, the axis of the constricted portion 141-4 (annular axis), the axis of the intake opening 142-4 (annular axis), and the axis of the counter electrode 130-4 are substantially aligned with each other. However, the positions of these axes may be deviated as long as the effects of the invention are not impaired.
 ここで、本形態に係る対向電極130-4は、単環状の構造としているが、これには限定されず、多重環状構造としてもよい。例えば、図E5及び図E6に示すように、主環状電極131-4と、副環状電極132―4とを有するような2重環状構造としてもよい。 Here, the counter electrode 130-4 according to this embodiment has a monocyclic structure, but is not limited to this, and may have a multi-ring structure. For example, as shown in FIGS. E5 and E6, a double ring structure having a main ring electrode 131-4 and a sub ring electrode 132-4 may be used.
 ここで、対向電極130-4を多重環状構造とする場合には、ガイド部材140-4の噴出口の環径が、主イオン風を発生させ得る対向電極である主環状電極131-4の環径よりも大きく構成されていればよい(主イオン風と副イオン風とではその流量が異なり、主イオン風が主な要素となるため、多重環状電極で発生したイオン風全体ではなく、主イオン風に着目するのみでも、前記の効果を奏し得る)。また、多重環状電極である対向電極130-4と本形態に係るガイド部材140-4とを組み合わせる場合、主環状電極を含む複数の環状電極の環径よりも大きいように構成してもよいし、多重環状電極全体の径よりも大きいように構成してもよい。例えば、主環状電極131-4の環径R、副環状電極132-4の環径R、噴出口141-4の環径R及び吸気開口部142-4の環径Rに関して、図E5に示すイオン・オゾン風発生装置100-4は、R>R>R>Rの関係を想定しており、図E6に示すイオン・オゾン風発生装置100-4は、R>R>R>Rの関係を想定している。同様に、例えば、主環状電極131-4の周囲に、副環状電極以外の様々な部材(例えば、環状電極を保持するための樹脂材料からなる部材等)を設けた場合にも、当該主環状電極131-4の径と、ガイド部材140-4の噴出口の径とが、上記関係を満たせばよい。 Here, when the counter electrode 130-4 has a multi-ring structure, the ring diameter of the jet outlet of the guide member 140-4 is the ring of the main ring electrode 131-4 which is a counter electrode capable of generating main ion wind. (The main ion wind and the secondary ion wind have different flow rates, and the main ion wind is the main factor. Therefore, the main ion wind is not the entire ion wind generated by the multi-ring electrode, but the main ion wind. Just focusing on the wind can produce the above effects). Further, when the counter electrode 130-4, which is a multiple annular electrode, and the guide member 140-4 according to the present embodiment are combined, it may be configured to be larger than the ring diameter of a plurality of annular electrodes including the main annular electrode. The diameter may be larger than the entire diameter of the multiple annular electrode. For example, the ring diameter R 1 of the primary annular electrode 131-4, the ring diameter R 2 of the secondary annular electrodes 132-4, with respect to the ring diameter R B ring diameter R A and the intake opening 142-4 jets 141-4, The ion / ozone wind generator 100-4 shown in FIG. E5 assumes the relationship of R B > R A > R 2 > R 1 , and the ion / ozone wind generator 100-4 shown in FIG. A relationship of B > R 2 > R A > R 1 is assumed. Similarly, for example, when various members other than the secondary annular electrode (for example, a member made of a resin material for holding the annular electrode) are provided around the main annular electrode 131-4, the main annular electrode 131-4 is also provided. The diameter of the electrode 131-4 and the diameter of the ejection port of the guide member 140-4 need only satisfy the above relationship.
 また、本形態に係るイオン・オゾン風発生装置100-4は、複数の電極対を有する構成(132a-4及び131a-4を含む対向電極130a-4と、放電電極120a-4と、からなる電極対を、複数有する構成)としてもよい。例えば、複数の電極対を有する構成とした場合、ガイド部材140-4の配し方としては、(1)図E7(a)に示すように、複数の対向電極をまとめて一つの対向電極と捉えガイド部材140-4を配する方法;(2)図E7(b)に示すように、対向電極の各々にガイド部材140-4を配する方法;等が考えられ、特に限定されない。前記(2)の形態は、あるガイド部材の噴出口から噴出するイオン風が、隣接するガイド部材からのイオン風と混合されることで、装置全体におけるイオン風がより拡散され易くなるという点で好適である。尚、イオン・オゾン風発生装置100-4が複数の電極対を有する場合には、任意の電極対(対向電極)のみに対してガイド部材140-4を配してもよい。なお、図E7(及び、後述する図F3)に示すようなイオン・オゾン風発生装置は、換言すれば、放電電極と対向電極とを有する電極対を複数組(本例では、主電極対と、六組の副電極対)備え、それぞれの電極対の間に電位差を発生させてコロナ放電によりイオン、オゾン及びイオン風を発生させるよう構成され、それぞれの電極対における対向電極が、環状又は渦状を成しており、一組の電極対である主電極対、及び、主電極対における対向電極の外周に沿って主電極対における対向電極を囲うよう、規則的に且つ互いに隣接又は近接する形で対向電極が位置する電極対である副電極対を複数組備えており、すべての対向電極における平面状の法線ベクトルが略同一方向となるよう構成されているイオン・オゾン風発生装置である(また、更に、少なくとも副電極対において隣り合う対向電極の外周間の最短距離を対向電極の直径以下としてもよい)。この場合、各放電電極(各対向電極)は、電極間を導電材料でブリッジするなど、適宜の手段により導通可能な状態としてもよいし、導通不可能な状態としてもよい。 Further, the ion / ozone wind generating apparatus 100-4 according to this embodiment includes a configuration having a plurality of electrode pairs (a counter electrode 130a-4 including 132a-4 and 131a-4, and a discharge electrode 120a-4). It is good also as a structure which has multiple electrode pairs. For example, in the case of a configuration having a plurality of electrode pairs, the guide member 140-4 may be arranged as follows: (1) As shown in FIG. E7 (a), a plurality of counter electrodes are combined into one counter electrode. A method of arranging the catch guide member 140-4; (2) a method of arranging the guide member 140-4 on each of the counter electrodes as shown in FIG. E7 (b); The form (2) is that the ion wind ejected from the outlet of a certain guide member is mixed with the ion wind from the adjacent guide member, so that the ion wind in the entire apparatus is more easily diffused. Is preferred. When the ion / ozone wind generator 100-4 has a plurality of electrode pairs, the guide member 140-4 may be arranged only for an arbitrary electrode pair (counter electrode). In addition, the ion / ozone wind generator as shown in FIG. E7 (and FIG. F3 described later), in other words, a plurality of electrode pairs each having a discharge electrode and a counter electrode (in this example, a main electrode pair and 6 pairs of sub-electrode pairs), and is configured to generate potential difference between each electrode pair to generate ions, ozone and ionic wind by corona discharge, and the counter electrode in each electrode pair is annular or spiral A pair of electrode pairs that are regularly adjacent to or close to each other so as to surround the counter electrode in the main electrode pair along the outer circumference of the counter electrode in the main electrode pair. The ion / ozone wind generator is provided with a plurality of pairs of sub-electrodes that are electrode pairs in which the counter electrodes are positioned, and the planar normal vectors in all the counter electrodes are substantially in the same direction. (Also Furthermore, it may be the shortest distance between the outer periphery of the counter electrode adjacent at least the sub-electrode pairs as less than or equal to the diameter of the counter electrode). In this case, each discharge electrode (each counter electrode) may be in a conductive state or a non-conductive state by appropriate means such as bridging the electrodes with a conductive material.
 以上説明したように、本形態に係るイオン・オゾン風発生装置によれば、ガイド部材自体がイオン・オゾン風を拡散させる構成であるので、ガイド部材の噴出口付近にて、既にイオン・オゾン風が拡散された状態とし、更に、ガイド部材内部でのイオン風の減衰を抑制することが可能となる。その結果、対象空間中にイオンを拡散させつつも、噴出口近傍の対象物に直接接触するオゾンの量を低めることが出来る(その結果、オゾンによる漂白効果等が望ましくない対象物の付近でも使用することが出来る)。 As described above, according to the ion / ozone wind generator according to the present embodiment, the guide member itself is configured to diffuse the ion / ozone wind. It is possible to suppress the attenuation of ion wind inside the guide member. As a result, it is possible to reduce the amount of ozone in direct contact with the object in the vicinity of the jet outlet while diffusing ions in the target space (as a result, it is also used in the vicinity of objects where the bleaching effect by ozone is not desirable). Can do).
≪第5実施形態≫
 ここで、第4実施形態に係るイオン・オゾン風発生装置は、ガイド部材としてイオン・オゾン風が噴出する箇所である噴出口の構成を変更することにより、噴出口近傍でのオゾン濃度を低め、広範囲にイオン風を届かせることが可能な構成であった。次に、第4実施形態に係るイオン・オゾン風発生装置とは異なり、コロナ放電時に発生するオゾンの濃度を低減させることを主な目的とした第5実施形態に係るイオン・オゾン風発生装置100-5について詳述する。
«Fifth embodiment»
Here, the ion / ozone wind generating apparatus according to the fourth embodiment reduces the ozone concentration in the vicinity of the jet port by changing the configuration of the jet port, which is a location where the ion / ozone wind jets as a guide member, It was a configuration that allowed ion wind to reach a wide area. Next, unlike the ion / ozone wind generating apparatus according to the fourth embodiment, the ion / ozone wind generating apparatus 100 according to the fifth embodiment mainly intended to reduce the concentration of ozone generated during corona discharge. -5 will be described in detail.
 本形態に係るイオン・オゾン風発生装置の基本的な構成は、図3に示された通りである。即ち、前述の通り、本形態に係るイオン・オゾン風発生装置100-5は、内部空間を有する筒状(錐台状)の対向電極130-5と、対向電極130-5の内部に一部(先端)が挿入された状態である針状の放電電極120-5と、を備え、対向電極130-5は、イオン風が噴出する開口部である噴出口130α-5(狭窄部130α-5)と、噴出口130α-5よりも径(環径)が大きい、風の吸気口となる吸気開口部130β-5と、噴出口130α-5から吸気開口部130β-5へ向かって縮径されている縮径部130r-5と、を有する。 The basic configuration of the ion / ozone wind generator according to the present embodiment is as shown in FIG. That is, as described above, the ion / ozone wind generator 100-5 according to the present embodiment includes a cylindrical (frustum-shaped) counter electrode 130-5 having an internal space, and a part of the counter electrode 130-5. A needle-shaped discharge electrode 120-5 in which the (tip) is inserted, and the counter electrode 130-5 is an outlet 130α-5 (constriction 130α-5) which is an opening through which ion wind is ejected. ), An intake opening 130β-5 serving as a wind inlet having a larger diameter (ring diameter) than the jet outlet 130α-5, and a diameter reduced from the jet outlet 130α-5 toward the inlet opening 130β-5. A reduced diameter portion 130r-5.
 ここで、図F1を参照し、本形態に係るイオン・オゾン風発生装置100-5の対向電極130-5のより具体的な構成に関して詳述すると、噴出口130α-5の径(環径)をRα、吸気開口部130β-5の径(環径)をRβ、噴出口130α-5と吸気開口部130β-5との距離(対向電極130-5の軸方向への高さ)をzとした際に、Rβ/Rαは1超であり、1超であり、好適には1.1~3であり、より好適には1.2~3である。また、Rα/zは、特に限定されないが、好適には0.1~2であり、より好適には0.3~1.5である。対向電極130-5の構成をこのような範囲とすることにより、本形態の効果をより高めることが可能となる。 Here, with reference to FIG. F1, a more specific configuration of the counter electrode 130-5 of the ion / ozone wind generator 100-5 according to the present embodiment will be described in detail. The diameter (ring diameter) of the jet outlet 130α-5 R α , the diameter (ring diameter) of the intake opening 130β-5 is R β , and the distance between the outlet 130α-5 and the intake opening 130β-5 (the height of the counter electrode 130-5 in the axial direction) is In the case of z, R β / R α is more than 1, more than 1, preferably 1.1 to 3, and more preferably 1.2 to 3. R α / z is not particularly limited, but is preferably 0.1 to 2, and more preferably 0.3 to 1.5. By making the configuration of the counter electrode 130-5 in such a range, the effect of this embodiment can be further enhanced.
 また、本形態に係るイオン・オゾン風発生装置100-5において、放電電極120-5と対向電極130-5との位置関係は特に限定されず、対向電極130-5の内部空間の外側に放電電極120-5を設けるよう構成してもよい(即ち、放電電極120-5が、吸気開口部130β-5が存在する平面から見て、吸気開口部130β-5が存在する領域とは反対の領域に設けられていてもよい)。尚、本形態のように、対向電極130-5の内部空間に放電電極120-5の先端が挿入されるよう構成することにより、対向電極130-5の吸気開口部130β-5との局部的な放電を抑え(対向電極130-5の内壁面全体をより放電部として機能させ)、より均一且つオゾン濃度の低いイオン・オゾン風を発生させることが出来る。他方、対向電極130-5の内部空間の外側に放電電極120-5を配する構成とした場合には、対向電極130-5のエッジ部(例えば、吸気開口部130β-5)との放電の比率が高くなり、対向電極130-5の内壁面との放電が起き難い場合がある(即ち、吸気開口部130β-5との局部的な放電が生じ易くなる)。従って、よりオゾン発生率を低減させるという観点から、放電電極120-5の少なくとも一部(先端)を対向電極130-5の内部空間に挿入するように配することが好適である。 In the ion / ozone wind generator 100-5 according to the present embodiment, the positional relationship between the discharge electrode 120-5 and the counter electrode 130-5 is not particularly limited, and the discharge is performed outside the internal space of the counter electrode 130-5. The electrode 120-5 may be provided (that is, the discharge electrode 120-5 is opposite to the region where the intake opening 130β-5 exists when viewed from the plane where the intake opening 130β-5 exists). May be provided in the area). Note that, as in the present embodiment, the tip of the discharge electrode 120-5 is inserted into the internal space of the counter electrode 130-5, so that the local area of the counter electrode 130-5 with the intake opening 130β-5 is local. Therefore, it is possible to suppress discharge (by making the entire inner wall surface of the counter electrode 130-5 function as a discharge portion), and to generate ions / ozone wind having a more uniform and low ozone concentration. On the other hand, when the discharge electrode 120-5 is arranged outside the internal space of the counter electrode 130-5, discharge from the edge portion (for example, the intake opening 130β-5) of the counter electrode 130-5 is performed. In some cases, the ratio increases, and it is difficult for the discharge to the inner wall surface of the counter electrode 130-5 to occur (that is, local discharge to the intake opening 130β-5 tends to occur). Therefore, from the viewpoint of further reducing the ozone generation rate, it is preferable to dispose at least a part (tip) of the discharge electrode 120-5 so as to be inserted into the internal space of the counter electrode 130-5.
 更に、本形態に係るイオン・オゾン風発生装置は、放電電極120-5が噴出口130α-5側へ貫通しないことが好適である。放電電極120-5が噴出口130α-5側へ貫通する場合(放電電極120-5の先端が噴出口130α-5が存在する平面から見て吸気開口部130β-5と反対の領域にある場合)、噴出口130α-5から吸気開口部130β-5へ向かう逆方向のイオン風が生じ得るため、イオン風の勢いが削がれる場合がある。また、このような観点からは、放電電極120-5の先端が噴出口130α-5側へ貫通しない状況下、放電電極120-5の先端から噴出口130α-5までの距離が、z(噴出口130α-5と吸気開口部130β-5との距離)を基準として、4/5以下であることが好適であり、3/4以下であることがより好適であり、2/3以下であることが特に好適である。また、本形態においては、噴出口から発生するイオン風の主の牽引力となるのは、吸気開口部130β-5側から噴出口130α-5側への方向性となる放電電極120-5と噴出口130α-5近傍との間で発生するイオン風である。従って、噴出口130α-5側へのイオン風の風力を高めるために、放電電極120-5の先端が噴出口130α-5側へ貫通しない状況下、放電電極120-5の先端から噴出口130α-5までの距離が、z(噴出口130α-5と吸気開口部130β-5との距離)を基準として、1/5以上であることが好適であり、1/4以上であることがより好適であり、1/3以上であることが特に好適である。 Furthermore, in the ion / ozone wind generating apparatus according to the present embodiment, it is preferable that the discharge electrode 120-5 does not penetrate to the outlet 130α-5. When the discharge electrode 120-5 penetrates to the jet outlet 130α-5 side (when the tip of the discharge electrode 120-5 is in a region opposite to the intake opening 130β-5 when viewed from the plane where the jet outlet 130α-5 exists) ) Since an ion wind in the opposite direction from the jet outlet 130α-5 toward the intake opening 130β-5 may be generated, the momentum of the ion wind may be cut off. From this point of view, the distance from the tip of the discharge electrode 120-5 to the jet port 130α-5 is z (jet port) in a situation where the tip of the discharge electrode 120-5 does not penetrate to the jet port 130α-5 side. 4/5 or less, more preferably 3/4 or less, and 2/3 or less, based on the distance between the outlet 130α-5 and the intake opening 130β-5) It is particularly preferred. In the present embodiment, the main traction force of the ion wind generated from the jet outlet is the discharge electrode 120-5 and the jet that are directional from the inlet opening 130β-5 side to the jet outlet 130α-5 side. Ion wind generated between the vicinity of the outlet 130α-5. Therefore, in order to increase the wind force of the ion wind toward the jet outlet 130α-5, the tip of the discharge electrode 120-5 does not penetrate to the jet outlet 130α-5 side, and the jet outlet 130α is discharged from the tip of the discharge electrode 120-5. The distance to −5 is preferably 1/5 or more with reference to z (distance between the jet outlet 130α-5 and the intake opening 130β-5), and more preferably 1/4 or more. It is suitable and it is especially suitable that it is 1/3 or more.
 また、対向電極130-5としては、図3及び図F1に示す錐台状(円錐台状)に限定されず、対向電極130-5の縮径部130r-5が、吸気開口部130β-5から噴出口130α-5に向かって曲線的に断面径が変化する形状としてもよい。この際、対向電極130-5の形状としては、(1)図F2(a)に示すような、対向電極130-5の外部側に凸の形状{球体の一部(球冠)に類似する形状)};(2)図F2(b)に示すような、対向電極130-5の内部側に凸の形状(所謂ラッパ形状);のいずれであってもよい。対向電極130-5を錐台状やラッパ形状とした場合には、オゾン濃度が高まらない程度に放電箇所(放電電極120-5と対向電極130-5との対向関係)に若干のムラが出来、その結果、対向電極内部で、対向電極を多重環とした場合に近い放電関係が形成され、更に、対向電極内部で発生したイオン風が噴出口130α-5に向かって円滑に誘導されるため、イオン風の勢いが強まるものと考えられ好適である。尚、対向電極の構造により対向電極内部で多重環を形成するという観点からは、対向電極内部に、電極の略同心円となるような溝又は凸部を設ける等の構造も考えられる。 Further, the counter electrode 130-5 is not limited to the frustum shape (conical frustum shape) shown in FIGS. 3 and F1, and the reduced diameter portion 130r-5 of the counter electrode 130-5 is an intake opening portion 130β-5. Alternatively, the cross-sectional diameter may be changed in a curved manner from the jet outlet 130α-5. At this time, the shape of the counter electrode 130-5 is as follows: (1) As shown in FIG. F2 (a), a shape convex to the outside of the counter electrode 130-5 {similar to a part of a sphere (sphere crown) (Shape)}; (2) As shown in FIG. F2 (b), any of a convex shape (so-called trumpet shape) on the inner side of the counter electrode 130-5 may be used. When the counter electrode 130-5 has a frustum shape or a trumpet shape, slight unevenness can be generated in the discharge location (the relationship between the discharge electrode 120-5 and the counter electrode 130-5) to such an extent that the ozone concentration does not increase. As a result, a discharge relationship close to that when the counter electrode is a multiple ring is formed inside the counter electrode, and further, the ion wind generated inside the counter electrode is smoothly guided toward the jet outlet 130α-5. It is preferable that the momentum of the ion wind is strengthened. From the viewpoint of forming a multiple ring inside the counter electrode due to the structure of the counter electrode, a structure such as providing a groove or a projection that is substantially concentric with the electrode inside the counter electrode is also conceivable.
 また、本形態に係るイオン・オゾン風発生装置100-5は、図F3に示すように、複数の電極対を有する構成(対向電極130a-5と、放電電極120a-5と、からなる電極対を複数有する構成)としてもよい。尚、本図は、対向電極130a-5として、電極配置の構成を適用した場合の一例であり、何ら限定されない。 Further, as shown in FIG. F3, the ion / ozone wind generator 100-5 according to the present embodiment has a configuration having a plurality of electrode pairs (an electrode pair including a counter electrode 130a-5 and a discharge electrode 120a-5). It is good also as a structure which has multiple. In addition, this figure is an example at the time of applying the structure of electrode arrangement as the counter electrode 130a-5, and is not limited at all.
 また、本形態に係る対向電極130-5は、その噴出口130α-5を多重環構造としてもよい(噴出口130α-5を副環状電極と見なし、その内部に主環状電極となるような環状電極を更に配してもよい)。このような構成とすることにより、噴出口130α-5に設けられた主環状電極と放電電極との放電で発生したイオン風が、対向電極130-5内部で発生したイオン風を噴出口130α-5方向へ牽引し、噴出口130α-5から噴出するイオン風の勢いが強まると考えられる。 Further, in the counter electrode 130-5 according to the present embodiment, the jet outlet 130α-5 may have a multi-ring structure (the jet outlet 130α-5 is regarded as a sub-annular electrode, and an annular shape that serves as a main annular electrode therein) An electrode may be further provided). With such a configuration, the ion wind generated by the discharge between the main annular electrode and the discharge electrode provided at the jet outlet 130α-5 is changed to the ion wind generated inside the counter electrode 130-5. It is considered that the momentum of the ion wind that is pulled in the five directions and ejected from the ejection port 130α-5 increases.
 尚、本形態に係る放電電極120-5は、針状電極に限定されず、環状の放電電極を用いてもよい。 The discharge electrode 120-5 according to the present embodiment is not limited to the needle-like electrode, and an annular discharge electrode may be used.
 以上説明したように、本形態に係るイオン・オゾン風発生装置によれば、発生するオゾン濃度を低め、且つ、対向電極内部で発生したイオン(イオン風)が噴出口へと誘導される構成としているので、トルクのあるイオン風を噴出させ対象空間中にイオンを十分に拡散させつつも、噴出口近傍の対象物に直接接触するオゾンの量を低めることが出来る(その結果、オゾンによる漂白効果等が望ましくない対象物の付近でも使用することが出来る)。 As described above, according to the ion / ozone wind generator according to the present embodiment, the generated ozone concentration is lowered, and ions (ion wind) generated inside the counter electrode are guided to the jet outlet. Therefore, it is possible to reduce the amount of ozone in direct contact with the object in the vicinity of the ejection port while ejecting torque ion wind and sufficiently diffusing ions in the target space (as a result, the bleaching effect by ozone It can also be used near objects that are not desirable).
100、100-4、100-5:イオン・オゾン風発生装置
110:電極対
120:針状電極
120-4、120a-4、120-5、120a-5:放電電極
130、130-4、130a-4、130-5、130a-5:対向電極
130r-5:縮径部
130α-5:狭窄部
130β-5:吸気開口部
131、132:環状対向電極
131-4、131a-4:主環状電極
132-4、132a-4:副環状電極
139:ブリッジ
140-4:イオン風ガイド部材
140r-4:縮径部
143-4:噴出口
140S-4:拡径部
141-4:狭窄部
142-4:吸気開口部
145-4:スプリッター
P:先端部
100, 100-4, 100-5: ion / ozone wind generator 110: electrode pair 120: acicular electrodes 120-4, 120a-4, 120-5, 120a-5: discharge electrodes 130, 130-4, 130a -4, 130-5, 130a-5: counter electrode 130r-5: reduced diameter portion 130α-5: constricted portion 130β-5: intake opening 131, 132: annular counter electrode 131-4, 131a-4: main annular Electrodes 132-4, 132a-4: Sub-annular electrode 139: Bridge 140-4: Ion wind guide member 140r-4: Reduced diameter portion 143-4: Jet outlet 140S-4: Expanded diameter portion 141-4: Narrowed portion 142 -4: intake opening 145-4: splitter P: tip

Claims (4)

  1.  針状の放電電極と、対向電極と、を有する電極対を備え、前記放電電極と前記対向電極との間に電位差を発生させてコロナ放電によりイオン、オゾン及びイオン風を発生させるよう構成されており、
     前記対向電極は、吸気口となる環状の開口部と、当該対向電極の内径が最小となる環状の狭窄部と、当該開口部側から当該狭窄部へ向かって当該対向電極の内径が縮径する縮径部と、当該縮径部により形成されるイオン風が通過可能な内部空間を有する筒状であり、且つ、錐台状又はラッパ状の構造体であり、
     前記狭窄部は、前記イオン風が通過可能に開口されており、
     前記開口部の径Rβ及び前記狭窄部の径Rαが、Rβ>Rαであり、
     前記放電電極は、前記狭窄部の存在する面を貫通しない状態で前記内部空間に挿入され、前記対向電極の内壁面及び前記狭窄部と対向し得るよう構成されている
    ことを特徴とする、イオン、オゾン又はイオン風発生装置。
    An electrode pair having a needle-like discharge electrode and a counter electrode is provided, and is configured to generate a potential difference between the discharge electrode and the counter electrode to generate ions, ozone, and ion wind by corona discharge. And
    The counter electrode has an annular opening serving as an air inlet, an annular constriction having a minimum inner diameter of the counter electrode, and an inner diameter of the counter electrode decreasing from the opening toward the constriction. It is a cylindrical shape having a reduced diameter portion and an internal space through which the ionic wind formed by the reduced diameter portion can pass, and is a frustum-like or trumpet-like structure.
    The constriction is opened to allow the ion wind to pass through,
    The diameter R β of the opening and the diameter R α of the constriction are R β > R α ,
    The discharge electrode is configured to be inserted into the internal space without penetrating the surface where the constriction exists, and to be opposed to the inner wall surface of the counter electrode and the constriction. , Ozone or ion wind generator.
  2.  前記放電電極の針軸と、前記対向電極の筒軸と、が略一致する、請求項1記載のイオン、オゾン又はイオン風発生装置。 2. The ion, ozone or ion wind generator according to claim 1, wherein a needle axis of the discharge electrode and a cylinder axis of the counter electrode substantially coincide with each other.
  3.  前記対向電極は、筒側部が開口されていない、請求項1又は2に記載のイオン、オゾン又はイオン風発生装置。 The ion, ozone, or ion wind generating device according to claim 1 or 2, wherein the counter electrode is not opened in a cylinder side portion.
  4.  前記対向電極は、前記狭窄部から前記開口部とは異なる側へ向かって当該対向電極の内径が拡径する拡径部を更に有する、請求項1~3のいずれかに記載のイオン、オゾン又はイオン風発生装置。 The ion, ozone, or ozone according to any one of claims 1 to 3, wherein the counter electrode further includes a diameter-enlarged portion in which an inner diameter of the counter electrode increases from the narrowed portion toward a side different from the opening. Ion wind generator.
PCT/JP2015/086427 2015-01-06 2015-12-25 Ion/ozone wind generating device and method WO2016111212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015001192A JP5778361B1 (en) 2015-01-06 2015-01-06 Ion / ozone wind generator and method
JP2015-001192 2015-01-06

Publications (1)

Publication Number Publication Date
WO2016111212A1 true WO2016111212A1 (en) 2016-07-14

Family

ID=54192742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086427 WO2016111212A1 (en) 2015-01-06 2015-12-25 Ion/ozone wind generating device and method

Country Status (3)

Country Link
JP (1) JP5778361B1 (en)
TW (1) TW201634062A (en)
WO (1) WO2016111212A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703671B2 (en) * 2018-01-29 2020-06-03 グレンカル・テクノロジー株式会社 Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device
WO2023166549A1 (en) * 2022-03-01 2023-09-07 三菱電機株式会社 Sterilization or virus inactivation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183457U (en) * 1984-11-01 1986-06-02
JPH05161859A (en) * 1991-12-16 1993-06-29 Akai Electric Co Ltd Air cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183457U (en) * 1984-11-01 1986-06-02
JPH05161859A (en) * 1991-12-16 1993-06-29 Akai Electric Co Ltd Air cleaner

Also Published As

Publication number Publication date
JP2016123769A (en) 2016-07-11
JP5778361B1 (en) 2015-09-16
TW201634062A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
JP5461736B1 (en) Ion / ozone wind generator and method
JP4551977B1 (en) Ion / ozone wind generator
WO2016111211A1 (en) Ion/ozone wind generating device and method
WO2017169153A1 (en) Ion wind generating device
JP5613347B1 (en) Ion / ozone wind generator and method
CN106063383A (en) Air disinfection and pollution removal method and apparatus
WO2016111212A1 (en) Ion/ozone wind generating device and method
WO2016190118A1 (en) Device for imparting negative charge and discharging atomized liquid
KR101572156B1 (en) Plasma generator, and plasma generating method
CN102188742A (en) Bactericidal deodorizing device and refrigerator
JP3155540U (en) Pressurized sterilizer / deodorizer
CN202069905U (en) Sterilizing and deodorizing device and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877084

Country of ref document: EP

Kind code of ref document: A1