JP6703671B2 - Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device - Google Patents

Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device Download PDF

Info

Publication number
JP6703671B2
JP6703671B2 JP2018012755A JP2018012755A JP6703671B2 JP 6703671 B2 JP6703671 B2 JP 6703671B2 JP 2018012755 A JP2018012755 A JP 2018012755A JP 2018012755 A JP2018012755 A JP 2018012755A JP 6703671 B2 JP6703671 B2 JP 6703671B2
Authority
JP
Japan
Prior art keywords
electrode
organic substance
decomposition treatment
substance decomposition
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018012755A
Other languages
Japanese (ja)
Other versions
JP2019129902A (en
JP2019129902A5 (en
Inventor
雅仁 中石
雅仁 中石
紘司 入江
紘司 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLENCAL TECHNOLOGY CO., LTD.
Original Assignee
GLENCAL TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018012755A priority Critical patent/JP6703671B2/en
Application filed by GLENCAL TECHNOLOGY CO., LTD. filed Critical GLENCAL TECHNOLOGY CO., LTD.
Priority to AU2019210824A priority patent/AU2019210824B2/en
Priority to CA3089521A priority patent/CA3089521C/en
Priority to EP19743223.0A priority patent/EP3747563B1/en
Priority to CN201980010543.2A priority patent/CN111801172B/en
Priority to KR1020207024736A priority patent/KR102515756B1/en
Priority to NZ766809A priority patent/NZ766809A/en
Priority to US16/965,598 priority patent/US11273474B2/en
Priority to ES19743223T priority patent/ES2951871T3/en
Priority to PCT/JP2019/002989 priority patent/WO2019146799A2/en
Publication of JP2019129902A publication Critical patent/JP2019129902A/en
Publication of JP2019129902A5 publication Critical patent/JP2019129902A5/ja
Application granted granted Critical
Publication of JP6703671B2 publication Critical patent/JP6703671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L11/00Methods specially adapted for refuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/02Corona rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、有機物分解処理用イオン生成装置及び有機物分解処理装置に関し、例えば野菜くず等の生ごみを分解処理する有機物分解処理装置に適用して好適なものである。 The present invention relates to an ion generator for organic substance decomposition treatment and an organic substance decomposition treatment device, and is suitable for application to, for example, an organic substance decomposition treatment device for decomposing raw garbage such as vegetable waste.

従来、生ごみ等の有機物を分解する際に活性酸素種を用いる、生ごみ処理装置が知られている(例えば、特許文献1参照)。特許文献1には、例えば、活性酸素種として、スーパーオキシド(O・−)や、ヒドロキシラジカル(・OH)、過酸化水素(H)、一重化酸素()、オゾン(O)等を使用して、格納槽内に投入された生ごみを分解処理することが開示されている。 BACKGROUND ART Conventionally, there is known a food waste treatment device that uses an active oxygen species when decomposing organic substances such as food waste (for example, see Patent Document 1). In Patent Document 1, for example, as active oxygen species, superoxide (O 2 ·−), hydroxy radical (·OH), hydrogen peroxide (H 2 O 2 ), monovalent oxygen ( 1 O 2 ), ozone. It is disclosed that food waste put into the storage tank is decomposed by using (O 3 ).

このような、活性酸素種を使用した生ごみ処理装置は、バクテリアを使用する生ごみ処理装置に比べて、分解処理時にメタンガスが発生し難く、腐敗臭を抑制できる等の利点を有している。 Such a garbage treatment device using active oxygen species has advantages such as methane gas being less likely to be generated during the decomposition treatment and suppressing a rotten odor, as compared with a garbage treatment device using bacteria. ..

特開2017−189413号公報JP, 2017-189413, A

ところで、このような生ごみ処理装置に投入される生ごみの中には、紙材等の生ごみ以外の他の種々の有機物が混入している恐れもあるため、分別等の手間を考慮すると、従来よりも分解処理能力が高い有機物分解処理装置の開発が望まれる。また、分解処理に要する時間の更なる短縮化等の観点からも、分解処理能力の向上が望まれている。 By the way, since there is a possibility that various organic substances other than the raw garbage such as paper materials may be mixed in the raw garbage thrown into such a raw garbage processing apparatus, considering the labor such as separation, etc. Therefore, it is desired to develop an organic substance decomposition treatment device having a higher decomposition treatment capacity than before. Further, from the viewpoint of further shortening the time required for the decomposition treatment, it is desired to improve the decomposition treatment capacity.

そこで、本発明は、有機物の分解処理能力を、従来よりも一段と向上させることができる有機物分解処理用イオン生成装置及び有機物分解処理装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an ion generator for organic substance decomposition treatment and an organic substance decomposition treatment device capable of further improving the decomposition treatment ability of organic substances as compared with the prior art.

本発明に係る有機物分解処理用イオン生成装置は、格納槽内に格納された有機物を分解処理するためのイオンを生成する有機物分解処理用イオン生成装置であって、対向配置された針電極及び平板電極と、正極性の直流電圧を前記針電極に印加する直流電源部と、を備え、前記直流電源部には、前記直流電圧を所定の電圧値に設定し、大気圧中で前記針電極及び前記平板電極の間に正極性コロナ放電を発生させる電圧制御部を有する、ものである。 The ion generator for organic matter decomposition treatment according to the present invention is an ion generator for organic matter decomposition treatment for generating ions for decomposing and treating organic matter stored in a storage tank, which is a needle electrode and a flat plate arranged opposite to each other. An electrode and a direct current power supply unit for applying a positive direct current voltage to the needle electrode, wherein the direct current power supply unit sets the direct current voltage to a predetermined voltage value, and the needle electrode and A voltage control unit for generating a positive corona discharge is provided between the flat plate electrodes.

また、本発明に係る有機物分解処理装置は、上述した有機物分解処理用イオン生成装置が、前記格納槽に設けられたものである。 Moreover, the organic substance decomposition processing apparatus which concerns on this invention is provided with the said ion generation apparatus for organic substance decomposition processing in the said storage tank.

本発明によれば、有機物の分解処理能力が高いオキソニウムイオンを生成できることから、当該オキソニウムイオンを使用することで、有機物の分解処理能力を、従来よりも一段と向上させることができる。 According to the present invention, an oxonium ion having a high ability to decompose an organic substance can be generated. Therefore, by using the oxonium ion, the ability to decompose an organic substance can be further improved as compared with the conventional case.

本発明による有機物分解処理装置の全体構成を示した概略図である。It is a schematic diagram showing the whole organic substance decomposition processing equipment by the present invention. 図2Aは、電極構造体の構成を示す概略図であり、図2Bは、電極構造体の正面構成を示す概略図である。FIG. 2A is a schematic diagram showing the configuration of the electrode structure, and FIG. 2B is a schematic diagram showing the front configuration of the electrode structure. 電子親和力の説明に供するグラフである。It is a graph used for description of electron affinity. 蒸発速度vと気化熱Lとの関係を説明する際に用いるグラフである。It is a graph for use in describing the relationship between the evaporation rate v and the heat of vaporization L V. オキソニウムイオンの発生位置から距離x離れた位置でのオキソニウムイオンの個数密度を示したグラフである。6 is a graph showing the number density of oxonium ions at a position separated by a distance x from the generation position of oxonium ions. オキソニウムイオンを照射した場合と、マイナスイオン及びオゾンを照射した場合と、マイナスイオンのみを照射した場合と、イオン等を照射しなかった場合とについて、それぞれ含有高分子吸収体の蒸発質量を測定した測定結果を示すグラフである。Evaporation mass of the contained polymer absorber is measured for the case of irradiation with oxonium ion, the case of irradiation with negative ion and ozone, the case of irradiation with only negative ion, and the case without irradiation of ion etc. It is a graph which shows the measured result. オキソニウムイオンを照射した場合と、マイナスイオン及びオゾンを照射した場合と、マイナスイオンのみを照射した場合と、イオン等を照射しなかった場合とについて、それぞれ含有高分子吸収体の残存質量を測定した測定結果を示すグラフである。Measure the remaining mass of the polymer absorber contained in the case of irradiation with oxonium ions, in the case of irradiation with negative ions and ozone, in the case of irradiation with only negative ions, and in the case without irradiation of ions. It is a graph which shows the measured result. 含有高分子吸収体から50cm離れた位置からオキソニウムイオンを照射した場合と、イオン等を照射しなかった場合とについて、それぞれ含有高分子吸収体の蒸発質量を測定した測定結果を示すグラフである。It is a graph which shows the measurement result which each measured the evaporation mass of the contained polymer absorber about the case where it was irradiated with oxonium ion from the position 50 cm away from the contained polymer absorber, and the case where it was not irradiated with ions and the like. .. 含有高分子吸収体から50cm離れた位置からオキソニウムイオンを照射した場合と、イオン等を照射しなかった場合とについて、それぞれ含有高分子吸収体の残存質量を測定した測定結果を示すグラフである。It is a graph which shows the measurement result which measured the residual mass of each containing polymer absorber about the case where it was irradiated with oxonium ion from the position 50 cm away from the containing polymer absorber, and the case where it was not irradiated with ions and the like. .. オキソニウムイオンを照射した場合と、イオン等を照射しなかった場合とについて、それぞれ水の蒸発質量を測定した測定結果を示すグラフである。6 is a graph showing the measurement results obtained by measuring the evaporation mass of water in the case of irradiation with oxonium ions and in the case of not irradiation with ions. オキソニウムイオンを照射した場合と、イオン等を照射しなかった場合とについて、それぞれ水の残存質量を測定した測定結果を示すグラフである。It is a graph which shows the measurement result which each measured the residual mass of water in the case where it was irradiated with oxonium ion, and the case where it was not irradiated with ion.

以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<本発明の有機物分解処理装置の構成>
図1は、本発明による有機物分解処理装置1の全体構成を示す概略図である。有機物分解処理装置1は、野菜くず等の生ごみの他、高分子体や紙材等の様々な有機物を、オキソニウムイオンを用いて分解処理できる構成を有する。オキソニウムイオンは、例えばヒドロニウムイオン、オキサトリキナン、オキサトリキナセン等であり、プラスのイオンである。この場合、有機物分解処理装置1は、有機物が投入される格納槽2と、送風機3と、有機物分解処理用イオン生成装置4と、を備えている。
<Structure of organic substance decomposition processing apparatus of the present invention>
FIG. 1 is a schematic diagram showing the overall configuration of an organic substance decomposition processing apparatus 1 according to the present invention. The organic substance decomposition processing apparatus 1 has a configuration capable of decomposing various organic substances such as polymer and paper materials in addition to food waste such as vegetable waste using oxonium ions. The oxonium ion is, for example, a hydronium ion, oxatriquinane, oxatriquinacene, or the like, which is a positive ion. In this case, the organic substance decomposition processing device 1 includes a storage tank 2 into which organic substances are charged, a blower 3, and an organic substance decomposition processing ion generation device 4.

分解処理対象となる有機物は、格納槽2の投入口2aから内部に投入されて、格納槽2内に格納される。分解処理後の有機物は、格納槽2の排出口2bから外部に排出することができる。この場合、有機物分解処理装置1は、図示しない加熱器及び攪拌機を内部に備えており、有機物分解処理用イオン生成装置4で生成されたオキソニウムイオンを格納槽2内の有機物に照射しつつ、有機物を加熱及び攪拌することで有機物の水分を蒸発させて分解処理する。 The organic substance to be decomposed is charged into the storage tank 2 through the charging port 2a and stored in the storage tank 2. The organic matter after the decomposition process can be discharged to the outside from the discharge port 2b of the storage tank 2. In this case, the organic substance decomposition processing apparatus 1 is internally provided with a heater and a stirrer (not shown), and while irradiating the organic matter in the storage tank 2 with the oxonium ions generated by the organic substance decomposition processing ion generation device 4, By heating and stirring the organic material, the water content of the organic material is evaporated and decomposed.

送風機3及び有機物分解処理用イオン生成装置4は格納槽2の所定位置にそれぞれ設置されており、これら送風機3及び有機物分解処理用イオン生成装置4は配管5により接続されている。送風機3は、外気を吸引し、吸引した気体を、配管5を介して有機物分解処理用イオン生成装置4に送出する。送風機3から有機物分解処理用イオン生成装置4内に送出された気体は、有機物分解処理用イオン生成装置4の内部を通過して格納槽2内に送出される。 The blower 3 and the organic substance decomposing ion generating device 4 are installed at predetermined positions in the storage tank 2, and the blower 3 and the organic substance decomposing ion generating device 4 are connected by a pipe 5. The blower 3 sucks outside air and sends the sucked gas to the organic substance decomposing/processing ion generator 4 through the pipe 5. The gas delivered from the blower 3 into the organic substance decomposing treatment ion generating device 4 passes through the inside of the organic substance decomposing treatment ion producing device 4 and is delivered into the storage tank 2.

有機物分解処理用イオン生成装置4は、後述する電極構造体が内部に設置された筐体8と、直流電源部9と、を備えている。筐体8には、配管5に接続され、かつ送風機3から排出された気体を筐体8内に導入する導入口(図示せず)が設けられている。また、筐体8には、格納槽2と連通し、かつ送風機3からの気体を格納槽2内に排出する排出口(図示せず)が設けられている。 The ion generator 4 for organic substance decomposition processing includes a housing 8 in which an electrode structure described later is installed, and a DC power supply unit 9. The housing 8 is provided with an inlet (not shown) that is connected to the pipe 5 and that introduces the gas discharged from the blower 3 into the housing 8. Further, the housing 8 is provided with an outlet (not shown) communicating with the storage tank 2 and discharging the gas from the blower 3 into the storage tank 2.

筐体8は、内部に密封空間を形成しており、この密閉空間に送風機3からの気体が導入されることで、導入口から電極構造体(後述する)を経由して排出口に向けて気体が流れる気流を形成する。これにより、筐体8は、内部で生成されているオキソニウムイオンを排出口から格納槽2内に送出させる。 The housing 8 forms a sealed space inside, and when gas from the blower 3 is introduced into this sealed space, it is directed from the inlet to the outlet via the electrode structure (described later). It forms an air flow through which gas flows. As a result, the casing 8 causes the internally generated oxonium ions to be delivered from the discharge port into the storage tank 2.

直流電源部9は、正極性の直流電圧を生成し、これを筐体8内の電極構造体に印加する。直流電源部9は、直流電圧の電圧値を制御可能な電圧制御部10を有しており、電圧制御部10によって直流電圧を所定の電圧値に設定する。これにより、電圧制御部10は、電極構造体にて正極性コロナ放電を発生させ、電極構造体でオキソニウムイオンを生成させることができる。この際、電圧制御部10は、有機物の分解処理能力が高いオキソニウムイオンを生成するために、直流電圧の電圧値を最適な値に設定している。 The DC power supply unit 9 generates a positive DC voltage and applies it to the electrode structure inside the housing 8. The DC power supply unit 9 has a voltage control unit 10 capable of controlling the voltage value of the DC voltage, and the voltage control unit 10 sets the DC voltage to a predetermined voltage value. Thereby, the voltage control unit 10 can generate positive corona discharge in the electrode structure and generate oxonium ions in the electrode structure. At this time, the voltage control unit 10 sets the voltage value of the DC voltage to an optimum value in order to generate oxonium ions having a high decomposition treatment capacity for organic substances.

<電極構造体について>
次に、有機物分解処理用イオン生成装置4の筐体8内に設置される電極構造体について以下説明する。図2Aに示すように、電極構造体11は、針電極12と平板電極13と電極支持部材14とを備えている。電極支持部材14は、例えばポリ塩化ビニール等の絶縁材料からなり、円筒状に形成されており、針電極12及び平板電極13を支持している。
<About electrode structure>
Next, the electrode structure installed in the housing 8 of the organic substance decomposing treatment ion generator 4 will be described below. As shown in FIG. 2A, the electrode structure 11 includes a needle electrode 12, a plate electrode 13, and an electrode support member 14. The electrode support member 14 is made of an insulating material such as polyvinyl chloride, and is formed in a cylindrical shape, and supports the needle electrode 12 and the flat plate electrode 13.

なお、本実施形態では、筒状でなる電極支持部材として、円筒状でなる電極支持部材14を適用した場合について述べたが、本発明はこれに限らず、例えば四辺や多角等の角筒状でなる電極支持部材を適用してもよい。 In addition, although the case where the cylindrical electrode support member 14 is applied as the cylindrical electrode support member has been described in the present embodiment, the present invention is not limited to this, and for example, a square tubular shape such as four sides or polygons. You may apply the electrode support member which consists of.

電極支持部材14は、筒状内壁部14aに囲まれた中空空間ER1内で針電極12及び平板電極13が対向配置されるように支持している。電極支持部材14は、筐体8(図1)の、図示しない導入口及び排出口の間に配置されている。これにより、送風機3からの気体が導入口から筐体8内に導入されると、中空空間ER1内の中心軸Xに沿って一方向(例えば、中心軸Xの矢印方向)に流れる気流が、中空空間ER1内に形成される。 The electrode support member 14 supports the needle electrode 12 and the flat plate electrode 13 so as to face each other in the hollow space ER1 surrounded by the cylindrical inner wall portion 14a. The electrode support member 14 is arranged between the introduction port and the discharge port (not shown) of the housing 8 (FIG. 1). Thereby, when the gas from the blower 3 is introduced into the housing 8 through the inlet, the airflow flowing in one direction along the central axis X in the hollow space ER1 (for example, the arrow direction of the central axis X), It is formed in the hollow space ER1.

より具体的には、中空空間ER1の中心軸X上に、筐体8の導入口及び排出口が配置されるように、電極支持部材14が筐体8内に配置されることが望ましい。特に、電極支持部材14の中空空間ER1における開口端部を筐体8の排出口に向けることで、中空空間ER1から排出口を直線的に結ぶ気流を形成できる。これにより、中空空間ER1内で生成されたオキソニウムイオン(後述する)が、筐体8の内壁等に当たることを抑制でき、オキソニウムイオンを排出口に向けて直接導くことができる。 More specifically, it is desirable that the electrode support member 14 is arranged in the housing 8 so that the inlet and the outlet of the housing 8 are arranged on the central axis X of the hollow space ER1. In particular, by directing the open end of the electrode support member 14 in the hollow space ER1 toward the discharge port of the housing 8, an airflow that linearly connects the discharge port from the hollow space ER1 can be formed. As a result, oxonium ions (described later) generated in the hollow space ER1 can be prevented from hitting the inner wall of the housing 8 or the like, and the oxonium ions can be directly guided to the discharge port.

電極支持部材14は、図2Bに示すように、例えば、筒状内壁部14a間の内部直径Yは、25±5mm、外部直径Yは、32±5mmに選定されている。 As shown in FIG. 2B, the electrode support member 14 is selected such that the inner diameter Y 2 between the cylindrical inner wall portions 14 a is 25±5 mm and the outer diameter Y 3 is 32±5 mm.

針電極12と平板電極13は、図2Bに示すように、中空空間ER1の中心軸Xに対し直交する1つの直交線Y上に対向配置されており、針電極12の針状先端部12aの直下に平板電極13の平板部13bが配置されている。針電極12は、例えばタングステン等の金属材料により形成され、直径が0.1〜2mmに選定されている。針電極12は、電極支持部材14の筒状内壁部14aを貫通するように設けられており、針状先端部12aが中空空間ER1内に露出している。 As shown in FIG. 2B, the needle electrode 12 and the flat plate electrode 13 are arranged so as to oppose each other on one orthogonal line Y orthogonal to the central axis X of the hollow space ER1, and the needle-shaped tip portion 12a of the needle electrode 12 is provided. The flat plate portion 13b of the flat plate electrode 13 is arranged immediately below. The needle electrode 12 is formed of a metal material such as tungsten and has a diameter of 0.1 to 2 mm. The needle electrode 12 is provided so as to penetrate the cylindrical inner wall portion 14a of the electrode support member 14, and the needle-shaped tip portion 12a is exposed in the hollow space ER1.

平板電極13は、例えば、ステンレス等の金属材料により形成されており、棒状に形成された支持部13aと、支持部13aの端部に形成された平板部13bとを備えている。平板部13bは、直径5〜20mm、厚さ1.5±1mmの円盤状に形成されている。支持部13aは、電極支持部材14の筒状内壁部14aを貫通するように設けられており、平板部13bを中空空間ER1内に露出させる。 The plate electrode 13 is formed of, for example, a metal material such as stainless steel, and includes a rod-shaped support portion 13a and a flat plate portion 13b formed at an end of the support portion 13a. The flat plate portion 13b is formed in a disk shape having a diameter of 5 to 20 mm and a thickness of 1.5±1 mm. The support portion 13a is provided so as to penetrate the cylindrical inner wall portion 14a of the electrode support member 14, and exposes the flat plate portion 13b in the hollow space ER1.

なお、本実施形態においては、針電極12と、平板電極13の支持部13aとを、筒状内壁部14aを貫通するように設けた場合について述べたが、本発明はこれに限らない。例えば、針電極12の根本部先端を筒状内壁部14aの表面に固定し、針電極12を筒状内壁部14aに対して非貫通で設けるようにしても良い。また、平板電極13についても、支持部13a又は平板部13bを筒状内壁部14aの表面に固定し、筒状内壁部14aに対して非貫通で設けるようにしても良い。 In the present embodiment, the needle electrode 12 and the supporting portion 13a of the flat plate electrode 13 are provided so as to penetrate the cylindrical inner wall portion 14a, but the present invention is not limited to this. For example, the tip of the root portion of the needle electrode 12 may be fixed to the surface of the cylindrical inner wall portion 14a, and the needle electrode 12 may be provided so as not to penetrate the cylindrical inner wall portion 14a. Also, with respect to the flat plate electrode 13, the supporting portion 13a or the flat plate portion 13b may be fixed to the surface of the cylindrical inner wall portion 14a so as not to penetrate the cylindrical inner wall portion 14a.

針電極12の針状先端部12aと、この針状先端部12aに対向した平板電極13の平板部13bとの電極間距離Yは、例えば20mmに選定されている。なお、電極間距離Yは、20mmには限らず、後述する正極性の直流電圧の電圧値(kV)と、電界強度(kV/mm)とで基本的に規定される。 The inter-electrode distance Y 1 between the needle-shaped tip portion 12a of the needle electrode 12 and the flat plate portion 13b of the flat plate electrode 13 facing the needle-shaped tip portion 12a is selected to be 20 mm, for example. The inter-electrode distance Y 1 is not limited to 20 mm, and is basically defined by the voltage value (kV) of a positive DC voltage described later and the electric field strength (kV/mm).

ここで、図2Aに示すように、電極支持部材14の外部に露出した針電極12の根元部は、電圧制御部10に接続されている。また、この実施形態の場合、平板電極13はアースに接続されている。なお、平板電極13についてはアースに接続せずに、電圧制御部10に接続し、負極性の直流電圧が印加されて負極として機能させてもよい。 Here, as shown in FIG. 2A, the root portion of the needle electrode 12 exposed to the outside of the electrode support member 14 is connected to the voltage control unit 10. Further, in the case of this embodiment, the plate electrode 13 is connected to the ground. The flat plate electrode 13 may be connected to the voltage control unit 10 without being connected to the ground, and a negative DC voltage may be applied thereto to function as the negative electrode.

平板電極13をアースに接続した構成の場合、電圧制御部10が針電極12に印加する正極性の直流電圧として、電界強度が0.25〜1.5kV/mmであり、かつ電圧値が5〜30kVであることが望ましい。正極性の直流電圧の電界強度を0.25〜1.5kV/mmとすることで、電極間距離Yにおいて正極性コロナ放電を安定して発生させることができる。 In the case of the configuration in which the plate electrode 13 is connected to the ground, the electric field strength is 0.25 to 1.5 kV/mm and the voltage value is 5 as the positive DC voltage applied to the needle electrode 12 by the voltage control unit 10. It is desirable that the voltage is ˜30 kV. By setting the electric field strength of the positive DC voltage to 0.25 to 1.5 kV/mm, the positive corona discharge can be stably generated at the inter-electrode distance Y 1 .

直流電圧の電界強度を0.25〜1.5kV/mmとしたときでも、正極性の直流電圧の電圧値が5kV未満のときには、有機物を分解処理するのに必要となる充分なオキソニウムイオンを生成し難い。また、正極性の直流電圧の電圧値が30kV超のときには、放電の安定性を保つための条件が、電圧値が30kV以下の時よりも非常に厳しくなり、メンテナンス等の観点から、実用性が低下する恐れがある。よって、直流電圧の電界強度を0.25〜1.5kV/mmとしつつ、正極性の直流電圧の電圧値を5〜30kVとすることが望ましい。 Even when the electric field strength of the DC voltage is 0.25 to 1.5 kV/mm, when the voltage value of the DC voltage of the positive polarity is less than 5 kV, sufficient oxonium ions necessary for decomposing the organic matter are generated. Hard to generate. In addition, when the voltage value of the positive DC voltage is more than 30 kV, the condition for maintaining the stability of the discharge becomes much more severe than when the voltage value is 30 kV or less, which is not practical from the viewpoint of maintenance. It may decrease. Therefore, it is desirable to set the voltage value of the positive polarity DC voltage to 5 to 30 kV while setting the electric field strength of the DC voltage to 0.25 to 1.5 kV/mm.

このように、上述した電圧値の直流電圧が針電極12に印加されることで、大気圧中にある針電極12及び平板電極13の間には定常不平等電界が発生し、正極性コロナ放電が発生する。これにより、放電空間となる中空空間ER1内にオキソニウムイオンを生成させることができる。 As described above, when the DC voltage having the above-described voltage value is applied to the needle electrode 12, a steady non-uniform electric field is generated between the needle electrode 12 and the flat plate electrode 13 in the atmospheric pressure, and the positive corona discharge is generated. Occurs. As a result, oxonium ions can be generated in the hollow space ER1 serving as the discharge space.

真空中の放電と大気中の放電の違いについて述べる。同じ針電極12と平板電極13を使用するとし、kV/mmを固定して、電圧と電極間距離を変えた場合について考察する。真空中であれば、電界強度分布は相似形になる。しかしながら、大気中の場合には、微量に存在する正負イオンの影響を受けるため、電界強度分布は相似形になるとは限らない。電極間距離が大きくなるほど、正負イオンの影響を大きく受けるため、放電の安定性を確保することが難しくなる。 The difference between vacuum discharge and atmospheric discharge is described. Consider the case where the same needle electrode 12 and flat plate electrode 13 are used and kV/mm is fixed and the voltage and the distance between the electrodes are changed. In vacuum, the electric field strength distribution has a similar shape. However, in the atmosphere, the electric field intensity distribution is not always similar because it is affected by a small amount of positive and negative ions. As the distance between the electrodes increases, the influence of positive and negative ions is increased, so that it becomes difficult to secure the stability of discharge.

ここで、放電空間内にイオンを生成させる主な反応の1つとして、分子イオンの生成反応が挙げられる。気体分子Mが電離して、分子イオンMと電子eに分かれるためには、気体分子Mのイオン化エネルギー以上のエネルギーを、気体分子Mに与える必要がある。大気圧下の放電空間において、このエネルギーは、高電界のグロー領域で加速される電子の衝突によって与えられる。 Here, as one of the main reactions that generate ions in the discharge space, there is a generation reaction of molecular ions. In order for the gas molecule M to be ionized and separated into the molecular ion M + and the electron e , it is necessary to give the gas molecule M more energy than the ionization energy of the gas molecule M. In the discharge space under atmospheric pressure, this energy is given by the collision of electrons accelerated in the glow region of high electric field.

放電により生成された一次イオンは、自らの極性に従い電気力線に沿って電界中を進む。平板電極13に向かう一次イオンは、平均自由行程を進むと、放電空間内に存在する気体や中性ラジカル種A・、[M−B]・、B・に由来する放電副生成物と衝突して様々なイオン分子反応を起こし、より長寿命なイオン種に変化する。この過程はドリフト領域を移動しながら継続して起こり、逐次的なイオン分子反応を経て、最終イオンが生成される。 The primary ions generated by the discharge travel in the electric field along the lines of electric force according to their polarities. The primary ions traveling toward the plate electrode 13 collide with the gas existing in the discharge space and the discharge by-products derived from the neutral radical species A., [MB]. Cause various ionic molecule reactions, and change to longer-lived ionic species. This process continuously occurs while moving in the drift region, and the final ions are generated through sequential ion molecule reactions.

大気中での正極性コロナ放電の場合、放電条件に依らずオキソニウムイオンが最終イオンとなる。大気中での正極性コロナ放電におけるオキソニウムイオンの生成とその発展過程は、各素反応の速度定数の実測値に基づいて予測されている。これによると、例えば、オキソニウムイオンのうちヒドロニウムイオンは、グロー領域での電離によって生成されるN +・とO +・を一次イオンとし、主にHOが関与する発展過程を経て生成される。 In the case of positive corona discharge in the atmosphere, oxonium ions are the final ions regardless of the discharge conditions. The generation and evolution process of oxonium ions in a positive corona discharge in the atmosphere are predicted based on the measured values of the rate constants of elementary reactions. According to this, for example, among oxonium ions, hydronium ions have N 2 and O 2 generated by ionization in the glow region as primary ions, and undergo a development process mainly involving H 2 O. Is generated through.

<オキソニウムイオンの酸化力について>
次にオキソニウムイオンの酸化力について説明する。原子は、放出したエネルギーの分だけ安定になる。電子親和力は、最外殻に電子を1つ取り込む際に放出されるエネルギーである。電子親和力が大きいということは、対象物から電子を奪い自身が安定になろうとする傾向が高いということを示す。すなわち、電子親和力が大きいということは、酸化力が強いと言える。
<Oxidizing power of oxonium ions>
Next, the oxidizing power of oxonium ions will be described. Atoms become stable by the amount of energy they release. The electron affinity is the energy released when one electron is taken into the outermost shell. A large electron affinity means that there is a high tendency for the electron to be taken from the object and to stabilize itself. That is, it can be said that a large electron affinity means a strong oxidizing power.

図3は、原子番号と電子親和力の関係を示したグラフである。同一周期内で比較すると、フッ素(F)や塩素(Cl)のハロゲン元素の電子親和力が極大になっている。塩素の電子親和力は非常に大きく、3.617eVである。通常イオン化する際は1価の陰イオンとなる。ここで、ある原子の1価の陽イオンの電子親和力について考える。原子の第1イオン化エネルギーとは、その原子の最外殻から電子を1つ奪い取って、1価の陽イオンにするのに必要なエネルギーを示す。すなわち、「ある原子の1価の陽イオンの電子親和力」と「その原子の第1イオン化エネルギー」とは等しいと言える。 FIG. 3 is a graph showing the relationship between atomic number and electron affinity. When compared within the same period, the electron affinity of halogen elements such as fluorine (F) and chlorine (Cl) is maximized. The electron affinity of chlorine is very large, 3.617 eV. When it is usually ionized, it becomes a monovalent anion. Here, consider the electron affinity of a monovalent cation of an atom. The first ionization energy of an atom refers to the energy required to remove one electron from the outermost shell of the atom to form a monovalent cation. That is, it can be said that “the electron affinity of a monovalent cation of an atom” and “the first ionization energy of the atom” are equal.

同一周期では、希ガスの第1イオン化エネルギーは極めて大きいが、例えば放電等では、希ガスをイオン化することは難しい。希ガスを除いて、水素より第1イオン化エネルギーが高い元素は、窒素、酸素、フッ素、塩素しかない。フッ素と塩素は、基本的に単体では存在しない。窒素、酸素は、例えば放電等では1価の陽イオンにはならない。よって、1価の陽イオンの電子親和力としては、水素イオンが最大となる。 In the same cycle, the first ionization energy of the rare gas is extremely large, but it is difficult to ionize the rare gas by, for example, discharging. Except for rare gases, the only elements having a higher first ionization energy than hydrogen are nitrogen, oxygen, fluorine and chlorine. Basically, fluorine and chlorine do not exist alone. Nitrogen and oxygen do not become monovalent cations, for example, in discharge. Therefore, hydrogen ions have the highest electron affinity of monovalent cations.

例えば、オキソニウムイオンのうちヒドロニウムイオンは、HとHOの結合であるから、ヒドロニウムイオンの電子親和力(酸化力)は、水素イオンの電子親和力と等しい約13.6eVであると考えられる。この値から、ヒドロニウムイオンの酸化力は、活性酸素種の酸化還元電位と比べて遥かに高いと言える。 For example, among oxonium ions, a hydronium ion is a bond between H + and H 2 O, so that the electron affinity (oxidizing power) of the hydronium ion is about 13.6 eV, which is equal to the electron affinity of hydrogen ion. Conceivable. From this value, it can be said that the oxidizing power of hydronium ions is much higher than the redox potential of active oxygen species.

次に、オキソニウムイオンの酸化力の強さを確認する検証試験を行った。この検証試験では、図2A及び図2Bに示した電極構造体11を作製し、これを用いてオキソニウムイオンを生成した。ここで、タングステンで形成した直径1mmの針電極12と、ステンレスで形成した直径10mm厚さ1.5mmの円盤状の平板電極13と、内部直径Yが25mm、外部直径Yが32mm、厚さ1.4mmのポリ塩化ビニールで形成した電極支持部材14とを用いて、実施例となる電極構造体11を作製した。 Next, a verification test was conducted to confirm the strength of the oxidization power of oxonium ions. In this verification test, the electrode structure 11 shown in FIGS. 2A and 2B was produced, and oxonium ions were generated using this. Here, a needle electrode 12 made of tungsten and having a diameter of 1 mm, a disk-shaped plate electrode 13 made of stainless steel and having a diameter of 10 mm and a thickness of 1.5 mm, an inner diameter Y 2 of 25 mm, and an outer diameter Y 3 of 32 mm, a thickness of An electrode structure 11 as an example was produced using the electrode supporting member 14 made of polyvinyl chloride having a thickness of 1.4 mm.

この実施例では、電極間距離Yは20mmとし、正極性の直流電圧として針電極12に20kVを印加し、平板電極13はアースに接続した。これにより、針電極12及び平板電極13の間に放電が確認できた。この放電は、針電極12に正極性の直流電圧が印加され、平板電極13をアースに接続させていることから、正極性コロナ放電となる。 In this example, the inter-electrode distance Y 1 was 20 mm, 20 kV was applied to the needle electrode 12 as a positive DC voltage, and the plate electrode 13 was connected to ground. As a result, discharge could be confirmed between the needle electrode 12 and the flat plate electrode 13. This discharge is a positive corona discharge because a positive DC voltage is applied to the needle electrode 12 and the plate electrode 13 is connected to the ground.

そして、複数本の鉄釘を用意し、鉄釘に電極支持部材14の開口端部を近づけ、約48時間、正極性コロナ放電を発生させ続けた。また、これとは別に、比較例として、マイナスイオン・オゾン発生器(村田製作所製マイナスイオン発生器MHM305、及び村田製作所製マイナスイオン/オゾン発生器MHM306)を用意し、同様に、複数本の鉄釘に約48時間、マイナスイオン及びオゾンを照射し続けた。マイナスイオン及びオゾンを照射する際の設定条件は、同様に、複数本の鉄釘に約48時間、マイナスイオン及びオゾンを照射し続けた。印可電圧は、製品の仕様で2kVとした。 Then, a plurality of iron nails were prepared, the open end of the electrode supporting member 14 was brought close to the iron nails, and positive corona discharge was continuously generated for about 48 hours. Separately from this, as a comparative example, a negative ion/ozone generator (Murata's negative ion generator MHM305 and Murata's negative ion/ozone generator MHM306) was prepared. The nails were kept exposed to negative ions and ozone for about 48 hours. Similarly, the setting conditions for irradiating the negative ions and ozone were such that the plurality of iron nails were continuously irradiated with the negative ions and ozone for about 48 hours. The applied voltage was set to 2 kV according to the specifications of the product.

その結果、実施例では、鉄釘の表面全体が黒く変色して錆が生じていることを目視で確認した。一方、比較例では、鉄釘の表面がほぼ当初の銀色のままであり、ほとんど錆が生じていないことを目視で確認した。このように、実施例では、活性酸素種を用いた比較例に比べて、酸化力が強いことが確認できた。 As a result, in the example, it was visually confirmed that the entire surface of the iron nail turned black and rusted. On the other hand, in the comparative example, it was visually confirmed that the surface of the iron nail was almost in the original silver color and almost no rust was generated. As described above, it was confirmed that the example has a stronger oxidizing power than the comparative example using the active oxygen species.

<オキソニウムイオンの酸化力と乾燥能力の関係について>
ここで、水の沸点は100℃、気化熱は2250kJ/kgである。エタノールの沸点は80.3℃、気化熱は393kJ/kgである。エーテルの沸点は34.5℃、気化熱は327kJ/kgである。このように、水が極めて大きな気化熱を持つことが分かる。これは、水分子が極性を持つことにより、水素結合が働き、クラスターといわれる塊を作っていることが原因と考えられる。
<Relationship between Oxonium Ion Oxidizing Power and Drying Power>
Here, the boiling point of water is 100° C. and the heat of vaporization is 2250 kJ/kg. The boiling point of ethanol is 80.3°C, and the heat of vaporization is 393 kJ/kg. The boiling point of ether is 34.5°C, and the heat of vaporization is 327 kJ/kg. Thus, it can be seen that water has an extremely large heat of vaporization. It is thought that this is because water molecules have polarities and hydrogen bonds work to form clusters called clusters.

水の気化熱である2250kJ/kgを、水1分子当たりに換算すると、0.4eV程度である。クラスターとなっている水分子に、例えばヒドロニウムイオンが近づくと、13.6eVの酸化力(電子親和力)が働き、水素結合を形成している電子を剥ぎ取り、その電子を高エネルギー(13eV程度)の自由電子に変えることが期待される。高エネルギーの自由電子は、水素結合を形成している電子に衝突し、さらにその電子を高エネルギーの自由電子に変えることも期待できる。 When converting 2250 kJ/kg, which is the heat of vaporization of water, per molecule of water, it is about 0.4 eV. When, for example, a hydronium ion approaches a water molecule forming a cluster, an oxidative force (electron affinity) of 13.6 eV is exerted to strip off an electron forming a hydrogen bond, and the electron has a high energy (about 13 eV). ) Is expected to change to free electrons. It can be expected that the high-energy free electrons collide with the electrons forming hydrogen bonds and further convert the electrons into high-energy free electrons.

オキソニウムイオンを照射すると、酸化反応の連鎖が起こり、クラスター分子の大きさが小さくなることが期待できる。水クラスターの構造や安定性については、近年、実験及び計算により研究されている。計算化学では、環状のクラスター(HO)について、nを3から60までのものの構造が検討されている。環が大きくなるにつれて、酸素原子間の距離は縮まるという計算結果が得られている。 Irradiation with oxonium ions can be expected to reduce the size of cluster molecules by causing a chain of oxidation reactions. In recent years, the structure and stability of water clusters have been studied by experiments and calculations. Computational chemistry has investigated the structures of cyclic clusters (H 2 O) n with n ranging from 3 to 60. It has been obtained that the distance between oxygen atoms shrinks as the ring grows larger.

これは、水素結合により水素を受容した分子は電荷の分布が変わり水素を供与する力も増えるため、水の集合体が大きくなると、協同的に水素結合が強められるためと考えらえている。このことは、クラスターの大きさが小さくなると、気化熱が小さくなることを意味する。水分子の六量体にはいくつかの異性体が予想されており、環状、冊子型、バッグ型、かご型、プリズム型のものがほぼ同程度の安定性を持つと算出されている。七量体についても2種類のかご型の異性体が計算で得られており、八量体では環状のものと立方体型のものが算出されている。さらに巨大なクラスターとして、フラーレン型の28量体「bucky water」や、280個の水分子が正二十面体状に集まったものが、エネルギーの極小値を持つものとして計算されている。近年は ab initio法(非経験的方法)による水クラスターの解析もなされている。 It is believed that this is because the molecules that have received hydrogen by hydrogen bonding have a change in the distribution of charge and the ability to donate hydrogen, so that when the aggregate of water becomes large, the hydrogen bonding is cooperatively strengthened. This means that the heat of vaporization decreases as the size of the cluster decreases. Several isomers of the hexamers of water molecules are expected, and it is calculated that cyclic, booklet-shaped, bag-shaped, cage-shaped, and prism-shaped ones have almost the same stability. Two types of cage-type isomers have been obtained for the heptamer by calculation, and for the octamer, a cyclic type and a cubic type have been calculated. Further, as a huge cluster, a fullerene-type 28-mer “bucky water” and a cluster of 280 water molecules in an icosahedral shape are calculated as having a minimum energy value. In recent years, water clusters have also been analyzed by the ab initio method (a non-empirical method).

ここで、水の蒸発速度をvとし、気化熱をLとすると、これら蒸発速度v及び気化熱Lの関係については、クラペイロン(Clapeyron)−クラウジウス(Clausius)の式により下記のように表すことができる。 Here, the evaporation rate of the water and v, when the heat of vaporization and L V, for the relationship of the evaporation rate v and vaporization heat L V, Clapeyron (Clapeyron) - the equation of Clausius (Clausius) expressed as follows be able to.

v=v・exp(−L/kT) …(1)
ここで、vは、積分定数を示し、kBは、ボルツマン定数を示し、Tは温度を示す。
v=v O ·exp(−L V /k B T) (1)
Here, v O represents an integration constant, kB represents a Boltzmann constant, and T represents temperature.

図4は、v/vの値を、気化熱Lの関数として表したものである。図4から、気化熱Lが小さくなると、蒸発速度vが大きくなることが分かる。よって、オキソニウムイオンを照射することで、酸化反応の連鎖が起こり、クラスター分子の大きさが小さくなって気化熱が小さくなると、蒸発速度が大きくなる。よって、オキソニウムイオンを有機物に照射した場合、同じエネルギーで、より多くの水を蒸発させることが期待できる。なお、オキソニウムイオンを用いた乾燥能力の検証試験については「実施例」にて後述する。 FIG. 4 shows the value of v/v O as a function of the heat of vaporization L V. It can be seen from FIG. 4 that the evaporation rate v increases as the heat of vaporization L V decreases. Therefore, by irradiating with oxonium ions, a chain of oxidation reactions occurs, and when the size of cluster molecules becomes smaller and the heat of vaporization becomes smaller, the evaporation rate becomes higher. Therefore, when an organic substance is irradiated with oxonium ions, it can be expected that more water is evaporated with the same energy. The verification test of the drying ability using oxonium ions will be described later in "Examples".

<作用及び効果>
以上の構成において、有機物分解処理用イオン生成装置4では、針電極12及び平板電極13を対向配置し、直流電源部9によって正極性の直流電圧を針電極12に印加する。直流電源部9は、電圧制御部10によって直流電圧を所定の電圧値に設定し、大気圧中で針電極12及び平板電極13の間に正極性コロナ放電を発生させる。
<Action and effect>
In the above-described configuration, in the organic substance decomposing treatment ion generating device 4, the needle electrode 12 and the plate electrode 13 are arranged to face each other, and the DC power supply unit 9 applies a positive DC voltage to the needle electrode 12. The DC power supply unit 9 sets the DC voltage to a predetermined voltage value by the voltage control unit 10 and causes positive corona discharge between the needle electrode 12 and the flat plate electrode 13 under atmospheric pressure.

これにより、有機物分解処理用イオン生成装置4では、針電極12及び平板電極13の間に発生した正極性コロナ放電により、有機物の分解処理能力が高いオキソニウムイオンを生成できる。かくして、有機物分解処理用イオン生成装置4では、有機物の分解処理にオキソニウムイオンを使用することで、有機物の分解処理能力を従来よりも一段と向上させることができる。 As a result, in the organic substance decomposing treatment ion generating device 4, the positive corona discharge generated between the needle electrode 12 and the flat plate electrode 13 can generate oxonium ions having a high organic substance decomposing ability. Thus, in the organic substance decomposing/treating ion generator 4, by using oxonium ions for decomposing the organic substance, the decomposing ability of the organic substance can be further improved as compared with the conventional case.

また、有機物分解処理用イオン生成装置4では、電極支持部材14の中空空間ER1で針電極12及び平板電極13を対向配置させて正極性コロナ放電を発生させる。これにより、有機物分解処理用イオン生成装置4は、筒状の電極支持部材14の開口端部のみからオキソニウムイオンを排出させることができるので、開口端部の方向を選定することで、意図した方向にのみオキソニウムイオンを集中的に送出させることができる。かくして、有機物分解処理用イオン生成装置4は、筐体8内でオキソニウムイオンが放射状に飛散されることを抑制し、意図した方向に向けて、より遠くまでオキソニウムイオンを飛散させることができる。 Further, in the ion generating device 4 for organic substance decomposition treatment, the needle electrode 12 and the plate electrode 13 are arranged to face each other in the hollow space ER1 of the electrode supporting member 14 to generate a positive corona discharge. As a result, the organic substance decomposing treatment ion generator 4 can discharge the oxonium ions only from the opening end of the cylindrical electrode supporting member 14, so that it is intended by selecting the direction of the opening end. Oxonium ions can be intensively delivered only in the direction. Thus, the ion-decomposing apparatus 4 for organic substance decomposition treatment can suppress the oxonium ions from being radially scattered in the housing 8 and can scatter the oxonium ions further in the intended direction. ..

さらに、有機物分解処理用イオン生成装置4では、中空空間ER1の中心軸X上に筐体8の排出口が位置するように電極支持部材14を配置し、導入口から筐体8内に導入された送風機3からの気体を、中空空間ER1を通過させて直線的に排出口に向けて送出する。これにより、有機物分解処理用イオン生成装置4では、中空空間ER1で生成されたオキソニウムイオンを、直接、排出口から格納槽2内に導くことができる。かくして、オキソニウムイオンが筐体8内で吹き付けられる箇所を限定し、その分、強力な酸化力を有するオキソニウムイオンにより筐体8内が損傷してしまうことを抑制できる。 Furthermore, in the organic substance decomposition treatment ion generator 4, the electrode support member 14 is arranged such that the discharge port of the housing 8 is located on the central axis X of the hollow space ER1 and is introduced into the housing 8 from the introduction port. The gas from the blower 3 passes through the hollow space ER1 and is linearly sent to the outlet. As a result, in the organic substance decomposition treatment ion generation device 4, the oxonium ions generated in the hollow space ER1 can be directly introduced into the storage tank 2 from the discharge port. Thus, it is possible to limit the location where the oxonium ions are sprayed in the housing 8 and to prevent the interior of the housing 8 from being damaged by the oxonium ions having a strong oxidizing power.

<他の実施形態>
本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。例えば、電極構造体11を筐体8内の種々の位置に設けてもよい。また、有機物分解処理装置1として、有機物へのオキソニウムイオンの照射に加えて、有機物に対する加熱及び攪拌を同時に行い、有機物を分解処理する場合について述べたが、本発明はこれに限らない。例えば、有機物へのオキソニウムイオンの照射のみを行う有機物分解処理装置や、有機物へのオキソニウムイオンの照射に加えて、有機物に対する加熱又は攪拌のいずれか一方のみを行う有機物分解処理装置であってもよい。
<Other Embodiments>
The present invention is not limited to the above embodiment, and can be modified as appropriate within the scope of the spirit of the present invention. For example, the electrode structure 11 may be provided at various positions inside the housing 8. Further, as the organic substance decomposition treatment apparatus 1, the case where the organic substance is decomposed by heating and stirring the organic substance at the same time in addition to the irradiation of the organic substance with oxonium ions has been described, but the present invention is not limited to this. For example, an organic substance decomposition treatment device that only irradiates an organic substance with oxonium ions, or an organic substance decomposition treatment device that only heats or agitates an organic substance in addition to irradiating an organic substance with an oxonium ion, Good.

次に、電極構造体11を用いた上述の実施例と同様に、20kVの正極性の直流電圧を針電極12に印加し、平板電極13をアースに接続して、大気圧中で正極性コロナ放電を発生させた。そして、生成されたオキソニウムイオンの個数密度について調べる検証試験を行った。ここでは、電極構造体11から測定位置を離してゆき、所定距離x毎に、電極構造体11で生成されたオキソニウムイオンの個数密度をイオンカウンタ(イオントレーディング社製、商品名イオンカウンタ NKMH-103 (超ワイドレンジ型)で測定した。その結果、図5に示すように結果が得られた。 Next, as in the above-described embodiment using the electrode structure 11, a positive DC voltage of 20 kV is applied to the needle electrode 12, the plate electrode 13 is connected to the ground, and the positive corona is applied at atmospheric pressure. A discharge was generated. Then, a verification test was conducted to examine the number density of the generated oxonium ions. Here, the measurement position is moved away from the electrode structure 11, and the number density of the oxonium ions generated in the electrode structure 11 is measured at a predetermined distance x by an ion counter (manufactured by Ion Trading Co., Ltd., trade name: Ion Counter NKMH- It was measured with 103 (ultra wide range type), and as a result, the result was obtained as shown in FIG.

図5中、○はイオンカウンタで測定した測定値を示し、実線は測定値を指数関数でフィッティングしたものである。距離x=0cm近辺では、5000万個/cm程度以上のオキソニウムイオンが生成されていると考えられる。図5に示すように、オキソニウムイオンの個数密度は、距離xを大きくするに従って次第に低下していった。よって、電極構造体11は、分解処理する有機物に近い位置に設置し、オキソニウムイオンを有機物に直接到達させることが望ましいことが確認できた。 In FIG. 5, ◯ indicates the measured value measured by the ion counter, and the solid line indicates the measured value fitted with an exponential function. It is considered that about 50 million pieces/cm 3 or more of oxonium ions are generated near the distance x=0 cm. As shown in FIG. 5, the number density of oxonium ions gradually decreased as the distance x was increased. Therefore, it was confirmed that it is desirable to install the electrode structure 11 at a position close to the organic substance to be decomposed so that the oxonium ions directly reach the organic substance.

次に、オキソニウムイオンの乾燥能力を評価する検証試験を行った。ここでは、十分な量の水を吸収させた高分子吸収体(以下、含有高分子吸収体と称する)を100gずつ取り分け、4つの含水高分子吸収体を用意してそれぞれ容器(タッパー)に入れた。そして、電極構造体11を用いた上述の実施例と同様に、20kVの直流電圧を針電極12に印加して正極性コロナ放電を発生させ、生成したオキソニウムイオンを、1つの目の含水高分子吸収体に照射した。 Next, a verification test was conducted to evaluate the drying ability of oxonium ions. Here, 100 g of polymer absorbents (hereinafter referred to as contained polymer absorbents) that have absorbed a sufficient amount of water are separated, and four hydrous polymer absorbents are prepared and placed in containers (tappers). It was Then, as in the above-described embodiment using the electrode structure 11, a DC voltage of 20 kV is applied to the needle electrode 12 to generate a positive corona discharge, and the generated oxonium ion is added to the water content of the first eye. The molecular absorber was irradiated.

2つ目の含水高分子吸収体には、比較例1として用意したマイナスイオン・オゾン発生器(村田製作所製マイナスイオン発生器MHM305、及び村田製作所製マイナスイオン/オゾン発生器MHM306)を用い、マイナスイオン及びオゾンを照射した。マイナスイオン及びオゾンを照射する際の設定条件は、同様に、複数本の鉄釘に約48時間、マイナスイオン及びオゾンを照射し続けた。印可電圧は、製品の仕様で2kVである。 For the second water-containing polymer absorber, use the negative ion/ozone generator (Murata Negative Ion Generator MHM305 and Murata Negative Ion/Ozone Generator MHM306) prepared as Comparative Example 1. Irradiated with ions and ozone. Similarly, the setting conditions for irradiating the negative ions and ozone were such that the plurality of iron nails were continuously irradiated with the negative ions and ozone for about 48 hours. The applied voltage is 2 kV according to the product specifications.

3つ目の含水高分子吸収体には、比較例2として用意したマイナスイオン発生器(村田製作所製マイナスイオン発生器MHM305、及び村田製作所製マイナスイオン/オゾン発生器MHM306)を用い、マイナスイオンのみを照射した。マイナスイオンを照射する際の設定条件は、製品の仕様で印可電圧は2kVとした。 For the third water-containing polymer absorber, the negative ion generator (Murata Negative Ion Generator MHM305 and Murata Negative Ion/Ozone Generator MHM306) prepared as Comparative Example 2 was used, and only negative ions were used. Was irradiated. The setting condition when irradiating with negative ions was that the applied voltage was 2 kV according to the product specifications.

4つ目の含水高分子吸収体は、オキソニウムイオンやマイナスイオン、オゾン等を照射せずに自然乾燥させた。 The fourth hydrous polymer absorber was naturally dried without being irradiated with oxonium ions, negative ions, ozone, or the like.

そして、これら4つの含有高分子吸収体について、それぞれ12時間毎に48時間経過時までの蒸発質量と残存質量を測定した。その結果、図6及び図7に示すような結果が得られた。図6及び図7では、実施例の測定結果を「本装置」とし、○で示している。また、比較例1の測定結果は□で示し、比較例2の測定結果は△で示し、無照射時の測定結果は×で示している。 Then, the evaporation mass and the residual mass of each of the four contained polymer absorbers were measured every 12 hours until 48 hours had elapsed. As a result, the results shown in FIGS. 6 and 7 were obtained. In FIG. 6 and FIG. 7, the measurement result of the example is “this device” and is indicated by ◯. The measurement result of Comparative Example 1 is shown by □, the measurement result of Comparative Example 2 is shown by Δ, and the measurement result without irradiation is shown by X.

ここで、残存質量はタニタのKD-192で測定し、初期質量から残存質量を引くことにより、蒸発質量を求めた。図6及び図7から、マイナスイオン及びオゾンを照射した比較例1や、マイナスイオンのみを照射した比較例2は、蒸発質量及び残存質量が無照射のときとほとんど変わらないことが確認できた。 Here, the residual mass was measured with TANITA KD-192, and the evaporated mass was determined by subtracting the residual mass from the initial mass. From FIG. 6 and FIG. 7, it was confirmed that Comparative Example 1 irradiated with negative ions and ozone and Comparative Example 2 irradiated with only negative ions had almost no difference in evaporation mass and residual mass from those in the case of no irradiation.

これに対して、実施例である、オキソニウムイオンを照射した場合は、比較例1や比較例2、無照射のときと比較して、蒸発質量が極めて大きくなり、また残存質量が極めて小さくなることが確認できた。 On the other hand, in the case of irradiating with oxonium ions, which is an example, the evaporation mass becomes extremely large and the remaining mass becomes extremely small as compared with Comparative Examples 1 and 2 and no irradiation. I was able to confirm that.

次に、上述した検証試験と同じ含水高分子吸収体を用意し、含水高分子吸収体から50cm程離した位置に実施例の電極構造体11を設置した後、含有高分子吸収体に対してオキソニウムイオンを照射した。含有高分子吸収体について、12時間毎に48時間経過時までの蒸発質量と残存質量を測定したところ、図8及び図9に示すような結果が得られた。 Next, after preparing the same water-containing polymer absorber as in the above-described verification test and placing the electrode structure 11 of the example at a position about 50 cm away from the water-containing polymer absorber, with respect to the contained polymer absorber. Irradiated with oxonium ions. With respect to the contained polymer absorber, the evaporation mass and the residual mass were measured every 12 hours until the elapse of 48 hours, and the results shown in FIGS. 8 and 9 were obtained.

図8及び図9では、比較例として無照射のときの測定結果を示している。図8及び図9に示すように、電極構造体11を含水高分子吸収体から50cm程離しても、蒸発質量が極めて大きくなり、また残存質量が極めて小さくなることが確認できた。よって、電極構造体11を含水高分子吸収体から50cm離しても、水の蒸発量を十分に確保できることが確認された。 FIG. 8 and FIG. 9 show the measurement results when there is no irradiation as a comparative example. As shown in FIGS. 8 and 9, it was confirmed that the evaporated mass became extremely large and the residual mass became extremely small even when the electrode structure 11 was separated from the hydrous polymer absorbent body by about 50 cm. Therefore, it was confirmed that the evaporation amount of water can be sufficiently secured even when the electrode structure 11 is separated from the water-containing polymer absorber by 50 cm.

次に、2つの容器(タッパー)を用意し、各容器内にそれぞれ水を100ccずつ入れた。そして、1つ目の容器には、容器から5cm程離した斜め上位置に、電極構造体11を設置した。次いで、容器内の水に対して、電極構造体11で生成したオキソニウムイオンを照射した。なお、残りの容器の水はそのまま放置した。そして、12時間毎に48時間経過時までの水の蒸発質量と残存質量をそれぞれ測定したところ、図10及び図11に示すような結果が得られた。 Next, two containers (tappers) were prepared, and 100 cc of water was put in each container. Then, the electrode structure 11 was installed in the first container at an obliquely upper position separated by about 5 cm from the container. Next, the water in the container was irradiated with oxonium ions generated in the electrode structure 11. The water in the remaining container was left as it was. Then, when the evaporation mass and the residual mass of water were measured every 12 hours until the elapse of 48 hours, the results shown in FIGS. 10 and 11 were obtained.

実施例として、オキソニウムイオンを照射した場合は、放置したときと比較して(図中、無照射と表記)、蒸発質量が極めて大きくなり、また残存質量が極めて小さくなることが確認できた。 As an example, it was confirmed that when the oxonium ion was irradiated, the evaporated mass became extremely large and the residual mass became extremely small as compared with the case of leaving it to stand (denoted as no irradiation in the figure).

以上のように、針電極12及び平板電極13を筒状の電極支持部材14で支持し、かつ20kVという高い直流電圧を針電極12に印加した実施例では、5cmや50cm離れた箇所でも水の蒸発に大きな効果を奏することが確認できた。実施例のような構成とすることで、電極構造体11で生成されたオキソニウムイオンの飛行速度は速くなり、オキソニウムイオンがより遠くまで飛んでいると推定される。 As described above, in the embodiment in which the needle electrode 12 and the flat plate electrode 13 are supported by the tubular electrode supporting member 14 and a high DC voltage of 20 kV is applied to the needle electrode 12, water is removed even at a distance of 5 cm or 50 cm. It was confirmed that it has a great effect on evaporation. With the configuration of the example, the flight speed of the oxonium ions generated in the electrode structure 11 is increased, and it is estimated that the oxonium ions fly farther.

1 有機物分解処理装置
2 格納槽
3 送風機
4 有機物分解処理用イオン生成装置
8 筐体
9 直流電源部
10 電圧制御部
12 針電極
13 平板電極
14 電極支持部材
DESCRIPTION OF SYMBOLS 1 Organic substance decomposition treatment apparatus 2 Storage tank 3 Blower 4 Ion generator for organic matter decomposition treatment 8 Housing 9 DC power supply unit 10 Voltage control unit 12 Needle electrode 13 Flat plate electrode 14 Electrode support member

Claims (4)

格納槽内に格納された有機物を分解処理するためのイオンを生成する有機物分解処理用イオン生成装置であって、
対向配置された針電極及び平板電極と、
正極性の直流電圧を前記針電極に印加する直流電源部と、
を備え、
前記直流電源部は
前記直流電圧の電圧値を5〜30kVに設定し、かつ、電界強度を0.25〜1.5kV/mmとし、気中で前記針電極及び前記平板電極の間に正極性コロナ放電を発生させる電圧制御部を有
前記正極性コロナ放電を発生させることで、オキソニウムイオンを生成する、有機物分解処理用イオン生成装置。
An ion generating device for organic substance decomposition treatment for generating ions for decomposing organic substances stored in a storage tank,
A needle electrode and a flat plate electrode arranged to face each other,
A DC power supply unit for applying a positive DC voltage to the needle electrode,
Equipped with
The DC power supply unit ,
Wherein a voltage value of the DC voltage is set to 5 to 30 kV, and the field intensity and 0.25~1.5kV / mm, generating a positive polarity corona discharge between the needle electrode and the plate electrode in the atmosphere have a voltage control unit for,
An ion generator for organic substance decomposition treatment , which generates oxonium ions by generating the positive corona discharge .
前記針電極及び前記平板電極を支持する筒状の電極支持部材を備え、
前記電極支持部材は、筒状内壁部で囲われた中空空間で前記針電極及び前記平板電極を対向配置させて、前記中空空間内で前記正極性コロナ放電を発生させる、請求項1に記載の有機物分解処理用イオン生成装置。
A tubular electrode support member that supports the needle electrode and the flat plate electrode,
2. The electrode supporting member according to claim 1, wherein the needle electrode and the flat plate electrode are arranged to face each other in a hollow space surrounded by a cylindrical inner wall portion to generate the positive corona discharge in the hollow space. Ion generator for organic substance decomposition treatment.
前記電極支持部材が内部に設置された筐体を備え、
前記筐体には、送風機から排出された気体を導入する導入口と、前記格納槽内に前記気体を排出する排出口と、が設けられており、
前記電極支持部材は、前記中空空間の中心軸上に前記排出口が位置するように配置され、
前記筐体は、前記導入口から導入された前記気体を、前記中空空間を通過させ直線的に前記排出口に向けて送出する、請求項2に記載の有機物分解処理用イオン生成装置。
The electrode support member includes a housing installed inside,
The housing is provided with an inlet for introducing the gas discharged from the blower, and an outlet for discharging the gas into the storage tank,
The electrode support member is arranged such that the discharge port is located on the central axis of the hollow space,
The ion generator for organic substance decomposition treatment according to claim 2, wherein the casing allows the gas introduced from the introduction port to pass through the hollow space and linearly discharge toward the discharge port.
請求項1〜3のいずれかに記載の有機物分解処理用イオン生成装置が、前記格納槽に設けられた、有機物分解処理装置。 An organic substance decomposition treatment device, wherein the ion generation device for organic substance decomposition treatment according to any one of claims 1 to 3 is provided in the storage tank.
JP2018012755A 2018-01-29 2018-01-29 Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device Active JP6703671B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2018012755A JP6703671B2 (en) 2018-01-29 2018-01-29 Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device
ES19743223T ES2951871T3 (en) 2018-01-29 2019-01-29 Ion generating device for the decomposition of organic matter
EP19743223.0A EP3747563B1 (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition
CN201980010543.2A CN111801172B (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition treatment and organic matter decomposition treatment device
KR1020207024736A KR102515756B1 (en) 2018-01-29 2019-01-29 Ion generation device for decomposition and treatment of organic matter and device for decomposition and treatment of organic matter
NZ766809A NZ766809A (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition, and organic matter decomposition device
AU2019210824A AU2019210824B2 (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition, and organic matter decomposition device
CA3089521A CA3089521C (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition, and organic matter decomposition device
PCT/JP2019/002989 WO2019146799A2 (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition, and organic matter decomposition device
US16/965,598 US11273474B2 (en) 2018-01-29 2019-01-29 Ion generating device for organic matter decomposition, and organic matter decomposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012755A JP6703671B2 (en) 2018-01-29 2018-01-29 Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device

Publications (3)

Publication Number Publication Date
JP2019129902A JP2019129902A (en) 2019-08-08
JP2019129902A5 JP2019129902A5 (en) 2020-03-05
JP6703671B2 true JP6703671B2 (en) 2020-06-03

Family

ID=67396077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012755A Active JP6703671B2 (en) 2018-01-29 2018-01-29 Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device

Country Status (10)

Country Link
US (1) US11273474B2 (en)
EP (1) EP3747563B1 (en)
JP (1) JP6703671B2 (en)
KR (1) KR102515756B1 (en)
CN (1) CN111801172B (en)
AU (1) AU2019210824B2 (en)
CA (1) CA3089521C (en)
ES (1) ES2951871T3 (en)
NZ (1) NZ766809A (en)
WO (1) WO2019146799A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL313815A (en) * 2021-12-30 2024-08-01 Dmitrii Yanovich Agasarov Reactor for a waste transformation device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5549795A (en) * 1994-08-25 1996-08-27 Hughes Aircraft Company Corona source for producing corona discharge and fluid waste treatment with corona discharge
US20030108460A1 (en) * 2001-12-11 2003-06-12 Andreev Sergey I. Method for surface corona/ozone making, devices utilizing the same and methods for corona and ozone applications
JP2004066196A (en) * 2002-08-09 2004-03-04 Sanyo Electric Co Ltd Organic substance treatment apparatus
US20040028572A1 (en) * 2002-08-12 2004-02-12 Sham John C.K. Ozone deodorizer for waste receptacles
JP2004167318A (en) * 2002-11-18 2004-06-17 Matsushita Electric Works Ltd Garbage treatment machine
JP4654982B2 (en) * 2006-06-07 2011-03-23 三菱電機株式会社 Active particle generator
JP5094909B2 (en) * 2010-04-28 2012-12-12 敬一郎 浅岡 Decomposition and extinguishing apparatus for organic waste and decomposing and extinguishing method using the apparatus
WO2013060403A1 (en) * 2011-10-26 2013-05-02 Adensis Gmbh Method and device for the disintegration of a recyclable item
JP5533966B2 (en) * 2012-09-14 2014-06-25 ダイキン工業株式会社 Air cleaner
JP2016009674A (en) * 2014-06-26 2016-01-18 シャープ株式会社 Ion generator
JP6103028B2 (en) * 2014-12-26 2017-03-29 ダイキン工業株式会社 Discharge unit
JP5778361B1 (en) * 2015-01-06 2015-09-16 株式会社 片野工業 Ion / ozone wind generator and method
GB201602191D0 (en) * 2016-02-08 2016-03-23 Ozone Generation Uk Llp Garbage deodorising system
JP2017189413A (en) * 2016-04-14 2017-10-19 グレンカル・テクノロジー株式会社 Active oxygen species generator
JP6512202B2 (en) * 2016-09-30 2019-05-15 ダイキン工業株式会社 Discharge device and air purification device
CN107824602B (en) * 2017-11-21 2023-10-31 清华大学 Household garbage microwave plasma gasification and recovery integrated system
US11802373B2 (en) * 2017-12-20 2023-10-31 Unicharm Corporation Method for evaluating degree of cleanliness of recycled material, method for manufacturing recycled material, and method for manufacturing recycled pulp fiber

Also Published As

Publication number Publication date
CN111801172B (en) 2023-04-04
CA3089521A1 (en) 2019-08-01
NZ766809A (en) 2022-04-29
US20210039145A1 (en) 2021-02-11
US11273474B2 (en) 2022-03-15
JP2019129902A (en) 2019-08-08
EP3747563A2 (en) 2020-12-09
ES2951871T3 (en) 2023-10-25
KR102515756B1 (en) 2023-03-31
EP3747563B1 (en) 2023-06-07
EP3747563C0 (en) 2023-06-07
WO2019146799A2 (en) 2019-08-01
WO2019146799A3 (en) 2019-09-19
CA3089521C (en) 2023-05-02
EP3747563A4 (en) 2021-04-28
AU2019210824B2 (en) 2022-06-02
CN111801172A (en) 2020-10-20
KR20200119828A (en) 2020-10-20
AU2019210824A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
KR101553587B1 (en) Apparatus and method for cleaning air
JP2001507274A (en) Method and apparatus for treating aqueous solution
US5756054A (en) Ozone generator with enhanced output
JP6703671B2 (en) Ion generator for organic substance decomposition treatment and organic substance decomposition treatment device
KR20180086350A (en) Quantum energy irradiation device equipped with water vapor ionization device
Zhu et al. The research on the pulsed arc electrohydraulic discharge and its application in treatment of the ballast water
Rongsangchaicharean et al. Effect of dielectric barrier discharge plasma on rice (Oryza sativa L.) seed hydration and hygroscopicity
JP2007066796A5 (en)
US20150306411A1 (en) Apparatus and method for treatment of organic human tissue with a low pressure plasma
CN101972587B (en) Innocent treatment method for sulfuryl fluoride gas
Li et al. Experimental research on the sterilization of Escherichia coli and Bacillus subtilis in drinking water by dielectric barrier discharge
US6080362A (en) Porous solid remediation utilizing pulsed alternating current
RU2665418C1 (en) Method of plasma chemical treatment of liquid raw material of organic and/or vegetable origin and device for its implementation
Ponomarev et al. The kinetics of energetic O− ions in discharge H2O plasma
KR20120070060A (en) Environment-friendly material for pollutant decomposition and sterilization, and method for producing the same
KR101647480B1 (en) Atomospheric pressure plasma processing apparatus for removing high concentrated hydrogen peroxide
Fitria et al. Comparison Double Dielectric Barrier Using Perforated Aluminium for Ozone Generation
RU2681962C1 (en) Method of degassing tungsten nanopowder
JP2011075269A (en) Humidifier with negative charge oxygen atom generating function
JP2019129902A5 (en)
JPS63318947A (en) Sterilizing method and apparatus due to pulse discharge
US11859814B2 (en) Reactor for waste disposal
Merinova et al. Investigation of the laws of ionizing radiation effect on the stability of the colloidal solutions of iron
Jingwei et al. Modeling of carbon monoxide removal by corona plasma
Santjojo et al. Air Plasma Sterilizer Using a Parallel Dielectric Barrier Discharge

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200303

R150 Certificate of patent or registration of utility model

Ref document number: 6703671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250