WO2016110232A1 - 一种可变压缩比发动机 - Google Patents

一种可变压缩比发动机 Download PDF

Info

Publication number
WO2016110232A1
WO2016110232A1 PCT/CN2016/070048 CN2016070048W WO2016110232A1 WO 2016110232 A1 WO2016110232 A1 WO 2016110232A1 CN 2016070048 W CN2016070048 W CN 2016070048W WO 2016110232 A1 WO2016110232 A1 WO 2016110232A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
crankshaft
sprocket
connecting rod
wheel
Prior art date
Application number
PCT/CN2016/070048
Other languages
English (en)
French (fr)
Inventor
范伟俊
Original Assignee
范伟俊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 范伟俊 filed Critical 范伟俊
Publication of WO2016110232A1 publication Critical patent/WO2016110232A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine, and in particular to a variable compression ratio engine.
  • the compression ratio of the engine refers to the ratio of the cylinder volume when the piston moves to the bottom dead center and the cylinder volume when the piston moves to the top dead center, which is an important factor affecting the power and torque output.
  • the compression ratio of the conventional engine is generally fixed.
  • foreign countries have begun to turn the research direction to the engine with variable compression ratio to adapt to different requirements of the compression ratio of the engine under different working conditions.
  • the engine is at medium and low load, In order to improve the engine's emission level, a larger compression ratio is required, and at a higher load, a higher supercharging pressure is required, and the compression ratio needs to be lowered, so that the fuel economy and output power of the engine can be improved, in other words, with the load.
  • the change continuously adjusts the compression ratio so that the thermal efficiency can be effectively improved over the entire operating range from low load to high load.
  • Many foreign studies have adjusted the effective compression ratio of the engine by changing the relative angle between the cam and the crankshaft, but domestic research is still relatively lagging in this respect.
  • the present invention provides a variable compression ratio engine, and in particular, a variable compression ratio engine capable of changing the relative angle of a cam to a crankshaft.
  • a variable compression ratio engine comprising a piston, a connecting rod and a crankshaft, the connecting rod comprising an upper connecting rod and a lower connecting rod, the upper end of the upper connecting rod being connected to the piston through a piston pin, and the lower end of the upper connecting rod passing through the connecting rod
  • the pin is connected to the beam; one end of the beam is connected to the upper end of the lower link by a left pin, and the lower link
  • the lower end of the beam is connected to the crankshaft through the connecting rod journal; the other end of the beam is connected to the control rod through the right pin, and the upper end of the control rod is provided with an elastic member, the lower end of the control rod is provided with a groove, and a horizontal pin is arranged in the groove.
  • the wheel is connected to the lower end of the control rod through the cross pin, and the control rod can only move up and down; the cam is in contact with the cam under the wheel, and the cam is driven by the crank sprocket at one end of the crankshaft through the transmission member, and the crankshaft rotates for 2 weeks.
  • the cam rotates for 1 week.
  • a variable compression ratio engine comprising a piston, a connecting rod and a crankshaft, wherein the piston is connected to the upper end of the connecting rod through a piston pin, the lower end of the connecting rod is connected to the outer cross beam through a connecting rod pin, and the outer cross beam is provided with an inner cavity opening at one end
  • the inner cavity is provided with an inner beam which is matched with the inner beam.
  • the inner beam can move left and right in the inner cavity of the outer beam, and the outer end of the inner beam is connected with the crankshaft through the connecting rod journal.
  • the length of the inner beam exposed outside the outer beam will follow The movement of the shaft journal is extended or contracted; the other end of the outer beam is connected to the control rod through the right pin, and the upper end of the control rod is provided with an elastic member; the lower end of the control rod has a groove, and the groove is provided with a cross pin, the wheel Through the horizontal connection of the horizontal pin and the lower end of the control rod, the control rod can only move up and down; under the wheel, there is a cam that is in contact with it, and the cam is driven by the crankshaft sprocket at one end of the crankshaft through the transmission member, and the crankshaft rotates for 2 weeks, the cam Turn for 1 week.
  • the transmission component comprises a camshaft drive sprocket, a control sleeve, a chain A, an adjustment wheel, a transmission gear and a worm A.
  • the cam is connected with the camshaft, and the other end of the camshaft is provided with a slanted tooth pattern, and the control sleeve is arranged at
  • the cam shaft has an outer side of one end of the slant gear, and one side of the adjusting sleeve is respectively provided with a convex cuboid strip, and the cam shaft drive sprocket is sleeved on the outer side of the regulating sleeve and the inner cavity is matched with the rectangular strip
  • the regulating sleeve can move left and right in the inner cavity of the camshaft driving sprocket, and the regulating sleeve can rotate with the rotation of the camshaft driving sprocket; the crankshaft sprocket drives the camshaft driving sprocke
  • the transmission member includes a camshaft drive sprocket, a left sprocket, a right sprocket, an adjustment rod, a sleeve, a drive gear, a driven gear and a chain B.
  • the camshaft drive sprocket is connected to the cam through a camshaft, and the left sprocket
  • the right sprocket and the right sprocket are respectively disposed on the left and right sides of the middle of the crank sprocket and the cam drive sprocket, and the centers of the left sprocket and the right sprocket are radially fixed at the two ends of the adjustment rod, and the adjustment rod is provided on the middle of the adjustment rod.
  • the middle part is sleeved in the sleeve and can slide left and right in the sleeve, the sleeve is fixed on the inner wall of the cylinder and the middle part is open, the driven gear and the adjusting rod tooth pattern in the opening mesh with each other, and the front end of the driven gear is provided with the same
  • the driving gear of the shaft is driven by the driving gear, and the chain B is sleeved on the crank sprocket, the left sprocket, the cam driving sprocket and the right sprocket.
  • the drive gear is driven by a motor through a worm B.
  • the cam has a cam body and an arcuate projection, and the cam body has a circular shape or a disk shape.
  • the left and right sides of the cam are symmetrical concave arc surfaces, and the upper and lower sides thereof are convex arc surfaces.
  • the elastic member is a spring, and the spring is fixed to the inner wall of the cylinder through a spring seat provided on the inner wall of the cylinder.
  • the relative angle between the cam and the crankshaft is changed by the cooperation of the connecting rod, the control bar, the beam, the wheel, the cam, the elastic member and the transmission member, and the position of the piston is relatively upward or downward when the ignition or combustion is realized.
  • Change thus changing the effective compression ratio of the engine, and at the same time, the maximum pressure generated by engine ignition or fuel injection can be applied to the optimal angle, so that the transmission of force is more scientific and can be used with less effort, which can effectively improve the engine.
  • the output efficiency is achieved by increasing power and saving fuel.
  • FIG. 1 is a schematic structural view of a variable compression ratio engine (using an upper link and a lower link structure) according to an embodiment of the present invention
  • variable compression ratio engine using an outer beam and an inner beam structure according to another embodiment of the present invention
  • Figure 3 is a schematic view showing the structure of a cam having a concave arc surface
  • Figure 4 is a schematic structural view of a transmission member using a regulating sleeve and an adjusting wheel
  • Fig. 5 is a structural schematic view of a transmission member using a left sprocket and a right sprocket.
  • piston 1 piston pin 2
  • upper link 3 beam 4
  • left pin 5 lower link 6
  • crank 7 crankshaft 8
  • link pin 9 cam 10
  • wheel 11 cross pin 12
  • control Rod 13 right pin 14
  • spring 15 spring seat 16 connecting rod 17, outer beam 18, inner beam 19
  • motor 20 worm A 21
  • camshaft drive sprocket 22 camshaft 23
  • adjustment wheel 24 regulation Sleeve 25
  • left sprocket 26 drive gear 27, right sprocket 28, adjustment rod 29, driven gear 30, sleeve 31, crank sprocket 32, chain B 33, worm B 34, transmission gear 35.
  • a variable compression ratio engine includes a piston 1, a connecting rod and a crankshaft 8, the connecting rod includes an upper link 3 and a lower link 6, and an upper end of the upper link 3 passes through a piston pin 2 and a piston 1 connected, the lower end of the upper link 3 is connected to the beam 4 through the link pin 9; one end of the beam 4 is connected to the upper end of the lower link 6 through the left pin 5, and the lower end of the lower link 6 is passed through the pin journal and the crankshaft 8 connection; the other end of the beam 4 is connected to the control rod 13 via the right pin 14, and the upper end of the control rod 13 is provided with a bullet
  • the lower end of the control rod 13 is provided with a groove, and a horizontal pin 12 is disposed in the groove.
  • the wheel 11 is rollingly connected with the lower end of the control rod 13 through the horizontal pin 12, and the control rod 13 can only move up and down;
  • the elastic member can be set as a spring 15 which is fixed to the inner wall of the cylinder by a spring seat 16 provided on the inner wall of the cylinder.
  • the cam 10 has a cam body and an arcuate projection, and the cam body has a circular or disk shape, which is circular as shown in FIG.
  • the working process of this embodiment is: the compression stroke crankshaft 8 is rotated from bottom to top, and the power stroke crankshaft 8 is rotated from top to bottom, enters the compression stroke, and the crankshaft 8 rotates from bottom to top, thereby pushing the lower link 6 and the beam.
  • One side of the 4, the upper link 3, and the piston 1 are lifted up.
  • the crankshaft 8 is turned to the highest point, the piston 1 also runs to the highest point, at which time it does not ignite or inject oil, and at the same time the wheel 11 also runs to just In contact with the convex surface of the cam 10, the crankshaft 8 rotates from top to bottom.
  • the crankshaft 8 Entering the exhaust stroke, the crankshaft 8 is turned from the bottom to the top, the piston 1 also runs to the highest point, enters the intake stroke, the crankshaft 8 rotates from top to bottom, and the piston 1 and the upper link 3 follow the crankshaft 8 Under exercise. Since the left pin 5 and the link pin 9 move up and down with the right pin 14 as the center point, the diameter of the crankshaft 8 for one revolution is larger than the stroke of the piston 1.
  • the exhaust stroke, the suction stroke, and the compression stroke wheel 11 all run on the arc surface of the cam body, so the wheel 11 and the control rod 13 are turned to the same position, so the piston 1 will move together with the crankshaft 8, and only work is performed.
  • the stroke piston 1 will not move for a short period of time at the beginning, and the piston 1 will move with the crankshaft 8 after ignition or injection when a certain angle is formed.
  • the difference between the embodiment 2 and the embodiment 1 is that the cam 10 has different shapes, and the shape of the cam 10 is as shown in FIG. 3.
  • the left and right sides of the cam 10 are concave arc surfaces, and the upper and lower sides are convex. Arc surface.
  • the other structure is the same as that of the first embodiment.
  • the working process of this embodiment is that the diameter of the crankshaft 8 rotated by one revolution is set to be much larger than the stroke of the piston 1.
  • the piston 1 also runs to the highest point. If the conventional engine is in this case, the crankshaft 8 continues to rotate upward, and the piston continues upward. The operation of the cylinder head is removed. In order to avoid this, the design of the cam 2 is adopted. Entering the exhaust stroke, the crankshaft 8 rotates from bottom to top. When the crankshaft 8 is rotated until the crank 7 forms a certain angle with the lower link 6, the piston 1 also moves up to the highest point with the crankshaft 8, and at this time the wheel 11 is just right.
  • the crankshaft 8 rotates downward, and the wheel 11 runs from the lowest point of the concave surface to the arc side of the cam side, and the crankshaft 8 is turned down to the crank 7 and the lower link 6 forms a certain angle when the wheel 11 is just From the concave surface of the cam 10 to the convex arc surface of the cam 10 (when the exhaust stroke forms a certain angle, the upward rotation of the piston 1 by the crankshaft 8 also moves upward, but since the wheel 11 simultaneously protrudes from the cam 10
  • the downward movement of the face on the concave surface counteracts the influence of the upward rotation of the crankshaft 8 on the piston 1 and the upper link 3, so that the crankshaft 8 rotates upward, and the downward movement of the wheels 11 cancels each other to make the piston 1 remain in the same position.
  • crankshaft 8 When the crankshaft 8 is rotated downwards by entering the suction stroke, the upward movement of the wheel 11 from the concave surface to the convex arc surface also cancels the influence of the downward movement of the crankshaft 8 on the piston 1 and the upper link 3, and the piston 1 Still in the same position, then the compression stroke and the power stroke are equally offset.)
  • the crankshaft 8 continues to rotate downward, at which time the piston 1 also moves downward with the crankshaft 8, and the wheel 11 is operated on the inclined surface of the cam 10, so that the wheel 11 and the control lever 13 are stationary at the same position.
  • the crankshaft 8 rotates from bottom to top.
  • crankshaft 7 When the crankshaft 7 is rotated to a certain angle with the lower link 6, the wheel 11 also just moves from the convex surface of the cam 10 to the concave surface, and the crankshaft 8 continues to rotate upward. The wheel 11 is further moved downward by the thrust of the spring 15 to the concave of the inner concave surface. When the crankshaft 8 is turned to the highest point, the wheel 11 runs to the lowest point of the concave surface, and enters the power stroke. The crankshaft 8 continues to rotate from top to bottom.
  • the force generated by the combustion of the piston 1 acts on the two force points via the piston 1 and the upper link 3, one is the left pin 5 and the other is the right pin 14, and the force of the left pin 5 directly pushes the crankshaft 8 Rotating work, this is available, but the force of the right pin 14 will be wasted, but since the diameter of the crankshaft 8 is one turn larger than the piston stroke, this directly increases the length of the crank 7, which increases The length of the power arm compensates for a portion of the force that is wasted by the right pin 14.
  • a variable compression ratio engine includes a piston 1, a connecting rod 17 and a crankshaft 8.
  • the piston 1 is connected to the upper end of the connecting rod 17 via a piston pin 2, and the lower end of the connecting rod 17 passes through a connecting rod pin 9.
  • the outer cross member 18 is connected to the outer cross member 18, and the outer cross member 18 is provided with an inner cavity which is open at one end.
  • the inner cavity is provided with an inner cross member 19 which is matched with the inner cross member.
  • the inner cross member 19 can move left and right in the inner cavity of the outer cross member 18, and the outer end of the inner cross member 19 passes.
  • the connecting rod journal is connected to the crankshaft 8.
  • the length of the inner cross member 19 exposed outside the outer cross member 18 is elongated or contracted with the movement of the connecting rod journal; the other end of the outer cross member 18 is connected to the control rod 13 via the right pin 14.
  • the upper end of the control rod 13 is provided with an elastic member; the lower end of the control rod 13 is provided with a groove, and a horizontal pin 12 is disposed in the groove.
  • the wheel 11 is connected to the lower end of the control rod 13 through the horizontal pin 12, and the control rod 13 can only be up and down.
  • a cam 10 in contact therewith is disposed below the wheel 11, and the cam 10 is rotated by a crank sprocket 32 at one end of the crankshaft 8 through a transmission member, the crankshaft 8 is rotated for 2 weeks, and the cam 10 is rotated for 1 week.
  • the elastic member can be set as a spring 15 which is fixed to the inner wall of the cylinder by a spring seat 16 provided on the inner wall of the cylinder.
  • the cam 10 has a cam body and an arcuate projection, and the cam body has a circular shape or a disk shape, and is circular as shown in FIG.
  • crankshaft 8 The compression stroke crankshaft 8 is rotated from bottom to top.
  • the power stroke of the crankshaft 8 is rotated from top to bottom, entering the compression stroke, and the crankshaft 8 is rotated from bottom to top, thereby pushing the end of the inner cross member 19 and the outer cross member 18 upward.
  • the crankshaft 8 When the crankshaft 8 is turned to the highest point, the piston 1 also runs to the highest point, at which time it does not ignite or inject oil, and at the same time the wheel 11 also runs until it comes into contact with the convex surface of the cam 10, and the crankshaft 8 rotates from top to bottom.
  • the crankshaft 8 continues to rotate downward, at this time, the piston 1, the upper link 3 moves downward with the crankshaft 8, and the wheel 11 is at the convex portion of the cam 10.
  • the inclined surface moves, so the wheel 11, the control rod 13, one side of the inner beam 19, and one side of the outer beam 18 are unchanged at the same position.
  • the wheel 11 is convex from the cam 10.
  • the inclined surface of the upper portion runs to the arc surface of the cam body, and the spring 15 pushes the control rod 13 and the outer beam 18 downward to return it.
  • the crankshaft 8 is turned from the bottom to the top, the piston 1 also runs to the highest point, enters the suction stroke, and the crankshaft 8 rotates from top to bottom, the piston 1
  • the upper link 3 then moves downward with the crankshaft 8. Since the left pin 5 and the link pin 9 move up and down with the right pin 14 as the center point, the diameter of the crankshaft 8 for one revolution is larger than the stroke of the piston 1.
  • the exhaust stroke, the suction stroke, and the compression stroke wheel all run on the arc surface of the body of the cam 10, so the wheel 11 and the control rod 13 are turned to the same position, so the piston 1 will move together with the crankshaft 8, and only work is performed.
  • the stroke piston 1 will not move for a short period of time at the beginning, and the piston 1 will move with the crankshaft 8 after ignition or injection when a certain angle is formed.
  • the difference between the embodiment 4 and the embodiment 3 is that the cam 10 has different shapes, and the shape of the cam 10 is as shown in FIG. 3.
  • the left and right sides of the cam 10 are concave arc surfaces, and the upper and lower sides are convex. Arc surface.
  • the other structure is the same as that of the first embodiment.
  • the diameter set by the crankshaft 8 for one revolution is set to be much larger than the stroke of the piston 1.
  • the piston 1 also runs to the highest point, and if the conventional engine is in this case, the crankshaft 8 continues to rotate upward, the piston will continue.
  • the upward movement of the cylinder head is removed.
  • the design of the cam 2 is adopted. Entering the exhaust stroke, the crankshaft 8 rotates from bottom to top.
  • the crankshaft 8 rotates downward, and the wheel 11 runs from the lowest point of the concave surface to the arc side of the cam side, and the crankshaft 8 is turned down to the crank 7 and
  • the inner cross member 19 forms a certain angle
  • the concave surface of the cam 11 of the wheel 11 runs to the convex arc surface of the cam 10 (when the exhaust stroke forms a certain angle, the crankshaft 8 rotates upward and the piston 1 also moves upward, but due to the wheel 11 simultaneously moves downward from the convex arc surface of the cam 10 toward the inner concave surface, canceling the influence of the upward rotation of the crankshaft 8 on the piston 1 and the connecting rod 17, so that the crankshaft 8 is rotated upward, and the wheels 11 are moved downward to cancel each other.
  • the piston 1 is kept at the same position.
  • the crankshaft 8 When the crankshaft 8 is rotated downwards when entering the suction stroke, the upward movement of the wheel 11 from the concave surface to the convex arc surface also cancels the downward movement of the crankshaft 8 to the piston 1 and the connecting rod 17
  • the effect of the piston 1 is still the same at the same position, and then the compression stroke and the power stroke are equally offset.
  • the crankshaft 8 continues to rotate downward, at which time the piston 1 also moves downward with the crankshaft 8, and the wheel 11 is operated on the inclined surface of the cam 10, so that the wheel 11 and the control lever 13 are stationary at the same position. Entering the compression stroke, the crankshaft 8 rotates from bottom to top.
  • the wheel 11 When the crankshaft 7 is rotated to form a certain angle with the inner cross member 19, the wheel 11 also just moves from the convex surface of the cam 10 to the inner concave surface, and the crankshaft 8 continues to rotate upward. The wheel 11 is further moved downward by the thrust of the spring 15 to the concave of the concave surface. When the crankshaft 8 is turned to the highest point, the wheel 11 runs to the lowest point of the concave surface, and enters the power stroke. The crankshaft 8 continues to rotate from top to bottom.
  • the force generated by the combustion of the piston 1 acts on the two points of force via the piston 1 and the connecting rod 17, one is the connecting rod journal and the other is the right pin 14,
  • the force of the connecting rod journal directly pushes the crankshaft 8 to rotate, and this is available, but the force of the right pin 14 will be wasted, but since the diameter of the crankshaft 8 is one revolution, the stroke is set larger than the stroke of the piston 1.
  • Directly increasing the length of the crank 7 also increases the length of the power arm, compensating for a portion of the force that is wasted by the right pin 14.
  • the above embodiments 1, 2, 3 and 4 are all adjusting the compression ratio by changing the relative angles of the cam 10 and the crankshaft 8. There are two preferred ways to change the relative angle of the cam 10 and the crankshaft 8:
  • the transmission member includes a camshaft drive sprocket 22, an adjustment sleeve 25, a chain A, an adjustment wheel 24, and a transmission.
  • the gear 35 and the worm A 21, the cam 10 is connected to the cam shaft 23, the other end of the cam shaft 23 is provided with a slanted tooth pattern, and the regulating sleeve 25 is disposed on the outer side of the end of the cam shaft 23 with the slant gear, the adjusting sleeve One side of the 25 is respectively provided with a convex cuboid strip, the cam shaft driving sprocket 22 is sleeved on the outer side of the regulating sleeve 25 and the inner cavity is matched with the rectangular strip, and the regulating sleeve 25 can be driven on the cam shaft.
  • the inner cavity of 22 moves left and right, and the regulating sleeve 25 can rotate with the rotation of the camshaft driving sprocket 22; the crank sprocket 32 drives the camshaft driving sprocket 22 to rotate by the chain A; the outer side of the outer side of the regulating sleeve 25 An adjusting wheel 24 is provided, and the adjusting wheel 24 does not rotate with the rotation of the regulating sleeve 25; the outer circumference of the adjusting wheel 24 has a tooth pattern and coincides with the worm A 21 pattern provided above the adjusting wheel 24, the worm A 21 The other end is fixedly connected to the transmission gear 35, and one side of the transmission gear 35 is provided with a motor 20. The output shaft of the motor 20 coincides with the tooth pattern of the transmission gear 35.
  • the motor output shaft drives the transmission gear 35 to rotate to drive the worm A 21 to rotate, and the worm A 21 rotates to push the adjustment wheel 24 to move to the left, thereby driving the regulating sleeve 25 to move to the left together, and the regulating sleeve 25 is leftward.
  • the relative angle of the regulating sleeve 23 and the camshaft 23 may be changed, thereby The relative angles of the camshaft drive sprocket 22, the crankshaft 8 and the camshaft 23 are changed.
  • the motor reversal also causes the relative angle of the camshaft 23 to the crankshaft 8 to change.
  • the transmission member includes a camshaft drive sprocket 22, a left sprocket 26, a right sprocket 28, and an adjustment lever 29 a sleeve 31, a drive gear 27, a driven gear 30, and a chain B 33.
  • the camshaft drive sprocket 22 is coupled to the cam 10 via a camshaft 23, and the left sprocket 26 and the right sprocket 28 are respectively disposed on the crank sprocket 32 and
  • the left and right sides of the middle of the cam drive sprocket 22, the left sprocket 26 and the right sprocket 28 are radially fixed at both ends of the adjusting rod 29, and the adjusting rod 29 is provided with an adjusting rod tooth pattern above the middle portion of the adjusting rod 29, and the middle portion is sleeved at
  • the sleeve 31 is slidable in the sleeve 31, and the sleeve 31 is fixed on the inner wall of the cylinder and is open at the middle.
  • the driven gear 30 meshes with the adjusting rod tooth in the opening, and the front end of the driven gear 30 is provided with
  • the coaxial drive gear 27 is driven by the drive gear 27, and the chain B 33 is placed over the crank sprocket 32, the left sprocket 26, the cam drive sprocket 22 and the right sprocket 28.
  • the drive gear 27 is driven by the motor 20 through the worm B 34.
  • the driving gear 27 is driven by the motor 20 through the worm B 34, the motor 20 rotates, the worm B 34 drives the driving gear 27 to rotate, the driving gear 27 rotates the driven gear 30 to rotate, and the driven gear 30 rotates to push the adjusting rod 29 to move, the motor 20
  • the adjustment lever 29 moves to the left
  • the left and right sprockets 26, 28 move to the left together
  • the left sprocket 26 pushes up the chain B 33 which is loosened by the right sprocket 28, which causes the camshaft to drive the sprocket 22 and
  • the corresponding angle of the crank sprocket 32 is changed, so that the relative angle of the cam 10 and the crankshaft 8 is changed; otherwise, the adjustment lever 29 and the left and right sprocket wheels 26, 28 are moved to the right, and the camshaft drive sprocket is also caused.
  • the angle corresponding to the crankshaft sprocket 32 changes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmission Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

一种可变压缩比发动机,包括活塞(1),连杆和曲轴(8)。连杆包括上连杆(3)下连杆(6);上连杆(3)的上端通过活塞销(2)与活塞(1)连接;上连杆(3)的下端通过连杆销(9)与横梁(4)连接;横梁(4)的一端通过左销子(5)与下连杆(6)的上端连接;下连杆(6)的下端通过连杆轴颈与曲轴(8)连接;横梁(4)的另一端通过右销子(14)与控制杆(13)连接;控制杆(13)的上端设有一弹性件;控制杆(13)的下端有一凹槽;凹槽内设有一横销(12);轮子(11)通过横销(12)与控制杆(13)的下端滚动连接;控制杆(13)只能上下移动;轮子(11)的下方设有与其相接触的凸轮(10);凸轮(10)由曲轴(8)一端的曲轴链轮(32)通过传动件带动其转动,曲轴转动两周,凸轮转动一周。该可变压缩比发动机能够提高发动机的输出效率,增大动力以及节省燃油。

Description

一种可变压缩比发动机 技术领域
本发明涉及一种发动机,具体地涉及一种可变压缩比发动机。
背景技术
发动机的压缩比是指活塞运动到下止点时的气缸容积与活塞运动到上止点时的气缸容积之比,是影响功率、扭矩输出的重要因素。传统的发动机的压缩比一般是固定的,近年来国外开始将研究的方向转向可变压缩比的发动机,以适应在不同工况时发动机对压缩比的不同要求,发动机在中、低负荷时,为了改善发动机的排放水平,需要采用较大的压缩比,而在高负荷时采用更高的增压压力,需要降低压缩比,这样可以提高发动机的燃油性和输出功率,换言之,随着负荷的变化连续调节压缩比,以便能够从低负荷到高负荷的整个工况范围内有效提高热效率。国外许多研究通过改变凸轮与曲轴的相对角度来调节发动机的有效压缩比,但国内研究在这一方面仍相对滞后。
发明内容
本发明提供了一种可变压缩比发动机,具体地提供了一种能改变凸轮与曲轴的相对角度的可变压缩比发动机。
为实现上述目的,本发明的技术方案为:
一种可变压缩比发动机,其包括活塞、连杆和曲轴,所述连杆包括上连杆和下连杆,上连杆的上端通过活塞销与活塞连接,上连杆的下端通过连杆销与横梁连接;横梁的一端通过左销子与下连杆的上端连接,下连杆 的下端通过连杆轴颈与曲轴连接;横梁的另一端通过右销子与控制杆连接,控制杆的上端设有一弹性件,控制杆的下端设有一凹槽,凹槽内设有一横销,轮子通过横销与控制杆的下端滚动连接,控制杆只能上下移动;轮子的下方设有与其相接触的凸轮,凸轮由曲轴一端的曲轴链轮通过传动件带动其转动,曲轴转动2周,凸轮转动1周。
一种可变压缩比发动机,其包括活塞、连杆和曲轴,活塞通过活塞销与连杆的上端相连,连杆的下端通过连杆销与外横梁连接,外横梁设有一端开口的内腔,内腔中设有与其相吻合的内横梁,内横梁可在外横梁的内腔左右移动,内横梁的外端通过连杆轴颈与曲轴连接,内横梁露在外横梁外的长度会随着连杆轴颈的移动伸长或收缩;外横梁的另一端通过右销子与控制杆连接,控制杆的上端设有一弹性件;控制杆的下端有一凹槽,凹槽内设有一横销,轮子通过横销与控制杆的下端滚动连接,控制杆只能上下移动;轮子的下方设有与其相接触的凸轮,凸轮由曲轴一端的曲轴链轮通过传动件带动其转动,曲轴转动2周,凸轮转动1周。
所述传动件包括凸轮轴驱动链轮、调控套筒、链条A、调节轮、传动齿轮和蜗杆A,凸轮与凸轮轴相连,凸轮轴的另一端设有斜状齿纹,调控套筒设在凸轮轴带有斜状齿轮的一端外侧上,调控套筒的一边上下分别设有凸出的长方体卡条,凸轮轴驱动链轮套在调控套筒的外侧且其内腔与长方体卡条相吻合,调控套筒可在凸轮轴驱动链轮的内腔中左右移动,且调控套筒可随凸轮轴驱动链轮的转动而转动;曲轴链轮通过链条A带动凸轮轴驱动链轮转动;调控套筒的另一边外侧设有调节轮,调节轮不随调控套筒的转动而转动;调节轮的外侧周边上有齿纹并与设在调节轮上方的蜗杆A 杆纹相吻合,蜗杆A的另一端与传动齿轮固定连接,传动齿轮的一侧设有一电机,电机的输出轴与传动齿轮的齿纹相吻合。
所述传动件包括凸轮轴驱动链轮、左链轮、右链轮、调节杆、套管、主动齿轮、从动齿轮和链条B,凸轮轴驱动链轮通过凸轮轴与凸轮相连,左链轮和右链轮分别设在曲轴链轮和凸轮驱动链轮中间的左右两侧,左链轮和右链轮中心径向固定在调节杆的两端,调节杆的中部上方设有调节杆齿纹,且其中部套在套管内并可在套管内左右滑动,套管固定在汽缸内壁上且中部开口,从动齿轮与开口处内的调节杆齿纹相互啮合,从动齿轮前端设有与其同轴的主动齿轮并由主动齿轮带动,链条B套设在曲轴链轮、左链轮、凸轮驱动链轮和右链轮上。
所述主动齿轮由电机通过蜗杆B驱动。
所述凸轮具有一凸轮本体和一弧形的凸出部,凸轮本体为圆形或盘形。
所述凸轮的左右两侧面为对称的内凹圆弧面,其上下两面为凸出的圆弧面。
所述弹性件为弹簧,弹簧通过设置在汽缸内壁上的弹簧座而固定在汽缸内壁上。
本发明通过连杆、控制条、横梁、轮子、凸轮、弹性件与传动件的配合,使凸轮与曲轴之间的相对角度发生变化,实现点火或燃烧时活塞的位置相对向上或向下发生了改变,从而改变了发动机的有效压缩比,同时可使发动机点火或喷油燃烧产生的最大压力作用在最佳的角度上,使力的传输更科学,起到事半功倍的作用,能有效地提高发动机的输出效率,达到增大动力、节省燃油的目的。
附图说明
图1是本发明一实施例提供的可变压缩比发动机(采用上连杆和下连杆结构)的结构示意图;
图2是本发明另一实施例提供的可变压缩比发动机(采用外横梁和内横梁结构)的结构示意图;
图3是具有内凹圆弧面的凸轮的结构示意图;
图4是采用调控套筒和调节轮的传动件的结构示意图;
图5是采用左链轮和右链轮的传动件的结构示意图。
图中,活塞1,活塞销2,上连杆3,横梁4,左销子5,下连杆6,曲柄7,曲轴8,连杆销9,凸轮10,轮子11,横销12,控制杆13,右销子14,弹簧15,弹簧座16,连杆17,外横梁18,内横梁19,电机20,蜗杆A 21,凸轮轴驱动链轮22,凸轮轴23,调节轮24,调控套筒25,左链轮26,主动齿轮27,右链轮28,调节杆29,从动齿轮30,套管31,曲轴链轮32,链条B 33,蜗杆B 34,传动齿轮35。
具体实施方式
以下结合附图,对本发明作进一步说明:
实施例1
如图1所示,一种可变压缩比发动机,其包括活塞1、连杆和曲轴8,连杆包括上连杆3和下连杆6,上连杆3的上端通过活塞销2与活塞1连接,上连杆3的下端通过连杆销9与横梁4连接;横梁4的一端通过左销子5与下连杆6的上端连接,下连杆6的下端通过连杆轴颈与曲轴8连接;横梁4的另一端通过右销子14与控制杆13连接,控制杆13的上端设有一弹 性件,控制杆13的下端设有一凹槽,凹槽内设有一横销12,轮子11通过横销12与控制杆13的下端滚动连接,控制杆13只能上下移动;轮子11的下方设有与其相接触的凸轮10,凸轮10由曲轴8一端的曲轴链轮32通过传动件带动其转动,曲轴8转动2周,凸轮10转动1周。
弹性件可设为弹簧15,弹簧15通过设置在汽缸内壁上的弹簧座16而固定在汽缸内壁上。
凸轮10具有一凸轮本体和一弧形的凸出部,凸轮本体为圆形或盘形,图1中所示为圆形。
本实施例的工作过程为:压缩冲程曲轴8是从下往上转动,做功冲程曲轴8是从上往下转动,进入压缩冲程,曲轴8从下往上转动,进而推动下连杆6、横梁4的一边、上连杆3、活塞1向上顶起,当曲轴8转到最高点时,活塞1也运行到最高点,此时还不点火或喷油,与此同时轮子11也运行到刚好与凸轮10的凸出面相接触,曲轴8自上往下转动,当曲柄7与下连杆6形成一定的角度时,轮子11刚好运行到凸轮10凸出部的斜面上,由于轮子11受到凸轮10凸出部的推动而向上移动,进而推动控制杆13、横梁4的一边向上移动,向上移动的距离刚好补偿了曲轴8向下转动带动下连杆6、横梁4的一边向下运动带来的影响,可使活塞1在同一位置不变,从曲轴8转到最高点和曲柄7与下连杆6形成一定的角度时,活塞1都在同一位置不变,当它们形成一定的角度时再点火或喷油,此时燃烧产生的最大压力作用在最佳的角度上,使力更科学更好的传输出去,从而起到事半功倍的效果,曲轴8继续向下转动,此时活塞1、上连杆3随着曲轴8一起向下运动,而轮子11则在凸轮10凸出部的斜面上运动,所以轮子11、 控制杆13、横梁4的一边在同一位置不变,当曲轴8和活塞1快运行到最低点时,轮子11则从凸轮10凸出部的斜面运行到凸轮本体的弧面上,弹簧15则把控制杆13、轮子11、横梁4一边往下推使其归位。进入排气冲程,曲轴8从下往上转到最高点,活塞1也运行到最高点,进入吸气冲程,曲轴8从上往下转动,活塞1和上连杆3则随着曲轴8向下运动。由于左销子5、连杆销9是以右销子14为中心点而进行上下运动的,所以曲轴8旋转1周的直径要比活塞1行程大。排气冲程、吸气冲程、压缩冲程轮子11都在凸轮本体的弧面上运行,所以轮子11、控制杆13转到同一位置不变,所以活塞1会随着曲轴8一起运动,只有在做功冲程活塞1会在刚开始时的一小段时间内不动,当形成一定的角度时点火或喷油后活塞1才会随着曲轴8一起运动。
实施例2
实施例2与实施例1在结构上的区别在于凸轮10采用不同的形状,凸轮10的形状如图3所示,凸轮10的左右两侧面为内凹圆弧面,其上下两面为凸出的圆弧面。其他结构与实施例1相同。
本实施例的工作过程为:经曲轴8旋转1周的直径设置的比活塞1行程要大的多。当曲轴8从下往上转到曲柄7与下连杆6形成一定的角度时,活塞1也运行到最高点,如果按传统的发动机在这种情况下曲轴8继续向上转动的话活塞会继续向上运行将汽缸盖顶掉,为避免这种情况的发生,所以采用凸轮2这种设计。进入排气冲程,曲轴8从下往上转动,当曲轴8转动到曲柄7与下连杆6形成一定的角度时,活塞1也随着曲轴8向上运行到最高点,而此时轮子11刚好从凸轮10的凸出弧面运行到与内凹面的 接触处,曲轴8继续向上转动,轮子11由于受到弹簧推力则往凸轮10的内凹面往下运动,当曲轴8往上转到最高点,轮子11也运行到凸轮凹面的最低点(此处说明中的曲轴8运行到最高点,轮子11也运行到最低点,此种协调运行并不是绝对的,具体按实际生产而定)。进入吸气冲程,曲轴8向下转动,轮子11则从凹面的最低点往凸轮一侧的弧面上运行,曲轴8向下转到曲柄7与下连杆6形成一定的角度时轮子11刚从凸轮10的内凹面运行到凸轮10的凸出弧面上(排气冲程形成一定角度时,曲轴8向上转动活塞1也会随着向上运动,但由于轮子11同时从凸轮10的凸出弧面往内凹面上往下运动,抵消了曲轴8向上转动给活塞1、上连杆3带来的影响,所以曲轴8向上转动,轮子11向下移动相互抵消可使活塞1在同一位置不变,当进入吸气冲程曲轴8向下转动时,轮子11从内凹面往凸出弧面上向上运动也抵消掉了曲轴8向下运动给活塞1、上连杆3带来的影响,活塞1还是在同一位置不变,接着到压缩冲程和做功冲程也是同样地给抵消掉了)。曲轴8继续向下转动,此时活塞1也随着曲轴8一起向下运动,轮子11由于在凸轮10的斜面上运行,所以轮子11、控制杆13在同一位置不动。进入压缩冲程,曲轴8从下往上转动,当转动到曲柄7与下连杆6形成一定的角度时,轮子11也刚好从凸轮10凸出弧面运行到内凹面处,曲轴8继续向上转动,轮子11受到弹簧15的推力继续往内凹面的凹处往下运行,当曲轴8转到最高点,轮子11则运行到内凹面的最低点,进入做功冲程曲轴8继续转动从上往下转动,当曲轴8转到曲柄7与下连杆6形成一定的角度时,轮子11也刚好从凸轮10的内凹面运行到凸轮10的凸出弧面上(压缩冲程形成一定角度和做功冲程形成一定的角度时,曲轴8从下 往上到从上往下都会给活塞1、下连杆6带来影响,但由于轮子11同时也是从凸轮10的凸出弧面到内凹面,由自上往下到自下往上运动抵消掉了曲轴8转动带来的影响,从而使活塞1保持在同一位置不变)。此时再点火或喷油燃烧产生的最大压力作用在最佳的角度上,可使力的传输更科学。活塞1燃烧产生的作用力经活塞1、上连杆3作用在两个受力点上,一个是左销子5,另一个是右销子14,左销子5的作用力直接推动曲轴8旋转做功的,这是可用的,但右销子14的作用力将会浪费掉,不过由于曲轴8旋转一周的直径设置得比活塞行程大,这直接增长了曲柄7的长度,也就增加了动力臂的长度,将右销子14浪费掉的一部分作用力补偿回来。
实施例3
如图2所示,一种可变压缩比发动机,其包括活塞1、连杆17和曲轴8,活塞1通过活塞销2与连杆17的上端相连,连杆17的下端通过连杆销9与外横梁18连接,外横梁18设有一端开口的内腔,内腔中设有与其相吻合的内横梁19,内横梁19可在外横梁18的内腔左右移动,内横梁19的外端通过连杆轴颈与曲轴8连接,内横梁19露在外横梁18外的长度会随着连杆轴颈的移动伸长或收缩;外横梁18的另一端通过右销子14与控制杆13连接,控制杆13的上端设有一弹性件;控制杆13的下端设有一凹槽,凹槽内设有一横销12,轮子11通过横销12与控制杆13的下端滚动连接,控制杆13只能上下移动;轮子11的下方设有与其相接触的凸轮10,凸轮10由曲轴8一端的曲轴链轮32通过传动件带动其转动,曲轴8转动2周,凸轮10转动1周。
弹性件可设为弹簧15,弹簧15通过设置在汽缸内壁上的弹簧座16而固定在汽缸内壁上。
凸轮10具有一凸轮本体和一弧形的凸出部,凸轮本体为圆形或盘形,图2中所示为圆形。
压缩冲程曲轴8是从下往上转动,做功冲程曲轴8是从上往下转动,进入压缩冲程,曲轴8从下往上转动,进而推动内横梁19、外横梁18的一端向上顶起,当曲轴8转到最高点时,活塞1也运行到最高点,此时还不点火或喷油,与此同时轮子11也运行到刚与凸轮10的凸出面相接触,曲轴8自上往下转动,当曲柄8与内横梁19形成一定的角度时,轮子11刚好运行到凸轮10凸出部的斜面上,由于轮子11受到凸轮10凸出部的推动而向上移动,进而推动控制杆13、外横梁19的一边向上移动,向上移动的距离刚好补偿了曲轴8向下转动带动内横梁向下运动带来的影响,可使活塞在同一位置不变,从曲轴转到最高点到曲柄7与内横梁19形成一定的角度时,活塞1都在同一位置不变,当曲柄7与内横梁19形成一定的角度时再点火或喷油,此时燃烧产生的最大压力作用在最佳的角度上,使力更科学更好的传输出去,从而起到事半功倍的效果,曲轴8继续向下转动,此时活塞1、上连杆3随着曲轴8一起向下运动,而轮子11则在凸轮10凸出部的斜面上运动,所以轮子11、控制杆13、内横梁19的一边、外横梁18的一边在同一位置不变,当曲轴8和活塞1快运行到最低点时,轮子11则从凸轮10凸出部的斜面运行到凸轮本体的弧面上,弹簧15则把控制杆13、外横梁18一边往下推使其归位。进入排气冲程,曲轴8从下往上转到最高点,活塞1也运行到最高点,进入吸气冲程,曲轴8从上往下转动,活塞1 和上连杆3则随着曲轴8向下运动。由于左销子5、连杆销9是以右销子14为中心点而进行上下运动的,所以曲轴8旋转1周的直径要比活塞1行程大。排气冲程、吸气冲程、压缩冲程轮子都在凸轮10本体的弧面上运行,所以轮子11、控制杆13转到同一位置不变,所以活塞1会随着曲轴8一起运动,只有在做功冲程活塞1会在刚开始时的一小段时间内不动,当形成一定的角度时点火或喷油后,活塞1才会随着曲轴8一起运动。
实施例4
实施例4与实施例3在结构上的区别在于凸轮10采用不同的形状,凸轮10的形状如图3所示,凸轮10的左右两侧面为内凹圆弧面,其上下两面为凸出的圆弧面。其他结构与实施例1相同。
经曲轴8旋转1周的直径设置的比活塞1行程要大的多。当曲轴8从下往上转到到曲柄7与下连杆6形成一定的角度时,活塞1也运行到最高点,如果按传统的发动机在这种情况下曲轴8继续向上转动的话活塞会继续向上运行将汽缸盖顶掉,为避免这种情况的发生,所以采用凸轮2这种设计。进入排气冲程,曲轴8从下往上转动,当曲轴8转动到曲柄7与内横梁19形成一定的角度时,活塞1也随着曲轴8向上运行到最高点,而此时轮子11刚好从凸轮10的凸出弧面运行到与内凹面的接触处,曲轴8继续向上转动,轮子11由于受到弹簧推力则往凸轮10的内凹面往下运动,当曲轴8往上转到最高点,轮子11也运行到凸轮凹面的最低点(此处说明中的曲轴8运行到最高点,轮子11也运行到最低点,此种协调运行并不是绝对的,具体按实际生产而定)。进入吸气冲程,曲轴8向下转动,轮子11则从凹面的最低点往凸轮一侧的弧面上运行,曲轴8向下转到曲柄7与 内横梁19形成一定的角度时轮子11凸轮10的内凹面运行到凸轮10的凸出弧面上(排气冲程形成一定角度时,曲轴8向上转动活塞1也会随着向上运动,但由于轮子11同时从凸轮10的凸出弧面往内凹面上往下运动,抵消了曲轴8向上转动给活塞1、连杆17带来的影响,所以曲轴8向上转动,轮子11向下移动相互抵消可使活塞1在同一位置不变,当进入吸气冲程曲轴8向下转动,轮子11从内凹面往凸出弧面上向上运动也抵消掉了曲轴8向下运动给活塞1、连杆17带来的影响,活塞1还是在同一位置不变,接着到压缩冲程和做功冲程也是同样地给抵消掉了)。曲轴8继续向下转动,此时活塞1也随着曲轴8一起向下运动,轮子11由于在凸轮10的斜面上运行,所以轮子11、控制杆13在同一位置不动。进入压缩冲程,曲轴8从下往上转动,当转动到曲柄7与内横梁19形成一定的角度时,轮子11也刚好从凸轮10凸出弧面运行到内凹面处,曲轴8继续向上转动,轮子11受到弹簧15的推力继续往内凹面的凹处往下运行,当曲轴8转到最高点,轮子11则运行到内凹面的最低点,进入做功冲程曲轴8继续转动从上往下转动,当曲轴8转到曲柄7与内横梁19形成一定的角度时,轮子11也刚好从凸轮10的内凹面运行到凸轮10的凸出弧面上(压缩冲程形成一定角度和做功冲程形成一定的角度时,曲轴8从下往上到从上往下都会给活塞1、连杆17带来的影响,但由于轮子11同时也是从凸轮10的凸出弧面到内凹面,由自上往下到自下往上运动抵消掉了曲轴8转动带来的影响,从而使活塞1保持在同一位置不变)。此时再点火或喷油燃烧产生的最大压力作用在最佳的角度上,可使力的传输更科学。活塞1燃烧产生的作用力经活塞1、连杆17作用在两个受力点上,一个是连杆轴颈,另一个是右销子14, 连杆轴颈的作用力直接推动曲轴8旋转做功的,这是可用的,但右销子14的作用力将会浪费掉,但由于曲轴8旋转一周的直径设置得比活塞1行程大,这直接增长了曲柄7的长度也就增加了动力臂的长度,将右销子14浪费掉的一部分作用力补偿回来。
以上实施例1、2、3和4都是通过改变凸轮10与曲轴8的相对角度来调节压缩比,改变凸轮10与曲轴8的相对角度的优选方式有以下两种:
(1)如图4所示,通过实施例1、2、3和4所述的传动件来改变,传动件包括凸轮轴驱动链轮22、调控套筒25、链条A、调节轮24、传动齿轮35和蜗杆A 21,凸轮10与凸轮轴23相连,凸轮轴23的另一端设有斜状齿纹,调控套筒25设在凸轮轴23带有斜状齿轮的一端外侧上,调控套筒25的一边上下分别设有凸出的长方体卡条,凸轮轴驱动链轮22套在调控套筒25的外侧且其内腔与长方体卡条相吻合,调控套筒25可在凸轮轴驱动链轮22的内腔中左右移动,且调控套筒25可随凸轮轴驱动链轮22的转动而转动;曲轴链轮32通过链条A带动凸轮轴驱动链轮22转动;调控套筒25的另一边外侧设有调节轮24,调节轮24不随调控套筒25的转动而转动;调节轮24的外侧周边上有齿纹并与设在调节轮24上方的蜗杆A 21杆纹相吻合,蜗杆A 21的另一端与传动齿轮35固定连接,传动齿轮35的一侧设有一电机20,电机20的输出轴与传动齿轮35的齿纹相吻合。
当电机正转时,电机输出轴带动传动齿轮35转动进而带动蜗杆A 21转动,蜗杆A 21转动推动调节轮24向左移动,进而带动调控套筒25一起向左移动,调控套筒25向左移动的同时会随着凸轮轴23的斜状齿纹向上滑行往右移动,可使调控套筒23与凸轮轴23的相对角度发生改变,进而 使凸轮轴驱动链轮22、曲轴8与凸轮轴23的相对角度发生改变。反之电机反转也会促使凸轮轴23与曲轴8的相对角度发生改变。
(2)如图5所示,通过实施例1、2、3和4所述的传动件来改变,传动件包括凸轮轴驱动链轮22、左链轮26、右链轮28、调节杆29、套管31、主动齿轮27、从动齿轮30和链条B 33,凸轮轴驱动链轮22通过凸轮轴23与凸轮10相连,左链轮26和右链轮28分别设在曲轴链轮32和凸轮驱动链轮22中间的左右两侧,左链轮26和右链轮28中心径向固定在调节杆29的两端,调节杆29的中部上方设有调节杆齿纹,且其中部套在套管31内并可在套管31内左右滑动,套管31固定在汽缸内壁上且中部开口,从动齿轮30与开口处内的调节杆齿纹相互啮合,从动齿轮30前端设有与其同轴的主动齿轮27并由主动齿轮27带动,链条B 33套置在曲轴链轮32、左链轮26、凸轮驱动链轮22和右链轮28上。
主动齿轮27由电机20通过蜗杆B 34驱动。
主动齿轮27由电机20通过蜗杆B 34驱动,电机20转动,蜗杆B 34带动主动齿轮27转动,主动齿轮27转动从动齿轮30随之转动,从动齿轮30转动推动调节杆29移动,电机20正转则调节杆29向左移动,左、右链轮26、28一起向左移动,左链轮26顶起由右链轮28放松过来的链条B 33,会使凸轮轴驱动链轮22与曲轴链轮32相对应的角度改变,从而使凸轮10与曲轴8的相对角度会发生变化;反之,调节杆29和左、右链轮26、28向右移动,也会使凸轮轴驱动链轮22与曲轴链轮32相对应的角度发生改变。
进入压缩冲程,当运行到最高点,曲轴8也转到最高点,此时轮子11则刚好运行到与凸轮10凸出部斜面或凸轮10的最凹处的相接触,在此基础上如果实施例1/实施例3和实施例2/实施例4中的凸轮10比曲轴8提前了一些角度,那将迫使轮子11提前与实施例1/实施例3中凸轮10凸出部的斜面接触点接触,或迫使轮子11提前从实施例2/实施例4中凸轮10最凹处提前往斜面上运行。进入做功冲程,当曲柄7与下连杆6形成一定的角度时,轮子11也到实施例1/实施例3凸轮10的凸出部斜面上或实施例2/实施例4中凸轮10的凸面上,最终使活塞1在曲轴8转到最高点时所在的位置向上提高了一些,使压缩比变大,反之,凸轮10延后一些角度也将使活塞1的位置下降一些距离,使压缩比变小。
由于凸轮的形状有多种,改变凸轮与曲轴的相对角度的结构也有多种方法,本说明书只列举2种作为本发明之用,本发明并不限于以上的说明范围,如果用任何别的等效的内容代替上述实施例,它们也同样落入本发明的保护范围之内。

Claims (8)

  1. 一种可变压缩比发动机,其包括活塞(1)、连杆(17)和曲轴(8),其中,
    所述连杆(17)包括上连杆(3)和下连杆(6),所述上连杆(3)的上端通过活塞销(2)与所述活塞(1)连接,所述上连杆(3)的下端通过连杆销(9)与横梁(4)连接;所述横梁(4)的一端通过左销子(5)与所述下连杆(6)的上端连接,所述下连杆(6)的下端通过连杆轴颈与曲轴(8)连接;所述横梁(4)的另一端通过右销子(14)与控制杆(13)连接,所述控制杆(13)的上端设有一弹性件,所述控制杆(13)的下端设有一凹槽,所述凹槽内设有一横销(12),轮子(11)通过所述横销(12)与控制杆(13)的下端滚动连接,所述控制杆(13)只能上下移动;所述轮子(11)的下方设有与其相接触的凸轮(10),所述凸轮(10)由所述曲轴(8)一端的曲轴链轮(32)通过传动件带动其转动,所述曲轴(8)转动2周,所述凸轮(10)转动1周。
  2. 一种可变压缩比发动机,其包括活塞(1)、连杆(17)和曲轴(8),所述活塞(1)通过活塞销(2)与所述连杆(17)的上端相连,其中,
    所述连杆(17)的下端通过连杆销(9)与外横梁(18)连接,所述外横梁(18)设有一端开口的内腔,所述内腔中设有与其相吻合的内横梁(19),所述内横梁(19)可在所述外横梁(18)的内腔左右移动,所述内横梁(19)的外端通过连杆轴颈与所述曲轴(8)连接,所述内横梁(19)露在所述外横梁(18)外的长度会随着所述连杆轴颈的移动伸长或收缩;所述外横梁(18)的另一端通过右销子(14)与控制杆(13)连接,所述控制杆(13) 的上端设有一弹性件;所述控制杆(13)的下端设有一凹槽,所述凹槽内设有一横销(12),轮子(11)通过所述横销(12)与控制杆(13)的下端滚动连接,所述控制杆(13)只能上下移动;所述轮子(11)的下方设有与其相接触的凸轮(10),所述凸轮(10)由所述曲轴(8)一端的曲轴链轮(32)通过传动件带动其转动,所述曲轴(8)转动2周,所述凸轮(10)转动1周。
  3. 根据权利要求1或2所述的可变压缩比发动机,其中,所述传动件包括凸轮轴驱动链轮(22)、调控套筒(25)、链条A、调节轮(24)、传动齿轮(35)和蜗杆A(21),所述凸轮(10)与凸轮轴(23)相连,所述凸轮轴(23)的另一端设有斜状齿纹,所述调控套筒(25)设在所述凸轮轴(23)带有斜状齿轮的一端外侧上,所述调控套筒(25)的一边上下分别设有凸出的长方体卡条,所述凸轮轴驱动链轮(22)套在所述调控套筒(25)的外侧且其内腔与长方体卡条相吻合,所述调控套筒(25)可在所述凸轮轴驱动链轮(22)的内腔中左右移动,且所述调控套筒(25)可随所述凸轮轴驱动链轮(22)的转动而转动;所述曲轴链轮(32)通过链条A带动所述凸轮轴驱动链轮(22)转动;所述调控套筒(25)的另一边外侧设有调节轮(24),所述调节轮(24)不随所述调控套筒(25)的转动而转动;所述调节轮(24)的外侧周边上有齿纹并与设在所述调节轮(24)上方的蜗杆A(21)的杆纹相吻合,所述蜗杆A(21)的另一端与所述传动齿轮(35)固定连接,所述传动齿轮(35)的一侧设有一电机(20),所述电机(20)的输出轴与所述传动齿轮(35)的齿纹相吻合。
  4. 根据权利要求1或2所述的可变压缩比发动机,其中,所述传动件包括凸轮轴驱动链轮(22)、左链轮(26)、右链轮(28)、调节杆(29)、套管(31)、主动齿轮(27)、从动齿轮(30)和链条B(33),所述凸轮轴驱动链轮(22)通过凸轮轴(23)与所述凸轮(10)相连,所述左链轮(26)和右链轮(28)分别设在所述曲轴链轮(32)和凸轮驱动链轮(22)中间的左右两侧,所述左链轮(26)和右链轮(28)中心径向固定在所述调节杆(29)的两端,所述调节杆(29)的中部上方设有调节杆齿纹,且其中部套在所述套管(31)内并可在所述套管(31)内左右滑动,所述套管(31)固定在汽缸内壁上且中部开口,所述从动齿轮(30)与开口处内的调节杆齿纹相互啮合,所述从动齿轮(30)前端设有与其同轴的主动齿轮(27)并由所述主动齿轮(27)带动,所述链条B(33)套设在所述曲轴链轮(32)、左链轮(26)、凸轮驱动链轮(22)和右链轮(28)上。
  5. 根据权利要求1或2所述的可变压缩比发动机,其中,所述凸轮(10)具有一凸轮本体和一弧形的凸出部,所述凸轮本体为圆形或盘形。
  6. 根据权利要求1或2所述的可变压缩比发动机,其中,所述凸轮(10)的左右两侧面为内凹圆弧面,其上下两面为凸出的圆弧面。
  7. 根据权利要求4所述的可变压缩比发动机,其中,所述主动齿轮(27)由电机(20)通过蜗杆B(34)驱动。
  8. 根据权利要求1或2所述的可变压缩比发动机,其中,所述弹性件为弹簧(15),所述弹簧(15)通过设置在汽缸内壁上的弹簧座(16)而固定在汽缸内壁上。
PCT/CN2016/070048 2015-01-09 2016-01-04 一种可变压缩比发动机 WO2016110232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010843.4 2015-01-09
CN201510010843.4A CN104500241B (zh) 2015-01-09 2015-01-09 一种可变压缩比发动机

Publications (1)

Publication Number Publication Date
WO2016110232A1 true WO2016110232A1 (zh) 2016-07-14

Family

ID=52941680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070048 WO2016110232A1 (zh) 2015-01-09 2016-01-04 一种可变压缩比发动机

Country Status (2)

Country Link
CN (1) CN104500241B (zh)
WO (1) WO2016110232A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816616A (zh) * 2017-12-14 2018-03-20 重庆市中美电力设备有限公司 节能控制一体箱快速安装结构
CN115234399A (zh) * 2022-06-30 2022-10-25 中国第一汽车股份有限公司 可变压缩比活塞、可变压缩比机构、发动机及车辆

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104500241B (zh) * 2015-01-09 2023-08-22 范伟俊 一种可变压缩比发动机
CN107725210A (zh) * 2017-11-24 2018-02-23 吉林大学 一种带有限位环结构的可变压缩比活塞

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446237A (zh) * 2007-11-29 2009-06-03 现代自动车株式会社 可变压缩率装置
CN103195566A (zh) * 2013-04-03 2013-07-10 浙江大学 一种连续可变排量的内燃机
US8720393B2 (en) * 2010-05-11 2014-05-13 National Sun Yat-Sen University Engine structure having conjugate cam assembly
KR101405176B1 (ko) * 2008-03-03 2014-06-10 현대자동차 주식회사 가변 압축비 장치
CN104500241A (zh) * 2015-01-09 2015-04-08 范伟俊 一种可变压缩比发动机
CN204458055U (zh) * 2015-01-09 2015-07-08 范伟俊 一种可变压缩比发动机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155769A (ja) * 2000-11-24 2002-05-31 Nissan Motor Co Ltd レシプロ式内燃機関の可変圧縮比機構
CN101403342B (zh) * 2008-05-13 2012-06-27 奇瑞汽车股份有限公司 一种可变压缩比发动机
CN202789112U (zh) * 2012-09-14 2013-03-13 陈云桥 内燃机助力器
CN103114908B (zh) * 2013-03-11 2014-12-17 范伟俊 可变压缩比发动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446237A (zh) * 2007-11-29 2009-06-03 现代自动车株式会社 可变压缩率装置
KR101405176B1 (ko) * 2008-03-03 2014-06-10 현대자동차 주식회사 가변 압축비 장치
US8720393B2 (en) * 2010-05-11 2014-05-13 National Sun Yat-Sen University Engine structure having conjugate cam assembly
CN103195566A (zh) * 2013-04-03 2013-07-10 浙江大学 一种连续可变排量的内燃机
CN104500241A (zh) * 2015-01-09 2015-04-08 范伟俊 一种可变压缩比发动机
CN204458055U (zh) * 2015-01-09 2015-07-08 范伟俊 一种可变压缩比发动机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816616A (zh) * 2017-12-14 2018-03-20 重庆市中美电力设备有限公司 节能控制一体箱快速安装结构
CN107816616B (zh) * 2017-12-14 2024-01-16 四川众璟建设工程有限公司 节能控制一体箱快速安装结构
CN115234399A (zh) * 2022-06-30 2022-10-25 中国第一汽车股份有限公司 可变压缩比活塞、可变压缩比机构、发动机及车辆
CN115234399B (zh) * 2022-06-30 2024-03-22 中国第一汽车股份有限公司 可变压缩比机构、发动机及车辆

Also Published As

Publication number Publication date
CN104500241A (zh) 2015-04-08
CN104500241B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2016110232A1 (zh) 一种可变压缩比发动机
CN1126862C (zh) 凸轮操作系统
CN107237690A (zh) 具有可变压缩比的独立压缩膨胀比发动机
US3312206A (en) Reciprocating engines
JP2009150399A (ja) 回転連接棒ボルトを備えたモータ
US5107802A (en) Valve driving mechanism for internal combustion engines
WO2014139316A1 (zh) 可变压缩比发动机
JP5904686B2 (ja) 内燃機関のための可変行程機構
CN104271902A (zh) 机械式可控的气门传动装置、内燃机以及用于运行内燃机的方法
WO2016110231A1 (zh) 具有可变压缩比的发动机
CN103807015B (zh) 一种高节油发动机
JP2009236032A (ja) 内燃機関
JP2011032989A (ja) アトキンソンサイクルエンジン
WO2016110233A1 (zh) 一种可变压缩比发动机
JP2017227138A (ja) 可変圧縮比機械式アトキンソンサイクルエンジン
JP5689948B2 (ja) 高速エンジン
CN203822474U (zh) 具有可变压缩比的节能型发动机
CN105604634B (zh) 连续可变气门升程系统及汽车
CN204458055U (zh) 一种可变压缩比发动机
JP2006220121A (ja) 内燃機関のシリンダヘッド
CN111706430A (zh) 一种齿条杆棘轮内燃式发动机
JP2007107504A (ja) 可変動弁機構を有する内燃機関
CN104141537A (zh) 可变压缩比发动机
CN204458056U (zh) 一种可变压缩比发动机
CN103807013B (zh) 具有可变压缩比的节能型发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16734892

Country of ref document: EP

Kind code of ref document: A1