WO2016108668A1 - Method for synthesis of polyetherimide - Google Patents

Method for synthesis of polyetherimide Download PDF

Info

Publication number
WO2016108668A1
WO2016108668A1 PCT/KR2015/014576 KR2015014576W WO2016108668A1 WO 2016108668 A1 WO2016108668 A1 WO 2016108668A1 KR 2015014576 W KR2015014576 W KR 2015014576W WO 2016108668 A1 WO2016108668 A1 WO 2016108668A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
formula
polyetherimide
divalent
pei
Prior art date
Application number
PCT/KR2015/014576
Other languages
French (fr)
Korean (ko)
Inventor
김호섭
김정한
송상민
김상균
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150190420A external-priority patent/KR20160082485A/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2016108668A1 publication Critical patent/WO2016108668A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • Polyetherimide a kind of polyimide, has an imide group that imparts heat resistance and strength in the molecular structure and an ether group that can improve processability (formability), thereby improving processability compared to general polyimide.
  • Amorphous thermoplastic polymer Since polyetherimide has high heat resistance, excellent dimensional and thermal stability, chemical resistance and flame resistance, plastic resins including these are widely used in electric and electronic parts such as DC converters, semiconductor trays, HDD board holders, automotive parts, aircraft sheet fibers, and eyeglasses. It is used.
  • Polyetherimides can generally be prepared in two ways.
  • dianhydride monomers and diamine monomers having a soft group by intramolecular ether (ether, -O-) bonds are converted into dimethylacetamide (DMAc), dimethylformamide (DMF), and N-methyl-2-pyrrolidone.
  • DMAc dimethylacetamide
  • DMF dimethylformamide
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone.
  • NMP solvent
  • PAA polyamic acid
  • thermally or chemically curing Since this method is difficult to proceed with 100% imidization without an additional process, there is a high possibility that physical property changes occur in the process of making a product (extrusion, injection) using PEI.
  • the second method is a method of preparing PEI by adding a monomer containing a halogenated bisimide and hydroxide ion 100% imidization in a solvent, followed by high-temperature polymerization under a catalyst. Since this method uses 100% imidized monomer, sufficient imidization is possible without additional process, and there is no change in physical properties in the process of making a product (extrusion, injection). In spite of the disadvantage that there is a limitation that it is difficult to control the molecular weight of PEI by side reaction because high temperature conditions are required, the second method is more usefully applied to the polyetherimide manufacturing method than the first method. .
  • US Pat. No. 5,229,482 discloses a low polar solvent such as dichlorobenzene in the presence of a thermally stable phase transfer catalyst such as hexaalkylguanidinium halide. A method for the production of polyetherimides using is disclosed.
  • U. S. Patent No. 5,830, 974 also discloses the use of monoalkoxybenzenes such as anisol as solvents.
  • the present invention is to provide a method for synthesizing a high molecular weight PEI in a reaction time faster than using a conventionally used catalyst such as hexaalkylguanidinium in the polyetherimide (PEI) manufacturing method .
  • Preferred embodiments of the present invention for solving the above problems is (S1) krypton or crown ether ligand as a phase transfer catalyst to the reaction tank in which the solvent and the bisimide monomer represented by the formula (1) at a concentration of 10% to 30% Dropping the catalyst; And (S2) anionic monomer represented by the following Chemical Formula 2 is added dropwise to the reaction tank in which the catalyst is dropped in the step (S1) in the same molar amount (within an error range of ⁇ 0.05) and reacted with the polyetherimide.
  • Polyetherimide synthesis method comprising the step of obtaining.
  • A is one selected from F, Cl, Br, I, and NO 2
  • R 1 is Cyclohexane, Cyclopentadiene, Or a divalent bonding group derived from one organic compound selected from biphenyl and diphenyl ether, or phenylene.
  • B is K or Na
  • R 2 is selected from alkylene having 1 to 10 carbon atoms, cycloalkylene having 3 to 10 carbon atoms, Phenylene, divalent biphenyl, divalent diphenyl sulfone, divalent diphenyl ketone, and divalent diphenyl propane. It is one kind.
  • Reactor according to the embodiment is disposed in an oil bath (oil bath), the oil bath may be to be heated to 130 to 210 °C in step (S1).
  • the solvent according to the embodiment is toluene, xylene, ortho-dichlorobenzene, para-dichlorobenzene, dichlorotoluene, 1,2,4-trichlorobenzene, diphenyl sulfone, phentol, anisole , Beratrol and a mixture thereof may be one or more selected, and the catalyst is at least one of 18-Crown-6 and Cryptand 221 when B is Na in Formula 2, and B is K in Formula 2 In this case, it may be at least one of 21-Crown-7 and Cryptand 222.
  • the catalyst is preferably added 0.01 to 0.1 mol% based on the total moles of bisimide monomer.
  • the present invention unlike the conventional method of dissolving anionic monomer using a polar catalyst, by using a catalyst in which no ions are present in the molecular structure, a small amount of catalyst can be synthesized in a shorter time without additional water purification process. High molecular weight polyetherimides can be synthesized and prepared.
  • the present invention may be easier for a method for preparing PEI using an anionic monomer comprising Na or K ions.
  • Figure 1 shows the chemical structures of 18-Crown-6, 21-Crown-7, Cryptand 221 and Cryptand 222 as an example of a phase transfer catalyst according to the present invention.
  • the present invention has been proposed as a method for preparing polyetherimide from bisimide monomers which already contain imide groups in the monomer structure, and has a kryptan or crown ether ligand catalyst instead of hexaalkylguanidinium which has been used as a phase transfer catalyst. By using it can provide a method for synthesizing a polyetherimide having a high degree of polymerization within a fast reaction time without removing the water.
  • anionic salts are used as reactants with bisimides.
  • the anionic salts do not dissolve well when they are not protic solvents such as water or alcohol.
  • a catalyst may be used to dissolve the anionic salt in the solvent in the reaction using the bisimide monomer.
  • hexaalkylguanidinium chloride was used as the catalyst.
  • hexaalkylguanidinium chloride is difficult to remove water bound during synthesis due to the presence of ions in the molecule, and easily with water in the air encountered during the experiment.
  • the polyetherimide production method of the present invention is a step of dropping a krypton or crown ether ligand catalyst as a phase transfer catalyst to the reaction tank in which the solvent and the bisimide monomer represented by the following formula (1) at a concentration of 10% to 30% Starts from.
  • A is one selected from F, Cl, Br, I, and NO 2
  • R 1 is cycloclohexane Cyclopentadiene , Biphenyl And diphenyl ether A divalent bonding group derived from one organic compound selected from among to be.
  • the solvent is preferably selected as a solvent in which the bisimide monomer can be dissolved, toluene, xylene, ortho-dichlorobenzene, para-dichlorobenzene, dichlorotoluene, 1,2,4-tri It may be one or more selected from chlorobenzene, diphenyl sulfone, phentol, anisole, beratrol and mixtures thereof.
  • the substituent A may be advantageous to use a halogen atom group having a high electronegativity or NO 2 , because the polymerization reaction with the anionic monomer may proceed only when leaving as a leaving group.
  • the bisimide monomer is preferably added to the solvent in a concentration of 10% to 30%, when the concentration is less than 10% is low concentration can produce only low molecular weight PEI, when the concentration is greater than 30% As a result, the monomer may not be dissolved in the solvent, and thus the monomer may not participate in the reaction, resulting in low yield or high viscosity in the solvent.
  • the reaction tank is disposed in an oil bath, and the oil bath is preferably heated to 130 to 210 ° C, more preferably 150 to 200 ° C in step (S1).
  • the reason for raising the temperature of the oil bath is to reach a temperature suitable for the polymerization reaction, and also to induce the bisimide monomer to be better dissolved in the solvent in the reactor.
  • the temperature of the oil bath is 210 ° C. or less, a sufficiently high molecular weight PEI may be obtained.
  • the temperature of the oil bath is less than 130 ° C., since the polymerization may not be sufficiently performed in the reaction, the molecular weight of the final obtained PEI may be low.
  • the catalyst is added to improve the solubility in the solvent of the anionic monomer to be introduced in step 2 (S2) to be described later, it is preferable that it is a krypton or crown ether ligand catalyst.
  • the catalyst is preferably at least one of 18-Crown-6 and Cryptand 221, and the anionic monomer When K ions are included, the catalyst is preferably at least one of 21-Crown-7 and Cryptand 222.
  • the catalyst is added in an amount of 0.01 to 0.1 mol% based on the total moles of bisimide monomer.
  • the addition amount of the catalyst is less than 0.01 mol%, it is not preferable because the reaction rate is slow and the desired molecular weight can be obtained. If the amount is more than 0.1 mol%, the reaction rate is rather slow and the problem that the desired molecular weight cannot be obtained may occur.
  • the catalyst of the present invention is a multidentate ligand which is cross-linked in three dimensions to form a ring shape, and has the characteristic of trapping alkali metal ions, particularly Na or K, in a three-dimensional space to form a chelate complex.
  • alkali metal ions particularly Na or K
  • hexaalkyl guanidium chloride which is commonly used in the production of polyetherimide, since ionic bonds exist in the molecule, it is easily combined with moisture generated in the PEI synthesis process or moisture present in the air.
  • the catalyst of the present invention is excellent in the activity of the catalyst even without the process of removing water in the synthesis process because there is no ionic bond in the molecule, it is possible to obtain a high molecular weight PEI in a short time .
  • the present invention is added dropwise anionic monomer represented by the following formula (2) to the reaction tank in which the catalyst is dropped in the step (S1) in the same molar amount (within the error range ⁇ 0.05) and the temperature increase in the step (S1) By reacting at this temperature, polyetherimide can finally be obtained.
  • B is K or Na
  • R 2 is alkylene having 1 to 10 carbon atoms, cycloalkylene having 3 to 10 carbon atoms, and phenylene.
  • the anionic salt is a diol or phenolic anionic salt having two hydroxyl groups (-OH), diol or hydroquinone such as ethylene glycol, 4,4'-hydroxy bisphenol, bis (4- In phenolic compounds such as hydroxidephenyl) sulfone, bis (4-hydrophenyl) ketone, bisphenol A and the like, it is preferable that H of the hydroxyl group is substituted with potassium (K, potassium) or sodium (Na, sodium).
  • the anionic salt is ionized, potassium cation (K + ) or sodium cation (Na + ) is collected by the catalyst, and the portion showing the anion is a halogen atom having a high electronegativity at the end of bisimide or NO 2. Instead of giving electrons to the polyetherimide, it forms an ether bond with the bisimide terminal instead.
  • PEI was synthesized in the same manner as in Example 1, except that 11.64 g (22.0 mmol) of B-4-CPI-4-PPE was added instead of B-4-CPI-4-PIB.
  • PEI was prepared in the same manner as in Example 1, except that 0.1 mol% (0.022 mmol) of Hexaethyl Guanidium chloride (Angene Chemical, China) catalyst was used relative to the bisimide monomer (B-4-CPI-4-PIB). Synthesized.
  • PEI was synthesized in the same manner as in Comparative Example 2, except that moisture generated in the synthesis process of Comparative Example 2 was removed (purified).
  • the present invention can be reacted with the same degree of polymerization (PEI) even without purification. It could be confirmed that can be obtained. That is, according to this result, the polyether imide synthesis method according to the present invention can synthesize PEI of a high degree of polymerization without purifying water, and the reaction is to apply a catalyst that has been used conventionally under the same conditions. It could be confirmed that it can be made in a shorter time.
  • PEI degree of polymerization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a method for synthesis of a polyetherimide, comprising the steps of: (S1) dripping, as a phase transfer catalyst, a cryptand or a crown ether-based ligand catalyst into a reactor into which a solvent and a bisimide monomer have been added in a concentration between 10% and 30%; and (S2) dripping an anionic monomer represented by formula 2 below, with the same molar amount (error range: within ±0.05) as the bisimide monomer, into the reactor dripped with the catalyst in step (S1) and reacting the same to thereby obtain polyetherimide.

Description

폴리에테르이미드 합성방법Polyetherimide Synthesis Method
본 발명은 폴리에테르이미드의 합성 방법에 관한 것이다.The present invention relates to a method for synthesizing polyetherimide.
폴리이미드의 한 부류인 폴리에테르이미드(Polyetherimide, PEI)는 분자구조내에 내열성과 강도를 부여하는 이미드기와 가공성(성형성)을 향상시킬 수 있는 에테르기가 동시에 존재하여 일반적인 폴리이미드에 비해 가공성이 향상된 비정형 열가소성 폴리머이다. 폴리에테르이미드는 높은 내열성, 우수한 치수 및 열 안정성, 내화학성 및 내연성을 갖기 때문에 이를 포함한 플라스틱 수지는 DC컨버터, 반도체 트레이, HDD기판 홀더와 같은 전기전자 부품이나 자동차 부품, 항공기 시트 섬유, 안경태 등에 널리 사용되고 있다. Polyetherimide (PEI), a kind of polyimide, has an imide group that imparts heat resistance and strength in the molecular structure and an ether group that can improve processability (formability), thereby improving processability compared to general polyimide. Amorphous thermoplastic polymer. Since polyetherimide has high heat resistance, excellent dimensional and thermal stability, chemical resistance and flame resistance, plastic resins including these are widely used in electric and electronic parts such as DC converters, semiconductor trays, HDD board holders, automotive parts, aircraft sheet fibers, and eyeglasses. It is used.
폴리에테르이미드는 일반적으로 두 가지 방법으로 제조될 수 있다. 첫번째 방법은 분자내 에테르(ether, -O-)결합에 의한 유연기를 갖는 디안하이드라이드 단량체와 디아민 단량체를 디메틸아세트아미드(DMAc), 디메틸포름아미드(DMF), N-메틸-2-피롤리돈(NMP) 등의 용매에서 중합하여 폴리아믹산(Polyamic acid, PAA)을 만들고 이를 열경화 또는 화학경화 하여 PEI를 제조하는 방법이다. 이러한 방식은 추가적인 공정이 없이는 100% 이미드화를 진행하기가 어렵기 때문에, PEI를 이용하여 제품을 만드는 과정(압출, 사출)에서 물성 변화가 발생될 가능성이 높다.Polyetherimides can generally be prepared in two ways. In the first method, dianhydride monomers and diamine monomers having a soft group by intramolecular ether (ether, -O-) bonds are converted into dimethylacetamide (DMAc), dimethylformamide (DMF), and N-methyl-2-pyrrolidone. It is a method of preparing PEI by polymerizing in a solvent such as (NMP) to make polyamic acid (PAA) and thermally or chemically curing it. Since this method is difficult to proceed with 100% imidization without an additional process, there is a high possibility that physical property changes occur in the process of making a product (extrusion, injection) using PEI.
반면, 두번째 방법은 이미드화가 100% 이루어진 할로겐화 비스이미드와 hydroxide ion을 포함하는 단량체를 용매에 투입한 후, 촉매하에서 고온 중합하여 PEI를 제조하는 방법이다. 이와 같은 방법은 100% 이미드화가 이루어진 단량체를 사용하므로 추가 공정 없이도 충분한 이미드화가 가능하며, 제품을 만드는 과정(압출, 사출)에서 물성 변화가 발생하지 않는다. 이에 고온의 조건이 요구되므로 부반응(Side reaction)에 의한 PEI의 분자량 제어가 어렵다는 한계가 존재한다는 단점에도 불구하고, 두번째 방법은 상기 첫번째 방법에 비해 폴리에테르이미드 제조방법에 있어 보다 유용하게 적용되고 있다.On the other hand, the second method is a method of preparing PEI by adding a monomer containing a halogenated bisimide and hydroxide ion 100% imidization in a solvent, followed by high-temperature polymerization under a catalyst. Since this method uses 100% imidized monomer, sufficient imidization is possible without additional process, and there is no change in physical properties in the process of making a product (extrusion, injection). In spite of the disadvantage that there is a limitation that it is difficult to control the molecular weight of PEI by side reaction because high temperature conditions are required, the second method is more usefully applied to the polyetherimide manufacturing method than the first method. .
비스이미드로부터 폴리에테르이미드를 제조하는 방법과 관련하여, 미국 특허 제 5,229,482 호는 헥사알킬구아니디늄 할로겐화물과 같은 열적으로 안정한 상전이촉매(phase transfer catalyst)의 존재하에서 디클로로벤젠과 같은 낮은 극성의 용매를 사용하여 폴리에테르이미드의 제조를 위한 방법이 개시하고 있다. 또한, 미국 특허 제 5,830,974 호는 용매로서 아니졸과 같은 모노알콕시벤젠을 사용하는 방법을 개시하고 있다. Regarding the process for preparing polyetherimides from bisimides, US Pat. No. 5,229,482 discloses a low polar solvent such as dichlorobenzene in the presence of a thermally stable phase transfer catalyst such as hexaalkylguanidinium halide. A method for the production of polyetherimides using is disclosed. U. S. Patent No. 5,830, 974 also discloses the use of monoalkoxybenzenes such as anisol as solvents.
이러한 종래 기술들이 존재함에도 불구하고, 비스이미드로부터 폴리에테르이미드 제조를 위한 최적의 방법 개발은 여전히 해결과제로 남아 있다. 특히, 제조분야에 있어서 보다 빠른 시간 내에 높은 분자량의 폴리에테르이미드를 얻을 수 있는 방법을 개발하는 것은 무엇보다도 중요하게 요구되고 있는 바이다.Despite these prior arts, the development of optimal methods for the production of polyetherimides from bisimides still remains a challenge. In particular, in the manufacturing field, it is important to develop a method for obtaining a high molecular weight polyetherimide in a short time.
이에 본 발명은 폴리에테르이미드(PEI) 제조방법에 있어서, 헥사알킬구아니디늄과 같이 종래에 사용되어 온 촉매를 이용하는것 보다 빠른 반응 시간내에 높은 분자량의 PEI를 합성할 수 있는 방법을 제공하고자 한다.Accordingly, the present invention is to provide a method for synthesizing a high molecular weight PEI in a reaction time faster than using a conventionally used catalyst such as hexaalkylguanidinium in the polyetherimide (PEI) manufacturing method .
상기 과제를 해결하기 위한 본 발명의 바람직한 구현예는 (S1) 용매 및 하기 화학식 1로 표시되는 비스이미드 단량체가 10% 내지 30%의 농도로 투입된 반응조에 상이동 촉매로서 크립탠드 또는 크라운 에테르계 리간드 촉매를 적하하는 단계; 및 (S2) 상기 (S1)단계에서 촉매가 적하된 반응조에 하기 화학식 2로 표기되는 음이온성 단량체를 상기 비스이미드 단량체와 동일 몰량(오차범위 ±0.05 이내)으로 적하하고, 반응시켜 폴리에테르이미드를 수득하는 단계를 포함하는 폴리에테르이미드 합성 방법이다.Preferred embodiments of the present invention for solving the above problems is (S1) krypton or crown ether ligand as a phase transfer catalyst to the reaction tank in which the solvent and the bisimide monomer represented by the formula (1) at a concentration of 10% to 30% Dropping the catalyst; And (S2) anionic monomer represented by the following Chemical Formula 2 is added dropwise to the reaction tank in which the catalyst is dropped in the step (S1) in the same molar amount (within an error range of ± 0.05) and reacted with the polyetherimide. Polyetherimide synthesis method comprising the step of obtaining.
<화학식 1><Formula 1>
Figure PCTKR2015014576-appb-I000001
Figure PCTKR2015014576-appb-I000001
상기 화학식 1에서 A는 F, Cl, Br, I 및 NO2 중 선택된 1종이고, R1 은 Cyclohexane, Cyclopentadiene, Biphenyl 및 diphenyl ether 중 선택된 1종의 유기 화합물로부터 유도된 2가의 결합기이거나, phenylene이다. In Formula 1, A is one selected from F, Cl, Br, I, and NO 2 , and R 1 is Cyclohexane, Cyclopentadiene, Or a divalent bonding group derived from one organic compound selected from biphenyl and diphenyl ether, or phenylene.
<화학식 2><Formula 2>
Figure PCTKR2015014576-appb-I000002
Figure PCTKR2015014576-appb-I000002
상기 화학식 2에서 B는 K 또는 Na이고, R2은 탄소수 1 내지 10의 alkylene, 탄소수 3 내지 10의 cycloalkylene, Phenylene, 2가의 biphenyl, 2가의 diphenyl sulfone, 2가의 diphenyl ketone 및 2가의 diphenyl propane 중 선택된 1종이다. In Formula 2, B is K or Na, R 2 is selected from alkylene having 1 to 10 carbon atoms, cycloalkylene having 3 to 10 carbon atoms, Phenylene, divalent biphenyl, divalent diphenyl sulfone, divalent diphenyl ketone, and divalent diphenyl propane. It is one kind.
상기 구현예에 따른 반응조는 오일 배스(oil bath) 내에 배치된 것이며, 상기 오일 배스는 (S1)단계에서 130 내지 210℃로 승온되는 것일 수 있다.Reactor according to the embodiment is disposed in an oil bath (oil bath), the oil bath may be to be heated to 130 to 210 ℃ in step (S1).
또, 상기 구현예에 따른 용매는 톨루엔, 자일렌, 오르쏘-다이클로로벤젠, 파라-다이클로로벤젠, 다이클로로톨루엔, 1,2,4-트라이클로로벤젠, 다이페닐 설폰, 페네톨, 아니솔, 베라트롤 및 이들의 혼합물 중 선택된 1종 이상인 것일 수 있고, 상기 촉매는 상기 화학식 2에서 B가 Na일 경우, 18-Crown-6 및 Cryptand 221 중 적어도 하나이고, 상기 화학식 2에서 B가 K일 경우, 21-Crown-7 및 Cryptand 222중 적어도 하나일 수 있다.In addition, the solvent according to the embodiment is toluene, xylene, ortho-dichlorobenzene, para-dichlorobenzene, dichlorotoluene, 1,2,4-trichlorobenzene, diphenyl sulfone, phentol, anisole , Beratrol and a mixture thereof may be one or more selected, and the catalyst is at least one of 18-Crown-6 and Cryptand 221 when B is Na in Formula 2, and B is K in Formula 2 In this case, it may be at least one of 21-Crown-7 and Cryptand 222.
이때, 상기 촉매는 비스이미드 단량체 총 몰에 대하여 0.01 내지 0.1몰% 첨가되는 것이 바람직하다.In this case, the catalyst is preferably added 0.01 to 0.1 mol% based on the total moles of bisimide monomer.
나아가 상기 구현예에 따른 (S2)에서의 반응은 1 내지 5시간 수행될 수 있으며, (S2)에서 수득한 폴리에테르이미드의 중량평균분자량은 10,000 내지 70,000일 수 있다.Furthermore, the reaction in (S2) according to the above embodiment may be performed for 1 to 5 hours, and the weight average molecular weight of the polyetherimide obtained in (S2) may be 10,000 to 70,000.
본 발명에 따르면 극성 촉매를 이용하여 음이온성 단량체를 용해시켰던 기존의 방법과는 달리, 분자 구조내에 이온이 존재하지 않는 촉매를 사용함으로써 소량의 촉매만으로도 합성시 별도의 수분 정제과정 없이 보다 빠른 시간내에 높은 분자량의 폴리에테르이미드를 합성 및 제조할 수 있다.According to the present invention, unlike the conventional method of dissolving anionic monomer using a polar catalyst, by using a catalyst in which no ions are present in the molecular structure, a small amount of catalyst can be synthesized in a shorter time without additional water purification process. High molecular weight polyetherimides can be synthesized and prepared.
특히, 본 발명에서 사용되는 촉매는 Na 또는 K과 킬레이트를 형성하므로, 본 발명은 Na 또는 K이온을 포함하는 음이온성 단량체를 사용하여 PEI를 제조하는 방법에 보다 용이할 수 있다.In particular, since the catalyst used in the present invention forms a chelate with Na or K, the present invention may be easier for a method for preparing PEI using an anionic monomer comprising Na or K ions.
도 1은 본 발명에 따른 상전이촉매(phase transfer catalyst)의 일예인 18-Crown-6, 21-Crown-7, Cryptand 221 및 Cryptand 222 의 화학구조를 나타낸 것이다.Figure 1 shows the chemical structures of 18-Crown-6, 21-Crown-7, Cryptand 221 and Cryptand 222 as an example of a phase transfer catalyst according to the present invention.
본 발명은 단량체 구조내에 이미드기를 이미 포함하고 있는 비스이미드 단량체로부터 폴리에테르이미드를 제조하는 방법으로서 제안된 것이며, 상전이 촉매로 기존에 사용되어온 헥사알킬구아니디늄 대신 크립탠드 또는 크라운 에테르계 리간드 촉매를 이용함에 따라 수분의 제거과정 없이도 빠른 반응 시간내에 높은 중합도를 갖는 폴리에테르이미드를 합성할 수 있는 방법을 제공할 수 있다.The present invention has been proposed as a method for preparing polyetherimide from bisimide monomers which already contain imide groups in the monomer structure, and has a kryptan or crown ether ligand catalyst instead of hexaalkylguanidinium which has been used as a phase transfer catalyst. By using it can provide a method for synthesizing a polyetherimide having a high degree of polymerization within a fast reaction time without removing the water.
통상적으로 비스이미드 단량체를 이용한 폴리에테르이미드 제조에서는 비스이미드와의 반응물로서 음이온성 염을 이용하게 되는데, 음이온성 염의 특성상 물이나 알코올과 같은 프로톤성 용매가 아닌 경우 잘 용해되지 않는다. 그런데, 비스이미드 단량체를 용해시킬 수 있는 용매는 프로톤성 용매가 아니므로 비스이미드 단량체를 이용한 반응에서는 음이온성 염을 용매에 용해시키기 위해 촉매를 사용할 수 밖에 없다.In general, in the preparation of polyetherimide using bisimide monomers, anionic salts are used as reactants with bisimides. However, the anionic salts do not dissolve well when they are not protic solvents such as water or alcohol. However, since the solvent capable of dissolving the bisimide monomer is not a protic solvent, a catalyst may be used to dissolve the anionic salt in the solvent in the reaction using the bisimide monomer.
이러한 촉매로서 기존에는 헥사알킬구아니디늄 클로라이드을 사용하였으나, 이 경우 헥사알킬구아니디늄 클로라이드는 분자내에 이온이 존재하기 때문에 합성과정에서 결합된 수분을 제거하기 어렵고 실험중에 만나게 되는 공기에 있는 수분과 쉽게 결합하는 단점이 있다. 이에 따라, 반응을 제대로 제어하지 못할 경우, 이미드결합기가 수분에 의해 공격받아 깨지게 되므로 높은 중합도의 PEI를 수득하지 못하게 된다. 따라서 헥사알킬구아니디늄을 촉매로 사용하는 방법에서는 반응시 발생하는 수분의 제거 즉, 정제과정이 필수 불가한 것이다.In the past, hexaalkylguanidinium chloride was used as the catalyst. However, in this case, hexaalkylguanidinium chloride is difficult to remove water bound during synthesis due to the presence of ions in the molecule, and easily with water in the air encountered during the experiment. There is a drawback to combining. Accordingly, when the reaction is not properly controlled, the imide bond group is attacked and broken by water, and thus, PEI of high degree of polymerization cannot be obtained. Therefore, in the method using hexaalkylguanidinium as a catalyst, the removal of water generated during the reaction, that is, the purification process is not essential.
그러나 본 발명에서 사용하는 크립탠드 또는 크라운 에테르계 리간드 촉매의 경우, 극성이 존재하지 않기 때문에 합성과정에서도 수분을 제거하기 쉽다. 또한 실험을 진행하는 과정에 만나는 수분과도 쉽게 결합하지 않기 때문에, 별도의 수분의 정제과정이 불필요하며, 이에 따라 합성이 보다 간편하게 이루어질 수 있으며, 수분에 의해 이미드기가 깨질 우려가 없기 때문에 보다 높은 중합도의 PEI를 얻을 수 있게 된다.However, in the case of the krypton or crown ether ligand catalyst used in the present invention, since there is no polarity, it is easy to remove moisture even during the synthesis process. In addition, since it does not bind easily with the water encountered during the process of the experiment, a separate process of refining the water is unnecessary, and thus, the synthesis can be made more easily, and since the imide group is not broken by water, PEI of degree of polymerization can be obtained.
이를 가능하게 하는 본 발명의 구체적인 방법은 다음 같은 단계로 수행될 수 있다.The specific method of the present invention which enables this can be carried out in the following steps.
1 단계(S1)Step 1 (S1)
우선, 본 발명의 폴리에테르이미드 제조방법은 용매 및 하기 화학식 1로 표시되는 비스이미드 단량체가 10% 내지 30%의 농도로 투입된 반응조에 상이동 촉매로서 크립탠드 또는 크라운 에테르계 리간드 촉매를 적하하는 단계로부터 출발된다.First, the polyetherimide production method of the present invention is a step of dropping a krypton or crown ether ligand catalyst as a phase transfer catalyst to the reaction tank in which the solvent and the bisimide monomer represented by the following formula (1) at a concentration of 10% to 30% Starts from.
<화학식 1><Formula 1>
Figure PCTKR2015014576-appb-I000003
Figure PCTKR2015014576-appb-I000003
상기 화학식 1에서 A는 F, Cl, Br, I 및 NO2 중 선택된 1종이고, R1 은 Cyclohexane
Figure PCTKR2015014576-appb-I000004
,Cyclopentadiene
Figure PCTKR2015014576-appb-I000005
, Biphenyl
Figure PCTKR2015014576-appb-I000006
및 diphenyl ether
Figure PCTKR2015014576-appb-I000007
중 선택된 1종의 유기 화합물로부터 유도된 2가의 결합기이거나, phenylene
Figure PCTKR2015014576-appb-I000008
이다.
In Formula 1, A is one selected from F, Cl, Br, I, and NO 2 , and R 1 is cycloclohexane
Figure PCTKR2015014576-appb-I000004
Cyclopentadiene
Figure PCTKR2015014576-appb-I000005
, Biphenyl
Figure PCTKR2015014576-appb-I000006
And diphenyl ether
Figure PCTKR2015014576-appb-I000007
A divalent bonding group derived from one organic compound selected from among
Figure PCTKR2015014576-appb-I000008
to be.
이때, 상기 용매는 비스이미드 단량체가 용해될 수 있는 용매로 선택되는 것이 바람직하며, 톨루엔, 자일렌, 오르쏘-다이클로로벤젠, 파라-다이클로로벤젠, 다이클로로톨루엔, 1,2,4-트라이클로로벤젠, 다이페닐 설폰, 페네톨, 아니솔, 베라트롤 및 이들의 혼합물 중 선택된 1종 이상인 것일 수 있다.At this time, the solvent is preferably selected as a solvent in which the bisimide monomer can be dissolved, toluene, xylene, ortho-dichlorobenzene, para-dichlorobenzene, dichlorotoluene, 1,2,4-tri It may be one or more selected from chlorobenzene, diphenyl sulfone, phentol, anisole, beratrol and mixtures thereof.
상기 비스이미드 단량체에서 치환기 A는 leaving group으로서 반응시 잘 떨어져 나가야 음이온 단량체와의 중합반응 활발이 진행될 수 있기에 전기음성도가 높은 할로겐 원자단 또는 NO2로 치환된 것을 사용하는 것이 유리할 수 있다. 또한, 상기 비스이미드 단량체는 상기 용매에 10% 내지 30% 의 농도로 첨가되는 것이 바람직한데, 농도가 10% 미만일 경우 농도가 낮아서 낮은 분자량의 PEI만 생성될 수 있고, 농도가 30% 초과할 경우, 모노머가 용매에 다 녹지 않아 반응에 참여하지 못한 모노머로 인하여 수율이 낮게 되거나 용매에 점도가 너무 높아져 교반이 안되는 문제가 발생될 수 있다.In the bisimide monomer, the substituent A may be advantageous to use a halogen atom group having a high electronegativity or NO 2 , because the polymerization reaction with the anionic monomer may proceed only when leaving as a leaving group. In addition, the bisimide monomer is preferably added to the solvent in a concentration of 10% to 30%, when the concentration is less than 10% is low concentration can produce only low molecular weight PEI, when the concentration is greater than 30% As a result, the monomer may not be dissolved in the solvent, and thus the monomer may not participate in the reaction, resulting in low yield or high viscosity in the solvent.
본 발명에서 상기 반응조는 오일 배스(oil bath) 내에 배치된 것이며, 상기 오일 배스는 (S1)단계에서 130 내지 210℃, 보다 바람직하게는 150 내지 200℃로 승온되는 것이 바람직하다. 오일 배스의 온도를 승온시키는 이유는 중합 반응에 적합한 온도에 도달시키기 위해서이기도 하며, 비스이미드 단량체가 반응조 내에서 용매에 보다 잘 용해될 수 있도록 유도하기 위한 목적이기도 하다. 오일 배스의 온도가 210℃ 이하라면 충분히 높은 분자량의 PEI를 얻을 수 있으나, 130℃미만일 경우, 이후 반응에서 충분한 중합이 이루어지지 않아 최종 수득되는 PEI의 분자량이 저조할 수 있다.In the present invention, the reaction tank is disposed in an oil bath, and the oil bath is preferably heated to 130 to 210 ° C, more preferably 150 to 200 ° C in step (S1). The reason for raising the temperature of the oil bath is to reach a temperature suitable for the polymerization reaction, and also to induce the bisimide monomer to be better dissolved in the solvent in the reactor. When the temperature of the oil bath is 210 ° C. or less, a sufficiently high molecular weight PEI may be obtained. However, when the temperature of the oil bath is less than 130 ° C., since the polymerization may not be sufficiently performed in the reaction, the molecular weight of the final obtained PEI may be low.
한편, 상기 촉매는 후술하는 2단계(S2)에서 투입될 음이온성 단량체의 용매에 대한 용해도를 향상시키기 위해 첨가되는 것으로서, 크립탠드 또는 크라운 에테르계 리간드 촉매인 것이 바람직하다. 특히, (S2)단계에서 투입할 음이온성 단량체의 종류를 고려하여, 음이온성 단량체에 Na 이온이 포함될 경우 상기 촉매는 18-Crown-6 및 Cryptand 221 중 적어도 하나인 것이 바람직하고, 음이온성 단량체에 K 이온이 포함될 경우 상기 촉매는 21-Crown-7 및 Cryptand 222 중 적어도 하나인 것이 바람직하다.On the other hand, the catalyst is added to improve the solubility in the solvent of the anionic monomer to be introduced in step 2 (S2) to be described later, it is preferable that it is a krypton or crown ether ligand catalyst. In particular, in consideration of the type of anionic monomer to be added in step (S2), when Na ion is included in the anionic monomer, the catalyst is preferably at least one of 18-Crown-6 and Cryptand 221, and the anionic monomer When K ions are included, the catalyst is preferably at least one of 21-Crown-7 and Cryptand 222.
본 발명에서 상기 촉매는 비스이미드 단량체 총 몰에 대하여 0.01 내지 0.1몰% 첨가되는 것이 바람직할 수 있다. 촉매의 첨가량이 0.01몰% 미만일 경우, 반응속도가 느려 원하는 분자량을 얻을 수가 때문에 바람직하지 않고, 0.1몰%를 초과하면, 오히려 반응 속도가 느려져 원하는 분자량을 얻을 수가 없는 문제가 발생할 수 있다.In the present invention, it may be preferred that the catalyst is added in an amount of 0.01 to 0.1 mol% based on the total moles of bisimide monomer. When the addition amount of the catalyst is less than 0.01 mol%, it is not preferable because the reaction rate is slow and the desired molecular weight can be obtained. If the amount is more than 0.1 mol%, the reaction rate is rather slow and the problem that the desired molecular weight cannot be obtained may occur.
본 발명의 촉매는 도 1에 도시한 것과 같이 3차원으로 가교하여 고리모양을 이루고 있는 다좌 배위자로서 알칼리 금속 이온, 특히 Na 또는 K을 3차원 공간에 포집하여 킬레이트 착물을 형성하는 특징을 가지고 있다. 폴리에테르이미드 제조에 흔히 사용되는 헥사알킬구아니디늄 클로라이드(Hexaethyl guanidium Chloride)의 경우, 분자내에 이온 결합이 존재하여 PEI 합성공정에서 발생되는 수분이나 공기중에 존재하는 수분과 결합이 쉽기 때문에 별도의 수분 정제 공정을 요구하나, 본 발명의 촉매는 분자내에 이온결합이 존재하지 않기 때문에 합성과정에서 수분을 제거해주는 공정이 없어도 촉매의 활성이 우수하며, 이에 따라 높은 분자량의 PEI을 빠른 시간내에 얻을 수가 있다.As shown in FIG. 1, the catalyst of the present invention is a multidentate ligand which is cross-linked in three dimensions to form a ring shape, and has the characteristic of trapping alkali metal ions, particularly Na or K, in a three-dimensional space to form a chelate complex. In the case of hexaalkyl guanidium chloride, which is commonly used in the production of polyetherimide, since ionic bonds exist in the molecule, it is easily combined with moisture generated in the PEI synthesis process or moisture present in the air. Although a purification process is required, the catalyst of the present invention is excellent in the activity of the catalyst even without the process of removing water in the synthesis process because there is no ionic bond in the molecule, it is possible to obtain a high molecular weight PEI in a short time .
2 단계(S2)Step 2 (S2)
이어서, 본 발명은 상기 (S1)단계에서 촉매가 적하된 반응조에 하기 화학식 2로 표기되는 음이온성 단량체를 상기 비스이미드 단량체와 동일 몰량(오차범위 ±0.05 이내)으로 적하하고 (S1)단계에서 승온된 온도에서 반응시킴으로써, 폴리에테르이미드를 최종적으로 수득할 수 있다.Subsequently, the present invention is added dropwise anionic monomer represented by the following formula (2) to the reaction tank in which the catalyst is dropped in the step (S1) in the same molar amount (within the error range ± 0.05) and the temperature increase in the step (S1) By reacting at this temperature, polyetherimide can finally be obtained.
<화학식 2><Formula 2>
Figure PCTKR2015014576-appb-I000009
Figure PCTKR2015014576-appb-I000009
상기 화학식 2에서 B는 K 또는 Na이고, R2은 탄소수 1 내지 10의 alkylene, 탄소수 3 내지 10의 cycloalkylene, Phenylene
Figure PCTKR2015014576-appb-I000010
, 2가의 biphenyl
Figure PCTKR2015014576-appb-I000011
, 2가의 diphenyl sulfone
Figure PCTKR2015014576-appb-I000012
, 2가의 diphenyl ketone
Figure PCTKR2015014576-appb-I000013
및 2가의 diphenyl propane
Figure PCTKR2015014576-appb-I000014
중 선택된 1종이다.
In Formula 2, B is K or Na, R 2 is alkylene having 1 to 10 carbon atoms, cycloalkylene having 3 to 10 carbon atoms, and phenylene.
Figure PCTKR2015014576-appb-I000010
, Divalent biphenyl
Figure PCTKR2015014576-appb-I000011
Divalent diphenyl sulfone
Figure PCTKR2015014576-appb-I000012
Divalent diphenyl ketone
Figure PCTKR2015014576-appb-I000013
And divalent diphenyl propane
Figure PCTKR2015014576-appb-I000014
It is one selected.
본 발명에서 상기 음이온성 염은 2개의 수산화기(-OH)를 갖는 다이올 또는 페놀계 음이온성 염으로서, 에틸렌 글리콜과 같은 다이올 또는 하이드로퀴논, 4,4'-하이드록시 비스페놀, 비스(4-하이드록페닐)설폰, 비스(4-하이드로페닐)케톤, 비스페놀 A 등과 같은 페놀계 화합물에서 수산화기의 H가 포타슘(K, 칼륨) 또는 소듐(Na, 나트륨)으로 치환된 것이 바람직하다. 이에 따라, 상기 음이온성 염이 이온화되면서, 포타슘 양이온(K+) 또는 소듐 양이온(Na+)은 촉매에 의해 포집되고, 음이온을 띄는 부분은 비스이미드 말단의 전기음성도가 높은 할로겐원자 또는 NO2에 전자를 내어주면서 대신 비스이미드 말단과 에테르 결합을 이루어 폴리에테르이미드로 중합된다.In the present invention, the anionic salt is a diol or phenolic anionic salt having two hydroxyl groups (-OH), diol or hydroquinone such as ethylene glycol, 4,4'-hydroxy bisphenol, bis (4- In phenolic compounds such as hydroxidephenyl) sulfone, bis (4-hydrophenyl) ketone, bisphenol A and the like, it is preferable that H of the hydroxyl group is substituted with potassium (K, potassium) or sodium (Na, sodium). Accordingly, as the anionic salt is ionized, potassium cation (K + ) or sodium cation (Na + ) is collected by the catalyst, and the portion showing the anion is a halogen atom having a high electronegativity at the end of bisimide or NO 2. Instead of giving electrons to the polyetherimide, it forms an ether bond with the bisimide terminal instead.
이때, 상기 음이온성 염이 포타슘 또는 소듐으로 치환되어 있음에 따라 상기 촉매에 의한 포집 활성이 보다 활발해지게 되고, 이에 따라 소량의 촉매로도 반응속도는 현저히 빨라질 수 있다. 즉, 동일량의 촉매하에서 수분의 정제과정을 생략한다면, 본 발명의 제조방법에 따라 제조할 경우, 1 내지 5시간의 반응으로도 중량평균분자량(Mw)은 10,000 내지 70,000, 보다 바람직하게는 20,000 내지 70,000, 가장 바람직하게는 50,000 내지 70,000의 폴리에테르이미드를 수득할 수 있으나, 헥사알킬구아니디늄 클로라이드(Hexaethyl guanidium Chloride)를 사용하는 경우 동등 수준의 중합도를 얻기 위해 4시간 내지 6시간의 반응시간이 더 요구되는 것이다. 즉, 궁극적으로 수분의 정제과정이 불필요한 방법인 점을 고려한다면, 본 발명은 단시간에 높은 중합도의 PEI를 제조하는 효율적인 중합 방법을 제공하게 되는 것이다.In this case, as the anionic salt is substituted with potassium or sodium, the capture activity by the catalyst becomes more active, and thus the reaction rate can be significantly increased even with a small amount of the catalyst. That is, if the purification process of water is omitted under the same amount of catalyst, when prepared according to the production method of the present invention, the weight average molecular weight (Mw) is 10,000 to 70,000, more preferably 20,000 even after 1 to 5 hours of reaction Polyetherimide of from 70,000 to 70,000, most preferably 50,000 to 70,000 can be obtained, but when using hexaalkyl guanidium chloride (Hexaethyl guanidium Chloride) reaction time of 4 hours to 6 hours to obtain an equivalent degree of polymerization This is more demanding. That is, considering that ultimately the process of purifying water is an unnecessary method, the present invention is to provide an efficient polymerization method for producing a high polymerization degree PEI in a short time.
본 발명에서 설명되는 중량평균분자량(Mw)는 겔 투과 크로마토그래피(GPC) (Waters사 제품, 모델명 e2695)에 의해 폴리스티렌 환산 중량평균분자량(Mw)을 구한 것을 의미할 수 있다. 측정방법은 보다 구체적으로, 측정하고자하는 중합체를 1%의 농도가 되도록 디메틸포름아미드(DMF)에 용해시켜 GPC에 20㎕를 주입하되, 1.0mL/분의 유속으로 유입하고, 30℃에서 분석을 수행한다. 이때, 컬럼은 Waters사 Styragel HR3 2개를 직렬로 연결하여 사용할 수 있으며, 검출기로는 RI 검출기 (Waters사 제품, 2414)를 이용하여 40℃에서 측정한다.The weight average molecular weight (Mw) described in the present invention may mean that polystyrene reduced weight average molecular weight (Mw) is obtained by gel permeation chromatography (GPC) (manufactured by Waters, model name e2695). More specifically, the polymer to be measured is dissolved in dimethylformamide (DMF) so as to have a concentration of 1%, 20 μl of GPC is injected, and flows at a flow rate of 1.0 mL / min, and the analysis is performed at 30 ° C. To perform. At this time, the column can be used by connecting two Styragel HR3 in Waters in series, the detector is measured at 40 ℃ using RI detector (Waters, 2414) as a detector.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the present invention is not limited thereto.
본 발명의 실시예 전체 걸쳐 사용된 시약은 다음과 같다.The reagents used throughout the Examples of the present invention are as follows.
- 비스이미드 단량체: Bis-4-Chlorophthalimide-4-phthalimidobenzene (B-4-CPI-4-PIB, Mw: 437.535), Bis-(4-chlorophthalimido))phenyl-4'-(N- phthalimido)phenyl ether(B-4-CPI-4-PPE, Mw: 529.33)Bisimide monomer: Bis-4-Chlorophthalimide-4-phthalimidobenzene (B-4-CPI-4-PIB, Mw: 437.535), Bis- (4-chlorophthalimido)) phenyl-4 '-(N-phthalimido) phenyl ether (B-4-CPI-4-PPE, Mw: 529.33)
- 음이온성 단량체: Bisphenol-A-Dipotassium anion (BPAP-2, Mw: 304.47), Bisphenol-A-Disodium anion (BPAS-2, Mw: 272.25)Anionic monomers: Bisphenol-A-Dipotassium anion (BPAP-2, Mw: 304.47), Bisphenol-A-Disodium anion (BPAS-2, Mw: 272.25)
- 용매: O-dichlorobenzene (ODCB, Solvent)Solvent: O-dichlorobenzene (ODCB, Solvent)
- 상전이촉매: Cryptand 222 (Mw: 376.488), Cryptand 221 (Mw: 332.44)Phase transfer catalysts: Cryptand 222 (Mw: 376.488), Cryptand 221 (Mw: 332.44)
실시예 1Example 1
오일배스 내에 배치된 250ml의 삼구 플라스크에 ODCB 100 ml와 B-4-CPI-4-PIB 9.6g(22.0 mmol)을 첨가하고 오일배스의 온도가 150℃에 도달할 때까지 승온하며 B-4-CPI-4-PIB를 용매에 용해시켰다. 또한 상기 플라스크에 0.00082g 즉, B-4-CPI-4-PIB 대비 0.01몰%(0.0022 mmol)의 Cryptand 222를 적하하였다. 이어서, 상기 승온된 용액에 깔대기를 이용하여 6.7 g(22.0 mmol)의 BPAP-2를 적하시켰으며, 적하가 완료된 시점에서는 150℃의 승온온도를 유지하며 3시간동안 교반하였다. 3시간 후, 용액을 상온으로 냉각시켰으며, 냉각된 용액을 500ml의 메탄올에 부어 합성된 PEI형태로서 갈색 침전물이 얻어지는 것을 확인하였다.100 ml ODCB and 9.6 g (22.0 mmol) of B-4-CPI-4-PIB were added to a 250 ml three-necked flask placed in an oil bath, and the temperature was increased until the temperature of the oil bath reached 150 ° C. CPI-4-PIB was dissolved in the solvent. In addition, 0.00082g, that is, 0.01 mol% (0.0022 mmol) of Cryptand 222 was added dropwise to the flask. Subsequently, 6.7 g (22.0 mmol) of BPAP-2 was added dropwise to the heated solution using a funnel, and when the dropping was completed, the mixture was stirred for 3 hours while maintaining a temperature rising temperature of 150 ° C. After 3 hours, the solution was cooled to room temperature, and the cooled solution was poured into 500 ml of methanol to confirm that a brown precipitate was obtained as a synthesized PEI form.
실시예 2Example 2
촉매의 함량을 단량체(B-4-CPI-4-PIB) 대비 0.05mol%(0.011 mmol)투입한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that 0.05 mol% (0.011 mmol) of the catalyst was added relative to the monomer (B-4-CPI-4-PIB).
실시예 3Example 3
촉매의 함량을 단량체(B-4-CPI-4-PIB) 대비 0.1mol%(0.022 mmol) 투입한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that 0.1 mol% (0.022 mmol) of the catalyst was added to the monomer (B-4-CPI-4-PIB).
실시예 4Example 4
최종 승온 온도를 150℃에서 180℃로 높이는 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that the final elevated temperature was increased from 150 ° C to 180 ° C.
실시예 5Example 5
최종 승온온도를 150℃에서 200℃로 높이는 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1 except that the final elevated temperature was increased from 150 ° C. to 200 ° C.
실시예 6Example 6
3시간에 걸친 반응 시간을 1시간으로 조절한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that the reaction time over 3 hours was adjusted to 1 hour.
실시예 7Example 7
3시간에 걸친 반응 시간을 2시간으로 조절한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that the reaction time over 3 hours was adjusted to 2 hours.
실시예 8Example 8
3시간에 걸친 반응시간을 5시간으로 조절한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that the reaction time over 3 hours was adjusted to 5 hours.
실시예 9Example 9
B-4-CPI-4-PIB 대신 B-4-CPI-4-PPE 11.64g(22.0 mmol)을 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that 11.64 g (22.0 mmol) of B-4-CPI-4-PPE was added instead of B-4-CPI-4-PIB.
실시예 10Example 10
B-4-CPI-4-PIB 대신 B-4-CPI-4-PPE 11.64g(22.0 mmol), Cryptand 222 대신 0.00073g(0.0022mmol)의 Cryptand 221 그리고 BPAP-2 대신 5.98 g(22.0 mmol)의 BPAS-2를 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.11.64 g (22.0 mmol) of B-4-CPI-4-PPE instead of B-4-CPI-4-PIB, 0.00073 g (0.0022 mmol) of Cryptand 221 instead of Cryptand 222 and 5.98 g (22.0 mmol) instead of BPAP-2 PEI was synthesized in the same manner as in Example 1, except that BPAS-2 was used.
실시예 11Example 11
최종 승온온도를 150℃에서 100℃로 낮춘 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1 except that the final elevated temperature was lowered from 150 ° C. to 100 ° C.
실시예 12Example 12
최종 승온온도를 150℃에서 140℃로 낮춘 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1 except that the final elevated temperature was lowered from 150 ° C. to 140 ° C.
실시예 13Example 13
최종 승온온도를 210℃로 설정한 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that the final elevated temperature was set to 210 ° C.
실시예 14Example 14
비스 이미드 단량체(B-4-CPI-4-PPE) 대비 0.15mol%(0.11 mmol)의 Cryptand 222촉매를 사용하는 것을 제외하고 상기 실시예 9와 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 9, except that 0.15 mol% (0.11 mmol) of Cryptand 222 catalyst was used relative to the bis imide monomer (B-4-CPI-4-PPE).
실시예 15Example 15
비스 이미드 단량체(B-4-CPI-4-PPE) 대비 0.15mol%(0.11 mmol)의 Cryptand 221 촉매를 사용하는 것을 제외하고 상기 실시예 10와 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 10, except that 0.15 mol% (0.11 mmol) of Cryptand 221 catalyst was used relative to the bis imide monomer (B-4-CPI-4-PPE).
비교예 1Comparative Example 1
촉매를 사용하지 않는 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Example 1, except that no catalyst was used.
비교예 2 Comparative Example 2
비스 이미드 단량체(B-4-CPI-4-PIB) 대비 0.1mol%(0.022 mmol)의 Hexaethyl Guanidium chloride(Angene Chemical, China) 촉매를 사용하는 것을 제외하고 상기 실시예 1과 동일한 방법으로 PEI를 합성하였다.PEI was prepared in the same manner as in Example 1, except that 0.1 mol% (0.022 mmol) of Hexaethyl Guanidium chloride (Angene Chemical, China) catalyst was used relative to the bisimide monomer (B-4-CPI-4-PIB). Synthesized.
비교예 3 Comparative Example 3
상기 비교예 2의 합성과정에서 발생하는 수분을 제거(정제)해준 것을 제외하고 상기 비교예 2와 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Comparative Example 2, except that moisture generated in the synthesis process of Comparative Example 2 was removed (purified).
비교예 4 Comparative Example 4
상기 비교예 3에서의 반응 온도를 150℃에서 200로 높여 진행한 것을 제외하고 상기 비교예 3과 동일한 방법으로 PEI를 합성하였다.PEI was synthesized in the same manner as in Comparative Example 3, except that the reaction temperature in Comparative Example 3 was raised to 200 at 150 ° C.
이어서, 상기 실시예 1 내지 10 및 비교예 1 내지 9로부터 각각 수득한 PEI의 분자량(Mw)을 GPC(Gel permeation chromatography)을 이용하여 측정(satandard: polystyrene)하였고, 그 결과를 하기 표 1에 반영하였다.Subsequently, the molecular weight (Mw) of PEI obtained from Examples 1 to 10 and Comparative Examples 1 to 9, respectively, was measured using poly permeation chromatography (GPC), and the results are reflected in Table 1 below. It was.
표 1
구분 비스이미드 단량체 / 음이온성 단량체 촉매 반응온도(℃) 반응시간(시간) 분자량(Mw)
실시예 1 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 150 3 35000
실시예 2 B-4-CPI-4-PIB / BPAP-2 0.05mol% Cryptand222 150 3 45000
실시예 3 B-4-CPI-4-PIB / BPAP-2 0.1mol% Cryptand222 150 3 50000
실시예 4 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 180 3 53000
실시예 5 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 3 65000
실시예 6 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 1 15000
실시예 7 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 2 55000
실시예 8 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 5 65000
실시예 9 B-4-CPI-4-PPE / BPAP-2 0.01mol% Cryptand222 150 3 45000
실시예 10 B-4-CPI-4-PPE / BPAS-2 0.01mol% Cryptand221 150 3 40000
실시예 11 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 100 3 25000
실시예 12 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 140 3 33000
실시예 13 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 210 3 47000
실시예 14 B-4-CPI-4-PPEBPAP-2 0.15mol% Cryptand 222 150 3 32000
실시예 15 B-4-CPI-4-PPEBPAS-2 0.15mol% Cryptand 221 150 3 30000
비교예 1 B-4-CPI-4-PIB / BPAP-2 - 150 3 12000
비교예 2 B-4-CPI-4-PIB / BPAP-2 0.01mol% HEGCl 150 3 32000
비교예 3 B-4-CPI-4-PIB / BPAP-2 0.01mol% 정제 HEGCl 150 3 45000
비교예 4 B-4-CPI-4-PIB / BPAP-2 0.01mol% 정제 HEGCl 200 3 65000
Table 1
division Bisimide monomer / anionic monomer catalyst Reaction temperature (℃) Response time (hours) Molecular Weight (Mw)
Example 1 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 150 3 35000
Example 2 B-4-CPI-4-PIB / BPAP-2 0.05mol% Cryptand222 150 3 45000
Example 3 B-4-CPI-4-PIB / BPAP-2 0.1mol% Cryptand222 150 3 50000
Example 4 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 180 3 53000
Example 5 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 3 65000
Example 6 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 One 15000
Example 7 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 2 55000
Example 8 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 200 5 65000
Example 9 B-4-CPI-4-PPE / BPAP-2 0.01mol% Cryptand222 150 3 45000
Example 10 B-4-CPI-4-PPE / BPAS-2 0.01mol% Cryptand221 150 3 40000
Example 11 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 100 3 25000
Example 12 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 140 3 33000
Example 13 B-4-CPI-4-PIB / BPAP-2 0.01mol% Cryptand222 210 3 47000
Example 14 B-4-CPI-4-PPEBPAP-2 0.15mol % Cryptand 222 150 3 32000
Example 15 B-4-CPI-4-PPEBPAS-2 0.15mol % Cryptand 221 150 3 30000
Comparative Example 1 B-4-CPI-4-PIB / BPAP-2 - 150 3 12000
Comparative Example 2 B-4-CPI-4-PIB / BPAP-2 0.01 mol% HEGCl 150 3 32000
Comparative Example 3 B-4-CPI-4-PIB / BPAP-2 0.01mol% purified HEGCl 150 3 45000
Comparative Example 4 B-4-CPI-4-PIB / BPAP-2 0.01mol% purified HEGCl 200 3 65000
상기 표 1을 통해 확인할 수 있듯이, 상전이촉매로서 크립탠드를 사용한 본 발명의 실시예 1의 경우, 촉매를 사용하지 않은 비교예 1이나, 촉매로서 HEGCI를 사용한 비교예 2에 비해 수득된 PEI의 중합도가 높은 것을 확인할 수 있었다. 또한, 실시예 2 또는 3과 같이 촉매의 함량을 좀 더 높일 경우엔 수분을 제거하면서 정반응을 유도하였던 비교예 3과 동등수준 이상의 중합도를 나타내는 것을 알 수 있었다. 다만, 촉매 함량이 단량체 함량의 0.1몰%를 초과할 경우 실시예 14 및 15처럼, 오히려 반응 속도가 느려져 원하는 분자량이 저하될 수 있는 것으로 확인되었다.As can be seen from Table 1, in the case of Example 1 of the present invention using the krypton as the phase transfer catalyst, the degree of polymerization of PEI obtained compared to Comparative Example 1 without using a catalyst, or Comparative Example 2 using HEGCI as a catalyst Was confirmed to be high. In addition, as in Example 2 or 3, when the content of the catalyst is further increased, it was found that the degree of polymerization was equal to or higher than that of Comparative Example 3, which induced a positive reaction while removing water. However, when the catalyst content exceeds 0.1 mol% of the monomer content, as in Examples 14 and 15, rather the reaction rate was confirmed that the desired molecular weight may be lowered.
한편, 실시예 1, 4 및 5와 같이 동일한 반응시간에서는 150 내지 200℃에서 충분한 중합이 이루어지는 것으로 확인되었고, 다만 실시예 11 및 12와 같이 온도가 낮아질 경우 중합도가 다소 떨어질 수 있는 반면, 실시예 13과 같이 온도를 더 높아진다고 해서 중합도가 더 높아지는 것은 아닌 것으로 나타났다. 또한, 실시예 4 내지 5과 같이 동일한 반응 시간에서는 반응 온도가 높을 경우 중합도가 향상될 수 있으나, 실시예 5와 8로부터 알 수 있듯이 반응시간은 최대 5시간으로 이를 초과하더라도 중합도는 크게 향상되지 않을 것으로 보였다.On the other hand, in the same reaction time as in Examples 1, 4 and 5, it was confirmed that sufficient polymerization is performed at 150 to 200 ° C. However, when the temperature is lowered as in Examples 11 and 12, the degree of polymerization may be somewhat decreased, but As shown in Fig. 13, higher temperature does not indicate higher degree of polymerization. In addition, in the same reaction time as in Examples 4 to 5, the polymerization degree may be improved when the reaction temperature is high, but as can be seen from Examples 5 and 8, even if the reaction time is up to 5 hours, the degree of polymerization is not greatly improved. Seemed to
특히, 실시예 5와 비교예 4의 결과 비교 또는 실시예 9와 비교예 3의 결과 비교를 통해, 촉매의 양과 반응 조건이 동일할 경우 본 발명은 정제과정 없이도 동등수준의 중합도로 반응물(PEI)을 수득할 수 있음을 확인할 수 있었다. 즉, 이와 같은 결과에 따라, 본 발명에 따른 폴리에테르 이미드 합성방법은 수분의 정제반응 없이도 높은 중합도의 PEI를 합성할 수 있으며, 그 반응은 동일한 조건에서 종래에 사용되오던 촉매를 적용하는 것보다 단시간에 이루어질 수 있음을 확인할 수 있었다.In particular, by comparing the results of Example 5 and Comparative Example 4 or comparing the results of Example 9 and Comparative Example 3, when the amount of the catalyst and the reaction conditions are the same, the present invention can be reacted with the same degree of polymerization (PEI) even without purification. It could be confirmed that can be obtained. That is, according to this result, the polyether imide synthesis method according to the present invention can synthesize PEI of a high degree of polymerization without purifying water, and the reaction is to apply a catalyst that has been used conventionally under the same conditions. It could be confirmed that it can be made in a shorter time.

Claims (7)

  1. (S1) 용매 및 하기 화학식 1로 표시되는 비스이미드 단량체가 10% 내지 30%의 농도로 투입된 반응조에 상이동 촉매로서 크립탠드 또는 크라운 에테르계 리간드 촉매를 적하하는 단계; 및(S1) dropping a krypton or crown ether ligand catalyst as a phase transfer catalyst into a reaction tank in which a solvent and a bisimide monomer represented by Formula 1 are added at a concentration of 10% to 30%; And
    <화학식 1><Formula 1>
    Figure PCTKR2015014576-appb-I000015
    Figure PCTKR2015014576-appb-I000015
    상기 화학식 1에서 A는 F, Cl, Br, I 및 NO2 중 선택된 1종이고, R1 은 Cyclohexane, Cyclopentadiene, Biphenyl 및 diphenyl ether 중 선택된 1종의 유기 화합물로부터 유도된 2가의 결합기이거나, phenylene이다. In Formula 1, A is one selected from F, Cl, Br, I, and NO 2 , and R 1 is Cyclohexane, Cyclopentadiene, Or a divalent bonding group derived from one organic compound selected from biphenyl and diphenyl ether, or phenylene.
    (S2) 상기 (S1)단계에서 촉매가 적하된 반응조에 하기 화학식 2로 표기되는 음이온성 단량체를 상기 비스이미드 단량체와 동일 몰량(오차범위 ±0.05 이내)으로 적하하고, 반응시켜 폴리에테르이미드를 수득하는 단계를 포함하는 폴리에테르이미드 합성 방법.(S2) Anionic monomer represented by the following Chemical Formula 2 is added dropwise to the reaction tank in which the catalyst is dropped in the step (S1) in the same molar amount (within the error range ± 0.05) and reacted to obtain a polyetherimide. Polyetherimide synthesis method comprising the step of.
    <화학식 2><Formula 2>
    Figure PCTKR2015014576-appb-I000016
    Figure PCTKR2015014576-appb-I000016
    상기 화학식 2에서 B는 K 또는 Na이고, R2은 탄소수 1 내지 10의 alkylene, 탄소수 3 내지 10의 cycloalkylene, Phenylene, 2가의 biphenyl, 2가의 diphenyl sulfone, 2가의 diphenyl ketone 및 2가의 diphenyl propane 중 선택된 1종이다. In Formula 2, B is K or Na, R 2 is selected from alkylene having 1 to 10 carbon atoms, cycloalkylene having 3 to 10 carbon atoms, Phenylene, divalent biphenyl, divalent diphenyl sulfone, divalent diphenyl ketone, and divalent diphenyl propane. It is one kind.
  2. 제 1 항에 있어서, 상기 반응조는 오일 배스(oil bath) 내에 배치된 것이며, 상기 오일 배스는 (S1)단계에서 130 내지 210℃로 승온되는 것임을 특징으로 하는 폴리에테르이미드 합성 방법.The method according to claim 1, wherein the reaction tank is disposed in an oil bath, and the oil bath is heated to 130 to 210 ° C in step (S1).
  3. 제 1 항에 있어서, 상기 용매는 톨루엔, 자일렌, 오르쏘-다이클로로벤젠, 파라-다이클로로벤젠, 다이클로로톨루엔, 1,2,4-트라이클로로벤젠, 다이페닐 설폰, 페네톨, 아니솔, 베라트롤 및 이들의 혼합물 중 선택된 1종 이상인 것임을 특징으로 하는 폴리에테르이미드 합성 방법.The method of claim 1, wherein the solvent is toluene, xylene, ortho-dichlorobenzene, para-dichlorobenzene, dichlorotoluene, 1,2,4-trichlorobenzene, diphenyl sulfone, phentol, anisole , Beratrol and a mixture thereof, at least one selected from polyetherimide synthesis method.
  4. 제 1 항에 있어서, 상기 촉매는 상기 화학식 2에서 B가 Na일 경우, 18-Crown-6 및 Cryptand 221 중 적어도 하나이고, 상기 화학식 2에서 B가 K일 경우, 21-Crown-7 및 Cryptand 222중 적어도 하나인 것임을 특징으로 하는 폴리에테르 이미드 합성 방법.The method according to claim 1, wherein the catalyst is at least one of 18-Crown-6 and Cryptand 221 when B in the formula (2), Na, 21-Crown-7 and Cryptand 222 when B is K in the formula (2) Polyether imide synthesis method, characterized in that at least one of.
  5. 제 1 항에 있어서, 상기 촉매는 비스이미드 단량체 총 몰에 대하여 0.01 내지 0.1몰% 첨가되는 것을 특징으로 하는 폴리에테르 이미드 합성 방법.The polyether imide synthesis method according to claim 1, wherein the catalyst is added in an amount of 0.01 to 0.1 mol% based on the total moles of the bisimide monomer.
  6. 제 1 항에 있어서, 상기 (S2)에서의 반응은 1 내지 5시간 수행되는 것임을 특징으로 하는 폴리에테르이미드 합성 방법.The polyetherimide synthesis method according to claim 1, wherein the reaction in (S2) is performed for 1 to 5 hours.
  7. 제 1 항에 있어서, 상기 (S2)에서 수득한 폴리에테르이미드의 중량평균분자량은 10,000 내지 70,000인 것임을 특징으로 하는 폴리에테르이미드 합성 방법.The polyetherimide synthesis method according to claim 1, wherein the polyetherimide obtained in (S2) has a weight average molecular weight of 10,000 to 70,000.
PCT/KR2015/014576 2014-12-31 2015-12-31 Method for synthesis of polyetherimide WO2016108668A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0195668 2014-12-31
KR20140195668 2014-12-31
KR10-2015-0190420 2015-12-30
KR1020150190420A KR20160082485A (en) 2014-12-31 2015-12-30 Synthesis method of polyetherimides

Publications (1)

Publication Number Publication Date
WO2016108668A1 true WO2016108668A1 (en) 2016-07-07

Family

ID=56284711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014576 WO2016108668A1 (en) 2014-12-31 2015-12-31 Method for synthesis of polyetherimide

Country Status (1)

Country Link
WO (1) WO2016108668A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520204A (en) * 1983-04-25 1985-05-28 General Electric Company Method for preparation of aromatic ether imides and for catalyst recovery therein
KR20060069849A (en) * 2003-08-25 2006-06-22 제너럴 일렉트릭 캄파니 Novel approach to reduce cyclics formation in the production of polyetherimides
KR20060069846A (en) * 2003-08-25 2006-06-22 제너럴 일렉트릭 캄파니 Phase transfer catalyzed method for preparation of polyetherimides
KR20140084276A (en) * 2011-10-28 2014-07-04 사빅 이노베이티브 플라스틱스 아이피 비.브이. Polyetherimides, methods of manufacture, and articles formed therefrom
KR20140084178A (en) * 2011-10-28 2014-07-04 사빅 이노베이티브 플라스틱스 아이피 비.브이. Polyetherimides, methods of manufacture, and articles formed therefrom

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4520204A (en) * 1983-04-25 1985-05-28 General Electric Company Method for preparation of aromatic ether imides and for catalyst recovery therein
KR20060069849A (en) * 2003-08-25 2006-06-22 제너럴 일렉트릭 캄파니 Novel approach to reduce cyclics formation in the production of polyetherimides
KR20060069846A (en) * 2003-08-25 2006-06-22 제너럴 일렉트릭 캄파니 Phase transfer catalyzed method for preparation of polyetherimides
KR20140084276A (en) * 2011-10-28 2014-07-04 사빅 이노베이티브 플라스틱스 아이피 비.브이. Polyetherimides, methods of manufacture, and articles formed therefrom
KR20140084178A (en) * 2011-10-28 2014-07-04 사빅 이노베이티브 플라스틱스 아이피 비.브이. Polyetherimides, methods of manufacture, and articles formed therefrom

Similar Documents

Publication Publication Date Title
WO2014003210A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
WO2016190621A1 (en) Phthalonitrile compound
WO2012091232A1 (en) Transparent polyimide film and preparation method thereof
WO2017003250A1 (en) Phthalonitrile resin
WO2013048126A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
CN102604156A (en) Alkali generating agent
WO2017119793A2 (en) Phthalonitrile resin
WO2015190645A1 (en) Method for preparing polyimide using water as dispersion medium and method for recovering water
WO2021054513A1 (en) Method for producing polyimide powder, and polyimide powder produced thereby
JPS6215228A (en) Aromatic thioether imide polymer
WO2016003146A1 (en) High heat-resistant polyamic acid solution and polyimide film
WO2016108668A1 (en) Method for synthesis of polyetherimide
WO2012118262A9 (en) Wholly aromatic polyester amide copolymer resin, film containing resin, flexible metal foil laminate containing film, and flexible printed circuit board employing flexible metal foil laminate
KR101998866B1 (en) Polyimide resin and polyimide film prepared by using same
US10752603B2 (en) Purification of oxydiphthalic anhydrides
KR20130002754A (en) Polyimide film having excellent heat-stability
WO2014181931A1 (en) Sulfone-based block copolymer and method for producing same
WO2022131665A1 (en) Novel polyfluorene-based cross-linked copolymer, method for producing same, and anion exchange membrane for alkaline fuel cell using same
JPH072843B2 (en) Aromatic thioetheramide imide polymer
WO2016080762A1 (en) Phthalonitrile resin
CN115677514A (en) Fluorine-containing diamine monomer, polyimide film and preparation method
WO2014104470A1 (en) Cellulose-based resin and manufacturing method therefor
JPH082962B2 (en) Method for producing aromatic polythioether imide
KR101259544B1 (en) Polyimide film
WO2016129926A1 (en) Polyamic acid, polyimide resin and polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875762

Country of ref document: EP

Kind code of ref document: A1