WO2016108382A1 - Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same - Google Patents

Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same Download PDF

Info

Publication number
WO2016108382A1
WO2016108382A1 PCT/KR2015/008730 KR2015008730W WO2016108382A1 WO 2016108382 A1 WO2016108382 A1 WO 2016108382A1 KR 2015008730 W KR2015008730 W KR 2015008730W WO 2016108382 A1 WO2016108382 A1 WO 2016108382A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium
secondary battery
lithium secondary
nickel
Prior art date
Application number
PCT/KR2015/008730
Other languages
French (fr)
Korean (ko)
Inventor
김종민
장동규
김지윤
이미선
채영주
김동한
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2016108382A1 publication Critical patent/WO2016108382A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the initial efficiency, capacity, and lifespan of a battery are included by including a nickel-based lithium transition metal oxide having reduced nickel mobility.
  • the present invention relates to a cathode active material for a lithium secondary battery capable of improving characteristics, a method of manufacturing the same, and a lithium secondary battery including the same.
  • the electronics and telecommunications industry is rapidly developing through the portable, miniaturized, lightweight, and high performance electronic devices, and the demand for lithium secondary batteries that can realize high capacity and high performance as a power source for these electronic devices is rapidly increasing. Further, as electric vehicles (EVs) and hybrid electric vehicles (HEVs) are put into practical use, research on lithium secondary batteries having high capacity and output and excellent stability is being actively conducted.
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • Lithium secondary batteries are manufactured by using a material capable of intercalation and disintercalation of lithium ions as a negative electrode and a positive electrode, and filling an organic or polymer electrolyte between a negative electrode and a positive electrode, and lithium ions are inserted in the positive and negative electrodes. And electrical energy is generated by the oxidation reaction and the reduction reaction at the time of detachment.
  • the cathode material plays an important role in determining the capacity and performance of the battery in the battery.
  • Lithium cobalt oxide (LiCoO 2 ) is the first commercially available cathode material, which is still widely used as a cathode material due to its relatively good structural stability and ease of mass production compared to other lithium transition metal oxides. Due to its limitations, the price is expensive and harmful to the human body.
  • Ni-rich (Ni-rich) -based positive electrode active material containing a lot of nickel (Ni) of the lithium metal oxide having a layered structure exhibits a high capacity of more than 200mAh / g is considered as the next-generation electric vehicle and power storage cathode material have.
  • nickel (Ni) has been researched in a lot of interest because it is less toxic to human body and cheaper than cobalt (Co) (Non-Patent Document 1).
  • nickel tends to prefer divalent rather than trivalent valence, it is an empty space of a lithium layer in which lithium deficiency occurs due to volatilization of a raw material lithium salt at high temperature firing, and nickel having a divalent valence similar in lithium ion to an ion radius.
  • ions (Ni + 2) results in the incorporation, there is a problem that a non-stoichiometric lithium nickel oxide of the following composition are prepared.
  • Non-chemical lithium nickel oxide of stoichiometric composition, the Ni 2 + incorporated into the lithium layers, as well as interfere with the diffusion of lithium ions there is a problem of reducing the reversible capacity to significantly increase non-reversible.
  • Patent Document 1 Korean Patent Application Laid-Open No. 2013-0084361 discloses a metal cation having an ion radius larger than that of the Ni cation to prevent Ni cation mixing in the Li layer. Is disclosed in the positive electrode active material contained in the Li cation site or the empty space in the crystal lattice. According to this method, the movement path of Ni 2+ may be partially blocked, but the metal cations may interfere with the diffusion of lithium ions (Li + ), thereby lowering the electrochemical properties of the cathode active material.
  • the present inventors have a diffraction peak in the region where the diffraction angle 2 ⁇ is 20 ° to 25 ° in the X-ray diffraction analysis using a Cu target, and the peak peak is located between 21.8 ° and 22.5 °.
  • the present invention was completed by confirming that the mobility of nickel around lithium is reduced and the generation of nickel oxide-related heterogeneous phases, which may degrade the performance of the active material, is suppressed.
  • Patent Document 1 KR2013-0084361 A
  • Non-Patent Document 1 Sang-Yoon Lee, Study on Substitution and Surface Modification of Heterogeneous Elements for Structural Stability Improvement of Ni-rich Cathode Active Materials for Lithium Secondary Batteries, Master's Thesis, graduate School of Korea University (2013.2)
  • the diffraction peak is present in the region where the diffraction angle 2 ⁇ is 20 ° ⁇ 25 ° in the X-ray diffraction analysis using a Cu target, the peak peak is 22.5 ° to 22.5
  • a nickel-based lithium transition metal oxide located between ° to reduce the mobility of nickel around the lithium has excellent conductivity, to provide a positive electrode active material that can improve the initial efficiency, capacity and life characteristics of the battery.
  • Another object of the present invention is to provide a lithium secondary battery including the cathode active material.
  • the present invention includes a nickel-based lithium transition metal oxide having a layered structure represented by the following formula (1), X-ray diffraction using a copper target (Cu Target) of the lithium transition metal oxide
  • the present invention provides a cathode active material for a lithium secondary battery, characterized in that a diffraction peak exists in a region having a diffraction angle 2 ⁇ of 20 ° to 25 °, and the peak of the peak is located between 21.8 ° and 22.5 °.
  • a peak does not appear in a region having a diffraction angle 2 ⁇ of 20 ° to 21.8 °, and a peak height appearing between 21.8 ° and 22.5 ° is the lithium transition metal oxide.
  • it is preferably in the range of 0.05% to 2% of the peak height appearing near the diffraction angle 2 ⁇ 18 °.
  • the present invention provides a method for producing the cathode active material and a lithium secondary battery comprising the cathode active material.
  • the method for preparing the cathode active material may include mixing a precursor represented by Chemical Formula 2 and a lithium source in an equivalent ratio satisfying the condition of Equation 1 below; And heat-treating the mixture at 800 to 1000 ° C.
  • Equation 1 M is the x + y + z value of the formula (2).
  • the present invention by reducing the mobility of lithium surrounding nickel in the nickel-based lithium transition metal oxide, it is possible to suppress the occurrence of nickel oxide-related heterogeneous phases, which may reduce the performance of the active material, and provide additional mobile sites to the lithium to provide It can improve conductivity and improve structural stability during overcharging.
  • the cathode active material containing the nickel-based lithium transition metal oxide it is possible to provide a lithium secondary battery having excellent initial efficiency, capacity, and lifespan.
  • Figure 1 shows a comparison of the X-ray diffraction spectrum of the positive electrode active material prepared according to Example 1 and Comparative Example 1.
  • Figure 2 shows a comparison of the X-ray diffraction spectrum of the positive electrode active material prepared according to Examples 1 and 2.
  • Figure 3 shows a comparison of the X-ray diffraction spectrum of the positive electrode active material prepared according to Example 1 and Comparative Example 2.
  • Figure 4 is a graph showing the charge and discharge test results of the lithium secondary battery prepared using the positive electrode active material of Example 1 and Comparative Example 1.
  • Example 5 is a graph showing the life characteristics of the lithium secondary battery prepared using the positive electrode active material of Example 1 and Comparative Example 1.
  • Figure 6 is a graph showing the comparison of the conductivity according to the pressure of the positive electrode active material prepared according to Example 1 and Comparative Example 1.
  • the present invention includes a nickel-based lithium transition metal oxide having a layered structure represented by Formula 1 below, and the diffraction angle 2 ⁇ is 20 ° to X-ray diffraction analysis of the lithium transition metal oxide using a copper target (Cu Target).
  • the diffraction peak exists in the area
  • the lithium transition metal oxide according to the present invention is a nickel-rich (Ni-rich) lithium transition metal oxide containing nickel (Ni) more than cobalt (Co) and manganese (Mn).
  • Ni-rich (Ni-rich) type lithium transition metal oxide was having difficulty in commercialization due to the structural instability which it is possible to express a high capacity although the spotlight as materials for the next generation of electrodes storage, essentially Ni 3 + is present .
  • the nickel-based lithium transition metal oxide according to the present invention has a structure in which a part of lithium is arranged in a layered structure, the structural stability of nickel can be achieved.
  • the present inventors found that the nickel-based lithium transition metal oxide having the above structure has the highest peak among the peaks present in the region where the diffraction angle 2 ⁇ is 20 ° to 25 ° in the X-ray diffraction analysis, between 21.8 ° and 22.5 °. appears, which resulted in the completion of the in this case the present invention to determine the lithium surrounding nickel that the mobility of the drop being the generation (the Ni 2 + incorporated in, for example, Li layer) nickel oxide-related yijongsang that can degrade the active material performance suppressed because of .
  • the occurrence of nickel oxide-related heterophages is suppressed, it is possible to provide a lithium secondary battery having improved initial conductivity, battery capacity, and lifespan by providing additional moving sites to lithium, thereby improving conductivity. have.
  • the peak height appearing between 21.8 ° and 22.5 ° is preferably in the range of 0.05% to 2% of the peak height of the diffraction angle 2 ⁇ at around 18 ° in the X-ray diffraction analysis of the nickel-based lithium transition metal oxide.
  • the peak height appearing in the region of the diffraction angle 2 ⁇ is in the range of 21.8 ° ⁇ 22.5 ° falls within the above range it is preferable because the effect of reducing the mobility of nickel is the most excellent and the effect of improving the conductivity of the active material to the maximum.
  • the lithium manganese oxide lithium is surrounded by a metal element having a tetravalent valence such as manganese.
  • the lithium transition metal oxide of the layer structure according to the present invention is prepared by adding an excessive amount of lithium, metal elements around lithium have a trivalent valence on average. That is, even if lithium is introduced at a ratio greater than the total amount of transition metals (Ni, Co, and Mn) in the manufacturing step, a heterogeneous Li 2 MnO 3 formed of lithium and manganese is not formed, but part of lithium is partially added to the layered structure. Because of the structure that exists in the arrangement, the metallic elements around lithium have an average valence of trivalent rather than tetravalent.
  • a peak does not appear in a region having a diffraction angle 2 ⁇ of 20 ° to 21.8 °.
  • the 20 ° to 21.8 ° region is a section in which diffraction peaks originating from the Li 2 MnO 3 phase appear, and in the presence of the Li 2 MnO 3 phase, a strong peak near 21 ° and a shoulder peak between 21 ° and 21.8 ° are observed.
  • the peak of the lithium transition metal oxide of Comparative Example 2 including the Li 2 MnO 3 phase was found in the 20 ° ⁇ 21.8 ° region.
  • the present invention provides a method for producing a cathode active material including the nickel-based lithium transition metal oxide.
  • the method of manufacturing the positive electrode active material comprises the steps of mixing the precursor represented by the formula (2) and the lithium source in an equivalent ratio that satisfies the conditions of the following formula (1); And heat-treating the mixture at 800 to 1000 ° C.
  • Equation 1 M is the x + y + z value of the formula (2).
  • the number of moles of Li / M may be 1.01 to 1.05.
  • a positive electrode active material including a Li 2 MnO 3 phase having peaks in a region having a diffraction angle 2 ⁇ of 20 ° to 21.8 ° may be formed.
  • a positive electrode active material including a Li 2 MnO 3 phase having a peak in a region where 2 ⁇ is 20 ° to 21.8 ° may be formed. Particle size may increase too much and battery characteristics may decrease.
  • the present invention provides a lithium secondary battery including the cathode active material.
  • the lithium secondary battery may include a cathode including the cathode active material, a cathode including an anode active material, a separator, and a nonaqueous electrolyte.
  • the structure and manufacturing method of the lithium secondary battery are known in the technical field of the present invention, and may be appropriately selected without departing from the scope of the present invention.
  • the positive electrode is manufactured by applying a composition for forming a positive electrode active material including the positive electrode active material and the binder according to the present invention to a positive electrode current collector, and then drying and rolling.
  • the binder serves to fix the bonding between the positive electrode active material and the current collector, and any binder used in the art may be used without limitation, and preferably, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl It may be at least one selected from chloride, polyvinylpyrrolidone, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, polyethylene, polypropylene, styrene butyrene rubber, fluorine rubber.
  • any binder used in the art may be used without limitation, and preferably, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl It may be at least one selected from chloride, polyvinylpyrrolidone, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, polyethylene, polypropylene, styrene butyrene rubber, fluorine rubber.
  • the composition for forming the positive electrode active material may include a solvent such as N-Methyl-2-pyrrolidone (NMP) and an olefinic polymer such as polyethylene and polypropylene, optionally for the positive electrode active material and the binder; It may be prepared by further adding a filler made of a fibrous material such as glass fiber, carbon fiber and the like. In addition, it may further include a conductive agent known in the art, such as hard carbon, graphite and carbon fiber.
  • NMP N-Methyl-2-pyrrolidone
  • an olefinic polymer such as polyethylene and polypropylene
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Surface-treated with carbon, nickel, titanium, silver or the like on the surface of copper and stainless steel; Aluminum-cadmium alloys, and the like, and various forms such as films, sheets, foils, nets, porous bodies, foaming agents, and nonwoven fabrics are also possible.
  • the negative electrode may be prepared by coating a composition for forming a negative electrode active material including a negative electrode active material on a negative electrode current collector and then drying and rolling it, or lithium metal.
  • the negative electrode active material composition may further include the binder and the conductive material.
  • the negative electrode active material may be a carbonaceous material such as artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, lithium and silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), Alloyable metal compounds such as bismuth (Bi), indium (In), manganese (Mg), gallium (Ga), cadmium (Cd), silicon alloys, tin alloys, aluminum alloys, and the like and carbonaceous materials It may be a composite including a.
  • Alloyable metal compounds such as bismuth (Bi), indium (In), manganese (Mg), gallium (Ga), cadmium (Cd), silicon alloys, tin alloys, aluminum alloys, and the like and carbonaceous materials It may be a composite including a.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Surface-treated with carbon, nickel, titanium, silver or the like on the surface of copper and stainless steel; Aluminum-cadmium alloys, and the like, and various forms such as films, sheets, foils, nets, porous bodies, foaming agents, and nonwoven fabrics are also possible.
  • the separator is disposed between the negative electrode and the positive electrode, and conventional porous polymer films used as conventional separators, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate Porous polymer films made of polyolefin-based polymers such as copolymers may be used alone or in a stack of these. It is also possible to use conventional porous nonwoven fabrics such as nonwoven fabrics of high melting point glass fibers, polyethylene terephthalate fibers and the like.
  • the non-aqueous electrolyte solution is composed of an electrolyte solution and a lithium salt, but the non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte solution, but are not limited thereto.
  • non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
  • organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, Polymerizers containing ionic dissociating groups and the like can be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
  • the secondary battery may be divided into a coin type, a square shape, a cylindrical shape, a pouch type, and the like. Since the structure and manufacturing method of these batteries are known in the art, detailed description thereof will be omitted.
  • Ni 0 . 6 Co 0 . 2 Mn 0 .2 (OH) 1 2 precursor and LiOH: then a solution of an equivalent ratio (Li mole number / M 1.01) of 1.01, and heat treated at a temperature of 850 °C LiNi 0. 6 Co 0 . 2 Mn 0 .
  • a cathode active material having a composition of 2 O 2 was prepared.
  • Ni 0 . 5 Co 0 . 2 Mn 0 .3 (OH) 1 2 precursor and LiOH: then a solution of an equivalent ratio (Li mole number / M 1.02) of 1.02, and heat treated at a temperature of 850 °C LiNi 0. 5 Co 0 . 2 Mn 0 .
  • a cathode active material having a composition of 3 O 2 was prepared.
  • a cathode active material having a composition of 2 O 2 was prepared.
  • Ni 0 . 2 Co 0 . 2 Mn 0 .6 (OH) 2 precursor and LiOH 1: After mixing in 1.4 equivalent ratio (Li mole number / M 1.40), the heat-treated at a temperature of 700 °C Li 1. 17 Ni 0 . 17 Co 0 . 17 Mn 0 . A cathode active material having a 5 O 2 composition was prepared.
  • FIG. 1 which compares the X-ray diffraction spectra of the cathode active materials prepared according to Example 1 and Comparative Example 1, the diffraction peaks in the region where the diffraction angle 2 ⁇ is 20 ° to 25 ° for the cathode active material of Example 1 Is present, the peak of the peak is located between 21.8 ° to 22.5 °, whereas the positive electrode active material of Comparative Example 1 has the same composition as the positive electrode active material of Example 1 but the peak or peak of the peak is not located in the region Do not.
  • FIG. 2 which compares the X-ray diffraction spectrums of the cathode active materials prepared according to Examples 1 and 2, as the nickel content is increased, the peaks appearing in the region where the diffraction angle 2 ⁇ is 21.8 ° to 22.5 °. As the size increases, the peak is different from the peak appearing in the cathode active material of Comparative Example 2 and the relative size is different.
  • FIG. 3 which compares the X-ray diffraction spectra of the cathode active materials prepared according to Example 1 and Comparative Example 2, in the X-ray diffraction spectrum of the cathode active material according to Comparative Example 2, a strong peak near 21 °. And a shoulder peak between 21 ° and 21.8 ° is observed, whereas in the X-ray diffraction spectrum of Example 1, there is no peak at 20 ° to 21.8 °.
  • the positive electrode active material of Comparative Example 2 as a peak derived from the Li 2 MnO 3 is a does not include the cathode active material of Example 1 while containing Li 2 MnO 3 is a.
  • the aluminum foil was prepared by mixing the positive electrode active material prepared in Example 1 and Comparative Example 1, the conductive agent DenkaBlack, and the binder polyvinylidene fluoride (PVDF) at a ratio of 92: 4: 4 (w / w). Coating over to produce a positive electrode plate.
  • the initial efficiency (%) (discharge capacity / charge capacity at 1 st cycle of the 1 st cycle)
  • the formed cell was charged and discharged with a current of 1.0 C, and repeated 50 cycles.
  • the capacity retention ratio was calculated according to Equation (2) below, and evaluated as life characteristics. The results are shown in Table 1 below.
  • Capacity retention rate (%) (discharge capacity at 50 th cycle / discharge capacity at 1 st cycle)
  • the lithium secondary battery manufactured using the positive electrode active material of Example 1 the initial charge and discharge capacity, initial efficiency and life characteristics compared to the lithium secondary battery manufactured using the positive electrode active material of Comparative Example 1 It can be confirmed that it is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a cathode active material for a lithium secondary battery wherein the cathode active material comprises a nickel-based lithium transition metal oxide having a layered structure represented by the formula LiaNibCocMndO2 (wherein 1 < a < 1.14, b > c, b > d, 0.4 ≤ b ≤ 0.9, 0 < c < 0.4, and 0 ≤ d < 0.4), and wherein the highest peak among the peaks presented within a scattering angle 2θ ranging from 20° to 25° is shown between 21.8° and 22.5° when measured using X-ray diffraction analysis; a method for preparing the same; and a lithium secondary battery including the same. According to the present invention, the mobility of a lithium-adjacent nickel within a nickel-based lithium transition metal oxide is reduced, thereby inhibiting the generation of nickel oxide related heterogeneous phase which can degrade the performance of an active material, and as a result, the present invention can provide a lithium secondary battery which exhibits excellent initial efficiency, capacity and life characteristics.

Description

리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지Cathode active material for lithium secondary battery, manufacturing method thereof and lithium secondary battery including same
본 발명은 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지 에 관한 것으로서, 더욱 상세하게는 니켈의 이동도가 저하된 니켈계 리튬 전이금속 산화물을 포함함으로써 전지의 초기효율, 용량 및 수명특성을 향상시킬 수 있는 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same. More specifically, the initial efficiency, capacity, and lifespan of a battery are included by including a nickel-based lithium transition metal oxide having reduced nickel mobility. The present invention relates to a cathode active material for a lithium secondary battery capable of improving characteristics, a method of manufacturing the same, and a lithium secondary battery including the same.
전자, 정보통신 산업은 전자기기의 휴대화, 소형화, 경량화 및 고성능화를 통하여 급속한 발전을 보이고 있고, 이들 전자기기의 전원으로서 고용량, 고성능을 구현할 수 있는 리튬이차전지에 대한 수요가 급증하고 있다. 나아가 전기자동차(Electric Vehicle, EV)나 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV)가 실용화되면서, 용량과 출력이 높고 안정성이 뛰어난 리튬 이차전지에 대한 연구가 활발하게 진행되고 있다.The electronics and telecommunications industry is rapidly developing through the portable, miniaturized, lightweight, and high performance electronic devices, and the demand for lithium secondary batteries that can realize high capacity and high performance as a power source for these electronic devices is rapidly increasing. Further, as electric vehicles (EVs) and hybrid electric vehicles (HEVs) are put into practical use, research on lithium secondary batteries having high capacity and output and excellent stability is being actively conducted.
리튬이차전지는 리튬 이온의 삽입 및 탈리(intercalation and disintercalation)가 가능한 물질을 음극 및 양극으로 사용하고, 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생성한다.Lithium secondary batteries are manufactured by using a material capable of intercalation and disintercalation of lithium ions as a negative electrode and a positive electrode, and filling an organic or polymer electrolyte between a negative electrode and a positive electrode, and lithium ions are inserted in the positive and negative electrodes. And electrical energy is generated by the oxidation reaction and the reduction reaction at the time of detachment.
리튬이차전지의 구성요소 중에서 양극재는 전지 내에서 전지의 용량 및 성능을 좌우하는데 중요한 역할을 한다.Among the components of the lithium secondary battery, the cathode material plays an important role in determining the capacity and performance of the battery in the battery.
리튬 코발트 산화물(LiCoO2)은 가장 먼저 상업화에 성공한 양극재로서, 여타 리튬 전이금속 산화물들에 비해 상대적으로 우수한 구조적 안정성 및 대량생산의 용이성으로 인해 현재까지도 양극재로 많이 사용되고 있으나, 코발트 금속의 자원적 한계로 인해 가격이 비싸고 인체에 유해하다는 문제가 있다.Lithium cobalt oxide (LiCoO 2 ) is the first commercially available cathode material, which is still widely used as a cathode material due to its relatively good structural stability and ease of mass production compared to other lithium transition metal oxides. Due to its limitations, the price is expensive and harmful to the human body.
이에, 리튬 코발트 산화물을 대체할 수 있는 양극재에 대한 다양한 연구가 이루어져 왔다. 특히, 층상구조를 갖는 리튬 금속 산화물 중 니켈(Ni)이 많이 포함된 니켈-리치(Ni-rich)계 양극 활물질은 200mAh/g이상의 고용량을 발현하여 차세대 전기자동차 및 전력저장용 양극재로 손꼽히고 있다. 또한, 니켈(Ni)은 코발트(Co)에 비해 인체에 대한 독성이 적고 가격이 저렴하여 많은 관심 속에 연구가 진행되어 왔다(비특허문헌 1). Accordingly, various studies have been made on cathode materials that can replace lithium cobalt oxide. In particular, nickel-rich (Ni-rich) -based positive electrode active material containing a lot of nickel (Ni) of the lithium metal oxide having a layered structure exhibits a high capacity of more than 200mAh / g is considered as the next-generation electric vehicle and power storage cathode material have. In addition, nickel (Ni) has been researched in a lot of interest because it is less toxic to human body and cheaper than cobalt (Co) (Non-Patent Document 1).
그러나, 니켈은 3가의 원자가 보다는 2가를 선호하는 경향이 있기 때문에, 고온소성 시 원료 리튬염의 휘발에 의해 리튬 결핍이 일어난 리튬 층의 빈 공간으로, 리튬 이온과 이온 반경이 비슷한 2가의 원자가를 갖는 니켈 이온(Ni2 +)이 혼입되는 결과, 비화학양론적 조성의 리튬 니켈 산화물이 제조된다는 문제가 있다. 비화학양론적 조성의 리튬 니켈 산화물은, 리튬 층에 혼입된 Ni2 +는, 리튬 이온의 확산을 방해할 뿐만 아니라, 비가역을 크게 증가시켜 가역용량을 감소시키는 문제가 있다.However, since nickel tends to prefer divalent rather than trivalent valence, it is an empty space of a lithium layer in which lithium deficiency occurs due to volatilization of a raw material lithium salt at high temperature firing, and nickel having a divalent valence similar in lithium ion to an ion radius. ions (Ni + 2) results in the incorporation, there is a problem that a non-stoichiometric lithium nickel oxide of the following composition are prepared. Non-chemical lithium nickel oxide of stoichiometric composition, the Ni 2 + incorporated into the lithium layers, as well as interfere with the diffusion of lithium ions, there is a problem of reducing the reversible capacity to significantly increase non-reversible.
상기와 같이 서로 이온 반경이 유사한 Li+ (0.76Å)과 Ni2 +(0.69Å)이 서로의 자리를 바꾸어 결정을 이루는 현상을 양이온 혼합(Cation mixing)이라 일컫는다. 이러한 문제를 해결하기 위한 종래의 방법으로, 특허문헌 1(국내 특허출원공개 제2013-0084361호)은 Li 층에서의 Ni 양이온 혼합(cation mixing)을 방지하도록 Ni 양이온보다 큰 이온반경을 갖는 금속 양이온을 Li양이온 자리 또는 결정격자내의 빈공간에 포함하고 있는 양극 활물질에 대해 개시하고 있다. 이 방법에 의하면, Ni2+의 이동경로를 일부 차단할 수는 있으나, 상기 금속양이온이 리튬이온(Li+)의 확산까지 방해하여 양극활물질의 전기화학적 특성을 저하시킬 수 있다.The phenomenon is Li + (0.76Å) and Ni 2 + (0.69Å) with each other is similar ionic radius as described above In other forming crystals of the seat to each other refers to as mixed cation (Cation mixing). As a conventional method for solving such a problem, Patent Document 1 (Korean Patent Application Laid-Open No. 2013-0084361) discloses a metal cation having an ion radius larger than that of the Ni cation to prevent Ni cation mixing in the Li layer. Is disclosed in the positive electrode active material contained in the Li cation site or the empty space in the crystal lattice. According to this method, the movement path of Ni 2+ may be partially blocked, but the metal cations may interfere with the diffusion of lithium ions (Li + ), thereby lowering the electrochemical properties of the cathode active material.
이에, 본 발명자들은 구리 타겟(Cu Target)을 이용한 X-선 회절분석시 회절각 2θ가 20° ~ 25°인 영역 내에 회절피크가 존재하고, 그 피크의 최고점은 21.8°에서 22.5°사이에 위치하는 니켈계 전이금속 산화물의 경우, 리튬 주변의 니켈의 이동도가 떨어져 활물질의 성능을 저하시킬 수 있는 니켈 산화물 관련 이종상 발생이 억제된다는 점을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors have a diffraction peak in the region where the diffraction angle 2θ is 20 ° to 25 ° in the X-ray diffraction analysis using a Cu target, and the peak peak is located between 21.8 ° and 22.5 °. In the case of the nickel-based transition metal oxide, the present invention was completed by confirming that the mobility of nickel around lithium is reduced and the generation of nickel oxide-related heterogeneous phases, which may degrade the performance of the active material, is suppressed.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) KR2013-0084361 A (Patent Document 1) KR2013-0084361 A
[비특허문헌][Non-Patent Documents]
(비특허문헌 1) 이상윤, 리튬 이차 전지용 Ni-rich 양극활물질의 구조 안정성 향상을 위한 이종 원소의 치환 및 표면 개질 연구, 고려대학교 대학원 석사논문(2013.2)(Non-Patent Document 1) Sang-Yoon Lee, Study on Substitution and Surface Modification of Heterogeneous Elements for Structural Stability Improvement of Ni-rich Cathode Active Materials for Lithium Secondary Batteries, Master's Thesis, Graduate School of Korea University (2013.2)
본 발명이 해결하고자 하는 과제는, 구리 타겟(Cu Target)을 이용한 X-선 회절분석시 회절각 2θ가 20° ~ 25°인 영역 내에 회절피크가 존재하고, 그 피크의 최고점은 21.8°에서 22.5°사이에 위치하는 니켈계 리튬 전이금속산화물을 포함함으로써 리튬 주변의 니켈의 이동도를 떨어뜨려 우수한 전도도를 가지며, 전지의 초기효율, 용량 및 수명특성을 개선시킬 수 있는 양극 활물질을 제공하는 것이다. The problem to be solved by the present invention, the diffraction peak is present in the region where the diffraction angle 2θ is 20 ° ~ 25 ° in the X-ray diffraction analysis using a Cu target, the peak peak is 22.5 ° to 22.5 By including a nickel-based lithium transition metal oxide located between ° to reduce the mobility of nickel around the lithium has excellent conductivity, to provide a positive electrode active material that can improve the initial efficiency, capacity and life characteristics of the battery.
본 발명이 해결하고자 하는 다른 과제는 상기 양극 활물질을 포함하는 리튬이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery including the cathode active material.
상기와 같은 과제를 해결하기 위하여 본 발명은, 하기의 화학식 1로 표시되는 층상구조의 니켈계 리튬 전이금속 산화물을 포함하며, 상기 리튬 전이금속 산화물의 구리 타겟(Cu Target)을 이용한 X-선 회절분석시 회절각 2θ가 20° ~ 25°인 영역 내에 회절피크가 존재하고, 그 피크의 최고점은 21.8°에서 22.5°사이에 위치하는 것을 특징으로 하는 리튬이차전지용 양극활물질을 제공한다.In order to solve the above problems, the present invention includes a nickel-based lithium transition metal oxide having a layered structure represented by the following formula (1), X-ray diffraction using a copper target (Cu Target) of the lithium transition metal oxide The present invention provides a cathode active material for a lithium secondary battery, characterized in that a diffraction peak exists in a region having a diffraction angle 2θ of 20 ° to 25 °, and the peak of the peak is located between 21.8 ° and 22.5 °.
[화학식 1] [Formula 1]
LiaNibCocMndO2 Li a Ni b Co c Mn d O 2
상기 화학식 1에서, 1 < a < 1.14, b > c, b > d, 0.4 ≤ b ≤ 0.9, 0 < c < 0.4, 0 ≤ d < 0.4 이다.In Formula 1, 1 <a <1.14, b> c, b> d, 0.4 <b <0.9, 0 <c <0.4, 0 <d <0.4.
바람직하게, 상기 화학식 1에서 1 < a < 1.1 이고, 0.9 ≤ b+c+d ≤ 1이다.Preferably, in Formula 1, 1 <a <1.1, and 0.9 ≦ b + c + d ≦ 1.
상기 니켈계 리튬 전이금속 산화물의 X-선 회절분석시 회절각 2θ가 20° ~ 21.8°인 영역에서는 피크가 나타나지 않는 것이 바람직하며, 상기 21.8°에서 22.5°사이에 나타나는 피크 높이는 상기 리튬 전이금속 산화물의 X-선 회절분석시 회절각 2θ 18°부근에서 나타나는 피크 높이의 0.05% ~ 2% 범위에 속하는 것이 바람직하다. In the X-ray diffraction analysis of the nickel-based lithium transition metal oxide, a peak does not appear in a region having a diffraction angle 2θ of 20 ° to 21.8 °, and a peak height appearing between 21.8 ° and 22.5 ° is the lithium transition metal oxide. In the X-ray diffraction analysis, it is preferably in the range of 0.05% to 2% of the peak height appearing near the diffraction angle 2θ 18 °.
또한, 본 발명은 상기 양극활물질의 제조방법 및 상기 양극활물질을 포함하는 리튬이차전지를 제공한다.In addition, the present invention provides a method for producing the cathode active material and a lithium secondary battery comprising the cathode active material.
상기 양극활물질의 제조방법은 하기의 화학식 2로 표시되는 전구체와 리튬소스를 하기의 수학식 1의 조건을 만족하는 당량비로 혼합하는 단계; 및 상기 혼합물을 800 내지 1000℃에서 열처리하는 단계를 포함한다.The method for preparing the cathode active material may include mixing a precursor represented by Chemical Formula 2 and a lithium source in an equivalent ratio satisfying the condition of Equation 1 below; And heat-treating the mixture at 800 to 1000 ° C.
[화학식 2][Formula 2]
NixCoyMnz(OH)2 Ni x Co y Mn z (OH) 2
상기 화학식 2에서, x > z, x > y, 0.4 ≤ x ≤ 0.9, 0 < y < 0.4, 0 ≤ z < 0.4이다.In Formula 2, x> z, x> y, 0.4 <x <0.9, 0 <y <0.4, 0 <z <0.4.
[수학식 1] [Equation 1]
1.00 < Li몰수/M < 1.141.00 <Li moles / M <1.14
상기 수학식 1에서, M은 상기 화학식2의 x+y+z값이다.In Equation 1, M is the x + y + z value of the formula (2).
본 발명에 따르면, 니켈계 리튬 전이금속산화물 내의 리튬 주변 니켈의 이동도를 떨어뜨림으로써 활물질 성능을 저하시킬 수 있는 니켈 산화물 관련 이종상 발생을 억제할 수 있고, 리튬에 추가적인 이동자리를 제공하여 활물질의 전도도를 향상시킬 수 있으며, 과충전시 구조적 안정성을 향상시킬 수 있다.According to the present invention, by reducing the mobility of lithium surrounding nickel in the nickel-based lithium transition metal oxide, it is possible to suppress the occurrence of nickel oxide-related heterogeneous phases, which may reduce the performance of the active material, and provide additional mobile sites to the lithium to provide It can improve conductivity and improve structural stability during overcharging.
따라서, 상기 니켈계 리튬 전이금속산화물을 포함하는 양극활물질을 사용함으로써 초기효율, 용량 및 수명특성이 우수한 리튬이차전지를 제공할 수 있다.Therefore, by using the cathode active material containing the nickel-based lithium transition metal oxide, it is possible to provide a lithium secondary battery having excellent initial efficiency, capacity, and lifespan.
도 1은 실시예 1 및 비교예 1에 따라 제조된 양극활물질의 X-선 회절 스펙트럼을 비교하여 나타낸 것이다.Figure 1 shows a comparison of the X-ray diffraction spectrum of the positive electrode active material prepared according to Example 1 and Comparative Example 1.
도 2는 실시예 1 내지 2에 따라 제조된 양극활물질의 X-선 회절 스펙트럼을 비교하여 나타낸 것이다.Figure 2 shows a comparison of the X-ray diffraction spectrum of the positive electrode active material prepared according to Examples 1 and 2.
도 3은 실시예 1 및 비교예 2에 따라 제조된 양극활물질의 X-선 회절 스펙트럼을 비교하여 나타낸 것이다.Figure 3 shows a comparison of the X-ray diffraction spectrum of the positive electrode active material prepared according to Example 1 and Comparative Example 2.
도 4는 실시예 1 및 비교예 1의 양극활물질을 이용하여 제조된 리튬이차전지의 충방전 실험결과를 나타낸 그래프이다.Figure 4 is a graph showing the charge and discharge test results of the lithium secondary battery prepared using the positive electrode active material of Example 1 and Comparative Example 1.
도 5는 실시예 1 및 비교예 1의 양극활물질을 이용하여 제조된 리튬이차전지의 수명특성을 비교하여 나타낸 그래프이다.5 is a graph showing the life characteristics of the lithium secondary battery prepared using the positive electrode active material of Example 1 and Comparative Example 1.
도 6은 실시예 1 및 비교예 1에 따라 제조된 양극활물질의 압력에 따른 전도도를 비교하여 나타낸 그래프이다.Figure 6 is a graph showing the comparison of the conductivity according to the pressure of the positive electrode active material prepared according to Example 1 and Comparative Example 1.
본 발명은 하기의 화학식 1로 표시되는 층상구조의 니켈계 리튬 전이금속 산화물을 포함하며, 상기 리튬 전이금속 산화물을 구리 타겟(Cu Target)을 이용한 X-선 회절분석시 회절각 2θ가 20° ~ 25°인 영역 내에 회절피크가 존재하고, 그 피크의 최고점은 21.8°에서 22.5°사이에 위치하는 것을 특징으로 하는 리튬이차전지용 양극활물질을 제공한다.The present invention includes a nickel-based lithium transition metal oxide having a layered structure represented by Formula 1 below, and the diffraction angle 2θ is 20 ° to X-ray diffraction analysis of the lithium transition metal oxide using a copper target (Cu Target). The diffraction peak exists in the area | region which is 25 degrees, and the highest point of the peak provides the positive electrode active material for lithium secondary batteries which is located between 21.8 degrees and 22.5 degrees.
[화학식 1] [Formula 1]
LiaNibCocMndO2 Li a Ni b Co c Mn d O 2
상기 화학식 1에서, 1 < a < 1.14, b > c, b > d, 0.4 ≤ b ≤ 0.9, 0 < c < 0.4, 0 ≤ d < 0.4 이다.In Formula 1, 1 <a <1.14, b> c, b> d, 0.4 <b <0.9, 0 <c <0.4, 0 <d <0.4.
바람직하게, 상기 화학식 1에서 1 < a < 1.1 이고, 0.9 ≤ b+c+d ≤ 1이다.Preferably, in Formula 1, 1 <a <1.1, and 0.9 ≦ b + c + d ≦ 1.
본 발명에 따른 리튬 전이금속 산화물은 니켈(Ni)이 코발트(Co) 및 망간(Mn)보다 많이 포함된 니켈-리치(Ni-rich)계 리튬 전이금속 산화물이다. 이러한 니켈-리치(Ni-rich)계 리튬 전이금속 산화물은 높은 용량을 발현할 수 있어 차세대 전극저장용 소재로 각광받고 있으나, 근본적으로 Ni3 +가 존재하는 구조적 불안정으로 인해 상용화에 어려움을 겪고 있었다.The lithium transition metal oxide according to the present invention is a nickel-rich (Ni-rich) lithium transition metal oxide containing nickel (Ni) more than cobalt (Co) and manganese (Mn). These Ni-rich (Ni-rich) type lithium transition metal oxide was having difficulty in commercialization due to the structural instability which it is possible to express a high capacity although the spotlight as materials for the next generation of electrodes storage, essentially Ni 3 + is present .
그러나, 본 발명에 따른 니켈계 리튬 전이금속 산화물은 리튬의 일부가 층상구조에 부분규칙적으로 배열된 구조를 갖기 때문에 니켈의 구조적 안정성을 도모할 수 있다. However, since the nickel-based lithium transition metal oxide according to the present invention has a structure in which a part of lithium is arranged in a layered structure, the structural stability of nickel can be achieved.
본 발명자들은 상기와 같은 구조를 갖는 니켈계 리튬 전이금속 산화물은 X-선 회절분석시 회절각 2θ가 20° ~ 25°인 영역 내에 존재하는 피크 중 최고점을 갖는 피크는 21.8°에서 22.5°사이에서 나타나고, 이 경우 리튬 주변 니켈의 이동도가 떨어지기 때문에 활물질 성능을 저하시킬 수 있는 니켈 산화물 관련 이종상(예컨대, 리튬 층에 혼입된 Ni2 +) 발생이 억제된다는 점을 확인하여 본 발명을 완성하였다. 이와 같이 니켈 산화물 관련 이종상 발생이 억제될 경우, 리튬에 추가적인 이동자리를 제공함으로써 활물질의 전도도를 향상시키는 결과를 가져올 수 있고, 초기효율, 전지용량 및 수명특성이 개선된 리튬이차전지를 제공할 수 있다.The present inventors found that the nickel-based lithium transition metal oxide having the above structure has the highest peak among the peaks present in the region where the diffraction angle 2θ is 20 ° to 25 ° in the X-ray diffraction analysis, between 21.8 ° and 22.5 °. appears, which resulted in the completion of the in this case the present invention to determine the lithium surrounding nickel that the mobility of the drop being the generation (the Ni 2 + incorporated in, for example, Li layer) nickel oxide-related yijongsang that can degrade the active material performance suppressed because of . As such, when the occurrence of nickel oxide-related heterophages is suppressed, it is possible to provide a lithium secondary battery having improved initial conductivity, battery capacity, and lifespan by providing additional moving sites to lithium, thereby improving conductivity. have.
상기 21.8°에서 22.5°사이에 나타나는 피크 높이는 상기 니켈계 리튬 전이금속 산화물의 X-선 회절분석시 회절각 2θ가 18°부근에서 나타나는 피크 높이의 0.05% ~ 2% 범위에 속하는 것이 바람직하다. 회절각 2θ가 21.8°~ 22.5°영역에서 나타나는 피크 높이가 상기 범위에 속할 경우 니켈의 이동도 저하 효과가 가장 우수하여 활물질의 전도도 향상효과를 최대로 가져오므로 바람직하다.The peak height appearing between 21.8 ° and 22.5 ° is preferably in the range of 0.05% to 2% of the peak height of the diffraction angle 2θ at around 18 ° in the X-ray diffraction analysis of the nickel-based lithium transition metal oxide. When the peak height appearing in the region of the diffraction angle 2θ is in the range of 21.8 ° ~ 22.5 ° falls within the above range it is preferable because the effect of reducing the mobility of nickel is the most excellent and the effect of improving the conductivity of the active material to the maximum.
한편, 기존에는 층상구조의 리튬 전이금속산화물로서 LiMO2 (M = Co, Ni, Mn) 단일상으로 구성되거나, 과량의 리튬이 추가적으로 들어가 상기 LiMO2 (M = Co, Ni, Mn) 층상 결정구조 내에 리튬망간산화물(Li2MnO3)의 결정이 혼합되어 있는 구성이 공지되어 있다. 상기 리튬망간산화물의 경우 리튬은 망간 등의 4가의 원자가를 가지는 금속원소로 둘러싸여 있다.Conventionally, LiMO 2 (M = Co, Ni, Mn) is composed of a single phase of LiMO 2 (M = Co, Ni, Mn) as a layered lithium transition metal oxide, or the LiMO 2 (M = Co, Ni, Mn) layered crystal structure There is known a configuration in which crystals of lithium manganese oxide (Li 2 MnO 3 ) are mixed in. In the case of the lithium manganese oxide, lithium is surrounded by a metal element having a tetravalent valence such as manganese.
그러나, 본 발명에 따른 층상구조의 리튬 전이금속산화물은 과량의 리튬이 추가적으로 투입되어 제조되지만, 리튬 주변의 금속원소는 평균적으로 3가의 원자가를 가지고 있다. 즉, 제조단계에서 리튬이 전이금속(Ni, Co 및 Mn) 총량보다 많은 비율로 투입되더라도 리튬과 망간으로 이루어진 이종상인 Li2MnO3이 형성되는 것이 아니라, 리튬의 일부가 부분규칙적으로 층상구조에 배열되어 존재하는 구조를 갖기 때문에, 리튬 주변의 금속원소는 4가가 아닌 평균적으로 3가의 원자가를 갖게 되는 것이다. However, although the lithium transition metal oxide of the layer structure according to the present invention is prepared by adding an excessive amount of lithium, metal elements around lithium have a trivalent valence on average. That is, even if lithium is introduced at a ratio greater than the total amount of transition metals (Ni, Co, and Mn) in the manufacturing step, a heterogeneous Li 2 MnO 3 formed of lithium and manganese is not formed, but part of lithium is partially added to the layered structure. Because of the structure that exists in the arrangement, the metallic elements around lithium have an average valence of trivalent rather than tetravalent.
구체적으로 도 1 및 3을 살펴보면, 본 발명의 실시예 1에 따라 제조된 상기 니켈계 리튬 전이금속 산화물의 X-선 회절분석시 회절각 2θ가 20° ~ 21.8°인 영역에서는 피크가 나타나지 않는 것을 확인할 수 있다. 상기 20° ~ 21.8°영역은 Li2MnO3상으로부터 기인하는 회절피크가 나타나는 구간으로, Li2MnO3상이 존재할 경우에는 21°부근의 강한 피크 및 21°와 21.8° 사이의 어깨피크가 확인된다. 예컨대, Li2MnO3상을 포함하는 비교예 2의 리튬 전이금속 산화물은 20°~ 21.8°영역에서 피크가 발견되었다.Specifically, referring to FIGS. 1 and 3, when the X-ray diffraction analysis of the nickel-based lithium transition metal oxide prepared according to Example 1 of the present invention, a peak does not appear in a region having a diffraction angle 2θ of 20 ° to 21.8 °. You can check it. The 20 ° to 21.8 ° region is a section in which diffraction peaks originating from the Li 2 MnO 3 phase appear, and in the presence of the Li 2 MnO 3 phase, a strong peak near 21 ° and a shoulder peak between 21 ° and 21.8 ° are observed. . For example, the peak of the lithium transition metal oxide of Comparative Example 2 including the Li 2 MnO 3 phase was found in the 20 ° ~ 21.8 ° region.
또한, 본 발명은 상기 니켈계 리튬 전이금속 산화물을 포함하는 양극활물질의 제조방법을 제공한다. 구체적으로, 상기 양극활물질의 제조방법은 하기의 화학식 2로 표시되는 전구체와 리튬소스를 하기의 수학식 1의 조건을 만족하는 당량비로 혼합하는 단계; 및 상기 혼합물을 800 내지 1000℃에서 열처리하는 단계를 포함한다.In addition, the present invention provides a method for producing a cathode active material including the nickel-based lithium transition metal oxide. Specifically, the method of manufacturing the positive electrode active material comprises the steps of mixing the precursor represented by the formula (2) and the lithium source in an equivalent ratio that satisfies the conditions of the following formula (1); And heat-treating the mixture at 800 to 1000 ° C.
[화학식 2][Formula 2]
NixCoyMnz(OH)2 Ni x Co y Mn z (OH) 2
상기 화학식 2에서, x > z, x > y, 0.4 ≤ x ≤ 0.9, 0 < y < 0.4, 0 ≤ z < 0.4이다.In Formula 2, x> z, x> y, 0.4 <x <0.9, 0 <y <0.4, 0 <z <0.4.
[수학식 1] [Equation 1]
1.00 < Li몰수/M < 1.141.00 <Li moles / M <1.14
상기 수학식 1에서, M은 상기 화학식2의 x+y+z값이다. In Equation 1, M is the x + y + z value of the formula (2).
더욱 바람직하게, 상기 Li몰수/M는 1.01 ~ 1.05일 수 있다.More preferably, the number of moles of Li / M may be 1.01 to 1.05.
상기 수학식 1에 따라 계산되는 M에 대한 리튬몰수의 비율(Li몰수/M)이 1 이하인 경우에는 회절각 2θ가 20° ~ 25°인 영역 내에 피크가 존재하지 않는 LiMO2 (M = Co, Ni, Mn) 단일상의 양극활물질이 형성될 수 있고, 반면 상기 비율 1.14이상일 경우에는 회절각 2θ가 20° ~ 21.8°인 영역 내에 피크가 존재하는 Li2MnO3상을 포함하는 양극활물질이 형성될 수 있다.When the ratio of the number of mol of lithium to M calculated according to Equation 1 (Li number of mol / M) is 1 or less, LiMO 2 (M = Co, where no peak exists in a region having a diffraction angle 2θ of 20 ° to 25 °) Ni, Mn) a single phase positive electrode active material may be formed, whereas when the ratio is 1.14 or more, a positive electrode active material including a Li 2 MnO 3 phase having peaks in a region having a diffraction angle 2θ of 20 ° to 21.8 ° may be formed. Can be.
또한, 상기 열처리 온도가 800℃미만일 경우 2θ가 20° ~ 21.8°인 영역 내에 피크가 존재하는 Li2MnO3상을 포함하는 양극활물질이 형성될 수 있고, 반면 1000℃를 초과할 경우에는 활물질의 입자 사이즈가 너무 증가하여 전지 특성이 감소할 수 있다.In addition, when the heat treatment temperature is less than 800 ° C, a positive electrode active material including a Li 2 MnO 3 phase having a peak in a region where 2θ is 20 ° to 21.8 ° may be formed. Particle size may increase too much and battery characteristics may decrease.
그리고, 본 발명은 상기 양극활물질을 포함하는 리튬이차전지를 제공한다. 상기 리튬이차전지는 상기 양극 활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 분리막 및 비수 전해액을 포함하여 구성될 수 있다. 상기 리튬이차전지의 구조와 제조방법은 본 발명의 기술 분야에서 알려져 있고, 본 발명의 범위를 벗어나지 않는 한 적절히 선택할 수 있다.In addition, the present invention provides a lithium secondary battery including the cathode active material. The lithium secondary battery may include a cathode including the cathode active material, a cathode including an anode active material, a separator, and a nonaqueous electrolyte. The structure and manufacturing method of the lithium secondary battery are known in the technical field of the present invention, and may be appropriately selected without departing from the scope of the present invention.
예를 들어, 상기 양극은 본 발명에 의한 양극 활물질 및 바인더를 포함하는 양극 활물질 형성용 조성물을 양극 집전체에 도포하고 건조한 이후 압연하여 제조된다. For example, the positive electrode is manufactured by applying a composition for forming a positive electrode active material including the positive electrode active material and the binder according to the present invention to a positive electrode current collector, and then drying and rolling.
상기 바인더는 양극 활물질들 간의 결합과 집전체에 이들을 고정시키는 역할을 하며, 본 기술 분야에서 사용되는 바인더라면 제한 없이 사용될 수 있으며, 바람직하게는 폴리비닐리덴플루오라이드, 폴리테트라플루오로에틸렌, 폴리비닐클로라이드, 폴리비닐피롤리돈, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 폴리에틸렌, 폴리프로필렌, 스틸렌부티렌 고무, 불소 고무 중에서 선택된 1종 이상일 수 있다.The binder serves to fix the bonding between the positive electrode active material and the current collector, and any binder used in the art may be used without limitation, and preferably, polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl It may be at least one selected from chloride, polyvinylpyrrolidone, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, polyethylene, polypropylene, styrene butyrene rubber, fluorine rubber.
상기 양극 활물질 형성용 조성물은 양극 활물질 및 바인더에 선택적으로 NMP(N-Methyl-2-pyrrolidone) 등과 같은 용매 및 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소 섬유 등과 같은 섬유상 물질로 이루어진 충진제 등을 더 추가하여 제조될 수 있다. 또한, 본 기술 분야에서 알려진 도전제, 예컨대 하드카본, 흑연 및 탄소섬유 등을 더 포함할 수 있다.The composition for forming the positive electrode active material may include a solvent such as N-Methyl-2-pyrrolidone (NMP) and an olefinic polymer such as polyethylene and polypropylene, optionally for the positive electrode active material and the binder; It may be prepared by further adding a filler made of a fibrous material such as glass fiber, carbon fiber and the like. In addition, it may further include a conductive agent known in the art, such as hard carbon, graphite and carbon fiber.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 구리 및 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 알루미늄-카드뮴 합금 등일 수 있고, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태도 가능하다.The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Surface-treated with carbon, nickel, titanium, silver or the like on the surface of copper and stainless steel; Aluminum-cadmium alloys, and the like, and various forms such as films, sheets, foils, nets, porous bodies, foaming agents, and nonwoven fabrics are also possible.
상기 음극은 음극 집전체 상에 음극 활물질을 포함하는 음극 활물질 형성용 조성물을 도포하고 건조한 이후 압연하여 제조될 수 있고, 또는 리튬 금속일 수 있다. 상기 음극 활물질 형성용 조성물은 상기한 바인더 및 도전재 등을 선택적으로 더 포함할 수 있다.The negative electrode may be prepared by coating a composition for forming a negative electrode active material including a negative electrode active material on a negative electrode current collector and then drying and rolling it, or lithium metal. The negative electrode active material composition may further include the binder and the conductive material.
상기 음극 활물질은 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료, 리튬과 실리콘(Si), 알루미늄(Al), 주석(Sn), 납(Pb), 아연(Zn), 비스무스(Bi), 인듐(In), 망간(Mg), 갈륨(Ga), 카드뮴(Cd), 실리콘 합금, 주석 합금, 알루미늄 합금 등과 같은 합금화가 가능한 금속질 화합물 및 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등일 수 있다.The negative electrode active material may be a carbonaceous material such as artificial graphite, natural graphite, graphitized carbon fiber, amorphous carbon, lithium and silicon (Si), aluminum (Al), tin (Sn), lead (Pb), zinc (Zn), Alloyable metal compounds such as bismuth (Bi), indium (In), manganese (Mg), gallium (Ga), cadmium (Cd), silicon alloys, tin alloys, aluminum alloys, and the like and carbonaceous materials It may be a composite including a.
상기 음극 집전체는, 당해 전지에 화학적변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소; 구리 및 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것; 알루미늄-카드뮴 합금 등일 수 있고, 필름, 시트, 호일, 네트, 다공질체, 발포제, 부직포체 등 다양한 형태도 가능하다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and examples thereof include copper, stainless steel, aluminum, nickel, titanium, calcined carbon; Surface-treated with carbon, nickel, titanium, silver or the like on the surface of copper and stainless steel; Aluminum-cadmium alloys, and the like, and various forms such as films, sheets, foils, nets, porous bodies, foaming agents, and nonwoven fabrics are also possible.
상기 분리막은 음극 및 양극 사이에 배치되며, 종래 분리막으로 사용되는 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독 또는 이들을 적층하여 사용할 수 있다. 또한, 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있다.The separator is disposed between the negative electrode and the positive electrode, and conventional porous polymer films used as conventional separators, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate Porous polymer films made of polyolefin-based polymers such as copolymers may be used alone or in a stack of these. It is also possible to use conventional porous nonwoven fabrics such as nonwoven fabrics of high melting point glass fibers, polyethylene terephthalate fibers and the like.
상기 비수 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다. The non-aqueous electrolyte solution is composed of an electrolyte solution and a lithium salt, but the non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like are used as the electrolyte solution, but are not limited thereto.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.Examples of the organic solid electrolytes include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, Polymerizers containing ionic dissociating groups and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a good material to be dissolved in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide.
상기 이차 전지는 코인형, 각형, 원통형, 파우치형 등으로 분리될 수 있고, 이들 전지의 구조와 제조방법은 본 기술 분야에서 알려져 있으므로, 상세한 설명은 생략한다. The secondary battery may be divided into a coin type, a square shape, a cylindrical shape, a pouch type, and the like. Since the structure and manufacturing method of these batteries are known in the art, detailed description thereof will be omitted.
이하, 실시예들을 들어 본 발명에 관하여 더욱 상세히 설명하지만, 본 발명이 이러한 실시예들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
실시예Example 1 One
Ni0 . 6Co0 . 2Mn0 .2(OH)2 전구체와 LiOH를 1:1.01의 당량비(Li몰수/M = 1.01)로 혼합한 후, 850℃의 온도에서 열처리하여 LiNi0 . 6Co0 . 2Mn0 . 2O2 조성을 가지는 양극활물질을 제조하였다. Ni 0 . 6 Co 0 . 2 Mn 0 .2 (OH) 1 2 precursor and LiOH: then a solution of an equivalent ratio (Li mole number / M = 1.01) of 1.01, and heat treated at a temperature of 850 ℃ LiNi 0. 6 Co 0 . 2 Mn 0 . A cathode active material having a composition of 2 O 2 was prepared.
실시예Example 2 2
Ni0 . 5Co0 . 2Mn0 .3(OH)2 전구체와 LiOH를 1:1.02의 당량비(Li몰수/M = 1.02)로 혼합한 후, 850℃의 온도에서 열처리하여 LiNi0 . 5Co0 . 2Mn0 . 3O2 조성을 가지는 양극활물질을 제조하였다. Ni 0 . 5 Co 0 . 2 Mn 0 .3 (OH) 1 2 precursor and LiOH: then a solution of an equivalent ratio (Li mole number / M = 1.02) of 1.02, and heat treated at a temperature of 850 ℃ LiNi 0. 5 Co 0 . 2 Mn 0 . A cathode active material having a composition of 3 O 2 was prepared.
비교예Comparative example 1 One
Ni0 . 6Co0 . 2Mn0 .2(OH)2 전구체와 LiOH를 1:1의 당량비(Li몰수/M = 1.00)로 혼합한 후, 850℃의 온도에서 열처리하여 LiNi0 . 6Co0 . 2Mn0 . 2O2 조성을 가지는 양극활물질을 제조하였다. Ni 0 . 6 Co 0 . 2 Mn 0 .2 (OH) 2 precursor and LiOH to 1 equivalent ratio of 1 was mixed with (Li mole number / M = 1.00), heat treated at a temperature of 850 ℃ LiNi 0. 6 Co 0 . 2 Mn 0 . A cathode active material having a composition of 2 O 2 was prepared.
비교예Comparative example 2 2
Ni0 . 2Co0 . 2Mn0 .6(OH)2 전구체와 LiOH를 1:1.4의 당량비(Li몰수/M = 1.40)로 혼합한 후, 700℃의 온도에서 열처리하여 Li1 . 17Ni0 . 17Co0 . 17Mn0 . 5O2 조성을 가지는 양극활물질을 제조하였다. Ni 0 . 2 Co 0 . 2 Mn 0 .6 (OH) 2 precursor and LiOH 1: After mixing in 1.4 equivalent ratio (Li mole number / M = 1.40), the heat-treated at a temperature of 700 ℃ Li 1. 17 Ni 0 . 17 Co 0 . 17 Mn 0 . A cathode active material having a 5 O 2 composition was prepared.
< 양극 활물질의 X-선회절 피크 분석><X-ray diffraction peak analysis of the positive electrode active material>
실시예 1 및 비교예 1에 따라 제조된 양극활물질의 X-선 회절 스펙트럼을 비교하여 나타내는 도 1을 살펴보면, 실시예 1의 양극활물질의 경우 회절각 2θ가 20° ~ 25°인 영역 내에 회절피크가 존재하고, 그 피크의 최고점은 21.8°에서 22.5°사이에 위치하는 반면, 비교예 1의 양극활물질의 경우 실시예 1의 양극활물질과 동일조성을 가지고 있지만 상기 영역에 피크 또는 피크의 최고점이 위치하지 않는다.Referring to FIG. 1, which compares the X-ray diffraction spectra of the cathode active materials prepared according to Example 1 and Comparative Example 1, the diffraction peaks in the region where the diffraction angle 2θ is 20 ° to 25 ° for the cathode active material of Example 1 Is present, the peak of the peak is located between 21.8 ° to 22.5 °, whereas the positive electrode active material of Comparative Example 1 has the same composition as the positive electrode active material of Example 1 but the peak or peak of the peak is not located in the region Do not.
또한, 실시예 1 내지 2에 따라 제조된 양극활물질의 X-선 회절 스펙트럼을 비교하여 나타내는 도 2를 살펴보면, 니켈의 함량이 증가할 수록 회절각 2θ이 21.8°~ 22.5°인 영역에서 나타나는 피크의 크기가 증가하며, 상기 피크는 비교예 2의 양극활물질에서 나타나는 피크와는 위치 및 상대적인 크기가 다르다는 것을 확인할 수 있다. In addition, referring to FIG. 2, which compares the X-ray diffraction spectrums of the cathode active materials prepared according to Examples 1 and 2, as the nickel content is increased, the peaks appearing in the region where the diffraction angle 2θ is 21.8 ° to 22.5 °. As the size increases, the peak is different from the peak appearing in the cathode active material of Comparative Example 2 and the relative size is different.
즉, 실시예 1 및 비교예 2에 따라 제조된 양극활물질의 X-선 회절 스펙트럼을 비교하여 나타내는 도 3을 살펴보면, 비교예 2에 따른 양극활물질의 X-선 회절 스펙트럼에서는 21°부근의 강한 피크 및 21°와 21.8° 사이의 어깨피크가 확인되는 반면, 실시예 1의 X-선회절 스펙트럼에서는 20°~ 21.8° 구간에서 피크가 존재하지 않는다. 이는 Li2MnO3상으로부터 유래되는 피크로서 비교예 2의 양극활물질은 Li2MnO3상을 포함하는 반면, 실시예 1의 양극활물질은 포함하지 않는다는 것을 입증한다.That is, referring to FIG. 3, which compares the X-ray diffraction spectra of the cathode active materials prepared according to Example 1 and Comparative Example 2, in the X-ray diffraction spectrum of the cathode active material according to Comparative Example 2, a strong peak near 21 °. And a shoulder peak between 21 ° and 21.8 ° is observed, whereas in the X-ray diffraction spectrum of Example 1, there is no peak at 20 ° to 21.8 °. This demonstrates that the positive electrode active material of Comparative Example 2 as a peak derived from the Li 2 MnO 3 is a does not include the cathode active material of Example 1 while containing Li 2 MnO 3 is a.
< 리튬이차전지의 성능평가 ><Performance Evaluation of Lithium Secondary Battery>
1. 리튬이차전지의 제조 1. Manufacturing of Lithium Secondary Battery
상기 실시예 1 및 비교예 1에서 제조된 양극 활물질, 도전제인 덴카블랙(DenkaBlack), 바인더인 폴리비닐리덴플루오라이드(PVDF)를 92:4:4의 비율(w/w)로 혼합하여 알루미늄 호일 위에 코팅하여 양극 극판을 제작했다. 음극으로 리튬메탈, 전해질로 1.3M LiPF6 EC/DMC/EC=3:4:3용액을 사용하여 코인셀을 제작하였다. The aluminum foil was prepared by mixing the positive electrode active material prepared in Example 1 and Comparative Example 1, the conductive agent DenkaBlack, and the binder polyvinylidene fluoride (PVDF) at a ratio of 92: 4: 4 (w / w). Coating over to produce a positive electrode plate. A coin cell was prepared using lithium metal as a negative electrode and 1.3 M LiPF 6 EC / DMC / EC = 3: 4: 3 solution as an electrolyte.
2. 셀 포매이션2. Cell Formation
상기 제조된 코인셀을 25℃ 항온에 24시간 방치한 후, 리튬 이차전지 충방전기(Toyo-System Co., LTD, TOSCAT-3600)를 사용하여, 0.1C로 4.3V까지 정전류로 하는 조건 및 0.05C를 종료전류로 한 정전압 조건으로 충전하고, 0.1C로 2.8V까지 정전류 조건으로 방전하여 셀 포매이션 과정을 완료하였다. 상기 포매이션 과정에서 하기의 식 (1)에 따라 초기효율을 구하였다.After allowing the prepared coin cell to stand at a constant temperature of 25 ℃ for 24 hours, using a lithium secondary battery charger (Toyo-System Co., LTD, TOSCAT-3600), the conditions to constant current up to 4.3V at 0.1C and 0.05 and 0.05 The cell formation process was completed by charging C under constant voltage condition with the termination current and discharging under 0.1 C at constant current condition. Initial efficiency was calculated according to Equation (1) below in the formation process.
초기효율(%) = (1st 사이클에서의 방전용량 / 1st 사이클에서의 충전용량) The initial efficiency (%) = (discharge capacity / charge capacity at 1 st cycle of the 1 st cycle)
× 100 … (1)              × 100.. (One)
3. 수명특성 평가3. Life characteristics evaluation
상기 포매이션 완료된 셀을 1.0C의 전류로 충방전하여 50사이클을 반복하였고 하기의 식 (2)에 따라 용량유지율을 구하여 수명특성으로 평가하였으며, 그 결과를 표 1에 나타내었다. The formed cell was charged and discharged with a current of 1.0 C, and repeated 50 cycles. The capacity retention ratio was calculated according to Equation (2) below, and evaluated as life characteristics. The results are shown in Table 1 below.
용량유지율(%) = (50th 사이클에서의 방전용량 / 1st 사이클에서의 방전용량) Capacity retention rate (%) = (discharge capacity at 50 th cycle / discharge capacity at 1 st cycle)
× 100 … (2)                × 100.. (2)
4. 전도도 측정4. Conductivity measurement
실시예 1 및 비교예 1에 따라 제조된 양극활물질에 대해 4-pin probe가 장착된 분체저항 측정기(LORESTA-GP, MITSHBISHI CHEMICAL ANALYTECH)를 이용하여 분체에 가하는 압력을 조절하면서 전자전도도를 측정하였고, 그 결과를 도 6에 도시하였다.Electronic conductivity was measured while adjusting the pressure applied to the powder using a powder resistance measuring instrument (LORESTA-GP, MITSHBISHI CHEMICAL ANALYTECH) equipped with a 4-pin probe for the cathode active material prepared according to Example 1 and Comparative Example 1. The results are shown in FIG.
1st 충전용량 (mAh/g)1 st charging capacity (mAh / g) 1st 방전용량 (mAh/g)1 st discharge capacity (mAh / g) 초기효율 (%)Initial Efficiency (%) 50 cycle 용량유지율(%)50 cycle capacity retention rate (%)
실시예1Example 1 200.8200.8 187.3187.3 93.393.3 96.396.3
비교예 1Comparative Example 1 202.2202.2 178.5178.5 88.388.3 91.091.0
상기 표 1을 살펴보면, 실시예 1의 양극활물질을 이용하여 제조된 리튬이차전지의 경우, 비교예 1의 양극활물질을 이용하여 제조된 리튬이차전지에 비하여 초기 충방전용량, 초기효율 및 수명특성이 우수하다는 것을 확인할 수 있다. 또한, 도6을 살펴보면, 실시예 1에 따라 제조된 양극활물질의 경우, 비교예 1의 양극활물질에 비해 전도도가 향상되었음을 확인할 수 있다.Looking at the Table 1, the lithium secondary battery manufactured using the positive electrode active material of Example 1, the initial charge and discharge capacity, initial efficiency and life characteristics compared to the lithium secondary battery manufactured using the positive electrode active material of Comparative Example 1 It can be confirmed that it is excellent. In addition, looking at Figure 6, in the case of the positive electrode active material prepared according to Example 1, it can be confirmed that the conductivity is improved compared to the positive electrode active material of Comparative Example 1.
이상, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것으로서, 본 발명의 보호범위는 아래의 특허청구범위에 의하여 해석되어야 하며 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.As described above, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to explain the protection scope of the present invention, which should be interpreted by the following claims, and all technical ideas within the equivalent scope thereof. Should be construed as being included in the scope of the present invention.

Claims (7)

  1. 하기의 화학식 1로 표시되는 층상구조의 니켈계 리튬 전이금속 산화물을 포함하며,It includes a nickel-based lithium transition metal oxide of a layer structure represented by the formula (1)
    상기 리튬 전이금속 산화물을 구리 타겟(Cu Target)을 이용한 X-선 회절분석시 회절각 2θ가 20° ~ 25°인 영역 내에 회절피크가 존재하고, 그 피크의 최고점은 21.8°에서 22.5°사이에 위치하는 것을 특징으로 하는 리튬이차전지용 양극활물질:In the X-ray diffraction analysis of the lithium transition metal oxide using a copper target (Cu Target), a diffraction peak exists in a region having a diffraction angle 2θ of 20 ° to 25 °, and the peak peak is between 21.8 ° to 22.5 °. A cathode active material for a lithium secondary battery, characterized in that:
    [화학식 1] [Formula 1]
    LiaNibCocMndO2 Li a Ni b Co c Mn d O 2
    상기 화학식 1에서, 1 < a < 1.14, b > c, b > d, 0.4 ≤ b ≤ 0.9, 0 < c < 0.4, 0 ≤ d < 0.4 이다.In Formula 1, 1 <a <1.14, b> c, b> d, 0.4 <b <0.9, 0 <c <0.4, 0 <d <0.4.
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식 1에서 1 < a < 1.1 이고, 0.9 ≤ b+c+d ≤ 1인 것을 특징으로 하는 리튬이차전지용 양극활물질.In Formula 1, 1 <a <1.1, wherein 0.9 ≤ b + c + d ≤ 1, the positive electrode active material for a lithium secondary battery.
  3. 제1항에 있어서,The method of claim 1,
    상기 리튬 전이금속 산화물을 구리 타겟(Cu Target)을 이용한 X-선 회절분석시 회절각 2θ가 20° ~ 21.8°인 영역에서는 피크가 나타나지 않는 것을 특징으로 하는 리튬이차전지용 양극활물질.A cathode active material for a lithium secondary battery, characterized in that a peak does not appear in a region where the diffraction angle 2θ is 20 ° to 21.8 ° when the lithium transition metal oxide is analyzed using a copper target (Cu Target).
  4. 제1항에 있어서The method of claim 1
    상기 21.8°에서 22.5°사이에 나타나는 피크 높이는 상기 리튬 전이금속 산화물의 X-선 회절분석시 회절각 2θ가 18°부근에서 나타나는 피크 높이의 0.05% ~ 2% 범위에 속하는 것을 특징으로 하는 리튬이차전지용 양극활물질.The peak height appearing between 21.8 ° to 22.5 ° for X-ray diffraction analysis of the lithium transition metal oxide is characterized in that the diffraction angle 2θ falls within the range of 0.05% ~ 2% of the peak height appearing near 18 ° Cathode active material.
  5. 제1항 내지 제4항 중 선택된 어느 한 항에 따른 양극활물질의 제조방법으로서,As a method for producing a cathode active material according to any one of claims 1 to 4,
    하기의 화학식 2로 표시되는 전구체와 리튬소스를 하기의 수학식 1의 조건을 만족하는 당량비로 혼합하는 단계; 및Mixing a precursor represented by Formula 2 with a lithium source in an equivalent ratio satisfying the condition of Equation 1 below; And
    상기 혼합물을 800 내지 1000℃에서 열처리하는 단계를 포함하는 양극 활물질의 제조방법:Method for producing a positive electrode active material comprising the step of heat-treating the mixture at 800 to 1000 ℃:
    [화학식 2] [Formula 2]
    NixCoyMnz(OH)2 Ni x Co y Mn z (OH) 2
    상기 화학식 2에서, x > z, x > y, 0.4 ≤ x ≤ 0.9, 0 < y < 0.4, 0 ≤ z < 0.4이다.In Formula 2, x> z, x> y, 0.4 <x <0.9, 0 <y <0.4, 0 <z <0.4.
    [수학식 1][Equation 1]
    1.00 < Li몰수/M < 1.141.00 <Li moles / M <1.14
    상기 수학식 1에서, M은 상기 화학식2의 x+y+z값이다.In Equation 1, M is the x + y + z value of the formula (2).
  6. 제5항에 있어서,The method of claim 5,
    상기 Li몰수/M는 1.01 ~ 1.05인 것을 특징으로 하는 양극활물질의 제조방법.The number of moles of Li / M is a method of producing a positive electrode active material, characterized in that 1.01 ~ 1.05.
  7. 제1항 내지 제4항 중 선택된 어느 한 항에 따른 리튬이차전지용 양극활물질을 포함하는 리튬이차전지.A lithium secondary battery comprising the cathode active material for a lithium secondary battery according to any one of claims 1 to 4.
PCT/KR2015/008730 2014-12-29 2015-08-21 Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same WO2016108382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0192441 2014-12-29
KR1020140192441A KR102295372B1 (en) 2014-12-29 2014-12-29 Cathode active material for a lithium secondary battery, preparation method thereof, and a lithium secondary battery containing the same

Publications (1)

Publication Number Publication Date
WO2016108382A1 true WO2016108382A1 (en) 2016-07-07

Family

ID=56284503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008730 WO2016108382A1 (en) 2014-12-29 2015-08-21 Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same

Country Status (2)

Country Link
KR (1) KR102295372B1 (en)
WO (1) WO2016108382A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180025028A (en) * 2016-08-31 2018-03-08 동아대학교 산학협력단 Manufacturing method of nickel rich cathod active material and nickel rich cathod active material made by the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100109605A (en) * 2009-04-01 2010-10-11 주식회사 엘지화학 Cathode active material for lithium secondary battery
KR20100130522A (en) * 2009-06-03 2010-12-13 주식회사 엘지화학 Electrode active material for lithium secondary battery
KR20130125124A (en) * 2012-05-08 2013-11-18 한국과학기술연구원 Fabrication method of nanocomposite for lithium secondary battery
WO2014007358A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
WO2014058068A1 (en) * 2012-10-12 2014-04-17 日産自動車株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101469436B1 (en) 2012-01-17 2014-12-08 주식회사 엘지화학 Cathode Active Material and Lithium Secondary Battery For Controlling Impurity or Swelling Comprising the Same and Method For Manufacturing Cathode Active Material Of Improved Productivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100109605A (en) * 2009-04-01 2010-10-11 주식회사 엘지화학 Cathode active material for lithium secondary battery
KR20100130522A (en) * 2009-06-03 2010-12-13 주식회사 엘지화학 Electrode active material for lithium secondary battery
KR20130125124A (en) * 2012-05-08 2013-11-18 한국과학기술연구원 Fabrication method of nanocomposite for lithium secondary battery
WO2014007358A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
WO2014058068A1 (en) * 2012-10-12 2014-04-17 日産自動車株式会社 Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing positive electrode active substance for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell

Also Published As

Publication number Publication date
KR102295372B1 (en) 2021-09-01
KR20160082843A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
WO2016108384A1 (en) Cathode active material for lithium-ion secondary batteries, method for producing same, and lithium-ion secondary battery comprising same
KR101656935B1 (en) Lithium transition metal composite particles, preparation method thereof, and cathode active material comprising the same
KR20190059249A (en) Positive electrode active material for lithium secondary battery and method for preparing the same
WO2015026080A1 (en) Cathode active material, lithium secondary battery comprising same, and method for preparing same
KR102425828B1 (en) Positive active material, positive electrode and lithium battery containing the material, method of manufacturing the material
WO2015102140A1 (en) Anode for secondary battery and lithium secondary battery comprising same
WO2013109038A1 (en) Cathode active material, lithium secondary battery for controlling impurities or swelling containing same, and preparation method of cathode active material with improved productivity
WO2015026121A1 (en) Lithium cobalt-based complex oxide having good lifespan properties, and secondary battery anode active material including same
WO2015012640A1 (en) Electrode for secondary battery having improved energy density and lithium secondary battery comprising same
WO2015016531A1 (en) Anode active material for secondary battery having improved lifespan
WO2012141503A2 (en) Positive electrode active material, method for preparing same, and positive electrode and lithium battery using same
KR102609884B1 (en) Multi-layer Electrode for Secondary Battery Comprising Binder with High Crystallinity
KR102288293B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
KR20240037909A (en) Multi-layer Electrode for Secondary Battery Comprising Binder with High Crystallinity
KR102147364B1 (en) Metal Doped-Positive Active Material for High Voltage
WO2010147389A2 (en) Positive electrode active material for lithium secondary battery
WO2016056775A1 (en) Electrode comprising alternately arranged electrode mixture parts and irreversible parts, and secondary battery comprising same
WO2013002513A2 (en) Positive electrode active material for a secondary battery having improved rate characteristics
KR102290959B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery
WO2014010856A1 (en) Anode active material for high voltage and method for manufacturing same
JP7335053B2 (en) Irreversible additive, positive electrode containing said irreversible additive, lithium secondary battery containing said positive electrode
WO2013183919A1 (en) Cathode material for secondary battery having improved lifetime characteristics and preparation method therefor
WO2018004250A1 (en) Positive electrode active material for lithium secondary battery, containing high-voltage lithium cobalt oxide having doping element, and method for preparing same
WO2016108382A1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium secondary battery including same
KR102288294B1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875476

Country of ref document: EP

Kind code of ref document: A1