WO2016107994A1 - Procédé et dispositif pour le contrôle laser de l'état d'une surface - Google Patents

Procédé et dispositif pour le contrôle laser de l'état d'une surface Download PDF

Info

Publication number
WO2016107994A1
WO2016107994A1 PCT/FR2015/000241 FR2015000241W WO2016107994A1 WO 2016107994 A1 WO2016107994 A1 WO 2016107994A1 FR 2015000241 W FR2015000241 W FR 2015000241W WO 2016107994 A1 WO2016107994 A1 WO 2016107994A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
objective
distance
laser beam
reference point
Prior art date
Application number
PCT/FR2015/000241
Other languages
English (en)
Inventor
Hervé HAAG
Original Assignee
Airbus Defence And Space Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence And Space Sas filed Critical Airbus Defence And Space Sas
Publication of WO2016107994A1 publication Critical patent/WO2016107994A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/10Scanning

Definitions

  • the present invention relates to a method and a device for controlling, with the aid of a laser beam, the state of a surface, for example a machined part, in order to detect any surface defects.
  • a relative displacement device for communicating to said control laser beam a scanning movement of said surface by said laser beam
  • a processing device for processing the light signal returned from said surface in response to illumination by said control laser beam to determine said surface condition.
  • control devices have the disadvantage, to be precise, of requiring that the control laser beam is orthogonal to said surface and that the distance between the optical system and the surface remains substantially constant.
  • these known devices require precise control of the orthogonality of the control laser beam with respect to the surface and are unsuitable for use in controlling non-planar surfaces having convex and / or concave portions.
  • the present invention aims to overcome these disadvantages.
  • the method for controlling the state of a surface the method according to which:
  • said surface is scanned by a control laser beam focused by an optical system, and the light signal returned by said surface is processed in response to illumination by said control laser beam to determine said surface state,
  • the focal length of said optical system is varied
  • the objective distance - area between the objective of said optical system and said surface is determined
  • control laser beam no longer needs to be orthogonal to the controlled surface, so that it is possible to control the latter accurately, without worrying about the orthogonality of the laser beam. control and / or flatness of said surface.
  • a fixed reference point is determined on the light path of the control laser beam, upstream of said optical system (with respect to the direction of propagation of said control laser beam towards said surface), and
  • said objective-surface distance between the objective of said optical system and said surface from:
  • Said optical system may be of the telescope or objective telescope type and eyepiece, the focal length of said optical system then being made variable by displacement of the eyepiece.
  • a rangefinder of the laser rangefinder type is used, the laser beam for measuring the rangefinder is made to follow the light path of the control laser beam from a reference point in upstream of said optical system, said range finder for determining the distance D between said reference point and said surface, and said objective distance - area between the objective of said optical system and said surface is determined by the difference DL, where L is the distance between said reference point and the objective of the optical system.
  • a laser generator which can further fulfill the rangefinder function, said laser generator measures the distance D 1 between its output and said surface and said objective distance - surface between objective of the optical system and said surface is determined by the difference D1 -L1, where L1 is the distance between said output of the laser generator and the objective of the optical system.
  • a device for detecting the light signal returned by said surface which is able to fulfill the laser telemeter function, the measurement laser beam of the detection device is caused to follow the light path of the control laser beam from a reference point upstream of said optical system, said detection device makes it possible to determine the distance D2 between said reference point and said surface and said objective distance - area between the objective of the optical system and said surface is determined by the difference D2-L2, L2 being the distance between said reference point and the objective of the optical system.
  • the present invention further relates to a device for monitoring the state of a surface, said control device comprising:
  • a detection device for receiving and processing the light signal returned by said surface in response to illumination by said control laser beam, in order to determine said surface state
  • said optical system is of variable focal length
  • control device furthermore comprises:
  • a range finder for determining the objective distance - area between the objective of the optical system and said surface
  • Figure 1 is a block diagram of a first exemplary implementation of the present invention.
  • FIGS 2 and 3 illustrate, also in block diagrams, two alternative embodiments of the present invention.
  • the control device 1, according to the present invention and schematically illustrated in Figure 1, is intended to control the surface 2 of a body 3 to detect any surface defects.
  • the control device 1 comprises a laser generator 4, continuous, pulsed, modulated or very high frequency, addressing, through its output 4A, a control laser beam 5 on the surface 2, through an optical system 6.
  • means such as XY table, cardan mount, rotating mirrors, etc. are provided to create a relative movement between the control device 1 and the surface 2 or between the control laser beam 5 and said surface 2, so that said laser beam 5 sweeps the latter along two rectangular axes XX, YY.
  • the optical system 6 comprises a fixed objective 6A and a movable eyepiece 6B, so that it is possible to vary the distance d between said objective 6A and said eyepiece 6B to vary the focal length F of said optical system 6.
  • the control device 1 further comprises a laser rangefinder 7 emitting, by its output 7A, a measuring laser beam 8, which is made to follow the same optical path as the control laser beam 5 of the generator 4 via an optical element 9 (prism, partially transparent mirror, ...) arranged at a reference point 10 of the optical path of the control laser beam 5 upstream of the optical system 6.
  • This reference point 10 is disposed at a distance e of the output 7A of the laser rangefinder 7 and at a distance L of the objective 6A, the distances e and L being known by construction of the device 1.
  • the laser rangefinder 7 measures the distance e + D between its output 7A and the surface 2.
  • the control device 1 also comprises a computing device 1 1, controlling a motor device 1 2 (of any known type and simply represented by a double arrow in FIG. moving the eyepiece 6B to vary the distance d between it and the lens 6A and thus the focal length of the optical system 6.
  • a computing device 1 1 controlling a motor device 1 2 (of any known type and simply represented by a double arrow in FIG. moving the eyepiece 6B to vary the distance d between it and the lens 6A and thus the focal length of the optical system 6.
  • the computing device 1 1 receives, from the rangefinder 7, the distance e + D which is measured by the latter and whose distance e by construction is known. Likewise, the computing device 1 1 knows, by construction, the distance L between the reference point 1 0 and the objective 6A, as well as the law of variation of the focal distance F of the optical system 6 as a function of the distance d between the eyepiece 6B and the lens 6A.
  • the computing device 1 1 is therefore able to calculate the difference DL which corresponds to the value to be taken by the focal length F of the optical system 6 so that the control laser beam 5 is focused on the surface 2, as well as the value that must take the distance d between the objective 6A and the eyepiece 6B so that said focal distance F takes the value DL. It therefore controls the motor device 1 2 which moves the eyepiece 6B so that the focal length F of the optical system 6 is equal to D-L.
  • the control device 1 further comprises a detection device 14 for receiving and analyzing the light signal 17 returned (by reflection, diffusion, etc.) by the surface 2 in response to the illumination by the control laser beam 5
  • a splitter optical element 1 5 is provided at a point 1 6 of the optical path of the control laser beam 5, to address this optical signal 17 to the detection device 14. The latter is therefore able to detect possible defects of the surface 2.
  • the laser generator 4.1 at very high frequency and emitting the control laser beam 5, is moreover able to fulfill the telemeter function.
  • the laser rangefinder 7 and the optical element 9 are deleted, the other elements remaining the same.
  • the laser generator 4.1 which replaces the laser generator 4 of FIG. 1, measures the distance D1 between the reference point constituted by its output 4.1 A and the surface 2, and directly addresses this distance D1 to the computing device 1 1.
  • the calculation device 1 1.know, by construction, the distance L1 between the output 4.1 A of the laser generator 4.1 and the objective 6A of the optical system 6. It can therefore calculate the difference D1 -L1, which corresponds to the value to be taken by the focal length F of the optical system 6 so that the control laser beam 5 is focused on the surface 2.
  • the computing device 1 1 controls the motor device 1 2 so that it moves the eyepiece 6B so that the distance d between it and the objective 6A corresponds to a distance focal length F equal to D1 -L1.
  • the detection device 14.2 of the light signal 1 7 returned by the surface 2 is moreover able to fulfill the telemeter function.
  • the laser rangefinder 7 and the optical element 9 are eliminated, the other elements remaining identical.
  • the detection device 14.2 which replaces the device 1 4 for detecting the light signal 1 7 of FIG. 1, further measures the distance D 2 between the reference point 16 and the surface 2.
  • the distance between the device 14.2 and said reference point 1 6 being equal to e2, known by construction, the computing device 1 1 receives directly from this device 14.2 the sum e2 + D2.
  • This computing device 1 1 moreover, by construction, knows the distance L2 separating the reference point 1 6 from the lens 6A.
  • the computing device 1 1 is thus able to calculate the difference D2-L2 and to control the motor device 1 2 so that it moves the eyepiece 6B, so that the distance d between said eyepiece and the objective 6A corresponds to a focal length F equal to D2-L2.

Abstract

Procédé et dispositif pour le contrôle laser de l'état d'une surface. Selon l'invention, on balaye ladite surface (2) par un faisceau laser de contrôle (5) focalisé par un système optique (6) et on ajuste la distance focale dudit système optique (6) en fonction de la distance entre ce dernier et ladite surface (2).

Description

Procédé et dispositif pour le contrôle laser de l'état d'une surface.
La présente invention a pour objet un procédé et un dispositif pour contrôler, à l'aide d'un faisceau laser, l'état d'une surface, par exemple une pièce usinée, afin d'y détecter d'éventuels défauts superficiels.
On connaît déjà, par exemple par le document US 4 296 333, des dispositifs de contrôle comportant :
- un générateur laser émettant un faisceau laser de contrôle,
- un système optique pour focaliser ledit faisceau laser sur ladite surface,
- un dispositif de déplacement relatif pour communiquer audit faisceau laser de contrôle un mouvement de balayage de ladite surface par ledit faisceau laser, et
- un dispositif de traitement pour traiter le signal lumineux renvoyé par ladite surface en réponse à l'illumination par ledit faisceau laser de contrôle afin de déterminer ledit état de surface.
Ces dispositifs de contrôle connus présentent l'inconvénient, pour être précis, de nécessiter que le faisceau laser de contrôle soit orthogonal à ladite surface et que la distance entre le système optique et la surface reste sensiblement constante. En d'autres termes, ces dispositifs connus exigent un contrôle précis de l'orthogonalité du faisceau laser de contrôle par rapport à la surface et sont peu appropriés à être utilisés pour contrôler des surfaces non planes comportant des parties convexes et/ou concaves.
La présente invention a pour objet de remédier à ces inconvénients.
À cette fin, selon l'invention, le procédé pour contrôler l'état d'une surface, procédé selon lequel :
- on balaye ladite surface par un faisceau laser de contrôle focalisé par un système optique, et - on traite le signal lumineux renvoyé par ladite surface en réponse à l'illumination par ledit faisceau laser de contrôle pour déterminer ledit état de surface,
est remarquable en ce que : *
- on rend variable la distance focale dudit système optique, et
- pour chaque position relative dudit faisceau laser de contrôle par rapport à ladite surface :
• on détermine la distance objectif - surface entre l'objectif dudit système optique et ladite surface, et
• on impose audit système optique de prendre une valeur de distance focale égale à la distance objectif - surface ainsi déterminée.
Ainsi, grâce à la présente invention, le faisceau laser de contrôle ne nécessite plus d'être orthogonal à la surface contrôlée, de sorte qu'il est possible de contrôler cette dernière avec précision, sans se préoccuper de l'orthogonalité du faisceau laser de contrôle et/ou de la planéité de ladite surface.
De préférence, pour la mise en œuvre du procédé conforme à la présente invention :
- on détermine un point de référence fixe sur le trajet lumineux du faisceau laser de contrôle, en amont dudit système optique (par rapport au sens de propagation dudit faisceau laser de contrôle vers ladite surface), et
- on calcule ladite distance objectif - surface entre l'objectif dudit système optique et ladite surface à partir :
• de la distance entre ledit point de référence et ladite surface, et
• de la distance entre ledit point de référence et ledit objectif. Ledit système optique peut être du type lunette ou télescope à objectif et oculaire, la distance focale dudit système optique étant alors rendue variable par déplacement de l'oculaire.
Dans une première forme de mise en oeuvre de l'invention, on utilise un télémètre du type télémètre laser, le faisceau laser de mesure du télémètre est amené à suivre le trajet lumineux du faisceau laser de contrôle à partir d'un point de référence en amont dudit système optique, ledit télémètre permettant de déterminer la distance D entre ledit point de référence et ladite surface, et ladite distance objectif - surface entre l'objectif dudit système optique et ladite surface est déterminée par la différence D-L, L étant la distance entre ledit point de référence et l'objectif du système optique.
Selon une deuxième forme de mise en œuvre de l'invention, on utilise un générateur laser apte à remplir de plus la fonction de télémètre, ledit générateur laser mesure la distance D 1 entre sa sortie et ladite surface et ladite distance objectif - surface entre l'objectif du système optique et ladite surface est déterminée par la différence D1 -L1 , L1 étant la distance entre ladite sortie du générateur laser et l'objectif du système optique.
Selon une troisième forme de mise en œuvre de l'invention, pour le traitement du signal lumineux renvoyé par ladite surface, on utilise un dispositif de détection du signal lumineux renvoyé par ladite surface qui est apte à remplir de plus la fonction de télémètre laser, le faisceau laser de mesure du dispositif de détection est amené à suivre le trajet lumineux du faisceau laser de contrôle à partir d'un point de référence en amont dudit système optique, ledit dispositif de détection permet de déterminer la distance D2 entre ledit point de référence et ladite surface et ladite distance objectif - surface entre l'objectif du système optique et ladite surface est déterminée par la différence D2-L2, L2 étant la distance entre ledit point de référence et l'objectif du système optique.
La présente invention concerne de plus un dispositif de contrôle de l'état d'une surface, ledit dispositif de contrôle comportant :
- un générateur laser émettant un faisceau laser de contrôle balayant ladite surface,
- un système optique pour focaliser ledit faisceau laser de contrôle, et
- un dispositif de détection pour recevoir et traiter le signal lumineux renvoyé par ladite surface en réponse à l'illumination par ledit faisceau laser de contrôle, en vue de déterminer ledit état de surface, et
étant remarquable en ce que :
- ledit système optique est à distance focale variable, et
- ledit dispositif de contrôle comporte de plus :
• un télémètre permettant de déterminer la distance objectif - surface entre l'objectif du système optique et ladite surface, et
• un dispositif de réglage de la distance focale dudit système optique imposant à ce dernier de prendre une valeur de distance focale égale à ladite distance objectif - surface.
Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.
La figure 1 est le schéma synoptique d'un premier exemple de mise en oeuvre de la présente invention.
Les figures 2 et 3 illustrent, également en schémas synoptiques, deux variantes de mise en œuvre de la présente invention. Le dispositif de contrôle 1 , conforme à la présente invention et illustré schématiquement par la figure 1 , est destiné à contrôler la surface 2 d'un corps 3 pour y détecter d'éventuels défauts superficiels.
Le dispositif de contrôle 1 comporte un générateur laser 4, continu, puisé, modulé ou à très haute fréquence, adressant, par sa sortie 4A, un faisceau laser de contrôle 5 sur la surface 2, à travers un système optique 6. De façon connue et non représentée, des moyens tels que table XY, montage à la Cardan, miroirs rotatifs, etc.. sont prévus pour créer un mouvement relatif entre le dispositif de contrôle 1 et la surface 2 ou entre le faisceau laser de contrôle 5 et ladite surface 2, afin que ledit faisceau laser 5 balaye cette dernière selon deux axes rectangulaires X-X, Y-Y.
Le système optique 6 comporte un objectif fixe 6A et un oculaire mobile 6B, de sorte qu'il est possible de faire varier la distance d entre ledit objectif 6A et ledit oculaire 6B pour faire varier la distance focale F dudit système optique 6.
Le dispositif de contrôle 1 comporte de plus un télémètre laser 7 émettant, par sa sortie 7A, un faisceau laser de mesure 8, qui est amené à suivre le même chemin optique que le faisceau laser de contrôle 5 du générateur 4 par l'intermédiaire d'un élément optique 9 (prisme, miroir partiellement transparent,...) disposé à un point de référence 10 du chemin optique du faisceau laser de contrôle 5 en amont du système optique 6. Ce point de référence 10 est disposé à une distance e de la sortie 7A du télémètre laser 7 et à une distance L de l'objectif 6A, les distances e et L étant connues par construction du dispositif 1 .
Ainsi, le télémètre laser 7 mesure la distance e + D entre sa sortie 7A et la surface 2.
Le dispositif de contrôle 1 comporte également un dispositif de calcul 1 1 , commandant un dispositif moteur 1 2 (de n'importe quel type connu et simplement représenté par une double flèche sur la figure 1 ) apte à déplacer l'oculaire 6B pour faire varier la distance d entre celui-ci et l'objectif 6A et donc la distance focale du système optique 6.
Le dispositif de calcul 1 1 reçoit, du télémètre 7, la distance e + D qui est mesurée par ce dernier et dont il connaît la distance e par construction. De même, le dispositif de calcul 1 1 connaît, par construction, la distance L entre le point de référence 1 0 et l'objectif 6A, ainsi que la loi de variation de la distance focale F du système optique 6 en fonction de la distance d entre l'oculaire 6B et l'objectif 6A.
Le dispositif de calcul 1 1 est donc apte à calculer la différence D-L qui correspond à la valeur que doit prendre la distance focale F du système optique 6 pour que le faisceau laser de contrôle 5 soit focalisé sur la surface 2, ainsi que la valeur que doit prendre la distance d entre l'objectif 6A et l'oculaire 6B pour que ladite distance focale F prenne la valeur D-L. Il commande donc en conséquence le dispositif moteur 1 2 qui déplace l'oculaire 6B, afin que la distance focale F du système optique 6 soit égale à D-L.
Le dispositif de contrôle 1 comporte de plus un dispositif de détection 14 pour recevoir et analyser le signal lumineux 1 7 renvoyé (par réflexion, diffusion,...) par la surface 2 en réponse à l'illumination par le faisceau laser de contrôle 5. À cet effet, un élément optique séparateur 1 5 est prévu en un point 1 6 du chemin optique du faisceau laser de contrôle 5, pour adresser ce signal optique 1 7 au dispositif de détection 14. Ce dernier est donc apte à déceler d'éventuels défauts de la surface 2.
Dans la variante de réalisation 1 .1 du dispositif conforme à la présente invention représentée sur la figure 2, le générateur laser 4.1 , à très haute fréquence et émettant le faisceau laser de contrôle 5, est de plus apte à remplir la fonction de télémètre. Par suite, par rapport au dispositif de contrôle 1 de la figure 1 , le télémètre laser 7 et l'élément optique 9 sont supprimés, les autres éléments restant à l'identique.
Dans le dispositif de contrôle 1 .1 de la figure 2, le générateur laser 4.1 , qui remplace le générateur laser 4 de la figure 1 , mesure la distance D1 entre le point de référence constitué par sa sortie 4.1 A et la surface 2, et adresse directement cette distance D1 au dispositif de calcul 1 1 . De plus, le dispositif de calcul 1 1 .connaît, par construction, la distance L1 entre la sortie 4.1 A du générateur laser 4.1 et l'objectif 6A du système optique 6. Il peut donc calculer la différence D1 -L1 , qui correspond à la valeur que doit prendre la distance focale F du système optique 6 pour que le faisceau laser de contrôle 5 soit focalisé sur la surface 2.
En fonction de cette valeur D 1 -L1 , le dispositif de calcul 1 1 commande le dispositif moteur 1 2 pour qu'il déplace l'oculaire 6B, de façon que la distance d entre ce dernier et l'objectif 6A corresponde à une distance focale F égale à D1 -L1 .
Dans la variante de réalisation 1 .2 du dispositif conforme à la présente invention représentée sur la figure 3, le dispositif de détection 14.2 du signal lumineux 1 7 renvoyé par la surface 2 est de plus apte à remplir la fonction de télémètre. Par suite, par rapport au dispositif 1 de la figure 1 , le télémètre laser 7 et l'élément optique 9 sont supprimés, les autres éléments restant à l'identique.
Dans le dispositif de contrôle 1 .2 de la figure 3, le dispositif de détection 14.2, qui remplace le dispositif 1 4 de détection du signal lumineux 1 7 de la figure 1 , mesure de plus la distance D2 entre le point de référence 16 et la surface 2. La distance entre le dispositif 14.2 et ledit point de référence 1 6 étant égale à e2, connue par construction, le dispositif de calcul 1 1 reçoit directement de ce dispositif 14.2 la somme e2 + D2. Ce dispositif de calcul 1 1 connaît de plus, par construction, la distance L2 séparant le point de référence 1 6 de l'objectif 6A.
Le dispositif de calcul 1 1 est donc apte à calculer la différence D2- L2 et à commander le dispositif moteur 1 2 pour qu'il déplace l'oculaire 6B, de façon que la distance d entre ledit oculaire et l'objectif 6A corresponde à une distance focale F égale à D2-L2.

Claims

REVENDICATIONS
1 . Procédé pour contrôler l'état d'une surface, procédé selon lequel :
- on balaye ladite surface (2) par un faisceau de contrôle laser (5) focalisé par un système optique (6),
- on traite le signal lumineux (7) renvoyé par ladite surface (2) en réponse à l'illumination par ledit faisceau laser de contrôle (5) pour déterminer ledit état de surface,
- on rend variable la distance focale dudit système optique (6), et
- pour chaque position relative dudit faisceau laser de contrôle (5) par rapport à ladite surface (2) :
• on détermine la distance objectif - surface (F) entre l'objectif (6A) dudit système optique (6) et ladite surface (2), et
• on impose audit système optique (6) de prendre une valeur de distance focale égale à la distance objectif - surface (F) ainsi déterminée,
procédé selon lequel de plus :
- on détermine un point de référence fixe ( 10, 4.1 A, 1 6) sur le trajet lumineux du faisceau laser de contrôle (5), en amont dudit système optique (6), et
- ladite distance objectif - surface (F) entre l'objectif (6A) dudit système optique (6) et ladite surface (2) est calculée à partir :
« de la distance (D, D 1 , D2) entre ledit point de référence ( 1 0,
4.1 A, 1 6) et ladite surface (2), et
• de la distance (L, L1 , L2) entre ledit point de référence ( 1 0, 4.1 A, 1 6) et ledit objectif (6A).
2. Procédé selon la revendication 1 , caractérisé en ce que ledit système optique (6) est du type à objectif (6A) et oculaire (6B) et en ce que la distance focale dudit système optique est rendue variable par déplacement dudit oculaire (6B) .
3. Procédé selon l'une des revendications 1 ou 2,
caractérisé en ce qu'on utilise un télémètre (7) du type télémètre laser, en ce que le faisceau laser de mesure (8) du télémètre (7) est amené à suivre le trajet lumineux du faisceau laser de contrôle (5) à partir d'un point de référence ( 10) en amont dudit système optique (6), en ce que ledit télémètre (7) permet de déterminer la distance D entre ledit point de référence ( 1 0) et ladite surface (2), et en ce que ladite distance objectif - surface entre l'objectif (6A) dudit système optique (6) et ladite surface (2) est déterminée par la différence D-L, L étant la distance entre le point de référence (10) et l'objectif (6A) du système optique (6).
4. Procédé selon l'une des revendications 1 ou 2,
caractérisé en ce que, pour la génération du faisceau laser de contrôle (5), on utilise un générateur laser (4.1 ) apte à remplir de plus la fonction de télémètre, en ce que ledit générateur laser (4.1 ) mesure la distance D1 entre sa sortie (4.1 A) et ladite surface (2), et en ce que ladite distance objectif - surface entre l'objectif (6A) du système optique (6) et ladite surface (2) est déterminée par la différence D 1 -L1 , L1 étant la distance entre ladite sortie (4.1 A) du générateur laser (4.1 ) et l'objectif (6A) du système optique (6).
5. Procédé selon l'une des revendications 1 ou 2,
caractérisé en ce que, pour le traitement du signal lumineux ( 1 7) renvoyé par ladite surface (2), on utilise un dispositif de détection ( 14.2) du signal lumineux renvoyé par ladite surface qui est apte à remplir de plus la fonction de télémètre laser, en ce que le faisceau laser de mesure du dispositif de détection ( 14.2) est amené à suivre le trajet lumineux du faisceau laser de contrôle (5) à partir d'un point de référence ( 1 6) en amont dudit système optique (6), en ce que ledit dispositif de détection (14.2) permet de déterminer la distance D2 entre ledit point de référence
( 1 6) et ladite surface (2), et en ce que ladite distance objectif - surface entre l'objectif (6A) du système optique (6) et ladite surface (2) est déterminée par la différence D2-L2, L2 étant la distance entre ledit point de référence (1 6) et l'objectif (6 A) du système optique (6).
6. Dispositif de contrôle de l'état d'une surface (2) pour la mise en œuvre du procédé spécifié sous l'une des revendications 1 à 5, ledit dispositif de contrôle ( 1 ) comportant :
- un générateur laser (4,4.1 ) émettant un faisceau laser (5) balayant ladite surface (2),
- un système optique (6) pour focaliser ledit faisceau laser (5), ledit système optique (6) étant à distance focale variable,
- un dispositif de détection ( 14) pour recevoir et traiter le signal lumineux
( 1 7) renvoyé par ladite surface (2) en réponse à l'illumination par ledit faisceau laser de contrôle, en vue de déterminer ledit état de surface,
- un télémètre (7, 4.1 , 1 4.2) permettant de déterminer la distance objectif - surface entre l'objectif (6A) du système optique (6) et ladite surface (2), et
- un dispositif (1 1 , 1 2) de réglage de la distance focale dudit système optique (6) imposant à ce dernier de prendre une valeur de distance focale égale à ladite distance objectif - surface (F) ainsi déterminée,
un point de référence fixe ( 1 0, 4.1 A, 1 6) étant déterminé sur le trajet lumineux du faisceau laser de contrôle (5), en amont dudit système optique (6), et ladite distance objectif - surface (F) entre l'objectif (6A) dudit système optique (6) et ladite surface (2) étant calculée à partir :
• de la distance (D, D 1 , D2) entre ledit point de référence ( 10, 4.1 A, 1 6) et ladite surface (2), et de la distance (L, L1, L2) entre ledit point de référence (10, 4.1 A, dit objectif (6A).
PCT/FR2015/000241 2014-12-31 2015-12-23 Procédé et dispositif pour le contrôle laser de l'état d'une surface WO2016107994A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1403056A FR3031183B1 (fr) 2014-12-31 2014-12-31 Procede et dispositif pour le controle laser de l'etat d'une surface
FR1403056 2014-12-31

Publications (1)

Publication Number Publication Date
WO2016107994A1 true WO2016107994A1 (fr) 2016-07-07

Family

ID=53269528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/000241 WO2016107994A1 (fr) 2014-12-31 2015-12-23 Procédé et dispositif pour le contrôle laser de l'état d'une surface

Country Status (2)

Country Link
FR (1) FR3031183B1 (fr)
WO (1) WO2016107994A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189429A1 (fr) 2018-03-27 2019-10-03 国立研究開発法人量子科学技術研究開発機構 Dispositif de mesure, système de mesure, corps en mouvement et procédé de mesure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296333A (en) 1978-10-24 1981-10-20 Centro Ricerche Fiat S.P.A. Method and apparatus for detecting surface defects in a workpiece
JPS6350736A (ja) * 1986-08-21 1988-03-03 Mitsubishi Metal Corp 表面汚染検査装置
US6088110A (en) * 1998-03-16 2000-07-11 Cyberoptics Corporation Digital range sensor system
US20030164440A1 (en) * 2000-05-18 2003-09-04 Nobert Czarnetzki Autofocussing device for optical instruments
US20060066847A1 (en) * 2004-09-28 2006-03-30 Penza G G Inspection apparatus
US20060082590A1 (en) * 2004-10-14 2006-04-20 Stevick Glen R Method and apparatus for dynamic space-time imaging system
US20060084957A1 (en) * 2003-08-11 2006-04-20 Peter Delfyett Laser ablation method and apparatus having a feedback loop and control unit
US20100085567A1 (en) * 2007-04-27 2010-04-08 Ed Dottery Laser spectroscopy system
US7728968B2 (en) * 2000-09-12 2010-06-01 Kla-Tencor Technologies Corporation Excimer laser inspection system
US20110090333A1 (en) * 2009-09-22 2011-04-21 Haugan Carl E High speed optical inspection system with adaptive focusing
US20140043469A1 (en) * 2012-08-07 2014-02-13 Carl Zeiss Industrielle Messtechnik Gmbh Chromatic sensor and method
US20140132729A1 (en) * 2012-11-15 2014-05-15 Cybernet Systems Corporation Method and apparatus for camera-based 3d flaw tracking system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296333A (en) 1978-10-24 1981-10-20 Centro Ricerche Fiat S.P.A. Method and apparatus for detecting surface defects in a workpiece
JPS6350736A (ja) * 1986-08-21 1988-03-03 Mitsubishi Metal Corp 表面汚染検査装置
US6088110A (en) * 1998-03-16 2000-07-11 Cyberoptics Corporation Digital range sensor system
US20030164440A1 (en) * 2000-05-18 2003-09-04 Nobert Czarnetzki Autofocussing device for optical instruments
US7728968B2 (en) * 2000-09-12 2010-06-01 Kla-Tencor Technologies Corporation Excimer laser inspection system
US20060084957A1 (en) * 2003-08-11 2006-04-20 Peter Delfyett Laser ablation method and apparatus having a feedback loop and control unit
US20060066847A1 (en) * 2004-09-28 2006-03-30 Penza G G Inspection apparatus
US20060082590A1 (en) * 2004-10-14 2006-04-20 Stevick Glen R Method and apparatus for dynamic space-time imaging system
US20100085567A1 (en) * 2007-04-27 2010-04-08 Ed Dottery Laser spectroscopy system
US20110090333A1 (en) * 2009-09-22 2011-04-21 Haugan Carl E High speed optical inspection system with adaptive focusing
US20140043469A1 (en) * 2012-08-07 2014-02-13 Carl Zeiss Industrielle Messtechnik Gmbh Chromatic sensor and method
US20140132729A1 (en) * 2012-11-15 2014-05-15 Cybernet Systems Corporation Method and apparatus for camera-based 3d flaw tracking system

Also Published As

Publication number Publication date
FR3031183B1 (fr) 2018-01-26
FR3031183A1 (fr) 2016-07-01

Similar Documents

Publication Publication Date Title
EP0159210B1 (fr) Dispositif optique de mesure de proximité de surface et son application au relevé du profil d'une surface
FR2458830A1 (fr) Systeme de representation optique muni d'un systeme de detection opto-electronique servant a determiner un ecart entre le plan image du systeme de representation et un second plan destine a la representation
FR2685764A1 (fr) Capteur optique compact et a haute resolution pour l'analyse de formes tridimensionnelles.
FR2559577A1 (fr) Procede de mesure par trace polygonal et dispositif de mesure
EP0015820A1 (fr) Dispositif pour la mesure des vitesses linéaires sans contact et sans marquage
FR2572515A1 (fr) Dispositif de detection de position
FR2954199A1 (fr) Procede d'ablation d'une surface en trois dimensions grace a un dispositif d'ablation laser, et dispositif de mise en oeuvre du procede
FR2896871A1 (fr) Dispositif de mesure pour la mesure optique d'un objet.
CH449985A (fr) Télémètre, notamment pour l'emploi en photographie
FR2540988A1 (fr) Dispositif pour la determination d'une structure de surface
WO2016107994A1 (fr) Procédé et dispositif pour le contrôle laser de l'état d'une surface
FR2505505A1 (fr) Dispositif laser pour detecter et neutraliser l'optique d'un appareil de reperage adverse
FR2606522A1 (fr) Dispositif et procede optique de mise au point photoelectrique, notamment pour microscopes d'operations chirurgicales
FR2679646A1 (fr) Dispositif de mesure, sans contact, du diametre d'un objet sensiblement cylindrique, par exemple une fibre optique.
FR2502354A1 (fr) Installation de mise au point automatique pour appareil de prise de vues tel qu'une camera de television a focale variable
FR2733327A1 (fr) Systeme de focalisation continue d'un faisceau laser sur une cible
FR2688889A1 (fr) Dispositif de mesure de la vitesse de deplacement d'un objet.
EP2473824B1 (fr) Interféromètre à compensation de champ
FR2601786A1 (fr) Systeme de balayage optico-mecanique pour balayer selon deux directions une region de l'espace
CA2971630C (fr) Procede de re-focalisation d'un montage optique
FR2516648A2 (fr) Procede et dispositif d'evaluation de la position d'une fibre optique dans un embout de connecteur et application a son positionnement
FR2506930A1 (fr) Procede et dispositif d'evaluation de la position d'une fibre optique dans un embout de connecteur et application a son positionnement
EP1555506A1 (fr) Dispositif de prise d'image assurant une mise au point indépendante de la position de l'objet
EP0818667B1 (fr) Dispositif pour déterminer la forme de la surface d'onde transmise par une pièce transparente à faces sensiblement parallèles
EP0336793B1 (fr) Dispositif de repérage d'un objet, utilisant un balayage de celui-ci par un faisceau lumineux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822962

Country of ref document: EP

Kind code of ref document: A1