WO2016107957A1 - Apantallamiento de radiofrecuencia para equipos de imagen híbridos - Google Patents

Apantallamiento de radiofrecuencia para equipos de imagen híbridos Download PDF

Info

Publication number
WO2016107957A1
WO2016107957A1 PCT/ES2015/070964 ES2015070964W WO2016107957A1 WO 2016107957 A1 WO2016107957 A1 WO 2016107957A1 ES 2015070964 W ES2015070964 W ES 2015070964W WO 2016107957 A1 WO2016107957 A1 WO 2016107957A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
bands
series
shield
conductive material
Prior art date
Application number
PCT/ES2015/070964
Other languages
English (en)
French (fr)
Inventor
Juan Pablo RIGLA PÉREZ
Antonio Javier GONZÁLEZ MARTÍNEZ
José María BENLLOCH BAVIERA
Original Assignee
General Equipment For Medical Imaging, S.A.
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Equipment For Medical Imaging, S.A., Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València filed Critical General Equipment For Medical Imaging, S.A.
Priority to DE112015005868.0T priority Critical patent/DE112015005868T5/de
Priority to JP2017535840A priority patent/JP2018508754A/ja
Publication of WO2016107957A1 publication Critical patent/WO2016107957A1/es
Priority to US15/637,730 priority patent/US10197651B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/422Screening of the radio frequency field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4808Multimodal MR, e.g. MR combined with positron emission tomography [PET], MR combined with ultrasound or MR combined with computed tomography [CT]
    • G01R33/481MR combined with positron emission tomography [PET] or single photon emission computed tomography [SPECT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/1603Measuring radiation intensity with a combination of at least two different types of detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure

Definitions

  • the main object of the present invention is framed within the field of nuclear medicine and in particular is aimed at improving the electromagnetic compatibility between molecular imaging systems such as PET (Positron Emission Tomography) or SPECT (Emission Computed Tomography Single Photon) whose detection electronics are sensitive to the Radio Frequency (RF) field of Magnetic Resonance (MR).
  • PET Positron Emission Tomography
  • SPECT emission Computed Tomography Single Photon
  • the integration of a PET or SPECT device into an MR device is a great challenge.
  • the first problem is that the behavior of MR equipment It may be affected by the presence of the elements used in the construction of PET-SPECT equipment.
  • the detectors or the electronics associated with them may contain some amounts of ferromagnetic materials that can alter the magnetic field generated by MR equipment.
  • the second problem is the possible interference in the electronics of PET-SPECT devices generated by the RF signal that is produced in the RF coils with which the MR equipment is equipped.
  • a shield can be placed in this RF field constructed with a non-ferromagnetic conductive material.
  • This shielding is usually installed in the mechanical part that covers the detector block and does not interfere with the passage of the light produced in the scintillator glass towards the photodetectors of the PET-SPECT device.
  • SiPM Silicon ⁇ ⁇ or APD (Avalanche Photodiodes) are the most proposed types of photodetectors in the design of hybrid PET / MR systems, since their operation is not affected by magnetic fields.
  • RF screening can also affect the magnetic field generated by MR equipment.
  • a conductive material in this RF shielding both the gradient field, at low frequencies, and the RF signals generated by MR equipment produce electrical currents called eddy currents on the surface of this shield, which can affect the homogeneity of the magnetic field of the MR equipment.
  • US7218112 B2 discloses a combined PET / MR system in which the RF screening consists of a multitude of openings and the scintillation crystals of the PET detector are located in said openings so that at least one part of the crystals are located in the area of the RF reflux field.
  • a drawback of said solution is that the manufacturing process of the crystals must be modified to introduce the deposition in each of them of the screening material. In any case, said solution is very different from that adopted in the present invention.
  • US8823259 B2 discloses a graphene sheet for the protection of photocathodes such as QE photocathodes - high quantum efficiency.
  • a graphene monolayer serves as a transparent screen that does not inhibit the passage of photons or electrons, but that isolates the photosensitive film from reactive gases avoiding contamination and prolonging the life of the photocathodes.
  • the graphene sheet is placed on the photosensitive film in direct contact with it.
  • the photocathode comprises: a film, the graphene sheet having a first and a second surface, a graphene support on a first portion of the first surface of the graphene sheet, and is configured to form a second portion of the first surface of the graphene sheet that does not have graphene support, so that the second portion of the graphene sheet is placed on the photosensitive film and in direct contact with it. Therefore, this screening system is different from that of the present invention, in which it is intended to protect detectors modules of medical RF imaging equipment.
  • US20130068521 A1 discloses a screening of the electromagnetic field in general, and a method of protecting electromagnetic radiation using graphene inside or outside the source of electromagnetic waves and / or using graphene formed on a substrate, and also discloses a protective material of electromagnetic radiation that contains graphene, while in the present invention it is a question of shielding the detector modules with a Faraday cage structure, minimizing eddy currents and, in addition, allowing the passage of scintillating light, generated in the scintillating glass, towards the photodetectors.
  • Patent application WO201 1087301 A2 refers to a method of forming a protective graphene barrier, which has barrier properties against gas and moisture.
  • a single or multiple layer of graphene can be used to protect various types of devices.
  • the RF shielding system consists of a layer of a non-ferromagnetic conductive metal (copper, silver or gold) or also carbon fiber based compounds that cover the PET-SPECT device completely or each of the PET equipment modules -SPECT individually.
  • Shielding systems present the problem that both the gradient and RF fields generated by conventional MR equipment generate electrical currents called eddy currents on the surface of this shield, which they can affect the uniformity of the magnetic field in the field of vision of the MR equipment [4].
  • the objective of the present invention is the development of a radiofrequency (RF) shield based on graphene and non-ferromagnetic conductive materials to protect the electronics of the RF signal detection modules generated by MR equipment allowing the passage of light Twinkling when this shield is placed between the scintillator glass and the photodetectors.
  • RF radiofrequency
  • this electromagnetic shielding must not shield or modify the magnetic fields generated by the main field or by the gradient system of the MR equipment.
  • a new type of Faraday cage type radiofrequency shielding specific for hybrid imaging equipment is presented with the additional objective of reducing the eddy currents generated in the RF shielding that can affect the homogeneity of the magnetic field generated by the MR equipment, as well as the objective of not shielding the main magnetic field and magnetic fields generated by the gradient system of the MR equipment.
  • the result is an RF shielding design, based in part on graphene, installed on PET or SPECT equipment that allows to build more compact PET / MR or SPECT / MR hybrid equipment and therefore with better performance.
  • graphene is arranged just (very close) in front of the photodetector system to leave more space (the thickness of the glass) between the RF coil and the shield. Being the deposition of graphene of one or two atoms thick, the light passes through it in a high percentage, also the static or low frequency magnetic fields, but not the RF.
  • the Faraday cage consists of two layers separated at a short distance and connected to ground (or one to ground and the other to low potential with respect to ground to form a small capacitor) and segmented into small areas to avoid the formation of eddy currents.
  • the structure in this invention, to protect the matrix of photodetectors and electronics (electronic plates for the acquisition, processing and transmission of the signal) placed inside each of the radiation detection modules of a PET-SPECT device, the structure called Faraday cage, designed specifically for the hybrid system.
  • the mechanical structure of the radiation detection modules is formed according to particular embodiments, by two sections, constructed with different materials (graphene and non-ferromagnetic conductive metals) and placed in contact with each other forming a Faraday cage-like structure, with the aim of protect the electronic detection of RF signals generated in MR equipment.
  • a first section of the mechanical structure constructed with graphene is placed between the scintillator crystal and the photodetector matrix.
  • the second section of the mechanical structure is placed on the rest of the faces of each detector module that contains the matrix of photodetectors and electronics of each module, constructed with a sheet of non-ferromagnetic conductive material (copper, silver, gold, nanotube-based fibers of carbon or others).
  • a sheet of non-ferromagnetic conductive material copper, silver, gold, nanotube-based fibers of carbon or others.
  • the present invention relates first to a hybrid PET / MR or SPECT / MR medical imaging device comprising:
  • At least one scintillating, monolithic or pixelated crystal and - at least one radiation detection module containing at least one array of photodetectors and a section of detection, acquisition and transmission electronics, such that said detection module has a mechanical structure whose surface is divided into at least:
  • At least the first section is coated with graphene with one or two atoms thick
  • the second section is coated with graphene, with a thickness of one or two atoms, or with a non-ferromagnetic conductive material, and
  • the graphene coating in the first section - section that always has graphene coating as indicated in the previous paragraph - corresponding to the exit face of the photons generated in the scintillator crystal, which is located between the crystal scintillator and the part of the detection module that contains the photodetector array and the electronic section of detection, acquisition and transmission, can be a continuous coating, or in the form of bands. Said bands are separated from each other and arranged in two layers separated by a dielectric, and so that there is always spatial overlap between both layers, as explained later in this report.
  • the graphene coating in the second section (when it is also coated with graphene) corresponding to the other faces of the mechanical structure of the detection module that includes at least one array of photodetectors and an electronics section, and that do not enclose the scintillation crystal, it can be a continuous coating, or in the form of bands. Said bands are separated from each other and arranged in two layers separated by a dielectric, and so that there is always spatial overlap between both layers, as explained later in this report.
  • the coating with non-ferromagnetic conductive materials in the second section when these materials are present, can also be a continuous coating, or in the form of bands. Said bands are separated from each other and arranged in two layers separated by a dielectric, and so that there is always spatial overlap between both layers, as explained later in this report.
  • the surface sections of the detection module are coated forming a Faraday cage.
  • this Faraday cage is grounded to eliminate the electrical charge generated in said Faraday cage.
  • the first surface section of the detection module is coated with graphene, said section corresponding to the face of the scintillation crystal in the direction of the detection module, and the second section is covered by at least one non-ferromagnetic conductive material with a thickness from 5 microns to 2mm.
  • the rest of the faces of the detection module may be coated with non-ferromagnetic materials, for example, materials selected from:
  • the first section of the graphene-coated module surface is structured such that it comprises at least:
  • the substrate of the first layer is a material such as a PET or PMMA sheet.
  • the graphene layers on the sides of the substrate are used to reduce the electrical charge generated in the graphene shield, since these faces are in contact with the conductive metal layer that protects the electronics of each of the PET equipment modules.
  • An alternative proposed in this invention to shield the RF field without reducing the passage of scintillating light is to apply graphene directly on the exit face of the photons generated in the scintillator crystal (face towards the photodetector).
  • the scintillation crystal is used as a substrate to deposit graphene.
  • This graphene layer also of 1 or 2 atoms, preferably and subsequently, is covered with a thin layer of a protective plastic material. It is the same system as described above but in this case instead of using as a substrate a sheet of, for example, PET or PMMA, the outlet face of the scintillator crystal is used.
  • a graphene layer of one or two atoms thick covers the outlet face of the scintillator crystal which is the face towards the photodetector of the detection module, that is, between the scintillator crystal and the matrix of photodetectors, being in direct contact with the output face of the scintillator crystal; and said graphene layer is coated with a layer of a protective plastic material, such as ethylene polyterephthalate or polymethylmethacrylate, 50-200 microns thick.
  • a protective plastic material such as ethylene polyterephthalate or polymethylmethacrylate
  • the first section of the graphene-coated module surface is structured so that it comprises at least:
  • a first graphene layer disposed directly on the scintillator crystal, said graphene layer with a thickness of one or two atoms, such that the graphene layer is in contact with the non-ferromagnetic conductive material coating that protects the remaining sections of surface of the detection module thus protecting the electronics of said detection module.
  • a third protective layer between 50-200 microns thick, of a plastic material, preferably PMMA or ethylene polyterephthalate.
  • another alternative proposed in this invention is to cover with graphene, without using non-ferromagnetic conductive materials or compounds based on carbon fibers, the entire mechanical structure of the detection modules of the hybrid medical imaging device, preferably PET equipment.
  • -SPECT or the entire structure of PET-SPECT devices either on all external surfaces of said detection modules or on internal faces.
  • the second section corresponding to the rest of the faces of the mechanical structure of the module that do not enclose the scintillating glass, is coated with graphene and in which the surface of the mechanical structure is selected from:
  • non-ferromagnetic conductive material it should be understood that it can be a concrete one or a combination of at least two.
  • this invention also proposes an alternative embodiment for any section of the RF screening made with graphene, with non-ferromagnetic conductive materials, or both.
  • the shielding is achieved by a series of graphene tracks or bands placed in a sandwich structure. Each track or band is 5 to 20 mm wide separated from each other by tens of microns up to one millimeter (0.01-1 mm) deposited on all sides of the mechanics of each detector module, be it interior or exterior. Two layers of this structure, so that there is always spatial overlap between both layers, are necessary to prevent RF from penetrating.
  • graphene may be forming a structured coating as follows:
  • the first and second series of bands being connected to lateral graphene layers to eliminate the electrical charge accumulated in these tracks or graphene bands
  • a sheet of a dielectric material such as polymethylmethacrylate, polyethylene tereflalate, lactic polyacid, nylon, or combinations thereof, arranged between both series of graphene bands, said layer of dielectric material with a thickness of 10 microns to 2.0 mm
  • the dielectric material is also arranged additionally on the second series of graphene bands exposed to contact and handling.
  • This sandwich package has a transparency to the scintillating light (200-800 nm) of approximately 95-97% avoiding the loss of the photons produced by the scintillator crystal (monolithic or pixelated) and that will be collected by the array of photodetectors (SiPMs or APDs).
  • the Faraday cage described in this alternative embodiment is grounded to eliminate the electrical charge accumulated in the shield or a layer of bands connected to ground and the other layer of bands connected at low potential to ground to form a small capacitor.
  • the non-ferromagnetic conductive material may be forming a structured coating such as:
  • the first and second series of bands being connected to lateral graphene layers to eliminate the electrical charge accumulated in these tracks or graphene bands
  • a sheet of a dielectric material arranged between both series of bands of non-ferromagnetic conductive material.
  • a dielectric material polymethylmethacrylate, polyethylene tereflalate, lactic polyacid, nylon, or combinations thereof, with a thickness of 10 microns to 2.0 mm are used.
  • the dielectric material is also disposed on the second series of non-ferromagnetic conductive material bands exposed to contact and handling.
  • the Faraday cage also described for this alternative embodiment is grounded to eliminate the electrical charge accumulated in the shield or one layer of bands is connected to ground and the other layer of bands is connected at low potential with respect to ground to form a small condenser.
  • the screening of non-ferromagnetic conductive material is formed by:
  • non-ferromagnetic conductive material (copper, silver or gold) of a width from a few microns to a millimeter (0.01-1 mm) to eliminate the load Electric generated on the tracks.
  • a sheet of a dielectric material such as PMMA polymethylmethacrylate, PET polyethylene tereflalate, PLA or nylon lactic polyacid or combinations thereof, arranged between both series of tracks or bands of non-ferromagnetic conductive material.
  • This embodiment which refers to a coating of non-ferromagnetic conductive material in the form of bands or tracks, instead of continuous, can be applied both to the case in which - at least the first section is coated with graphene with one or two atoms thick, and
  • the second section is coated with graphene, with a thickness of one or two atoms,
  • the first section is coated with graphene with one or two atoms thick
  • the second section is coated with a non-ferromagnetic conductive material.
  • the Faraday cage also described for this alternative embodiment is grounded to eliminate the electrical charge accumulated in the shield or one layer of bands is connected to ground and the other layer of bands is connected at low potential with respect to ground to form a small condenser.
  • the detection module may be a gamma ray detector.
  • the present invention further relates to the use of an imaging device as defined above, for the taking of anatomical or structural images.
  • the present invention further relates to shielding or shielding against radio frequency (RF) radiation included and described in any of the embodiments of the device mentioned hereinabove.
  • RF radio frequency
  • the present invention further relates to a shield or shield against radiofrequency radiation (RF) for a medical imaging device comprising:
  • At least one radiation detection module containing at least one array of photodetectors and an electronics section
  • said shielding comprises: - a graphene coating or shielding, as continuous or strip coating, on all sides of the mechanical structure of the detection module, or
  • a graphene coating or shielding as continuous or strip coating, on at least one face that is the face of the scintillating glass towards the detection module, combined with a coating of at least one non-ferromagnetic conductive material, as continuous coating or in bands, of the rest of the faces that do not enclose the scintillating glass,
  • the non-ferromagnetic conductive material has a thickness from 5 microns to 2mm and can be selected from:
  • non-ferromagnetic conductive metals preferably copper, silver, gold and
  • the graphene coating on all sides of the mechanical structure of the detection module can be a continuous coating, or in the form of bands. Said bands are separated from each other and arranged in two layers separated by a dielectric, so that there is always spatial overlap between both layers.
  • the graphene coating on at least one face - which always has graphene coating - which is the face of the scintillation crystal in the direction of the detection module, arranged between the scintillator crystal and the part of the detection module that contains
  • the array of photodetectors and the electronics section can be a continuous coating, or in the form of bands. Said bands are separated from each other and arranged in two layers separated by a dielectric, so that there is always spatial overlap between both layers.
  • the coating with non-ferromagnetic conductive materials when these materials are present, can also be a continuous coating, or in the form of bands. These bands are separated between yes and arranged in two layers separated by a dielectric, so that there is always spatial overlap between both layers.
  • the graphene coating may be structured such that it comprises at least:
  • the substrate can be of a plastic material such as PTE or PMMA.
  • the graphene coating comprises an additional third protective layer of between 25 and 50 microns of a plastic material, preferably PMMA or ethylene polyterephthalate, on graphene, forming a sandwich structure.
  • graphene in the shield or shield of the invention can directly cover the scintillator crystal.
  • an additional protective layer between 50-200 microns thick, of a plastic material, preferably PMMA or ethylene polyterephthalate, may be arranged on the graphene.
  • both graphene and non-ferromagnetic conductive material may be forming a structured coating such as:
  • these bands being, when they are of non-ferromagnetic conductive material, connected to each other by a thin band or track of non-ferromagnetic conductive material (copper, silver or gold) of a width from a few microns to a millimeter (0.01-1 mm) to eliminate the electric charge generated on the tracks, and
  • a sheet of a dielectric material arranged between both series of bands.
  • a dielectric material polymethylmethacrylate, polyethylene tereflalate, lactic polyacid, nylon, or combinations thereof, with a thickness of 10 microns to 2.0 mm can be used.
  • the dielectric material is also arranged on the second series of bands exposed to contact and handling.
  • the present invention has as an additional object a hybrid medical imaging device, preferably a PET / SPECT device placed inside an MR device characterized in that it comprises an RF shielding or shielding as described.
  • the graphene layer that covers the surface section or sections of the detection module can be deposited by any conventional method, such as spraying.
  • the layer of non-ferromagnetic conductive material covering the sections of the detection module can be deposited by any conventional method, such as electrodeposition.
  • the result of the invention is a design of the electromagnetic shield installed in hybrid medical imaging devices, preferably PET or SPECT equipment that allows to build more compact PET / MR or SPECT / MR hybrid equipment and therefore with better performance.
  • Figure 1 Shows according to an embodiment of the invention, a compact and portable PET-SPECT hybrid device with an RF coil placed inside a conventional MR equipment.
  • Figure 2 Shows a perspective view of a portable PET device with an RF coil (bird cage type), according to an embodiment of the invention.
  • Figure 3 Shows a cross section of one of the PET gamma ray modules.
  • Figure 4a and 4b They show respectively a perspective view and a cross-section of the graphene-based electromagnetic shield.
  • FIG. 5 Comparison between the screening procedure of this invention (left) and the standard (right). In this invention, it is observed how the diameter of a detector ring can be reduced without distorting the RF field, since the screening is made between scintillation glass and photodetectors and the possible eddy currents that could be generated will not be generated in the face closest to the RF coil reducing the possible distortion of the field generated by the RF coil.
  • FIG. 6 Exploded view of the internal components of each gamma ray detector module, based on a monolithic or pixelated scintillator crystal, including the electronic and RF shielding elements.
  • the screening between the scintillating glass and the photodetector is made through a graphene sheet protected on both sides, and said shielding is in contact with the rest of the shield formed by the non-ferromagnetic conductive material.
  • FIG 7. The same as for Figure 6, except that according to another embodiment, graphene is deposited directly on the scintillating scintillation glass and is preferably protected with a plastic sheet from direct exposure.
  • Figure 8 RF screening formed by two layers of graphene tracks or bands, according to a further embodiment, deposited on the external and internal faces of a substrate, arranged in such a way that they cover the gaps between the tracks of the other side.
  • An alternative embodiment is formed by tracks or bands of non-ferromagnetic conductive material deposited on the external or internal faces of a dielectric material.
  • a hybrid PET / MR system is shown in Figure 1.
  • This system consists of a compact and insertable PET device (1) that can be placed inside MR equipment (2) together with an RF coil (3).
  • the signals acquired by the PET equipment are transmitted by cables, preferably coaxial or by optical fibers, to a processing unit placed outside the MR equipment (4).
  • Figure 2 shows a perspective of portable PET or SPECT equipment with a bird cage type RF coil where the structural elements that compose it are appreciated:
  • PET or SPECT equipment is formed by a set of gamma radiation detector modules, typically placed radially forming a ring, the number and diameter of which will depend on the MR system and the organ or organs to be visualized.
  • Each sensor block is formed by two elements: the scintillating, monolithic or pixelated glass, (5) and the assembly formed by the photodetectors and the associated electronics (6).
  • This set is encapsulated inside a Faraday cage to reduce interference from the RF signals emitted to the coil with the electronics of the detection modules. This Faraday cage is designed not to shield the magnetic fields generated by the MR equipment gradient system.
  • a bird cage type RF coil (birdcage RF coi!) (3).
  • This type of RF coil is formed by a series of longitudinal bars joined by the ends to two rings. These longitudinal bars will preferably be placed in the space between the detection modules so as not to prevent the passage of radiation to the detection modules of the PET or SPECT equipment.
  • the invention described in this patent does not restrict its use to other types of RF coils.
  • the internal structure of a detection module that is part of the PET equipment is schematically shown in Figure 3. In this Figure 3 you can also see the position of each of the elements that are part of these detection modules composed of the following elements:
  • An electronic board (9) that pre-processes the signals generated by the photodetectors. Preferably there is also a plate to pre-amplify the signals processed and sent to the acquisition system (4).
  • Figure 3 also shows the encapsulation components (10 and 11) of the elements described above that protect the sensor block (scintillator glass and photodetectors) from outside light as well as the proposed RF screening (7 and 12).
  • Figures 4a and 4b show, respectively, a perspective view and a cross-section of the graphene-based RF shield placed between the scintillator crystal and the array of photodetectors.
  • This RF shielding will preferably be carried out in three layers of different materials:
  • Figure 5 shows the difference between the distances of the gamma sensor block to the conductors of the RF coil (A), for one of the proposals of the present invention (left) and the standard case (right).
  • the distance between the coil and the shielding of the detector (B) should be such that there are no distortions in the RF field. In the standard case, this distance will depend on the geometric configuration of the coil and the PET-SPECT system, in particular of the envelope where the shield is placed.
  • the distance between the conductors that is, between the RF coil and the shield must be maintained.
  • the screening is made between the scintillator glass and the photosensory matrix, this allows the distance between the sensor block and the coil (C) to be reduced, increasing the detection efficiency of PET or SPECT.
  • FIG. 6 shows in detail the internal elements that preferably comprise the detector module.
  • the substrates for graphene (13) and (14) are shown, in contact with the photodetectors (8) and the scintillation crystal (5), respectively .
  • the incident gamma ray (16) that deposits its energy has also been schematically represented, transforming it into the emission of photons in the visible range (17).
  • the distribution of this visible light generated in a monolithic scintillator crystal and reaching the photodetector has been schematized.
  • the Faraday cage formed by (7) and (12) is grounded (15) to eliminate the electrical charge accumulated in the RF shielding.
  • Figure 7 shows, like Figure 6, the detail of all the elements that form the detector. In this Figure, and as a difference from Figure 6 where graphene is deposited on a substrate, it is deposited directly on the scintillator crystal.
  • Figure 8 shows a perspective view and a cross section of an RF shielding design based on graphene tracks or bands (7) deposited on the outer and inner surfaces of a substrate (14) and arranged in such a way that the tracks on one side they cover the separation gaps of the tracks on the other faces to shield the RF signal.
  • An alternative design to that proposed in Figure 8 is a system based on bands of non-ferromagnetic conductive material (copper, gold or silver) (7) placed in the outer or inner faces of a dielectric (14) and arranged in such a way that the bands of one face cover the gap gaps of the bands of the other faces to shield the RF signal.
  • bands of non-ferromagnetic conductive material copper, gold or silver

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Radiology & Medical Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

Un dispositivo híbrido de imagen médica PET-SPECT/MR que comprende: -al menos un cristal centelleador, y -al menos un módulo de detección de radiación que contiene al menos una matriz de fotodetectores y una sección de electrónica, tal que dicho módulo tiene una estructura mecánica cuya superficie exterior, interior, o ambas, está dividida en al menos dos secciones, de las cuales al menos una está recubierta de grafeno, y el resto de material conductor no ferromagnético, o todas las secciones están recubiertas por grafeno, y tal que el recubrimiento forma una jaula de Faraday; así como a un blindaje contra la radiofrecuencia para un dispositivo de imagen médica que comprende: -un recubrimiento de grafeno, continuo o en bandas, en todas las caras de la estructura mecánica del módulo de detección del dispositivo, o -un recubrimiento de grafeno, continuo o en bandas, en al menos una cara combinado con un recubrimiento de materiales conductores no ferromagnéticos del resto de caras, y formando dicho blindaje una jaula de Faraday.

Description

APANTALLA MIENTO DE RADIOFRECUENCIA PARA EQUIPOS DE IMAGEN
HÍBRIDOS
Campo de la invención
El objeto principal de la presente invención se enmarca dentro del campo de la medicina nuclear y en particular está dirigida a mejorar la compatibilidad electromagnética entre sistemas de imagen molecular tales como el PET (Tomografía por Emisión de Positrones) o SPECT (Tomografía Computarizada por Emisión de Fotón Único) cuya electrónica de detección es sensible al campo de Radio Frecuencia (RF) de la Resonancia Magnética (MR).
Antecedentes de la invención
En la última década se ha ido incrementando el interés en la obtención de imágenes multimodales, principalmente sistemas PET/CT o SPECT/CT, con el objetivo de adquirir imágenes médicas estructurales (anatómicas) y moleculares de forma simultánea. Estos sistemas abren la posibilidad de obtener imágenes metabólicas o moleculares "in vivo" como por ejemplo mediante la técnica PET. El trazador más utilizado en los equipos PET es la FDG (FluorDeoxiGlucosa) la cual se acumula en regiones anatómicas con un metabolismo elevado. Estas regiones pueden ser relacionadas directamente con las imágenes anatómicas o estructurales, obtenidas con el equipo CT.
Más recientemente, ha aumentado el interés en el desarrollo de sistemas híbridos PET-SPECT /MR, donde la información, principalmente anatómica, se obtiene de la MR, con la consecuente reducción de la exposición a radiación ionizante comparado con los sistemas CT. En un sistema híbrido y simultáneo además se reducen los tiempos de adquisición de datos permitiendo explorar más pacientes, además de información hasta ahora única con la simultaneidad de datos PET y MR. Comparado con los sistemas CT, los sistemas MR proporcionan en general un mayor contraste en tejidos blandos, más recientemente también en tejidos duros, y una mejor resolución espacial en las imágenes anatómicas de 50-100μηι [1], permitiendo proporcionar adicionalmente información sobre distintos parámetros fisiológicos.
Desde el punto de vista tecnológico la integración de un equipo PET o SPECT en un equipo MR supone un gran reto. Principalmente son dos los problemas más importantes que hay que solucionar al integrar los equipos PET-SPECT y MR en un único dispositivo. El primer problema es que el comportamiento de los equipos MR puede verse afectado por la presencia de los elementos empleados en la construcción de los equipos PET-SPECT. Por ejemplo los detectores o la electrónica asociada a ellos pueden contener algunas cantidades de materiales ferromagnéticos que pueden alterar el campo magnético generado por los equipos MR. El segundo problema son las posibles interferencias en la electrónica de los equipos PET- SPECT generadas por la señal de RF que se produce en las bobinas de RF con la que están equipados los equipos de MR.
Para evitar la interferencia de la señal de RF en la electrónica del equipo PET o SPECT se puede colocar un apantallamiento a este campo de RF construido con un material conductor no ferromagnético. Este apantallamiento se suele instalar en la parte mecánica que cubre el bloque detector y que no interfiere con el paso de la luz producida en el cristal centelleador hacia los fotodetectores del equipo PET-SPECT. Actualmente, SiPM (Silicon Ρ οίοηιυΙϋρΙίθή o APD (Avalanche Photodiodes) son los tipos de fotodetectores más propuestos en el diseño de sistemas híbridos PET/MR, dado que su funcionamiento no es afectado por los campos magnéticos.
El problema es que el apantallamiento de RF también puede afectar al campo magnético generado por los equipos MR. Al utilizar un material conductor en este apantallamiento de RF tanto el campo de gradiente, a bajas frecuencias, como las señales de RF generadas por los equipos MR producen unas corrientes eléctricas llamadas corrientes de eddy sobre la superficie de este apantallamiento, que pueden afectar a la homogeneidad del campo magnético del equipo MR.
Existen varias soluciones para reducir estas corrientes: una consiste en dividir el apantallamiento de RF en secciones más pequeñas, inferiores a 20x20mm [3], o bien en incrementar la distancia de separación entre el equipo PET-SPECT y la región de campo magnético uniforme del equipo MR, lo que reduce la eficiencia de detección del equipo PET-SPECT.
Una posible solución se describe en la patente US7218112 B2, que divulga un sistema combinado PET/MR en el cual el apantallamiento de RF consiste de una multitud de aperturas y los cristales centelladores del detector PET se sitúan en dichas aperturas de modo que al menos una parte de los cristales se sitúan en la zona del campo de reflujo de la RF. Un inconveniente de dicha solución es que el proceso de fabricación de los cristales debe ser modificado para introducir la deposición en cada uno de los mismos del material de apantallamiento. En cualquier caso, dicha solución es muy diferente de la adoptada en la presente invención. La patente US8823259 B2 divulga una lámina de grafeno para la protección de fotocátodos tales como fotocátodos QE - alta eficiencia cuántica -. Una monocapa de grafeno sirve como pantalla transparente que no inhibe el paso de fotones o electrones, pero que aisla la película fotosensible de gases reactivos evitando la contaminación y prolongando la vida de los fotocátodos. La lámina de grafeno se coloca sobre la película fotosensible en contacto directo con ella. En otra realización el fotocátodo comprende: una película, la lámina de grafeno que tiene una primera y una segunda superficie, un soporte de grafeno sobre una primera porción de la primera superficie de la lámina de grafeno, y está configurado para formar una segunda porción de la primera superficie de la lámina de grafeno que no tiene soporte de grafeno, de modo que la segunda porción de la lámina de grafeno está colocada sobre la película fotosensible y en contacto directo con ella. Por lo tanto este sistema de apantallamiento es distinto del de la presente invención en el que se trata de proteger módulos detectores de equipos de imagen médica de la RF.
Otra solicitud de patente, US20130068521 A1 , divulga un apantallamiento del campo electromagnético en general, y un método para proteger la radiación electromagnética usando grafeno en el interior o exterior de la fuente de ondas electromagnéticas y/o usando grafeno formado sobre un sustrato, y también divulga un material protector de radiación electromagnética que contiene grafeno, mientras que en la presente invención se trata de apantallar los módulos detectores con una estructura de jaula de Faraday, minimizando las corrientes de eddy y, además, permitiendo el paso de luz centelleante, generada en el cristal centelleador, hacia los fotodetectores.
La solicitud de patente WO201 1087301 A2 se refiere a un método para formar una barrera protectora de grafeno, que tiene propiedades barrera contra gas y humedad. Se puede usar una capa simple o múltiple de grafeno para proteger diversos tipos de dispositivos.
Generalmente el sistema de apantallamiento de RF consiste en una capa de un metal conductor no ferromagnético (cobre, plata u oro) o también de compuestos basados en fibra de carbono que recubre el equipo PET-SPECT completamente o cada uno de los módulos del equipo PET-SPECT de forma individual. Los sistemas de apantallamiento presentan el problema de que tanto el campo de gradiente como el de RF generados por los equipos MR convencionales generan sobre la superficie de este apantallamiento unas corrientes eléctricas llamadas corrientes de eddy, que pueden afectar a la uniformidad del campo magnético en el campo de visión del equipo MR [4].
El objetivo de la presente invención es el desarrollo de un apantallamiento de radiofrecuencia (RF) basado en grafeno y en materiales conductores no ferromagnéticos para proteger la electrónica de los módulos de detección de las señales de RF generada por los equipos MR permitiendo el paso de luz centelleante cuando este apantallamiento se coloca entre el cristal centelleador y los fotodetectores. Además, este apantallamiento electromagnético no debe de apantallar ni modificar los campos magnéticos generados por el campo principal ni por el sistema de gradientes del equipo MR.
En esta invención se presenta un nuevo tipo de apantallamiento de radiofrecuencia tipo jaula de Faraday específica para equipos de imagen híbridos con el objetivo adicional de reducir las corrientes de eddy generadas en el apantallamiento de RF que pueden afectar a la homogeneidad del campo magnético generado por los equipos de MR, así como el objetivo de no apantallar el campo magnético principal y los campos magnéticos generados por el sistema de gradientes de los equipos de MR. El resultado es un diseño del apantallamiento de RF, basado en parte en grafeno, instalado en los equipos PET o SPECT que permite construir equipos híbridos PET/MR o SPECT/MR más compactos y por lo tanto con mejores prestaciones.
Según la presente invención el grafeno se dispone justo (muy cerca) delante del sistema de fotodetectores para dejar mayor espacio (el espesor del cristal) entre la bobina de RF y el apantallamiento. Al ser la deposición de grafeno de uno o dos átomos de espesor, la luz lo atraviesa en un porcentaje alto, también los campos magnéticos estáticos o de baja frecuencia, pero no la RF.
A lo largo de la presente memoria los términos "recubrimiento" y "apantallamiento" se usan con significado completamente equivalente. Igualmente, los términos "exterior" y "externo" se usan con idéntico significado. También los términos "interno" e "interior" se usan con idéntico significado. A la combinación de PET y MR, o SPECT y MR, le llamaremos sistemas o dispositivos híbridos de imagen médica.
Las expresión "cara de salida de los fotones generados en el cristal centelleador" es equivalente a "cara en dirección hacia el fotodetector"
Descripción La jaula de Faraday consiste de dos capas separadas a poca distancia y conectadas a tierra (o una a tierra y la otra a bajo potencial respecto a tierra para formar un pequeño condensador) y segmentadas en áreas pequeñas para evitar la formación de corrientes de eddy.
En esta invención, para proteger la matriz de fotodetectores y la electrónica (placas electrónicas de adquisición, procesamiento y transmisión de la señal) colocadas en el interior de cada uno de los módulos de detección de la radiación de un equipo PET-SPECT se utiliza la estructura denominada jaula de Faraday, diseñada específicamente para el sistema híbrido. La estructura mecánica de los módulos de detección de radiación está formada según realizaciones particulares, por dos secciones, construidas con materiales diferentes (grafeno y metales conductores no ferromagnéticos) y puestas en contacto entre sí formando un estructura tipo jaula de Faraday, con el objetivo de proteger la electrónica de detección de las señales de RF generada en los equipos MR. Una primera sección de la estructura mecánica construida con grafeno se coloca entre el cristal centelleador y la matriz de fotodetectores. La segunda sección de la estructura mecánica se coloca en el resto de caras de cada módulo detector que contiene la matriz de fotodetectores y electrónica de cada módulo, construida con una lámina de material conductor no ferromagnético (cobre, plata, oro, fibras basadas en nanotubo de carbono u otros). De esta forma la sección del módulo que contiene el cristal centelleador, monolítico o pixelado, encapsulado dentro de la estructura mecánica que lo protege de la luz exterior y cuya función no se ve afectada por las señales de RF, queda fuera de la jaula de Faraday. De esta forma se evita la generación de corrientes de eddy en la cara del módulo de detección más próxima al campo de visión del equipo MR evitando su interferencia con el campo magnético y de RF del equipo MR respecto a un módulo de detección donde la jaula de Faraday recubre todo el módulo de detección. Esta solución permitirá colocar el dispositivo híbrido de imagen médica, preferiblemente un equipo PET-SPECT más próximo al sujeto o animal de estudio, sin distorsionar el campo de RF, además sin apantallar el campo magnético principal y los campos magnéticos generados por el sistema de gradientes, permitiendo diseñar y construir equipos PET-SPECT más compactos y aumentando su eficiencia de detección.
La presente invención se refiere en primer lugar a un dispositivo híbrido de imagen médica PET/MR o SPECT/MR que comprende:
- al menos un cristal centelleador, monolítico o pixelado, y - al menos un módulo de detección de radiación que contiene al menos una matriz de fotodetectores y una sección de electrónica de detección, adquisición y transmisión, tal que dicho módulo de detección tiene una estructura mecánica cuya superficie está dividida en al menos:
- una primera sección correspondiente a la cara de salida de los fotones generados en el cristal centelleador y
- una segunda sección correspondiente al resto de caras de la estructura mecánica del módulo que incluye al menos una matriz de fotodetectores y una sección de electrónica, y que no encierran el cristal centelleador, tal que dichas primera y segunda sección conforman una estructura cerrada, y de las cuales:
- al menos la primera sección está recubierta de grafeno con uno o dos átomos de espesor, y
- la segunda sección está recubierta con grafeno, con un espesor de uno o dos átomos, o con un material conductor no ferromagnético, y
en el que la superficie de la estructura mecánica está seleccionada entre:
superficie exterior
superficie interior y
ambas.
Para cualquier realización del dispositivo el recubrimiento de grafeno en la primera sección - sección que siempre lleva recubrimiento de grafeno como se indica en el párrafo anterior - correspondiente a la cara de salida de los fotones generados en el cristal centelleador, que está situada entre el cristal centelleador y la parte del módulo de detección que contiene la matriz de fotodetectores y la sección de electrónica de detección, adquisición y transmisión, puede ser un recubrimiento continuo, o en forma de bandas. Dichas bandas están separadas entre sí y dispuestas en dos capas separadas por un dieléctrico, y de forma que siempre se produzca solapamiento espacial entre ambas capas, como se explica más adelante en esta memoria. Para cualquier realización del dispositivo el recubrimiento de grafeno en la segunda sección (cuando ésta se recubre también con grafeno) correspondiente al resto de caras de la estructura mecánica del módulo de detección que incluye al menos una matriz de fotodetectores y una sección de electrónica, y que no encierran el cristal centelleador, puede ser un recubrimiento continuo, o en forma de bandas. Dichas bandas están separadas entre sí y dispuestas en dos capas separadas por un dieléctrico, y de forma que siempre se produzca solapamiento espacial entre ambas capas, como se explica más adelante en esta memoria.
Para cualquier realización del dispositivo el recubrimiento con materiales conductores no ferromagnéticos en la segunda sección, cuando están presentes estos materiales, puede ser también un recubrimiento continuo, o en forma de bandas. Dichas bandas están separadas entre sí y dispuestas en dos capas separadas por un dieléctrico, y de forma que siempre se produzca solapamiento espacial entre ambas capas, como se explica más adelante en esta memoria.
En el dispositivo híbrido de la invención las secciones de la superficie del módulo de detección están recubiertas formando una jaula de Faraday. Además esta jaula de Faraday está conectada a tierra para eliminar la carga eléctrica generada en dicha jaula de Faraday.
Según una realización particular, sólo la primera sección de superficie del módulo de detección está recubierta de grafeno, correspondiendo dicha sección a la cara del cristal centelleador en dirección al módulo de detección, y la segunda sección está recubierta por al menos un material conductor no ferromagnético con un espesor desde 5 mieras hasta 2mm. En esta realización el resto de caras del módulo de detección puede estar recubierto por materiales no ferromagnéticos, por ejemplo, materiales seleccionados entre:
- metales conductores no ferromagnéticos, preferentemente cobre, plata, oro, y - materiales compuestos no metálicos, como los compuestos basados en fibras de carbono. Según realizaciones particulares del dispositivo híbrido, la primera sección de la superficie del módulo recubierta de grafeno está estructurada de modo que comprende al menos:
- una primera capa de un sustrato con un espesor de entre 50 y 200 mieras,
- una segunda capa de grafeno cuyo espesor es de uno o dos átomos, de tal modo que el grafeno está depositado sobre todas las caras del sustrato, tal que las capas laterales del sustrato que contienen grafeno están en contacto con el recubrimiento de material conductor no ferromagnético que protege el resto de secciones de superficie del módulo de detección protegiendo así la electrónica de dicho módulo de detección. El sustrato de la primera capa es un material como por ejemplo una lámina de PET o PMMA. Opcionalmente sobre el grafeno se dispone una tercera capa protectora adicional de entre 25 y 50 mieras de un material plástico, preferentemente PMMA o politereftalato de etileno, formando una estructura tipo sándwich. Las capas de grafeno de los laterales del sustrato se utilizan para reducir la carga eléctrica generada en el apantallamiento de grafeno, ya que estas caras están en contacto con la capa del metal conductor que protege la electrónica de cada uno de los módulos del equipo PET.
Una alternativa que se propone en esta invención para apantallar el campo de RF sin reducir el paso de luz centellante, es aplicar directamente el grafeno sobre la cara de salida de los fotones generados en el cristal centelleador (cara en dirección hacia el fotodetector). En esta alternativa se utiliza el cristal centelleador como sustrato para depositar el grafeno. Esta capa de grafeno, igualmente de 1 o 2 átomos, preferiblemente y posteriormente, está recubierta de una fina capa de un material plástico protector. Es el mismo sistema que el descrito anteriormente pero en este caso en lugar de utilizar como sustrato una lámina de, por ejemplo, PET o PMMA se utiliza la cara de salida del cristal centelleador. Así, según una realización adicional, una capa de grafeno de uno o dos átomos de espesor cubre la cara de salida del cristal centelleador que es la cara en dirección hacia el fotodetector del módulo de detección, o sea, entre el cristal centelleador y la matriz de fotodetectores, estando en contacto directo con la cara de salida del cristal centelleador; y dicha capa de grafeno está recubierta de una capa de un material plástico protector, tal como politereftalato de etileno o polimetilmetacrilato, de 50-200 mieras de espesor. En esta alternativa que se propone la estructura mecánica que protege la electrónica de cada módulo de detección está protegida por un apantallamiento de RF formado por materiales conductores no ferromagnéticos en contacto con el apantallamiento de grafeno. El apantallamiento de RF está conectado a tierra para eliminar la carga eléctrica generada en éste.
Así, según realizaciones particulares adicionales del dispositivo híbrido, la primera sección de la superficie del módulo recubierta de grafeno está estructurada de modo que comprende al menos:
- una primera capa de grafeno dispuesta directamente sobre el cristal centelleador, dicha capa de grafeno con un espesor de uno o dos átomos, tal que la capa de grafeno está en contacto con el recubrimiento de material conductor no ferromagnético que protege el resto de secciones de superficie del módulo de detección protegiendo así la electrónica de dicho módulo de detección. Opcionalmente sobre el grafeno se dispone una tercera capa protectora de entre 50- 200 mieras de espesor, de un material plástico, preferentemente PMMA o politereftalato de etileno.
Además, otra alternativa que se propone en esta invención es recubrir con grafeno, sin utilizar materiales conductores no ferromagnéticos o compuestos basados en fibras de carbono, toda la estructura mecánica de los módulos de detección del dispositivo híbrido de imagen médica, preferiblemente, los equipos PET-SPECT o bien toda la estructura de los equipos PET-SPECT, ya sea sobre todas las superficies externas de dichos módulos de detección o sobre las caras internas.
Por lo tanto, en el dispositivo híbrido de la invención puede ocurrir que tanto:
- la primera sección correspondiente a la cara de salida de los fotones generados en el cristal centelleador, está recubierta de grafeno con uno o dos átomos de espesor y
- la segunda sección correspondiente al resto de caras de la estructura mecánica del módulo que no encierran el cristal centelleador, está recubierta con grafeno y en el que la superficie de la estructura mecánica está seleccionada entre:
- superficie exterior
superficie interior y
ambas. Cuando se hace alusión a un material conductor no ferromagnético se debe entender que puede ser uno concreto o una combinación de al menos dos.
Para minimizar aún más las corrientes de eddy, en esta invención también se propone una realización alternativa para cualquier sección del apantallamiento de RF realizado con grafeno, con materiales conductores no ferromagnéticos, o ambos. Según esta realización el apantallamiento se consigue por una serie de pistas o bandas de grafeno colocadas en una estructura de sándwich. Cada pista o banda tiene de 5 a 20 mm de ancho separadas entre sí por decenas de mieras hasta un milímetro (0.01-1 mm) depositadas en todas las caras de la mecánica de cada módulo detector, bien sean las interiores o las exteriores. Dos capas de esta estructura, de forma que siempre se produzca solapamiento espacial entre ambas capas, son necesarias para evitar que penetre la RF.
Así pues, adicionalmente, y para cualquier realización del dispositivo híbrido el grafeno puede estar formando un recubrimiento estructurado como sigue:
- formando una primera serie de bandas de grafeno de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en caras interiores como exteriores, y
- una segunda serie de bandas de grafeno de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series,
- estando la primera y segunda serie de bandas conectadas a capas de grafeno laterales para eliminar la carga eléctrica acumulada en estas pistas o bandas de grafeno, y
- todas estas bandas están conectadas a capas de grafeno laterales para eliminar la carga eléctrica acumulada en estas pistas o bandas de grafeno, y
- una lámina de un material dieléctrico, tal como polimetilmetacrilato, tereflalato de polietileno, poliácido láctico, nailon, o combinaciones de ellos, dispuesta entre ambas series de bandas de grafeno, dicha capa de material dieléctrico con un espesor de 10 mieras a 2,0 mm. Opcionalmente el material dieléctrico está también dispuesto adicionalmente sobre la segunda serie de bandas de grafeno expuesta al contacto y manipulación.
Este paquete tipo sándwich tiene una transparencia a la luz centellante (200-800 nm) de aproximadamente 95-97% evitando la pérdida de los fotones producidos por el cristal centelleador (monolítico o pixelado) y que serán recogidos por la matriz de fotodetectores (SiPMs o APDs).
La jaula de Faraday descrita en esta realización alternativa está conectada a tierra para eliminar la carga eléctrica acumulada en el apantallamiento o una capa de bandas conectadas a tierra y la otra capa de bandas conectada a bajo potencial respecto a tierra para formar un pequeño condensador.
Adicionalmente, también para cualquier realización del dispositivo híbrido, el material conductor no ferromagnético puede estar formando un recubrimiento estructurado como:
- una primera serie de bandas de material conductor no ferromagnético de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en caras interiores como exteriores, y
- una segunda serie de bandas de material conductor no ferromagnético de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series,
- estando la primera y segunda serie de bandas conectadas a capas de grafeno laterales para eliminar la carga eléctrica acumulada en estas pistas o bandas de grafeno, y
- una lámina de un material dieléctrico, dispuesta entre ambas series de bandas de material conductor no ferromagnético. Opcionalmente, como material dieléctrico se usa polimetilmetacrilato, tereflalato de polietileno, poliácido láctico, nailon, o combinaciones de ellos, con un espesor de 10 mieras a 2,0 mm. Opcionalmente además, el material dieléctrico está también dispuesto sobre la segunda serie de bandas de material conductor no ferromagnético expuesta al contacto y manipulación.
La jaula de Faraday descrita también para esta realización alternativa está conectada a tierra para eliminar la carga eléctrica acumulada en el apantallamiento o una capa de bandas está conectada a tierra y la otra capa de bandas está conectada a bajo potencial respecto a tierra para formar un pequeño condensador.
En una realización alternativa, en el dispositivo híbrido de la invención el apantallamiento de material conductor no ferromagnético está formado por:
- una primera serie de pistas o bandas de grafeno de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en caras interiores como exteriores, y
- una segunda serie de pistas o bandas de material conductor no ferromagnético de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las pistas o bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series
- todas estas bandas o pistas de material conductor no ferromagnético están conectadas entre sí por una fina pista de material conductor no ferromagnético (cobre, plata u oro) de un ancho desde unas mieras hasta un milímetro (0.01-1 mm) para eliminar la carga eléctrica generada en las pistas.
- una lámina de un material dieléctrico, tal como polimetilmetacrilato PMMA, tereflalato de polietileno PET, poliácido láctico PLA o nailon o combinaciones de ellos, dispuesta entre ambas series de pistas o bandas de material conductor no ferromagnético.
Esta realización que se refiere a un recubrimiento de material conductor no ferromagnético en forma de bandas o pistas, en lugar de continuo, puede ser aplicada tanto al caso en el que - al menos la primera sección está recubierta de grafeno con uno o dos átomos de espesor, y
- la segunda sección está recubierta con grafeno, con un espesor de uno o dos átomos,
como al caso en el que
- la primera sección está recubierta de grafeno con uno o dos átomos de espesor, y
- la segunda sección está recubierta con un material conductor no ferromagnético.
La jaula de Faraday descrita también para esta realización alternativa está conectada a tierra para eliminar la carga eléctrica acumulada en el apantallamiento o una capa de bandas está conectada a tierra y la otra capa de bandas está conectada a bajo potencial respecto a tierra para formar un pequeño condensador.
También, para cualquier realización del dispositivo híbrido el módulo de detección puede ser un detector de rayos gamma.
La presente invención se refiere además al uso de un dispositivo de imagen como el definido anteriormente, para la toma de imágenes anatómicas o estructurales.
La presente invención se refiere además a un blindaje o apantallamiento contra la radiación de radiofrecuencia (RF) incluido y descrito en cualquiera de las realizaciones del dispositivo mencionadas hasta aquí.
La presente invención se refiere además a un blindaje o apantallamiento contra la radiación de radiofrecuencia (RF) para un dispositivo de imagen médica que comprende:
- al menos un cristal centelleador, monolítico o pixelado, y
- al menos un módulo de detección de radiación que contiene al menos una matriz de fotodetectores y una sección de electrónica,
caracterizado por que dicho blindaje comprende: - un recubrimiento o apantallamiento de grafeno, como recubrimiento continuo o en bandas, en todas las caras de la estructura mecánica del módulo de detección, o
- un recubrimiento o apantallamiento de grafeno, como recubrimiento continuo o en bandas, en al menos una cara que es la cara del cristal centelleador en dirección al módulo de detección, combinado con un recubrimiento de al menos un material conductor no ferromagnético, como recubrimiento continuo o en bandas, del resto de las caras que no encierran el cristal centelleador,
y formando dicho blindaje una jaula de Faraday conectada a tierra para eliminar la carga eléctrica generada en ésta.
El material conductor no ferromagnético tiene un espesor desde 5 mieras hasta 2mm y puede estar seleccionado entre:
- metales conductores no ferromagnéticos, preferentemente cobre, plata, oro y
- materiales compuestos no metálicos, como compuestos de fibra de carbono.
Para cualquier realización del blindaje, el recubrimiento de grafeno en todas las caras de la estructura mecánica del módulo de detección, puede ser un recubrimiento continuo, o en forma de bandas. Dichas bandas están separadas entre sí y dispuestas en dos capas separadas por un dieléctrico, de forma que siempre se produzca solapamiento espacial entre ambas capas.
Para cualquier realización del blindaje el recubrimiento de grafeno en al menos una cara - que siempre lleva recubrimiento de grafeno - que es la cara del cristal centelleador en dirección al módulo de detección, dispuesta entre el cristal centelleador y la parte del módulo de detección que contiene la matriz de fotodetectores y la sección de electrónica puede ser un recubrimiento continuo, o en forma de bandas. Dichas bandas están separadas entre sí y dispuestas en dos capas separadas por un dieléctrico, de forma que siempre se produzca solapamiento espacial entre ambas capas.
Para cualquier realización del blindaje el recubrimiento con materiales conductores no ferromagnéticos, cuando están presentes estos materiales, puede ser también un recubrimiento continuo, o en forma de bandas. Dichas bandas están separadas entre sí y dispuestas en dos capas separadas por un dieléctrico, de forma que siempre se produzca solapamiento espacial entre ambas capas.
En el blindaje o apantallamiento de la invención, el recubrimiento de grafeno puede estar estructurado de modo que comprende al menos:
- una primera capa de un sustrato con un espesor de entre 50 y 200 mieras,
- una segunda capa de grafeno cuyo espesor es de uno o dos átomos, de tal modo que el grafeno está depositado sobre todas las caras del sustrato, tal que las capas laterales del sustrato que contienen grafeno están en contacto con el recubrimiento de material conductor no ferromagnético que protege el resto de secciones de superficie del módulo de detección protegiendo así la electrónica de dicho módulo de detección. El sustrato puede ser de un material plástico como PTE o PMMA. Opcionalmente, el recubrimiento de grafeno comprende una tercera capa protectora adicional de entre 25 y 50 mieras de un material plástico, preferentemente PMMA o politereftalato de etileno, sobre el grafeno, formando una estructura tipo sándwich.
Según realizaciones adicionales, en el blindaje o apantallamiento de la invención el grafeno puede cubrir directamente el cristal centelleador. Opcionalmente puede estar dispuesta una capa protectora adicional de entre 50-200 mieras de espesor, de un material plástico, preferentemente PMMA o politereftalato de etileno, sobre el grafeno.
Además, en el blindaje o apantallamiento de la invención, tanto el grafeno, como el material conductor no ferromagnético, o ambos, pueden estar formando un recubrimiento estructurado como:
- una primera serie de bandas de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en caras interiores como exteriores, y
- una segunda serie de bandas de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series, - estando la primera y segunda serie de bandas, cuando son de grafeno, conectadas a capas de grafeno laterales para eliminar la carga eléctrica acumulada en estas pistas o bandas de grafeno,
- estando estas bandas, cuando son de material conductor no ferromagnético, conectadas entre sí por una fina banda o pista de material conductor no ferromagnético (cobre, plata u oro) de un ancho desde unas mieras hasta un milímetro (0.01-1 mm) para eliminar la carga eléctrica generada en las pistas, y
- una lámina de un material dieléctrico, dispuesta entre ambas series de bandas. Como material dieléctrico se puede usar polimetilmetacrilato, tereflalato de polietileno, poliácido láctico, nailon, o combinaciones de ellos, con un espesor de 10 mieras a 2,0 mm. Opcionalmente, el material dieléctrico está también dispuesto sobre la segunda serie de bandas expuesta al contacto y manipulación.
La presente invención tiene como objeto adicional un dispositivo híbrido de imagen médica, preferentemente un equipo PET/SPECT colocado en el interior de un equipo MR caracterizado por que comprende por un blindaje o apantallamiento de RF como los descritos.
La capa de grafeno que cubre la sección o secciones de la superficie del módulo de detección puede ser depositada por cualquier método convencional, tal como pulverización.
La capa de material conductor no ferromagnético que cubre las secciones del módulo de detección puedes ser depositada por cualquier método convencional, tal como electrodeposición.
El resultado de la invención es un diseño del apantallamiento electromagnético instalado en dispositivos híbridos de imagen médica, preferiblemente, los equipos PET o SPECT que permite construir equipos híbridos PET/MR o SPECT/MR más compactos y por lo tanto con mejores prestaciones.
Descripción de los dibujos. Con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo se ha representado lo siguiente:
Figura 1 : Muestra según una realización de la invención, un dispositivo híbrido PET- SPECT compacto y portátil con una bobina de RF colocado en el interior de un equipo MR convencional.
Figura 2: Muestra una vista en perspectiva de un equipo PET portátil con una bobina de RF (tipo jaula de pájaro), según una realización de la invención.
Figura 3: Muestra una sección transversal de uno de los módulos de rayos gamma PET.
Figura 4a y 4b: Muestran respectivamente una vista en perspectiva y una sección transversal del apantallamiento electromagnético basado en grafeno.
Figura 5. Comparativa entre el procedimiento de apantallamiento de esta invención (izquierda) y el estándar (derecha). En esta invención, se observa cómo se puede reducir el diámetro de un anillo de detectores sin distorsionar el campo de RF, ya que el apantallamiento se realiza entre cristal centelleador y fotodetectores y las posibles corrientes de eddy que se podrían generar no se generarán en la cara más próxima a la bobina de RF reduciendo la posible distorsión del campo generado por la bobina de RF.
Figura 6. Despiece de los componentes internos de cada módulo detector de rayos gamma, basado en un cristal centelleador monolítico o pixelado, incluyendo los elementos electrónicos y de apantallamiento de la RF. En este caso, el apantallamiento entre el cristal centelleador y el fotodetector se realiza a través de una lámina de grafeno protegida por ambos lados, y dicho apantallamiento está en contacto con el resto de apantallamiento formado por el material conductor no ferromagnético.
Figura 7. Lo mismo que para Figura 6, solo que según otra realización, el grafeno está depositado directamente sobre el cristal centelleador centellante y se protege preferiblemente con una lámina plástica de la exposición directa.
Figura 8. Apantallamiento de RF formado por dos capas de pistas o bandas de grafeno, según una realización adicional, depositadas en las caras externas e internas de un sustrato, dispuestas de tal forma que cubren los huecos entre las pistas de la otra cara. Una realización alternativa está formada por pistas o bandas de material conductor no ferromagnético depositadas en las caras externas o internas de un material dieléctrico.
Descripción de realizaciones preferentes
A continuación se describen algunos ejemplos de realizaciones preferentes, relativas a un dispositivo PET-SPECT, combinado con una bobina de RF dedicada en una MR, de acuerdo con la invención.
En la Figura 1 se representa un sistema híbrido PET/MR. Este sistema está formado por un equipo PET compacto e insertable (1) que se puede colocar en el interior de equipos MR (2) junto con una bobina de RF (3). Las señales adquiridas por el equipo PET son transmitidas mediante cables, preferiblemente coaxiales o mediante fibras ópticas, a una unidad de procesamiento colocada en el exterior del equipo MR (4).
La Figura 2 muestra una perspectiva del equipo PET o SPECT portátil con una bobina de RF tipo jaula de pájaro donde se aprecian los elementos estructurales que la componen:
(a) El equipo PET o SPECT está formado por un conjunto de módulos detectores de la radiación gamma, típicamente colocados radialmente formando un anillo, cuyo número y diámetro dependerá del sistema MR y el órgano u órganos que se deseen visualizar. Cada bloque sensor está formado por dos elementos: el cristal centelleador, monolítico o pixelado, (5) y el conjunto formado por el fotodetectores y la electrónica asociada (6). Este conjunto está encapsulado dentro de una jaula de Faraday para reducir las interferencias de las señales de RF emitidas para la bobina con la electrónica de los módulos de detección. Esta jaula de Faraday está diseñada para no apantallar los campos magnéticos generados por el sistema de gradientes de los equipos MR.
(b) Una bobina de RF tipo jaula de pájaro (birdcage RF coi!) (3). Este tipo de bobina de RF está formada por una serie de barras longitudinales unidas por los extremos a dos anillos. Estas barras longitudinales se colocarán preferiblemente en el espacio entre los módulos de detección para no impedir el paso de la radiación a los módulos de detección del equipo PET o SPECT. La invención descrita en esta patente no restringe su uso a otro tipo de bobinas de RF. En la Figura 3 se muestra esquemáticamente la estructura interna de un módulo de detección que forma parte del equipo PET. En esta Figura 3 también se puede observar la posición de cada uno de los elementos que forman parte de estos módulos de detección compuestos por los siguientes elementos:
(a) Un cristal centelleador, monolítico o pixelado, (5) que es el responsable de transformar la radiación gamma en luz visible.
(b) Un sistema de apantallamiento de RF basado en grafeno (7), colocado entre el cristal centelleador, monolítico o pixelado, (5) y una matriz de fotodetectores (8).
(c) Una placa electrónica (9) que pre-procesa las señales generadas por los fotodetectores. Preferiblemente también existe una placa para pre-amplificar las señales procesadas y que sean enviadas al sistema de adquisición (4).
En la Figura 3 también se muestran los componentes de encapsulado (10 y 11) de los elementos anteriormente descritos que protege el bloque sensor (cristal centelleador y fotodetectores) de la luz exterior así como la propuesta de apantallamiento de RF (7 y 12).
Las Figuras 4a y 4b muestran, respectivamente, una vista en perspectiva y una sección transversal del apantallamiento de RF basado en grafeno colocada entre el cristal centelleador y la matriz de fotodetectores. Este apantallamiento de RF se realizará preferiblemente en tres capas de materiales diferentes:
(a) Un sustrato (13) mecánicamente estable de unas decenas de mieras sobre el cual se depositan las distintas capas de grafeno y que se coloca en la cara delantera de la matriz de fotodetectores.
(b) Un capa de grafeno de 1 o 2 átomos de espesor (7).
(c) Lámina protectora de material transparente (14) de también unas mieras o decenas de mieras de espesor colocada entre la capa de grafeno y el cristal centelleador.
La Figura 5 muestra la diferencia entre las distancias del bloque sensor de rayos gamma a los conductores de la bobina de RF (A), para una de las propuestas de la presente invención (izquierda) y el caso estándar (derecha). La distancia entre la bobina y el apantallamiento del detector (B), debería ser tal que no se producen distorsiones en el campo de RF. En el caso estándar, esta distancia dependerá de la configuración geométrica de la bobina y el sistema PET-SPECT, en particular de la envolvente donde se coloca el apantallamiento.
Con la configuración propuesta aquí, la distancia entre los conductores, es decir, entre la bobina de RF y el apantallamiento debe mantenerse. Sin embargo, dado que el apantallamiento se realiza entre el cristal centelleador y la matriz de fotosensores, esto permite reducir la distancia entre el bloque sensor y la bobina (C), aumentando la eficiencia de detección del PET o SPECT.
La Figura 6 muestra en detalle los elementos internos que preferiblemente componen el módulo detector. En esta figura, además de los elementos de apantallamiento (7) y (12), se muestran los sustratos para el grafeno (13) y (14), en contacto con los fotodetectores (8) y el cristal centelleador (5), respectivamente.
En este dibujo también se han representado esquemáticamente el rayo gamma incidente (16) que deposita su energía transformándola en la emisión de fotones en el rango del visible (17). En particular, se ha esquematizado la distribución de esta luz visible generada en un cristal centelleador monolítico y que alcanza el fotodetector. La jaula de Faraday formada por (7) y (12) está conectada a tierra (15) para eliminar la carga eléctrica acumulada en el apantallamiento de RF.
La Figura 7, muestra al igual que la Figura 6, el detalle de todos los elementos que forman el detector. En esta Figura, y como diferencia de la Figura 6 donde el grafeno se deposita sobre un sustrato, se deposita directamente sobre el cristal centelleador.
La Figura 8 muestra una vista en perspectiva y una sección transversal de un diseño de apantallamiento de RF basado en pistas o bandas de grafeno (7) depositado en las superficies exteriores e interiores de un sustrato (14) y dispuestas de tal forma que las pistas de una cara cubren los huecos de separación de las pistas de las otras caras para apantallar la señal de RF.
Un diseño alternativo al propuesto en la Figura 8 es un sistema basado en bandas de material conductor no ferromagnético (cobre, oro o plata) (7) colocado en las caras exteriores o interiores de un dieléctrico (14) y dispuestas de tal forma que las bandas de una cara cubren los huecos de separación de las bandas de las otras caras para apantallar la señal de RF.
REFERENCIAS
[1] A. Nacev, E. Anashkin, J.P. Rigla, J.M. Benlloch, M. Urdaneta, A. Sarwar, P. Stepanov, I.N. Weinberg, J.M. Benlloch and S.T. Fricke , "A quiet, fast, high- resolution desktop MRI capable of imaging solids", Proceedings of ISMRM2014, Milán (Italy).
[2] C.R. Paul, "Introduction to electromagnetic compatibility", Hardcover (2006).
[3] Sri Harsha Maramraju, "Evaluation of Electromagnetic Interactions between PET and MRI systems for Simultaneous MRI/PET Imaging", Stony Brook University (201 1).
[4] M. Terpstra, P.M. Andersen and R. Gruetter, "Localized eddy current compensation using quantitative field mapping", J. Magn. Reson. 1998 (131), pp.139- 143.
[5] Shuhui Sun et al, "Single-atom catalysis Pt/Graphene achieved through atomic layer deposition", Scientific Reports, Article N°: 1775 (2013).

Claims

REIVINDICACIONES
1. Un dispositivo híbrido de imagen médica PET/MR o SPECT/MR que comprende:
- al menos un cristal centelleador, monolítico o pixelado, y
- al menos un módulo de detección de radiación que contiene al menos una matriz de fotodetectores y una sección de electrónica de detección, adquisición y transmisión,
tal que dicho módulo de detección tiene una estructura mecánica cuya superficie está dividida en al menos:
- una primera sección correspondiente a la cara de salida de los fotones generados en el cristal centelleador y
- una segunda sección correspondiente al resto de caras de la estructura mecánica del módulo que incluye al menos una matriz de fotodetectores y una sección de electrónica, y que no encierran el cristal centelleador,
tal que dichas primera y segunda sección conforman una estructura cerrada,
de las cuales:
- al menos la primera sección está recubierta de grafeno con uno o dos átomos de espesor, y
- la segunda sección está recubierta con grafeno, con un espesor de uno o dos átomos, o con un material conductor no ferromagnético, y
en el que la superficie de la estructura mecánica está seleccionada entre:
superficie exterior
superficie interior y
ambas.
2. Un dispositivo híbrido según la reivindicación 1 , en el que las secciones de superficie del módulo están recubiertas formando una jaula de Faraday y conectada a tierra para eliminar la carga eléctrica generada en la propia jaula de Faraday.
3. Un dispositivo híbrido según la reivindicación 1 o 2, en el que el sólo la primera sección de superficie del módulo de detección está recubierta de grafeno, correspondiendo dicha sección a la cara del cristal centelleador en dirección al módulo de detección, y la segunda sección está recubierta por al menos un material conductor no ferromagnético con un espesor desde 5 mieras hasta 2mm.
4. Un dispositivo híbrido según la reivindicación 1 o 3, en el que los materiales conductores no ferromagnéticos son seleccionados entre:
- metales conductores no ferromagnéticos, preferentemente cobre, plata, oro, y
- materiales compuestos no metálicos.
5. Un dispositivo híbrido según una de las reivindicaciones 1 a 4, en el que la primera sección de la superficie del módulo recubierta de grafeno está estructurada de modo que comprende al menos:
- una primera capa de un sustrato con un espesor de entre 50 y 200 mieras,
- una segunda capa de grafeno cuyo espesor es de uno o dos átomos, de tal modo que el grafeno está depositado sobre todas las caras del sustrato, tal que las capas laterales del sustrato que contienen grafeno están en contacto con el recubrimiento de material conductor no ferromagnético que protege el resto de secciones de superficie del módulo de detección protegiendo así la electrónica de dicho módulo de detección.
6. Un dispositivo híbrido según la reivindicación 5, que comprende además una tercera capa protectora adicional de entre 25 y 50 mieras de un material plástico, preferentemente PMMA o politereftalato de etileno, sobre el grafeno, formando una estructura tipo sándwich.
7. Un dispositivo híbrido según una de las reivindicaciones 1 a 4, en el que la primera sección de la superficie del módulo recubierta de grafeno está estructurada de modo que comprende al menos:
- una primera capa de grafeno dispuesta directamente sobre el cristal centelleador, dicha capa de grafeno con un espesor de uno o dos átomos, tal que la capa de grafeno está en contacto con el recubrimiento de material conductor no ferromagnético que protege el resto de secciones de superficie del módulo de detección protegiendo así la electrónica de dicho módulo de detección.
8. Un dispositivo híbrido según la reivindicación 7, que comprende una tercera capa protectora adicional de entre 50-200 mieras de espesor, de un material plástico, preferentemente PMMA o politereftalato de etileno, sobre el grafeno.
9. Un dispositivo híbrido según una de las reivindicaciones 1 o 2, en el que tanto:
- la primera sección correspondiente a la cara de salida de los fotones generados en el cristal centelleador, está recubierta de grafeno con uno o dos átomos de espesor y - la segunda sección correspondiente al resto de caras de la estructura mecánica del módulo que no encierran el cristal centelleador, está recubierta con grafeno
y en el que la superficie de la estructura mecánica está seleccionada entre:
- superficie exterior
superficie interior y
ambas.
10. Un dispositivo híbrido según una cualquiera de las reivindicaciones 1 a 9, en el que el grafeno está formando un recubrimiento estructurado como:
- una primera serie de bandas de grafeno de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en caras interiores como exteriores, y
- una segunda serie de bandas de grafeno de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series y
- una lámina de un material dieléctrico, dispuesta entre ambas series de bandas de grafeno.
11. Un dispositivo híbrido según la reivindicación 10, en el que como material dieléctrico se usa polimetilmetacrilato, tereflalato de polietileno, poliácido láctico, nailon, o combinaciones de ellos, con un espesor de 10 mieras a 2,0 mm.
12. Un dispositivo híbrido según la reivindicación 10 o 1 1 , en el que el material dieléctrico está también dispuesto sobre la segunda serie de bandas de grafeno expuesta al contacto y manipulación.
13. Un dispositivo híbrido según una cualquiera de las reivindicaciones 1 a 8, en el que el material conductor no ferromagnético está formando un recubrimiento estructurado como:
- una primera serie de bandas de material conductor no ferromagnético de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en caras interiores como exteriores, y - una segunda serie de bandas de material conductor no ferromagnético, o de grafeno, de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series
- estando la primera y segunda serie de bandas, cuando son de grafeno, conectadas a capas de grafeno laterales para eliminar la carga eléctrica acumulada en estas pistas o bandas de grafeno,
- estando estas bandas, cuando son de material conductor no ferromagnético, conectadas entre sí por una fina banda o pista de material conductor no ferromagnético de un ancho desde unas mieras hasta 1 mm para eliminar la carga eléctrica generada en las bandas, y
- una lámina de un material dieléctrico, dispuesta entre ambas series de bandas de material conductor no ferromagnético; o de grafeno y material conductor no ferromagnético.
14. Un dispositivo híbrido según la reivindicación 13, en el que como material dieléctrico se usa polimetilmetacrilato, tereflalato de polietileno, poliácido láctico, nailon, o combinaciones de ellos, con un espesor de 10 mieras a 2,0 mm.
15. Un dispositivo híbrido según la reivindicación 13 o 14, en el que el material dieléctrico está también dispuesto sobre la segunda serie de bandas de material conductor no ferromagnético expuesta al contacto y manipulación.
16. Un dispositivo híbrido según una cualquiera de las reivindicaciones 1 a 12, en el que el módulo de detección es un detector de rayos gamma.
17. Uso de un dispositivo de imagen como el definido en una cualquiera de las reivindicaciones 1 a 16, para la toma de imágenes anatómicas o estructurales.
18. Un blindaje o apantallamiento contra la radiación de radiofrecuencia (RF) para un dispositivo de imagen médica que comprende:
- al menos un cristal centelleador, monolítico o pixelado, y
- al menos un módulo de detección de radiación que contiene al menos una matriz de fotodetectores y una sección de electrónica,
caracterizado por que dicho blindaje comprende:
- un recubrimiento o apantallamiento de grafeno, como recubrimiento continuo o en bandas, en todas las caras de la estructura mecánica del módulo de detección, o - un recubrimiento o apantallamiento de grafeno, como recubrimiento continuo o en bandas, en al menos una cara que es la cara del cristal centelleador en dirección al módulo de detección, combinado con un recubrimiento de al menos un material conductor no ferromagnético, como recubrimiento continuo o en bandas, del resto de las caras que no encierran el cristal centelleador,
y formando dicho blindaje una jaula de Faraday conectada a tierra para eliminar la carga eléctrica generada en ésta.
19. Un blindaje o apantallamiento según la reivindicación 18, en el que el material conductor no ferromagnético tiene un espesor desde 5 mieras hasta 2mm.
20. Un blindaje o apantallamiento según la reivindicación 18 o 19, en el que el material conductor no ferromagnético está seleccionado entre:
- metales conductores no ferromagnéticos, preferentemente cobre, plata, oro y
- materiales compuestos no metálicos.
21. Un blindaje o apantallamiento según una de las reivindicación 18 a 20, en el que el recubrimiento de grafeno está estructurado de modo que comprende al menos:
- una primera capa de un sustrato con un espesor de entre 50 y 200 mieras,
- una segunda capa de grafeno cuyo espesor es de uno o dos átomos, de tal modo que el grafeno está depositado sobre todas las caras del sustrato, tal que las capas laterales del sustrato que contienen grafeno están en contacto con el recubrimiento de material conductor no ferromagnético que protege el resto de secciones de superficie del módulo de detección protegiendo así la electrónica de dicho módulo de detección.
22. Un blindaje o apantallamiento según la reivindicación 21 , en el que el recubrimiento de grafeno comprende una tercera capa protectora adicional de entre 25 y 50 mieras de un material plástico, preferentemente PMMA o politereftalato de etileno, sobre el grafeno, formando una estructura tipo sándwich.
23. Un blindaje o apantallamiento según una de las reivindicaciones 18 a 21 , en el que el grafeno cubre directamente el cristal centelleador.
24. Un blindaje o apantallamiento según la reivindicación 23, que comprende una capa protectora adicional de entre 50-200 mieras de espesor, de un material plástico, preferentemente PMMA o politereftalato de etileno, sobre el grafeno.
25. Un blindaje o apantallamiento según una cualquiera de las reivindicaciones 18 a 23, en el que el grafeno, el material conductor no ferromagnético o ambos, está formando un recubrimiento estructurado como:
- una primera serie de bandas de 5 a 20 mm de ancho, separadas entre sí por una distancia de 0.01-1 mm, y tal que dichas bandas están depositadas en todas las caras interiores o todas las caras exteriores de la estructura mecánica de cada módulo de detección, o tanto en carascristal centelleador interiores como exteriores, y
- una segunda serie de bandas de modo que con la primera serie forman una estructura de sándwich, y de modo que las bandas de la segunda serie están colocadas de tal forma que cubren los huecos que separan las bandas de la primera serie, de forma que siempre se produzca solapamiento espacial entre ambas series
- estando la primera y segunda serie de bandas, cuando son de grafeno, conectadas a capas de grafeno laterales para eliminar la carga eléctrica acumulada en estas pistas o bandas de grafeno,
- estando estas bandas, cuando son de material conductor no ferromagnético, conectadas entre sí por una fina banda o pista de material conductor no ferromagnético de un ancho desde unass mieras hasta 1 mm para eliminar la carga eléctrica generada en las bandas, y
- una lámina de un material dieléctrico, dispuesta entre ambas series de bandas.
26. Un blindaje o apantallamiento según la reivindicación 25, en el que como material dieléctrico se usa polimetilmetacrilato, tereflalato de polietileno, poliácido láctico, nailon, o combinaciones de ellos, con un espesor de 10 mieras a 2,0 mm.
27. Un blindaje o apantallamiento según la reivindicación 26, en el que el material dieléctrico está también dispuesto sobre la segunda serie de bandas expuesta al contacto y manipulación.
28. Un blindaje o apantallamiento contra la radiación de radiofrecuencia (RF) según una de las reivindicaciones 18 a 27, en el que el dispositivo de imagen médica es un dispositivo como el definido en una de las reivindicaciones 1 a 17.
29. Un dispositivo híbrido de imagen médica caracterizado por que comprende un blindaje o apantallamiento electromagnético tal como está definido una de las reivindicaciones 18 a 28.
PCT/ES2015/070964 2014-12-31 2015-12-29 Apantallamiento de radiofrecuencia para equipos de imagen híbridos WO2016107957A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015005868.0T DE112015005868T5 (de) 2014-12-31 2015-12-29 Hochfrequenzabschirmung für hybride Bilderfassungsgeräte
JP2017535840A JP2018508754A (ja) 2014-12-31 2015-12-29 ハイブリッドイメージングデバイスのための無線周波シールド
US15/637,730 US10197651B2 (en) 2014-12-31 2017-06-29 Radiofrequency shield for hybrid imaging devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431979A ES2579003B1 (es) 2014-12-31 2014-12-31 Apantallamiento de radiofrecuencia para equipos de imagen híbridos
ESP201431979 2014-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/637,730 Continuation US10197651B2 (en) 2014-12-31 2017-06-29 Radiofrequency shield for hybrid imaging devices

Publications (1)

Publication Number Publication Date
WO2016107957A1 true WO2016107957A1 (es) 2016-07-07

Family

ID=56284332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070964 WO2016107957A1 (es) 2014-12-31 2015-12-29 Apantallamiento de radiofrecuencia para equipos de imagen híbridos

Country Status (5)

Country Link
US (1) US10197651B2 (es)
JP (1) JP2018508754A (es)
DE (1) DE112015005868T5 (es)
ES (1) ES2579003B1 (es)
WO (1) WO2016107957A1 (es)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750973B2 (ja) * 2016-07-26 2020-09-02 キヤノンメディカルシステムズ株式会社 Pet−mri装置及び高周波コイル
DE102017221038A1 (de) * 2017-11-24 2019-05-29 Rwth Aachen PET-Detektor für einen kombinierten PET/MRI-Scanner
JP2019171028A (ja) * 2018-03-28 2019-10-10 国立研究開発法人量子科学技術研究開発機構 マイクロストリップ伝送線アレイrfコイル、rfシールド構造、及び、rfコイル・放射線画像化装置一体型デバイス
US10942235B2 (en) * 2018-03-28 2021-03-09 National Institutes For Quantum And Radiological Science And Technology Microstrip transmission line array RF coil, RF shield configuration and integrated apparatus of RF coil and radiation imaging device
CN108761365B (zh) * 2018-04-11 2021-02-19 上海联影医疗科技股份有限公司 屏蔽壳、屏蔽壳的制造方法、pet探测器和系统
WO2020057654A1 (en) 2018-09-21 2020-03-26 Shanghai United Imaging Healthcare Co., Ltd. Systems for imaging
CN109223019B (zh) * 2018-09-21 2021-12-21 上海联影医疗科技股份有限公司 一种pet探测单元及pet探测器
DE102019117482A1 (de) * 2019-06-28 2020-12-31 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Körperschaft des öffentlichen Rechts PET-Detektormodul für die Erfassung von Gamma-Strahlung
CN110584693B (zh) * 2019-09-02 2023-04-07 王雪梅 双模态成像方法、装置和系统
US20210401388A1 (en) * 2020-06-29 2021-12-30 Siemens Medical Solutions Usa, Inc. System for Hybrid Positron Emission Tomography/Computed Tomography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092809A1 (en) * 2008-10-10 2010-04-15 Board Of Trustees Of Michigan State University Electrically conductive, optically transparent films of exfoliated graphite nanoparticles and methods of making the same
US20120253174A1 (en) * 2011-03-30 2012-10-04 Siemens Aktiengesellschaft Image recording device for the simultaneous recording of magnetic resonance image data and nuclear medical image data
US20130211233A1 (en) * 2010-10-25 2013-08-15 Hamamatsu Photonics K.K. Integrated pet/mri scanner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7218112B2 (en) 2005-05-12 2007-05-15 Siemens Aktiengesellschaft Combined MR/PET system
US8013607B2 (en) * 2006-10-31 2011-09-06 Koninklijke Philips Electronics N.V. Magnetic shielding for a PET detector system
KR101405463B1 (ko) 2010-01-15 2014-06-27 그래핀스퀘어 주식회사 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
US20130068521A1 (en) 2010-03-05 2013-03-21 Sungkyunkwan University Foundation For Corporate Collaboration Electromagnetic shielding method using graphene and electromagnetic shiedling material
RU2014135452A (ru) * 2012-02-01 2016-03-20 Конинклейке Филипс Н.В. Радиочастотный экран из наночастиц для применения в устройстве магнитно-резонансной визуализации
US8823259B2 (en) 2012-05-07 2014-09-02 Los Alamos National Security, Llc. Graphene shield enhanced photocathodes and methods for making the same
WO2015022660A2 (en) * 2013-08-15 2015-02-19 Koninklijke Philips N.V. System for simultaneous pet/mr imaging
US10705228B2 (en) * 2014-06-18 2020-07-07 Oregon State University Photo sensor for use as a radiation detector and power supply and method for making and using the device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100092809A1 (en) * 2008-10-10 2010-04-15 Board Of Trustees Of Michigan State University Electrically conductive, optically transparent films of exfoliated graphite nanoparticles and methods of making the same
US20130211233A1 (en) * 2010-10-25 2013-08-15 Hamamatsu Photonics K.K. Integrated pet/mri scanner
US20120253174A1 (en) * 2011-03-30 2012-10-04 Siemens Aktiengesellschaft Image recording device for the simultaneous recording of magnetic resonance image data and nuclear medical image data

Also Published As

Publication number Publication date
JP2018508754A (ja) 2018-03-29
US10197651B2 (en) 2019-02-05
US20170299675A1 (en) 2017-10-19
ES2579003A1 (es) 2016-08-03
DE112015005868T5 (de) 2017-10-19
ES2579003B1 (es) 2017-04-18

Similar Documents

Publication Publication Date Title
ES2579003B1 (es) Apantallamiento de radiofrecuencia para equipos de imagen híbridos
EP2117427B1 (en) Pet/mr scanners for simultaneous pet and mr imaging
US8525116B2 (en) MR/PET imaging systems
US20110270078A1 (en) Methods and systems of combining magnetic resonance and nuclear imaging
JP5324454B2 (ja) 複合型pet/mr撮像システム
ES2346623B1 (es) Sistema compacto, hibrido e integrado gamma/rf para la formacion de imagenes simultaneas petspect/mr.
JP5713468B2 (ja) Pet/mri一体型装置
US20090195249A1 (en) Magnetic shielding for a pet detector system
US10976450B2 (en) Combined scintillation crystal, combined scintillation detector and radiation detection device
Jeong et al. Comparison between pixelated scintillators: CsI (Tl), LaCl 3 (Ce) and LYSO (Ce) when coupled to a silicon photomultipliers array
US20090008733A1 (en) Electric field steering cap, steering electrode, and modular configurations for a radiation detector
Nishikido et al. Axial scalable add-on PET/MRI prototype based on four-layer DOI detectors integrated with a RF coil
Azman et al. A nuclear radiation detector system with integrated readout for SPECT/MR small animal imaging
Cheng et al. A compact and lightweight small animal PET with uniform high-resolution for onboard PET/CT image-guided preclinical radiation oncology research
Lee et al. PET system technology designs for achieving simultaneous PET/MRI
JP2011030682A (ja) Mri−pet装置
KR101810581B1 (ko) Mri 호환 방사선 영상기기
Budtz-Jørgensen et al. The X-ray imager on AXO
Kroeger et al. Charge division readout of a two-dimensional germanium strip detector
JP4695578B2 (ja) 半導体放射線検出器および陽電子放出型断層撮像装置
Lee et al. Development of CZT detectors for x-ray and gamma-ray astronomy
Natalucci et al. New concept large-area narrow-field CZT telescope for formation flying

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535840

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005868

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875294

Country of ref document: EP

Kind code of ref document: A1