WO2016107382A1 - 气能强制举升水或油的方法及设备 - Google Patents

气能强制举升水或油的方法及设备 Download PDF

Info

Publication number
WO2016107382A1
WO2016107382A1 PCT/CN2015/096765 CN2015096765W WO2016107382A1 WO 2016107382 A1 WO2016107382 A1 WO 2016107382A1 CN 2015096765 W CN2015096765 W CN 2015096765W WO 2016107382 A1 WO2016107382 A1 WO 2016107382A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pipe
gas
well
control valve
Prior art date
Application number
PCT/CN2015/096765
Other languages
English (en)
French (fr)
Inventor
宋丕刘
马宝忠
Original Assignee
山东威马泵业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东威马泵业股份有限公司 filed Critical 山东威马泵业股份有限公司
Publication of WO2016107382A1 publication Critical patent/WO2016107382A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/18Repressuring or vacuum methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium

Definitions

  • the present invention relates to a method and apparatus for pumping groundwater or oil production, and more particularly to a method and apparatus for forcibly lifting water or oil by using high-pressure gas energy as a power source for oil recovery or water extraction.
  • pumps are generally used for pumping equipment.
  • the methods of oil production are mainly rod-type oil recovery and traditional rod-free oil recovery technology.
  • the equipment is mainly used for traditional downhole poles and pumping pumps, electric submersible pumps, screw pumps and other equipment.
  • the pump In the process of pumping oil, the pump has the disadvantages of overcoming the self-weight work of the sucker rod, and it is easy to produce the eccentric wear phenomenon of the rod tube; the cable and pump under the electric submersible pump to the bottom of the well are susceptible to wear, and once subjected to wear, The damage must be restarted before the pump can be started. The operation is difficult and the cost is high.
  • the screw pump also has similar shortcomings and shortcomings as the electric submersible pump. There are problems such as inconvenient transportation and installation and high maintenance cost.
  • An object of the present invention is to provide a method for forcibly lifting water or oil by forcibly lifting a liquid such as oil or water with high-pressure gas power.
  • the technical solution adopted by the present invention is: The method for forcibly lifting water or oil by the gas, characterized in that: the method comprises the following steps: (A1), firstly setting a storage tube in the well casing a check valve is arranged at the lower end of the oil drain pipe, the oil storage pipe and the oil drain pipe, and an inlet of the check valve at the lower end of the oil discharge pipe is connected with the bottom of the inner cavity of the oil storage pipe; (A2), providing a high pressure gas storage tank through the compressor The high-pressure gas energy can be stored; (A3), the high-pressure gas storage tank is connected with the intake port of the control valve, and the air outlet of the control valve is connected to the inner cavity of the oil storage pipe through the gas delivery pipe, and the air inlet of the control valve is connected with the air outlet ⁇ , the high-pressure gas in the high-pressure gas storage tank can enter the inner cavity of the oil storage pipe, press the liquid in the oil storage pipe cavity into the oil discharge pipe, and finally lift to
  • Another object of the present invention is to provide an apparatus which is simple in structure, convenient to use, and suitable for a wide range of gas energy to force lifting water or oil.
  • the high-pressure gas-energy compressor unit draws gas from the outside or the reverse-discharge storage tank into a high-pressure gas, so that the high-pressure gas storage tank maintains a certain gas energy pressure, and simultaneously provides high-pressure gas energy as needed.
  • the control cabinet After receiving the conversion signal, the control cabinet operates the control valve to perform the charging and deflation conversion work to achieve the purpose of oil and water lifting. It can completely eliminate the complicated structure, difficult control and cost of the rod production system and other rodless oil production equipment. High and frequent underground operations.
  • the technical solution adopted by the present invention is: the device capable of forcibly lifting water or oil, including an oil storage pipe, a fuel pipe and a drain pipe, wherein the oil storage pipe and the oil discharge pipe are disposed in a casing of the oil well,
  • the utility model is characterized in that: an oil inlet valve is fixedly arranged at a lower end of the oil storage pipe, and an oil outlet valve is fixed at a lower end of the oil discharge pipe, and an oil inlet port of the oil discharge valve is connected with a bottom portion of the inner cavity of the oil storage pipe above the oil inlet valve, and the oil discharge pipe is connected
  • the upper end is connected with the oil pipe, and the upper end of the oil storage pipe is connected with the air outlet of the control valve through the gas delivery pipe, the air inlet of the control valve is connected with the high pressure gas storage tank, and the high pressure gas storage tank passes through the pipeline and the high pressure gas energy compressor unit.
  • the air outlets are connected to each other, and the control valve is provided with an exhaust port
  • the gas delivery pipe is provided with a gas flow meter, and the gas flow meter, the control valve and the high-pressure gas energy compressor unit are respectively connected to the control cabinet through wires.
  • the oil storage pipe and the oil discharge pipe are arranged side by side in the casing cavity.
  • the oil drain pipe is sleeved in the oil storage pipe cavity.
  • the sleeve is provided with a conversion joint, and the upper ends of the oil storage tube and the oil discharge tube are respectively connected with the two nozzles at the lower end of the conversion joint, and the lower ends of the gas delivery tube and the oil pipe are respectively connected with the two mouths of the upper end of the conversion joint Connected.
  • the oil inlet valve and the oil outlet valve are both one-way valves.
  • the gas flow meter is replaced by a gas pressure gauge or an inter-turn relay.
  • the reverse discharge port of the control valve is in communication with the reverse discharge energy storage tank, and the outlet of the reverse discharge energy storage tank is connected to the intake port of the high pressure gas energy compressor unit through the conduit.
  • a filter device is disposed on the conduit between the reverse energy storage tank and the high pressure gas energy compressor unit.
  • the gas energy forced lifting water or oil equipment including the oil storage pipe, the oil pipe and the oil discharge pipe, the oil storage pipe and the oil discharge pipe are arranged in the casing of the No. 1 well and the No. 2 well, and the wellhead of the oil well is the sealed wellhead.
  • An oil inlet valve is fixed at a lower end of the oil storage pipe of each oil well, and an oil outlet valve is fixed at a lower end of the oil discharge pipe of each oil well, and an oil inlet port of the oil discharge valve in the same oil well and a corresponding oil inlet valve
  • the bottom of the inner cavity of the oil storage pipe is connected, and the upper end of the oil discharge pipe is connected with the oil pipe.
  • the upper end of the oil storage pipe of the first well is connected with the gas outlet of the control valve through the gas delivery pipe of the No. 1 well, and the oil storage pipe of the No. 2 well
  • the upper end is connected to the reverse discharge port of the control valve through the gas delivery pipe of the No. 2 well
  • the intake port of the control valve is connected with the high-pressure gas storage tank
  • the high-pressure gas storage tank is connected to the air outlet of the high-pressure gas-energy compressor unit through the conduit.
  • the oil storage pipe and the oil discharge pipe in the same oil well are arranged side by side in the casing cavity, or the oil discharge pipe in the same oil well is sleeved in the corresponding oil storage pipe cavity.
  • the gas flow pipe of the No. 1 well and the No. 2 well are provided with a gas flow meter, and the control cabinet passes through the wire and the control valve, the high pressure gas energy compressor group, the gas flow meter of the No. 1 well, and the No. 2 The well's gas flow meter is connected.
  • the beneficial effects of the invention are as follows: the sucker rod is omitted, there is no disadvantage of the self-weight work of the sucker rod, the efficiency is improved and the eccentric wear problem of the rod tube is completely eliminated; there is no moving parts in the well, and the downhole failure rate is low, The maintenance operation cost is greatly reduced; the wellhead equipment is simple, there is no wellhead leakage problem, and maintenance is free.
  • FIG. 1 is a schematic structural view of a side-by-side type of an oil drain pipe and an oil storage pipe according to the present invention.
  • FIG. 2 is a schematic structural view of a side-by-side type anti-discharge energy storage tank of an oil drain pipe and an oil storage pipe according to the present invention.
  • FIG. 3 is a schematic structural view of the oil drain pipe and the oil storage pipe sleeve type according to the present invention.
  • FIG. 4 is a schematic structural view of the oil drain pipe and the oil storage pipe sleeve type reverse discharge energy storage tank according to the present invention.
  • FIG. 5 is a schematic structural view of the oil drain pipe and the oil storage pipe of the present invention used side by side in a multi-well state.
  • FIG. 6 is a schematic structural view of the oil drain pipe and the oil storage pipe sleeve type of the present invention used in a multi-well state. [0024] FIG.
  • a ground power line L1 is a long line (>1 small ⁇ ), after the shutdown, the height line that the oil in the casing can reach, corresponding to the static liquid level;
  • the up-conversion control line L2 is the oil in the oil storage
  • the height position line reached after the rapid rise in the tube is equivalent to the moving liquid level, that is, the control critical point at which the liquid level reaches the position and then performs the refueling reverse operation; the down conversion control line L3 is reached after the liquid level is lowered.
  • the lowest position line is also the control critical point for the reverse operation of the exhaust after the liquid level reaches this position.
  • the method for forcibly lifting water or oil is characterized in that: the method comprises the following steps: (A1), firstly, an oil storage pipe and a drain pipe are arranged in the well casing, and the lower ends of the oil storage pipe and the oil discharge pipe are provided.
  • the check valve, the inlet of the check valve at the lower end of the oil drain pipe is connected with the bottom of the inner cavity of the oil storage pipe;
  • (A2) the high pressure gas energy is supplied to the high pressure gas storage tank through the compressor and stored;
  • (A3) the high pressure gas storage tank
  • the air inlet of the control valve is connected with the air inlet of the control valve, and the gas outlet of the control valve is connected with the inner cavity of the oil storage pipe.
  • the high pressure gas in the high pressure gas storage tank can enter the oil storage. Inside the tube, press the liquid in the oil storage tube into the oil drain tube, and finally lift it to the ground; (A4) adjust the control valve so that the air outlet of the control valve communicates with the exhaust port and discharges into the oil storage tube cavity.
  • the high-pressure gas energy, the liquid in the well casing enters the oil storage pipe cavity; (A5), re-regulates the control valve, and again connects the air inlet of the control valve with the air outlet, so that the liquid in the well casing is continuously Lift to the ground .
  • the high-pressure gas energy refers to a high-pressure gas generated after being compressed, and the pressure of the compressed gas is matched with the depth of the well, so that the oil or water can be lifted to the ground smoothly, for example, a 1000-meter oil well, According to the well condition, the pressure can be selected within the range of lOMPa-15MPa.
  • the present invention is applicable not only to the oil recovery operation of the oil well, but also to the water pumping operation of the water well, as long as the oil pipe is changed into a water pipe.
  • Embodiment 1 A device in which a drain pipe and an oil storage pipe are side by side of gas energy for forcibly lifting water or oil.
  • Figure 1 A device in which a drain pipe and an oil storage pipe are side by side of gas energy for forcibly lifting water or oil.
  • the gas can forcibly lift water or oil equipment, including the oil storage pipe 11, the oil pipe 7 and the oil discharge pipe 12, and the oil storage pipe 11 and the oil discharge pipe 12 are disposed in the casing 6 of the oil well, the wellhead of the oil well
  • the lower end of the oil storage pipe 11 is fixedly provided with an oil inlet valve 8
  • the lower end of the oil discharge pipe 12 is fixedly provided with an oil discharge valve 10
  • the oil inlet port of the oil discharge valve 10 and the oil inlet valve 8 The bottom of the inner cavity of the oil storage pipe 11 is connected, and the oil discharge pipe
  • the upper end of 12 is in communication with the oil pipe 7, and the upper end of the oil storage pipe 11 passes through the gas delivery pipe 9 and the air outlet of the control valve 4.
  • the A phase is connected, the air inlet P of the control valve 4 is in communication with the high pressure gas storage tank 2, and the high pressure gas storage tank 2 is connected to the air outlet of the high pressure gas energy compressor unit 1 through a conduit, and the control valve 4 is provided Exhaust port T.
  • the gas delivery pipe 9 is provided with a gas flow meter 14, and the gas flow meter 14, the control valve 4 and the high-pressure gas-energy compressor unit 1 are respectively connected to the control cabinet 3 through wires, so as to detect the gas flow meter 14
  • the incoming gas flow data is transmitted to the control cabinet 3, and the control cabinet 3 adjusts the working states of the control valve 4 and the high-pressure gas-energy compressor unit 1 according to the data requirements to realize the charging and discharging operations.
  • the oil storage pipe 11 and the oil discharge pipe 12 are arranged side by side in the casing 6 cavity.
  • the sleeve 6 is provided with a conversion joint 13 , the diameter of the oil storage tube 11 is larger than the diameter of the gas delivery tube 9 , the diameter of the oil discharge tube 12 is smaller than the diameter of the oil tube 7 , the oil storage tube 11 and the oil discharge tube
  • the upper ends of the 12 are respectively connected to the two ports at the lower end of the adapter 13, and the lower ends of the gas delivery pipe 9 and the oil pipe 7 are respectively communicated with the two ports at the upper end of the adapter 13, and the reduction connection is realized by the adapter 13.
  • Both the inlet valve 8 and the outlet valve 10 are one-way valves.
  • the high pressure gas generated by the high pressure gas energy compressor unit 1 enters the high pressure gas storage tank 2 through the pipeline, and the control valve 4 sends a signal according to the control cabinet 3, and only the air inlet port is discharged.
  • the gas port is connected to the gas, and the high-pressure gas can enter the oil storage pipe 11 through the gas delivery pipe 9, and the gas can force the oil of the oil storage pipe 11 through the oil discharge valve 10 to be forced into the oil discharge pipe 12, and then pressed to the oil pipe 7 through the conversion joint 13 Inside, the oil pipe 7 is lifted to the ground, and the liquid level is lowered from the up-conversion control line L2 to the down-conversion control line L3.
  • the gas flow meter 14 obtains the intake air amount VI, and then transmits the signal to the control cabinet. 3;
  • the control cabinet 3 operates the control valve 4 according to the signal of the gas flow meter 14, and only the air outlet A communicates with the exhaust port T to discharge the gas, and the oil in the sleeve 6 passes through the inlet valve 8 to enter In the oil storage pipe 11, the liquid level in the oil storage pipe 11 rises from the down conversion control line L3 to the up-conversion control line L2, the gas flow meter 14 obtains the exhaust gas amount V2, and transmits a signal to the control cabinet 3, and the control cabinet 3 starts according to this signal.
  • Gas pressure compressor can work as a high pressure gas supply tank 2, with the operation of the valve 4 inch control operation, then only the inlet port P communicates with the outlet port A, into the next cycle.
  • the gas flow meter can be replaced by a gas pressure gauge and controlled by a pressure signal; it can also be replaced by a turn-to-turn relay, controlled by a turn signal; the operating mode is the same.
  • the reverse discharge port B of the control valve 4 is in communication with the reverse discharge energy storage tank 15, and the outlet of the reverse discharge energy storage tank 15 is passed through the conduit and the high pressure gas energy compressor unit 1 The air inlets are connected to reuse the recovered gas.
  • a filter device 16 is disposed on the conduit between the reverse-discharge storage tank 15 and the high-pressure gas-energy compressor unit 1 to remove impurities of the gas in the reverse-discharge storage tank 15.
  • the load of the high-pressure gas-energy compressor unit 1 is reduced by the reverse-discharging energy storage tank 15.
  • the gas flow meter 14 transmits a signal to the control cabinet 3, and the liquid level is lowered from the up-conversion control line L2 to the down-conversion control line L3; the control cabinet 3 is based on the gas
  • the signal of the flow meter 14 operates the control valve 4 to open only the air outlet A and the reverse discharge port B, and most of the gas in the oil storage pipe 11 enters the reverse energy storage tank 15 through the pipeline, when the ventilation reaches a certain value.
  • the present invention can also be used for the operation of extracting groundwater.
  • Example 2 A device for arranging water or oil by means of a gas discharge pipe and a gas storage pipe jacketed type of gas energy. As shown in Figure 3.
  • the gas can forcibly lift water or oil equipment, including the oil storage pipe 11, the oil pipe 7 and the oil discharge pipe 12, and the oil storage pipe 11 and the oil discharge pipe 12 are disposed in the casing 6 of the oil well, the wellhead of the oil well
  • the lower end of the oil storage pipe 11 is fixedly provided with an oil inlet valve 8
  • the lower end of the oil discharge pipe 12 is fixedly provided with an oil discharge valve 10
  • the oil discharge pipe 12 is sleeved in the cavity of the oil storage pipe 11
  • the oil inlet of the oil discharge valve 10 is located at the bottom of the inner cavity of the oil storage pipe 11, the upper end of the oil discharge pipe 12 is in communication with the oil pipe 7, and the upper end of the oil storage pipe 11 is connected to the air outlet A of the control valve 4 through the gas delivery pipe 9, and is controlled.
  • the intake port P of the valve 4 is in communication with the high pressure gas storage tank 2, and the high pressure gas storage tank 2 is in communication with the air outlet of the high pressure gas energy
  • the gas delivery pipe 9 is provided with a gas flow meter 14, and the gas flow meter 14, the control valve 4 and the high-pressure gas-energy compressor unit 1 are connected to the control cabinet 3 through wires, so that the gas flow meter 14 is detected. Gas flow The data is transmitted to the control cabinet 3, and the control cabinet 3 adjusts the operating states of the control valve 4 and the high-pressure gas-energy compressor unit 1 according to the data requirements.
  • Both the inlet valve 8 and the outlet valve 10 are check valves.
  • the gas flow meter can be replaced with a gas pressure gauge and controlled by a pressure signal; it can also be replaced with a turn-to-turn relay and controlled by a turn signal; the operating mode is the same.
  • the high pressure gas generated by the high pressure gas energy compressor unit 1 enters the high pressure gas storage tank 2 through the pipeline, and the control valve 4 sends a signal according to the control cabinet 3, and only the air inlet P and the outlet
  • the port A is in communication, and the high-pressure gas enters the oil storage pipe 11 through the gas delivery pipe 9, and the gas can force the oil of the oil storage pipe 11 through the oil discharge valve 10 to be forced into the oil discharge pipe 12, and then lifted to the ground through the oil pipe 7, and the liquid
  • the surface is lowered from the up-conversion control line L2 until the down-conversion control line L3, and the gas flow meter 14 detects the ventilation amount signal; when the intake air amount reaches the set value VI, the gas flow meter 14 transmits the signal to the control cabinet 3, and thereafter
  • the liquid level in the oil storage pipe 11 reaches the position of the down-conversion control line L3, and the control valve 4 operates after receiving the signal of the control cabinet 3, and only the air outlet A communicates with the exhaust port T to
  • the oil inlet valve 8 enters the oil storage pipe 11, and the liquid level rises from the down conversion control line L3 to the up-conversion control line L2.
  • the gas flow 14 transfer this count signal to the control cabinet 3, the control valve operation control cabinet 3 4 operation, only the gas inlet P communicates with the outlet port A, and then into the next cycle.
  • This embodiment is designed to adapt to low-yield wells with small diameter casing and slight deformation of the casing. Since the oil discharge pipe 12 is disposed in the oil delivery pipe 11, the space required for the underground device is reduced, and the purpose of forced lifting is achieved.
  • the reverse discharge port B of the control valve 4 is in communication with the reverse discharge energy storage tank 15, and the outlet of the reverse discharge energy storage tank 15 is passed through the conduit and the high pressure gas energy compressor unit 1
  • the air inlets are connected to reuse the recovered gas.
  • a filter device 16 is disposed on the conduit between the reverse-discharge storage tank 15 and the high-pressure gas-energy compressor unit 1 to remove impurities of the gas in the reverse-discharge storage tank 15.
  • Example 3 The drain pipe and the oil storage pipe are used side by side in a multi-well state, as shown in FIG.
  • the gas can forcibly lift water or oil equipment, including the oil storage pipe 11, the oil pipe 7 and the oil discharge pipe 12, and the oil storage pipe 11 is provided in the casing 6 of the No. 1 well and the No. 2 well.
  • the oil drain pipe 12, the wellhead of the oil well is a sealed wellhead 5, wherein: the oil storage pipe 11 of each oil well is fixedly provided with an oil inlet valve 8, and the lower end of the oil discharge pipe 12 of each oil well is fixed with an oil discharge valve. 10, the oil in the same oil well valve 10 The mouth is connected with the bottom of the inner cavity of the oil storage pipe 11 above the corresponding oil inlet valve 8.
  • the oil storage pipe 11 and the oil discharge pipe 12 in the same oil well are arranged side by side in the cavity of the casing 6, and the upper end of the oil discharge pipe 12 is connected with the oil pipe 7.
  • the upper end of the oil storage pipe 11 of the No. 1 well is connected to the air outlet A of the control valve 4 through the gas delivery pipe 9 of the No. 1 well, and the upper end of the oil storage pipe 11 of the No. 2 well is passed through the gas delivery pipe 9 of the No. 2 well.
  • the reverse discharge port B of the control valve 4 is in communication, and the intake port P of the control valve 4 is in communication with the high pressure gas storage tank 2, and the high pressure gas storage tank 2 is connected to the air outlet of the high pressure gas energy compressor unit 1 through a conduit.
  • the gas flow pipe 14 is disposed on the gas transmission pipe 9 of the No. 1 well and the No. 2 well, and the control cabinet 3 passes through the gas of the wire and the control valve 4, the high pressure gas energy compressor group 1, and the No. 1 well respectively.
  • the flow meter 14 is connected to the gas flow meter 14 of the second well.
  • the casing 6 of each oil well is provided with a conversion joint 13 , and the upper ends of the oil storage pipe 11 and the oil discharge pipe 12 in the same oil well are respectively connected with two openings at the lower end of the corresponding conversion joint 13
  • the gas delivery pipe 9 and the lower end of the oil pipe 7 of the same oil well are respectively connected to the two ports of the upper end of the corresponding adapter 13 .
  • the high-pressure gas generated by the high-pressure gas-energy compressor unit 1 enters the high-pressure gas storage tank 2 through the pipeline; the control cabinet 3 operates the control valve 4 to operate, so that the air inlet P and the air outlet A communicate with each other.
  • the same anti-discharge port B is connected with the exhaust port T, so that the No. 2 well is in the exhaust stage, the No. 1 well is in the refueling stage, and the high-pressure gas enters the No. 1 well storage pipe 11 through the No.
  • the liquid level of the oil is moved from the position of the up-conversion control line L2 to the position of the down-conversion control line L3, and the oil is forcibly pressed into the oil discharge pipe 12 of the No. 1 well, and then pressed into the oil pipe 7 to the ground, No. 1 well
  • the oil flow meter 14 of the No. 1 well detects the intake air amount, and the liquid level in the oil storage pipe 11 of the No. 1 well reaches the L3 position, and the No. 1 well completes the oil discharge, and the gas flow meter 14 of the No.
  • the signal is transmitted to the control cabinet 3, and the control cabinet 3 operates the control valve 4 to operate only the air outlet A and the reverse discharge port B, and a part of the high pressure gas in the first well is discharged into the gas delivery pipe 9 of the second well; After the day, the control cabinet 3 operates the control valve 4 to make the air inlet P
  • the reverse discharge port B is connected, the same exhaust port T is connected with the air outlet A, the first well discharges the remaining gas, and the high pressure gas storage tank 2 starts to inject gas into the second well; the gas flowmeter 14 of the second well
  • the intake air amount is detected, and the signal is transmitted to the control cabinet 3, and the control cabinet 3 operates the control valve 4, and the air outlet port A is connected with the reverse discharge port B, and the second well well discharges part of the high pressure gas to the gas transmission of the first well.
  • Example 4 The oil drain pipe and the oil storage pipe jacketed type are used in a multi-well state, as shown in FIG.
  • the gas can forcibly lift water or oil equipment, including the oil storage pipe 11, the oil pipe 7 and the oil discharge pipe 12, and are provided in the casing 6 of the No. 1 well and the No. 2 well.
  • the oil pipe 11 and the oil discharge pipe 12, the wellhead of the oil well is a sealed wellhead 5, wherein: the lower end of the oil storage pipe 11 is fixedly provided with an oil inlet valve 8, and the lower end of the oil discharge pipe 12 is fixedly provided with an oil discharge valve 10, which is in the same oil well.
  • the oil drain pipe 12 is sleeved in the corresponding oil storage pipe 11 cavity, the oil inlet port of the oil discharge valve 10 is located at the bottom of the inner cavity of the corresponding oil storage pipe 11, and the upper end of the oil discharge pipe 12 is connected with the oil pipe 7, the first well
  • the upper end of the oil storage pipe 11 communicates with the air outlet A of the control valve 4 through the corresponding gas delivery pipe 9, and the upper end of the oil storage pipe of the second well communicates with the reverse discharge port B of the control valve 4 through the corresponding gas delivery pipe, and the control valve 4
  • the air inlet P is in communication with the high pressure gas storage tank 2, and the high pressure gas storage tank 2 is connected to the air outlet of the high pressure gas energy compressor unit 1 through a conduit.
  • a gas flow meter 14 is disposed on the gas delivery pipe 9 of the No. 1 well and the No. 2 well, and the control cabinet 3 passes through the wire and the control valve 4, the high-pressure gas-energy compressor unit 1, and the gas flow meter 14 of the No. 1 well, respectively. Connected to the gas flow meter of Well 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

公开了一种气能强制举升水或油的方法,包括以下步骤:先在井套管(6)内设置储油管(11)和排油管(12),储油管(11)和排油管(12)的下端都设有单向阀,排油管(12)下端的单向阀(10)的进口与储油管(11)的内腔底部相连通;通过压缩机(1)为高压储气罐(2)提供高压气能并存储;高压储气罐(2)与控制阀(4)进气口(P)相连通,控制阀(4)出气口(A)与储油管(11)相连通,当进气口(P)与出气口(A)连通时,高压气能进入储油管(11)把液体压入排油管(12)内,最后举升到地面;使控制阀(4)的出气口(A)与排气口(T)相连通,井套管(6)内的液体进入储油管(11)腔内;如此往复循环即可。另外,还公开了一种气能强制举升水或油的装置,该装置井下无运动部件,故障率低,大大降低了维修作业成本。

Description

气能强制举升水或油的方法及设备 技术领域
[0001] 本发明涉及一种抽取地下水或采油的方法及设备, 具体地说是一种以高压气能 为动力采油或取水的气能强制举升水或油的方法及设备。
背景技术
[0002] 目前, 对于抽水设备一般都是用水泵, 采油的方法主要为有杆采油及传统无杆 采油技术, 其设备主要为传统的井下杆柱及抽油泵、 电潜泵、 螺杆泵等设备, 在抽油的过程中, 抽油泵都存在着需克服抽油杆自重做功的弊端, 而且易产生 杆管偏磨现象; 电潜泵下到井底的电缆和泵易受磨损, 并且一旦受损就须作业 重新下泵才可启动, 作业难度大, 费用高; 螺杆泵也存在与电潜泵相似的缺点 和不足, 都存在着运输和安装都不方便, 维修成本高问题。
技术问题
[0003] 本发明的一个目的在于提供一种使用方便, 以高压气能为动力强制举升油或水 等液体的气能强制举升水或油的方法。
问题的解决方案
技术解决方案
[0004] 为了达到以上目的, 本发明所采用的技术方案是: 该气能强制举升水或油的方 法, 其特征在于: 它包括以下步骤完成: (A1) 、 先在井套管内设置储油管和 排油管, 储油管和排油管的下端都设有单向阀, 排油管下端的单向阀的进口与 储油管的内腔底部相连通; (A2) 、 通过压缩机为高压储气罐提供高压气能并 存储; (A3) 、 高压储气罐与控制阀进气口相连通, 控制阀出气口通过气体输 送管与储油管内腔相连通, 当控制阀的进气口与出气口连通吋, 高压储气罐内 的高压气能进入储油管内腔, 把储油管腔内的液体压入排油管内, 最后举升到 地面; (A4) 、 调节控制阀, 使控制阀的出气口与排气口相连通, 排出储油管 腔内的高压气能, 井套管内的液体进入储油管腔内; (A5) 、 重新调节控制阀 , 再次使控制阀的进气口与出气口连通, 如此往复循环, 井套管内的液体不断 被举升到地面。
[0005] 本发明的另一个目的在于提供一种结构简单, 使用方便、 适合井况广的气能强 制举升水或油的设备。 在石油幵采领域中, 高压气能压缩机组从外界或反排储 能罐吸进气体压缩成高压气体, 使高压储气罐维持一定的气能压力, 同吋根据 需要快速提供高压气能, 控制柜接收到转换信号后, 操作控制阀进行充、 放气 转换工作, 来达到油、 水举升的目的, 可彻底杜绝有杆采油系统和其他无杆采 油设备的结构复杂、 控制困难、 成本高及井下作业频繁的问题。
[0006] 为了达到以上目的, 本发明所采用的技术方案是: 该气能强制举升水或油的设 备, 包括储油管、 油管和排油管, 储油管和排油管设置在油井的套管内, 其特 征在于: 储油管的下端固定设有进油阀, 排油管的下端固定设有出油阀, 出油 阀的进油口与进油阀上方的储油管的内腔底部相连通, 排油管的上端与油管相 连通, 储油管的上端通过气体输送管与控制阀的出气口相连通, 控制阀的进气 口与高压储气罐相连通, 高压储气罐通过导管与高压气能压缩机组的出气口相 连通, 所述的控制阀上设有排气口。
[0007] 所述的气体输送管上设有气体流量计, 气体流量计、 控制阀和高压气能压缩机 组分别通过导线与控制柜相连接。
[0008] 所述的储油管和排油管并排设置在套管腔内。
[0009] 作为一种改进, 所述的排油管套设在储油管腔内。
[0010] 所述的套管内设有转换接头, 储油管和排油管的上端分别与转换接头下端的两 个幵口相连通, 气体输送管和油管的下端分别与转换接头上端的两个幵口相连 通。
[0011] 所述的进油阀和出油阀都为单向阀。
[0012] 作为一种改进, 气体流量计替换为气体压力计或吋间继电器。
[0013] 作为一种改进, 所述的控制阀的反排口与反排储能罐相连通, 反排储能罐的出 口通过导管与高压气能压缩机组的进气口相连通。
[0014] 所述的反排储能罐与高压气能压缩机组之间的导管上设有过滤装置。
[0015] 该气能强制举升水或油的设备, 包括储油管、 油管和排油管, 在一号井和二号 井的套管内都设有储油管和排油管, 油井的井口都为密封井口, 其特征在于: 每个油井的储油管的下端固定设有进油阀, 每个油井的排油管的下端固定设有 出油阀, 同一个油井内的出油阀的进油口与相应的进油阀上方的储油管的内腔 底部相连通, 排油管的上端与油管相连通, 一号井的储油管的上端通过一号井 的气体输送管与控制阀的出气口相连通, 二号井的储油管的上端通过二号井的 气体输送管与控制阀的反排口相连通, 控制阀的进气口与高压储气罐相连通, 高压储气罐通过导管与高压气能压缩机组的出气口相连通。
[0016] 所述的同一个油井内的储油管和排油管并排设置在套管腔内, 或者同一个油井 内的排油管套设在相对应的储油管腔内。
[0017] 所述的一号井和二号井的气体输送管上都设有气体流量计, 控制柜分别通过导 线与控制阀、 高压气能压缩机组、 一号井的气体流量计和二号井的气体流量计 相连接。
发明的有益效果
有益效果
[0018] 本发明的有益效果在于: 省略掉了抽油杆, 不存在抽油杆自重做功的弊端, 提 高了效率并且彻底杜绝了杆管偏磨问题; 井下无运动部件, 井下故障率低, 大 大降低了维修作业成本; 井口设备简单, 不存在井口泄露问题, 免维护。
对附图的简要说明
附图说明
[0019] 图 1为本发明的排油管和储油管并排式的结构示意图。
[0020] 图 2为本发明的排油管和储油管并排式的带反排储能罐的结构示意图。
[0021] 图 3为本发明的排油管和储油管套设式的结构示意图。
[0022] 图 4为本发明的排油管和储油管套设式的带反排储能罐的结构示意图。
[0023] 图 5为本发明的排油管和储油管并排式的在多井状态下使用的结构示意图。
[0024] 图 6为本发明的排油管和储油管套设式的在多井状态下使用的结构示意图。
[0025] 图中: 1、 高压气能压缩机组; 2、 高压储气罐; 3、 控制柜; 4、 控制阀; 5、 密封井口; 6、 套管; 7、 油管; 8、 进油阀; 9、 气体输送管; 10、 出油阀; 11 、 储油管; 12、 排油管; 13、 转换接头; 14、 气体流量计; 15、 反排储能罐; 1 6、 过滤装置; A、 出气口; B、 反排口; T、 排气口; Ρ、 进气口。 实施该发明的最佳实施例
本发明的最佳实施方式
[0026] 为更好的阐述本发明的内容, 设置了地功线 Ll、 上转换控制线 L2、 下转换控制 线 L3。 所述的地功线 L1为长吋间 (>1小吋) 停机后, 套管内油液所能达到的高 度线, 相当于静液位; 所述的上转换控制线 L2为油液在储油管内快速上升后所 到达高度位置线, 相当于动液位, 也就是液面到达此位置后进行加气反向操作 的控制临界点; 所述的下转换控制线 L3为液面下降后所到达的最低位置线, 也 是液面到达此位置后进行排气反向操作的控制临界点。
[0027] 该气能强制举升水或油的方法, 其特征在于: 它包括以下步骤完成: (A1) 、 先在井套管内设置储油管和排油管, 储油管和排油管的下端都设有单向阀, 排 油管下端的单向阀的进口与储油管的内腔底部相连通; (A2) 、 通过压缩机为 高压储气罐提供高压气能并存储; (A3) 、 高压储气罐与控制阀进气口相连通 , 控制阀出气口通过气体输送管与储油管内腔相连通, 当控制阀的进气口与出 气口连通吋, 高压储气罐内的高压气能进入储油管内腔, 把储油管腔内的液体 压入排油管内, 最后举升到地面; (A4) 、 调节控制阀, 使控制阀的出气口与 排气口相连通, 排出储油管腔内的高压气能, 井套管内的液体进入储油管腔内 ; (A5) 、 重新调节控制阀, 再次使控制阀的进气口与出气口连通, 如此往复 循环, 井套管内的液体不断被举升到地面。
[0028] 所述的高压气能就是指经过压缩后产生的高压气体, 压缩气体的压强与井的深 度相匹配, 以能使油或水顺利举升到地面为原则, 比如 1000米的油井, 根据井 况可以选择气压在 lOMPa- 15MPa范围内。
[0029] 本发明不但适用于油井的采油作业, 也适用于水井的抽水作业, 只要把油管改 成水管即可。
[0030] 实施例 1 : 一种排油管和储油管并排式的气能强制举升水或油的设备。 如图 1。
[0031] 在采油领域中, 该气能强制举升水或油的设备, 包括储油管 11、 油管 7和排油 管 12, 储油管 11和排油管 12设置在油井的套管 6内, 油井的井口为密封井口 5, 其特征在于: 储油管 11的下端固定设有进油阀 8, 排油管 12的下端固定设有出油 阀 10, 出油阀 10的进油口与进油阀 8上方的储油管 11的内腔底部相连通, 排油管 12的上端与油管 7相连通, 储油管 11的上端通过气体输送管 9与控制阀 4的出气口
A相连通, 控制阀 4的进气口 P与高压储气罐 2相连通, 高压储气罐 2通过导管与高 压气能压缩机组 1的出气口相连通, 所述的控制阀 4上设有排气口 T。
[0032] 所述的气体输送管 9上设有气体流量计 14, 气体流量计 14、 控制阀 4和高压气能 压缩机组 1分别通过导线与控制柜 3相连接, 以便将气体流量计 14检测到的气体 流量数据传递到控制柜 3, 再由控制柜 3根据数据要求分别调整控制阀 4和高压气 能压缩机组 1的工作状态, 实现充、 放气操作。
[0033] 所述的储油管 11和排油管 12并排设置在套管 6腔内。
[0034] 所述的套管 6内设有转换接头 13, 储油管 11的管径大于气体输送管 9的管径, 排 油管 12的管径小于油管 7的管径, 储油管 11和排油管 12的上端分别与转换接头 13 下端的两个幵口相连通, 气体输送管 9和油管 7的下端分别与转换接头 13上端的 两个幵口相连通, 通过转换接头 13实现变径连接。
[0035] 所述的进油阀 8和出油阀 10都为单向阀。
[0036] 使用本发明进行正常采油吋, 高压气能压缩机组 1产生的高压气体通过管道进 入高压储气罐 2, 控制阀 4根据控制柜 3发来信号动作, 仅使进气口 Ρ与出气口 Α相 连通, 高压气能通过气体输送管 9进入储油管 11内, 气能将储油管 11的油液穿过 出油阀 10强制压入排油管 12, 再经过转换接头 13压到油管 7内, 通过油管 7举升 到地面, 液面从上转换控制线 L2幵始下降至下转换控制线 L3, 此吋, 气体流量 计 14得到进气量值 VI, 然后将此信号传递给控制柜 3; 控制柜 3根据气体流量计 1 4的信号, 操作控制阀 4动作, 仅使出气口 A与排气口 T相通, 将气体排出, 套管 6 内的油液穿过进油阀 8进入储油管 11内, 储油管 11内液面从下转换控制线 L3上升 直到上转换控制线 L2, 气体流量计 14得到排气量 V2, 并传输信号给控制柜 3, 控 制柜 3根据此信号启动高压气能压缩机组 1工作为高压储气罐 2送气, 同吋操作控 制阀 4动作, 再仅使进气口 P与出气口 A连通, 进入下一个循环。
本发明的实施方式
[0037] 作为一种改进, 气体流量计可以用气体压力计替换, 用压力信号进行控制; 也 可以用吋间继电器替换, 用吋间信号进行控制; 工作模式是相同的。 [0038] 作为一种改进, 如图 2, 所述的控制阀 4的反排口 B与反排储能罐 15相连通, 反 排储能罐 15的出口通过导管与高压气能压缩机组 1的进气口相连通, 以对回收的 气体进行重复利用。
[0039] 所述的反排储能罐 15与高压气能压缩机组 1之间的导管上设有过滤装置 16, 以 便清除反排储能罐 15内气体的杂质。
[0040] 如图 2所示, 利用反排储能罐 15来减轻高压气能压缩机组 1的负荷。 当给储油管 11供气的进气量达到设定值 VI吋, 气体流量计 14传输信号给控制柜 3, 液位从上 转换控制线 L2下降到下转换控制线 L3; 控制柜 3根据气体流量计 14的信号, 操作 控制阀 4动作, 仅使出气口 A与反排口 B相通, 储油管 11内的大部分气能通过管道 进入反排储能罐 15内, 当通气量达到一定值, 或者经过一定吋间后, 既可以使 用气体流量计来控制, 也可以用吋间继电器来控制, 将此信号传输给控制柜 3, 控制柜 3操作控制阀 4动作, 使出气口 A与反排口 B断幵, 同吋仅使出气口 A与排 气口 T相通, 幵始排气, 最终使液面从下转换控制线 L3上升到上转换控制线 L2; 当排气总量达到 V2吋, 气体流量计 14传输信号给控制柜 3, 控制柜 3操作控制阀 4 动作, 再仅使出气口 A与进气口 P接通, 高压气能压缩机组 1启动工作, 然后重复 下一个循环, 此吋的反排储能罐 15内的气能经过滤装置 16, 进入高压气能压缩 机组 1重复使用。
[0041] 同理, 对于抽取地下水的作业, 也可以使用本发明。
[0042] 实施例 2: —种排油管和储油管套设式的气能强制举升水或油的设备。 如图 3。
[0043] 在采油领域中, 该气能强制举升水或油的设备, 包括储油管 11、 油管 7和排油 管 12, 储油管 11和排油管 12设置在油井的套管 6内, 油井的井口为密封井口 5, 其特征在于: 储油管 11的下端固定设有进油阀 8, 排油管 12的下端固定设有出油 阀 10, 所述的排油管 12套设在储油管 11腔内, 出油阀 10的进油口位于储油管 11 的内腔底部, 排油管 12的上端与油管 7相连通, 储油管 11的上端通过气体输送管 9与控制阀 4的出气口 A相连通, 控制阀 4的进气口 P与高压储气罐 2相连通, 高压 储气罐 2通过导管与高压气能压缩机组 1的出气口相连通。
[0044] 所述的气体输送管 9上设有气体流量计 14, 气体流量计 14、 控制阀 4和高压气能 压缩机组 1通过导线与控制柜 3相连接, 以便将气体流量计 14检测到的气体流量 数据传递到控制柜 3, 再由控制柜 3根据数据要求分别调整控制阀 4和高压气能压 缩机组 1的工作状态。
[0045] 所述的进油阀 8和出油阀 10都为单向阀。
[0046] 作为一种改进, 气体流量计可以用气体压力计替换, 用压力信号进行控制; 也 可以用吋间继电器替换, 用吋间信号进行控制; 工作模式是相同的。
[0047] 使用本发明进行正常采油吋, 高压气能压缩机组 1产生的高压气体通过管道进 入高压储气罐 2, 控制阀 4根据控制柜 3发来信号动作, 仅使进气口 P与出气口 A相 连通, 高压气体通过气体输送管 9进入储油管 11内, 气能将储油管 11的油液穿过 出油阀 10强制压入排油管 12, 然后通过油管 7举升到地面, 液面从上转换控制线 L2下降直到下转换控制线 L3, 气体流量计 14检测通气量信号; 当进气量达到设 定值 VI吋, 气体流量计 14将此信号传输给控制柜 3, 此吋储油管 11内液面到达下 转换控制线 L3位置, 控制阀 4接收到控制柜 3信号后动作, 仅使出气口 A与排气口 T相通, 将气体排出, 套管 6内的油液穿过进油阀 8进入储油管 11内, 液面从下转 换控制线 L3上升直到上转换控制线 L2, 当气体排出体积 V2吋, 液面上升到上转 换控制线 L2位置, 气体流量计 14将此信号传输给控制柜 3, 控制柜 3操作控制阀 4 动作, 仅使进气口 P与出气口 A连通, 然后进入下一个循环。
[0048] 本实施例是为适应小直径套管及套管轻微变形的低产井所设计, 由于排油管 12 套设在输油管 11内, 缩小了井下装置所需空间, 达到了强制举升目的。
[0049] 作为一种改进, 如图 4, 所述的控制阀 4的反排口 B与反排储能罐 15相连通, 反 排储能罐 15的出口通过导管与高压气能压缩机组 1的进气口相连通, 以对回收的 气体进行重复利用。
[0050] 所述的反排储能罐 15与高压气能压缩机组 1之间的导管上设有过滤装置 16, 以 便清除反排储能罐 15内气体的杂质。
[0051] 实施例 3: 排油管和储油管并排式的在多井状态下使用, 如图 5。
[0052] 在采油领域中, 该气能强制举升水或油的设备, 包括储油管 11、 油管 7和排油 管 12, 在一号井和二号井的套管 6内都设有储油管 11和排油管 12, 油井的井口都 为密封井口 5, 其特征在于: 每个油井的储油管 11的下端固定设有进油阀 8, 每 个油井的排油管 12的下端固定设有出油阀 10, 同一个油井内的出油阀 10的进油 口与相应的进油阀 8上方的储油管 11的内腔底部相连通, 同一个油井内的储油管 11和排油管 12并排设置在套管 6腔内, 排油管 12的上端与油管 7相连通, 一号井 的储油管 11的上端通过一号井的气体输送管 9与控制阀 4的出气口 A相连通, 二号 井的储油管 11的上端通过二号井的气体输送管 9与控制阀 4的反排口 B相连通, 控 制阀 4的进气口 P与高压储气罐 2相连通, 高压储气罐 2通过导管与高压气能压缩 机组 1的出气口相连通。
[0053] 所述的一号井和二号井的气体输送管 9上都设有气体流量计 14, 控制柜 3分别通 过导线与控制阀 4、 高压气能压缩机组 1、 一号井的气体流量计 14和二号井的气 体流量计 14相连接。
[0054] 所述的每个油井的套管 6内都设有转换接头 13, 同一个油井内的储油管 11和排 油管 12的上端分别与相对应的转换接头 13下端的两个幵口相连通, 同一个油井 的气体输送管 9和油管 7的下端分别与相对应的转换接头 13上端的两个幵口相连 通。
[0055] 在正常使用采油吋, 高压气能压缩机组 1产生的高压气体通过管道进入高压储 气罐 2; 控制柜 3操作控制阀 4动作, 此吋使进气口 P与出气口 A连通, 同吋反排口 B与排气口 T连通, 这样, 二号井处于排气阶段, 一号井处于加气阶段, 高压气 体通过一号井的气体输送管 9进入一号井的储油管 11内, 使油液的液面从上转换 控制线 L2位置向下转换控制线 L3位置移动, 油液强制压入一号井的排油管 12, 然后压到油管 7内到地面, 一号井幵始出油; 一号井的气体流量计 14检测进气量 , 此吋一号井的储油管 11内液面到达 L3位置, 一号井完成出油, 一号井的气体 流量计 14将此信号传输给控制柜 3, 控制柜 3操作控制阀 4动作, 仅使出气口 A与 反排口 B相通, 将一号井内的部分高压气体排到二号井的气体输送管 9内; 经过 一定吋间后, 控制柜 3操作控制阀 4动作, 使进气口 P与反排口 B相通, 同吋排气 口 T与出气口 A连通, 一号井把剩余气体排放, 同吋高压储气罐 2幵始向二号井注 气; 二号井的气体流量计 14检测进气量, 并将信号传输给控制柜 3, 控制柜 3操 作控制阀 4动作, 此吋出气口 A与反排口 B连通, 二号井将部分高压气体排到一号 井的气体输送管 9内, 经过一定吋间后, 控制柜 3操作控制阀 4动作, 使进气口 P 与出气口 A连通, 反排口 B与排气口 T连通, 然后进入下一个循环。 [0056] 实施例 4: 排油管和储油管套设式的在多井状态下使用, 如图 6。
[0057] 在正常的采油过程中, 该气能强制举升水或油的设备, 包括储油管 11、 油管 7 和排油管 12, 在一号井和二号井的套管 6内都设有储油管 11和排油管 12, 油井的 井口为密封井口 5, 其特征在于: 储油管 11的下端固定设有进油阀 8, 排油管 12 的下端固定设有出油阀 10, 同一个油井内的排油管 12套设在相对应的储油管 11 腔内, 出油阀 10的进油口位于相对应的储油管 11的内腔底部, 排油管 12的上端 与油管 7相连通, 一号井的储油管 11上端通过相应的气体输送管 9与控制阀 4的出 气口 A相连通, 二号井的储油管上端通过相应的气体输送管与控制阀 4的反排口 B 相连通, 控制阀 4的进气口 P与高压储气罐 2相连通, 高压储气罐 2通过导管与高 压气能压缩机组 1的出气口相连通。
[0058] 一号井和二号井的气体输送管 9上都设有气体流量计 14, 控制柜 3分别通过导线 与控制阀 4、 高压气能压缩机组 1、 一号井的气体流量计 14和二号井的气体流量 计相连接。
[0059] 本实施例的工作过程与实施例 3的工作过程相同, 故不多述。

Claims

权利要求书
[权利要求 1] 气能强制举升水或油的方法, 其特征在于: 它包括以下步骤完成: (
A1) 、 先在井套管内设置储油管和排油管, 储油管和排油管的下端 都设有单向阀, 排油管下端的单向阀的进口与储油管的内腔底部相连 通; (A2) 、 通过压缩机为高压储气罐提供高压气能并存储; (A3 ) 、 高压储气罐与控制阀进气口相连通, 控制阀出气口通过气体输送 管与储油管内腔相连通, 当控制阀的进气口与出气口连通吋, 高压储 气罐内的高压气能进入储油管内腔, 把储油管腔内的液体压入排油管 内, 最后举升到地面; (A4) 、 调节控制阀, 使控制阀的出气口与 排气口相连通, 排出储油管腔内的高压气能, 井套管内的液体进入储 油管腔内; (A5) 、 重新调节控制阀, 再次使控制阀的进气口与出 气口连通, 如此往复循环, 井套管内的液体不断被举升到地面。
[权利要求 2] 气能强制举升水或油的设备, 包括储油管 (11) 、 油管 (7) 和排油 管 (12) , 储油管 (11) 和排油管 (12) 设置在油井的套管 (6) 内 , 其特征在于: 储油管 (11) 的下端固定设有进油阀 (8) , 排油管
(12) 的下端固定设有出油阀 (10) , 出油阀 (10) 的进油口与进油 阀 (8) 上方的储油管 (11) 的内腔底部相连通, 排油管 (12) 的上 端与油管 (7) 相连通, 储油管 (11) 的上端通过气体输送管 (9) 与 控制阀 (4) 的出气口 (A) 相连通, 控制阀 (4) 的进气口 (P) 与 高压储气罐 (2) 相连通, 高压储气罐 (2) 通过导管与高压气能压缩 机组 (1) 的出气口相连通, 所述的控制阀 (4) 上设有排气口 (T)
[权利要求 3] 根据权利要求 2所述的气能强制举升水或油的设备, 其特征在于: 所 述的储油管 (11) 和排油管 (12) 并排设置在套管 (6) 腔内; 或者 , 所述的排油管 (12) 套设在储油管 (11) 腔内。
[权利要求 4] 根据权利要求 2所述的气能强制举升水或油的设备, 其特征在于: 所 述的气体输送管 (9) 上设有气体流量计 (14) , 气体流量计 (14) 、 控制阀 (4) 和高压气能压缩机组 (1) 分别通过导线与控制柜 (3 ) 相连接。
[权利要求 5] 根据权利要求 2所述的气能强制举升水或油的设备, 其特征在于: 所 述的套管 (6) 内设有转换接头 (13) , 储油管 (11) 和排油管 (12 ) 的上端分别与转换接头 (13) 下端的两个幵口相连通, 气体输送管 (9) 和油管 (7) 的下端分别与转换接头 (13) 上端的两个幵口相连
[权利要求 6] 根据权利要求 4所述的气能强制举升水或油的设备, 其特征在于: 所 述的气体流量计替换为气体压力计或吋间继电器。
[权利要求 7] 根据权利要求 2、 3、 4或 5所述的气能强制举升水或油的设备, 其特征 在于: 所述的控制阀 (4) 的反排口 (B) 与反排储能罐 (15) 相连 通, 反排储能罐 (15) 的出口通过导管与高压气能压缩机组 (1) 的 进气口相连通; 所述的反排储能罐 (15) 与高压气能压缩机组 (1) 之间的导管上设有过滤装置 (16) 。
[权利要求 8] 气能强制举升水或油的设备, 包括储油管 (11) 、 油管 (7) 和排油 管 (12) , 在一号井和二号井的套管 (6) 内都设有储油管 (11) 和 排油管 (12) , 其特征在于: 每个油井的储油管 (11) 的下端固定设 有进油阀 (8) , 每个油井的排油管 (12) 的下端固定设有出油阀 (1 0) , 同一个油井内的出油阀 (10) 的进油口与相应的进油阀 (8) 上 方的储油管 (11) 的内腔底部相连通, 排油管 (12) 的上端与油管 ( 7) 相连通, 一号井的储油管 (11) 的上端通过一号井的气体输送管 (9) 与控制阀 (4) 的出气口 (A) 相连通, 二号井的储油管 (11) 的上端通过二号井的气体输送管 (9) 与控制阀 (4) 的反排口 (B) 相连通, 控制阀 (4) 的进气口 (P) 与高压储气罐 (2) 相连通, 高 压储气罐 (2) 通过导管与高压气能压缩机组 (1) 的出气口相连通。
[权利要求 9] 根据权利要求 8所述的气能强制举升水或油的设备, 其特征在于: 所 述的同一个油井内的储油管 (11) 和排油管 (12) 并排设置在相对应 的套管 (6) 腔内, 或者同一个油井内的排油管 (12) 套设在相对应 的储油管 (11) 腔内; 所述的一号井和二号井的气体输送管 (9) 上 都设有气体流量计 (14) , 控制柜 (3) 分别通过导线与控制阀 (4) 、 高压气能压缩机组 (1) 、 一号井的气体流量计 (14) 和二号井的 气体流量计 (14) 相连接。
PCT/CN2015/096765 2014-12-31 2015-12-09 气能强制举升水或油的方法及设备 WO2016107382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410846109.7 2014-12-31
CN201410846109.7A CN104500007B (zh) 2014-12-31 2014-12-31 气能强制举升水或油的方法及设备

Publications (1)

Publication Number Publication Date
WO2016107382A1 true WO2016107382A1 (zh) 2016-07-07

Family

ID=52941446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096765 WO2016107382A1 (zh) 2014-12-31 2015-12-09 气能强制举升水或油的方法及设备

Country Status (2)

Country Link
CN (1) CN104500007B (zh)
WO (1) WO2016107382A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104500007B (zh) * 2014-12-31 2018-03-13 山东威马泵业股份有限公司 气能强制举升水或油的方法及设备
CN106761573B (zh) * 2016-11-28 2019-04-30 郭志企 一种基于囊式泵的抽采装置及其抽采方法
CN107558966A (zh) * 2017-10-30 2018-01-09 山东威马泵业股份有限公司 一种低渗低产油井用多井联动气驱采油装置
CN111068530B (zh) * 2018-10-22 2022-02-22 中国石油天然气股份有限公司 微气泡生成装置及设备
CN113356805B (zh) * 2021-07-16 2023-04-14 中国海洋石油集团有限公司 井间激荡式气举诱喷装置及气举诱喷方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2068147U (zh) * 1990-07-12 1990-12-26 吴成林 一种气举采油装置
CN1247928A (zh) * 1998-04-16 2000-03-22 景辉元 气体采、输流体的方法及装置
US20020029888A1 (en) * 2000-08-18 2002-03-14 Swensen Frederick B. Ground water extraction method and system
CN2742134Y (zh) * 2004-11-19 2005-11-23 中国石油天然气股份有限公司 球塞气举井下“u”型连接管
CN101265802A (zh) * 2008-04-24 2008-09-17 中国海洋石油总公司 同井采油注气系统
WO2010120424A1 (en) * 2009-04-14 2010-10-21 Williams Danny T Downhole draw-down pump and method
CN203978397U (zh) * 2014-06-26 2014-12-03 哈尔滨煤安科技有限公司 压缩空气能抽油装置
CN104500007A (zh) * 2014-12-31 2015-04-08 山东威马泵业股份有限公司 气能强制举升水或油的方法及设备
CN204436353U (zh) * 2014-12-31 2015-07-01 山东威马泵业股份有限公司 气能强制举升水或油的设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4243102A (en) * 1979-01-29 1981-01-06 Elfarr Johnnie A Method and apparatus for flowing fluid from a plurality of interconnected wells
US5211242A (en) * 1991-10-21 1993-05-18 Amoco Corporation Apparatus and method for unloading production-inhibiting liquid from a well
US6705404B2 (en) * 2001-09-10 2004-03-16 Gordon F. Bosley Open well plunger-actuated gas lift valve and method of use
US7100695B2 (en) * 2002-03-12 2006-09-05 Reitz Donald D Gas recovery apparatus, method and cycle having a three chamber evacuation phase and two liquid extraction phases for improved natural gas production
CN1821544A (zh) * 2006-03-30 2006-08-23 谭庆杰 新型高效气压式采油机
CN202596696U (zh) * 2012-04-05 2012-12-12 中国石油天然气股份有限公司 空心杆单向气举排水采气装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2068147U (zh) * 1990-07-12 1990-12-26 吴成林 一种气举采油装置
CN1247928A (zh) * 1998-04-16 2000-03-22 景辉元 气体采、输流体的方法及装置
US20020029888A1 (en) * 2000-08-18 2002-03-14 Swensen Frederick B. Ground water extraction method and system
CN2742134Y (zh) * 2004-11-19 2005-11-23 中国石油天然气股份有限公司 球塞气举井下“u”型连接管
CN101265802A (zh) * 2008-04-24 2008-09-17 中国海洋石油总公司 同井采油注气系统
WO2010120424A1 (en) * 2009-04-14 2010-10-21 Williams Danny T Downhole draw-down pump and method
CN203978397U (zh) * 2014-06-26 2014-12-03 哈尔滨煤安科技有限公司 压缩空气能抽油装置
CN104500007A (zh) * 2014-12-31 2015-04-08 山东威马泵业股份有限公司 气能强制举升水或油的方法及设备
CN204436353U (zh) * 2014-12-31 2015-07-01 山东威马泵业股份有限公司 气能强制举升水或油的设备

Also Published As

Publication number Publication date
CN104500007B (zh) 2018-03-13
CN104500007A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016107382A1 (zh) 气能强制举升水或油的方法及设备
US20180320492A1 (en) Device and method for water drainage and gas production by pressure control and gas lift
CN102297336A (zh) 油田油井套管天然气多级压缩回收装置
CN201041141Y (zh) 电潜双向抽油防砂泵
CN202152915U (zh) 油田油井套管天然气多级压缩回收装置
CN203488154U (zh) 便携式油井套管气回收装置
CN202832456U (zh) 一种天然气井口减压增产装置
CN108278248A (zh) 液压石油举升装置智能控制系统
CN204510363U (zh) 一种气体顶压给水设备
CN104806211B (zh) 一种接替压气采油装置及方法
CN204436353U (zh) 气能强制举升水或油的设备
CN208010703U (zh) 液压石油举升装置智能控制系统
CN103104433A (zh) 大排量内置自动换向液压柱塞泵
CN210290030U (zh) 一种天然气井用的辅助排液装置
CN202064396U (zh) 双泵密闭稳压供水装置
CN211287626U (zh) 一种煤层气井环空连续泵注加药装置
CN116066006A (zh) 柱塞负压采气装置及采气方法
CN205977191U (zh) 油压式智能分压注水装置
CN105156078B (zh) 原油开采使用的液压采油装置
CN103939319A (zh) 三管式直线电机抽油泵
CN203847360U (zh) 三管式直线电机抽油泵
CN204252978U (zh) 一种油气田负压开采装置
CN220727934U (zh) 气液混合双泵驱动多级增压式集输装置
CN204371266U (zh) 一种清水注水集成装置
CN213329081U (zh) 一种气动排水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875060

Country of ref document: EP

Kind code of ref document: A1