WO2016107360A1 - 一种可调多功能破碎岩体崩滑试验装置及其使用方法 - Google Patents
一种可调多功能破碎岩体崩滑试验装置及其使用方法 Download PDFInfo
- Publication number
- WO2016107360A1 WO2016107360A1 PCT/CN2015/096045 CN2015096045W WO2016107360A1 WO 2016107360 A1 WO2016107360 A1 WO 2016107360A1 CN 2015096045 W CN2015096045 W CN 2015096045W WO 2016107360 A1 WO2016107360 A1 WO 2016107360A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- collapse
- test
- rock mass
- track
- adjustment
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Definitions
- the invention relates to the field of geotechnical engineering and earthquake disaster reduction engineering in civil engineering, in particular to an adjustable multi-functional broken rock mass collapse sliding test device and a using method thereof.
- the rock mass often contains weak surfaces such as layers, joints and fissures.
- the existence of these discontinuous structural planes weakens the mechanical properties of the rock mass and is also the main influencing factor leading to rock mass failure.
- the so-called broken rock mass refers to the rock mass with smaller diameter and more cracks in the structure caused by natural weathering, geological movement or human activities.
- these broken rock masses When these broken rock masses are disturbed by earthquakes, blasting, etc., they will slide down the slope, bringing a series of destructive disasters to production and life.
- a large number of fractured rock mass collapses due to the instability of broken rock masses have occurred, which has a great impact on the ecological environment and people's lives and property.
- the fracture and slip characteristics of the broken rock mass have their own characteristics. Unlike landslides, it does not slide along the entire sliding surface, but is a large-grained granular flow sliding. Unlike ordinary broken rock masses, it is mainly a small block-based motion, so water The impact is small. Between the above characteristics, it is very important to study the dynamic response of the fractured rock mass.
- the research on the accumulation process of broken rock mass under the action of power still stays in the qualitative analysis stage.
- the fractured rock mass interacts with the clastic rock mass on the slope and the bottom of the slope, which has a certain influence on the height of the final accumulation and the extension length and accumulation density of the accumulation area.
- Studying these phenomena and exploring the characteristics and accumulation patterns of the fractured rock mass in the movement can provide a strong basis for the slope stability evaluation in geotechnical engineering, and it can also be the disaster area of the fractured rock mass in the earthquake disaster reduction project. Provide a reference for the determination of the scope and prevention of disasters.
- test devices for related research have the following problems:
- the object of the present invention is to provide an easy-to-use, reproducible, adjustable multi-functional broken rock mass collapse test device and a method for using the same to solve the problems raised in the above background art.
- the present invention provides the following technical solutions:
- the utility model relates to an adjustable multi-functional broken rock mass collapse sliding test device, which comprises an accumulation belt bracket, a collapse rail track bracket, a telescopic rod A, a telescopic rod B, an accumulation belt test slot and a collapse track test slot; the accumulation belt bracket is provided There are two holes B for fixing the telescopic rod A.
- the telescopic rod A is provided with a hole A.
- the collapse rail bracket has two holes D for fixing the telescopic rod B, and the telescopic rod B is provided with a hole C.
- the two ends of the bottom of the accumulating test slot are connected with the upper part of the telescopic rod A through the bearing A; the two ends of the bottom of the collapse rail test slot are connected with the upper part of the telescopic rod B through the bearing B;
- the crushing rock track test tank is provided with a crushing rock material material sliding position control sliding rail, a partition fixing block, a partition plate and a slope material placing groove, and the partition plate is fixed on the partition fixing block, and the partition is fixed
- the plate fixing block is arranged on the control slide rail of the broken rock material material collapse position, and the slope material placement groove is arranged at the bottom of the collapse slide track test slot, and the adjustment plate and the adjustment block are arranged in the slope material placement groove;
- the back of the partition in the track test tank is the initial material collapse zone; Poly stented, slump-rail mounting bracket by threaded fasteners in the base support plate, the distance adjustment rail base.
- the adjusting plate and the adjusting block have the same width in the direction of collapse, and the adjusting plate is disposed at the front end of the slope material placing groove, that is, the groove bottom of the collapsed track test groove near the ground end, and the adjusting block is closely adjusted.
- the plate is placed at the rear end of the slope material placement groove, that is, the distal end of the collapse track test slot; a track plate is fixed above the adjustment block, one end of the track plate is aligned with the side close to the adjustment plate, and the other end is free to extend.
- the base support plate is disposed in two pieces, and the distance adjusting slide base is fixedly mounted between the two base support plates through the base connecting rod, and the distance adjusting slide base is provided with the distance adjusting slide rail.
- a material-slipping track surface of different roughness is disposed in the collapse track test chamber.
- the method for using the adjustable multi-functional broken rock mass collapse test device comprises the following steps:
- the broken rock mass material for the test is left in the initial material collapse zone of the collapse track test slot by the blockage of the baffle; in the slope material placement groove, the adjustment is adjusted The number of blocks to adjust the length of the slope material strip;
- the baffle of the fractured rock mass material in the test block of the collapse track is extracted, and the broken rock material is collapsed and slipped.
- the slope body is eroded.
- the material is placed on the upper surface of the slope material in the trough, and comes to the accumulating zone test trough.
- the fractured rock mass material gradually stops moving through the accumulation zone, thereby completing the test of the accumulation process of the fractured rock mass and recording the test. result.
- the present invention provides a platform for a series of experiments on the fracture process of a fractured rock mass, so that the test is reproducible; for numerical simulation, the test results can be supplemented by relevant tests based on the present invention, so that The test is complementary and verifiable.
- the invention has the advantages of detachable, combinable, easy to operate, versatile and reproducible.
- the invention can realize the adjustment of the collapse height of the fractured rock material by accumulating the holes with the bracket and the collapse rail track support, and the test slot height, the spacing and the inclination angle of the experimental device due to the structural factors and the like are difficult to adjust.
- the adjustment of the length of the accumulation belt can also be realized by increasing or decreasing the number of the adjustment blocks in the groove material placement groove.
- Figure 1 is a schematic view of the structure of the present invention
- Figure 2 is a schematic view showing the structure of the collapse track test slot of the present invention.
- Figure 3 is a schematic view showing the structure of the accumulation belt test tank of the present invention.
- Figure 4 is a schematic view showing the distance adjustment between the test belt of the accumulation belt and the test slide of the collapse rail in the present invention
- Figure 5 is a schematic view 1 of the height and angle adjustment of the accumulation test slot and the collapse track test slot of the present invention
- Figure 6 is a second schematic view of the height and angle adjustment of the accumulation test slot and the collapse track test slot of the present invention.
- Figure 7 is a flow chart 1 of the fractured rock material of the present invention.
- Figure 8 is a flow chart 2 of the fractured rock material of the present invention.
- Figure 9 is a final form of collapse and slip of the fractured rock material of the present invention.
- an adjustable multi-functional broken rock mass collapse test device includes an accumulation belt bracket 4, a collapse rail track bracket 5, a telescopic rod A6, a telescopic rod B7, and an accumulation belt test.
- the accumulation belt bracket 4 is provided with two holes B18 for fixing the telescopic rod A6, and the telescopic rod A6 is provided with a hole A17 for adjusting the telescopic rod A6 in the accumulation belt bracket
- the position of the slide rail bracket 5 has two holes D20 for fixing the telescopic rod B7, and the telescopic rod B7 is provided with a hole C19 for adjusting the position of the telescopic rod B7 on the collapse rail bracket 5;
- the two ends of the bottom of the accumulation belt test tank 8 are connected to the upper portion of the telescopic rod A6 via a bearing A21;
- the two ends of the bottom of the collapse rail test slot 24 are connected to the upper portion of the telescopic rod B7 via a bearing B22;
- the baffle fixing block 12 is disposed on the crushing rock material material sliding position control slide rail 11, and the baffle fixing block 12 moves on the crushing rock material material sliding position control slide rail 11, and the partition fixing block 12 drives the partition plate 13 Move so that the position of the partition 13 can be changed.
- a slope material placement groove 14 is disposed at the bottom of the collapse slide track test slot 24, and a slope material is placed inside the slope material placement groove 14.
- the fracture rock material material collapse control is controlled in the partition 13
- the rear side that is, the initial material collapse zone of the collapse track test slot 24; the accumulation belt bracket 4 and the collapse rail bracket 5 are mounted on the base support plate 1 and the distance adjustment slide base 3 by the threaded fasteners 23.
- the base support plate 1 is disposed in two pieces, and the distance adjustment slide base 3 is fixedly mounted between the two base support plates 1 through the base connecting rod 2 to form a bracket assembly.
- the distance adjustment rail base 3 has a distance adjustment rail.
- a material-slipping track surface of different roughness is disposed in the collapse track test slot 24, a material-slipping track surface of different roughness is disposed.
- An adjustment plate 15 and an adjustment block are further disposed in the slope material placement groove 14; the adjustment plate 15 and the adjustment block have the same width in the collapse direction, and the adjustment plate 15 is disposed at the front end of the slope material placement groove 14 or the collapse track.
- the bottom of the test trough 24 is near the ground end, and the adjusting block is placed close to the adjusting plate 15 at the rear end of the slope material placing groove 14, that is, the distal end of the collapsing track test slot 24; the track plate 16 is fixed above the adjusting block, and the track plate is fixed. One end of 16 is aligned with the side that is in close contact with the adjustment plate 15, and the other end is free to extend.
- the test method of the adjustable multi-functional broken rock mass collapse test device comprises the following steps:
- the base connecting rod 2 is connected with the base supporting plate 1 and the distance adjusting sliding rail base 3 by the threaded fasteners 23, and the telescopic rod A6 and the telescopic rod B7 are respectively inserted into the accumulating belt bracket 4 and the collapse rail bracket In 5, two position fixing irons are inserted into each of the hole B18 and the hole C19, and the positions of the telescopic rod A6 and the telescopic rod B7 are fixed to form a bracket assembly.
- the accumulation belt test tank 8 and the collapse rail test tank 24 are respectively placed on the assembled bracket assembly in the step (1), and the accumulation belt test tank 8 is passed through the accumulation belt.
- the hole B18 on the bracket 4 and the hole A17 on the telescopic rod A6 are adjusted in height and angle
- the collapse track test slot 24 is adjusted in height and angle through the hole D20 on the collapse rail bracket 5 and the hole C19 on the telescopic rod B7.
- the stent assembly is secured together.
- the position of the diaphragm 13 in the collapse track test slot 24 is adjusted by adjusting the crushing rock mass material sliding control rail 11 and the partition fixing block 12, thereby adjusting the broken rock mass.
- the slope material placing groove 14 the purpose of adjusting the length of the slope material strip is achieved by adjusting the number of the adjusting blocks.
- the baffle 13 blocking the fractured rock material in the collapse track test slot 24 is taken out, and the fractured rock material is collapsed and down, and the fractured rock material passes through the slope in the collapse track test slot 24.
- the upper surface of the slope material in the slope material placement groove 14 is eroded, and the accumulation belt test groove 8 is formed.
- the fractured rock material passes through the accumulation zone 9 and gradually Stop the movement to complete the test of the accumulation process of the broken rock mass, record the test results, repeat the above steps, and use the control variable method to carry out multiple tests to obtain the test results under different parameters.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
Claims (5)
- 一种可调多功能破碎岩体崩滑试验装置,其特征在于,包括积聚带支架(4)、崩滑轨道支架(5)、伸缩杆A(6)、伸缩杆B(7)、积聚带试验槽(8)和崩滑轨道试验槽(24);所述积聚带支架(4)上设有两个用于固定伸缩杆A(6)的孔B(18),伸缩杆A(6)上设有孔A(17),所述崩滑轨道支架(5)上有两个用于固定伸缩杆B(7)的孔D(20),伸缩杆B(7)上设有孔C(19),所述积聚带试验槽(8)底部的两端与伸缩杆A(6)的上部通过轴承A(21)连接;所述崩滑轨道试验槽(24)底部的两端与伸缩杆B(7)的上部通过轴承B(22)连接;积聚带试验槽(8)内设有积聚区(9),所述崩滑轨道试验槽(24)内设置有破碎岩体材料崩滑位置控制滑轨(11)、隔板固定块(12)、隔板(13)和坡体材料放置槽(14),隔板(13)固定在隔板固定块(12)上,隔板固定块(12)设置在破碎岩体材料崩滑位置控制滑轨(11)上,在崩滑轨道试验槽(24)的底部设有坡体材料放置槽(14),坡体材料放置槽(14)内设置有调整板(15)和调节块;在崩滑轨道试验槽(24)内的隔板(13)后方为初始材料崩滑区;积聚带支架(4)、崩滑轨道支架(5)通过螺纹紧固件(23)安装在底座支撑板(1)、距离调节滑轨底座(3)上。
- 根据权利要求1所述的可调多功能破碎岩体崩滑试验装置,其特征在于,所述调整板(15)和调节块在崩滑方向上的宽度相等,调整板(15)设置在坡体材料放置槽(14)前端的槽底,调节块紧贴调整板(15)放置在坡体材料放置槽(14)的后端;在调节块上方固定有轨道板(16),轨道板(16)一端与紧贴调整板的一侧对齐,另一端自由延伸。
- 根据权利要求1所述的可调多功能破碎岩体崩滑试验装置,其特征在于,所述底座支撑板(1)设置为两块,距离调节滑轨底座(3)通过底座连接杆(2)固定安装在两块底座支撑板(1)之间,且距离调节滑轨底座(3)带有距离调节滑轨。
- 根据权利要求1所述的可调多功能破碎岩体崩滑试验装置,其特征在于,崩滑轨道试验槽(24)内设置有不同粗糙度的材料崩滑轨道面。
- 一种如权利要求1-4任一所述可调多功能破碎岩体崩滑试验装置的使用方法,其特征在于,包括以下步骤:(1)按照上述各零部件的连接方式组装本装置;(2)破碎岩体材料崩滑高度的调节与坡体材料带长度的调节:通过调整破碎岩体材料崩滑控制滑轨(11)、隔板固定块(12)的位置来调整隔板(13)在崩滑轨道试验槽(24)内的位置,从而调节破碎岩体材料崩滑高度;然后将试验用的破碎岩体材料放置在隔板(13)后,通过隔板(13)的阻挡,将试验用的破碎岩体材料留在崩滑轨道试验槽(24)的初始材料崩滑区内;在坡体材料放置槽(14)中,通过调整调节块的数量,来调节坡体材料带长度;(3)开始试验抽出崩滑轨道试验槽(24)中阻挡破碎岩体材料的隔板(13),让破碎岩体材料崩滑而下,破碎岩体材料经过崩滑轨道试验槽(24)内的坡体材料放置槽(14)时,会侵蚀掉坡体材料放置槽(14)中的坡体材料上表面,破碎岩体材料来到积聚带试验槽(8),在积聚带试验槽(8)中,破碎岩体材料经过积聚区(9)逐渐停止运动,从而完成一次破碎岩体的积聚过程试验,同时记录试验结果。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU93063A LU93063B1 (en) | 2014-12-31 | 2015-11-30 | An adjustable multifunctional testing apparatus for landslide simulation of fractured rock mass and its application |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410845420.X | 2014-12-31 | ||
CN201410845420.XA CN104535741B (zh) | 2014-12-31 | 2014-12-31 | 一种可调多功能破碎岩体崩滑试验装置及其使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016107360A1 true WO2016107360A1 (zh) | 2016-07-07 |
Family
ID=52851311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/096045 WO2016107360A1 (zh) | 2014-12-31 | 2015-11-30 | 一种可调多功能破碎岩体崩滑试验装置及其使用方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN104535741B (zh) |
LU (1) | LU93063B1 (zh) |
WO (1) | WO2016107360A1 (zh) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107063989A (zh) * | 2017-05-19 | 2017-08-18 | 西南交通大学 | 一种岩层顺层氧化酸蚀反应试验装置 |
CN107340381A (zh) * | 2017-07-26 | 2017-11-10 | 中国科学院、水利部成都山地灾害与环境研究所 | 一种研究沟头侵蚀的移动试验装置及其试验方法 |
CN107367599A (zh) * | 2017-09-01 | 2017-11-21 | 中国电建集团成都勘测设计研究院有限公司 | 水电库区顺层岩质边坡试验模拟系统 |
CN107643158A (zh) * | 2017-10-25 | 2018-01-30 | 吉林大学 | 一种边坡滚石启动、运动、撞击的模拟测试系统 |
CN107976530A (zh) * | 2018-01-10 | 2018-05-01 | 吉林大学 | 一种模拟岩体楔形体滑动的装置 |
CN108562515A (zh) * | 2018-03-27 | 2018-09-21 | 东北大学 | 一种裂隙岩体注浆浆液扩散多因素试验系统 |
CN109580312A (zh) * | 2019-01-15 | 2019-04-05 | 山东大学 | 用于模型试验的成坡支架试验装置及试验方法 |
CN110441112A (zh) * | 2019-09-05 | 2019-11-12 | 西南石油大学 | 一种用于崩塌失稳实验的堆石体密实成型装置 |
CN110736820A (zh) * | 2019-10-29 | 2020-01-31 | 中国石油大学(华东) | 一种滑坡区域管道安全性的模型试验装置 |
CN110736821A (zh) * | 2019-10-29 | 2020-01-31 | 中国石油大学(华东) | 一种基于重力加载材料的滑坡区域管道安全性的模型试验装置 |
CN111650359A (zh) * | 2020-06-22 | 2020-09-11 | 长江水利委员会长江科学院 | 一种可调节临时苫盖和拦挡措施的室内土壤侵蚀试验槽装置及其试验方法 |
CN112595833A (zh) * | 2020-10-16 | 2021-04-02 | 北京市地质研究所 | 一种可移动崩塌试验装置及其系统和试验方法 |
CN112924129A (zh) * | 2021-03-16 | 2021-06-08 | 中铁西北科学研究院有限公司 | 高位危岩体防护结构冲击响应多维度大型模拟试验设备 |
CN113324817A (zh) * | 2021-07-02 | 2021-08-31 | 中国科学院武汉岩土力学研究所 | 一种制作复杂反倾边坡模型的方法及试验装置 |
CN113504353A (zh) * | 2021-06-18 | 2021-10-15 | 中国科学院武汉岩土力学研究所 | 一种岩石块体系统崩塌滑坡过程推演装置及试验方法 |
CN113628518A (zh) * | 2021-09-14 | 2021-11-09 | 中国地质调查局长沙自然资源综合调查中心 | 一种动水环境下可变河道形态的滑坡涌浪传播试验装置 |
CN114922302A (zh) * | 2022-05-11 | 2022-08-19 | 深圳市建筑装饰(集团)有限公司 | 一种建筑物外立面用的轻质复合保温板材 |
CN115184582A (zh) * | 2022-06-30 | 2022-10-14 | 长江大学 | 一种水蚀与风蚀耦合侵蚀作用下的岩土滑坡物理模拟装置 |
CN117607397A (zh) * | 2023-12-28 | 2024-02-27 | 长江大学 | 一种高位岩崩冻融循环物理模型试验方法及系统 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104535741B (zh) * | 2014-12-31 | 2016-08-24 | 东北大学 | 一种可调多功能破碎岩体崩滑试验装置及其使用方法 |
CN106768846B (zh) * | 2017-01-23 | 2019-01-11 | 成都理工大学 | 碎屑流模拟试验装置及碎屑流模型试验系统 |
CN107389903B (zh) * | 2017-08-24 | 2023-04-14 | 西南交通大学 | 滑面拉动式滑坡模型试验装置 |
CN108279155B (zh) * | 2018-01-29 | 2020-10-02 | 东北大学 | 一种多向加载结构面强度测定装置及使用方法 |
CN109164243B (zh) * | 2018-07-26 | 2021-09-07 | 河海大学 | 一种确定杂填土细观阻尼参数的试验模型 |
CN110514532A (zh) * | 2019-08-05 | 2019-11-29 | 南京理工大学 | 一种块体结构面剪切流变测试装置及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3633419A (en) * | 1968-12-11 | 1972-01-11 | Mitsubishi Heavy Ind Ltd | Experimental basin and means for testing behaviors of offshore marine structures |
US5337596A (en) * | 1990-04-03 | 1994-08-16 | Den Norske Stats Oljeselskap A.S | Apparatus for measuring permeability of a rock sample |
CN203024955U (zh) * | 2012-12-26 | 2013-06-26 | 东北大学 | 可调多功能流通试验槽平台 |
CN103217512A (zh) * | 2013-04-11 | 2013-07-24 | 中国科学院力学研究所 | 一种滑坡物理模型实验装置 |
CN203259528U (zh) * | 2013-04-09 | 2013-10-30 | 西南交通大学 | 一种高速滑坡启程机理试验装置 |
CN103823044A (zh) * | 2014-03-20 | 2014-05-28 | 东北大学 | 一种可调多功能碎屑流运移堆积试验装置及其使用方法 |
CN203772854U (zh) * | 2014-03-20 | 2014-08-13 | 东北大学 | 一种可调多功能碎屑流运移堆积试验装置 |
CN104535741A (zh) * | 2014-12-31 | 2015-04-22 | 东北大学 | 一种可调多功能破碎岩体崩滑试验装置及其使用方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063403B (zh) * | 2012-12-26 | 2014-12-10 | 东北大学 | 一种可调多功能流通试验槽平台 |
-
2014
- 2014-12-31 CN CN201410845420.XA patent/CN104535741B/zh active Active
-
2015
- 2015-11-30 LU LU93063A patent/LU93063B1/en active
- 2015-11-30 WO PCT/CN2015/096045 patent/WO2016107360A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3633419A (en) * | 1968-12-11 | 1972-01-11 | Mitsubishi Heavy Ind Ltd | Experimental basin and means for testing behaviors of offshore marine structures |
US5337596A (en) * | 1990-04-03 | 1994-08-16 | Den Norske Stats Oljeselskap A.S | Apparatus for measuring permeability of a rock sample |
CN203024955U (zh) * | 2012-12-26 | 2013-06-26 | 东北大学 | 可调多功能流通试验槽平台 |
CN203259528U (zh) * | 2013-04-09 | 2013-10-30 | 西南交通大学 | 一种高速滑坡启程机理试验装置 |
CN103217512A (zh) * | 2013-04-11 | 2013-07-24 | 中国科学院力学研究所 | 一种滑坡物理模型实验装置 |
CN103823044A (zh) * | 2014-03-20 | 2014-05-28 | 东北大学 | 一种可调多功能碎屑流运移堆积试验装置及其使用方法 |
CN203772854U (zh) * | 2014-03-20 | 2014-08-13 | 东北大学 | 一种可调多功能碎屑流运移堆积试验装置 |
CN104535741A (zh) * | 2014-12-31 | 2015-04-22 | 东北大学 | 一种可调多功能破碎岩体崩滑试验装置及其使用方法 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107063989A (zh) * | 2017-05-19 | 2017-08-18 | 西南交通大学 | 一种岩层顺层氧化酸蚀反应试验装置 |
CN107340381A (zh) * | 2017-07-26 | 2017-11-10 | 中国科学院、水利部成都山地灾害与环境研究所 | 一种研究沟头侵蚀的移动试验装置及其试验方法 |
CN107340381B (zh) * | 2017-07-26 | 2023-04-14 | 中国科学院、水利部成都山地灾害与环境研究所 | 一种研究沟头侵蚀的移动试验装置及其试验方法 |
CN107367599A (zh) * | 2017-09-01 | 2017-11-21 | 中国电建集团成都勘测设计研究院有限公司 | 水电库区顺层岩质边坡试验模拟系统 |
CN107643158A (zh) * | 2017-10-25 | 2018-01-30 | 吉林大学 | 一种边坡滚石启动、运动、撞击的模拟测试系统 |
CN107976530A (zh) * | 2018-01-10 | 2018-05-01 | 吉林大学 | 一种模拟岩体楔形体滑动的装置 |
CN107976530B (zh) * | 2018-01-10 | 2023-10-03 | 吉林大学 | 一种模拟岩体楔形体滑动的装置 |
CN108562515B (zh) * | 2018-03-27 | 2023-11-28 | 东北大学 | 一种裂隙岩体注浆浆液扩散多因素试验系统 |
CN108562515A (zh) * | 2018-03-27 | 2018-09-21 | 东北大学 | 一种裂隙岩体注浆浆液扩散多因素试验系统 |
CN109580312B (zh) * | 2019-01-15 | 2023-08-25 | 山东大学 | 用于模型试验的成坡支架试验装置及试验方法 |
CN109580312A (zh) * | 2019-01-15 | 2019-04-05 | 山东大学 | 用于模型试验的成坡支架试验装置及试验方法 |
CN110441112A (zh) * | 2019-09-05 | 2019-11-12 | 西南石油大学 | 一种用于崩塌失稳实验的堆石体密实成型装置 |
CN110441112B (zh) * | 2019-09-05 | 2023-11-10 | 西南石油大学 | 一种用于崩塌失稳实验的堆石体密实成型装置 |
CN110736820A (zh) * | 2019-10-29 | 2020-01-31 | 中国石油大学(华东) | 一种滑坡区域管道安全性的模型试验装置 |
CN110736821A (zh) * | 2019-10-29 | 2020-01-31 | 中国石油大学(华东) | 一种基于重力加载材料的滑坡区域管道安全性的模型试验装置 |
CN110736821B (zh) * | 2019-10-29 | 2022-07-19 | 中国石油大学(华东) | 一种基于重力加载材料的滑坡区域管道安全性的模型试验装置 |
CN111650359A (zh) * | 2020-06-22 | 2020-09-11 | 长江水利委员会长江科学院 | 一种可调节临时苫盖和拦挡措施的室内土壤侵蚀试验槽装置及其试验方法 |
CN111650359B (zh) * | 2020-06-22 | 2024-04-26 | 长江水利委员会长江科学院 | 一种可调节临时苫盖和拦挡措施的室内土壤侵蚀试验槽装置及其试验方法 |
CN112595833A (zh) * | 2020-10-16 | 2021-04-02 | 北京市地质研究所 | 一种可移动崩塌试验装置及其系统和试验方法 |
CN112924129A (zh) * | 2021-03-16 | 2021-06-08 | 中铁西北科学研究院有限公司 | 高位危岩体防护结构冲击响应多维度大型模拟试验设备 |
CN113504353A (zh) * | 2021-06-18 | 2021-10-15 | 中国科学院武汉岩土力学研究所 | 一种岩石块体系统崩塌滑坡过程推演装置及试验方法 |
CN113324817B (zh) * | 2021-07-02 | 2023-04-28 | 中国科学院武汉岩土力学研究所 | 一种制作复杂反倾边坡模型的方法及试验装置 |
CN113324817A (zh) * | 2021-07-02 | 2021-08-31 | 中国科学院武汉岩土力学研究所 | 一种制作复杂反倾边坡模型的方法及试验装置 |
CN113628518B (zh) * | 2021-09-14 | 2023-08-08 | 中国地质调查局长沙自然资源综合调查中心 | 一种动水环境下可变河道形态的滑坡涌浪传播试验装置 |
CN113628518A (zh) * | 2021-09-14 | 2021-11-09 | 中国地质调查局长沙自然资源综合调查中心 | 一种动水环境下可变河道形态的滑坡涌浪传播试验装置 |
CN114922302A (zh) * | 2022-05-11 | 2022-08-19 | 深圳市建筑装饰(集团)有限公司 | 一种建筑物外立面用的轻质复合保温板材 |
CN115184582A (zh) * | 2022-06-30 | 2022-10-14 | 长江大学 | 一种水蚀与风蚀耦合侵蚀作用下的岩土滑坡物理模拟装置 |
CN117607397A (zh) * | 2023-12-28 | 2024-02-27 | 长江大学 | 一种高位岩崩冻融循环物理模型试验方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN104535741A (zh) | 2015-04-22 |
CN104535741B (zh) | 2016-08-24 |
LU93063B1 (en) | 2016-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016107360A1 (zh) | 一种可调多功能破碎岩体崩滑试验装置及其使用方法 | |
Dang et al. | Direct shear behavior of a plane joint under dynamic normal load (DNL) conditions | |
Ng et al. | A novel flexible barrier for landslide impact in centrifuge | |
CN105651589B (zh) | 一种对深部岩体应力状态及响应的模拟测试方法 | |
CN103823044B (zh) | 一种可调多功能碎屑流运移堆积试验装置及其使用方法 | |
CN103940977B (zh) | 振动台试验用可调式地层振动剪切模型箱装置 | |
CN108663180B (zh) | 一种模拟隧道遭受正断层逆断层发震的动力响应测试装置及测试方法 | |
Mucciarelli et al. | Peculiar earthquake damage on a reinforced concrete building in San Gregorio (L’Aquila, Italy): site effects or building defects? | |
CN203772854U (zh) | 一种可调多功能碎屑流运移堆积试验装置 | |
Gan et al. | Analysis of Model Tests of Rainfall‐Induced Soil Deposit Landslide | |
CN204903300U (zh) | 一种土体原位钻孔剪切测试装置 | |
CN108009371B (zh) | 一种泥石流运动的底床阻力测算方法及其应用 | |
CN109165452A (zh) | 一种正断层对冲击地压诱导的数值模拟方法与系统 | |
Haggerty et al. | Evaluation of Established Perforation Cleanup Models on Dynamic Underbalanced Perforating | |
Dashti et al. | Centrifuge modeling of seismic soil-structure-interaction and lateral earth pressures for large near-surface underground structures | |
Tsai et al. | Effects of core on dynamic responses of earth dam | |
CN105509866B (zh) | 层状岩石介质声发射传播特性测试装置及方法 | |
CN103940568A (zh) | 一种检测坚硬顶板卸压爆破效果的方法 | |
Sun et al. | Seismic analyses of the Bay Tunnel | |
Gang et al. | Seismic response of horizontal layered site | |
Giri et al. | Performance of small scale model slopes in shaking table tests | |
CN205388814U (zh) | 公路地质灾害检测或预警信息采集装置 | |
Chen et al. | Dynamic Performance Analysis of Sawdust Mixed Clay Site Model in Shaking Table Test | |
CN103884634B (zh) | 一种测试隧洞岩石受力的滴定装置及测定岩石的受力方法 | |
Simioni | The effects of explosions on snow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15875039 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15875039 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 30.10.2017. |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15875039 Country of ref document: EP Kind code of ref document: A1 |